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Abstract
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fication of capital adjustment costs. In effect, the parameters are optimally chosen to
reproduce a set of moments that capture the nonlinear relationship between investment
and profitability found in plant-level data. Our findings indicate that a model which
mixes both convex and non-convex adjustment costs fits the data best.
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1 Motivation

The goal of this paper is to understand the nature of capital adjustment costs. This topic

is central to the understanding of investment, one of the most important and volatile com-

ponents of aggregate activity. Moreover, understanding of the nature of adjustment costs is

vital for the evaluation of policies, such as tax credits, that attempt to influence investment

and thus aggregate activity. Despite the obvious importance of investment to macroeco-

nomics, it remains an enigma.

Costs of adjusting the stock of capital reflect a variety of interrelated factors that are

difficult to measure directly or precisely so that the study of capital adjustment costs has

been largely indirect through studying the dynamics of investment itself. Changing the level

of capital services at a business generates disruption costs during installation of any new

or replacement capital and costly learning must be incurred as the structure of production

may have been changed. Installing new equipment or structures often involves delivery lags

and time to install and/or build. The irreversibility of many projects caused by a lack of

secondary markets for capital goods acts as another form of adjustment cost.

Some industry case studies (e.g., Holt et al. [1960], Peck [1974], Ito et al. [1999]) provide

a detailed characterization of the nature of the adjustment costs for specific technologies. A

reading of these industry case studies suggest that there are indeed many different facets of

adjustment costs and that, in terms of modeling these adjustment costs, both convex and

non-convex elements are likely to be present.1

Despite this perspective from the industry case studies, the workhorse model of the

investment literature has been a standard neoclassical model with convex costs (often ap-

proximated to be quadratic) of adjustment. This model has not performed that well even at

the aggregate level (see Caballero [1999]) but the recent development of longitudinal estab-

lishment databases has raised even more questions about the standard convex cost model.

An alternative approach, highlighted in the work of Doms-Dunne [1994], Cooper, Halti-

wanger and Power [1999], Abel-Eberly [1994, 1996], and Caballero, Engel and Haltiwanger

1Holt et. al. [1960] found a quadratic specification of adjustment costs to be a good approximation of
hiring and layoff costs, overtime costs, inventory costs and machine setup costs in selected manufacturing
industries. These components of adjustment costs for changing the level of production are relevant here
but are by no means the only relevant costs. In terms of changes in the level of capital services, Peck
[1974] studies investment in turbogenerator sets for a panel of 15 electric utility firms and found that “The
investments in turbogenerator sets undertaken by any firm took place at discrete and often widely dispersed
points of time.”In their study of investment in large scale computer systems, Ito, Bresnahan and Greenstein
[1999] also find evidence of lumpy investment. Their analysis of the costs of adjusting the stock of computer
capital include items which they term “... intangible organization capital such as production knowledge and
tacit work routines.” Hamermesh and Pfann [1996] also provide a detailed review of convex adjustment cost
models and numerous references to the motivation and results of that lengthy literature.
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[1995], argues that non-convexities and irreversibilities play a central role in the investment

process. The primary basis for this view, reviewed in detail below, is plant-level evidence

of a nonlinear relationship between investment and measures of fundamentals, including

investment bursts (spikes) as well as periods of inaction.

One limitation of this recent empirical literature is that it has focused primarily on

reduced form implications of non-convex vs. convex models. The results that emerge reject

the reduced form implications of a pure convex model and are consistent with the presence of

non-convexities. The reduced form nature of the results have left us with several important,

unresolved questions: what is the nature of the capital adjustment process at the micro level?

Does the micro evidence support the presence of both convex and non-convex components

of adjustment costs as might be expected based upon the limited number of industry case

studies? More specifically, what are the structural estimates of the convex and non-convex

components of adjustment costs that are consistent with the micro evidence? Finally, what

are the aggregate and policy implications of the estimated investment model?

To address these questions, this paper considers a rich model of capital adjustment which

nests alternative specifications. To do so, we specify a dynamic optimization problem at the

plant level which incorporates both convex and non-convex costs of adjustment as well as

irreversible investment. The model’s implications are matched with plant-level observations

from the Longitudinal Research Database (LRD) as part of a minimum distance estimation

routine. We recover structural estimates of adjustment costs.

There are a couple of key features of the data which guide the estimation: the frequency

of large bursts of investment, the positive correlation between investment and the marginal

profitability of capital and the relatively low serial correlation of investment. All of these

moments are computed at the plant level. These moments are chosen partly due to their

prominence in the literature and partly due to their informativeness about the underlying

structural parameters which we estimate.

Our results can be summarized by referring to extreme models.2 In the absence of

adjustment costs, investment is excessively responsive to shocks and is negatively serially

correlated. From this perspective, the role of adjustment costs is to temper the response of

investment to fundamentals and to create the slightly positive serial correlation of investment

observed at the plant level. The convex cost of adjustment model is not sufficiently sensitive

to shocks and creates excessively significant positive serial correlation of investment rates.

In particular, a model with convex costs alone cannot produce the bursts of investment and

inaction observed in the data. Thus richer models of adjustment are needed. Both the non-

convex and the irreversibility models are able to produce relationships between investment

2These comments pertain to the models studied in Section 3 and summarized in Tables 2 and 3. As
explained below, these statements reflect not only the adjustment costs but also the driving processes.
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and fundamentals which are much closer to the data. Both of these models imply inactivity

and investment bursts. Interestingly, irreversibility creates an asymmetry as well since the

loss from capital sales is more relevant when profitability shocks are below their mean.

From our estimation of a structural model of adjustment, a combination of non-

convex adjustment costs and irreversibility enables us to fit prominent features

of observed investment behavior at the plant-level. In particular, a model of

adjustment in which the non-convex costs entails disruption of the production

process fits the data best.

In terms of macroeconomic implications, the natural question is whether these non-

convexities ”matter” for aggregate investment. Our findings indicate that at the plant level,

the non-convexities identified in our estimation are important: a model with only convex

adjustment does poorly at the plant level. However, a model with only convex adjustment

costs fits the aggregate data created by our estimated model reasonably well though (as

reported independently by Cooper, Haltiwanger and Power [1999], hereafter CHP) the convex

models tend not to track investment well at turning points. Thus, we find that the non-

convexities are less important at the aggregate relative to the plant level. We relate this

finding to results reported by Caballero and Engel [1999] and Thomas [2002] in Section 5.

2 Facts

In this section we discuss our data set. We then present some moments from the data which

will guide the remainder of the analysis.

2.1 Data Set

Our data are a balanced panel from the Longitudinal Research Database (LRD)consisting of

approximately 7,000 large, manufacturing plants that were continually in operation between

1972 and 1988.3 This particular sample period and set of plants is drawn from the dataset

used by Caballero, Engel and Haltiwanger [1995], hereafter CEH. The unique feature of

this data relative to other studies that have used the LRD to measure investment is that

information on both gross expenditures and gross retirements (including sales of capital)

are available for these plants for these years (Census stopped collecting data on retirements

in the late 1980s in its Annual Survey of Manufactures which is why our sample ends in

1988). Incorporating retirements (and in turn sales of capital) is especially important in

3While the balanced panel enables us to avoid modeling the entry/exit process there is likely a selection
bias induced. Our use of the balanced panel is based on the difficult measurement issues for measuring
real capital stocks and in turn real capital expenditures and real capital retirements. The details of this
measurement are described in Caballero, Engel and Haltiwanger [1995].
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this exploration of adjustment costs and frictions in adjusting capital at the micro level.

Investigating the role of transactions costs and irreversibilities is quite difficult with the use

of expenditures data alone.

The use of the retirements data requires a somewhat modified definition of investment.

The definition of investment and capital accumulation follows that of CEH and satisfies:

It = EXPt −RETt (1)

Kt+1 = (1− δt)Kt + It (2)

where It is our investment measure, EXPt is real gross expenditures on capital equipment,

RETt is real gross retirements of capital equipment, Kt is our measure of the real capital

stock (generated via a perpetual inventory method at the plant level), and δt is the in-use

depreciation rate. This measurement specification differs from the usual one that uses only

gross expenditures data and the depreciation rate captures both in-use and retirements.

