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Abstract

This paper experimentally investigates the effect of introducing unavailable alternatives and

irrelevant information regarding the alternatives on the optimality of decisions in choice prob-

lems. We find that the presence of unavailable alternatives and irrelevant information generates

suboptimal decisions with the interaction between the two amplifying this effect. Irrelevant in-

formation in any dimension increases the time costs of decisions. We also identify a “preference

for simplicity” beyond the desire to make optimal decisions or minimize time spent on a decision

problem.
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1 Introduction

In many decision problems, unavailable options along with irrelevant attributes are presented to

decision makers. For example, consider a new employee of a large firm in the United States who must

choose a health insurance plan. Among the many plans listed in their benefits handbook are some

plans that are only available to employees of a high enough rank (e.g. team leads, managers, vice

presidents) and so are “unavailable” to this new employee. Nevertheless, they can see premiums,

coverage amounts, co-pays, etc. for these unavailable plans in the same way that they can see this

information for plans that the employee can actually choose. Additionally, even among these plans

some of this information might not be valuable. For example, if this new employee takes no regular

specialty medication and always chooses generic medications, coverage for branded prescription

drugs is irrelevant.

Consider some additional examples of unavailable alternatives:1 In a restaurant menu, unavail-

able items may still be listed in the menu with a sold out note. A local event ticket website may

list events that are sold-out. Also, consider some more examples of irrelevant attributes: Insurance

coverage for care related to pregnancy may be presented to someone who could never get pregnant.

The US Food and Drug Administration requires standardized nutrition label on food and beverage

packages including fat, cholesterol, protein, and carbohydrate even when they are 0%, such as for a

bottled water. Smartphones will list available service providers, even though this set will not vary

across available smartphones.2 From the perspective of classical rational choice theory, decision

makers have free disposal of irrelevant information: they can costlessly ignore unavailable options

and irrelevant attributes, and hence the presentation of such irrelevant information would not lead

to different choices than those made when it is not presented. We experimentally demonstrate that

the presentation set matters, providing evidence that the free disposal of irrelevant information is

a non-trivial assumption in many contexts.

Our experiment is designed to test the effects of presenting irrelevant information in two di-

1Note that in all of these examples, the firm/regulatory agency in question may have separate incentives for
providing irrelevant information. These can be statutory (as in cases of regulated information provision), strategic
(e.g. a firm may provide distracting irrelevant information to hide negative attributes), or because of dynamic
considerations (e.g. an item may not be available currently, but the firm wants to signal the possibility that it is
available in the future). We do not directly consider the firm’s incentives in the current work, instead focusing on
pure effect of irrelevant information on choice.

2An attribute that does not vary across available options may be utility relevant, but it is certainly not decision
relevant information in that it does not meaningfully distinguish one good from another.
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mensions. In a differentiated product setting, the decision problems presented to subjects vary

according to a) the presentation of options in a set of alternatives that can never be chosen (here-

inafter referred to as unavailable options) and b) the presentation of attributes that have no value

(i.e. that enter into a linear utility function with an attribute-level coefficient of zero; hereinafter

referred to as irrelevant attributes). We find significant evidence that the presence of unavailable

options and irrelevant attributes can increase the frequency of sub-optimal choice and that this

effect is amplified with the interaction between the two.

Furthermore, motivated by the variation in online shopping websites allowing consumers to

sort on the products based on the attributes they consider relevant, as well as allowing them to

exclude the unavailable alternatives, we ask if individuals are willing to pay to reduce the amount

of irrelevant information presented to them. We show that subjects are willing to pay significant

positive amounts not to see unavailable alternatives or irrelevant information. Such a payment

is mainly due to the reduction in mistakes and time costs caused by the presence of unavailable

options and irrelevant attributes. Nevertheless, individuals may have a “preference for simplicity”

in the presentation of information implying an additional cost, a cognitive cost of ignoring the

irrelevant information. In order to identify such a cognitive cost, we analyze the willingness to pay

(WTP) of the subjects who always chose optimally, who don’t make additional mistakes, and who

experience no additional time costs in the presence of unavailable options and irrelevant attributes.

Our results indicate that even these subjects are willing to pay positive amounts to change the

presentation set.

To our knowledge, unavailable alternatives have only been studied in the context of the decoy

effect, which is the presentation of an alternative that increases the preference for a target alterna-

tive. Although in a typical experiment on decoys, the decoy alternative is available in the choice set,

Soltani et al. (2012) showed that displaying an inferior good during an evaluation stage, but making

it unavailable at the selection stage, also generates the decoy effect. Also, the phantom decoy alter-

natives that are superior to another target option, but unavailable at the time of choice, increase

the preference for the inferior target option (see e.g. Farquhar and Pratkanis (1993)). There are

several meaningful differences between our experiment and this literature on decoy goods, phantom

or otherwise. First, our experiment involves objective, rather than subjective payoffs, eliminating

a possible channel through which phantom alternatives should affect choice. Second, much of the
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discussion in Farquhar and Pratkanis (1993) and related work concerns the effect that a phantom

good can have on choice when it is not recognized as a phantom. Clearly, if an unavailable option is

mistakenly viewed as available, it is plausible that this may affect choice in a number of theoretical

settings. However, we ask a different question, namely, can irrelevant information affect choice

when it is objectively presented as irrelevant?

Our experiment also complements the experimental literature investigating the effects of relevant

information on choice optimality. In particular, Caplin et al. (2011) find that additional (available)

options and increased “complexity” (additional relevant attributes in our context) lead to increased

mistake rates.3 Also, Reutskaja et al. (2011) present evidence from an eye-tracking experiment that

subjects are unable to optimize over an entire set (given a large enough alternative set), but can

optimize quite well over a subset (see also Gabaix et al. (2006)). One contribution of our work

herein is to show that a similar effect is present for adding unavailable alternatives and increasing

the number of irrelevant attributes.

In limited consideration models, the DM creates a “consideration set” from the available set of

alternatives and then chooses from the maximal element of the “consideration set” according to

some rational preference relation (see e.g. Masatlioglu et al. (2012), Manzini and Mariotti (2007;

2012; 2014), and Lleras et al. (2017)). Also, according to the boundedly rational model that focuses

on attributes, the salience theory of choice, certain relevant attributes may appear to be “more

salient” to a DM than others, causing them to be overweighted in the decision-making process (see

Bordalo et al. (2012), Bordalo et al. (2013), and Bordalo et al. (2016)). Some other models of

search in multi-attribute settings are also based on available options and attributes.4 Several of

these models of choice allow for a “pruning” stage, where the DM eliminates from consideration

unavailable options or options that are dominated according to some binary relation. Attention-

based models with such a pruning stage include Kőszegi and Szeidl (2012); Manzini and Mariotti

(2007; 2012). In each of these models, unavailable options should have no effect on choice.5

3Oprea (2019) also looks at “complexity” of decision rules, though in a different context than what we consider
herein.

4See Klabjan et al. (2014); Sanjurjo (2017); Richter (2017), for example.
5Several other models can be considered to have a “pruning” stage, though this element of the model is less

explicit relative to the attention-based models mentioned here. For example, Bordalo et al. (2012; 2013; 2016) can be
considered to treat irrelevant attributes as “pruned” in that they are de-facto treated with zero salience and, hence,
ignored. Additionally, Kahneman and Tversky (1979) include an “editing” stage wherein lotteries are re-expressed
by compressing payoff-equivalent states and therefore the lottery framing information of this form is “pruned.” The
latter model is less explicitly connected to our experiment, but is mentioned for posterity.
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The rest of the paper is organized as follows. Section 2 explains the design of the experiments

in detail. Sections 3 and 4 present the results for our main experiments and control experiments,

respectively. We discuss our results and some of the implications thereof in Section 5 and Section

6 concludes.

2 Experimental Procedure

The experiments were run at the Experimental Economics Lab at the University of Maryland

(EEL-UMD). All participants were undergraduate students at the University of Maryland. The

data was collected in 14 sessions and there were two parts in each session. No subject participated

in more than one session. Sessions lasted about 90 minutes each. The subjects answered forty

decision problems in Part 1, and a subject’s willingness to pay to eliminate unavailable options and

irrelevant attributes were elicited in Part 2. In each session the subjects were asked to sign a consent

form first and then they were given written experimental instructions (provided in Appendix A)

which were also read to them by the experimenter. The instructions for Part 2 were given after

Part 1 of the experiment was completed.

The experiment is programmed in z-Tree (Fischbacher, 2007). All amounts in the experiment

were denominated in Experimental Currency Units (ECU). The final earnings of a subject was

the sum of her payoffs in ten randomly selected decision problems (out of forty) in Part 1, her

payoffs in two decision problems she answered in Part 2, the outcome of the Becker et al. (1964)

(BDM) mechanism in Part 2, and the participation fee of $7. The payoffs in the experiment were

converted to US dollars at the conversion rate of 10 ECU = 1 USD. Cash payments were made

at the conclusion of the experiment in private. The average payments were $27.90 (including a $7

participation fee).

Each decision problem in the experiment asked the subjects to choose from five available options

and each option had five relevant attributes. Each attribute of an option was an integer from {1,2,...,

9} and it could be negative or positive. The value of an option for a subject was the sum of its

attributes. The subjects knew that their payoff from a decision problem would be the value of

their chosen option if that decision problem was selected for payment at the end of the experiment.

Figure 1 provides an example of both an available option and an unavailable option presented to
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the subjects (see Appendix A for examples of the decision screen presented to subjects in each

decision problem). Note that the header of each column indicates whether an attribute enters to

the option value as a positive or negative integer (plus or minus sign). Whether a column should

be added, subtracted, or ignored when calculating the value of an option was only indicated in this

header row, so this information had to be continually referenced as the subject considered options

at lower positions on the screen. In some decision problems, some of the attributes did not enter

the value of an option and those were indicated by zero at the header.6

This choice environment takes the tradeoff between attributes in many real-world choice sit-

uations as given and extends this to a well-defined and simplified laboratory setting. Recall the

health insurance choice example that we introduced in the Introduction. It is commonplace for

a consumer to, for example, ask herself “how much higher a premium am I willing to pay for a

plan that includes coverage for acupuncture,” thereby explicitly weighing the substitution between

the coverage for acupuncture and savings on premium. Our experimental environment captures

this aspect of valued information using simple weights of 1 and -1 in a linear (perfect substitute)

aggregation rule (for attributes that have utility and disutility, respectively) and therefore closely

resembles the design of Gabaix et al. (2006) and Caplin et al. (2011).7

In the same setting, there are also likely attributes for which a consumer can see information

which are not valued. For example, a consumer who always purchases generic drugs will not care

about the coverage for branded prescription drugs or a brand-unconscious consumer might say “I

dont care whether my health insurance provider is BlueCross or Kaiser Permanente, so I should

ignore that information.” While she sees the information on brand prescription coverage or insurance

provider (as it is displayed invariably with any plan description) on a plan, she will optimally ignore

that displayed information, treating it as irrelevant to her current decision. This is captured in our

6Our design of varying irrelevant information in two dimensions will later be shown to create symmetric difficulty
for subjects. Even though one may think that the perceptual operations required to solve a task are very different
in these two dimensions (keeping track of payoffs horizontally and vertically), the impact of these two dimensions on
optimality of choice turn out to be similar.

7Note that our design differs slightly from Gabaix et al. (2006) and Caplin et al. (2011). In each of those
experiments, the coefficient applied to an attribute appeared directly next to the attribute value. To port that design
directly to address our research question, we would then have to display zeros for irrelevant attributes as cells in
the matrix. In our view, this limits the applicability to real-world scenarios in which we think that information
may be irrelevant, even subjectively. We are interested in an environment where irrelevant information is displayed,
but not valued. Furthermore, by including coefficients in the column header only, we treat irrelevant attributes and
unavailable options symmetrically, a necessary design component in order to interpret our findings with sufficient
generalizability.

6



experiment by using coefficients of 0 in the header for so-called “irrelevant attributes” (information

that has no utility consequence and should be ignored). Additionally, the same consumer might

see information for plans for which she is not eligible due to her position in the company. These

“unavailable options” should also then be ignored. As it so happens, our decision screens closely

resemble the United States Office of Personnel Management Federal Employee Health Benefit plan

comparison tool, where employees see a grid of coverage and cost related attributes (some irrelevant)

for various plans (some unavailable based on employee status).8

In Figure 1, there are ten attributes with a zero in the header and this means that the option

had ten irrelevant attributes which did not affect the value of the option for the subjects. In a

given decision problem, there were either five relevant attributes (each one with either positive

or negative integer value from {1, 2, . . . , 9}) or fifteen attributes where five of them were relevant

and ten of them were irrelevant. The value of an option was the sum of its positive and negative

attributes and it was a randomly generated positive number to guarantee that the subjects will not

lose money by choosing an option.

Figure 1: Options with 5 Relevant and 10 Irrelevant Attributes

+ + 0 0 0 + 0 0 0 0 + 0 0 - 0
� Option 1 three four three one seven four four two six two eight five two six one

Option 2 one eight two six one five nine two six two eight three one seven nine

Regardless of the type of decision problem, the matrix of information presented to the subject

took up the entire screen. This design was chosen to abstract away from possible confounds that

lie in the way that information is presented. No matter which type of decision problem the subject

faced, their eyes were forced to scan the entirety of the screen in order to fully process all relevant

information. In this way we abstract away from the possibility that subjects are more capable of

processing less (or more) visual space on a computer screen. We chose to add ten unavailable options

and/or irrelevant attributes in problems with irrelevant information in part due to screen size

limitations; adding any additional options/attributes would introduce the need for scrolling, text

size variation across decision problems, and possibly other changes that would introduce confounds

to our design. We conjectured that having twice as much irrelevant information than the relevant

information in each dimension is sizable.

