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Abstract

Firm-level revenue-based productivity measures are ubiquitous in studies of firm dynamics

and aggregate outcomes. One common measure is increasingly interpreted as reflecting “dis-

tortions” since in distortions’ absence, equalization of marginal revenue products should yield

no dispersion in this measure. Another common, but distinct, measure is the residual of the

firm-level revenue function, which reflects “fundamentals”. Using micro-level U.S. manufactur-

ing data, we find these alternative measures are highly correlated, exhibit similar dispersion,

and have similar relationships with growth and survival. However, the distinction between these

alternative measures is critically important for quantitative assessment of the level and decline

of allocative efficiency.

Despite broad consensus on the importance of accounting for measured productivity dispersion

across firms for understanding aggregate economic performance,1 there is less consensus about the

basics of estimating and interpreting measures of firm-level productivity. Revenue per composite

input measures of productivity are the norm in the empirical literature but there are a variety of

methods used to compute such measures. The relationship between revenue productivity measures

and firm-level fundamentals remains the subject of ongoing debate. We clarify this relationship

conceptually and empirically under less strict assumptions about returns to scale, and explore the

implications for quantifying allocative efficiency (hereafter AE).

To illustrate the issues of interpretation and the implications for macroeconomics, a good starting

point is the set of empirical measures of productivity used by Hsieh and Klenow (2009, 2014) (here-

after HK) to quantify AE. A core insight is that under assumptions of constant-elasticity-substitution

(CES) demand and constant-returns-to-scale (CRS) technology, dispersion in revenue per compos-

ite input, often referred to as TFPR, reflects frictions or distortions impeding the equalization of
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marginal revenue products. A common approach to calculating the composite input used to compute

TFPR is to use cost shares of total costs as input weights.2 This measure, which we refer to as

TFPRcs, is readily calculable, and evidence shows that dispersion in TFPRcs varies substantially

across countries, industries, and time. Quantifying AE also requires a broad measure of fundamen-

tals reflecting both technical efficiency and demand/product appeal, which HK refer to as TFPQ.

Under HK assumptions and with estimates of output and demand elasticities, TFPQ is also readily

calculable. Despite some apparent conceptual similarities, the properties of TFPR versus TFPQ

matter critically for quantifying AE in the HK framework.

How do the HK measures of TFPR and TFPQ relate to measures used in the empirical literature

analyzing determinants of firm performance? First, TFPRcs is widely used in the literature as a

measure of firm-level performance (i.e., fundamentals) and has been shown to be positively related

to firm survival, firm growth, innovation, structured management practices, and exporting behavior.

Second, a commonly used alternative is to estimate the relationship between revenue and inputs

using regression techniques. To overcome endogeneity issues, control function estimation methods

have been developed and become widely used. We call the implied productivity measure that emerges

from this estimation procedure TFPRrr, where “rr” is short for “revenue function residual.” Despite

their regular and concurrent use, the distinction between TFPRcs and TFPRrr is often overlooked.

Conceptually, we show that TFPRcs is still reflective of distortions when the CRS assumption is

relaxed. Furthermore, we show (log) TFPRrr is proportional to the broadly defined measure of (log)

TFPQ by HK, and therefore is also a measure of fundamentals. However, measurement of TFPQ,

and in turn AE, from revenue and input data requires decomposing revenue elasticities into output

and demand components (or more broadly into returns to scale and markup components). We derive

a generalized measure of AE under non-constant returns (NCRS) that highlights the importance of

decomposing revenue elasticities into their respective components.

Empirically, we begin by computing TFPRcs and TFPRrr using the cost share and the con-

trol function approaches, respectively. However, to estimate TFPQ and quantify AE, we also need

estimates of the returns to scale and markups. We use two alternative approaches. First, we im-

plement the approach of De Loecker and Warzynski (2012) (hereafter DW) to estimate markups at

the industry-level, assuming CRS so that the output elasticities can be estimated using cost shares.

Demand elasticities are then computed using cost shares of revenue of variable factors along with

the output elasticities.3 Second, we extend our control function approach by combining it with the

relationship between plant-level and industry-level variation as in Klette and Griliches (1996) to

decompose revenue elasticities. An advantage of this approach is that it does not impose CRS.

Across these approaches, we find that TFPRcs and TFPRrr exhibit similar dispersion, are highly

correlated, and have a similar relationship to key economic outcomes such as firm survival and growth.

However, we find that the same underlying data imply very different average sectoral AE (by more

than a factor of two) due to differences in elasticity estimates. Moreover, differences in elasticities

2Theoretically, the relevant weights are output elasticities divided by returns to scale (RTS).
3Unlike De Loecker and Warzynski (2012), we estimate markups at the industry level rather than the plant level.

2



have dynamic implications, as we find declines in AE for the average industry as well as for aggregate

manufacturing from the 1970s to the post-2000 period that range by a factor of more than two.

Two key features reconcile these findings empirically. First, the only difference between TFPRcs

and TFPRrr are the weights used to create the composite input. The former uses weights that sum

to one while the latter uses revenue elasticities. We find, as does much of the literature, that the

sum of the revenue elasticities is below but close to one, on average.4 Mechanically, this is one of the

reasons for similar properties for the two measures. However, there are also conceptual reasons that

these two measures are closely related, as we will discuss below.

In contrast, quantifying TFPQ and AE requires decomposing the revenue curvature into the

returns to scale and markup components. Although it has been recognized in the literature that

increasing curvature generally increases AE, we find it is not only the overall curvature that matters

for AE. Increasing the markup and returns to scale in a manner that keeps revenue curvature constant

tends to generate lower average AE. More generally, we show that it is the sensitivity of measured

dispersion in fundamentals and its correlation with distortions, not dispersion in distortions, which

is associated with the sensitivity of AE across elasticity estimates.

The paper is organized as follows. We discuss our methodology and data in Sections I and II.

Section III describes the effect of estimation methods on the distribution of elasticity estimates.

Section IV describes the implications of the differences in elasticity distributions on productivity

dispersion, plant growth and survival, and AE. Section V concludes.

I Methodology

I.A Revenue productivity measures

We specify a Cobb-Douglas production function and a CES demand structure – the core assumptions

throughout this section, which are common in the literature.5 Our formulation is consistent with sec-

toral output being a CES aggregate of intermediate goods producers given by Q =
(∑

i (ξiQi)
σ−1
σ

) σ
σ−1

where σ is the elasticity of substitution, ξi denotes an idiosyncratic demand shifter for plant i, Qi

denotes plant-level quantity and Q industry level quantity. See appendix A.1 for details. Time and

sector subscripts are omitted in this section in the notation and equations for expositional conve-

nience. The inverse demand function is given by Pi = PQ1/σQ
−1/σ
i ξ

σ−1
σ

i for plant i in an industry

where Pi denotes plant-level prices and P industry level prices. For expositional ease, we write Pi as

Pi = PQ1−ρQρ−1
i ξρi , where ρ=σ−1

σ
with 0 < ρ < 1.

The plant-level production function is given by Qi = AiΠjX
αj
ij , where Ai is technical efficiency,

Xij are the plant-level factor inputs (e.g., capital, labor, materials, and energy) and αj is the elasticity

4See, for example, Olley and Pakes (1996), Klette and Griliches (1996), Levinsohn and Petrin (2003), Ackerberg,
Caves and Frazer (2006), White, Reiter and Petrin (2011), De Loecker (2011), Gandhi, Navarro and Rivers (2012),
and Gopinath et al. (2015).

5CES demand is a standard assumption in the productivity literature, see for example, HK, Bartelsman, Haltiwanger
and Scarpetta (2013), Foster et al. (2016), and Bils, Klenow and Ruane (2020).
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of Qi with respect to Xij. The log of the revenue function is given by:

logPi + logQi =
∑
j

βj logXij + ρ logAi + ρ log ξi + (1− ρ) logQ+ logP,(1)

where the revenue elasticities satisfy βj=ραj. Various revenue productivity measures have been used

in the theoretical and empirical literature. One typical measure is logTFPR, given by (see Foster,

Haltiwanger and Syverson (2008)):

log TFPRi = logPi + logQi −
∑
j

αj logXij = logPi + logAi(2)

Equation (2) makes explicit that TFPRi confounds the effect of output prices and technical efficiency.

Decomposing TFPRi into its price and technical efficiency components is generally not feasible

because most micro datasets only contain information about costs and revenues but not plant-level

prices. Therefore, the majority of results in the empirical productivity literature are based on revenue

productivity measures. An important special case emerges under the assumption that plants minimize

total costs and have CRS technology: the share of the jth input expenditure in total costs equals

αjs. Formally:

log TFPRcs
i = logPi + logQi −

∑
j

csj logXij = log TFPRi +
∑
j

(αj − csj) logXij,(3)

where csj denotes the cost share of the jth input. Note the equivalence between logTFPRi from

equation (2) and logTFPRcs
i does not hold without CRS. Still, logTFPRcs

i is of interest in and

of itself, even without CRS, since it is indicative of distortions under certain assumptions, as we

demonstrate below. A closely related –but perhaps more subtle– point is that given βj, implied cost

shares can be calculated as
βj∑
j βj

using first order conditions.6 Since these implied cost shares are

determined by the unrestricted βj estimates, they are not necessarily the same as directly computed

cost shares. In what follows, we will compute TFPRcs
i using both approaches.