Following the methodology used in CEH, we use the data on expenditures and retirements

along with investment deflators and BEA depreciation rates to construct real measures of

these series and also an estimate of the in-use depreciation rate.4 In what follows, we focus

on the investment rate, It/Kt, which can be positive or negative.

2.2 Investment Moments

The histogram of investment rates that emerges from this measurement exercise are reported

in Figure 2.2. It is transparent that the investment rate distribution is non-normal having

a considerable mass around zero, fat tails, and is highly skewed to the right (standard

tests for non-normality yield strong evidence of skewness and kurtosis). Some of the main

features of the distribution (and its underlying components in terms of gross expenditures

and retirements) are summarized in Table 1.

First, note that about 8% of the (plant, year) observations entail an investment rate

near zero (investment rate less than 1% in absolute value). Of this inaction, about 6% of

the observations indicate gross expenditures less than 1% of the plant capital stock and the

4A relevant measurement point is that the retirement data are based upon sales/retirements of capital
which yield a change in the book value of capital. Using a FIFO structure and the history of investment and
retirements, CEH develop a method to convert this to a real measure of retirements. The methodology yields
a measure of the real changes in the plant-level capital stock induced by retirements. In what follows, it is
important to note that this procedure does not already capture the difference between buying and selling
prices of capital that may influence the adjustment process. We recover that difference in our estimation.
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retirement rate is less than 1% in 42.3% of our observations. This inaction is one of the

driving observations for our analysis.5

P E R C E N T

0

1

2

3

4

5

6

7

8

9

1 0

1 1

I n v e s t m e n t  R a t e

-
0
.
2
0

-
0
.
1
8

-
0
.
1
6

-
0
.
1
4

-
0
.
1
2

-
0
.
1
0

-
0
.
0
8

-
0
.
0
6

-
0
.
0
4

-
0
.
0
2

-
0
.
0
0

0
.
0
2

0
.
0
4

0
.
0
6

0
.
0
8

0
.
1
0

0
.
1
2

0
.
1
4

0
.
1
6

0
.
1
8

0
.
2
0

0
.
2
2

0
.
2
4

0
.
2
6

0
.
2
8

0
.
3
0

0
.
3
2

0
.
3
4

0
.
3
6

0
.
3
8

0
.
4
0

0
.
4
2

0
.
4
4

0
.
4
6

0
.
4
8

0
.
5
0

0
.
5
2

0
.
5
4

0
.
5
6

0
.
5
8

0
.
6
0

0
.
6
2

0
.
6
4

0
.
6
6

0
.
6
8

0
.
7
0

0
.
7
2

0
.
7
4

0
.
7
6

0
.
7
8

Figure 1

These observations of inaction are complemented by periods of rather intensive adjust-

ment of the capital stock. In the analysis that follows we term episodes of investment rates

in excess of 20% spikes. Investment rates exceed 20% in about 18% of our sample observa-

tions. On average these large bursts of investment account for about 50% of total investment

activity. Decomposing the investment rate in terms of gross expenditures and retirements,

there are gross expenditure spikes in approximately 23% of the observations while negative

investment spikes occur in about 1.8% of the observations.

5Observations of inaction and investment bursts are found in data from other countries as well. For
example, Nilsen and Schiantarelli [1998] study investment in Norwegian manufacturing plants for the period
1978-91. For production units, they report that 21% of the units have zero investment expenditures over
a given year. Further they find that investment rates exceeding 20% arise in about 10% of their observa-
tions and account for about 38% of total equipment investment. Related evidence on the lumpy nature of
investment for Colombia is provided by Huggett and Ospina [2001].
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Variable LRD

Average Investment Rate 12.2% (0.10)

Inaction Rate: Investment 8.1% (0.08)

Fraction of Observations with Negative Investment 10.4% (0.09)

Spike Rate: Positive Investment 18.6% (0.12)

Spike Rate: Negative Investment 1.8% (0.04)

Serial correlation of Investment Rates 0.058 (0.003)

Correlation of Profit Shocks and Investment 0.143 (0.003)

Table 1: Summary Statistics

These properties of the investment distribution illustrate a key feature of the micro data:

investment rates are highly asymmetric. It is important to emphasize that our measurement

of negative investment is through a direct measurement of retirements reflecting purposeful

selling or destruction of capital. We find a negative investment rate in roughly 10% of our

observations, zero investment in almost 10% and positive investment rates in the remaining

80% of our observations. This striking asymmetry between positive and negative investment

is an important feature of the data that our analysis seeks to match.

Table 1 also reports the serial correlation of investment rates computed as the simple

correlation of the plant-level investment rate with the lagged investment rate. Interestingly,

this is surprisingly low at the plant level relative to the common perception of highly serially

correlated shocks to demand and productivity. It is important to remember though that the

correlation of the investment rate also reflects adjustment costs.

The second correlation is between investment rates and a measure of profitability at the

plant level. This correlation is positive at the plant level indicating that investment rates are

high in periods of high profitability. In contrast to the other moments, this last correlation

requires a model as a device to measure profitability shocks. Section 4.1.1 discusses this

measurement.

The standard errors of these moments are provided in parentheses in Table 1.6 Given

the size of the dataset (these moments are all based on more than 100,000 plant-year ob-

servations), these moments are all very precisely estimated. Such precision should not be

interpreted as reflecting little dispersion at the plant-level. At the micro level, there is

substantial dispersion. For example, the average investment rate is 12.2 but the standard

deviation of micro investment is 33.7. Nevertheless, with a very large sample we estimate

the mean and other moments of micro investment very precisely. In what follows, we exploit

6The standard errors reported in Table 1 for the variables reported as percentages are in the same units.
Later in the paper we use these same variables as fractions with appropriate adjustment of units of standard
errors.
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the micro heterogeneity explicitly as we use the estimated dispersion of profit shocks from

the micro data.

We estimate adjustment cost parameters by using a simulated method of moments ap-

proach. This approach requires selecting moments to match. Theoretical and practical

considerations suggest that the moments should be relevant in identifying the adjustment

cost parameters and are also precisely estimated. We regard the four moments in Table 1 as

capturing key features of the behavior of investment at the micro level.

The first moment is the serial correlation in investment. It is well-established in the

adjustment cost literature (see, e.g., Caballero and Engel [2003] and CHP) that the serial

correlation of investment is sensitive to the structure of adjustment costs. The second mo-

ment is the correlation between investment and profit shocks as it reflects the covariance

structure between investment and the shocks to profits. This moment and the others we

match are quite sensitive to the adjustment cost parameters and in this sense satisfy the rel-

evance criterion. The other two moments capture key features of Figure 2.2 that have been

emphasized in the literature – namely that the investment distribution at the micro level

is very asymmetric and has a fat right tail. To capture these features, we use the positive

and negative spike rates in Table 1. Each of these four moments captures key features of

investment behavior at the micro level but the exact choice of moments is an open question.

In what follows, we use these four moments in our empirical analysis and then present some

analysis of robustness of our findings to the choice of alternative moments.

Before proceeding it is worth noting that one moment we choose not to match directly

is the fraction of observations with inaction. While Table 1 shows some range of inaction,

the more robust finding in Figure 2.2 and Table 1 is that the distribution of investment

is skewed and kurtotic with a fat right tail. Identifying inaction precisely at the micro

level is difficult because in practice there is substantial heterogeneity in capital assets with

associated heterogeneity in adjustment costs. For example, buying a specific tool gets lumped

into capital equipment expenditures in the same way as retooling the entire production line.

Explicitly analyzing the role of capital heterogeneity is beyond the scope of this paper but

we discuss this as an area of future research in the concluding remarks.

3 Models and Quantitative Implications

Our most general specification of the dynamic optimization problem at the plant-level is

assumed to have both components of convex and non-convex adjustment costs as well as

irreversibility. Formally, we consider variations of the following stationary dynamic pro-

gramming problem:

8



V (A,K) = max
I

Π(A,K)− C(I, A,K)− p(I)I + βEA′|AV (A′, K ′) ∀(A,K) (3)

where Π(A,K) represents the (reduced form) profits attained by a plant with capital K, a

profitability shock given by A, I is the level of investment and K ′ = K(1 − δ) + I. Here

unprimed variables are current values and primed variables refer to future values. In this

problem, the manager chooses the level of investment, denoted I, which becomes productive

with a one period lag. The costs of adjustment are given by C(I, A,K). This function is

general enough to have components of both convex and non-convex costs of adjustment.