8OPM plan comparison tool: https://www.opm.gov/healthcare-insurance/healthcare/plan-information/

compare-plans/
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In each decision problem, the subjects needed to choose one of the five available options in 75

seconds.9 In some decision problems they were presented fifteen options and told that only five of

them were available to choose from. The other ten were shown on their screens but the subjects

were not allowed to choose any of those. OiAj is the notation for a decision problem with i options

and j attributes. The decision problems that were used in the experiment had i, j ∈ {5, 15}; in

each case the effective numbers of options and attributes were five, i.e. if the number of options

or attributes on a screen was fifteen, then ten of those were either unavailable options or irrelevant

(zero) attributes.10. Each subject saw the same set of 40 decision problems, differing only in the

order in which they were encountered.11 The order of the decision problems were randomized at the

session-individual level (i.e. Subject 1, for instance, in each session, saw the same order of decision

problems; with 16 subjects per session, we therefore have 16 distinct decision problem orderings).

Once Part 1 of the experiment was completed, subjects received instructions for Part 2. The

aim of Part 2 was to elicit subjects’ willingness to pay to eliminate unavailable options or irrelevant

attributes to estimate the cost of ignoring irrelevant information. A BDM mechanism was used

to measure subjects willingness to pay to remove irrelevant information in one direction. Hence,

we elicited the subjects’ WTP in four different directions: moving from i) O15A5 → O5A5, ii)

O5A15 → O5A5, iii) O15A15 → O5A15, and iv) O15A15 → O15A5.
12 The distribution of selling

prices used in the BDM procedure (and explained to subjects) was uniform from 0 to 15 ECU.

These four BDM elicitation procedures were conducted across two treatments for Part 2 of our

experiment: a “Low Noise” treatment and a “High Noise” treatment. Seven sessions were conducted

for each treatment. In the Low Noise treatment, BDM procedures were run for (i) and (ii) - WTP

was elicited for removal of options or attributes, given that irrelevant information in the opposite

dimension was not present. In “high noise” treatments, BDM procedures were run for (iii) and

(iv) - WTP was elicited for removal of options or attributes, given that irrelevant information

in the opposite dimension was present and cannot be eliminated. Hence, we elicited the cost of

ignoring 10 unavailable options and cost of ignoring 10 irrelevant attributes separately and in two

9Subjects earned a payoff of $0 if they didn’t make a choice within 75 seconds.
10We also conducted some control experiments for i, j ∈ {5, 8} where we added three (rather than ten) unavailable

options or irrelevant attributes to decision problems. Results for those experiments are in Section 4 and Appendices
D.1 and D.2

11The complete set of decision problems is available as an online Appendix.
12Two additional sessions were conducted for robustness wherein we asked for WTP for O15A15 → O5A5. These

results are explained in Section 4 and included in Appendix D.3.

8



different informational environments. Note that a given subject completed two BDM procedures,

with roughly half of our subjects completing (i) and (ii) and half of them completing (iii) and (iv).

We chose this between-subject design to eliminate a possible framing effect where a subject may

have thought that she was expected to price the elimination of unavailable options or irrelevant

alternatives differently depending on the amount of information in the other dimension. Table 1

summarizes the treatments of the experiment.

Table 1: Treatment Summary

Treatment # of Sessions # of Subjects Part 1: Decisions Part 2: BDM

Low Noise 7 112 40 Decisions O15A5 → O5A5 and O5A15 → O5A5

High Noise 7 110 40 Decisions O15A15 → O5A15 and O15A15 → O15A5

Subjects completed Parts 1 and 2 without being provided any feedback on their performance

in earlier decision problems similar to the experiments in related literature. First, we did not

provide feedback after each decision problem in Part 1 in order to avoid any reference dependence

or triggering new emotions such as regret. For example, a subject may work harder than she

otherwise would if she knows that she would receive feedback on how suboptimal her decision was.

Second, we do not provide aggregate feedback at the end of Part 1 to avoid unnecessary priming and

to more closely approximate an analogous real-world setting. Direct feedback regarding mistake

rates and/or time spent in each decision problem type may induce the subject to think that they

should be willing to pay to eliminate irrelevant information, even if the subject does not intrinsically

possess such a preference. We view the potential effect of feedback in this setting as analogous to

an experimenter demand effect.

After the completion of Parts 1 and 2, the subjects answered a demographic questionnaire where

they reported gender, age, college major, self-reported GPA, SAT, and ACT scores, and they were

given the chance to explain their decisions in Part 2 of the experiment.
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3 Experimental Results

Our main hypothesis is that unavailable options and irrelevant attributes cause cognitive overload

for the decision makers and this leads to sub-optimal choice. In the following analysis, we say that

a “mistake” has been made in an individual decision problem when the subject failed to select the

highest valued available option presented within the time limit of 75 seconds. If no option was

chosen, this is coded as a “timeout.”

3.1 Part 1: Decision Task

In this section we present the results from Part 1 of the experiment. We begin with aggregate

results and then re-investigate these results by controlling for decision problem characteristics and

demographic controls.

3.1.1 Aggregate Results

Table 2 presents the mistake rate for each type of decision problem OiAj in the aggregate data for

i, j ∈ {5, 15}, treating timeouts as mistakes, calculating the “mistake rate” for each treatment as the

average of subject-level mistake rate. Note that the addition of unavailable options and irrelevant

attributes alone does not generate significantly larger mistake rates relative to the benchmark O5A5

(p-values 0.584 and 0.653, respectively for decision problem types O15A5 and O5A15). However,

conditional on the presence of either unavailable options or irrelevant attributes (in types O15A5

and O5A15), the addition of irrelevant information in the opposite dimension does increase mistake

rates by about 50% (p-value 0.000 in each case). Thus, in the aggregate, the interaction between

unavailable options and irrelevant attributes generates increased mistake rates. We believe that

this is evidence that our design does not favor one type of irrelevant information over the other.

If, for some reason, our design explicitly allowed for easier processing of either unavailable options

or irrelevant attributes, we’d expect to see that mistake rates would respond to an increase in

irrelevant information in only one dimension. This is clearly not the case. As such, we would

expect our mistake rate results to be robust to permutations of our design, for example, where

the matrix of displayed data was transposed. The results are qualitatively similar when we do not

count timeouts as mistake. These results can be found in Table 17 in Appendix B.1.
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Table 2: Mistake Rates: Timeouts as Mistakes

O5 O15

Mean 0.213 0.218
A5 Std Error 0.013 0.013

N 222 222

Mean 0.228 0.337
A15 Std Error 0.012 0.016

N 222 222

p = 0.000 for O15A5 → O15A15, O5A15 → O15A15, and O5A5 → O15A15

p > 0.100 otherwise.

Note that when a subject finds a decision problem more challenging, she may react to this

in two ways: (i) she may take more time to make decision and this may or may not lead to an

optimal choice; (ii) she may run out of time and computer may record this as a sub-optimal choice.

Even though the mistake rates in Table 2 do not change much when only the number of options is

increased while the number of attributes are kept at 5 (from O5A5 to O15A5) and when only the

number of attributes is increased while the number of options are kept at 5 (from O5A5 to O5A15),

this does not necessarily mean that the subjects find the increased number of options or attributes

in only one dimension not challenging. This increase in the difficulty of the decision problem may

also appear as increased time required to submit a decision. Table 3 reports on the average time (in

seconds) at which subjects submit a decision in each type of decision problem. Observations where

the subject did not submit a decision in the allotted time were are excluded in Table 3. For results

that treat timeouts as the maximum time allotted (i.e. time = 75) and for the sub-sample where

the subject chose the correct (optimal) option, see Tables 18 and 19 in Appendix B.1, respectively;

results are not qualitatively different from those presented in Table 3.13

Note that adding irrelevant information in any dimension (i.e. unavailable options or irrelevant

attributes) increases the time spent on each decision problem in Table 3. However, this difference

is not statistically significant when moving from O5A5 to O15A5. Time costs increase much more

13An interested reader may wonder whether our central results are dependent on the specific time limit chosen
in our design. First, note that in Table 19, the mean time taken to choose correctly is substantially less than the
time limit of 75 seconds for each type of decision problem. We take this as evidence that our time limit was not
meaningfully binding for a very large portion of our subject pool. Additionally, we conducted four pilot sessions under
various design schemes, all without any time limit. Results, including mistake rates and time spent per problem, are
qualitatively similar and are available upon request.
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substantially when irrelevant information in one dimension is already present. For example, the

time spent increases by just over one second on average with the addition of unavailable options

when there are no irrelevant attributes displayed (in the first row of Table 3), but increases by

nearly 4 seconds when there are irrelevant attributes displayed (in the second row of Table 3). A

similar effect is present for the addition of irrelevant attributes. Furthermore, from Table 3 we may

surmise that irrelevant attributes increase time spent more than unavailable options: time spent

increases more on average when moving vertically down in Table 3 than when we move horizontally

across it. Both these interaction and asymmetry effects will be investigated further in the next

subsection.

Table 3: Time: No Timeouts

O5 O15

Mean 48.605 49.926
A5 Std Error 0.712 0.680

N 222 222

Mean 52.935 56.365
A15 Std Error 0.780 0.810

N 222 222

p = 0.00 for O5A5 → O5A15, O15A5 → O15A15,

O5A15 → O15A15, O5A5 → O15A15, and O15A5 → O5A15

p > 0.10 for O5A5 → O15A5

Finally, given that there is a time limit of 75 seconds for each decision problem, the increased

difficulty that could arise from the presentation of irrelevant information could also increase the

rate at which timeouts occur in each type of decision problem. Recall that subjects earn zero in

the case of a timeout and letting 75 seconds pass without a choice is worse than choosing randomly.

Timeouts are not prevalent in our data: only 4.67% of decision problems resulted in a timeout.

60.31% of timeouts occurred within the first ten periods; 31.16% occurred in the first period.

Further, note that our choice of a time threshold is somewhat arbitrary: we could have easily

chosen to give subjects more (or less) time to complete each decision problem. As such, we ignore

timeouts as a significant concern for the remainder of our analysis, conducting all tests conditional
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on experiencing no timeouts.14

From all of the above, we are left with the following main aggregate results: i) irrelevant

attributes and unavailable options are both necessary to generate increased mistake rates within the

parameter range used in our experiments, and ii) time costs are increased by irrelevant information

displayed in either dimension. We summarize these findings in Result 1. In order to investigate each

of these in more detail, we conduct regression analysis to control for individual-level heterogeneity

and learning in the following subsection.

Result 1 Decision makers cannot always freely dispose of irrelevant information.

• Unavailable options and irrelevant attributes can affect mistake rates. The interaction between

the two amplifies this effect.15

• Both unavailable options and irrelevant attributes independently generate increased time costs.

3.1.2 Decision Problem Characteristics and Demographic Controls

To further investigate the effects of irrelevant information on the mistake rate, we conduct logis-

tic regressions controlling for learning, gender, and academic achievement effects. Table 4 reports

regression results where the dependent variable is “Mistake” and the independent variables are

varied in different models specified. “Mistake” is a binary variable with 1 corresponding to the

subject failing to select the element with the maximal value in the set of (available) alternatives.

It is equal to 0 otherwise. In all models, the independent variables are as follows: “Options” is a

dummy variable indicating the presence of 10 additional unavailable options displayed (i.e. Options

is equal to 1 for type O15A5 and O15A15 decision problems and it is 0 otherwise), “Attributes” is

defined analogously for irrelevant attributes (i.e. Attributes = 1 for type O5A15 and O15A15 deci-

sion problems), “Options * Attributes” is the interaction between the type dummies, “Female” is

a dummy variable indicating whether the subject is female, “English” is a dummy variable indicat-

ing whether the subject’s native language is English, “Economics/Business” is a dummy variable

14There were four subjects who experienced timeouts in more than 20% of their decision problems. They are
included in the sample upon which all analysis is conducted, but results are not qualitatively different if they are
excluded.

15Additional results using alternative parameters that are discussed in Section 4 and Appendix D show that this
finding is not driven solely by the increase in the amount in irrelevant information displayed; instead caused by the
introduction of both unavailable options and irrelevant attributes).
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indicated whether the subject’s major is in the University of Maryland Economics Department or

Business School, “Period” is the period in which the decision problem was presented, and “Period2”

is its square. Reported coefficients are calculated marginal effects. Standard errors are clustered

at the Subject level.

Cognitive Scores were calculated using a combination of responses on the Demographic Ques-

tionnaire. Responses for GPA, SAT, and ACT were normalized as in Cohen et al. (1999) and

Filiz-Ozbay et al. (2016): Let j be the variable under consideration with j ∈ {GPA, SAT, ACT},

µji be the value of variable j for subject i, µjmax be the maximum value of j in the subject popula-

tion, and µjmin be the minimum value of j in the subject population. Then let µ̂ji , the normalized

value of variable j for subject i, be defined as follows:

µ̂ji =
µji − µ

j
min

µjmax − µjmin

such that µ̂ji can be interpreted as the measure of j for subject i, normalized by the distribution of

j in the subject population. Some subjects were missing one or more measures for j ∈ {GPA, SAT,

ACT}, since these measures were self-reported (and some subjects could not recall their scores on

one or more of these measures). As such, the Cognitive Score for subject i was set to µ̂GPA
i if the

subject reported a feasible GPA, µ̂SAT
i if a feasible GPA score was missing and the subject reported

a feasible SAT score, and µ̂ACT
i if feasible GPA and SAT scores were both missing and the subject

reported a feasible ACT score. GPA Scores were given precedent in the calculation of Cognitive

Scores because most subjects could reliably report these while SAT Scores took precedent over

ACT Scores because it is more common for University of Maryland, College Park undergraduates

to have taken the SAT. Results based on using GPA only are presented in Appendix B.3 and are

qualitatively similar.

