Productivity and Reallocation

Motivation

- Recent studies highlight role of reallocation for productivity growth. Market economies exhibit:
 - Large pace of output and input reallocation with substantial role for entry/exit.
 - Large differences in measured productivity across producers
 - Productivity enhancing market selection and reallocation from less to more productive businesses
 - Magnitude depends upon sector, country, measure (labor vs. TFP) – open questions:
 - Impact on workers vs. Impact on firms
 - Role of institutions/market structure

The challenge of cross-country analysis

- Macro data
 - e.g. SNA, PWT
 - Difficult to identify effects (e.g. 2 million growth regressions)
- Sectoral data
 - e.g. OECD-STAN; Unido
 - aggregate sectors obscure causal mechanism
- Meta-analysis of results from micro studies
 - A challenge to control for data, method, and context
 - Little within-country variation in policy (e.g. before and after)
- Cross-country longitudinal micro dataset
 - Generally not possible (disclosure)
 - EUROSTAT attempting to build EU panel, but from existing databases

Distributed micro-data collection

OECD sample

- Demographics (entry/exit) for 10 countries
- Productivity decompositions for 7 countries
- Survival analysis 7 countries
- World Bank sample
 - Same variables, 14 Central and Eastern Europe, Latin America and South East Asia
- EU Sample (10 countries), updates and a few new countries
 - Productivity decompositions
 - Sample Stats and correlations by quartile

Data sources

- Business registers for firm demographics
 - Firm level, at least one employee, 2/3-digit industry
- Production Stats, enterprise surveys for productivity analysis
- Countries:
 - 10 OECD
 - 5 Central and Eastern Europe
 - 6 Latin America
 - 3 East Asia
- Data are disaggregated by:
 - industry (2-3 digit);
 - size classes 1-9; 10-19; 20-49; 50-99; 100-249; 250-499; 500+ (for OECD sample the groups between 1 and 20 and the groups between 100 and 500 are combined)
 - Time (late 1980s late 1990s)

Measurement Error

- Three sources of error potentially affect comparability of indicators built from firm level data:
 - Classical Error of firm-level measure

$$X = X^* + \varepsilon$$

Errors in sample

$$\Omega = \Omega^* + \Psi$$

- Method of Aggregation of Indicator

$$I = A \left[X_f \mid f \in \Omega \right]$$

 Aggregation is harmonized in our approach, but other errors may or may not cancel out in aggregation

Cross-country Comparisons

- Harmonization
 - Sample frames; Variable definitions; Classifications; Aggregation Methods
- Make comparisons that 'control' for errors
 - Exploit the different dimensions of the data (size, industry, time)
 - Use *difference in difference* techniques
- Even in absence of measurement error, interpretation of cross-country indicators requires theory

The different dimensions of producer dynamics

- 1. Firm size
- 2. Firm demographics:
 - Employment and # of firms for entry, exit, continuers: by industry and size class
- 3. Firm survival :
 - 1. Employment and # of survivors, by cohort, industry, year
- 4. Static and dynamic analysis of allocative efficiency:
 - 1. Decompositions of entry/exit contribution
 - 2. Higher moments, covariances, means by quartile
- In lecture, focus on 2 and 4

Evidence of firm turnover

• No major differences across OECD countries, especially after controlling for sector and size effects

- But large differences in size at entry
- Large net entry in transition economies: filling the gaps (?)

Interpretation of Gross Turnover

Theoretical explanations

- Entry explained by 'push' and 'pull' factors
- Exit barriers may effect characteristics of exiting firm more than number of exits
- Measurement errors
 - Conceptual differences in measure (e.g. labor)
 - Differences in underlying data sources

Gross and net firm turnover: how the <u>time dimension</u> sheds light on the evolution of market forces in transition economies

Entry rate by size: how the <u>size dimension</u> may shed light on the nature of firm dynamics

- Monotonic decline in entry rate by size in US
- Less clear link between size and entry rate in other EU countries;
- Any role for entry costs ?

