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A Price Indices

A.1 CUPI Price Index

Our baseline results use Redding and Weinstein’s (2020) CUPI price indices at the plant level
as deflators. Here, we follow Redding and Weinstein (2020) to derive the CUPI index in the
context of our model. The change in prices from one period to the next in our model is:
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With this, the change in prices between the two periods (equation (1)) can be written:
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adjusts for changes in appeal for con-

tinuing products, addressing the consumer valuation bias. Plugging into equation (5), we

1This is by contrast to empirical price indices that weight across products with variable weights ωfjt ̸= ωft,
such as the commonly used Sato-Vartia approach (Sato, 1976; Vartia, 1976; Feenstra, 1994). Under such
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using variable weights ignore this term leads to what Redding and Weinstein (2020) have called the “consumer
valuation bias” the traditional empirical approaches to economically motivated price indices.
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We similarly obtain a measure of materials by deflating material expenditure by plant-
level price indices for materials, pmft, using information on individual prices and quantities of
material inputs. We construct pmft using an analogous approach to that used to construct
output prices. The underlying assumption is that Mft, the index of materials quantities
used, is a CES aggregate of individual inputs. As is the case with output prices, until we
have an estimate of the elasticity of substitution, we can only build a consecutively-common-
basket price index pm∗

ft for plant f , and carry an adjustment factor ΛM
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attributes on the cost side in our growth decomposition. We use this price index as deflator for
materials expenditure to obtain our TFPQ measure. We use for inputs the same elasticity
of substitution estimated for outputs. We recognize that using the same elasticity for inputs
and outputs is a strong assumption, but find that it does no affect our results in an important
way.

A.2 Initializing a Plant’s CUPI Price Index

A plant’s price index is constructed as
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across plants, year B is the first year in which plant f is present in the survey, and Pbase,B is
an overall base. We use 1982 as the base year, so Pbase,1982 = 1. For plants with B ̸= 1982,
Pbase,B is set equal to the geometric mean of the price index across plants that we observe
prior to year B. Notice that our approach takes advantage of cross sectional variability

across plants for any given product or input j. In the plant’s base year B,
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the average producer of product j. For other plants, it will capture dispersion in price levels
around that average.2

2We deal with excessive noise from partial-year reporting and other sources by eliminating outliers. In par-
ticular, in any given year we consider only products that represent at least 2% of sales of the respective plant.
Shares are re-calculated accordingly for this restricted basket. We also winsorize the 2% tails at each step of
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B Firm’s Problem

Firm chooses Xt to solve:
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material inputs, and γ = α + β + ϕ. Consequently, Cft is itself a Cobb Douglas aggregate

of factor prices: Cft = r
α
γ

ftw
β
γ

ftpm
ϕ
γ

ft. We note that we do not have information on the rental
price of capital, which then goes into wedges (see below). Consequently,

pfjt

pfjt−1
;

P∗
ft

P∗
ft−1,Ω

f
t,t−1

;
Pft

Pft−1
.

We also winsorize adjustment factors at the 5% level. Extreme changes in the baskets of goods, where
common (t,t − 1) products represent a negligible share of revenue in either t or t − 1 imply extreme values

for lnΛQ
ft. These extreme changes may partly reflect measurement error in an enviroment where baskets of

goods are auto-reported into relatively wide product components.
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, because M is the only variable factor in our

estimations. As discussed in the main text, using this expression for the markup µDL
ft yields

a discrepancy between the ratio of estimated output elasticity to the cost share of revenue and
the ratio of the model’s markup and the revenue wedge. This discrepancy can be accounted
for by a factor-specific wedge yielding:
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The factor-specific wedge is already implicitly incorporated in the sales wedge as the latter
is a composite wedge measure that captures any source of discrepancy between actual and
sales implied by the static model based on model parameters and attributes. Factor-specific
wedges will have an impact on scale but also will impact factor mix. This implies that
there is an additional potential impact of a factor-specific wedge on first-order conditions for
individual inputs. This factor-specific wedge may have a variety of sources, including factor-
specific frictions and wedges, measurement, and specification issues. The latter includes, for
example, differences in the actual vs. estimated factor elasticity for the variable factor. If we
use equation (B) and the type of structural decomposition presented in appendix G, we find
that about 65% of measured µ̂DL

ft is accounted for by the factor-specific wedge.
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C Supplementary Results

Production function coefficients by sector are shown in Table C.1, while Table C.2 describes
the sector classification.

Table C.1: Factor and demand elasticities by sector

Sector β α ϕ σw σ σw/σ γ γ(1− 1/σ)

311 0.26 0.11 0.69 3.29 1.82 1.81 1.05 0.47
313 0.26 0.07 0.64 4.14 2.31 1.80 0.98 0.55
321 0.29 0.21 0.49 3.72 2.09 1.78 0.98 0.51
322 0.15 0.10 0.67 4.65 2.57 1.81 0.93 0.57
323 0.24 0.15 0.56 3.25 1.81 1.80 0.94 0.42
324 0.21 0.10 0.66 4.24 2.40 1.77 0.97 0.57
331 0.27 0.13 0.57 3.20 1.74 1.84 0.97 0.41
332 0.29 0.06 0.64 2.90 1.59 1.82 0.98 0.37
341 0.40 0.10 0.58 2.15 1.20 1.79 1.08 0.18
342 0.49 0.14 0.38 2.68 1.42 1.88 1.01 0.30
351 0.43 0.27 0.40 4.98 2.75 1.81 1.09 0.69
352 0.40 0.20 0.49 3.41 1.86 1.83 1.09 0.51
355 0.48 0.03 0.52 4.33 2.38 1.82 1.03 0.60
356 0.38 0.13 0.56 2.52 1.39 1.81 1.07 0.30
362 0.65 0.28 0.23 3.02 1.68 1.80 1.16 0.47
369 0.57 0.20 0.34 4.49 2.54 1.77 1.11 0.68
371 0.51 0.20 0.49 3.28 1.74 1.88 1.20 0.51
381 0.30 0.12 0.54 2.67 1.48 1.80 0.97 0.31
382 0.45 0.07 0.50 3.27 1.82 1.80 1.02 0.46
383 0.29 0.14 0.56 3.46 1.91 1.81 1.00 0.47
384 0.41 0.13 0.53 4.63 2.58 1.79 1.06 0.65
385 0.38 0.19 0.39 3.77 2.07 1.83 0.96 0.49
390 0.32 0.15 0.53 3.24 1.78 1.82 1.00 0.44