In addition to the above specified independent variables, we include two more variables in all

models: “Position” and “Positive”. The variable “Position” is simply the position, from 1 to 15, of

the optimal available option that is displayed. Previous work, including Caplin et al. (2011), has

shown that subjects often search a list from top to bottom, implying that optimal options displayed

lower-down on the list have a lower probability of being chosen due to the early termination of

search. We thus include this variable as a control in each of our model specifications, its coefficient

14



being significant and positive in all instances: subjects make more mistakes and spend more time

when the optimal option is presented further down a list of alternatives. The variable “Positive” is

the number of positive relevant attributes displayed in the decision problem, ranging from three to

five.16 There are potentially two reasons why “Positive” would matter in a given decision problem:

i) a subject responds with increased effort in the presence of stronger incentives and ii) subjects

find the task less difficult with fewer subtraction operations. The first comes from the fact that,

given our data generation process, the expected value of the optimal available option is increasing

in the number of positive attributes. Subjects may then work harder or stop search later in the

presence of five positive attributes than in the presence of, say, three positive attributes. It also

may be that subtraction operations are more difficult cognitively than addition operations such

that the difficulty of the task is decreasing in the number of positive attributes. In Table 4, the

coefficient on Positive is negative in all relevant model specifications: more addition operations

decreases the incidence of mistakes. Clearly this is consistent with both increased effort provision

and decreased cognitive difficulty of the task. However, the coefficient on Positive is also negative

in all relevant models in Table 7, indicating that subjects spend less time in the presence of more

addition operations. Combined, these results are consistent with addition operations being easier

in terms of cognitive load.

Finally, any effects of irrelevant information that we may find could possibly be due simply to

the increased complexity of the decision problem when irrelevant information is added, not due to

the mere presence of irrelevant information. For example, adding unavailable options to a decision

problem forces the DM to have to “skip” more visual information on the screen in order to evaluate

an individual available option, since whether an attribute is positive or negative is displayed at

the top of the screen. Similarly, irrelevant attributes force the DM to interrupt the evaluation

process, visually “skip” a column of irrelevant information, and then continue with evaluation.

Therefore, we define “Attribute Complexity” and “Option Complexity” as the number of “skips”

required for full search/evaluation in the decision problem. For example, Option 1 in the example

Figure 1 above, has a “Attribute Complexity” equal to 3 (since there are essentially three groups

16Our data generation process gave equal weight to the possibility of having a positive or negative relevant
attribute. However, we only used generated decision problems that i) had a unique optimal available option and ii)
had all positive-valued available options. Thus, the range of the number of positive available options in the generated
dataset is more restrictive than that which would be generated without these constraints.
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of irrelevant attributes encountered for full evaluation of the option). In the baseline O5A5 decision

problems, both of these variables are set equal to 0. In the regressions reported in Tables 4 and 7,

when “Options”(“Attributes”) is equal to 1, “Option Complexity” (“Attribute Complexity”) varies

between 2 and 5 in the realized data.17

The regressions in Table 4 are conducted on the sub-sample where the submission is made in

under 75 seconds. As mentioned above, specifications that treat timeouts as mistakes or not are

qualitatively similar (see Models 4 and 5 in Table 4). In Model 1, we replicate the aggregate result

that can be seen in Table 2: unavailable options and irrelevant attributes increase the mistake rate

when presented jointly. Having irrelevant information in both of these dimensions increases the

mistake rate by up to 9.9 percentage points (in Model 5). Moreover, this effect is not due to the

“complexity” of the decision problem in the presence of irrelevant information, as both Attribute

Complexity and Option Complexity are insignificant in Model 4.

In order to investigate whether this main result is robust to specifications of welfare loss other

than the mistake rate, we conducted analyses using two additional welfare measures: Normalized

Monetary Loss and the Rank of the final choice. These results are displayed in Tables 5 and 6,

respectively, and the results are qualitatively similar to those found in Table 4 for the mistake rate.

Because of differences in option values across decision problem treatments as a result of the

data generation process, we used the following normalization for this loss measurement in Table

5: we take the actual loss for the choice of the subject (i.e. the difference between the Maximum

Option Value in Decision Problem and the Value of Choice) and divide it by the difference between

the Maximum Option Value and the Mean Value of available options in the decision problem. The

variable Rank used in Table 6 runs from 1, indicating that the worst available option is chosen, to

5, indicating that the best available option is chosen. In some decision problems, several available

options (other than the best) had the same monetary value. For these observations, the midpoint

of the relevant Rank was used (e.g. if the 2nd and 3rd best available options were of the same

monetary value, they were both recorded as Rank of 2.5).18 We see that the qualitative message of

these regressions is similar to our mistake rate analysis: subjects take on more normalized monetary

loss and choose lower ranked options when both unavailable Options and irrelevant Attributes are

17We further explore alternative complexity measures for relevant subsamples of this dataset in Appendix B.4.
18Our results are robust to i) dropping all observations with such a “tie” and iii) rounding up such “ties” and

these results are available upon request.
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Table 4: Mistake Rate Regressions

(1) (2) (3) (4) (5)
Mistake Mistake Mistake Mistake Mistake †

Options 0.010 0.010 -0.023∗ -0.049∗ -0.061∗∗

(0.011) (0.011) (0.013) (0.028) (0.029)
Attributes -0.000 0.000 -0.007 -0.011 0.017

(0.012) (0.012) (0.012) (0.028) (0.028)
Options * Attributes 0.086∗∗∗ 0.086∗∗∗ 0.093∗∗∗ 0.094∗∗∗ 0.099∗∗∗

(0.018) (0.018) (0.018) (0.018) (0.018)
Period -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.011∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Period2 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Cognitive Score -0.217∗∗∗ -0.218∗∗∗ -0.218∗∗∗ -0.224∗∗∗

(0.063) (0.063) (0.063) (0.063)
Female 0.077∗∗∗ 0.077∗∗∗ 0.077∗∗∗ 0.078∗∗∗

(0.021) (0.021) (0.021) (0.021)
Economics/Business -0.008 -0.008 -0.008 0.003

(0.025) (0.025) (0.025) (0.026)
English -0.003 -0.003 -0.003 -0.013

(0.022) (0.022) (0.022) (0.023)
Position 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001)
Positive -0.030∗∗∗ -0.031∗∗∗ -0.031∗∗∗

(0.008) (0.008) (0.008)
Attribute Complexity 0.001 -0.002

(0.007) (0.007)
Option Complexity 0.007 0.009

(0.007) (0.007)

Observations 8555 8555 8555 8555 8880
Session FE Yes Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Each Model: 222

†: Timeouts treated as mistakes

Marginal effects from logit regression specifications

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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present. In Tables 4, 5, and 6, the coefficients of Period and Period2 indicate that Period’s effect

on suboptimal choice has a U-shape (coefficients on Period and Period2 are significant and negative

and positive, respectively, in Tables 4 and 5 and the reverse in Table 6). Hence, the overall effect

of learning would not undo our main result, had we only included more Periods and decision

problems.19

Table 5: Normalized Loss Regressions

(1) (2) (3) (4)
Loss Loss Loss Loss

Options 0.114∗∗ 0.113∗∗ -0.078 -0.183
(0.050) (0.050) (0.054) (0.117)

Attributes 0.063 0.066 0.021 0.010
(0.051) (0.051) (0.051) (0.116)

Options * Attributes 0.248∗∗∗ 0.245∗∗∗ 0.293∗∗∗ 0.297∗∗∗

(0.077) (0.077) (0.077) (0.077)
Period -0.026∗∗∗ -0.027∗∗∗ -0.030∗∗∗ -0.029∗∗∗

(0.007) (0.007) (0.007) (0.007)
Period2 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Cognitive Score -0.978∗∗∗ -0.975∗∗∗ -0.976∗∗∗

(0.276) (0.275) (0.275)
Female 0.340∗∗∗ 0.339∗∗∗ 0.339∗∗∗

(0.097) (0.096) (0.096)
Economics/Business -0.042 -0.042 -0.041

(0.114) (0.114) (0.114)
English 0.014 0.009 0.010

(0.099) (0.099) (0.099)
Position 0.024∗∗∗ 0.026∗∗∗

(0.005) (0.005)
Positive -0.201∗∗∗ -0.207∗∗∗

(0.034) (0.034)
Attribute Complexity 0.003

(0.031)
Option Complexity 0.029

(0.030)

Observations 8555 8555 8555 8555
Session FE Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Each Model: 222

Tobit regresions specifications with lower limit = 0, upper limit = 3.5

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

19See Table 27 and Figure 3 in Appendix C for learning trends across decision problem types.
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Table 6: Rank Regressions

(1) (2) (3) (4)
Rank Rank Rank Rank

Options -0.215∗ -0.211∗ 0.185 0.363
(0.112) (0.113) (0.124) (0.274)

Attributes -0.079 -0.087 0.004 0.244
(0.114) (0.114) (0.114) (0.264)

Options * Attributes -0.664∗∗∗ -0.660∗∗∗ -0.756∗∗∗ -0.761∗∗∗

(0.171) (0.172) (0.171) (0.172)
Period 0.064∗∗∗ 0.064∗∗∗ 0.071∗∗∗ 0.070∗∗∗

(0.016) (0.015) (0.015) (0.015)
Period2 -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Cognitive Score 2.206∗∗∗ 2.203∗∗∗ 2.206∗∗∗

(0.620) (0.619) (0.619)
Female -0.746∗∗∗ -0.745∗∗∗ -0.744∗∗∗

(0.218) (0.217) (0.217)
Economics/Business 0.084 0.083 0.083

(0.260) (0.260) (0.260)
English -0.002 0.007 0.008

(0.226) (0.226) (0.226)
Position -0.051∗∗∗ -0.052∗∗∗

(0.011) (0.012)
Positive 0.401∗∗∗ 0.408∗∗∗

(0.079) (0.080)
Attribute Complexity -0.070

(0.071)
Option Complexity -0.052

(0.069)

Observations 8555 8555 8555 8555
Session FE Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Each Model: 222

Tobit regression specifications with lower limit = 1, upper limit = 5

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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In order to investigate the heterogeneity in time responses to these different types of deci-

sions problems, we present the results of several random-effect Tobit regression models in Table

7. Observations are censored below by 0 and above by 75 seconds.20 In each model presented the

dependent variable is Time (measured in seconds), defined as the time at which the subject submits

her decision. As in previous model specifications, Models 1 - 4 are conducted on the sub-sample

where the time of submission is less than 75 seconds (i.e. excluding timeouts and submissions in

the last second). All variables are defined as previously mentioned. In Model 1, we present the

simplest model incorporating the effects of the presence of irrelevant information on the time to

reach a decision. We find results that are similar to those seen in Table 3: irrelevant information

displayed in either dimension increases time costs considerably. Further, we confirm that there are

interaction effects: that having both unavailable options and irrelevant attributes increases time

spent by between 1.729 seconds (in Model 2) and 3.481 seconds (in Model 5) above the individual

decision problem type effects. We also discover that irrelevant information has an asymmetric ef-

fect on time spent depending on the dimension: irrelevant attributes increase time costs more than

unavailable options (βAttributes > βOptions; p− value = 0.000). Finally, from Model 4 it can be seen

that the effect of Options on time to make a decision stems from the increased complexity; Option

Complexity is positive and significant in Model 4 while the coefficient on Options is insignificant.21

We summarize all of the aforementioned results in Result 2:

Result 2 When controlling for subject-level heterogeneity and learning, we replicate the results

found in Result 1. Namely, that subjects cannot always freely dispose of irrelevant information.

A comparison of the results on the mistake rate and time spent can potentially illuminate

some of the mechanisms involved in decision making in this experiment. For example, we see that

both Options and Attributes increase Time spent in a decision problem, but not the Mistake rate.

Further, consider the fact that the average number of seconds spent in an O5A5 decision problem

is approximately 48.6 seconds (seen in Table 3), indicating that with no irrelevant information,

subjects have “time to spare” on average. With the addition of irrelevant information in either

20To investigate the sensitivity of our results to this choice, we conduct further regressions using lower time
thresholds. These can be found in Tables 20 and 21 of Appendix B.2.