Irreversibility is encompassed in the specification if the price of investment, p(I), depends

on whether there are capital purchases or sales.

Current profits, for given capital, are given by Π(A,K), where the variable inputs (L)

have been optimally chosen, a shock to profitability is indicated by A and K is the current

stock of capital. That is,

Π(A,K) = max
L

R(Â, K, L)− Lw(L)

where R(Â,K, L) denotes revenues given capital (K), variable inputs (L) and a shock to

revenues, denoted Â. Here Lw(L) is total cost of variable inputs. Clearly this formulation

assumes there are no costs of adjusting labor. Once we specify a revenue function, we can use

this optimization problem to determine L and to derive the profit function Π(A,K), where

A reflects both the shocks to the revenue function and variations in costs of L. Throughout

the analysis, the plant level profit function is specified as

Π(A,K) = AKθ. (4)

This section of the paper provides an overview of the competing models of adjustment.

The parameterizations are summarized in Table 2, at the end of this section.7 For each, we

describe the associated dynamic programming problem and display some of the quantitative

predictions of the models in Table 3. At this stage these quantitative properties are meant

to facilitate an understanding of the competing models. Accordingly, the parameter values

are set to“reasonable” levels from the literature. The next section of the paper discusses

estimation of underlying parameters.

3.1 Common Elements of the Specification

For the following simulations, the aggregate and idiosyncratic shocks are represented by first-

order, Markov processes. Following Tauchen [1986], the set of aggregate and idiosyncratic

7In the estimation, determining the value of θ and the parameterization of the stochastic process for A is
of course critical. The simulations that follow use the estimated values which are discussed in section 4.1.1.
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profitability states as well as the transition matrices are chosen to reproduce the variance

and serial correlation of the profitability shocks inferred from our analysis of plant level

profitability. For the remaining parameters, we set the annual discount factor (β) at .95 and

the annual rate of depreciation at (δ) 6.9%. This depreciation rate is consistent with the one

used to create the capital stock series at the plant level less a retirement rate of 3.2%.

3.2 Convex Costs of Adjustment

The traditional investment model assumes that costs of adjustment are convex. Here we

adopt a quadratic cost specification and consider the following specification of the adjustment

function,

C(I, A,K) =
γ

2
(I/K)2K

where γ is a parameter. The first-order condition for the plant level optimization problem

relates the investment rate to the derivative of the value function with respect to capital and

the cost of capital, p. That is, the solution to (3) implies

i = (1/γ)[βEVk(A
′, K ′)− p] (5)

where i is the investment rate, (I/K), and EVk is the expectation of the derivative of the

value function in the subsequent period. In practice, this derivative is not observable.

As suggested by (5), the investment rate reflects the difference between the expected

marginal value of capital, EVk(A
′, K ′), and the cost of capital p. From this condition and

the one-period time to build assumption, investment responds to predictable variations in

profitability.

If profits are proportional to the capital stock, θ = 1, the model reduces to the familiar

“Q theory” of investment in which the value function is proportional to the stock of capital.

As in Hayashi [1982], the derivative of the value function can be inferred from the average

value of a firm, Vk(A,K) = V (A,K)/K.

In the special case of no adjustment costs, C(I, A,K) ≡ 0, from (3), the optimal capital

stock for the plant satisfies:

βEVk(A
′, K ′) = p.

In the absence of adjustment costs, investment will be very responsive to shocks: there will

indeed be bursts of positive and negative investment.
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3.3 Non-convex costs of Adjustment

Building upon the analysis of Abel and Eberly [1999], Cooper, Haltiwanger and Power [1999]

and Caballero and Engel [1999], during periods of investment plants incur a fixed adjustment

cost. Generally, these non-convex costs of adjustment are intended to capture indivisibilities

in capital, increasing returns to the installation of new capital and increasing returns to

retraining and restructuring of production activity. These fixed adjustment costs represent

the need for plant restructuring, worker retraining and organizational restructuring during

periods of intensive investment.

For this formulation of adjustment costs, the dynamic programming problem is specified

as:

V (A,K) = max{V i(A,K), V a(A,K)} ∀(A,K)

where the superscripts refer to active investment “a” and inactivity “i”. These options, in

turn, are defined by:

V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1− δ))

and

V a(A, K) = max
I

Π(A,K)λ− FK − pI + βEA′|AV (A′, K ′).

In this second optimization problem, as in CHP, there are two types of fixed costs of adjust-

ment. Both, importantly, are independent of the level of investment.

The first adjustment cost, λ < 1, represents an opportunity cost of investment. If there

is any capital adjustment, then plant productivity falls by a factor of (1 − λ) during the

adjustment period. Studies by Power [1998] and Sakellaris [2001] provide evidence that

plant productivity is lower during periods of large investment.8

All else the same, this form of adjustment cost implies that investment bursts are less

costly during periods of low profitability as adjustment costs are low. But this need not imply

a negative correlation between investment and profitability since there is a gain to investment

in high productivity states if there is sufficient serial correlation in the profitability shocks.

The second fixed cost of adjustment, denoted F , is independent of the level of activity at

the plant. It is proportional to the level of capital at the plant to eliminate any size effects.

Similar results are obtained if the cost is proportional to the plant specific average capital

stock. Thus this cost will naturally produce a positive correlation between investment rates

and profitability.

8Incorporating this into our model implies some potential misspecification of profitability shocks since it
is necessary to distinguish λ and low realizations of profitability shocks. We return to this point in detail
below.
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The intuition for optimal investment policy in this setting comes from CHP. In the

absence of profitability shocks, the plant would follow an optimal stopping policy: replace

capital if and only if it has depreciated to a critical level. Adding the shocks creates a state

dependent optimal replacement policy but the essential characteristics of the replacement

cycle remain: there is frequent investment inactivity punctuated by large bursts of capital

purchases/sales. Thus the model is able to produce both the inaction and bursts highlighted

in Table 1. Relative to the partial adjustment of the convex model, the model with non-

convex adjustment costs provides an incentive for the firm to “overshoot its target” and then

to allow physical depreciation to reduce the capital stock over time.

3.4 Transactions Costs

Finally, as emphasized by Abel and Eberly [1994, 1996], it is reasonable to consider the

possibility that there is a gap between the buying and selling price of capital, reflecting,

inter alia, capital specificity and a lemons problem. This is incorporated in the model by

assuming p(I) = pb if I > 0 and p(I) = ps if I < 0 where pb ≥ ps. In this case, the gap

between the price of new and old capital will create a region of inaction.

The value function for this specification is given by:

V (A,K) = max{V b(A,K), V s(A,K), V i(A,K)} ∀(A,K)

where the superscripts refer to the act of buying capital “b”, selling capital “s” and inaction

“i”. These options, in turn, are defined by:

V b(A,K) = max
I

Π(A, K)− pbI + βEA′|AV (A′, K(1− δ) + I),

V s(A,K) = max
R

Π(A,K) + psR + βEA′|AV (A′, K(1− δ)−R)

and

V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1− δ)).

Here we distinguish between the purchase of new capital (I) and retirements of existing

capital (R). As there are no vintage effects in the model, a plant would never simultaneously

purchase and retire capital.9

The presence of irreversibility will have a couple of implications for investment behavior.

First, there is a sense of caution: in periods of high profitability, the firm will not build its

capital stock as quickly since there is a cost of selling capital. Second, the firm will respond

to an adverse shock by holding on to capital instead of selling it in order to avoid the loss

associated with ps < pb.