Average 0.37 0.14 0.52 3.53 1.95 1.81 1.03 0.48
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Table C.2: Sector classifications (3 digit ISIC)

Sector Description Observations

311 Food manufacturing (311 and 312). 31,524
313 Beverage industries (313) and Tobacco industries (314). 3,025
321 Manufacture of textiles. 7,619
322 Manufacture of wearing apparel, except footwear. 18,542
323 Manufacture of leather and products of leather, leather substitutes and fur, except

footwear and wearing apparel.
2,678

324 Manufacture of footwear, except vulcanized or moulded rubber or plastic footwear. 6,516
331 Manufacture of wood and wood products, except furniture. 4,190
332 Manufacture of furniture and fixtures, except primarily of metal. 8,213
341 Manufacture of paper and paper products. 4,190
342 Printing, publishing and allied industries. 8,576
351 Manufacture of industrial chemicals. 3,276
352 Manufacture of other chemical products (352); Petroleum refineries (353); Manu-

facture of miscellaneous products of petroleum and coal (354).
10,378

355 Manufacture of rubber products. 1,929
356 Manufacture of plastic products not elsewhere classified. 10,228
362 Manufacture of pottery, china and earthenware (361) and Manufacture of glass and

glass products (362).
2,179

369 Manufacture of structural clay products. 5,900
371 Basic metal industries (371 and 372). 2,471
381 Manufacture of cutlery, band tools and general hardware. 13,006
382 Manufacture of machinery except electrical. 8,862
383 Manufacture of electrical machinery, apparatus, appliances and supplies. 5,406
384 Manufacture of transport equipment. 4,125
385 Manufacture of professional and scientific, and measuring and controlling equip-

ment not elsewhere classified, and of photographic and optical goods.
1,350

390 Other manufacturing industries. 4,265

Note: Descriptive statistics are restricted to a sample of plants observations which have information on all
measured plant attributes.
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Table C.3: Sector classifications for first 15 sectors at 3 digit CPC

Sector Description Observations

211 Meat and meat products 3,060
212 Prepared and preserved fish 290
213 Prepared and preserved vegetables 290
214 Fruit juices and vegetable juices 181
215 Prepared and preserved fruit and nuts 842
216 Animal and vegetable oils and fats (216); Cotton linters (217); Oil-cake and other

residues resulting from the extraction of vegetable fats or oils; flours and meals
of oil seeds or oleaginous fruits, except those of mustard; vegetable waxes, except
triglycerides; degras; residues resulting from the treatment of fatty substances or
animal or vegetable waxes (218)

1,209

221 Processed liquid milk and cream 458
229 Other dairy products 2,369
231 Grain mill products 4,735
232 Starches and starch products; sugars and sugar syrups n.e.c 225
233 Preparations used in animal feeding 1,529
234 Bakery products 10,795
235 Sugar 633
236 Cocoa, chocolate and sugar confectionery 1,144
237 Pasta, macaroni, noodles, couscous and similar farinaceous products 735

Note: Number of observations are restricted to a sample of plants observations which have information on
all measured plant attributes.

Table C.4: Distribution of CPC 3-digit group sizes

Min P25 P50 P75 Max Average

Observations in group 38 375 728 1,545 20,867 1,517
Observations in group-year 2.7 12.1 23.5 49.8 673.1 48.98

Note: Number of observations are restricted to a sample of plants observa-
tions which have information on all measured plant attributes.
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Table C.5: Distribution of Largest Plants’ Markup Relative
to Sector*Year Average

Largest Second Third

Average 2.79 1.37 1.23
10 1.07 1.04 1.03
25 1.24 1.14 1.08
50 1.64 1.30 1.18
75 2.39 1.54 1.35
90 3.68 1.74 1.49
95 6.38 1.98 1.60
99 29.38 2.40 1.77
Max 46.36 4.59 2.05
N 713 713 713

Note: There are 23 sectors in 31 years (23× 31 = 713) which gives one

observation per sector*year. Distributions are restricted to a sample of

plants observations which have information on all measured plant

attributes.

D Markups

Under Cournot competition, the firm’s (potentially variable) markup after the distortion,

µft =
Pft

mcft(1−τft)
−1 , is given by:

µft =
1

1−
(
1
σ
−
(
σ−1
σ

)
sft
) =

σ

(σ − 1) (1− sft)
(12)

Proof. Max
Qft

(1− τft)PftQft −CT leads to first orden condition
(
Pft +Qft

dPft

dQft

)
=

mcft

(1−τft)
.

Dividing by Pft we obtain
1

µft
= 1+

Qft

Pft

dPft

dQft
= 1− ϵ−1 (where we have denoted ϵft ≡−Qft

Pft

dPft

dQft
),

so that

µft =

(
ϵft

ϵft − 1

)
(13)

In turn, under Qft = dσftP
−σ
ft

Et

P 1−σ
t

and its implication that Pft = dftQ
− 1

σ
ft

(
Et

P 1−σ
t

) 1
σ

=

dftQ
− 1

σ
ft

(
Qt

P−σ
t

) 1
σ
and allowing for market power so that dPt

dQft
̸= 0, the inverse of the demand

elasticity as perceived by the firm (ϵ−1
ft ≡ − dPft

dQft

Qft

Pft
) is:
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ϵ−1
ft = −

(
∂Pft

∂Qft

+
∂Pft

∂Pt

∂Pt

∂Qft

)
Qft

Pft

(14)

= −
(
− 1

σ

Pft

Qft

+

(
σ − 1

σ

)
Pft

Pt

∂Pt

∂Qft

)
Qft

Pft

=

(
1

σ
−
(
σ − 1

σ

)
∂Pt

∂Qft

Qft

Pt

)
=

(
1

σ
+

(
σ − 1

σ

)
sft

)
(15)

where the last line uses Sheppard’s lemma: − ∂Pt

∂Qft

Qft

Pt
= sft.