The revenue productivity measures above are distinct from the revenue function residual which

is given by:

log TFPRrr
i = logPi + logQi −

∑
j

βj logXij = ρ logAi + ρ log ξi + (1− ρ) logQ+ logP,(4)

which says that the revenue function residual depends on technical efficiency, idiosyncratic demand

shocks and aggregate prices and quantities. In addition, our core assumptions allow γ =
∑

j αj =

ρ−1
∑

j βj, where γ denotes returns to scale and is not necessarily equal to 1. The implication is that

6Another way of stating this point is βj/
∑
j βj yields the output elasticity up to returns to scale. Observe that

βj/
∑
j βj = αj/

∑
j αj .
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TFPRrr
i is different from both TFPRi and its estimate TFPRcs

i :

log TFPRrr
i = logPi + logQi −

∑
j

βj logXij 6=

log TFPRi

log TFPRcs
i .

(5)

Without idiosyncratic frictions or distortions, marginal revenue products are equalized across

production units and there is no within-industry dispersion in logTFPRcs
i . Since this outcome is

counterfactual, HK posit the presence of distortions that account for such dispersion. To illustrate this

point, we consider the decision problem of firms who maximize static profits with input distortions,7

which imply:

TFPRcs
i ∝ τi,(6)

where τi=
∏

j(1 + τij)
αj/γ denotes a plant-specific weighted geometric average of input distortions and

the weights are given by cost shares. Note the proportionality result (6) is obtained equivalently when

there are only scale distortions τQi , by using the substitution τi = (1− τQi)
−1. In contrast, TFPRrr

i

is proportional to plant technical efficiency and demand shocks under the same assumptions:8

TFPRrr
i ∝ (Aiξi)ρ .(7)

The key implication for the objective of this paper is that TFPRcs
i is proportional to idiosyncratic

distortions while TFPRrr
i is proportional to fundamentals. This conceptual difference, due to using

output vs. revenue elasticities, is what motivates the empirical analysis below.

Estimating logTFPRrr
i to measure fundamentals is not novel to this paper. Cooper and Halti-

wanger (2006) used revenue function residuals as measures of plant-level fundamentals. The empirical

measure of fundamentals used by HK is also tightly linked to this revenue residual approach. To see

this, note their empirical measure of TFPQ is equivalent to a composite shock given by Aiξi. That

is, their empirical measure of logTFPQi is given by: (logPi + logQi)/ρ−
∑

j αj logXij, which under

our core assumptions implies that the indirect measure of logTFPQi = 1
ρ

log TFPRrr
i . Measurement

of TFPQ in this indirect fashion is more challenging than measuring logTFPRrr
i since it requires

decomposing revenue elasticities into the output elasticity and demand elasticity components.9

Under our core assumptions, there need be no systematic relationship between logTFPRcs
i and

logTFPRrr
i . However, there are many possible distortions that yield a correlation between these

measures including size-related distortions, financial constraints, and variable markups that are in-

7The profit function in this case is given by PiQi −
∑
j wj(1 + τ∗ij)Xij , where wj denotes the jth input price.

8Here we abstract from industry-level shifters that can be captured by industry-year effects.
9In Foster, Haltiwanger and Syverson (2008), TFPQ is defined as the measure of technical efficiency, which is

distinct from demand shocks which they also measure. Foster, Haltiwanger and Syverson (2008) and subsequent
related literature using P and Q data permit decomposition of the composite shock into its technical efficiency and
demand/product appeal components. In this paper, we denote TFPQ as the broader composite shock including both
technical efficiency and demand. For current purposes, decomposing the composite shock into its components is not
critical. See Foster, Haltiwanger and Syverson (2016) and Eslava and Haltiwanger (2018) for discussion of additional
insights that emerge from this decomposition.
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creasing in fundamentals. The latter is outside the monopolistic competition CES model but we

might view distortions identified in this framework as a reduced form way of capturing all sources

of wedges impeding the equalization of marginal revenue products.10 This broad reduced form view

may reflect wedges that are distortions but also may reflect other factors (in the sense they may

be outside the control of the social planner). Examples include overhead factors of production that

drive a wedge between marginal and average products and adjustment costs that impede responses

to shocks to fundamentals.11

Our contribution is to explore the systematic relationship between these conceptually distinct

productivity measures. We do not formally investigate non-CES demand structures, overhead labor,

adjustment costs, or other possible sources of wedges but discuss our findings below in light of

the studies that consider these possibilities. Note, when production exhibits non constant returns

to scale (NCRS), logTFPRcs
i is not equal to logTFPRi. In this case, logTFPRcs

i will still only

reflect any reduced-form distortions while logTFPRi will exhibit dispersion even in the absence

of such reduced-form distortions. Furthermore, the finding that logTFPRrr
i is only a function of

fundamentals is robust to deviations from CRS. Consequently, we focus on TFPRcs
i and TFPRrr

i ,

since they reflect solely distortions and solely fundamentals, respectively, under the HK framework.

TFPRi itself is reflective of both fundamentals and distortions (aside from the CRS case, where

TFPRi is equivalent to TFPRcs
i ). While such a measure may be useful in certain contexts, we focus

on the measures that clearly distinguish distortions and fundamentals, regardless of returns to scale,

which are crucial for measuring AE. Nevertheless, departures from CRS are important for both the

estimation of logTFPQi and for measures of AE, which we address below.

I.B Allocative efficiency

Recent literature, beginning with HK and extending through Bils, Klenow and Ruane (2020) (here-

after BKR), builds on the distinction between TFPQ and TFPR using the core assumptions made in

the prior section to construct a measure of misallocation which they term allocative efficiency (AE).

We revisit these issues since they help highlight the importance of distinguishing between logTFPRcs
is

and logTFPRrr
is (since we analyze the effect of aggregation across sectors in this section, variables

will be indexed also by s).

Although a key contribution of our paper is to examine AE under NCRS, we first illustrate the

framework with firm-level production technology that exhibits CRS, as is standard in the literature.

10In the recent literature (see, e.g., Peters (2019), Edmond, Midrigan and Xu (2019), and Baqaee and Farhi (2019)),
markup dispersion across producers is the source of idiosyncratic distortions. Variable markups that increase with
producer scale is a common approach in this literature.

11Another possible source of measured wedges and in turn the correlation between measured logTFPRcsi and
logTFPRrri is measurement error. For example, measurement error in revenue yields a positive correlation between
these measures. Bils, Klenow and Ruane (2020) argue that rising measurement error might account for some of the
observed rising correlation between logTFPRcsi and logTFPQis and the associated declining measured AE in the
U.S. manufacturing sector. Decker et al. (2019) find that dispersion in revenue per worker in U.S. manufacturing rises
similarly in both survey and administrative data which they argue is not supportive of the rising measurement error
hypothesis. We don’t attempt to disentangle the sources of wedges in this paper.
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We collapse the combined effect of demand shifts and technical efficiency that make up TFPQis

for notational convenience: Ais = Aisξis. That is, as in HK, we think of the empirical measure of

fundamentals as a composite of both demand factors and technical efficiency. At the sectoral level,

AE is a ratio of sectoral productivity to undistorted sectoral productivity. Sectoral productivity is

defined as sectoral output per composite input: TFPQs = Qs/
∏

j X
αjs
js . Using CES demand and

Cobb-Douglas production with CRS, BKR show that TFPQs can be expressed as a power sum of

Ais weighted by relative distortions:

TFPQs =

(∑
i

A
ρs

1−ρs
is

(
τis
τ̃s

) −ρs
1−ρs

) 1−ρs
ρs

,(8)

where τ̃s is the harmonic revenue weighted mean of distortions (see Appendix A.2.2). TFPQs is

maximized when τis=τ̃s,
12 in which case, following from equation (8), TFPQs is given by A∗s =(∑

iA
ρs/(1−ρs)
is

)(1−ρs)/ρs
. AE is defined as the ratio of TFPQs to the maximized, counterfactual

TFPQs. Multiplying and dividing by N
(1−ρs)/ρs
s , where Ns is the number of plants in the sector,

sectoral AE can be expressed as

AEs =

(
1

Ns

∑
i

(
Ais

Ãs

) ρs
1−ρs

(
τis
τ̃s

) −ρs
1−ρs

) 1−ρs
ρs

,(9)

where Ãs =
(
N−1s

∑
iA

ρs/(1−ρs)
is

)(1−ρs)/ρs
is the power mean analogue to A∗s.