9Though, as suggested by a referee, time aggregation may in fact generate observations of both sales and
purchases over a period of time.
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Model γ F λ ps pb

No AC 0 0 1 1 1

CON 2 0 1 1 1

NC-F 0 0.01 1 1 1

NC-λ 0 0 0.95 1 1

TRAN 0 0 1 0.75 1

Table 2: Parameterization of Illustrative Models

Moment LRD No AC CON NC-F NC-λ TRAN

Fraction of inaction 0.081 0.0 0.038 0.616 0.588 0.69

Fraction with positive investment bursts 0.18 0.298 0.075 0.212 0.213 0.120

Fraction with negative investment bursts 0.018 0.203 0.0 0.172 0.198 0.024

corr(iit,iit−1) 0.058 -0.053 0.732 -0.057 -0.06 0.110

corr(iit, ait) 0.143 0.202 0.692 0.184 0.196 0.346

Table 3: Moments from Illustrative Models

3.5 Evaluation of Illustrative Models

As indicated by Table 2, we explore the quantitative implications of five models. While these

parameterizations are not directly estimated from the data, they provide some interesting

benchmark cases that highlight the key issues arising between models with convex and non-

convex costs of adjustment.

The first, denoted “No AC” is the extreme model in which there are no adjustment

costs. The second row, denoted “CON”, corresponds to a specification in which there are

only convex costs of adjustment. The case labeled “NC − F” assumes that there are only

non-convex costs of adjustment with F > 0, λ = 0. The case labeled “NC − λ” is a second

non-convex cost of adjustment case with F = 0, λ = 0.95. Finally, the case labeled “TRAN”

imposes a gap of 25% between the buying and selling price of capital.

Our quantitative findings for the specifications in Table 2 along with data from the LRD

are summarized in Table 3. As noted earlier, there is evidence of lumpiness and inaction in the

LRD. In addition, there is low autocorrelation in plant-level investment which is noteworthy

given that both aggregate and idiosyncratic shocks to profitability exhibit substantial serial

correlation.

Comparing the columns of Table 3 pertaining to the illustrative models with the column

labeled LRD, none of the models alone fits these key moments from the LRD. The extreme

case of no adjustment costs (labeled No AC) is given in the second column. This model
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produces no inaction but is capable of producing bursts in response to variations in the

idiosyncratic profitability shocks. It also generates a large fraction of observations with

negative investment bursts. Overall, the model without adjustment costs is very responsive

to shocks. Evidently, the empirical role of adjustment costs is to temper the response of

investment to fundamentals.

The quadratic adjustment cost model (denoted CON) adds convex adjustment costs to

the No AC model. This specification mutes the response of investment to profitability shocks

as the fraction of positive and negative spikes is significantly reduced.10 Further, the convex

cost of adjustment model, through the smoothing of investment, creates serial correlation in

investment relative to the shock process. Consequently, the correlation of investment and

profitability is higher than in the No AC case.

Both treatment of non-convex costs of adjustment (NC-F and NC-λ) and/or the model

with irreversibility (TRAN) are able to create investment inactivity at the plant level. How-

ever, the non-convex models create negative serial correlation in investment data and a lower

correlation between investment rates and profitability. The negative serial correlation of the

non-convex adjustment cost models is analogous to the upward sloping hazards character-

ized by CHP. All of the models are able to produce both positive and negative spikes but,

naturally, the asymmetry in spike rates is most prominent in the irreversibility specification.

4 Estimation

None of these extreme models is rich enough to match key properties of the data. The model

we estimate includes convex and non-convex adjustment processes as well as irreversible

investment. This combining of adjustment cost specifications may be appropriate for a

particular type of capital (with say installation costs and some degree of irreversibility)

and/or may also reflect differences in adjustment cost processes for different types of capital.

As the data is not rich enough to study a model with heterogeneous capital, our approach

is to consider a hybrid model with all forms of adjustment costs and, in turn, to estimate

the key parameters of this specification by matching the implications of the structural model

with relevant features of the data.

The adjustment cost parameters are estimated using the following routine. For arbitrary

values of the vector of parameters, Θ = (F, γ, λ, ps), the dynamic programming problem is

solved and policy functions are generated. Using these policy functions, the decision rule is

simulated, given arbitrary initial conditions, to create a simulated version of the LRD.11 We

10There is a small amount of inaction which reflects the discrete state space approximation of our quanti-
tative approach.

11The simulation is for 500 periods. The initial 15 periods are not used in calculating moments so that
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then calculate a set of moments from the simulated data which we denote as Ψs(Θ). This

vector of moments depends on the vector of structural parameters, Θ, in a nonlinear way.

The estimate Θ̂ minimizes the weighted distance between the actual and simulated mo-

ments. Formally, we solve

£(Θ) = min
Θ

[Ψd −Ψs(Θ)]′W [Ψd −Ψs(Θ)] (6)

where W is a weighting matrix. This simulated method of moments procedure will generate

a consistent estimate of θ. We use the optimal weighting matrix given by an estimate of the

inverse of the variance-covariance matrix of the moments.12

Of course, the Ψs(Θ) function is not analytically tractable. Thus, the minimization is

performed using numerical techniques. Given the potential for discontinuities in the model

and the discretization of the state space, we used a simulated annealing algorithm to perform

the optimization.

For the estimation, we consider two specifications of non-convex adjustment costs. In

one, which we term the fixed cost case, the costs are represented by a lump-sum cost of

adjustment F > 0 without any opportunity costs of adjustment λ = 1. In the second,

which we term the opportunity cost case, F = 0 and λ < 1. These are taken as leading

specifications in the literature and thus our estimation provides insights into which is more

capable of capturing relevant features of the data.13

In addition to the adjustment cost parameters, the dynamic optimization problem is also

parameterized by the curvature of the profitability function and the process governing the

shocks to profitability. The two specifications of adjustment costs, particularly the presence

of a disruption effects, require different approaches to uncovering the underlying shocks to

profitability and characterizing the profitability function.

4.1 Estimation with Fixed Costs: F > 0 and λ = 1

Assume that the dynamic programming problem for a plant is given by:

V (A,K) = max{V b(A,K), V s(A,K), V i(A,K)} ∀(A,K) (7)

the results are independent of the assumed initial conditions. The moments are not sensitive to adding more
periods to the simulation or to dropping more of the initial periods.

12See Smith [1993] for details of methodology and measurement of the weighting matrix. In our case, given
the large micro dataset we use we estimate the moments that we are attempting to match very precisely. As
such, most of the moments we are attempting to match receive a very large weight in (6).

13Caballero and Engel [1999] consider λ < 1 and F = 0 while Thomas [2002] assumes λ = 1 and F is
random.
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where, as above, the superscripts refer to the act of buying capital ”b”, selling capital ”s”

and inaction ”i”. These options, in turn, are defined by:

V b(A,K) = max
I

Π(A,K)− FK − I − γ

2
(I/K)2K + βEA′|AV (A′, K(1− δ) + I),

V s(A,K) = max
R

Π(A, K)− FK + psR− γ

2
(R/K)2K + βEA′|AV (A′, K(1− δ)−R)

and

V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1− δ)).

We have specified some parameters of the model (β = .95, δ = .069, pb = 1) for the

functional forms discussed above. Further, we retain our specification of the profit function,

Π(A,K) = AKθ. For the structural estimation, we focus on three parameters, Θ ≡ (F, γ, ps),

which characterize the magnitude of the non-convex and the convex components of the

adjustment process and the size of the irreversibility of investment. As explained next, we

estimate the curvature of the profit function and the A process independently of the dynamic

programming problem.

4.1.1 Estimates of θ and Measuring Profitability Shocks

Using the assumption of λ = 1, profits at plant i in period t are given by

Π(Ait, Kit) = AitK
θ
it (8)

regardless of the level of investment activity. Suppose that ait ≡ ln(Ait) has the following

structure

ait = bt + εit (9)

where bt is a common shock and εit is a plant-specific shock. Assume εit = ρεεi,t−1 + ηit.

Taking logs of (8) and quasi differencing yields:

πit = ρεπit−1 + θkit − ρεθkit−1 + bt − ρεbt−1 + ηit (10)

We estimate this equation via GMM using a complete set of time dummies to capture

the aggregate shocks and using lagged and twice lagged capital and twice lagged profits as

instruments. To implement this estimation, real profits and capital stocks are calculated at

the plant-level. A more detailed discussion of the measurement of real profits and capital as

well as the estimation of the profit function and associated robustness issues are provided in

Appendix A. Our specification of the relatively simple AR(1) process for the idiosyncratic
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shocks is motivated by the need to keep the state space relatively parsimonious for the

downstream numerical analysis and estimation.