21Across all model specifications, we find some evidence of learning and subject-level heterogeneity, including
gender, native language, and cognitive ability effects. However, our experiment was not explicitly designed to test
for the effects of these demographic variables. As such, these results are included as statistical controls.
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Table 7: Time Regressions

(1) (2) (3) (4) (5) (6)
Time Time Time Time Time† Time‡

Options 2.215∗∗∗ 2.217∗∗∗ 1.136∗∗ -1.669∗ -1.121 -1.470
(0.381) (0.380) (0.465) (0.949) (0.965) (0.906)

Attributes 5.655∗∗∗ 5.649∗∗∗ 5.367∗∗∗ 4.922∗∗∗ 5.083∗∗∗ 4.629∗∗∗

(0.430) (0.430) (0.438) (0.932) (1.084) (0.885)
Options * Attributes 1.734∗∗∗ 1.729∗∗∗ 1.991∗∗∗ 2.112∗∗∗ 3.481∗∗∗ 1.956∗∗∗

(0.499) (0.499) (0.500) (0.503) (0.532) (0.486)
Period -0.394∗∗∗ -0.395∗∗∗ -0.412∗∗∗ -0.403∗∗∗ -0.190∗∗∗ -0.350∗∗∗

(0.078) (0.078) (0.079) (0.079) (0.067) (0.074)
Period2 0.002 0.002 0.003 0.003 -0.000 0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Cognitive Score 9.054∗∗ 9.052∗∗ 9.053∗∗ 6.520∗∗ 9.141∗∗

(4.251) (4.251) (4.252) (3.277) (4.158)
Female -2.377∗ -2.378∗ -2.378∗ -1.540 -2.398∗

(1.354) (1.354) (1.354) (1.124) (1.325)
Economics/Business -1.739 -1.740 -1.741 -2.620∗ -1.860

(1.601) (1.601) (1.601) (1.378) (1.563)
English -3.451∗∗ -3.452∗∗ -3.452∗∗ -2.076 -3.295∗∗

(1.496) (1.496) (1.496) (1.357) (1.462)
Position 0.146∗∗∗ 0.184∗∗∗ 0.191∗∗∗ 0.172∗∗∗

(0.040) (0.042) (0.045) (0.041)
Positive -1.257∗∗∗ -1.443∗∗∗ -1.068∗∗∗ -1.430∗∗∗

(0.274) (0.279) (0.275) (0.269)
Attribute Complexity 0.118 -0.031 0.148

(0.228) (0.292) (0.215)
Option Complexity 0.774∗∗∗ 0.588∗∗ 0.727∗∗∗

(0.223) (0.233) (0.211)

Observations 8880 8880 8880 8880 6668 8880
Session FE Yes Yes Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Each Model: 222

†: Conditional on Correct

‡: Timeouts treated as Time = 75 seconds

Marginal effects reported from tobit regressions censored below by 0 and above by 75

Robust standard errors are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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direction alone, subjects might then spend more time (as indicated in Table 7), but that the

additional time required to find the best option in the presence of irrelevant information might not

push the subject over the 75 second time limit. The evidence in Tables 4 and 7 are suggestive of

such a mechanism. Furthermore, note that Option Complexity significantly increases Time spent

in the decision problem, but not the mistake rate (see models 4 - 6 in Table 7 and models 4 -

5 in Table 4, respectively). This would also indicate that in the presence of increased decision

problem complexity, subjects spend additional time, but that this additional time spent does not

cause the time constraint to be binding and hence, does not make the subject more likely to choose

sub-optimally due to the increased complexity.

A comparison of these results suggests that it is worthwhile to investigate the effects of Time

spent in a decision problem on the Mistake Rate. Table 8 displays results from logistic regressions

used to explicitly test for the effect of additional time spent in the decision problem on the mistake

rate and how this effect differs by decision problem type. Model 1 is conducted for the sub-sample

excluding decision problems of type O15A15 and shows that increased time spent does not decrease

the mistake rate. Model 2 is conducted for the sub-sample excluding decision problems of type O5A5

and shows that increased time spent does decrease the mistake rate in the presence of additional

irrelevant information so long as irrelevant information was already present. For example, the

coefficient on Time * Attributes in model 2 tells us that an additional second spent in a decision

problem of type O15A15 reduces the mistake rate by 0.3 percentage points relative to an additional

second spent in O15A5. In each model, we test whether the coefficients on Time * Attributes and

Time * Options are different from one another and fail to reject the null in each instance (p > 0.1

in both tests), indicating that additional Options and Attributes have symmetric effects on the

effectiveness of time on the mistake rate.

Taken together, the results in Table 3 and Table 8 illuminate a possible mechanism through

which we see our results. In general, subjects do spend more time on decision problems with

irrelevant information. This additional time spent does not, however, “pay off” by decreasing the

mistake rate when irrelevant information is presented in only one dimension. However, conditional

on irrelevant information being present in both dimensions, additional time spent does decrease

the mistake rate, though not enough to undo the direct effect of the irrelevant information on the

mistake rate, as evidenced by our results in Tables 2 and 4.
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Table 8: Effect of Time Spent on Mistake Rate

(1) (2)
Mistake Mistake

Options 0.003 0.171∗∗∗

(0.050) (0.053)
Attributes 0.062 0.241∗∗∗

(0.052) (0.056)
Period -0.007∗∗∗ -0.006∗∗∗

(0.002) (0.002)
Period2 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)
Time -0.001 0.002

(0.001) (0.001)
Time * Attributes -0.000 -0.003∗∗∗

(0.001) (0.001)
Time * Options -0.000 -0.002∗∗∗

(0.001) (0.001)
Position 0.004∗∗∗ 0.006∗∗∗

(0.002) (0.001)
Positive -0.040∗∗∗ -0.035∗∗∗

(0.009) (0.009)
Attribute Complexity -0.014 0.003

(0.010) (0.008)
Option Complexity -0.006 0.011

(0.009) (0.007)

Observations 6460 6393
Session FE Yes Yes
Demographics Yes Yes
Sample O5A5, O5A15, O15A5 O5A15, O15A5, O15A15

Standard errors in parentheses

Number of Subjects in Each Model: 222

Marginal effects from logit regression specifications

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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3.2 Part 2: Willingness-To-Pay

Recall that the second part of the experiment elicited subjects WTP to eliminate unavailable options

and irrelevant attributes in both “Low Noise” and “High Noise” environment. For reference, recall

that the support of the BDM procedure used was [0, 15] Experimental Currency Units (ECUs) with

a uniform distribution. We have some observed variation in WTP data. By just looking at this

CDF of submitted WTP amounts, Figure 2 reports that subjects are smoothly distributed in the

support of the BDM range we provided. Such a smooth distribution is also observed when we look

at the WTP data for Low and High Noise environments separately.

Figure 2: CDF of WTP

Table 9 shows the average WTP, measured in ECUs, for each type of elimination. Table 9 can

be read from left to right as “WTP to eliminate Attributes given that there are only 5 Options”,

“WTP to eliminate Options given that there are only 5 Attributes”, etc. The first two columns

belong to our “Low Noise” treatment and the last two belong to our “High Noise” treatment. Note

that subjects participated in only one of these treatments; a given subject submitted her WTP for

either columns 1 and 2 or columns 3 and 4. Thus, when making comparisons between WTP within

a particular information treatment (Low or High), we match the data by subject. Let WTP to get

rid of information be written as follows: WTP (X|Yn) where X is the dimension of information they

are paying to remove given Y -dimension information with n units. For example, WTP (A|O5) is the
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WTP to eliminate 10 irrelevant Attributes, given that five options are present (all of them available).

WTP to reduce attributes is significantly higher than WTP to reduce options only in the low noise

case. (p-value = 0.021 in Wilcoxon Signed-Rank Test with H0 : WTP (A | O5) = WTP (O | A5)).

Tests of whether WTP (A|O5) is greater (less) than WTP (A|O15) and whether WTP (O|A5)

is greater (less) than WTP (O|A15) were conducted un-matched as these were submitted inde-

pendently by separate subjects. There is no significant difference between WTP to get rid of

Attributes or Options by “Low Noise” or ‘High Noise” treatment. Recall that eliminating irrel-

evant information in one dimension does not affect mistake rates significantly when there is no

irrelevant information in the other dimension. However, eliminating irrelevant information in one

dimension does affect the mistake rate when there is irrelevant information in both dimensions.

Subjects do not seem to anticipate this effect on mistake rates when setting their WTP. Addition-

ally, Table 10 reports the frequency of positive WTP for each treatment. The vast majority of our

observations are strictly positive, with no statistical difference between treatments, either matched

within subject or across Low Noise and High Noise treatments.

Average WTP for any case in Table 9 is between 4 and 5 ECU. One may question whether

this amount is reasonable with respect to the mistakes subjects made in more difficult decision

problems. If we compare the average amount of money subjects made in O5A5 versus O5A15 and

O15A5 and check whether the decrease in average earnings in decision problems with unavailable

options or irrelevant attributes is less or more than the WTP in the corresponding decision problem,

we may argue that subjects over- or underpaid to simplify their tasks. Such analysis gives us about

a 1 - 2 ECU decrease in payoffs with more complicated problems and that is much lower than the

observed WTP amounts. We will further explore one reason for such overpayment in Subsection

3.3: a “preference for simplicity.”

Table 9: Willingness to Pay

Low Noise High Noise
WTP (A|O5) WTP (O|A5) WTP (A|O15) WTP (O|A15)

Mean 4.473 4.071 4.473 4.373
Std Error 0.286 0.266 0.275 0.273
N 112 112 110 110

p = 0.021 for H0 : WTP (A|O5) = WTP (O|A5)

p > 0.100 otherwise
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Table 10: Frequency of Positive WTP

Low Noise High Noise
WTP (A|O5) WTP (O|A5) WTP (A|O15) WTP (O|A15)

Mean 0.893 0.866 0.864 0.882
Std Error 0.029 0.032 0.033 0.031
N 112 112 110 110

p > 0.100 in all relevant comparisons

The regressions reported in Table 11 were conducted in order to understand the heterogeneity

in the subjects willingness to pay in each of the four directions where irrelevant information could

be removed. Table 11 displays results aggregated across the Low Noise and High Noise treatments.

Note that in all these regressions, Attributes is a binary variable indicating whether the dependent

variable is WTP (A|On). When Attributes = 0, the dependent variable is WTP (O|An).22 The

variable “High Noise” is a dummy variable used to indicate whether the observation is from a High

Noise treatment. All interaction variables used in Table 11 are straightforward.23

First we ask if WTP to eliminate irrelevant information in either dimension is sensitive to

measures of performance in Part 1 of the experiment, despite there being no feedback provided

prior to Part 2. Models 1 - 3 are Tobit regression specifications with a lower limit of 0 and an

upper limit of 15 (i.e. the support of the BDM mechanism used in Part 2 of the experiment). Note

that in all models, Mistakes and Time are a count of the number of mistakes and the sum of time

spent across all decision problems in the treatment under consideration for WTP. For example, if

a subject in the low noise WTP treatment made 7 mistakes across the 10 O5A15 decision problems

and spent a total of 500 seconds across these same 10 decision problems, Mistakes would equal 7

and Time would equal 500 for the observation of WTP (A | O5) for this subject.

WTP increases with the incidence of mistakes: Mistakes is positive and significant in all models

in Table 11. This is somewhat surprising, given that subjects were not provided feedback between

Parts 1 and 2 of the experiment; it seems that subjects are aware of a general level of optimality

of choice and are thus more willing to pay to eliminate irrelevant information if they make more

mistakes in the corresponding decision problem type.

22For these regressions, answers submitted at time = 75 seconds are coded as mistakes to avoid collinearity of
regressors.

23Table 24 of Appendix B.3 repeats the regressions reported in Table 11 by replacing the measure for Cognitive
Score with self-reported GPA. The results are qualitatively the same.
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Additionally, we ask if these performance measures influence whether WTP is positive: it is

possible that WTP itself is not sensitive to individual measures of performance, but that perfor-

mance in one dimension can affect whether WTP is positive at all. Models 4 through 6 report

coefficients from logistic regression specifications where the dependent variable is a binary variable

indicating whether WTP is greater than 0. There is evidence that whether WTP is greater than

zero is affected by Mistakes (see Models 4 - 6).

Notably, WTP is not sensitive to increased time spent on decision problems (see coefficient on

Time in Models 1 - 6 in Table 11; Time is only marginally significnat in Model 2). Additionally,

subjects appear to be more willing to pay to eliminate any irrelevant information in the High Noise

treatments rather than the Low Noise treatments (see coefficients on High Noise in Models 1 and

2). This is true only at the intensive margin (i.e. in Models 1 - 2) and is at varying (and marginal)

significance levels across these same models. Further note that in Table 9 we showed that WTP was

higher for the elimination of Attributes than for the elimination of Options, though only in the Low

Noise treatment. This result disappears in Table 11 when we have performance and demographic

controls. We think that (lack of) feedback provided to subjects may prevent them from setting

consistent WTP in Low Noise and High Noise treatments and between Attributes and Options.