Equations (13) and (15) together imply µ−1
ft = 1−ϵ−1

ft = 1−
(
1
σ
+
(
σ−1
σ

)
sft
)
=
(
σ−1
σ

−
(
σ−1
σ

)
sft
)
,

so that

µft =
1

1−
(
1
σ
+
(
σ−1
σ

)
sft
)

µ =
σ

σ − 1
if sft = 0

The markup µft =
σ

(σ−1)(1−sft)
is increasing in the firm’s market share. Thus, the markup

is itself a function of attributes:

sft =
PftQft

Et

=
DftQ

1− 1
σ

ft

Et

=
DftA

1− 1
σ

ft X
γ(1− 1

σ )
ft

Et

(16)

=
DftA

1− 1
σ

ft

Et

γ (1− τft)
(
1− 1

σ

)
DftA

1− 1
σ

ft

Cftµft

(
σ−1
σ

)


γ(1− 1
σ )

1−γ(1− 1
σ )

(17)

so that

sft

(
σ − (σ − 1)sft

σ − (σ − 1)sft − 1

) γ(1− 1
σ )

1−γ(1− 1
σ ) =

D

1

1−γ(1− 1
σ )

ft A

1− 1
σ

1−γ(1− 1
σ )

ft

Et

(
γ (1− τft)

(
1− 1

σ

)
Cft

(
σ−1
σ

) ) γ(1− 1
σ )

1−γ(1− 1
σ )

The LHS is increasing in s and the RHS is increasing in D and A, and decreasing in τ and
C. Thus, sft and the markup are increasing in D and A, and decreasing in τ and C.

E Efficiency, Quality/appeal and Endogenous Innova-

tion

Firm choices depend on productivity components such asDft and Aft. We take them as given
when a firm chooses its size, but note that our results should help guide future work, both
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theoretical and empirical, about the specific drivers of measured productivity. To further
understand the nature of TFPQ vs. quality/appeal, and potential mechanisms through
which businesses accumulate each of them, we have studied attributes of these attributes,
including how they correlate with different types of innovation efforts that can be inferred
from reports in the manufacturing survey.

Table E1 presents univariate regressions of Dft and Aft on indicators of efforts to innovate
in process, product, or the relationship with clients. Information obtained from the Techno-
logical Development and Innovation Survey and the AMS(DANE, 2003-2013b, 1982-2013a).
Both Dft and Aft have been standardized in order to make an appropriate comparison of
coefficient magnitudes. We use dummy variables for whether there is an investment spike
(defined as a rate of investment in physical assets to initial capital above 25%); whether the
plant receives orders online; whether the plant introduced a product that is new to the plant
and for which it charges a high-price (above the 75th percentile of the product class); or
took an action such that the price of an existing product increased from below the median
in its class to above the 75th percentile. The last two indicators are built from the record
of individual products that we also use to build price indices. We also regress Aft and Dft

(individually) on the (log) value of spending on advertisement and spending on R&D.
Conditioning on sales (which induce a correlation between Aft and Dft) efficiency is

positively correlated with investment: Aft is 0.07 standard deviations (s.d.) higher when the
plant undergoes an investment spike, which may imply purchasing machinery that is more
efficient in production. Interestingly, efforts that suggest product innovation are strongly
negatively correlated with efficiency, suggesting that producing more quality may be costly
in terms of quantities produced. For instance, conditional on sales, the introduction of a new
high price product is related to a 0.21 s.d. decrease in efficiency. Meanwhile, quality/appeal
displays positive correlations with all the innovation efforts recorded in Table E1. Conditional
on sales, these correlations are particularly large with the indicators for the introduction of
a high price product (0.13 s.d.) and for innovations such that an existing product becomes
high price (0.10 s.d.).
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Table E.1: Correlations From Univariate Regressions Between Observables and
TFPQ and Quality/Appeal

D (quality/appeal) TFPQ (technical efficiency)

Conditioned
on sales,

contempora-
neous

regressor

Not
conditioned
on sales,

contempora-
neous

regressor

Not
conditioned
on sales,
lagged

regressor

Conditioned
on sales,

contempora-
neous

regressor

Not
conditioned
on sales,

contempora-
neous

regressor

Not
conditioned
on sales,
lagged

regressor
Dependent variable

(1) (2) (3) (4) (5) (6)

E
a
ch

ro
w

co
rr
e
sp

o
n
d
s
to

a
d
iff
e
re
n
t
re
g
re
ss
io
n

Investment spike (investment rate > 25%)
0.0208*** 0.2629*** 0.2659*** 0.0693*** 0.1157*** 0.0198***
(0.0023) (0.0061) (0.0065) (0.0062) (0.0062) (0.0066)

Plant introduced new product of high price
(> 75%)

0.1254*** 0.2929*** 0.2843*** -0.2073*** -0.1748*** -0.1488***
(0.0062) (0.0161) (0.0172) (0.0162) (0.0166) (0.0179)

Increased price of product from low to high
price (< 50% to > 75%)

0.0988*** 0.2604*** 0.2209*** -0.2415*** -0.2101*** -0.1230***
(0.0045) (0.0134) (0.0145) (0.0132) (0.0136) (0.0148)

Advertisement spending (logs) 0.0188*** 0.3042*** 0.3031*** -0.0399*** 0.0341*** 0.0302***
(0.0007) (0.0010) (0.0011) (0.0018) (0.0013) (0.0014)

Total investment in R&D (logs) -0.0004 0.2722*** 0.2734*** -0.0247*** 0.0360*** 0.0360***
(0.0015) (0.0024) (0.0025) (0.0041) (0.0030) (0.0030)