Allocative efficiency : static analysis – Olley-Pakes decompositon

$$P_t = (1/N_t)\sum_i P_{it} + \sum_i \Delta \theta_{it} \Delta P_{it}$$

Allocative efficiency : how the allocative efficiency evolved over time in transition economies

Dynamic allocative efficiency: the role of entry and exit in reallocating resources towards more productive uses

We used the FHK approach, but also compared with Griliches-Regev and Baldwin-Gu

$$\Delta P_{t} = \sum_{i \in C} \overline{\theta_{i}} \Delta p_{it} + \sum_{i \in C} \Delta \theta_{it} (\overline{p_{i}} - \overline{P}) \\ + \sum_{i \in N} \theta_{it} (p_{it} - \overline{P}) - \sum_{i \in X} \theta_{it-k} (p_{it-k} - \overline{P})$$

Finland: 2000-2002. France: 1990-1995. West Germany: 2000-2002. Korea: 1988 & 1993 Latvia: 2001-2002. Netherlands: 1992-2001. Portugal: 1991-1994. Slovenia: 1997-2001. Taiwan: 1986, 1991 & 1996. UK: 2000-2001. USA: 1992 & 1997. Excluding Brazil and Venezuela. Dynamic allocative efficiency: the importance of "technology factors"

We decompose our data for manufacturing into a low technology group and a medium high tech group

 \rightarrow Stronger contribution of entry to productivity growth in medium high tech industries

Contribution of entry to labor productivity growth, five year differencing, gross output

Labor Productivity Dispersion

	ICT-produ	icing	ICT-usi	ICT-using		
Quartile	US	EU	US	EU		
Тор	123	118	74	58		
3	88	87	51	48		
2	61	72	40	46		
Bottom	38	68	26	41		

Units: Thousand US\$ per worker

Producer Heterogeneity: What are we measuring?

- Limitation of most studies of productivity and reallocation:
 - Plant-level output measured as deflated revenue using industry deflator
 - More than just a measurement problem
 - Differences in measured productivity may be capturing differences in market power so results on productivity and reallocation may be capturing demand factors
 - Market selection should be on profitability but positive/normative aspects of selection depend critically on whether selection is on efficiency or market power

Measurement of Plant-level Productivity

$$tfp_i = y_i - \alpha_l l_i - \alpha_k k_i - \alpha_m m_i - \alpha_e e_t$$

All variables in logs, difficult measurement Issues on outputs and inputs and factor elasticities Measurement and Conceptual Issues Interact with Policy Implications

- Many reforms in transition/emerging economies aimed at making markets more competitive
 - And obviously plays role in all countries (e.g., antitrust, deregulation, etc. in U.S.)
- Which and how much do product, credit, labor market distortions matter?
- Focus in this lecture market power

Price/Demand Factors

- Theory: Differentiated product model
 - Prices depend upon both cost/efficiency (-) and demand factors (+)
 - Selection on efficiency (costs/productivity) and demand factors
 - Raises some questions regarding welfare (why demand elasticities vary across producers)
- Empirical analysis:
 - Rich data on businesses with measures of physical quantities and prices (Direct approach as opposed to indirect approach of Melitz, Tybout, etc.)
 - Productivity, prices and reallocation with "corrected" measure of productivity

$$U = y + \alpha \int_{i \in I} q_i di - \frac{1}{2} \left(\eta + \frac{\gamma}{N} \left(\int_{i \in I} q_i di \right)^2 + \int_{i \in I} \delta_i q_i di - \frac{1}{2} \gamma \int_{i \in I} (q_i - \overline{q})^2 di \right)$$

$$q_i = \frac{\alpha}{\eta N + \gamma} + \frac{\eta N}{\eta N + \gamma} \frac{1}{\gamma} \overline{p} + \frac{1}{\gamma} \delta_i - \frac{1}{\gamma} p_i$$