Further study on the role of feedback in such environments is necessary. We summarize these

results in Result 3:

Result 3 WTP is heterogeneous and sensitive to a number of independent variables:

• WTP increases with the number of mistakes made in the relevant decision problem type

• Higher mistake rates increase the likelihood that WTP is strictly positive

Notice that in Models 1 - 3 of Table 11, the constants are positive, though insignificant. For

example, consider a subject for whom irrelevant information has no effect: they never make more

mistakes when irrelevant information is present and they never spend more (or less) time. This

subject may still be willing to pay some amount to eliminate this information. We’ll call this a

“preference for simplicity” - even in the absence of any effect of irrelevant information on choice,

decision makers prefer to exclude it. We investigate this further by analyzing individual WTP for
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Table 11: WTP Regressions

(1) (2) (3) (4) (5) (6)
WTP WTP WTP WTP > 0 WTP > 0 WTP > 0

Mistakes 0.413∗∗∗ 0.407∗∗∗ 0.329∗∗∗ 0.379∗∗∗ 0.333∗∗∗ 0.341∗∗

(0.102) (0.104) (0.118) (0.124) (0.121) (0.156)
Time 0.003 0.003∗ 0.003 0.002 0.002 0.002

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003)
Attributes 0.191 0.189 0.312 0.022 0.010 0.205

(0.156) (0.155) (0.276) (0.159) (0.158) (0.301)
High Noise 2.296∗ 2.557∗∗ 1.961 0.793 0.729 1.185

(1.200) (1.216) (2.416) (1.401) (1.505) (2.589)
Female -0.276 -0.245 0.473 0.467

(0.440) (0.433) (0.487) (0.475)
Cognitive Score -0.992 -1.021 -1.355 -1.331

(1.138) (1.119) (1.044) (1.047)
High Noise * Mistakes 0.152 -0.015

(0.199) (0.228)
High Noise * Time 0.001 -0.000

(0.004) (0.004)
High Noise * Attributes -0.237 -0.391

(0.326) (0.328)
Constant 0.394 1.076 1.278 -0.038 0.813 0.667

(1.281) (1.438) (1.725) (1.363) (1.560) (1.824)

Observations 444 444 444 386 386 386
Session FE Yes Yes Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Baseline: 222

29 Subjects dropped from Models 4 - 6 because session FE perfectly predicts WTP > 0

Models 1 - 3: Tobit regression specifications with lower limit of 0 and upper limit of 15

Models 4-6: Logit regression specifications

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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those subjects who experience no increase in mistake rates in the presence of irrelevant information

in the following subsection.

3.3 A Preference For Simplicity

To more precisely estimate whether and to what extent such a preference for simplicity exists,

we look at WTP for two categorizations of subjects for a given decision problem: i) those who

experience no additional mistakes and ii) those who make no additional mistakes and incur no

time costs associated with the presence of irrelevant information. Our interpretation of “making no

additional mistakes” is straightforward: a subject is deemed to have made “no additional mistakes”

in decision problems of type OiAj if her mistake rate in OiAj was weakly less than her mistake

rate in OiAj−10 for j = 15 (or Oi−10Aj , for i = 15). In other words, a subject is counted in the

first row of Tables 12 and 13 if she indeed made no additional mistakes as a result of irrelevant

information in the relevant dimension. For example, a subject in the High Noise treatment who

made 2 mistakes in O15A5 and 1 mistake in O15A15 will be considered to have made “no additional

mistakes” in O15A15 because her mistakes didn’t increase with the addition of irrelevant attributes.

In all of the analysis in this section, Timeouts were treated as Mistakes, but results are robust to

the exclusion of Timeouts.

We additionally consider subjects who make no additional mistakes and incur no additional

time costs. A subject is deemed to have incurred no time costs if the difference in the amount of

time that she spends in decision problems of type OiAj is not significantly different from the amount

of time she spends in decision problems of type OiAj−10 for j = 15 (or Oi−10Aj , for i = 15). In

other words, a subject is counted in the second row of Tables 12 and 13 if she made “no additional

mistakes” as per the interpretation presented in the previous paragraph and she did not spend

significantly more time on a type of decision problem as a result of irrelevant information.24

We present the summary statistics of WTP in Table 12 and the frequency of positive WTP

amount in Table 13. The mean WTP and fraction of WTP greater than zero is positive and signifi-

cant at the 5% level in each case. Additionally, a comparison between Tables 12 - 13 and Tables 9 - 10

24In all relevant analysis, “No Additional Mistakes” and “No Additional Mistakes or Time Costs” are defined at
the subject-OiAj decision problem type level, independent of behavior in other decision problem types. As such, a
subject could be considered to have made “No Additional Mistakes” in some decision problems, but not others, and
may appear in some cells of Tables 12 and 13, but not all. These measures do not require any joint conditions over
multiple decision problem types for a given subject.
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reveals that the mean WTP and frequency of positive WTP closely matches that of the overall sam-

ple. In Tables 12 and 13, we can reject a null hypothesis H0 : µNo Additional Mistakes (or Time Costs) =

µAdditional Mistakes (or Time Costs) in a Mann-Whitney test in each of the 16 instances. For example,

in Table 12 the mean WTP (A | O5) of 4.226 ECU for the 62 subjects who make No Additional

Mistakes is not significantly different than the mean WTP (A | O5) for the remaining 50 subjects

in the Low Noise treatment at any standard α level. Note that in no instance in Tables 12 and

13 is there a significant difference; mean WTP and frequency of positive WTP, overall, does not

depend on whether or not the subject made No Additional Mistakes (or Time Costs).

Additionally, let y(I|Jk) = 1{WTP (I|Jk) > 0} indicate whether WTP to eliminate irrelevant

information in the Ith dimension, given that there are k units of information in the Jth dimen-

sion, is positive. A Kolmogorov-Smirnov test of equality of distributions fails to reject the null

H0 : F (yadditional mistakes(I|Jk)) = F (yno additional mistakes(I|Jk)) for each (I, Jk). Such tests also

fail to reject the analogous null for WTP levels themselves (H0 : F (WTPadditional mistakes(I|Jk)) =

F (WTPno additional mistakes(I|Jk))).

All of this taken together provides evidence that even subjects for whom irrelevant information

neither affects the optimality of choice nor increases time spent on a decision problem prefer not

to see such irrelevant information; there exists a preference for simplicity of the informational

environment, even when irrelevant information has no effect on choice. Moreover, a brief look at

responses to the open-ended question in our questionnaire reveals similar reasoning for some of our

subjects. A subject who made no mistakes responded that “I chose [positive WTP amounts] to

relax my eyes a little bit.” Another responded that “either one [of eliminating irrelevant attributes

or unavailable options] wouldn’t be too helpful, but they still kind of help, so I put a low number

and if I got it I got it, if I didn’t, oh well.” One possible explanation for this preference for simplicity

may be that there is an additional dimension of cognitive effort spent on these decision problems

that is not fully captured by mistake rates or time costs. Said another subject, “[...] unavailable

options and attributes are distracting and cause me to work harder and longer when trying to

calculate from options and attributes that are actually available. Therefore, I would be willing

to pay ECU to get rid of them on the screen in order to work more efficiently and effectively”

(emphasis added). To our knowledge, ours is the first study to identify such a preference, and this

is the “cost of ignoring” in its purest form: there is a preference-based psychological consequence
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to having to ignore irrelevant information that is not captured by standard measures of the effect

of irrelevant information on choice.

Table 12: WTP: No Additional Mistakes

Low Noise High Noise
WTP (A|O5) WTP (O|A5) WTP (A|O15) WTP (O|A15)

No Additional Mistakes 4.226 4.000 3.930 4.133
(.360) (.324) (.389) (.387)

62 68 43 45
No Additional Mistakes or Time Costs 4.130 4.031 4.192 4.146

(.388) (.338) (.517) (.396)
54 65 26 41

Std. Errors in Parentheses

Sample mean > 0 at the α = 0.05 level in each instance

Mann-Whitney p > 0.1 for H0 : µNo Additional Mistakes (or Time Costs) = µMistakes (or Time Costs) in each instance

Timeouts treated as Mistakes

Table 13: Frequency of Positive WTP: No Additional Mistakes

Low Noise High Noise
WTP (A|O5) WTP (O|A5) WTP (A|O15) WTP (O|A15)

No Additional Mistakes .919 .868 .837 .844
(.035) (.041) (.057) (.055)

62 68 43 45
No Additional Mistakes or Time Costs .907 .862 .885 .854

(.040) (.043) (.064) (.056)
54 65 26 41

Std. Errors in Parentheses

Sample mean > 0 at the α = 0.05 level in each instance

Mann-Whitney p > 0.1 for H0 : µNo Additional Mistakes (or Time Costs) = µMistakes (or Time Costs) in each instance

Timeouts treated as Mistakes

We summarize these results in Result 4:

Result 4 There is a cost of ignoring irrelevant information that is not measured by mistake rates

or time costs: subjects are willing to pay some amount not to see irrelevant information, even when

irrelevant information does not affect choice.

• When measured in an analysis of WTP for subjects who make no additional mistakes in

response to irrelevant information, this cost is positive.

• When measured in an analysis of WTP for subjects who make no additional mistakes in
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response to irrelevant information and spend no additional time in response to irrelevant

information, this cost is again positive.

4 Robustness Checks

In order to investigate to what extent our results are sensitive to the design specification used

for these tasks, we conducted six additional sessions under alternative designs. Four of these

sessions were conducted with alternative designs regarding Part 1 decision tasks and two of these

sessions were conducted with alternative designs regarding the Part 2 willingness-to-pay tasks.

These sessions are summarized in Table 14:

Table 14: Robustness Treatment Summary

Treatment # of Sessions # of Subjects Part 1: Decisions Part 2: BDM

8x8: Low Noise 2 32 40 Decisions O8A5 → O5A5 and O5A8 → O5A5

8x8: High Noise 2 30 40 Decisions O8A8 → O5A8 and O8A8 → O8A5

Alt-High Noise 2 30 40 Decisions O15A15 → O5A5

In the treatments designated as “8x8” in the above table, decision tasks included a maximum of

three unavailable options and three irrelevant attributes relative to the baseline in order to explore

the effects of changing the parameter space on our main results. This resulted in decision task

treatments O5A5, O5A8, O8A5, and O8A8. In the treatment named “Alt-High Noise”, the decision

tasks presented in Part 1 were the same as for the main treatments (i.e. O5A5, O5A15, O15A5, and

O15A15) . However, in Part 2, subjects were asked a single WTP question eliciting WTP to move

from O15A15 to O5A5.

All relevant results are presented in Appendix D. In this section, we will highlight several

important results that further illuminate the main contributions of this paper.
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4.1 Further Investigation of the Mistake Rate Function

In Subsection 3.1, we argue that our results indicate that mistake rates are not affected by un-

available options and irrelevant attributes linearly ; the presence of both unavailable options and

irrelevant attributes simultaneously amplifies the effect of irrelevant information on mistake rates

in our main experimental task. However, an apt reader may notice that with five available options

each with five relevant attributes in each treatment, our main design leads to the following counts

of irrelevant cells of information displayed to subjects as described by Table 15.

Treatment Irrelevant Cells

O5A5 0
O5A15 50
O15A5 50
O15A15 200

Table 15: Treatments and Irrelevant Information

So since we find higher mistake rates in treatment O15A15 only, this could be the result of either

a) interaction between the two types of irrelevant information subjects handled or b) the presence

of an additional 150 irrelevant cells relative to treatments O5A15 and O15A5. Using the alternative

8x8 design, we can more precisely investigate the effect of the “size” of the irrelevant information set

on mistake rates. The 8x8 design leads to the counts of irrelevant cells of information as described

by Table 16. Note that the O8A8 case in this experiment has fewer irrelevant cells than either

O15A5 or O5A15 of the main experiments. If mistake rates in treatment O8A8 are higher than in

treatment O5A5 in this new dataset and treatments O15A5 and O5A15 in the main dataset, we can

thus conclude that this is the result of some non-linearities in the mistake rate function and not

simply the size of the set of irrelevant information.25

Table 28 in Appendix D.1 reports mistake rates across all decision problem types in the 8x8

treatments. The main messages of Tables 28 and 2 (for the main dataset) are similar: the interaction

between unavailable options and irrelevant attributes are generates more suboptimal choice. Hence,

we replicate our main finding on mistake rates with this additional dataset. Moreover, treatment

25We would, however, like to caution the reader against interpreting these results as evidence that unavailable
options and irrelevant attributes can never affect welfare for a DM when presented alone. While this is mostly true in
our experimental dataset, no single experiment (or set of experiments) can fully explore the parameter space of such
decision problem such that we can precisely estimate the full specification of the mistake rate function. Our results
simply indicate that there is sufficient evidence that, within the confines of our experimental design, the interaction
between unavailable options and irrelevant attributes indeed matters.
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Treatment Irrelevant Cells

O5A5 0
O5A8 15
O8A5 15
O8A8 39

Table 16: Robustness Treatments and Irrelevant Information

O8A8 with 39 irrelevant cells displayed to subjects, has a mistake rate of 24.2%, which is higher

than the mistake rates of both O5A15 and O15A5 in the main dataset.26 The results in Table 28

are robust to the exclusion of timeouts, reported in Table 29. Taken together, these additional

analyses reveal that the central result contained in this work is indeed due to the presence of both

unavailable options and irrelevant attributes, not simply due to the sheer amount of irrelevant

information displayed.

Additionally, Appendix D.1 reports average Time spent in decision problems in the 8x8 treat-

ments in Tables 30 through 32. Similar to our main dataset, Time spent in the 8x8 treatments

increases in the presence of any irrelevant information, but more so for the addition of irrelevant

attributes. Table 33 reports the incidence of Timeouts for the 8x8 treatments. Overall, timeouts

occur in less than 3% of all observations in the 8x8 treatments, with the lowest incidence in decision

problem type O5A5, similar to the main dataset.

4.2 Additional Willingness-to-Pay

The WTP results collected for the 8x8 treatments are similar to our results for WTP in the main

experiments, where we observe positive WTP to eliminate irrelevant information (see Tables 34

and 35 in Appendix D.2). One thing worth noting here is that the average WTP is much lower in

control experiments (Table 34 vs 9) and that subjects less frequently submit positive WTP amounts

in control experiments than main experiments (Table 35 vs Table 10). This indicates that subjects

perceived O8A8 as easier than O15A15 and hence they valued the elimination of unavailable options

and irrelevant attributes much higher when they eliminate 10 rows or columns in a decision problem

26We also view mistake rates in the treatments used for robustness as lower bounds on true mistake rates. The
mistake rate for the baseline treatment of this dataset was 16.8%, lower than the baseline mistake rate of 21.3%
for the main dataset. This difference could be due to relative overall easiness of the robustness experiments with a
maximum of O8A8 difficulty rather than O15A15 of the main experiments. Nevertheless it is important to note that
even the lower bound of the mistake rate in O8A8 is higher than those observed in O5A15 and O15A5.
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than when they eliminate 3 of the same.