The results give us an estimate of θ and an estimate of the process for the idiosyncratic

components of the profitability shocks. From the plant-level data, θ is estimated at 0.592

(0.006) and ρε is estimated at 0.885 (0.004).14 The estimate of θ is significantly below 1 and

this is interesting in its own right. Using the LRD plant-level data on cost shares we estimate

αL = .72 which implies a demand elasticity of -6.2 and a markup of about 16 %.15

Having estimated θ we recover ait from (8) and decompose it into aggregate and idiosyn-

cratic components using (9). This latter step amounts to measuring the aggregate shock as

the mean of ait in each year and the idiosyncratic shock as the deviation of ait from the year

specific mean. Using this decomposition we find that bt has a standard deviation of 0.08 and

with an AR(1) specification, the relevant AR(1) coefficient (denoted as ρb in what follows)

is given by 0.76 with a standard error of 0.19. We also find that the standard deviation of

εit is 0.64.

To sum up, in what follows, we use the following key estimates from the data in our

estimation of adjustment costs: θ = 0.592, σε = 0.64, ρε = 0.885, σb = 0.08, ρb = 0.76. These

were the parameter values used in section 3.5. These statistics imply that the innovations

to the aggregate shock process has a standard deviation of 0.05 and the innovations to the

idiosyncratic shock process have a standard deviation of 0.30. Neither process is estimated

to have a unit root.

These moments of the shock processes are critical for understanding the nature of ad-

justment costs since key moments, such as investment bursts, reflect the variability of prof-

itability shocks, the persistence of these shocks and the adjustment costs associated with

varying the capital stock. Moreover, the characterization of these processes provide the nec-

essary information for the solution of the plant level optimization problem which requires

the calculation of a conditional expectation of future profitability.

4.1.2 Estimates of (F, γ, ps)

Table 4 reports our results for different specifications along with standard errors.16 The last

column presents £(Θ̂) from (6), a measure of fit for the model. The first row estimates the

complete model with three structural parameters used to match four moments. We are able

14The standard errors are in the parentheses. The R2 of the regression was 0.58.
15While we do not estimate a production function in this paper, the existing plant level literature suggests

that CRS is a reasonable assumption (see, e.g., Baily, Hulten and Campbell [1992] and Olley and Pakes
[1996]). If αL denotes labor’s coefficient in the Cobb-Douglas technology and ξ is the elasticity of the
demand curve, then θ = ((1− αL)(1 + ξ))/(1− αL(1 + ξ)).

16In this table, corr(i, i−1) is the serial correlation of the plant-level investment rate and corr(i, a) is the
correlation of the investment rate and plant-level profitability.
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Spec. Structural Parm. Est. (s.e.) moments

γ F ps corr(i, i−1) corr(i, a) spike+ spike− £(Θ̂)

LRD 0.058 0.143 0.186 0.018

all 0.049 0.039 0.975 0.086 0.31 0.127 0.030 6399.9

(0.002) (0.001) (0.004)

γ only 0.455 0 1 0.605 0.540 0.23 0.028 53182.6

(0.002)

ps only 0 0 0.795 0.113 0.338 0.132 0.033 7673.68

(0.002)

F only 0 0.0695 1 -0.004 0.213 0.105 0.0325 7390.84

(0.00046)

Table 4: Parameter Estimates:λ = 1

to come fairly close to matching the moments with a vector of structural parameters given

by: γ = 0.049, F = 0.039, ps = 0.9752 where λ ≡ 1 throughout.

These parameter estimates imply relatively modest, but statistically and economically

significant, convex and non-convex adjustment costs. The estimates indicate that a model

which mixes the various forms of adjustment costs is able to best match the moments. This

model can produce the low serial correlation in investment as well as the muted response of

investment to shocks. Further, with the non-convex adjustment and the irreversibility, the

model produces both positive and negative investment bursts of the frequency found in the

data.

Restricted versions of the estimated model are also reported for purposes of compari-

son. Note how poorly the estimated quadratic adjustment cost does as it creates excessive

serial correlation as well as a large contemporaneous correlation between investment and

the shocks. Interestingly, the quadratic adjustment cost model can produce both positive

and negative investment spikes, reflecting the underlying shocks to profitability. In fact, the

model with quadratic adjustment costs has the largest fraction of positive investment spikes.

The various non-convex adjustment costs mute the response of investment to shocks.

Further, these other adjustment costs tend to produce negative serial correlation in invest-

ment rates (such as the estimated model with F only). Both specifications with non-convex

adjustment costs are closer to the LRD moments than the quadratic model alone.

4.1.3 Evaluation

Are these results reasonable? Of interest relative to other studies are our estimates of γ

and ps. The quadratic adjustment cost parameter has received enormous attention in the
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literature since a regression of investment rates on the average value of the firm (termed

average Q) will identify this parameter when the profit function is proportional to K and the

cost of adjustment function is convex and homogenous of degree one. Using the Q-theoretic

approach, estimates of γ range from over 20 (Hayashi [1982]) to as low as 3 (Gilchrist-

Himmelberg [1995], unconstrained subsamples, bond rating).

Our estimates of γ = 0.049 appears extremely low relative to other estimates.17 Direct

comparison with other estimates should be viewed with caution given differences in methods

and datasets. Moreover, our best fitting model is the mixed model so it would be surprising

if our estimate of the convex costs are the same as that found by others as we are capturing

in other parameters what some studies are attempting to capture with only convex costs.

Note, however, that even if we use the estimate of γ from the γ only model that our estimate

of γ is low relative to those in the literature.

In addition, much of the literature uses a Q-theory approach and given the curvature in

the profit function in our analysis (recall we estimate θ = 0.59), the assumptions underlying

Q-theory do not hold. Put differently, the substitution of average for marginal Q produces

a measurement error. Following the arguments in Cooper-Ejarque [2001], this misspecifica-

tion of Q-theory based models implies that any inferences about the size of the quadratic

adjustment cost as well as the significance about financial variables may be invalid.

To study this latter point, we simulated a panel data set using our estimated model

with all forms of adjustment costs. From this data set and the associated values from the

dynamic programming problem, we constructed measures of expected discounted average

Q. We then regressed investment rates on these measures of average Q and then inferred

the value of γ from the regression coefficient on average Q. When γ = 0.049, along with

the other estimated parameters, is used in the simulation, the coefficient on average Q in a

regression of investment rates on a constant and average Q is very precisely estimated at 0.2

implying an estimate of γ = 5! Thus, the measurement error induced by replacing marginal

with average Q creates an inferred value of the quadratic adjustment cost parameter that is

well within the range of conventional estimates.18

Further, while others have considered models with non-convex costs of adjustment, there

17One exception is the recent study by Hall [2002] in which he estimates quadratic adjustment costs for
both labor and capital. Hall finds an average (across industries) value of 0.91 for γ and essentially no
adjustment costs for labor.

18Essentially the substitution of average for marginal Q creates a negative correlation close to unity
between the ”error” and average Q. Of course, this correlation goes to 0 if the profit function is proportional
to K. Cooper-Ejarque [2001] develop this point to argue that the same measurement error can explain the
significance of profit rates in Q regressions in the absence of capital market imperfections. That same result
obtains here with non-convex adjustment costs: profit rates are also significant when added as a regressor
along with average Q.
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are no estimates comparable to our estimate of the fixed cost.19 This estimate implies that

the fixed cost of adjustment is almost 4% of average plant level capital. This is a substantial

fixed cost.20

On ps, Ramey and Shapiro [2001] suggests that for some plants in the aerospace industry

that the value of ps is about 0.75 (this is based upon the resale prices of capital in this

industry). Our estimate is higher but one problem with making such a direct comparison

is that Ramey and Shapiro focused on plants that were being shut down. Our empirical

and theoretical analysis, in contrast, focuses exclusively on continuing plants. The nature

of irreversibility may be different for a continuing business compared to a business that is

shutting down. Understanding the nature of how adjustment costs vary between continuing

and entering and exiting plants is obviously an important topic for research in this area but

is beyond the scope of this paper. Another related problem for comparison is that Ramey

and Shapiro consider plants that shut down due to the shock associated with the end of

the Cold War and the fall of the Berlin Wall. For present purposes, we don’t believe the

Ramey-Shapiro estimates are directly comparable to our estimate of ps.