Internet used for customer support 0.0288*** 0.4384*** 0.4519*** -0.0480*** 0.0247** 0.0229*
(0.0051) (0.0118) (0.0136) (0.0124) (0.0122) (0.0138)

Sector*Time FE Yes Yes Yes Yes Yes Yes
Controlling for sales Yes No No Yes No No

Note: Dft and Aft have been standardized in order to compare the coefficients across both outcomes in terms of standard deviations of each variable.
Information on the introduction of products and price changes is available since 1983 (the second year in our sample), the information on advertisement
spending and investment is available for the entire sample (1982-2012), investment in R&D information is available for the sub-period 2003-2012, and
information on internet is available for the sub-period 2008-2012. Results restrict to a sample of plants observations which have information on all
measured plant attributes. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

Table E2 presents an OLS analysis of the persistence in wedges, and the role of lagged
wedges for the evolution of sales, output, TFPQ, and demand. Wedges are standardized to
facilitate interpretation. Residual wedges exhibit considerable positive persistence but less
so than capabilities captured by Aft and Dft. This is consistent with residual wedges in
part reflecting non-convex adjustment costs. Such costs generate a wedge that is correlated
with attributes and that only persists up to the moment in which the benefit of adjusting
overcomes its fixed cost.

As in models of endogenous attributes, contemporaneous attributes and wedges corre-
late with higher lagged wedges (higher implicit lagged subsidies), even after controlling for
persistence in attributes, but wedges do not account for much variation in outcomes and
attributes. For example, a one standard deviation increase in lagged residual wedges yields
a 0.06 increase in TFPQ and a 0.02 increase in demand. These are small effects relative
to the standard deviations of TFPQ and demand reported in Table 2 (0.76 and 0.9, re-
spectively).3 In turn, as hypothesized, the interaction effect between the lagged dependent
variable and lagged residual wedges (negatively correlated with lagged attributes, as seen
above) is negative. That is, while higher lagged residual wedges are associated with higher
outcomes and attributes, they correlate with reduced persistence in outcomes and attributes.
But, the interacted effects are also very small.

Results from our decomposition of sales show that, given attributes, high-attributes plants
are being implicitly taxed while low-attributes plants are implicitly subsidized (by the envi-

3Lagged wedges also exhibit modest correlation with current output and sales.
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Table E.2: Residual Wedge and Attributes Persistence

(1) (2) (3) (4) (5)
VARIABLES Residual

Wedge
(subsidy)

Output Sales TFPQ Demand shock

Lagged Dependent Variable 0.988*** 0.991*** 0.934*** 0.988***
(0.001) (0.001) (0.001) (0.001)

Lagged residual wedge (subsidy, standarized) 0.760*** 0.040*** 0.045*** 0.059*** 0.024***
(0.002) (0.001) (0.001) (0.001) (0.001)

Lagged residual wedge (subsidy,
standarized)*Lagged DV

-0.009*** -0.010*** -0.009*** -0.011***
(0.001) (0.001) (0.001) (0.001)

Observations 145,158 145,158 145,158 145,158 145,158
R-squared 0.560 0.945 0.948 0.803 0.942
Sector*Time FE Yes Yes Yes Yes Yes

Note: Results restrict to a sample of plants observations which have information on all measured plant attributes.
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

ronment, not necessarily by the government). Causality in the opposite direction is also likely
and supported by the theory: technical efficiency and product-plant appeal, while partly de-
termined by exogenous stochastic dynamics (as in, e.g., Hopenhayn, 2016; Hopenhayn and
Rogerson, 1993), partly also result from endogenous investments to improve performance (as
in Acemoglu et al., 2018; Aw, Roberts and Xu, 2011). In the latter class of models, firms
invest in future attributes (e.g., via R&D expenditure) to the extent that they expect high
returns from such investments. High attributes plants should, therefore, invest more in a
context with persistence in attributes. Since wedges make future profitability less dependent
in attributes, they should reduce the incentive to invest given by high attributes, especially
if wedges are negatively correlated with attributes (e.g. Hsieh and Klenow, 2014). Wedges
may also have a direct effect on investment if, for instance, the presence of fixed costs of
production implies that a subsidy directly increases the chances of surviving to enjoy the
returns from R&D. Our results in this section align with these ideas.

F Details for the Joint Estimation of Production and

Demand Functions

As in proxy methods for the estimation of the production function, the joint estimation of
production and demand is preceded by a first stage that ensures that TFPQ can be proxied
by an observable factor, in this case, materials, which is conditionally monotonic in TFPQ.
The free input Mft is a function of TFPQft, conditional on quasi-fixed inputs. The FOC for
materials is
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Mft =
ϕ(1− τft)Rft

pmft

(1− 1/σ)

=
ϕ(1− τft)PftQft

pmft

(1− 1/σ)

M1−ϕ
ft =

PftAftK
α
ftL

β
ft(1− τft)(ϕ

σ−1
σ
)

pmft

Within a sector, ϕ and σ display no variability. We thus re-write

lnMft = h

(
lnAft, lnKft, lnLft, ln

P ∗
ftPfB

PM∗
ftPMfB

, ln ΛQ
ft, ln Λ

m
ft, ln sft

)
We have included sft since we do not observe τ but know that all firm choices that

ultimately feed into sft are a function of τ (we have measures for all the other variable terms
in the material’s FOC). In particular, we condition on a flexible polynomial on sft rather than

τft. Furthermore, we have used Pft = P ∗
ftPfB

(
ΛQ

ft

) 1
σ−1

and pmft = PM∗
ftPMfB

(
ΛM

ft

) 1
σ−1 .

Inverting, we obtain

lnAft = h−1

(
lnMft, lnKft, lnLft, ln

P ∗
ftPfB

PM∗
ftPMfB

, ln ΛQ
ft, ln Λ

m
ft, ln sft

)
≡ h−1

(−→
W
)

(18)

Incorporating this expression, recognizing that Qft is subject to measurement error and
other shocks not observed by either the econometrician or the firm at the time of making
input choices, and denoting by Q̂ft = Qftεft measured Qft, we write:

Q̂ft = α lnKft + β lnLft + ϕ lnMft + h−1
(−→
W
)
+ εft (19)

so that

Q̂∗
ft = α lnKft + β lnLft + ϕ lnMft −

1

σ − 1
lnΛQ

ft +
ϕ

σ − 1
lnΛM

ft + h−1
(−→
W
)
+ εft (20)

where εft is measurement error, and the “∗” refers to the fact that we are estimating the

transformed Q∗
ft =

Rft

P ∗
ft

rather than Qft =
Rft

Pft
.