As previously mentioned, we’ve shown that both unavailable options and irrelevant attributes

are necessary to generate an increase in the mistake rate, with mistake rates in treatment O15A15

being significantly higher than in the baseline. We’ve also shown that WTP to eliminate irrelevant

information is sensitive to individual mistake rates, even though subjects are not provided with

feedback regarding their performance in Part 1 of the experiment prior to submitting their WTP.

To bridge these two results, we conducted an additional two sessions where Part 2 of the

experiment was altered to only ask a single WTP question, with subjects submitting their WTP

to move from O15A15 to O5A5. Our central hypothesis is that, because mistake rates are higher

only in O15A15, WTP for O15A15 to O5A5 should be significantly higher than any other WTP

measure. If we had asked, say, three WTP measures (O15A15 → O5A15, O15A15 → O15A5, and

O15A15 → O5A5) in these sessions, the subject may be primed to internally rank these three WTPs

with O15A15 → O5A5 as the “most valuable” simply due to the relatively large number of irrelevant

cells eliminated. To avoid this priming, we ask for WTP for O15A15 → O5A5 alone.

We find results consistent with our hypothesis, as indicated in Tables 36 and 37 in Appendix

D.3. Mean WTP for O15A15 → O5A5 is 5.452 ECU, higher than any other WTP measure previously

elicited in the main dataset. Moreover, approximately 84% of subjects submitted a positive WTP

for O15A15 → O5A5, very similar to the frequency of positive WTP reported in Table 10. Hence,

subjects report positive WTP for O15A15 → O5A5 with the same frequency as for the observations

in our main experiment, but they are willing to pay higher amounts. These results provide more

credence to the notion that WTP to eliminate irrelevant information closely tracks performance in

Part 1, even absent any feedback.

5 Discussion

In this project, we set out to understand whether irrelevant information could ever be relevant in

a given decision problem. Our results show that it is: unavailable options and irrelevant attributes

can affect the optimality of choice. In this section we discuss some of the reasons behind our

experimental design, the implications of our results, and the external relevance of this study.

We mentioned previously that screen size limitations prevent us from exploring the effects of the
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addition of more than ten unavailable options or irrelevant attributes. Adding any more information

in either dimension would necessitate the use of filters, scrolling, text size changes across decision

problems, etc., all of which would present confounds to our experimental design. We therefore

cannot rule out that it is possible that there is free disposal of irrelevant information in a single

dimension up to a certain threshold, beyond which one might observe effects on choice. It is easy to

imagine examples where this mechanism can be reasonably assumed; adding a single out-of-stock

TV to the in-store display of 10 available TVs at Costco likely has no effect on choice, but adding

50 might. If we take this threshold mechanism as given, one can then interpret our results in

the following fashion: even when the addition of irrelevant information in a single dimension is not

sufficient to affect choice, adding both unavailable options and irrelevant attributes in amounts lower

than this threshold can affect choice. Moreover, even if this threshold-based mechanism were true,

the threshold of information in one dimension required to affect choice is likely context-dependent,

such that estimating such a threshold in a laboratory environment is likely not very generalizable.

Nevertheless, we view further investigation of the characteristics of the mistake rate function as

worthwhile for future research.

Our design is not crafted to figure out the exact functional form of the cost of processing

different types of irrelevant information. Nevertheless, our findings indicate that even when each

type of irrelevant information is within manageable range of processing cost, the subjects may start

making more mistakes when they are jointly processed. We argue that this might be either due to

the excess number of additional cells the subject processes when both types of irrelevant information

are added or due to mentioned complementarities. Our 8x8 design is helpful to understand the role

of the first effect. Note that in O8A8, the number of cells of irrelevant information presented in two

dimensions is still less than the number of irrelevant cells in O5A15 or O15A5 (39 vs 50). Finding

higher mistake rates in O8A8 than O5A15 or O15A5 is interpreted as evidence that it is not just

the absolute number of cells that needs to be ignored determining the mistake rates, but also the

interaction between the two dimensions. Note also that due to the differential difficulty levels of

the two treatments and potential heterogeneity of subjects, one would expect lower mistake rates

in O8A8. However, even with such bias we observed a higher mistake rate in O8A8 than in O5A15.

We view our results as being particularly relevant for issues of information disclosure. For

example, there is some debate in the United States as to whether to require food manufacturers
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to disclose whether their products use genetically modified organisms (GMOs). In the absence

of meaningful evidence of the negative health consequences of GMOs, the decision of whether to

require such disclosure comes down to a discussion of consumer preferences. The logic might be that

some consumers strictly prefer to consume only non-GMO products and so deserve to have access

to this (relevant) information. Of course, some consumers have no such preference and, for them,

the issue of whether GMOs are included in their food is irrelevant. Prior to gaining the knowledge

contained in this project, it could reasonably be assumed that these consumers could simply freely

dispose of this irrelevant GMO information when evaluating goods and so requiring disclosure

should not impose any new costs on these consumers. However, we show that in some contexts it

is possible that such irrelevant information can make people worse at making decisions. Moreover,

even when someone does not make additional mistakes in the presence of irrelevant information,

our willingness to pay results and the observed preferences for simplicity indicate that their welfare

may be negatively affected directly by the inclusion of this information. All this is to say that

our results would suggest a new trade-off that would need to be considered by policy makers in

this GMO example; policy makers would now have to weigh the potential benefit of information

disclosure to consumers who care about GMOs against the newly identified cost imposed by this

irrelevant information on consumers who do not. Developing tools that allow consumers to filter

the information they prefer to receive and allowing them sorting options based on their availability

should be feasible at online shopping platforms.

6 Conclusion

In this paper we have presented the results of a novel experimental design to test for both i) effects

of irrelevant information presented in a decision problem on choice and ii) willingness-to-pay to get

rid of irrelevant information. Our main contribution is the identification of complementarities in

irrelevant information presentation: both unavailable options and irrelevant attributes are necessary

to generate increased mistake rates. This central result can shed light on the extant body of

literature on decision theory and limited attention. Namely, we find that no leading models of

choice, either rational and constrained or boundedly rational, can explain our data unless they

are significantly modified. It is our hope that these results may provide direction for upcoming
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theoretical research intended to model choice in the presence of irrelevant information.

We should caution that our results don’t suggest that not displaying such information is always

optimal for the firm; displaying such information may be profitable for a number of reasons, includ-

ing dynamic alternative sets and purchasing decisions, reference dependence (away from which we

have abstracted in this work), such as the possibility that unavailable goods serve as decoy options

that make certain available goods seem more attractive. However, our results do suggest that any

agent considering whether to display such irrelevant information should recognize that there is a

trade-off: a firm must weigh the potential immediate effect on profit relative to the effect on choice

optimality on the part of the consumer that is induced by the presence of irrelevant information.

Further, we identify a “preference for simplicity”. That is, for a subject who is faced with

no material costs of having to ignore irrelevant information, we find that they are still willing to

pay some amount to get rid of this information. This tells us that there are aspects of consumer

preference in this environment that are not fully contained by measures intended to capture the

notion of lost monetary value (i.e. mistake rates and time required to make a decision). It needs to

be further investigated in future research how the complexity of presentation affects the algorithm

used in decision making and how robust the preference for simplicity we document here is with

respect to features of the decision problems used, such as color coded irrelevant information.
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Appendix A Instructions

Part 1

Thank you for participating in this experiment. In this session you will work alone and are not

permitted to talk with any other participant. At this time, please be sure that your cell phone is

turned off. At no point during the experiment are you permitted to use your cell phone or any

other personal electronic device.

The Experiment

The experiment today is broken into two parts. These are the instructions for Part 1 of the

experiment. At the conclusion of Part 1, the experimenter will hand out and read instructions for

Part 2 before proceeding. Your earnings in Part 1 and Part 2 are independent.

This is an experiment on decision-making. In each of 40 periods, you will be asked to choose

one from among a number of options. You will have at most 1 minute and 15 seconds (or 75

seconds) to make this decision in each period. Each option is described by a number of attributes.

Attributes take on the numbers 1-9 with each number being equally likely to be shown. The value

of each option is the result of the addition and/or subtraction of these attributes and is measured

in Experimental Currency Units (or ECU). The exchange rate will be as follows: 1 USD = 10 ECU.

You will know whether to add or subtract each attribute based on column headers in the displayed

data. While calculating these values, you will not be permitted to use a calculator or pen and

paper.

In each period, you will see a screen that looks similar to the one below:
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Notice that Option 1 is accompanied by 5 numbers (shown in words) in a grid to its right. The

value of Option 1 is simply the result of adding or subtracting the numbers in its corresponding

row. You will know whether to add a number or subtract it based on the plus or minus sign in

the column header row. Thus, the value of Option 1 is 13 ECU (or eight - one + one - two + seven

= ECU). The values of Options 2-5 can be calculated in a similar way.

Variations

In each of the 40 periods, the number of available options is the same (5). However, the number

of displayed options will vary. In other words, there may be some options displayed on your screen

that you will not be able to select. Consider the following example:

Note that each option still has 5 attributes in the grid. However, now Option 1 cannot be

selected (this can be seen from the absence of a checkbox to the left of “Option 1). You may

only select one from the following: Option 2, Option 6, Option 9, Option 13, or Option 15. Which

options are available will vary between periods. Also note that the value of each option is calculated

as in the first example. For example, the value of Option 2 is 14 ECU (or - four - two + eight +

seven + five = 14 ECU).

In each of the 40 periods, the number of attributes per option will vary. However, in some

periods, some of these attributes may be multiplied by zeros instead of being added or subtracted

when calculating the value of each option. Consider the following example:
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Note that all displayed options are available (you can see this from the checkbox to the left of

each option label). However, there are additional attributes for each option (now there are 15). In

contrast to the previous examples, some of these attributes are now multiplied by 0 instead of being

added or subtracted when determining the value of each option. This can be seen from the zeros

in the column header. For example, the value of Option 1 is 12 ECU (-six + four + two + seven

+ five = 12 ECU). Notice that in this calculation, the first and second attributes (nine and two)

were not included because they have a 0 in the column header. The same is true for any value for

which there is a zero in the column header. Which attributes have zeros (and pluses or minuses)

will vary by period.

Finally, in some periods there will be additional attributes and unavailable options. Consider

the following example:
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Note that Option 1 is unavailable (you can see this from the absence of any checkbox to its

left). Also note that there are several columns with zeros in the column header. The value of

Option 4 is 9 ECU ( -five + two + eight -three + seven= 9 ECU). Notice that the 1st through

5th attributes were not included for Option 4 (seven, eight, one, three, and seven) since these have

zeros in the column header. The same is true for any column of attributes for which there is a zero

in the column header. Again, which columns have zeros (and pluses/minuses) and which options

are unavailable will vary by period.

Time Limit

In each period, you have 1 minute and 15 seconds (75 seconds) to submit your choice of option.

You must submit your option by checking the checkbox to its left and clicking the OK button at

the bottom right of the screen. If you do not submit your selection by clicking the OK button

prior to the end of the period (i.e. within 75 seconds of the period starting), your selection will not

be submitted and you will be paid nothing for that period. Only by selecting an option and

clicking OK prior to the end of the period will your choice be submitted for the period.

Earnings

In each period, your per-period payoff is simply the value of the option you have chosen. In each

of these periods, the values for each option have been chosen so that despite being the sum of both

positive and negative numbers, the value of each available option is positive. That is, no

matter which option you choose, money will never be taken away from you. 10 periods will be

chosen at random and your cash earnings will be the sum of the per-period payoffs for these 10

periods, converted to US Dollars. The exchange rate will be as follows: $1 USD = 10 ECU. Your
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total cash earnings will be added to your show-up fee of $7.00 and your earnings from Part 2 of

this experiment.

You will be paid your earnings privately in cash before you leave the lab.

Part 2

Thank you for participating in Part 2 of the experiment.

You will be faced with 3 periods in which you make decisions: 1 period in which you will be

asked to submit two numbers (explained in detail below), and 2 periods of decision environments

where you will choose from among a number of options, each described by a number of attributes.

Some of these options will be unavailable for you to select and some of the attributes will not

have value (as indicated by the presence of a zero in the header row). However, you will have the

opportunity to pay some amount (in ECU) to get rid of these unavailable options and attributes.

In period 1, you will be asked to complete two tasks which will affect what you see in periods

2 and 3: Task 1 is to enter the maximum amount you are willing to pay (in ECU) to get rid of

the unavailable options to be presented in period 2, and Task 2 is to enter the maximum amount

you are willing to pay to get rid of the attributes that have no value (as indicated by the zeros

in the column header; these will be referred to as unavailable attributes for the remainder of the

instructions) to be presented in period 3. Note that decisions in each task will correspond to

outcomes in two separate subsequent periods: Task 1 affects what you see in period 2 and Task 2

affects what you see in period 3.

The screenshot below displays what this environment will look like in period 1:
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For Task 1 and Task 2, two random numbers will be drawn from 0 ECU to 15 ECU. These

two numbers may not be the same. These will be the selling prices for getting rid of the unavailable

options or unavailable attributes, respectively. If the maximum amount you are willing to pay to

get rid of unavailable options that you entered for Task 1 is above the selling price for Task 1, you

pay the selling price and you will not see these unavailable options in period 2. If the maximum

amount you are willing to pay to get rid of unavailable attributes is higher than the selling price

for Task 2, you pay the selling price and you will not see these unavailable attributes in period 3.