Given our interest in estimation methods that do not impose CRS on plant-level technology, we

generalize (9) to be robust to deviations from CRS but otherwise maintain CES demand and Cobb-

Douglas production. Our approach, described in detail in Appendix A.2, builds on the appendix of

HK –who derive AEs using a single-input production technology that exhibits decreasing returns to

scale– but allows for multiple inputs and also NCRS. This generalization is useful as it helps us draw

out the implications of the alternative estimation approaches for AE. Under these less restrictive

assumptions, TFPQs is given by:13

TFPQs =

(∑
iA

ρs
1−ρsγs
is

(
τis
τ̃s

) −ρsγs
1−ρsγs

) 1−ρsγs
ρs

(∏
j X

αj/γs
js

)1−γs .(10)

Let X∗js denote aggregate input j corresponding to max{TFPQs}, the case where distortions are

12More details are available in Appendix A.2.4, which also shows the sufficient condition is satisfied only if ρsγs<1.
This is an intuitive restriction, as an equilibrium with increasing returns in the revenue function would imply one firm
taking over the market. However, not all estimation methods restrict the parameter space to ensure this is the case.

13Equation (10) is a generalization of the equation on page 1445 of the appendix in HK.

7



equalized across plants. Dividing and multiplying by Ns appropriately, AEs can then be obtained as:

AEs =

(
1

Ns

∑
i

(
Ais

Ãs

) ρs
1−ρsγs

(
τis
τ̃s

) −ρsγs
1−ρsγs

) 1−ρsγs
ρs

︸ ︷︷ ︸
AECOVs

(∏
j X

∗αjs
js∏

j X
αjs
js

) 1−γs
γs

︸ ︷︷ ︸
Sectoral Intermediate Term

.(11)

Equation (11) is a generalization of (9) that fully accounts for the effect of NCRS production tech-

nology.14 The first term – labeled as AECOV
s in order to emphasize that it resembles a covariance

term– shows the effect of NCRS on the within-industry component of AE. The second term in (11)

captures the effect of NCRS via sectoral inputs. Importantly, this term equals 1 when all production

factor supplies are exogenous, implying that only AECOV
s is relevant in this case.

It is instructive to highlight the role of ρs, γs, and αjs for sectoral AE. Equation (11) shows that

these parameters affect AECOV
s via the exponents. In addition, ρs and γs affect relative technical

efficiencies and distortions since both Ais and TFPRcs
is are constructed using an input index as the

denominator where the input index depends directly on αjs estimates. The implication is that the

joint distribution of these variables is a key determinant of AE. In order to formalize this result, we

express AECOV
s as a function of the covariance between transformations of τis and Ais:

15

logAECOV
s = γs log

(
τ̃s
τ s

)
+

1− ρsγs
ρs

log

[
cov

((
Ais

Ãs

) ρs
1−ρsγs

,

(
τis
τ s

) −ρsγs
1−ρsγs

)
+ 1

]
.(12)

Equation (12) reveals AECOV
s depends on sectoral distortions (term 1), and a function of the covari-

ance between exponentiated relative technical efficiencies and distortions (term 2). By definition,

the covariance (term 2) depends on the dispersion of these two variables and the correlation between

them. This relationship creates a useful link between AEs and the properties of the within-industry

productivity distribution. For example, if distortions are positively correlated with fundamentals, as

is increasingly assumed in the literature, then this component of AE is decreasing in dispersion of

either Ais or τis. This can be seen by noting that the dispersion of
(
Ais/Ãs

) ρs
1−ρsγs

and (τis/τ s)
−ρsγs
1−ρsγs

in equation (12) are both increasing in the dispersion of Ais and τis but the negative exponent of

τis/τ s implies the positive correlation between Ais and τis translates into negative correlation between

the transformed variables. Furthermore, changes in the correlation reinforce these patterns.16

We use equation (12) in our empirical analysis below to provide guidance about the sensitivity of

the measures of AE to the estimates of ρs, γs, and αjs. The second term of equation (12) highlights

14Note, (11) simplifies to (9) under CRS (γs = 1).

15Equation (12) can be obtained by multiplying and dividing AECOVs by τs=
(

1
Ns

∑
i τ

ρsγs
ρsγs−1

is

) ρsγs−1
ρsγs

and rearranging

the resulting expression.
16Hopenhayn (2014b,a) argues that the conventional wisdom that an increase in the correlation between fundamentals

and distortions decreases AE is not necessarily correct. However, he notes that calibration by Restuccia and Rogerson
(2008) supports this conventional wisdom and also that this wisdom holds as long as the initial dispersion of distortions
is sufficiently large. The second term of equation (12) unambiguously declines with an increase in the correlation
between fundamentals and distortions but the first term is also potentially important. We show empirically below that
the second term dominates, supporting the conventional wisdom.
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the complex relationship between curvature parameters and AE. Analytic derivatives of this second

term (available upon request) with respect to ρs and γs deliver an ambiguous sign that depends on

the sign of the covariance between fundamentals and distortions. Critically, ρs and γs do not enter

AE symmetrically, so the influence of the two parameters cannot be summarized by revenue curva-

ture. We show in Appendix A.2.7 that while the plant-level responses to productivity shocks depend

on revenue curvature, ρs also impacts sectoral responses through the CES aggregator, generating an

asymmetry in the influence of the two parameters. Further complicating matters, the empirically

measured distributions of fundamentals, including the correlation between fundamentals and distor-

tions, depends asymmetrically on ρs and γs. Mechanically, for given revenue and input expenditure

data, the variance of the numerator of measured TFPQis is decreasing in ρs with a multiplicative

factor that depends on the dispersion of measured revenue while the variance of the measured de-

nominator is increasing in γs with a multiplicative factor that depends on the dispersion of measured

inputs. This in turn implies the covariance of measured TFPQis with measured TFPRcs
is varies

with ρs and γs in an asymmetric manner.17 The dependence of the distribution of fundamentals

provides a concrete channel through which we can characterize the influence of parameter estimation

on inferred AE. In our empirical analysis, we show how this sensitivity of the key moments to the

estimates of ρs and γs is quantitatively important for inferences about AE. Since equation (12) also

shows these estimates matter for AE for a given distribution of distortions and fundamentals, we use

this decomposition to quantify how each of the terms varies with these estimates empirically.

It is also instructive to highlight the connection between logAECOV
s , logTFPRcs

is , and logTFPRrr
is .

Critical here is that logAis = 1
ρs

log TFPRrr
is . Since τis ∝ TFPRcs

is in practice, the empirical equiva-

lent of equation (12) can be re-written as:18

logAECOV
s = γs log

T̃ FPR
cs
s

TFPR
cs
s

+
1− ρsγs

ρs
ln

[
cov

((
TFPRrris

T̃ FPR
rr
s

) 1
1−ρsγs

,

(
TFPRcsis

TFPR
cs
s

) −ρsγs
1−ρsγs

)
+ 1

]
.(13)

In other words, measured AECOV
s is a function of the two distinct revenue productivity measures

derived above. We return to this relationship in our empirical analysis below.

For the most part, we focus on AE at the sectoral level. However, it is helpful to explore various

methods aggregating AE across sectors. Following the literature (e.g, HK and BKR), we treat supply

of aggregate primary factors as fixed and assume a Cobb-Douglas CRS aggregator for output across

sectors into a final good. In addition, we assume a representative perfectly competitive firm that

produces this final output. It can be shown that these two assumptions imply that primary sectoral

inputs are constant so long as average industry distortions are unchanged. Thus their contribution

to AE drops out of (11).

Alternative approaches can be used with respect to treatment of intermediate inputs. One ap-

proach is to treat intermediates as inputs that are in fixed supply external to the sectors under

consideration. This would hold for raw materials and energy. For a subsample of manufacturing,

17In contrast, measured TFPRcsis does not directly depend on ρs and γs.
18In this expression we use the same type of aggregation as in equation (12).
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this could be considered to hold for the intermediate inputs produced independently of the sectors

under consideration.19 Sectoral AE simplifies to AECOV
s in this case and overall AE is given by:

AE =
S∏
s

AEθs
s =

S∏
s

(
AECOV

s

)θs
,(14)

where θs denotes the revenue share of industry s. A second approach, labeled roundabout production,

endogenizes intermediate input production recognizing that goods are used to produce goods. BKR

implement this in a simplified manner where all intermediates are taken from aggregate output of

the sectors under consideration.20 In this case, while inputs do not completely drop out, we can still

express AE in industry s as a function of AECOV
s :21

AEs =
(
AECOV

s

) ∑S
k=1 θk(1−αMk

γk
)∑S

k=1
θk(1−αMk

γk
)+θs

αMs
γs

(1−γs) ,(15)

where αMs/γs denotes the cost share of intermediate inputs in industry s and AECOV
s is defined in

equation (11).22 Aggregation across sectors implies the following expression:

AE =
S∏
s=1

AE

θs∑
s θs(1−αMs

γs )
s =

S∏
s=1

(
AECOV

s

) θs∑S
k=1

θk(1−αMk
γk

)+θs
αMs
γs

(1−γs) .(16)

These two aggregate concepts are relevant for the empirical analysis because they act as a form

of upper and lower bounds on AE, since roundabout production amplifies the effects of distortions

(with or without CRS). Equation (14) overstates true AE if some industries are characterized by

roundabout production. On the other hand, equation (16) understates true AE if there are industries

where intermediate inputs are in fixed supply. Given these measures provide bounds, we show results

using both approaches.

I.C Estimation methods

We begin by reviewing the cost-share-based method for estimating output elasticities that we use

in our estimates of TFPRcs
is .