In the first stage, we proxy productivity and eliminate measurement error by estimating

20 through a flexible third-degree polynomial φ∗
(−→
W
)
estimated via OLS and obtaining the

predicted φ̂∗
(−→
W
)
.

We then estimate the system of demand and production functions replacing lnQ∗
ft with

φ∗
(−→
W
)
in the production function. We use GMM methods and rely on the moment condi-

tions presented in the main text for identification. Our estimates of production coefficients
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are initialized at the respective OLS estimates of the production function augmented with
ΛQ

ft and ΛM
ft regressors (coefficients for ΛQ

ft and ΛM
ft also freely estimated by OLS). Our σ

estimate is initialized through an IV estimation of demand function, where the instrument
for Q is the residual from the OLS production function. The IV procedure follows the spirit
of Foster, Haltiwanger and Syverson (2008), though only for initialization.

G Variance Decomposition

This appendix explains the structural form variance decomposition presented in Tables 3,
4, and 7 of the main text. We follow a two-stage procedure, similar to that in Hottman,
Redding and Weinstein (2016).

G.1 Structural Decomposition

The structural decomposition for sales and sales growth is guided by:

Rft = dκ1
fta

κ2
ftpm

−ϕκ2

ft w−βκ2

ft µ−γκ2

ft (χ̂tχft)
1− 1

σ

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−ϕκ2
(
wft

wf0

)−βκ2
(
µft

µf0

)−γκ2

(χ̂tχft)
1− 1

σ (21)

1. Guided by the above equation, we obtain lnχft as a residual from the following
equation:

ln
Rft

Rf0

= βD ln

(
dft
df0

)
+ βA ln

(
aft
af0

)
+ βµ ln

µft

µf0

(22)

+βM ln

(
pmft

pmf0

)
+ βw ln

(
wft

wf0

)
+ ln (χft)

(1− 1
σ )

where βD = κ1; βA = κ2; βµ = −γκ2; βM = −ϕκ2; βw = −βκ2; κ1 = 1

1−γ(1− 1
σ )
; κ2 =(

1− 1
σ

)
κ1. We calculate these parameters using our estimates of factor elasticities in tech-

nology and the elasticity of substitution. Because we use these parameters that stem from
the structure of the model, we label the residual as a “residual ” wedge. The attributes dft,
aft, pmft and wft correspond to the idiosyncratic components of demand, technology, and
input price shocks, estimated as already described (Dft = Dtdft and so on).

2. We then estimate the following equations:
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βD ln

(
dft
df0

)
= ρ0,D + ρD ln

Rft

Rf0

+ νft,D (23)

βA ln

(
aft
af0

)
= ρ0,A + ρA ln

Rft

Rf0

+ νft,A

βµ ln

(
g (sft)

g (sf0)

)
= ρ0,µ + ρµ ln

Rft

Rf0

+ νft,A

βM ln

(
pmft

pmf0

)
= ρ0,M + ρM ln

Rft

Rf0

+ νft,M

βw ln

(
wft

wf0

)
= ρ0,w + ρw ln

Rft

Rf0

+ νft,w

ln ̂̃χft = ρ0,υ + ρυ ln
Rft

Rf0

+ νft,υ

We now prove that the contribution of each attribute to the variance of sales equals the
ratio of its covariance with sales to the variance of sales multiplied by its structural parameter
in equation 22. Also that, by the properties of OLS, the contribution of the different factors
considered add up to 1. We conduct the proof for the two-covariance case for simplicity.

For any given log-linear equation (such as 22):

Yf = β1X1f + β2X2f + εi (24)

If one estimates by OLS The set of equations

β1X1f = γ1,0 + γ1Yf + ν1i (25)

β2X2f = γ1,0 + γ2Yf + ν2i (26)

and

εf = γε,0 + γεYf + νεf (27)

The estimated parameters for j = {1, 2} are:

γ̂j =
Cov(βjXjf , Yf )

V ar(Yf )
= βj

Cov(Xjf , Yf )

V ar (Yf )

= βjCorr(Xji, Yf )

(
V ar(Xjf )

V ar (Yf )

) 1
2

Since εf = Yf − (β1X1f + β2X2f ), γ̂ε can be re-written as:

γ̂ε =
Cov(Yf − (β1X1f + β2X2f ), Yf )

V ar (Yf )

=
V ar (Yf )− β1Cov(X1f , Yf )− β2Cov(X2f , Yf )

V ar (Yf )
= 1− γ̂1 − γ̂2
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G.2 Decomposition by Ages

To conduct the decomposition by ages, we expand equations 22 and 23 to include interactions
with the different age groups. Suppose there are two mutually exclusive groups: B and C.
We redefine the equation 22 as:

Yf = β1X1f + β2X2f + εi (28)

ln
Qft

Qf0

= β1,CX1fdCf + β1,BX1fdBf (29)

+β2,CX2fdCf + β2,BX2fdBf + εi (30)

where dCf = 1 if f belongs to group C (say, an age), and everything else as defined
previously.

The new decomposition equation for, say, X1 will be given by:

β1,CX1fdCf + β1,BX1fdBf = γC1YfdCf + γB1YfdBf + ν1f (31)

εf = γCεYfdCf + γBεYfdBf + νεf (32)

Just as before ˆγC1 + ˆγCε = ˆγB1 + ˆγBε = 1.