However, if either (or both) of the selling prices are above the maximum amount you are willing

to pay, entered in period 1 for Task 1 and Task 2, you pay nothing and the unavailable options or

unavailable attributes will be shown in the respective period.

Note that you enter both of these numbers indicating your maximum willingness to pay to

simplify the environments at the same time and before you know the result of either random

number draw. That is, when you enter the maximum amount you are willing to pay to get rid

of unavailable options, you will not know whether you have been able to get rid of unavailable

attributes, and when you enter the maximum amount you are willing to pay to get rid of unavailable

attributes, you will not know whether you have been able to get rid of the unavailable options.

Also note that it is in your best interest not to overstate (or understate) the maximum amount you

are willing to pay in either Task 1 or Task 2. Suppose you are willing to pay at most 5 ECU to

get rid of either unavailable options or attributes. If the random is drawn and you enter exactly 5

46



ECU, there are two potential outcomes: either the number is higher than 5, in which case you pay

nothing and the unavailable options or attributes will be displayed in the respective period, or the

number is less than 5 , say 4 ECU. In this case, you pay the 4 ECU and the unavailable options or

attributes are not shown. Note that you were willing to pay at most 5 ECU, but only had to pay

4 ECU.

Suppose instead that you overstate this amount in either Task 1 or Task 2 by entering, say, 6

ECU. Then it could be the case that the number drawn is 5.5, for example, which is less than 6

(which you have entered) but greater than 5, the true maximum amount that you are willing to

pay. Because you have entered 6, you will pay the drawn amount, 5.5 ECU, which is more than

you originally were willing to pay - you will have gotten rid of unavailable options or attributes,

but paid more than the maximum amount you were willing to pay. On the other hand, suppose

you understate this amount by entering 4 ECU. Then if the random number drawn is, say, 4.5

ECU, you will not be able to get rid of the unavailable options or attributes, but would be willing

to pay this amount. Only by entering the actual maximum amount you are willing to pay in Task

1 and Task 2 will you both a) prevent having to pay more than this amount (by overstating) and

b) prevent missing out on paying a lesser amount when it is profitable to do so (by understating).

Decision Environments

These decision environments will appear exactly as you have seen them in Part 1. Again, you will

have 75 seconds to submit your decision. If you do not submit your chosen option by that time, no

option will be submitted and you will be paid nothing for that period.

By default, in period 2 there will be 15 options, each with 15 attributes. Only 5 of these options

will be available for you to select and only 5 of these attributes will have value (as indicated by the

presence of a + or - in the column header). You can pay to have the 10 unavailable options not

displayed in this period. No matter what, each of the displayed options will have 15 attributes, 10

of which will have zeros in the column header. Whether the 10 unavailable options are displayed

depends on the result of your choice in Task 1, described in detail above.

By default, in period 3 there will be 15 options, each with 15 attributes. Only 5 of these

attributes will have value - the rest are unavailable (as indicated by the presence of zeros in the

column header) and only 5 of these options will be available for you to select. You can pay to have

the 10 unavailable attributes not displayed in this period. No matter what, there will be 15

options displayed (5 of which will be available for selection). Whether the 10 unavailable attributes

are displayed depends on the result of your choice in Task 2, described in detail above.

Payoff Calculation

In each of periods 2 and 3, your per-period payoff is simply the value of the option you have chosen.

In each of these periods, the values for each option have been chosen so that despite being the sum

of both positive and negative numbers, the value of each available option is positive. That

is, no matter which option you choose, money will never be taken away from you.
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Choices in all periods contribute to your payoffs for this part of the experiment. In the first

period, if you are able to get rid of either unavailable options or attributes or both, the relevant

random number that was drawn is subtracted from your payoffs. In each of the decision periods,

the value of the option you have chosen will be added to your payoffs, with the value of each option

calculated as in Part 1 of this experiment. The exchange rate will be as follows: $1 USD = 10

ECU. Your total cash earnings will be added to your show-up fee of $7.00 and your earnings from

Part 1 of this experiment.

You will be paid your earnings privately in cash before you leave the lab.
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Appendix B Additional Analyses

B.1 Additional Aggregate Results

Table 17: Mistake Rates: Excluding Timeouts

O5 O15

Mean 0.193 0.201
A5 Std Error 0.013 0.013

N 222 222

Mean 0.193 0.299
A15 Std Error 0.012 0.016

N 222 222

p = 0.000 for O15A5 → O15A15, O5A15 → O15A15, and O5A5 → O15A15

p > 0.100 otherwise.

Table 18: Time: Timeouts Treated as Maximum Time

O5 O15

Mean 49.200 50.405
A5 Std Error 0.713 0.677

N 222 222

Mean 53.769 57.374
A15 Std Error 0.779 0.782

N 222 222

p = 0.00 for O5A5 → O5A15, O15A5 → O15A15,

O5A15 → O15A15 , O5A5 → O15A15, and O15A5 → O5A15

p > 0.10 for O5A5 → O15A5

49



Table 19: Time: Correct

O5 O15

Mean 48.240 49.641
A5 Std Error 0.727 0.662

N 222 220

Mean 52.615 56.613
A15 Std Error 0.769 0.776

N 222 222

p = 0.00 for O5A5 → O5A15, O15A5 → O15A15,

O5A15 → O15A15 , O5A5 → O15A15, and O15A5 → O5A15

p > 0.10 for O5A5 → O15A5

Conditional on Correct
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B.2 Time Cost Results

Table 20: Time Regressions with Alternative Time Thresholds

(1) (2) (3)
t < 73 t < 70 t < 65

Options -0.862 0.373 1.605∗

(0.929) (0.950) (0.975)
Attributes 4.027∗∗∗ 3.405∗∗∗ 2.821∗∗∗

(0.913) (0.958) (1.047)
Options * Attributes 1.422∗∗∗ 0.981∗ -0.437

(0.513) (0.562) (0.586)
Period -0.224∗∗∗ -0.223∗∗∗ -0.123

(0.071) (0.073) (0.076)
Period2 -0.001 -0.000 -0.002

(0.002) (0.002) (0.002)
Cognitive Score 10.633∗∗∗ 11.483∗∗∗ 12.505∗∗∗

(4.068) (3.845) (3.741)
Female -2.470∗ -2.159∗ -2.190∗

(1.319) (1.248) (1.177)
Economics/Business -2.272 -2.347 -1.977

(1.553) (1.451) (1.351)
English -3.075∗∗ -2.450∗ -2.288∗

(1.520) (1.392) (1.305)
Position 0.131∗∗∗ 0.094∗∗ 0.040

(0.043) (0.044) (0.046)
Positive -1.270∗∗∗ -0.964∗∗∗ -0.876∗∗∗

(0.267) (0.262) (0.268)
Attribute Complexity 0.134 0.181 0.127

(0.224) (0.239) (0.267)
Option Complexity 0.614∗∗∗ 0.276 0.007

(0.218) (0.230) (0.239)

Observations 8169 7438 6312
Session FE Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Each Model: 222

Marginal effects from tobit regressions censored below by 0 and above by 75.

Robust standard errors are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 21: Time Regressions with Alternative Time Thresholds

(1) (2) (3)
t < 73 t < 70 t < 65

Options -0.944 0.288 1.302
(0.984) (0.980) (1.004)

Attributes 5.016∗∗∗ 4.748∗∗∗ 3.858∗∗∗

(1.082) (1.147) (1.250)
Options * Attributes 3.242∗∗∗ 2.981∗∗∗ 1.772∗∗∗

(0.532) (0.545) (0.530)
Period -0.157∗∗ -0.162∗∗ -0.074

(0.066) (0.067) (0.067)
Period2 -0.001 -0.001 -0.003∗

(0.002) (0.002) (0.002)
Cognitive Score 6.843∗∗ 7.439∗∗ 8.741∗∗∗

(3.210) (3.000) (2.810)
Female -1.422 -1.153 -1.288

(1.103) (1.017) (0.913)
Economics/Business -2.704∗∗ -2.948∗∗ -2.571∗∗

(1.346) (1.235) (1.121)
English -2.033 -1.414 -1.317

(1.345) (1.172) (1.057)
Position 0.186∗∗∗ 0.138∗∗∗ 0.115∗∗∗

(0.044) (0.044) (0.045)
Positive -0.946∗∗∗ -0.800∗∗∗ -0.745∗∗

(0.280) (0.282) (0.294)
Attribute Complexity -0.096 -0.198 -0.134

(0.291) (0.311) (0.333)
Option Complexity 0.537∗∗ 0.190 -0.087

(0.236) (0.246) (0.259)

Observations 6432 5913 5036
Session FE Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Each Model: 222

Marginal effects from tobit regressions censored below by 0 and above by 75.

Robust standard errors are clustered at the Subject level

All models conditional on Correct
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.3 GPA Robustness Checks

Table 22: Mistake Rate Regressions with GPA

(1) (2) (3) (4) (5)
Mistake Mistake Mistake Mistake Mistake†

Options 0.010 0.014 -0.022 -0.045 -0.062∗∗

(0.011) (0.012) (0.013) (0.029) (0.029)
Attributes -0.000 0.003 -0.004 -0.014 0.013

(0.012) (0.012) (0.013) (0.029) (0.029)
Options * Attributes 0.086∗∗∗ 0.077∗∗∗ 0.085∗∗∗ 0.086∗∗∗ 0.091∗∗∗

(0.018) (0.018) (0.019) (0.019) (0.019)
Period -0.007∗∗∗ -0.007∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.012∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Period2 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
GPA -0.214∗∗∗ -0.214∗∗∗ -0.214∗∗∗ -0.223∗∗∗

(0.065) (0.065) (0.065) (0.065)
Female 0.078∗∗∗ 0.078∗∗∗ 0.078∗∗∗ 0.078∗∗∗

(0.022) (0.022) (0.022) (0.022)
Economics/Business -0.010 -0.010 -0.010 0.003

(0.026) (0.026) (0.026) (0.027)
English -0.006 -0.006 -0.006 -0.018

(0.023) (0.023) (0.023) (0.024)
Position 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001)
Positive -0.032∗∗∗ -0.034∗∗∗ -0.033∗∗∗

(0.008) (0.008) (0.009)
Attribute Complexity 0.003 0.000

(0.008) (0.007)
Option Complexity 0.006 0.010

(0.007) (0.007)

Observations 8555 8121 8121 8121 8440
Session FE Yes Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Baseline: 222

11 Subjects with missing GPA excluded from models with GPA

†: Timeouts treated as mistakes

Marginal effects from logit regression specifications

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 23: Time Regressions with GPA

(1) (2) (3) (4) (5) (6)
Time Time Time Time Time† Time‡

Options 2.215∗∗∗ 2.158∗∗∗ 1.012∗∗ -1.920∗ -1.324 -1.670∗

(0.381) (0.397) (0.485) (0.985) (0.994) (0.940)
Attributes 5.655∗∗∗ 5.735∗∗∗ 5.467∗∗∗ 4.993∗∗∗ 5.052∗∗∗ 4.715∗∗∗

(0.430) (0.441) (0.449) (0.949) (1.111) (0.899)
Options * Attributes 1.734∗∗∗ 1.722∗∗∗ 1.969∗∗∗ 2.096∗∗∗ 3.407∗∗∗ 1.942∗∗∗

(0.499) (0.517) (0.517) (0.521) (0.551) (0.502)
Period -0.394∗∗∗ -0.394∗∗∗ -0.412∗∗∗ -0.402∗∗∗ -0.185∗∗∗ -0.347∗∗∗

(0.078) (0.081) (0.081) (0.081) (0.069) (0.076)
Period2 0.002 0.002 0.003 0.003 -0.000 0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
GPA 8.650∗ 8.648∗ 8.649∗ 5.985∗ 8.765∗∗

(4.455) (4.455) (4.455) (3.418) (4.359)
Female -2.545∗ -2.545∗ -2.546∗ -1.664 -2.560∗

(1.387) (1.387) (1.387) (1.136) (1.357)
Economics/Business -1.135 -1.137 -1.137 -2.236∗ -1.276

(1.582) (1.582) (1.582) (1.354) (1.542)
English -3.415∗∗ -3.416∗∗ -3.416∗∗ -1.974 -3.226∗∗

(1.585) (1.585) (1.585) (1.423) (1.549)
Position 0.161∗∗∗ 0.199∗∗∗ 0.199∗∗∗ 0.186∗∗∗

(0.041) (0.043) (0.046) (0.042)
Positive -1.180∗∗∗ -1.374∗∗∗ -0.984∗∗∗ -1.359∗∗∗

(0.275) (0.280) (0.273) (0.269)
Attribute Complexity 0.126 -0.004 0.151

(0.233) (0.301) (0.220)
Option Complexity 0.809∗∗∗ 0.595∗∗ 0.751∗∗∗

(0.231) (0.240) (0.219)

Observations 8880 8440 8440 8440 6332 8440
Session FE Yes Yes Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Baseline: 222

11 Subjects with missing GPA excluded from models with GPA

†: Conditional on Correct

‡: Timeouts treated as Time = 75 seconds

Marginal effects reported from tobit regressions censored below by 0 and above by 75

Robust standard errors are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 24: WTP Regressions with GPA

(1) (2) (3) (4) (5) (6)
WTP WTP WTP WTP > 0 WTP > 0 WTP > 0

Mistakes 0.413∗∗∗ 0.454∗∗∗ 0.317∗∗∗ 0.379∗∗∗ 0.405∗∗∗ 0.346∗∗

(0.102) (0.108) (0.119) (0.124) (0.127) (0.157)
Time 0.003 0.003 0.003 0.002 0.001 0.002

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003)
Attributes 0.191 0.181 0.317 0.022 0.023 0.209

(0.156) (0.164) (0.279) (0.159) (0.175) (0.299)
High Noise 2.296∗ 2.470∗∗ 1.043 0.793 0.681 1.856

(1.200) (1.203) (2.416) (1.401) (1.531) (3.307)
Female -0.353 -0.298 0.470 0.456

(0.450) (0.441) (0.514) (0.503)
GPA -0.387 -0.454 -0.708 -0.662

(1.179) (1.151) (1.086) (1.098)
High Noise * Mistakes 0.292 0.117

(0.205) (0.248)
High Noise * Time 0.001 -0.002

(0.004) (0.005)
High Noise * Attributes -0.255 -0.436

(0.334) (0.339)
Constant 0.394 0.580 1.059 -0.038 0.485 0.240

(1.281) (1.436) (1.735) (1.363) (1.698) (1.839)

Observations 444 422 422 386 366 366
Session FE Yes Yes Yes Yes Yes Yes

Standard errors in parentheses

Number of Subjects in Baseline: 222

11 Subjects with missing GPA dropped from Models 2-6

Additional 29 Subjects dropped from Models 4 - 6 because session FE perfectly predicts WTP > 0

Models 1 - 3: Tobit regression specifications with lower limit of 0 and upper limit of 15

Models 4-6: Logit regression specifications

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.4 Regressions Under Alternative Complexity Measures

In Section 3, we introduce a complexity measure to determine whether the mistake rate in each

treatment depended on the number of “skips” in the evaluation process for either attributes or

options. In this appendix, we present regression results where we investigate whether mistakes

depend on attribute and option complexity under alternative versions of this measure.