4.2 Estimation with Opportunity Costs: F = 0 and λ < 1

As other studies, such as Caballero-Engel [1999] and CHP, have introduced λ into the anal-

ysis, we broadened our empirical model to incorporate this type of non-convex adjustment

cost.21 With λ < 1, we capture any adjustment cost that disrupts the production process

through, for example, the shutting down of a production line or the reallocation of labor

from production to the installation of machines or training.

4.2.1 Estimates of θ and Measuring Profitability Shocks

Introducing λ < 1 implies that inferring profitability shocks and estimating θ separately

from the estimation of the adjustment costs is no longer possible. In particular, the presence

of λ in the production function implies that we must identify periods of low productivity

from periods of capital adjustment.

19In particular, neither CHP nor CEH estimate adjustment costs directly. Further, while fixed costs of
adjustment are present in the Abel and Eberly [1999] model they do not appear to be estimated either.

20As noted by a referee, one possible concern with our specification is that the fixed cost is proportional
to K and this will influence the investment decision. With this in mind, we estimated a version of the model
in which the fixed cost was proportional to the average capital stock of the plant. The resulting estimates
were F = 0.05, λ = 1, γ = 0.069, ps = 0.90 and £(Θ) = 6801.8. As the value of £(Θ) is higher for this
specification, we focus on the model given in (7).

21In Caballero and Engel [1999], λ is treated as a random variable. This introduces an additional element
of plant-level heterogeneity that we do not consider. Instead, the plant-specific profitability shock interacts
with a deterministic λ to create plant-specific adjustment costs.
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One way to proceed would be to expand the set of moments to include the estimated

serial correlation and standard deviation of the aggregate and idiosyncratic shocks in the

set of moments. Then, for each vector of parameters we could re-estimate the moments for

the shocks following the methodology outlined in section 4.1.1. However, this would leave

results that were not directly comparable to those reported in Table 4.22

Instead, we adopted a two-step iterative procedure. We start with the curvature of

the profit function and the serial correlation and standard deviation of the aggregate and

idiosyncratic shock processes as directly estimated in section 4.1.1. We then proceed with

the best fit of the estimation of the adjustment cost parameters, including λ. We then

use the simulated data on profits and capital to estimate (10) and in so doing recover a

new estimate of the curvature and the shock processes based upon the simulated data. We

compare the latter estimates from the simulated data with the estimates of the curvature

and shock processes from the actual data using (10). If they match, we stop. If they don’t,

we adjust the curvature and shock processes and repeat the process. While in principle this

might take many iterations, in practice only very modest changes in the curvature and shock

processes are required to converge in one iteration.

4.2.2 Estimates of (λ, γ, ps)

Table 5 summarizes our results. We find support for all forms of adjustment costs. The row

labeled “all” reports the results with all three types of adjustment costs.23 The estimated

value of λ is significantly less than one, indicating substantial disruption costs of the capital

adjustment process. We again find a modest degree of quadratic adjustment costs and some

evidence of irreversibility as well. This model fits the data much better than the specification

with F > 0, λ = 1. This is seen by comparing the values of £(Θ̂).

The row in the table labeled “λ only” focuses solely on disruption costs. There is evi-

dence here of disruption costs but the model does not fit the moments as well as the “all”

specification. This result indicates that it is important to have all forms of adjustment costs

in the specification.

Relative to previous results, Caballero and Engel [1999] estimate a model in which the

disruption costs are random. Further, they do not allow any other forms of adjustment costs.

Caballero and Engel [1999] report a mean adjustment cost of 16.5 % which, in our notation,

22Further, it is computationally quite expensive to estimate all of these parameters.
23For this results we set the serial correlation of the idiosyncratic (aggregate) shock at 0.92 (0.82) and the

standard deviation of the innovation to the shock was at 0.22 (0.05). At these parameter values, we are able
to reproduce the serial correlation and standard deviations for the shocks reported using the methodology
described above. In effect, this constitutes another indirect inference procedure. Further, when we reesti-
mated the profitability function using the simulated data using the same techniques as in 4.1.1 (but ignoring
the effect of λ), we obtained a value of θ quite close to the value assumed in the analysis.
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Spec. Structural Parm. Est. (s.e.) moments

γ λ ps corr(i, i−1) corr(i, a) spike+ spike− £(Θ̂)

LRD 0.058 0.143 0.186 0.018

λ only 0 0.796 1.0 -0.009 0.06 0.107 0.042 9384.06

(0.0040)

all 0.153 0.796 0.981 0.148 0.156 0.132 0.023 2730.97

(0.0056) (0.0090) (0.0090)

Table 5: Parameter Estimates: F = 0

is a value of λ = 0.835. This latter value is quite close to ours which is striking given that

they estimate their model with industry-level data data while we estimate ours using micro

data. There are a number of subtle additional differences in methodology that may be at

work as well. Caballero and Engel assume that capital becomes immediately productive and

also have stochastic adjustment costs. Both of the latter imply lower average adjustment

costs which is consistent with the pattern of the estimated λ values across the studies.

To obtain a better sense of the magnitude of adjustment costs in this model, we simulated

the estimated policy functions and calculated the resulting costs of adjusting the capital

stock. The average adjustment cost paid relative to the capital stock was 0.0091 and was

0.031 as a fraction of profits.24

Though not reported in the table, we also estimated all four adjustment cost parameters,

Θ = (F, γ, λ, ps). We were unable to improve upon the fit summarized in Table 5: allowing

F > 0 did not enable us to better match the moments.

4.3 Sectoral Results

Our analysis of plant-level investment imposes the equality of various parameters (e.g., de-

preciation rates, mark-ups, transition matrices for shocks, etc.) across sectors. Further,the

overall fit of the model, as measured by the £(Θ̂) statistic leaves some room for improve-

ment. Thus it is interesting to study some specific sectors in detail. In this subsection, we

re-estimate the model for some leading sectors: Steel (331) and Transportation (371). For

this exercise, we re-estimated the curvature of the profit function and recalculated depreci-

24We appreciate conversations with Anil Kashyap on these calculations. In the calculations reported here,
when we refer to the average adjustment costs as a fraction of profits, we are referring to the ratio of the
expected value of adjustment costs to the expected value of profits. An alternative would be to take the
average of the ratio of adjustment costs to profits. The latter is equal approximately to (1 − λ) times the
fraction of periods with adjustment. Back of the envelope calculations suggest these two alternatives yield
roughly similar results.
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Sector Parm. Estimates (s.e.) moments

γ F λ ps corr(i, i−1) corr(i, a) spike+ spike− £(Θ̂)

331-LRD 0.086 0.133 0.064 0.02 na
331-est. 0.0 0.07 1 0.946 -0.03 0.249 0.076 0.022 62.19

(0.0003) (0.0017) (0.0046)

0.015 0 0.70 0.76 0.041 0.146 0.073 0.018 8.13
(0.0037) (0.0344) (0.0167)

371-LRD 0.082 0.132 0.204 0.013 na
371-est. 0.012 0.069 1 0.962 0.069 0.338 0.112 0.037 452.96

(0.0026) (0.0057) (0.0106)

371-est. 0.051 0 0.679 0.8082 0.251 0.132 0.096 0.027 318.04
(0.0068) (0.0398) (0.0218)

Table 6: Sectoral Parameter Estimates

ation rates and transition matrices for profitability shocks by sector.25

The estimation results for the structural parameters of the adjustment processes for the

two sectors are also reported in Table 6. Once again we find support for the presence of both

convex and non-convex adjustment costs along with irreversibility. Further, the specification

in which the non-convexity takes the form of disrupting the production process again fits the

data best. We again find small quadratic adjustment costs and evidence of irreversibility.