H Selection

By construction, we focus on survivors and on growth life cycle growth from birth to age t
of plants that have survived to age t. We contrast here survivors, defined as year t plants
also present in t+ 1, with plants about to exit, which are year t plants not present in t+ 1.
Figure H.1 illustrates that the size of exits-to-be departs significantly, downwards, from that
of continuers. But, the differential size of plants that exit only affects marginally the overall
average. That is, the average patterns described in the main text are mainly driven by plants
present in t that continue to exist is t+ 1.
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Figure H.1: Size Distribution of Exiters vs. Continuers
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Note: Lines depict the average for each variable based only on idiosyncratic variation. Information from the sample of plant
observations for which all measured attributes are observable.

Figure H.2 shows different attributes separately for continuers and exits-to-be. The most
noteworthy difference is much poorer demand for plants about to exit compared to those that
will continue, suggestive of demand side attributes being particularly important determinants
of exit. TFPQ is also lower for exits, although the TFPQ premium of survivors is minor
compared to their dft premium. Exits-to-be also pay lower wages, another sign of negatively-
correlated wedges that allow low-productivity plants (such as exits-to-be) to expand beyond
their efficient size, and are likely to survive beyond the efficient time.
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Figure H.2: Attributes: Exiters vs. Continuers
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Note: Lines depict the average for each attribute based only on idiosyncratic variation. Information from the sample of plant
observations for which all measured attributes are observable.

Table H.1 further carries our variance decomposition of sales separately for these two
groups of plants. Quality-adjusted productivity still plays an important role for exiters
in explaining their size at the moment in which they are about to exit. Despite demand
shocks being the dimension where most marked differences are observed between exits-to-be
and continuers, especially for older ages (Figure H.2), TFPQ tends to play a slightly more
significant role in explaining the cross-sectional variance of size among exiters than among
continuers.
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Table H.1: Decomposition of Sales by Age: Exiters vs. Continuers

Continuers Exiters

Weighted
avg. ages

Age 3 Age 10 Age 20 Weighted
avg. ages

Age 3 Age 10 Age 20

TFPQ-HK 1.116 1.151 1.119 1.108 1.146 1.126 1.139 1.076
TFPQ 0.079 0.112 0.078 0.071 0.104 0.096 0.131 0.064
Demand 1.037 1.039 1.041 1.037 1.042 1.030 1.008 1.012
Composite (HK) wedge -0.116 -0.151 -0.119 -0.108 -0.146 -0.126 -0.139 -0.076
Input prices 0.002 0.001 -0.001 0.005 -0.005 0.001 0.000 0.021
Wages -0.061 -0.060 -0.057 -0.063 -0.070 -0.061 -0.055 -0.070
Markup -0.015 -0.010 -0.011 -0.014 -0.007 -0.005 -0.004 -0.003
Residual wedge -0.042 -0.083 -0.049 -0.036 -0.065 -0.062 -0.079 -0.024
Marginal cost HRW -0.022 -0.029 -0.029 -0.023 -0.036 -0.025 -0.003 -0.009

Note: Weighted average across ages corresponds to the weighted average up to and including age 50. TFPQ HK values correspond to the sum of
the contributions of D and TFPQ; Composite (HK) wedge is the sum of the contributions of input prices, markups, and residual wedges; Marginal
cost HRW is the sum of the contributions of TFPQ, input prices, and residual wedges. In this case we estimate a decomposition pooling across all
sectors, noting that differences when doing so are small, because of the small number of plants that are exits-to-be.

I Cross-Sectional Variability with a Distortion Adjusted

User Cost of Capital

While input prices and idiosyncratic markups can be measured directly from our data, the
same is not true for the user cost of capital and factor-biased distortions. An indirect inference
approach can be implemented, however. Revenue in our model can be written as

Rft = dκ1
fta

κ2
ftpm

−ϕκ2

ft w−βκ2

ft µ−γκ2

ft (χ̂tχft)
1− 1

σ (33)

where the residual wedge χft = (1− τft)
γκ1 ∗

(
rftχ

K
ft

)−ακ2 includes revenue distortions
τft and the idiosyncratic user cost of capital inclusive of distortions with respect to the prices
of other inputs (factor-biased distortions). From the first-order conditions of capital and
labor we obtain:

Kft

Lft

=
α

β

wft

(rftχK
ft)

(34)

Solving for
(
rftχ

K
ft

)
we can decompose χft into its revenue and factor-specific compo-

nents, respectively given by (1− τft)
γκ1 and

(
rftχ

K
ft

)
. Table I.1 shows the result of the

variance decomposition of sales separating the residual wedge into its revenue component
and distortion-adjusted user cost of capital. We find that factor-biased component plays a
minor role in the cross-sectional distribution of sales compared to the residual wedge. That
is, most of the important role we find for residual wedges is driven by revenue wedges rather
than factor-biased ones, including adjustment costs specific to investment in physical assets.
Figure I.1 further shows the decomposition of the composite wedges dissecting the role of
the (adjusted) user cost of capital. It shows that the role of factor-biased distortions is mi-
nor not only on average but across all ages and sections of the TFPQ HK distribution.
The adjusted user cost of capital is slightly more important for older plants, which seem to
pay higher interests and thus become relatively undersized, and for plants at the top five
percentiles of the composite productivity distribution, for which lower user cost of capital
moderates the strongly negative composite wedges they face.
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Table I.1: Variance Decomposition of Sales, Using Estimated
Distortion-Adjusted User Cost of Capital

Levels decomposition Growth decomposition

Unweighted Revenue
Weighted

Unweighted Revenue
Weighted

TFPQ-HK 1.139 1.141 1.216 1.286
TFPQ 0.081 0.085 0.142 0.206
D (quality/appeal) 1.058 1.056 1.074 1.080
Composite (HK) wedge -0.139 -0.141 -0.216 -0.286
Material prices 0.003 -0.003 -0.005 -0.003
Wages -0.073 -0.073 -0.046 -0.043
Markup -0.019 -0.077 -0.009 -0.031
Distortion-Adjusted User Cost of Capital 0.029 0.042 -0.020 0.005
Residual wedge -0.079 -0.029 -0.136 -0.215
Marginal cost HRW -0.039 0.021 -0.065 -0.050

Note: Each value corresponds to the weighted average across ages up to and including age 50. TFPQ HK values
correspond to the sum of the contributions of D and TFPQ; HK wedge is the sum of the contributions of input
prices, markups, and residual wedges; Marginal cost HRW is the sum of the contributions of TFPQ, input prices,
and residual wedges.