First, we introduce “Opt Comp w/ 0” and “Att Comp w/ 0” measures that are the measures

we used previously in the body of the text, but including leading and trailing zeros. Second,

we introduce “Opt Comp 1st” and “Opt Comp 2nd,” with the analogous measures defined for

Attributes. These measures take our aggregate measures and split them into the “first half” and

“second half” of the evaluation process in each dimension. In other words, “Opt Comp 1st” is “the

number of skips in Options for the first 7 Options” and “Opt Comp 2nd” is “the number of skips

in Options for the last 8 Options.” “Att Comp 1st” and “Att Comp 2nd” are defined analogously.

The hypothesis here is that it is possible, given order effects documented by the effects of the

Position variable in previous regressions, that complexity might matter more for the first several

options/attributes than for later options/attributes. We find that this is the case for the mistake

rate regressions as the coefficient of Opt Comp 1st is higher than that of Opt Comp 2nd and the

coefficient of Att Comp 1st is higher than its counterpart in the relevant columns of Table 25. This

is also the case for the time regressions in Table 26.

In each of the tables below, models are conducted for observations from our main experiment.

Each is restricted to the relevant subsample where the complexity measure is meaningful, as indi-

cated in the last row of the table.
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Table 25: Mistake Rate Regressions

(1) (2) (3) (4) (5) (6)
Mistake Mistake Mistake Mistake Mistake Mistake

Period -0.007∗∗∗ -0.007∗∗∗ -0.004∗ -0.004∗∗ -0.007∗∗∗ -0.005∗∗

(0.002) (0.003) (0.002) (0.002) (0.003) (0.002)
Period2 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Cognitive Score -0.217∗∗∗ -0.274∗∗∗ -0.226∗∗∗ -0.234∗∗∗ -0.274∗∗∗ -0.225∗∗∗

(0.063) (0.069) (0.069) (0.064) (0.069) (0.069)
Female 0.077∗∗∗ 0.086∗∗∗ 0.077∗∗∗ 0.078∗∗∗ 0.087∗∗∗ 0.077∗∗∗

(0.021) (0.023) (0.024) (0.022) (0.023) (0.024)
Economics/Business -0.008 -0.013 -0.013 -0.010 -0.013 -0.013

(0.025) (0.028) (0.027) (0.026) (0.028) (0.027)
English -0.003 -0.001 -0.008 -0.001 -0.001 -0.008

(0.022) (0.027) (0.024) (0.023) (0.027) (0.024)
Opt Comp w/ 0 -0.001 0.019∗∗∗

(0.008) (0.003)
Att Comp w/ 0 0.016∗ 0.019∗∗∗

(0.008) (0.003)
Opt Comp 1st 0.025∗∗

(0.010)
Opt Comp 2nd -0.003

(0.009)
Att Comp 1st 0.039∗∗∗

(0.009)
Att Comp 2nd -0.024∗∗

(0.011)

Observations 8555 4269 4219 6393 4269 4219
Session FE Yes Yes Yes Yes Yes Yes
Decision Problems All O15A5 , O15A15 O5A15 , O15A15 O15A5 , O15A15, O5A15 O15A5 , O15A15 O5A15 , O15A15

Standard errors in parentheses

Number of Subjects in Each Model: 222

Marginal effects from logit regression specifications

Robust standard errors reported are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 26: Time Regressions

(1) (2) (3) (4) (5) (6)
Time Time Time Time Time Time

Period -0.261∗∗∗ -0.180∗ -0.232∗∗ -0.176∗∗ -0.190∗∗ -0.246∗∗∗

(0.073) (0.096) (0.095) (0.081) (0.095) (0.094)
Period2 -0.000 -0.001 -0.001 -0.002 -0.001 -0.001

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Cognitive Score 9.936∗∗ 9.587∗∗ 13.980∗∗∗ 11.181∗∗∗ 9.590∗∗ 13.993∗∗∗

(4.143) (4.223) (4.477) (4.249) (4.223) (4.473)
Female -2.537∗ -2.542∗ -3.193∗∗ -2.691∗ -2.540∗ -3.183∗∗

(1.338) (1.364) (1.475) (1.374) (1.363) (1.475)
Economics/Business -2.302 -2.324 -2.051 -2.160 -2.324 -2.050

(1.585) (1.596) (1.721) (1.613) (1.596) (1.719)
English -3.134∗∗ -3.174∗∗ -3.389∗∗ -3.177∗∗ -3.175∗∗ -3.391∗∗

(1.536) (1.512) (1.609) (1.527) (1.512) (1.608)
Opt Comp w/ 0 0.724∗∗∗ 0.761∗∗∗

(0.213) (0.072)
Att Comp w/ 0 0.597∗∗∗ 1.416∗∗∗

(0.220) (0.101)
Opt Comp 1st 0.898∗∗∗

(0.298)
Opt Comp 2nd 0.706∗∗∗

(0.253)
Att Comp 1st 0.672∗∗∗

(0.212)
Att Comp 2nd 0.157

(0.344)

Observations 8555 4269 4219 6393 4269 4219
Session FE Yes Yes Yes Yes Yes Yes
Decision Problems All O15A5 , O15A15 O5A15 , O15A15 O15A5 , O15A15, O5A15 O15A5 , O15A15 O5A15 , O15A15

Standard errors in parentheses

Number of Subjects in Each Model: 222

Marginal effects reported from tobit regressions censored below by 0 and above by 75

Robust standard errors are clustered at the Subject level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix C Learning Effects

In order to investigate the possibility of differential learning across decision problem types, we first

run mistake rate model specification 5 from Table 4 separately for each type. These results are

included below. Note that our results on Period and Period2 are qualitatively similar across all

decision problem types.

Table 27: Differential Learning: Mistakes

(1) (2) (3) (4)
Mistake† Mistake† Mistake† Mistake†

Period -0.014∗∗∗ -0.007∗∗ -0.009∗∗∗ -0.013∗∗∗

(0.003) (0.003) (0.003) (0.004)
Period2 0.000∗∗∗ 0.000∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

Observations 2220 2220 2220 2220
Session FE Yes Yes Yes Yes
Decision Problem Type O5A5 O5A15 O15A5 O15A15

Standard errors in parentheses

Number of Subjects in Each Model: 222

†: Timeouts treated as mistakes

Marginal effects from logit regression specifications

Robust standard errors reported are clustered at the Subject level

Demographic controls, Position, Positive, and Complexity Measures included in each model
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 27 provides initial evidence that learning is similar across all decision problem types.

However, note that in our experiment, a subject encountered 40 decision problems, 10 of each of

four types. The order was randomized at the session-subject level, so the effect of Period within

a decision problem type would not be easily comparable across decision problem types, as the

sequences of 10 decision problems of a given type are not conducted across the same Periods. To

fix this, we define a new variable Instance as the number of times the subject has seen a decision

problem of the current type in a given Period. For example, Instance will be equal to 1 the first

time a subject sees a decision problem of type O5A5, 2 the second time, and so on, regardless of

Period. Instance thus runs from 1 to 10 for each decision problem type.

Figure 3 plots average mistake rates in each instance subjects make decision for each type of

decision problem. Since we randomized the order of 40 decision problems which include all four

types of decisions, the horizontal axis captures the instance a decision problem occurred within

that type of problem rather than the period of occurrence.
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Figure 3: Mistake Rate by Decision Problem Instance

First, we can see from this graph that there is some degree of learning within decision problem

type, but that this effect decreases somewhat over time, and appears to reverse in later instances.

This is shown in the overall U-shape of this graph for each decision problem type and is in line with

the regression results where coefficients of Period and Period2 are negative and positive, respectively.

We take this as evidence that the overall effect of learning would not undo our main result, had

we only included more Periods and decision problems. Second, we take this graph to be additional

evidence for our main result: the Mistake Rate is higher for O15A15 than for any other decision

problem type for each Instance. This rules out the possibility that our main effect could have been

the result of differential learning across decision problem types.
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Appendix D Robustness Checks

For robustness, we conducted an additional six sessions of our main tasks under alternative designs.

In this appendix, we present the relevant results used for robustness checks with this additional

dataset.

D.1 Aggregate Results: 8 x 8

Table 28: Mistake Rates: Including Timeouts

O5 O8

A5

Mean 0.168 0.160
Std Error 0.022 0.021
N 62 62

A8

Mean 0.131 0.242
Std Error 0.021 0.022
N 62 62

p < 0.01 for O5A8 → O8A8, O8A5 → O8A8, O5A5 → O8A8

p > 0.10 otherwise

Table 29: Mistake Rates: Excluding Timeouts

O5 O8

A5

Mean 0.159 0.147
Std Error 0.022 0.021
N 62 62

A8

Mean 0.108 0.223
Std Error 0.021 0.021
N 62 62

p < 0.10 for O8A5 → O5A8

p < 0.05 for O5A5 → O8A8 and O5A5 → O5A8

p < 0.01 for O8A5 → O8A8 and O5A8 → O8A8

p > 0.10 otherwise
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Table 30: Time: No Timeouts

O5 O8

A5

Mean 48.935 49.586
Std Error 1.148 1.126
N 62 62

A8

Mean 51.754 55.345
Std Error 1.276 1.180
N 62 62

p < 0.10 for O5A5 → O5A8

p < 0.05 for O5A8 → O8A8

p < 0.01 for O8A5 → O8A8 and O5A5 → O8A8

Table 31: Time: Timeouts as Maximum Time

O5 O8

A5

Mean 49.124 49.900
Std Error 1.165 1.141
N 62 62

A8

Mean 52.289 55.784
Std Error 1.266 1.180
N 62 62

p < 0.05 for O5A8 → O8A8 and O5A5 → O5A8

p < 0.01 for O8A5 → O8A8 and O5A5 → O8A8

Table 32: Time: Correct

O5 O8

A5

Mean 48.733 49.209
Std Error 1.096 1.078
N 62 62

A8

Mean 51.904 54.914
Std Error 1.207 1.279
N 61 62

p < 0.10 for O8A5 → O5A8

p < 0.05 for O5A8 → O8A8 and O5A5 → O5A8

p < 0.01 for O8A5 → O8A8 and O5A5 → O8A8

62



Table 33: Timeouts

O5 O8

A5

Mean 0.010 0.015
Std Error 0.005 0.005
N 62 62

A8

Mean 0.024 0.026
Std Error 0.006 0.009
N 62 62

p < 0.10 for O5A5 → O8A8

p < 0.05 for O5A5 → O5A8
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D.2 WTP

Table 34: Willingness to Pay: 8 x 8

Low Noise High Noise
WTP (A|O5) WTP (O|A5) WTP (A|O8) WTP (O|A8)

Mean 3.100 2.800 3.219 2.562
Std Error 0.568 0.554 0.588 0.479
N 30 30 32 32

p > 0.10 for all relevant comparisons

Table 35: WTP Greater Than Zero: 8 x 8

Low Noise High Noise
WTP (A|O5) WTP (O|A5) WTP (A|O8) WTP (O|A8)

Mean 0.633 0.600 0.656 0.625
Std Error 0.089 0.091 0.085 0.087
N 30 30 32 32

p > 0.10 for all relevant comparisons
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D.3 Alt-High Noise Results

Table 36: Willingness to Pay: 15 x 15

WTP (O15A15)→WTP (O5A5)

Mean 5.452
Std Error 0.819
N 31

Excludes one observation where WTP = 70 ECU

Table 37: WTP Greater Than Zero

WTP (O15A15)→WTP (O5A5)

Mean 0.844
Std Error 0.065
N 32
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