23 Cost-share-based methods (CS) exploit first order conditions from

the firm’s cost-minimization problem. This framework implies that under CRS, the share of input

expenditures in total costs identify output elasticities even without data on prices and quantities.

19HK finesse this point by using value-added production so they only have primary inputs.
20We adopt the aggregation of BKR to allow for endogenous intermediates for this purpose but note that more

complex input-output linkages are of interest in this context (see, e.g., Baqaee and Farhi (2019)). Although we treat
the model with fixed inputs and roundabout production as bounds on the influence of intermediates on AE, models
with more complex input-output linkages could yield a measure of AE outside this range.

21See appendix A.2.6 for details on equations (14) and (15).
22Under CRS, the outer exponent simplifies to 1, and therefore (15) collapses to (9). When returns to scale are

increasing, the exponent is greater than one and AECOVs is smaller relative to when inputs are exogenous, because
the influence of intermediates serves to amplify the effect of the inner term. On the other hand, decreasing returns
increases measured AECOVs .

23We follow the standard practice for both TFPRcsis and TFPRrris by deflating plant-level revenue with the industry-
level deflator. Accordingly these are measures of real revenue per composite input using industry-level deflators. This
implies that we have moved the industry-level deflator to the LHS of equation (1).
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This is a useful property because it makes CS robust to alternative demand structures and also

imperfect competition in output markets. A potential caveat is that an estimate of, or an assumption

about, returns to scale is necessary. Since the requirement that the first order conditions of cost

minimization hold for all businesses in every time period may be considered too restrictive, most

studies (see Syverson (2011)) average them across plants in an industry and/or over time. This

approach is equivalent to assuming elasticities are homogenous within an industry or over time, a

restriction that alternative estimation methods also typically require.

In order to estimate the revenue elasticities and TFPRrr
is , we use a control function approach.

The method was developed by Olley and Pakes (1996) (hereafter OP) to address the endogeneity of

unobserved productivity and inputs.24 Our version combines constrained optimization and OP, which

is why we label our method as “OPH” where “H” is short for “hybrid”. The main difference relative

to OP is that first order conditions of profit maximization are used to identify the revenue elasticities

of variable inputs. Specifically, we estimate industry-specific revenue elasticities for variable factors

(intermediate inputs and energy) as the mean of the plant-level revenue share of input expenditures.

Next the contribution of variable inputs is subtracted from revenue variation using these revenue

shares, and the remaining variation is used to determine the elasticities of capital and labor using

the control function approach. Since quasi-fixed input decisions have dynamic consequences, their

elasticities are determined in an additional step using the residual revenue variation that is left

after removing the contribution of variable inputs. Note that in order to account for the possible

endogeneity of productivity and labor, we treat labor as quasi-fixed, which is an additional deviation

from the original OP.25 The identifying assumptions underlying control function estimators have

been criticized.26 Our approach is robust to these criticisms because we use plant-level investment

as a proxy, and variable input elasticities are not determined by projecting revenue variation on

potentially endogenous inputs.27

Without detailed data on output price variation or further assumptions, control function ap-

proaches in general yield revenue elasticities and not output elasticities.28 This distinction – either

stated as a bias due to unobserved price variation or neglected altogether in the applied literature – is

24The procedure, now commonly used in the applied literature in various forms, is based on the assumption that
investment is monotonically increasing in the composite revenue shock, which is treated as the only unobserved state
variable. Under this assumption, the control function is invertible and the estimated plant-level composite revenue
shock can be used to control for endogenous productivity differences. An earlier working paper version of this paper
Foster et al. (2017) explored other control function/proxy methods and obtained very similar results.

25We use a third-order polynomial in state variables and the proxy to control for the unobserved residual. Under
OPH, the residual includes the composite revenue shock and industry-level real output as in (1). Recall we control for
the industry-level price deflator by using real revenue. We treat this residual as composite unobserved state variable
and we follow Olley and Pakes (1996) for the final estimation step using nonlinear least squares using their proxy and
selection correction terms.

26See, for example, Levinsohn and Petrin (2003), Wooldridge (2009), Gandhi, Navarro and Rivers (2012), Ackerberg,
Caves and Frazer (2015), and the NBER working paper version of this paper for more discussion on these matters.
Our procedure can be interpreted as a non-parametric alternative to Gandhi, Navarro and Rivers (2012).

27See Haltiwanger and Wolf (2018) for more details. A version for CES technology is discussed in Dinlersoz and
Wolf (2018).

28An exception is Eslava and Haltiwanger (2018) which uses plant-level price and quantity data to jointly estimate
the production and demand functions using GMM procedures motivated by the control function approach.

11



critical for our purposes since it implies that the residual TFPRrr
is is a combination of fundamentals

reflecting both demand and production characteristics. In order to be able to make inference about

output elasticities and gain further insights, we consider two separate estimates of ρs. The first ap-

proach follows the method described in De Loecker and Warzynski (2012). Specifically, the first order

condition for a variable factor, such as intermediate inputs, yields that the markup (1/ρs) is equal

to the ratio of the output elasticity to the cost share of revenue of the variable factor. The challenge

then is how to estimate the output elasticity. We use the cost share of total costs for materials at the

industry level to obtain the output elasticity associated with our CS methodology. This approach,

which we denote by DW, yields estimates of markups (and thus ρs) that vary across industries.29

DW is fully consistent with our CS methodology and potentially consistent with OPH.

A second approach uses the method described in Klette and Griliches (1996) combined with our

control function approach. This specification is labeled “OPHD” where “D” is short for “Demand”.

In addition to estimating the output elasticities for capital and labor using the control function

approach we also estimate ρs using an auxiliary regressor of industry-level log real output. OPHD

has the advantage of estimating revenue elasticities and demand elasticity in an internally consistent

manner without imposing restrictions such as CRS on output elasticities.30

II Data

II.A Source data

Our industry-level data, including deflators, capital rental prices, and depreciation rates, are taken

from the NBER-CES Manufacturing Industry Database, the Bureau of Labor Statistics, and the Bu-

reau of Economic Analysis. We use plant-level information from the Annual Survey of Manufactures

(ASM), Census of Manufactures (CM), and the Longitudinal Business Database (LBD).31

We use the ASM and CM to construct plant-level measures of inputs and real revenue. Real

revenue is measured as the deflated total value of shipments, corrected for the change in finished goods

and work-in-process inventories. Total hours worked is constructed as the product of production

worker hours and the ratio of the total wage bill to production worker wages. Our intermediate

input variable is given by the sum of three items: cost of parts, contracted work, and goods resold.

29Estimating output elasticities in this manner requires strong assumptions including CRS. De Loecker and Warzyn-
ski (2012) use a control function approach that does not impose CRS. However, since they do not observe plant-level
prices their estimates of output elasticities are more appropriately interpreted as revenue elasticities. De Loecker and
Warzynski (2012) also estimate plant-level markups using the first-order condition for variable factors.

30Under OPHD, we include industry-level real output as a regressor consistent with equation (1) so the unobserved
residual in this specification only reflects the composite revenue shock. Industry-level real output is treated like capital
and labor in the Olley and Pakes (1996) selection and proxy corrections. OPHD can be interpreted as a refinement of
OPH that is a more robust procedure for estimating revenue elasticities (e.g., the selection and proxy corrections are
more general including industry-level real output). The revenue elasticities for variable inputs are identical for OPH
and OPHD and the estimates for the quasi-fixed factors are very similar under OPH and OPHD. Thus, the difference
in methodology between OPH and OPHD yields little differences in revenue elasticities. We discuss these issues further
below.

31More information on the construction of the database is available in the online data documentation. An earlier
version of the NBER-CES database is documented in Bartelsman and Gray (1996).
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The energy input consists of deflated electricity and fuel costs. We create plant-level capital stock

measures using a version of the Perpetual Inventory Method, which calculates current capital as a

sum of the depreciated stock and current investment.

The LBD serves two purposes in our analysis. First, high-quality longitudinal identifiers help

us determine the accurate time of plant exit which is needed to estimate the relationship between

productivity, growth, and exit. Second, the LBD acts as a universe file; we use employment and

plant age data from the LBD to construct inverse propensity score weights that control for selection

to the ASM. More details about the data can be found in the working paper version of this study and

Appendix A in Foster, Grim and Haltiwanger (2016) (FGH, hereafter). These descriptions include

how cost shares of inputs are measured.

II.B Analysis samples

Our initial sample includes approximately 3.5 million plant-year observations between 1972 and 2010.

Although this is a large dataset, we restrict the sample in the empirical analysis because it needs

to fulfill two conflicting requirements. First, industries should be defined narrowly enough that we

can plausibly assume elasticities are constant across plants within an industry. We regard this as

an important requirement since dispersion in measured revenue productivity measures across plants

in the same industry may be due unmeasured heterogeneity in elasticities – this issue is especially

relevant if broad sectoral definitions are used. To fulfill this requirement, we choose a narrow 4-digit

SIC grid (corresponding to a 6-digit NAICS grid). Second, the number of plant-year observations

within each industry should be large enough that elasticities can be estimated by OPH and OPHD.