Figure I.1: Composite Wedges by Age: The Role of TFPR and its Components
With Distortion-Adjusted User Cost of Capital
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Note: Lines depict average composite HK wedges and its components based only on idiosyncratic variation. Information from
the sample of plant observations for which all measured attributed are observable.
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J Hottman, Redding and Weinstein Framework Ac-

counting Explicitly for Wedges

Our framework closely follows the modeling of the demand side in Hottman, Redding and
Weinstein (2016). On the cost side, however, they model total costs rather than efficiency
and input prices individually and do so at the product level rather than the firm level. They
also abstract from wedges. Expanding HRW’s framework to include wedges explicitly, and
focusing on the case of uniproduct firms where their approach and ours are equivalent, the
firm solves:

Max
Qft

(1− τft)PftQft − CTft (Qft)

where CTft (Qft) is total cost as a function of output. Profit maximization leads to first

orden condition
(
Pft +Qft

dPft

dQft

)
=

∂CTft
∂Qft

(1−τft)
, so that at the optimum

µft =
Pft

∂CTft

∂Qft
(1− τft)

−1
(35)

The associated optimal markup is given by (see appendix D):

µft =
1

1−
(
1
σ
+
(
σ−1
σ

)
sft
) (36)

Moreover, our demand structure is the same as in HRW. The implied demand function
in the case of a uniproduct firm is:

Qft = dσft

(
Pft

Pt

)−σ
Et

Pt

(37)

or

Rft = dσft

(
Pft

Pt

)1−σ

Et (38)

Pft

Pt

= d
σ

σ−1

ft s
1

1−σ

ft (39)

where Rft = PftQft is firm sales and sft =
Rft

Eft
is the firm’s share in aggregate (sector) sales.

Equation 37 is HRW’s equation (5) for the uniproduct case (where dft = φ
σ−1
σ

ft and φft is the
notation used in HRW). Equation 39 is obtained by direct manipulation of 38.

Replacing the optimal markup rule 35 into 38 HRW decompose firm sales into:

Rft = dσft
Et

P 1−σ
t

µft

∂CTft

∂Qft

1− τft

1−σ

(40)
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which is equivalent to HRW’s equation (16). To see the equivalence, notice that in the

uniproduct case
∂CTfjt

∂Qfjt
=

∂CTft

∂Qft
(where j is a product and HRW have denoted by γ̃ft the

average marginal cost across products of a firm), and that dft = φ
σ−1
σ

ft . Firm sales variability
can thus be decomposed into variation attributable to: 1) an aggregate component; 2) firm
idiosyncratic demand dft; 3) firm markup; 4) a distortion-adjusted marginal cost

mcft

(1−τft)
.

HRW’s empirical procedure is as follows:
1) Estimate the demand function 37, in differences with respect to aggregates and over

time, to obtain σ and decompose price (observable) into dft (not observable) and sft (ob-
servable).

2) Estimate the markup µft based on observables, using 36.
3) With these components decompose the idiosyncratic variation of sales from equation

40 into the contributions of dft, µft and the residual component:

∂CTft
∂Qft

(1−τft)
. This is a distortion-

adjusted marginal cost component, which HRW do not further decompose into its
∂CTft

∂Qft
and

(1− τft) components.

K Aggregate productivity

At the sector level (=“aggregate”) define aggregate TFPt as in Hsieh and Klenow (2009)
with our notation:

TFPt =
Qt

Xt

(41)

With multiple inputs and Xft as a Cobb Douglas aggregate of Mft,Kft,and Lft, Xt will

be a Cobb Douglas aggregate of Mt =
∑
It

Mft, Lt =
∑
It

Lft, and Kt =
∑
It

Kft. We assume

that Qft = AftX
γ
ft and define TFPRft ≡ PftQft

Xft
. In this case

TFPRft ≡
PftQft

Xft

= PftAft

Xγ
ft

Xft

(42)

It is also the case that, given that Pft = DftQ
− 1

σ
ft

TFPRft ≡ PftQft

Xft

=
DftQ

1− 1
σ

ft

Xft

=
DftA

1− 1
σ

ft

X
1−γ(1− 1

σ )
ft

(43)

Moreover, at the optimum

Xft =

 DftA
1− 1

σ
ft γ

Cftµft (1− τft)
−1

 1

1−γ(1− 1
σ )

(44)
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Replacing (44) into (43) we obtain:

TFPRft =
Cftµft

γ (1− τft)
(45)

So that Xft in (44) can be written:

Xft =

DftA
1− 1

σ
ft

TFPRft

 1

1−γ(1− 1
σ )

(46)

Replacing 46 into 42:

TFPRft = PftAft

DftA
1− 1

σ
ft

TFPRft


γ−1

1−γ(1− 1
σ )

so that

Pft =

(
TFPRftA

−1
γ

ft D
(1−γ)σ

γ

ft

) γ

σ(1−γ(1− 1
σ ))

Also, working from the definition of TFPt

TFPt ≡ Qt

Xt

=
PtQt

Xt

1

Pt

=
Et

Xt

1

Pt

=
Et

Xt

(∑
It

dσftP
1−σ
ft

) 1
σ−1

=
Et

Xt

(∑
It

dσft

(
TFPRftA

−1
γ

ft D
(1−γ)σ

γ

ft

) γ(1−σ)

σ(1−γ(1− 1
σ ))
) 1

σ−1

=

∑
It

d
σ

(σ−1)

ft D

(γ−1)

(1−γ(1− 1
σ ))

ft A

1

σ(1−γ(1− 1
σ ))

ft TFPRt

TFPR

γ

σ(1−γ(1− 1
σ ))

ft


(σ−1)