$$q_i = \omega_i x_i$$

$$\pi_{i} = \left(\frac{\alpha}{\eta N + \gamma} + \frac{\eta N}{\eta N + \gamma} \frac{1}{\gamma} \overline{p} + \frac{1}{\gamma} \delta_{i} - \frac{1}{\gamma} p_{i}\right) \left(p_{i} - \frac{w_{i}}{\omega_{i}}\right)$$

$$p_{i} = \frac{1}{2} \frac{\gamma \alpha}{\eta N + \gamma} + \frac{1}{2} \frac{\eta N}{\eta N + \gamma} \overline{p} + \frac{1}{2} \frac{\delta_{i}}{\delta_{i}} + \frac{1}{2} \frac{w_{i}}{\omega_{i}}$$

$$\phi_{i} \equiv \delta_{i} - \frac{w_{i}}{\omega_{i}} \qquad \phi^{*} = \frac{\gamma \alpha}{\eta N + \gamma} \frac{\eta N}{\eta N + \gamma} \overline{p}$$

 $\phi_i < \phi^*$ will not find operations profitable

$$V^{e} = \int_{0}^{w_{u}} \int_{\omega_{l}}^{\delta_{e}} \int_{\phi^{*} + \frac{w}{\omega}}^{\delta_{e}} \frac{1}{4\gamma} (\phi_{i} - \phi^{*})^{2} f(\delta, \omega, w) d\delta d\omega dw - s = 0$$

$$\frac{d\phi^{*}}{d\gamma} = \frac{-\frac{\partial V}{\partial \gamma}}{\frac{\partial V}{\partial \phi^{*}}}$$
$$\frac{\partial V^{e}}{\partial \gamma} = \int_{0}^{c_{u}} \int_{\omega_{l}}^{\delta_{e}} \int_{\phi^{*}+\frac{w}{\omega}}^{\delta_{e}} -\frac{1}{4\gamma^{2}} \left(\delta - \frac{w}{\omega} - \phi^{*}\right)^{2} f(\delta, \omega, w) d\delta d\omega dw < 0$$
$$\frac{\partial V^{e}}{\partial \gamma} = \int_{0}^{c_{u}} \int_{\omega_{l}}^{\omega_{u}} \frac{1}{4\gamma} \left(\phi^{*} + \frac{w}{\omega} - \frac{w}{\omega} - \phi^{*}\right)^{2} f\left(\phi^{*} + \frac{w}{\omega}, \omega, w\right) d\omega dw$$
$$- \int_{0}^{c_{u}} \int_{\omega_{l}}^{\omega_{u}} \int_{\phi^{*}+\frac{w}{\omega}}^{\delta_{e}} \frac{1}{2\gamma} \left(\delta - \frac{w}{\omega} - \phi^{*}\right) f(\delta, \omega, w) d\delta d\omega dw < 0$$

Key predictions:

Data and Measurement

- Census of Manufactures for 1982, 1987, 1992, 1997
- Physical quantity/price data available for selected sectors:
 - 11 very detailed sectors
- TFPQ (physical) and TFPR (revenue) measured using std. index number approach (output less cost-share weighted inputs)
- Materials measured as cost of materials with industry materials deflator
 - Implications for interpretation of TFPQ:

Estimation and Conceptual Issues

- TFP measured using cost shares
- Demand equations estimated using TFP as an instrument
 - Elasticities vary by product but not within product
- All exercises control for complete set of product/year interactions

Basic Facts

- Heterogeneity and persistence in prices, TFPQ, TFPR
- Prices and TFPQ inversely related
 - Makes sense more efficient/low cost producers have lower prices
- Var(TFPQ) > Var(TFPR)
- High rates of entry/exit