Large samples are necessary for two reasons. First OPH and OPHD use high-order polynomials

making estimates sensitive to small samples, see section I.C. Second, the selection correction is

based on internally estimated exit probabilities which require a sufficiently large number of exit

observations. Empirical studies often use a 2 or 3-digit industry grid in order to be able to generate

sensible elasticities for all industries. We wanted to avoid this so that we could compare and contrast

OPH, OPHD, and CS using detailed industries.

Changes in industry classification systems over time create complications because they entail

spurious breaks in plant-level time series and a drop in sample size. We address this by selecting

4-digit SIC industries which were either not affected by classification changes or mapped one-to-one

into another SIC category (in 1987) or NAICS category (in 1997). There are 292 such industries of

which we selected the first 50 based on the number of plant-year observations.32

While our primary analytic sample is the 50 most populous industries, we also analyze a total

manufacturing sample covering all industries from 1972-2010. This analysis is restricted to the CS

method for reasons discussed above. The total manufacturing sample is of particular interest and

importance for sensitivity analysis of aggregate AE.

32According to the NBER-CES Manufacturing Industry Database, this industry set accounts for about 36% percent
of total Manufacturing value added between 1972 and 2010 with very little annual volatility.
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III Elasticity distributions

We start by estimating output and revenue elasticities for each of our four inputs: capital, labor,

energy, and materials. Under both OPH and OPHD, the revenue elasticities of variable inputs, βEs

and βMs, are obtained as the revenue share of respective expenditures. Therefore, βEs and βMs are

the same for OPH and OPHD, see Figures 1(a)-1(b). Output elasticities αEs and αMs are calculated

as the share of input expenditures in total costs under CS. Note, βEs and βMs tend to be lower than

αEs and αMs. This is to be expected since under CRS technology and CES demand the revenue

elasticities should be lower than output elasticities.33

Figures 1(c)-1(d) plot the estimated elasticity of output (CS) and revenue (OPH, OPHD) with

respect to capital and labor (βKs and βLs), distributed across industries. There are non-trivial

differences in both the location and the shape of the distributions. Most notably, the CS-based

capital and labor elasticities tend to be smaller than regression-based estimates. At first glance, this

is contrary to expectations since under CRS technology and CES demand the revenue elasticities

should be lower than output elasticities. However, the capital and labor elasticities under OPH and

OPHD are determined without using information either on total costs or the relationship between

revenue and cost shares, and there is no restriction forcing the above relationship to hold. Observe as

well that capital and labor revenue elasticities under OPH and OPHD are very similar. In light of this

similarity, it is useful to highlight that OPHD is interesting because it permits decomposing revenue

elasticities into factor elasticities and the demand elasticity in an internally consistent manner.

Figures 2(a)-2(c) summarize the overall implications of the differences between OPH and OPHD.

Figure 2(a) confirms that the similar revenue elasticities under OPH and OPHD (figure 1) imply

consequently similar revenue curvature distributions. The sample averages of
∑

j β̂js under OPH and

OPHD, respectively, are 0.94 and 0.95. The standard deviation is 0.24 for both.34 These patterns are

broadly consistent with those in the literature: estimated revenue curvature in the average industry

was found to be close to 1 in many other papers.35 This common finding is important for the

properties of logTFPRrr
is , as we show below.

We decompose the curvature of the revenue function into demand elasticities (ρs) and returns to

scale (γs) using two ρs distributions, see section I.C. The first ρs distribution we examine, based on

De Loecker and Warzynski (2012), and denoted by DW, uses industry-level data from the NBER-

CES Manufacturing Industry Database to calibrate ρs under the assumption that γs=1. Since this

restriction is removed under OPH, we abstract from it for the sake of this exercise and condition

on ρs as if it were exogenous in order to determine the γs implied by
∑

j βjs. In the second ρs

distribution, denoted by OPHD, ρs is estimated jointly with βjs using micro data following Klette

33The revenue and total cost based cost shares of intermediate inputs and energy have correlations of 0.67 and 0.88,
respectively.

34The Kolmogorov-Smirnov test indicates that the two distributions are not significantly different.
35See, for example, Olley and Pakes (1996), Klette and Griliches (1996), Levinsohn and Petrin (2003), Ackerberg,

Caves and Frazer (2006), White, Reiter and Petrin (2011), De Loecker (2011), Gandhi, Navarro and Rivers (2012),
and Gopinath et al. (2015).
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Figure 1: Cross-industry distributions of output (αjs) and revenue elasticities (βjs)
Note: β̂Ms and β̂Es are the same for OPH and OPHD, by construction. CS yields α̂js.

and Griliches (1996). Figure 2(b) plots the two ρs distributions. Although the heterogeneity is

similar, DW-based ρs-s are significantly lower than OPHD-based ones.36 The disparate ρs estimates

have important implications for γs, shown in figure 2(c). Under OPHD, mean γs is close to one (1.01),

while it is significantly larger if ρs-s are calibrated (with mean 1.21, denoted as OPH in this figure).

Both γs distributions exhibit considerable variation across industries with some industries exhibiting

decreasing returns to scale and others showing increasing returns to scale. In particular, using a delta-

method-based Wald test, we reject the null of CRS in roughly two-thirds of the industries under OPH

and three-quarters of the industries under OPHD: 60% of industries show increasing and 4% show

decreasing returns to scale under OPH; the corresponding fractions are 49% and 26% under OPHD.

In other words, both OPH- and OPHD-based revenue elasticities imply increasing returns to scale

36The standard deviations are 0.11 and 0.09, the means are 0.8 and 0.94. The Kolmogorov-Smirnov test confirms
that the difference between the two distributions is statistically significant.
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Figure 2: Revenue curvature and its components

in a nontrivial number of industries. Interpreted as a specification-check, the results of these tests

present the tension between microdata-based elasticity estimates and the CRS-assumption necessary

to derive ρs.

Taking stock, the control function approach yields substantial heterogeneity in revenue function

curvature across industries with the average just below one. This heterogeneity may be amplified

into a wide range of returns to scale estimates, depending on the underlying demand elasticities. We

consider the implications of these findings for the firm dynamics literature that requires calibrating

revenue curvature. To help preserve well-behaved optimization problems, it is typical to assume

that ρsγs ≤ 1. Our findings are not inconsistent with this assumption but indicate that estimated

curvature and its sources may exhibit significant variation, depending on the estimation method. If

the primary source of curvature is the markup and it is substantial, i.e. in the 25 percent range

(ρs=0.8), then the control function approach implies that the returns to scale for production are well
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above one. This inference is not limited to our findings since the revenue curvature is commonly

found to be close to or just below one. In short, the control function estimates imply that either

markups are small or returns to scale of production are above one. Widespread recognition of this

implication has been limited with estimates of βjs frequently interpreted as estimates of αjs in the

literature.37

IV Implications of the differences in elasticity distributions

We now turn to exploring the effects of the differences in elasticity distributions on the basic properties

of revenue productivity measures and AE. In particular, we explore the effect of these differences in

terms of productivity dispersion, productivity correlations, and the relationship between productivity,

growth, and survival. We also investigate the sensitivity of AE to these different approaches to

estimating factor and revenue elasticities.

IV.A Productivity dispersion and correlations

Does it matter whether one uses output or revenue elasticities to compute the composite input

and, in turn, does it matter how one estimates the output and revenue elasticities? In spite of

the large differences in elasticity estimates presented above, our results suggest that, at least on

average, dispersion in revenue productivity is broadly similar across methods. The interquartile

range, shown in the second column of Table 1, indicates that the average productivity difference

between establishments at the 75th and 25th percentiles in the average industry varies between 0.28

and 0.35 across the methods considered for the purposes of this paper.38 This narrow range amounts

to a 31-42% productivity difference, indicating substantial within-industry dispersion in revenue

productivity. When measuring dispersion using the standard deviation, the results are qualitatively

the same (see the third column of Table 1).

Table 1: Productivity dispersion implied by different methods
Sample size Interquartile Standard

(in 1000) range deviation
CS 589 0.28 0.31
OPH 563 0.35 0.35
OPHD 563 0.35 0.36

All statistics are based on deviations of plant-level log-productivity from industry- and time-specific means and are
calculated from a weighted distribution where the weights are based on the number of plant-year observations in an
industry. The top and bottom 1% of the distributions are trimmed. Source: authors’ calculations.

We next investigate whether the choice of estimation method has consequences for the produc-

tivity rank of establishments. The Pearson and Spearman correlations in Table 2 indicate that the

37There are, of course, exceptions. De Loecker (2011) was one of the first to be careful about the interpretation of
the control function estimates as reflecting revenue rather than output elasticities.

38Approximate 95% confidence intervals, constructed using bootstrapped standard errors of the interquartile range,
not shown here, indicate that dispersion measures under the control function approach are higher than under CS but
they are not significantly different from each other.
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association between logTFPRrr
is and logTFPRcs

is is generally weaker than between logTFPRrr
is im-

plied by different control function approaches themselves, but all correlations are higher than 0.7.