4.4 Robustness to Alternative Moments

In this subsection, we consider the robustness of our results to the choice of alternative

moments. As stated in section 2.2, the moments we have chosen to match capture key

features of investment behavior at the micro level. We consider two alternative moments

that capture the shape and dispersion of investment illustrated in Figure 2.2.26 Specifically,

rather than using the positive and negative spike rates to capture the asymmetry and fat

right tail of the investment distribution, we use the 90th percentile and the 10th percentile

of the investment rate distribution for each year averaged over time.

The average 90th percentile from the LRD is 0.299 and the 10th percentile is given

by −0.014. These moments capture the asymmetry and fat right tail of the investment

25The rates of physical depreciation were 0.076 for sector 331 and 0.063 for sector 371. The curvature of
the profit functions differ across these sectors and was 0.66 for 331 and 0.78 for 371. The AR(1) coefficients
for idiosyncratic and aggregate (sectoral) shocks, respectively, were 0.69 and 0.85 for 331 and 0.85 and
0.62 for 371. The standard deviations of the innovations for idiosyncratic and aggregate (sectoral) shocks,
respectively, were 0.28 and 0.23 for 331 and 0.32 and 0.16 for 371.

26These were suggested to us reviewers and the editor.
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distribution. When we use these two moments along with the two correlation moments in

our analysis, the estimated adjustment cost parameters are qualitatively and quantitatively

similar to the parameter estimates reported in Table 5. That is, matching these alternative

moments requires a relatively modest convex cost component and substantial disruption

adjustment costs and transaction adjustment costs. To be specific, the best fit for matching

this alternative set of moments implies an estimate of γ = 0.042, λ = 0.86 and ps = 0.80.

These parameter estimates yield simulated moments of: corr(i, i−1) = 0.033, corr(i, a) =

0.133, the average 90th percentile investment rate of 0.308, and the average 10th percentile

investment rate equal to 0.00. As these alternative moments are estimated precisely in the

actual data, the adjustment cost parameters are as tightly estimated as those in Table 5.

5 Aggregate Implications

The estimation results reported in Table 5 indicate that a model which mixes both convex and

non-convex adjustment processes can match moments calculated from plant-level data quite

well. An issue for macroeconomists, however, is whether the presence of non-convexity at the

microeconomic level “matters” for aggregate investment. In particular, there are economic

forces, such as smoothing by aggregation and relative price movements, which imply that

non-convexities at the micro-level may be less important for aggregate investment.

This issue of aggregate implications has already drawn considerable attention in the

literature. CEH find that introducing the nonlinearities created by non-convex adjustment

processes can improve the fit of aggregate investment models for sample periods with large

shocks. CHP similarly find that there are years where the interaction of an upward sloping

hazard (investment probability as a function of age) and the cross sectional distribution of

capital vintages matters in accounting for aggregate investment.

We study the contribution of non-convex adjustment costs to aggregate investment (de-

fined by aggregating across the plants in our sample) in two ways. First, we compare ag-

gregated and plant-level moments. We use the term aggregated to indicate that the results

pertain to aggregation over our sample and thus may not accord with aggregate invest-

ment from, say, the NIPA. Second, we compare the aggregate time series implications of our

estimated model, termed the best fit, against a model with quadratic adjustment costs.

For moments, we calculate the serial correlation of investment rates and the correlation

of investment rates and profitability from aggregated investment using the panel of manu-

facturing plants. To be precise, we compute aggregate statistics from the LRD by creating

a measure of the aggregate investment rate and, using the series of profitability shocks de-

scribed in section 4.1.1, a measure of aggregate profitability.

The results stand in stark contrast with the moments reported in Table 1. The serial
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correlation of aggregate investment is 0.46 and the correlation between investment and the

profitability shock is 0.51 for the aggregated data. In contrast, the plant-level data exhibits

much less serial correlation, 0.058, and much less contemporaneous correlation between in-

vestment and shocks, 0.143.

How well does the best fit model match these aggregate facts? If we compute aggregate

investment and the aggregate shock from a simulation using the best fit model, the serial

correlation of aggregate investment is 0.63 and the correlation between investment and the

profitability shock is 0.54. Thus aggregation of the heterogeneous plants alone substantially

increases both the serial correlation of investment and its correlation with profitability.

In fact, the aggregate moments reported above seem to be much closer to the prediction

of a quadratic cost of adjustment model: from Table 3, a model with quadratic adjustment

costs implies high serial correlation and high contemporaneous correlation of investment and

shocks. This suggests a second exercise in which we ask how well a quadratic adjustment

cost model can match the aggregate data created by the estimated model. To study this,

we created a time series simulation (periods) for the estimated model. We then searched

over quadratic adjustment costs models to find the value of γ to maximize the R2 between

the series created by the best fit model and that created by the quadratic model. A value

of γ = 0.195 solved this maximization problem and the R2 measure was 0.859. Thus the

quadratic model explains most but not all of the time series variation from the best fit model.

This analysis of the aggregate implications is potentially incomplete in that we ignore

two important factors. First, we do not explicitly consider general equilibrium effects.27 As

emphasized by Veracierto [2002], Caballero [1999] and Thomas [2002], it is likely that there

is further smoothing by aggregation due to the congestion effects that are potentially present

in the capital goods supply industry and/or due to endogenous interest rate fluctuations.

Second, we work with a sub-set of manufacturing plants. In particular, we have selected

a balanced panel and thus ignored entry and exit, including the investment associated with

that decision. Thus our “aggregate results” refer to the aggregation over a fixed set of plants.

Nonetheless, the analysis uncovers strong effects of smoothing over heterogeneous plants

without variations in relative prices. While identifying the mechanisms that smooth out

plant-specific non-convexities is of interest, it should be clear that both smoothing by aggre-

gation and variations in factor prices are important to the smoothing process. That said, it is

also clear that the non-convexities at the plant-level are not totally smoothed by aggregation:

our goodness of fit measure is 0.859 not 1!

27Recall that we have been able to identify the adjustment costs using cross sectional differences in invest-
ment dynamics across plants having controlled for aggregate shocks. However, even though we have been
able to identify the adjustment costs, aggregate variation in investment will reflect the complex interaction
of shocks, endogenous factor prices, and adjustment dynamics.
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6 Conclusions

The goal of this paper is to analyze capital dynamics through competing models of the

investment process: what is the nature of the capital adjustment process? The methodology

is to take a model of the capital adjustment process with a rich specification of adjustment

costs and solve the dynamic optimization problem at the plant level. Using the resulting

policy functions to create a simulated data set, the procedure of indirect inference is used to

estimate the structural parameters.

Our empirical results point to the mixing of models of the adjustment process. The LRD

indicates that plants exhibit periods of inactivity as well as large positive investment bursts

but little evidence of negative investment. The resulting distribution of investment rates at

the micro level is highly skewed even though the distribution of shocks is not. A model which

incorporates both convex and non-convex aspects of adjustment, including irreversibility, fits

these observations best. In particular, a model of adjustment in which the non-convex cost

entails the disruption of production fits the data best.

In terms of further consideration of these issues, we plan to continue this line of research

by introducing costs of employment adjustment. This is partially motivated by the ongoing

literature on adjustment costs for labor as well as the fact that the model without labor

adjustment costs implies labor movements that are not consistent with observation.

Further, it would be insightful to utilize this model to study the effects of investment

tax subsidies. Here those subsidies enter quite easily through policy induced variations in

the cost of capital. Clearly, one of the gains to structural estimation is to use the estimated

parameters for policy analysis. An interesting aspect of that exercise will be a comparison

of the estimated model and a quadratic adjustment cost model in terms of their predictions

of the aggregate effects of an investment tax credit.

Finally, there are some methodological issues worth exploring further. For this exercise,

we have chosen to estimate the model using a simulated method of moments approach.

There are, of course, competing approaches, including maximum likelihood estimation as

well as estimation from the Euler equations, including periods of inaction. In future research,

we plan on exploring these competing approaches. These alternative approaches have the

potential advantage in that they do not rely on matching specific moments but rather can

confront the micro data directly.