Correlations								
Variables	Traditional Output	Revenue Output	Physical Output	Price	Traditional TFP	Revenue TFP	Physical TFP	
Traditional Output	1.00							
Revenue Output	0.99	1.00						
Physical Output	0.98	0.99	1.00					
Price	-0.03	-0.03	-0.19	1.00				
Traditional TFP	0.19	0.18	0.15	0.13	1.00			
Revenue TFP	0.17	0.21	0.18	0.16	0.86	1.00		
Physical TFP	0.17	0.20	0.28	-0.54	0.64	0.75	1.00	
Standard Deviations								
Standard Deviations	1.03	1.03	1.05	0.18	0.21	0.22	0.26	

Three main exercises

- Selection equation:
 - Exit = f(TFPQ, prices)
 - TFPQ is, in principle, a good index of cost/efficiency
 - Controlling for TFPQ implies controlling for cost/efficiency so can isolate demand factors
- Evolution of TFPR, TFPQ, prices (continuers, entry, exit)
- Productivity and reallocation decompositions using TFPQ and TFPR

Differences Between Continuing, Entering and Exiting

	Unweighted Regression		Weighted Regression		
	Exit Dummy	Entry Dummy	Exit Dummy	Entry Dummy	
Variable					
Traditional TFP	-0.0202	0.0014	-0.0285	0.0414	
	0.0045	0.0043	0.0048	0.0053	
Revenue TFP	-0.0224	0.0124	-0.0340	0.0448	
	0.0048	0.0046	0.0049	0.0055	
Physical TFP	-0.0207	0.0166	-0.0305	0.0999	
,	0.0054	0.0052	0.0058	0.0064	
Price	-0.0018	-0.0042	-0.0035	-0.0551	
	0.0036	0.0035	0.0040	0.0045	
Demand Shock	-0.3540	-0.3656	-0.6364	-0.0927	
	0.0251	0.0243	0.0293	0.0326	

	Specification:	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
Unweighted Regressions									
Traditional TFP		-0.073 <i>0.014</i>							
Revenue TFP			-0.063 0.013						
Physical TFP				-0.040 <i>0.012</i>			-0.062 0.014	-0.034 <i>0.012</i>	
Prices					-0.021 0.018		-0.069 <i>0.021</i>		
Demand Shock						-0.047 0.003		-0.047 0.003	
		We	ighted Regress	sions					
Traditional TFP		-0.055 0.012							
Revenue TFP			-0.062 <i>0.011</i>						
Physical TFP				-0.031 <i>0.010</i>			-0.059 0.012	-0.028 0.009	
Prices					-0.034 0.014		-0.078 <i>0.017</i>		
Demand Shock						-0.038 0.002		-0.038 0.002	

Exit Probits

Productivity Decompositions

		Components of Decomposition					
		Within	Between	Cross	Entry	Exit	Net Entry
Productivity Measure	Total Growth						
Traditional							
	2.31	39.35	-16.62	47.72	23.22	6.34	29.55
Revenue							
	5.09	66.43	-10.08	25.95	13.99	3.71	17.70
Physical							
	5.09	67.78	-7.91	13.81	23.97	2.35	26.32

Main Findings

- Exiting businesses have lower prices and lower productivity (either TFPQ or TFPR) than incumbents or entrants.
- Entering businesses have lower prices than incumbents.
- Entering businesses have higher TFPQ but not higher TFPR than incumbents
- Decompositions of aggregate TFPQ vs. TFPR suggests that the results in the existing literature may have understated the contribution of entry (entrants have low prices).

Demand vs. Efficiency in Selection?

- Lower productivity establishments and lower price establishments are more likely to exit.
- Controlling for both price and productivity effects simultaneously shows that both factors are important for survival as implied by the theory.

Where do we go from here?

Theory:

- Nature of product differentiation/market structure:
 - Welfare consequences?
- Evidence:
 - More sectors and countries
 - How to estimate differences in elasticities across businesses producing same product?

The World?

- Distortions in product, credit, labor markets all are relevant for productivity and reallocation.
- See Eslava et. al. (2005)