These findings suggest that TFPRcs
is and TFPRrr

is exhibit similar dispersion and are strongly corre-

Table 2: Correlations among within-industry productivity distributions
CS OPH OPHD CS OPH OPHD

Pearson Spearman
CS 1 1

OPH 0.73 1 0.74 1
OPHD 0.71 0.88 1 0.71 0.90 1

The top and bottom 1% of the distributions are trimmed. Source: authors’ calculations.

lated. The dispersion in TFPRrr
is tends to be somewhat larger than TFPRcs

is . Under the assumption

of isoelastic (CES) demand, TFPRrr
is is a measure of fundamentals. Consistent with the findings of

the recent literature, our results imply that whether or not TFPRcs
is is an appropriate measure of

distortions, it is positively correlated with, and similarly dispersed as, fundamentals.39 Mechanically,

part of what is driving this close correspondence between TFPRcs
is and TFPRrr

is is that they (at least

on average) both generate the composite input using weights that sum close to one. Conceptually, as

we have discussed above, there are number of reasons for these alternative measures to be positively

correlated.

IV.B Growth and survival

In this sub-section, we explore whether one of the most important predictions from standard models

of firm dynamics is robust to the differences in elasticity distributions. For this purpose, we are

motivated by standard models in which firms face adjustment frictions on both the entry/exit and

intensive margins.40 In such a model where employment is the single production factor subject to

adjustment frictions, incumbent firms have two key state variables each period: the prior period level

of employment and the realization of productivity in the period. The standard prediction from this

model is that, conditional on prior period level of employment, firms with sufficiently low draws from

the productivity distribution exit and firms with higher realizations of productivity grow. Syverson

(2011) highlights that the positive relationship between productivity, growth, and survival is a robust

finding in the literature. If the productivity measure is TFPRrr
is , this should not surprise us because

it reflects fundamentals. However, it is less clear the prediction should hold for TFPRcs
is , given our

39These findings are also consistent with studies that use price and quantity data to compute direct measures of
technical efficiency and demand shocks. Foster, Haltiwanger and Syverson (2008), Foster, Haltiwanger and Syverson
(2016), Haltiwanger, Kulick and Syverson (2018), and Eslava et al. (2013) provide evidence that TFPRcsis is highly
correlated with direct measures of technical efficiency and positively correlated with demand shocks. Moreover, these
studies find that TFPRcsis dispersion is slightly lower than dispersion in technical efficiency, indicating prices are
inversely related to technical efficiency under downward sloping demand.

40For example, on the entry/exit margins see Hopenhayn (1992) and Hopenhayn and Rogerson (1993). For adjust-
ment cost models at the firm-level on employment, see Cooper, Haltiwanger and Wiliis (2007) and Elsby and Michaels
(2013).
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motivating framework. We consider the relationship between productivity, growth, and exit for all

plants, exiters, and incumbents separately and estimate the following specification:

yit+1 = b1ωit + b2θsizeit + x′itδ + εit+1,(17)

where yit+1 denotes an outcome of plant i (growth between periods t and t+1 or exit), ω is plant-level

productivity in logs, θsizeit is the control for initial size (log employment) in the period, and xit is a

vector of additional controls: plant age, state effects and full interactions of industry and year effects,

and the change in the state-level unemployment rate that controls for cyclical effects.41

Panel A of Table 3 shows b̂1 from equation (17) for each outcome (column 1) and productivity es-

timator (columns 2-4). All point estimates are statistically significant and results from the alternative

measures are similar. A one standard deviation increase in TFPRcs
is yields a roughly 4.3-log-point

increase in growth and a 1.4-log-point decline in the probability of exit. For TFPRrr
is , the analogous

estimates are 4.7 and 1.4 log points. The implication is that productivity and growth (exit) are

positively (negatively) associated, irrespective of how productivity is measured. The similarity of

conclusions is one of the reasons why Syverson (2011) states that the finding that high productivity

plants are less likely to exit is one of the most ubiquitous findings in the literature.42

Table 3: Productivity and size impact on outcomes by productivity estimator
CS OPH OPHD

Panel A. Effect of productivity (̂b1)
growth 0.140*** 0.136*** 0.097***
exit -0.046*** -0.042*** -0.031***
conditional growth 0.051*** 0.057*** 0.039***

Panel B. Effect of log size (̂b2)
growth 0.022*** 0.014*** 0.020***
exit -0.034*** -0.031*** -0.033***
conditional growth -0.051*** -0.053*** -0.051***

The table shows b̂1 and b̂2 in equation (17). Outcomes are employment growth among all establishments (row 1),
exit (row 2), employment growth among continuers (row 3).*** denotes statistical significance at 1%. Standard
errors are clustered at the state level. All regressions are based on trimmed productivity distributions (top and
bottom 1% in each industry and year). Sample size information can be found in table A.1 of Appendix A.6. Source:
authors’ calculations.

Panel B of Table 3 illustrates the impact of initial size on outcomes. Larger business are more

likely to survive and, conditional on survival, have lower growth rates. The magnitude of the size

effects are similar across specifications using alternative productivity measures. Overall, we find the

marginal impact of productivity on growth and survival is quite robust across different productivity

41This is a simplified version of the specification considered by FGH. We follow them using integrated ASM-LBD
data for this analysis. The ASM provides the distribution of plant-level productivity in any given year and the LBD
provides the growth and survival outcomes for the full set of plants in the ASM in that year between t and t+ 1.

42As in section IV.A, it is useful to highlight the role of pooling: the similarity of results conceals potentially
important heterogeneity. That is, the coefficients could differ more across methods if we allowed for industry-specific
heterogeneity in the effect of productivity or size.
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measures even when accounting for size and age.

The findings in Sections IV.A and IV.B help explain why TFPRcs
is remains a commonly used

measure of firm performance in the empirical firm dynamics literature. Since Baily, Hulten and

Campbell (1992) and Foster, Haltiwanger and Krizan (2001), TFPRcs
is has been commonly used for

investigating a range of issues from the determinants of firm-level growth and survival, adjustment

costs for capital and labor, and the relationship between firm performance, exporter status, and

management practices (see, e.g., Syverson (2011) for a survey). Ten years after HK raised questions

about the interpretation of this measure, TFPRcs
is still remains commonly used in recent papers about

firm dynamics.43 One implication of our analysis is that, under our core assumptions, TFPRrr
is should

be used instead of TFPRcs
is in the literature. The continuing popularity of TFPRcs

is may be partly

due to the fact that, despite its theoretical appeal, TFPRrr
is estimation using a control function has

practical limitations (e.g., it often requires defining industries at a 2 or 3-digit level to obtain sensible

estimates for all industries) while calculating TFPRcs
is at a detailed industry level is straightforward.

In light of the results in this section, we believe the findings in the literature using TFPRcs
is would

likely be robust to the conceptually more appropriate index.44 It remains an open question why these

distinct measures are so tightly linked empirically (although there are competing explanations such

as adjustment costs and variable markups that increase with fundamentals). It might be tempting

at this juncture to argue the choice of productivity estimator is not important. However, we now

turn to analysis of AE where this choice is of critical importance.

IV.C Allocative efficiency: sectoral level results

We now examine the sensitivity of allocative efficiency (AE) to the changes in the joint distribution

of output and demand elasticities. Our generalization of AE is an ideal metric to assess these issues

because the model requires us to take a stand on the shape of both the demand and production

functions in each industry. We begin by considering simple averages of AE across industries, compar-

ing across estimation methods. Then, in Section IV.D, we explore two further complicating factors:

aggregation across industries and time-variation in parameters.

At the industry level, we need estimates of both ρs and γs to quantify sectoral TFPQ and AE.

To explore these issues in the context of our CS and OPH estimates, we consider the following values

for the demand elasticity: ρs=(0.75, 0.8, 0.94, ρDW
s , ρ̂s) (where ρ̂s is from the OPHD estimation).

Imposing the first value across industries, paired with CS, serves as a useful benchmark because it

43For example, two recent prominent papers that use this as a measure of firm performance are Bloom et al. (2019)
and Ilut, Kehrig and Schneider (2018). A main finding of the former paper is that plants with more structured manage-
ment practices have higher TFPRcsis . The latter uses TFPRcsis to identify nonlinear responsiveness between hires and
separations at the plant-level fundamentals. Some recent papers have highlighted the distinction between measures,
including Hottman, Redding and Weinstein (2016), Garcia-Marin and Voigtländer (2019), Eslava and Haltiwanger
(2018), and Decker et al. (2017).

44One reason TFPRcsis might be preferred is unmeasured quality differences in material inputs across plants. Inclu-
sion of variation in output prices can help control for unmeasured input price variation since they tend to be positively
correlated, see De Loecker et al. (2016).
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corresponds to the approach in HK and more recently BKR.45 Setting ρs=0.8 equals the mean of the

ρs distribution obtained using the DW method. The ρs=0.94 case is relevant because it is equal to

the mean of the OPHD-based ρs distribution.46 ρDW
s and ρ̂s denote non-degenerate demand elasticity

distributions implied by DW and OPHD, as in section III. The objective is to explore the sensitivity

of AE to the range of demand elasticity estimates.