Still, it is useful to emphasize that the simulated method of moments approach we use

here has a number of distinct advantages especially in this context. First, structural models

of investment with non-convex adjustment costs obviously imply a range of inaction. In

the actual micro data, while we do observe some range of inaction as we report in Table

1, the more robust finding is that the distribution of investment is skewed and kurtotic

with a mass around zero and a fat right tail. Identifying inaction precisely at the micro
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level is difficult because in practice there is substantial heterogeneity in capital assets with

associated heterogeneity in adjustment costs. For example, buying a specific tool gets lumped

into capital equipment expenditures in the same way as retooling the entire production

line. The former presumably has little or no adjustment costs while the other is subject

to presumably high adjustment costs. The implication is that in pursuing MLE or Euler

equation estimation using the actual micro data a researcher must define “inaction” without

observing the underlying capital heterogeneity. Specifically, should a researcher identify

inaction as literally zero investment or small investment expenditures that reflect “buying a

wrench”?28 In contrast, we exploit robust moments of the investment and profit distributions.

While we believe the moments we match are robust to capital heterogeneity, this discus-

sion reminds us of the limitations of even high quality micro data such as the LRD. The

class of adjustment cost models we focus on in this paper are best interpreted as applying

to variations in capital expenditures that are relatively homogenous in type. It is unlikely

we will have a rich longitudinal micro data-set on establishments with annual data on cap-

ital expenditures by detailed asset class, unobserved heterogeneity in capital is a feature of

reality that estimation of investment dynamics with micro data on plants needs to confront

regardless of the methodology used.

Another strength of our approach is that analysis and estimation does not require direct

and continuous access to the micro data. Given that virtually all of the high quality longi-

tudinal micro datasets are proprietary, it is very useful to have methods available that can

take advantage of moments from the micro data that can be analyzed off-site. The research

community at large has a much better chance of exploring alternative models of investment

using the simulated method of moments approach given limited direct access to the micro

data. Our findings suggest there would be considerable value to statistical agencies pro-

ducing summary measures of the distributions of micro investment behavior and its auto

covariance and cross covariance with other micro measures.

In the end, there are many dimensions to improve the match between the models we spec-

ify and estimate and the full richness of the actual micro data. Despite these limitations,

we have identified features of the micro data that can only be reconciled with models that

contain both convex and nonconvex adjustment costs. In particular, a modest convex com-

ponent and substantial transaction and disruption costs are required to capture key features

of micro investment.

28In related earlier work, Cooper, Haltiwanger and Power [1999] took a stand on this by defining investment
spikes of investment greater than 20 percent as the investment that is subject to fixed adjustment costs.
They investigated the robustness of this admittedly ad hoc threshold but noted that this was a limitation
of their analysis.
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Appendix A

In this section, we discuss the measurement of key variables and the details and robustness of

estimation for the profit function. Real variable profits are measured as revenue less variable

costs (labor and material) deflated by the GDP implicit price deflator for consumption. We

make the assumption that measured real variable profits provide an estimate of Π(A,K) =

λAKθ in the model . The question then is how adjustment costs in the model are captured in

the measured real variable profits or other cost measures in the data. We think it is reasonable

to assume that some part of capital adjustment costs are reflected in real variable measured

profits either due to the disruption of productivity and/or perhaps equivalently that some

of the labor that might have normally been used for production is used for installing capital.

It is precisely these arguments that motivate us to consider including an adjustment cost

factor via λ. We also think it is reasonable to assume that some adjustment costs take the

form of purchased services or contract work that are not captured in measured real variable

profits. It is precisely these arguments that motivate us to include adjustment costs that

are additively separable from real variable profits and may be either convex or nonconvex

in nature – hence we consider adjustment costs in the form of both γ or F . In terms of

measurement in the LRD, there are not annual data on such purchased services or contract

work and so we cannot directly measure these costs. However, we can infer the presence of

these costs through the dynamics of investment.

As described in the text, we estimate the parameters of the real variable profit function

using the quasi-differenced (10). In practice, we use a transformed version of (10) taking

advantage of assumptions that the production function is Cobb-Douglas and that the demand

function has constant elasticity. Specifically, we assume that the plant faces an inverse

demand function given by p = y−η and so has a revenue function of R(y) = y1−η. Assuming

that the production function is given by y = AKαLφ and that K is predetermined, L is the

variable factor(s) and ω is the price of the variable factor(s). The equations that follow are

based on one variable factor for expositional purposes but extend easily to multiple variable

factors and in our case there are two: labor and materials. Optimization over the variable

factor yields a revenue function R(K,A, ω), a profit function π(K,A, ω) and variable factor

demand of L = h(K, A, ω). The implied revenue and profit functions are given by:

R(K,A, ω) = A
1

1−φ̃ K
α̃

1−φ̃

(
ω

φ̃

) φ̃

φ̃−1

(11)

π(K, A, ω) = (1− φ̃)A
1

1−φ̃ K
α̃

1−φ̃

(
ω

φ̃

) φ̃

φ̃−1

. (12)

where α̃ = α(1− η) and φ̃ = φ(1− η). So the coefficient on k in both the revenue
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and profit functions is the same,given by θ = α̃
1−φ̃

. Moreover, the properties of the shocks

to revenue and profits are the same up to a factor of proportionality. So the estimation

strategy is to estimate θ from either a quasi-differenced profit or revenue regression on the

capital stock. The latter seems preferred since there is potentially less measurement error

involved. There are a small number of observations with negative measured real variable

profits but by construction there are no businesses with negative real revenue. While it

may be that negative real variable profits is possible we suspect that this largely reflects

measurement error. To explore this issue we estimated the log linear quasi-differenced real

revenue function on all observations and the log linear quasi-differenced real profit function

on only those observations with non-negative real variable profits. We obtained very similar

estimates of θ using both approaches. In the analysis in the paper we use the estimate of

θ from the real revenue quasi-differenced estimation but this is not critical for the reported

results.

To obtain the profit shocks, we use the estimate of θ and use (12) to infer the shock.

We decompose the shock into aggregate and idiosyncratic components (the aggregate shock

is the first moment of the profit shock in any given year and the idiosyncratic shock is the

residual after controlling for year effects). We then estimate the properties of the aggregate

and idiosyncratic shocks (both the degree of first order autocorrelation and the variance of

the innovations). We note again that the properties of these shocks are quite similar across

alternative ways of estimating θ.

To provide a sense of the robustness of both the estimates of θ as well as the properties

of the shocks, we performed a number of cross-checks. One cross-check that we perform is

that the above procedures yield two alternative estimates of ρε – one estimate is as described

from inferring the shock from the profit function and the second is from the estimation of

the quasi-differenced revenue function. These two estimates of ρε are very similar to each

other providing support for this estimation strategy.

As a second cross-check, we explored the properties of the innovations to this first-order

process. We found that the innovations to the AR(1) representation of εit had a serial

correlation very close to zero (-0.05).

In addition, as a check on the robustness of our estimate of θ, we also estimated AR(2)

specifications with appropriate second quasi-differencing in our estimation of θ. We found θ

was 0.60 when we assumed an AR(2) compared to the estimate of 0.592 reported in the text

with the AR(1) specification. There was essentially no improvement in the overall fit of the

model with an AR(2) specification. Interestingly, even for the OLS estimation we obtained

an estimate of θ of 0.591. Thus, the estimate of θ is very robust. As noted above, once we

have an estimate of θ (which is apparently very robust), the properties of the aggregate and

idiosyncratic shocks are well captured by an AR(1) process (e.g., the implied innovations are
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serially uncorrelated).

We note in closing that is it not uncommon in the firm-level literature to assume a

first order process for the underlying shocks. For example, the Olley and Pakes [1996] and

Levinsohn and Petrin [2000], hereafter LP, methods for estimating production functions are

based on the assumption of first order Markov processes. A key difference between the

approach in their papers and that pursued here is that they use a more general first order

Markov process. For example, LP specify the first order process as the productivity shock in

period t being a polynomial function of the productivity shock in t-1. As a further point of

comparison, unlike these papers we are not seeking to identify the factor elasticities of both

variable and quasi-fixed factors of production. Rather, we seek to identify the coefficient on

the quasi-fixed factor in the profit function after having already maximized out the variable

factors of production. As such, we are similar to LP’s “second stage” where they identify the

coefficient on capital. In LP’s second stage, they employ a GMM approach with lagged values

of inputs as instruments in a manner similar to that employed here (although again with the

polynomial specification for the first order process their estimation is more complex).
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