CS and OPH are conceptually different in the way the revenue curvature is estimated, so we

describe the implications of these conceptual differences here, and organize results according to these

distinct methodologies. Under CS, γs=1 is posited and therefore revenue curvature is fully determined

by changing the value of ρs. Thus, the implications of different ρs values under CS provide guidance

about the effect of changes in curvature on AE when returns to scale are fixed. Note that since

cost shares are invariant to the elasticity of demand, the distribution of TFPRcs
is does not change

under CS. However, the measured distribution of TFPQis will change with ρs (e.g., the variance and

correlation of TFPQis with TFPRcs
is ).

Under OPH, revenue curvature is based on the sum of estimated revenue elasticities as described

in Section III. Variation in the demand elasticity holding revenue elasticities constant yields distinct

insights. First, for a given set of revenue elasticities, an increase in ρs implies an equivalent decline in

γs. This enables us to evaluate the impact of decomposing the revenue curvature into its components.

In addition, the distribution of distortions (TFPRcs
is ) may vary as ρs changes because the cost shares

implied by βjs estimates may be different. Third, the distribution of TFPQis will vary with the ρs

vs. γs combinations for a given overall revenue curvature.

We recognize we are combining estimates from distinct estimation methodologies in this section.

The motivation is to conduct a sensitivity analysis of AE to different combinations of markups

and returns to scale from the range that emerge from different methods. In much of the literature

calibrating AE, estimates of the requisite output and demand elasticities are from disparate sources.

Still in interpreting the results it is useful to keep in mind the specifications from internally consistent

approaches. That is, under the CS approach the DW estimates of ρs are consistent with the assumed

CRS. Under the OPH approach, the OPHD estimates of ρs are internally consistent with the control

function approach estimation.

Figure 3 shows the cross-industry average of AECOV
s calculated using the range of demand elas-

ticity estimates listed above. In order to abstract from high-frequency variation in the empirical

analysis, we calculate decade-specific time series averages of AE. Several observations emerge from

Figure 3. First, consider the results for CS where CRS is imposed. We find that an increase in av-

erage ρs yields a decline in average AE and a greater decline in average AE over time. For example,

average AE declines by 20 percent from the 1970s to the 2000s under CS if ρs is 0.75 (for all sectors)

but by 33 percent if ρs=0.94. Dispersion in ρs across industries has only a modest impact on average

AE for the CS case. In many respects, the CS findings are not surprising given recent literature. For

45Since ρs = σs−1
σs

, choosing σs = 4 implies ρs = 0.75.
46Setting ρs=0.8 corresponds to σs=(1 − ρs)

−1=5, i.e. a 25% increase in σ, while ρs=0.94 corresponds to an
approximately 4-fold increase in σs.
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Note: The x-axis depicts alternative values of ρs. In industries where 1 < ρsγs at the 4-digit level, 2-digit estimates
are used. ρDW

s denotes industry-specific time series averages calculated as in De Loecker and Warzynski (2012).

example, BKR indicate that under CRS, less curvature yields lower AE.

We next consider the results with OPH. Average AE is lower for OPH compared to CS for

average ρs values substantially below one. For example, holding demand elasticities constant at the

DW estimates, the CS method yields average sectoral AE that is about twice that for OPH. Recall

that under OPH overall revenue curvature is determined by the estimated revenue elasticities so

lower average ρs implies higher average γs for given estimated revenue elasticities. Comparing the

CS and OPH results for ρs = 0.75 (for all sectors) is thus comparing results with CRS vs. generally

increasing returns to scale, since overall revenue curvature is substantially below one for CS and just

below one on average for OPH. As average ρs increases for OPH, average AE increases rather than

decreases as with CS. This finding illustrates the sharp differences between CS and OPH. We find

with OPH that even with overall revenue curvature constant, average AE is higher for higher average

ρs and lower average γs. Thus, variation in AE is not driven simply by overall (average) curvature

but by the combination of (average) ρs and γs. The combination of ρs and γs, holding the revenue

curvature constant, also influences the time series decline in AE. For ρs = 0.75 under OPH, the

decline from the 1970s to 2000s is 29 percent, while for ρs = 0.94 the decline is 23 percent. Allowing

for heterogeneity in ρs for OPH does not have significant implications relative to when it is held at

the cross-industry average.

Focusing on internally consistent approaches, AE using the ρ̂s under OPH is 35 percent lower on

average than the benchmark CS case with a ρs = 0.75 used by HK and BKR and about 30 percent

lower on average than the CS case with DW estimates of ρs. Thus, for the same revenue and input

data, the choice of estimation method for productivity yields distinct differences in measured AE.

To help shed light on what underlies the patterns above, we return to equation (12). The sec-

ond term of this decomposition shows that AEs depends on the covariance between TFPRcs
is and
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TFPQis. Other things equal, the second term of this decomposition implies that AEs decreases with

more dispersion in distortions (TFPRcs
is ), a larger positive correlation between distortions and funda-

mentals (TFPQis), and (given such a positive correlation) more dispersion in fundamentals. Figures

4(a)-4(c) show that while dispersion in logTFPRcs
is is very similar across estimation methods, disper-

sion in logTFPQis and the partial correlation of logTFPQis with logTFPRcs
is are quite sensitive to

the alternative elasticity estimates. These patterns are consistent with the discussion in section I.B

regarding the asymmetric impact of ρs and γs on the distribution of measured TFPQis.
47 Focusing

on internally consistent estimation approaches, dispersion in logTFPQis is notably lower and the

correlation between logTFPQis with logTFPRcs
is notably higher with ρ̂s under OPH compared to

using either benchmark (0.75) or DW estimates of ρs under CS.

The patterns in Figures 4(a)-4(c) reflect the impact of the estimated parameters on the measured

dispersion of fundamentals and the correlation between fundamentals and distortions. There is also

a direct effect of variation in ρs and γs on AE as shown in the decomposition of AE in equation

(12). Appendix A.3 illustrates the combined impact of the measurement effects and the direct effects

of variation in these parameters on the first and second terms of equation (12). We find that the

variation in the second term of (12) dominates the variation in AEs empirically. Moreover, consistent

with the above discussion, we find that the combined measurement and direct effects of variation in

these parameters are associated with large differences in estimated AE.

Putting these results in perspective with the findings in earlier sections, the sensitivity of measured

TFPQis to the estimation methods and elasticities is in contrast to the findings above that TFPRrr
is

has a robust relationship with respect to TFPRcs
is . The reason is that measured TFPRrr

is only

depends on the overall revenue elasticities while measured TFPQis depends on the decomposition

of revenue elasticities into output elasticity (and hence γs) and demand elasticity (and hence ρs)

components.

While this section has emphasized the sensitivity of AE to estimation methods and parameter

estimates, there are some common messages from this analysis that are robust to the variation in

elasticity estimates. In all specifications, measured AE is declining over time, dispersion in logTFPQis

and logTFPRcs
is are rising over time, and the correlation between these two alternative measures is

rising over time. Rising dispersion in distortions as measured by logTFPRcs
is is one of the most

robust findings across the estimation methods and parameter estimates depicted in Figure 4(b).

Other things equal, this yields a decline in AE. In addition, rising dispersion of fundamentals and

a rising correlation of fundamentals with distortions are working in the same direction to induce a

decline in AE. Thus, a complete explanation of rising AE must account not only for the rise in the

dispersion of distortions, but also a concordant increase in the correlation between distortions and

fundamentals.

47By construction, there is no variation in TFPRcsis under CS with variation in ρs. This also holds for OPH but
logTFPRcsis is computed differently under OPH using internally consistent cost shares csjs=βjs/

∑
ks βks.
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(c) Partial correlation between logTFPQ and logTFPR

Figure 4: Productivity moments

Note: The x-axis depicts alternative values of ρs. In industries where 1 < ρsγs at the 4-digit level, 2-digit estimates
are used. ρDW

s denotes industry-specific time series averages calculated as in De Loecker and Warzynski (2012).
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IV.D Allocative efficiency: Implications of time-varying elasticities and

aggregation

As a further exploration of the sensitivity of AE to the estimates of key elasticities, we consider

two extensions: aggregation across industries as implied by the model and variation in elasticities

over time. We consider these two extensions together since they interact in interesting ways em-

pirically. Exploring aggregation is more suitable with the full sample of manufacturing industries,

especially for the roundabout production aggregation. We begin with the CS approach since this

way of computing detailed industry output elasticities and the internally consistent DW approach

for computing demand elasticities are straightforward for the full sample of industries. There is,

however, the important limitation to the CS approach of imposing CRS. For this reason, we close

this section with a discussion of the analysis of aggregation and time varying elasticities for our 50-

industry sample where we can more readily relax the CRS assumption. We do so while recognizing

the OPH (including OPHD) approach is less well suited to estimation at the detailed industry level

for all manufacturing industries, especially if considering time varying elasticities.

For the CS analysis in this section, cost shares are calculated as time-series averages within a

4-digit SIC industry between 1972 and 1996 and another set of time-series averages within a 6-digit

NAICS industry between 1997 and 2010. We find that the change in the distribution of the cost shares

between the SIC and NAICS periods is small so we do not focus on that variation in this section.48

In contrast, there has been much attention in the recent literature (e.g., De Loecker, Eeckhout and

Unger (2019)) to evidence of rising markups. Figure 5 shows the implied changes in estimates of

average ρst by decade under the DW methodology for all industries in the manufacturing sector. Both

the unweighted and revenue-weighted means are depicted. We find evidence of declining average ρst

over time. This decline yields, on a revenue-weighted (across industry) basis, an increasing average

markup from about 20% in the 1980s to 33% in the 2000s. These patterns are broadly consistent

with those from De Loecker, Eeckhout and Unger (2019).49

Figures 6(a), 6(b), and 6(c) show average sectoral AE, fixed-supply-based AE and roundabout-

production-based AE under CS across different ρs estimates.50 Comparing Figures 6(a) and 3 we find

that the sectoral average AE results are broadly similar between the full and 50-industry samples: an

increase in average ρs yields lower AE in both. However, average AE declines less in the full sample.

For example under ρs=0.8, AE declines from the 1970s to 2000s by about 27% in the 50-industry

48See Appendix A.4 for details. It is also worth noting that the distribution of cost shares for the full sample and
the 50-industry sample are quite similar.

49De Loecker, Eeckhout and Unger (2019) find larger average markups that increase from about 60% to 80%
using Economic Census data. However, they combine both materials and labor as variable factors of production in
their markup calculations. In sensitivity analysis, they find that markups computed from labor shares are higher
than those from materials shares. An additional point made by Hall (2018) and Edmond, Midrigan and Xu (2019),
and acknowledged by De Loecker, Eeckhout and Unger (2019), is that cost-weighted average markups increase by
substantially less than revenue-weighted average markups. At the industry-level, our markups are equivalent to cost
weighted means of plant-level markups.

50Equation (16) simplifies in the CS case under CRS. Appendix A.5 explores roundabout-production with NCRS
for the 50 industry-sample.
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Figure 5: Descriptive statistics of ρDWst estimates by decade. CS methodology, all industries.

Note: “Unweighted” denotes averages where industries have equal weight. “Weighted” denotes averages where
industries are weighted by revenue.

sample and about 13% in the full industry sample. In addition, sectoral heterogeneity (labeled ρDW
s

in Figures 6(a) and 3) is more important in the full industry sample in that it mitigates the decline in

average AE. Time series variation along with sectoral heterogeneity in ρs yields additional mitigation.

The decline in average AE from the 1980s to 2000s with ρs = 0.8 with sectoral heterogeneity is only

about 3% with sectoral heterogeneity and only about 1% with time series variation along with sectoral

heterogeneity.

Figure 6(b) shows fixed-supply-based aggregation yields AE levels broadly similar to the sectoral

average, with somewhat lower averages and steeper declines. These effects are amplified under

roundabout production, shown in Figure 6(c): AE-levels are even lower and trends are even more

negative. This reflects the multiplier effects of roundabout production. Heterogeneity and time

variation matter here as well. Aggregate AE under roundabout production declines by 39% under

heterogenous and time varying ρDWst while it declines by 58% with ρs = 0.8 (which is the about the

same as the mean of ρDWst ).

A limitation of the analysis thus far in this section is that it is restricted to the CS case under

CRS. For analysis of the sensitivity to CRS, we return to our 50-industry sample and focus on non

time varying elasticities. The OPHD method is not well suited to estimating time varying demand

elasticities since this method exploits within industry variation over time for identification. We

also focus on the revenue-weighted aggregation since most intermediate inputs are likely produced

independently with respect to the 50-industry sample.51

51Appendix A.5 presents further sensitivity analysis considering time varying elasticities and aggregation for the
50-industry sample including roundabout production using both CS and OPH. While there are some limitations of
this analysis since we combine DW estimates of ρst with OPH estimates of revenue elasticities, the results show that
the rise in markup over time using the DW method mitigates the decline in AE for CS as we find for the full industry
sample. However, the decline in revenue elasticities using the OPH method is not as large as one would anticipate
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Figure 6: Descriptive statistics of AECOV
s under alternative values of ρs (x-axis), CS methodology in

full industry set

Figure 7 shows revenue-weighted aggregate AE for the 50-industry sample (for the sake of brevity

we report a slightly smaller number of cases here). The patterns here are broadly similar to those

for the unweighted industry means in Figure 3. However, especially for OPH, the trend declines

are larger when computing the revenue weighted geometric mean across industries. Focusing on

internally consistent approaches, the decline in AE using ρ̂s under OPH is more than three times

larger than the decline in AE in the CS case under DW estimates of ρs. Thus, for the same revenue

and input data, the choice of estimation method for productivity yields dramatic differences in the

decline in measured aggregate AE for the 50-industry sample.

given this rise in markups. These findings suggest that there may have been offsetting increases in the returns to scale.
De Loecker, Eeckhout and Unger (2019) also present some limited evidence of increases in the returns to scale over
time.
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ÂE

COV

s

)θs
Note: The x-axis depicts alternative values of ρs. In industries where 1 < ρsγs at the 4-digit level, 2-digit estimates
are used. ρDW

s denotes industry-specific time series averages calculated as in De Loecker and Warzynski (2012).

V Concluding remarks

When is the devil in the details of micro productivity measurement relevant for macroeconomics?

We answer this question along several dimensions, investigating which details could prove devilish

for researchers using micro-productivity data to inform their understanding of the economy. First,

we clarify the relationship between various well-known measures of revenue productivity using HK

as a framing device. Second, we draw out the implications of alternative measures for standard

productivity dispersion statistics and the relationship between firm-level productivity, growth, and

survival. Third, we show the importance of these measurement and estimation issues in the context of

measuring allocative efficiency. An important aspect of this latter analysis is relaxing the assumption

of CRS while also allowing for revenue curvature stemming from downward sloping demand. In

doing so, we show that it is not just the curvature of the revenue function that matters for allocative

efficiency, but also its decomposition.

Alternative productivity estimators have an important commonality: absent data on prices and

quantities, they yield what have become known as revenue productivity measures. It is perhaps less

recognized that the differences across estimation methods have important consequences for interpre-

tation since the alternative measures are different conceptually. The shares of input expenditures

in total costs are equivalent to output elasticities assuming CRS, while regression-based estimates

are revenue elasticities absent data on prices and quantities. The revenue residuals implied by cost

shares, or logTFPRcs
is , have increasingly become used as a measure of distortions. In contrast, the

residual from revenue function estimation, or logTFPRrr
is , reflects fundamentals such as technical

efficiency and demand shocks.

In spite of the conceptual differences between logTFPRcs
is and logTFPRrr

is , we find that they are

positively correlated, exhibit similar dispersion, and have similar relationships with firm-level growth
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and survival suggesting that the effect of the differences in elasticity estimation are not significant.

This helps explain why logTFPRcs
is remains a commonly used measure of firm performance in the

applied literature even though logTFPRrr
is is arguably conceptually the preferred measure. It remains

an open question as to why these distinct measures are so tightly linked empirically although there

are a number of competing explanations with empirical support (e.g., adjustment costs, variable

markups that are increasing in fundamentals, or distortions that are correlated with fundamentals).

In contrast, the differences underlying these measures and estimation methods are critical for

measuring allocative efficiency (AE) in a benchmark structural approach that has been developed

in the recent literature. This benchmark AE is an ideal metric to assess the empirical importance

of these issues because both production and demand parameters affect it directly. In addition, the

joint distribution of fundamentals and distortions implied by these parameters is also critical. Our

findings indicate considerable variation in both the overall revenue curvature and its components

across methods. In turn, we find this yields considerable variation in the level and changes over

time in measured AE. Underlying this variation is the sensitivity of the dispersion and correlation

of composite measure of fundamentals, logTFPQis, with distortions to alternative methods. It is

not only the overall curvature that matters for quantifying TFPQ and AE, but also the decompo-

sition of the curvature into its returns to scale and markup components. There is less widespread

agreement across methods in this decomposition. In turn, there is less widespread agreement about

the dispersion of fundamentals and the correlation of fundamentals with distortions. It is interesting

that there is more widespread agreement across methods on the dispersion of distortions than there

is about fundamentals themselves.

Despite the sensitivity of inferences regarding AE to estimation methodology, a common message

of our findings is that all methods depict rising dispersion in both fundamentals and distortions, and

rising correlation between them. All of these factors contribute to declining measured AE, which we

also show may be mitigated by rising markups over time. To the extent that rising markups translate

into declining revenue curvature, this mitigates the decline in AE.

One remaining (and potentially devilish) detail is the impact of heterogeneous production and

demand elasticities across producers. Estimation of such elasticities is a challenge but the productivity

measures we focus on are residuals that are inherently sensitive to such heterogeneity. We have taken

an approach here to mitigate these concerns by using estimates of output and demand elasticities at a

detailed industry level, in contrast to much of the literature that estimates key elasticities at a broader

industry level. Still, detailed industry may not be sufficient. Variable markups and differences in

technologies across plants are likely important contributors to measured differences in productivity

across plants. This paper is intended to provide structure for thinking about these issues; it is our

hope that it opens the door to future discussions.
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