1

σ−1

= D
− σ

σ−1

t

∑
It


D

σ
(σ−1)

ft Aft

TFPRγ
ft

 1

σ(1−γ(1− 1
σ ))

TFPRt


σ−1

1
σ−1

(47)

where we have defined TFPRt =
Et

Xt
= PtQt

Xt
=
(

PtQt

Kt

) α
α+β+ϕ

(
PtQt

Lt

) β
α+β+ϕ

(
PtQt

Mt

) ϕ
α+β+ϕ

and

we have used σ
(σ−1)

+ (γ−1)

(1−γ(σ−1
σ ))

= 1

(σ−1)(1−γ(σ−1
σ ))

. Additionally, defining TFPQ HKft =

D
σ

(σ−1)

ft Aft one could write TFPt as in equation (20) from the main text:
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TFPt = D
− σ

σ−1

t

∑
It

(TFPQ HKft

TFPRγ
ft

) 1

σ(1−γ(1− 1
σ ))

TFPRt

σ−1
1

σ−1

(48)

L Components of Allocative Efficiency. The Role of

Distortions

Starting from equation 48 and dividing it by its efficient level, allocative efficiency is given
by (see main text)

AEt =

 1

Nt

∑
It


∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprt


−1

σ−1


1
σ−1

(49)

=

cov

∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


σ−1

,

tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprft


1−σ+ E

tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprft


1−σ

1
σ−1

(50)

where ∆ft = d
σ

(σ−1)

ft aft =
TFPQ HKft

At
; ∆̃t =

(
1
Nt

∑
It

∆

σ−1

σ(1−γ(1− 1
σ ))

ft

) 1
σ−1

; and

tfprt =

(∑
It

tfprft
Xft

Xt

)
.

The covariance term can be further decomposed into the product of the correlation coef-
ficient and the product of standard deviations of the two terms. The following table shows
how the estimated AE and the different counterfactual AE can be decomposed into these
different components.
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Table L.1: Allocative Efficiency and its Components. The Role of Distortions

Sector type

All Low
revenue
curvature
parameter

Intermediate
revenue
curvature
parameter

High
revenue
curvature
parameter

Low
markup
dispersion

High
markup
dispersion

Panel A: Aggregate efficiency

 1
Nt

∑
It


∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprt


−1

σ−1


1
σ−1

AE 0.624 0.727 0.651 0.401 0.671 0.405
Shutting down markups and wedges (only input price disp. remain) 0.679 0.807 0.715 0.392 0.732 0.430
Shutting down input prices and wedges (only markup disp. remain) 0.895 0.968 0.898 0.807 0.941 0.679
Shutting down input prices and markups (only wedges remain) 0.840 0.854 0.861 0.733 0.795 1.054
Shutting down wedges (only input price and markup disp. remain) 0.619 0.776 0.650 0.321 0.688 0.292
Shutting down markups (only input price disp. and wedges remain) 0.704 0.737 0.752 0.464 0.685 0.797
Shutting down input prices (only markup disp. and wedges remain) 0.762 0.855 0.761 0.667 0.787 0.640
Shutting down all (no TFPR dispersion) 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: cov


∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


σ−1

,

 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprft


1−σ

AE -1.142 -0.139 -0.627 -4.427 -0.624 -3.596
Shutting down markups and wedges (only input price disp. remain) -0.292 -0.086 -0.252 -0.678 -0.221 -0.626
Shutting down input prices and wedges (only markup disp. remain) -0.138 -0.024 -0.118 -0.342 -0.073 -0.445
Shutting down input prices and markups (only wedges remain) -0.253 -0.027 -0.136 -0.993 -0.247 -0.278
Shutting down wedges (only input price and markup disp. remains) -0.357 -0.107 -0.330 -0.733 -0.272 -0.763
Shutting down markups (only input price disp. and wedges remains) -0.743 -0.113 -0.394 -2.919 -0.520 -1.799
Shutting down input prices (only markup disp. and wedges remains) -0.584 -0.055 -0.360 -2.105 -0.346 -1.708

Panel C: corr


∆

1

σ(1−γ(1− 1
σ ))

ft

∆̃t


σ−1

,

 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprft


1−σ

AE -0.215 -0.293 -0.219 -0.119 -0.226 -0.161
Shutting down markups and wedges (only input price disp. remain) -0.211 -0.251 -0.212 -0.170 -0.215 -0.194
Shutting down input prices and wedges (only markup disp. remain) -0.590 -0.701 -0.596 -0.454 -0.590 -0.589
Shutting down input prices and markups (only wedges remain) -0.023 -0.106 0.000 -0.040 -0.066 0.176
Shutting down wedges (only input price and markup disp. remain) -0.256 -0.300 -0.262 -0.180 -0.259 -0.240
Shutting down markups (only input price disp. and wedges remain) -0.147 -0.251 -0.134 -0.103 -0.186 -0.035
Shutting down input prices (only markup disp. and wedges remain) -0.144 -0.186 -0.147 -0.091 -0.146 -0.134

Panel D: sd

 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprft


1−σ

AE 5.150 0.178 2.472 21.965 2.447 17.945
Shutting down markups and wedges (only input price disp. remain) 0.365 0.128 0.333 0.748 0.307 0.640
Shutting down input prices and wedges (only markup disp. remain) 0.053 0.012 0.046 0.126 0.035 0.138
Shutting down input prices and markups (only wedges remain) 2.543 0.109 2.091 7.002 1.888 5.645
Shutting down wedges (only input price and markup disp. remain) 0.378 0.132 0.347 0.762 0.317 0.666
Shutting down markups (only input price disp. and wedges remain) 3.872 0.172 2.277 14.637 2.270 11.454
Shutting down input prices (only markup disp. and wedges remain) 3.647 0.112 2.294 13.181 2.067 11.127

Panel E: E

 tfpr

γ

σ(1−γ(1− 1
σ ))

ft

tfprft


1−σ

AE 1.784 1.031 1.304 4.660 1.336 3.907
Shutting down markups and wedges (only input price disp. remain) 0.978 1.011 0.988 0.903 0.982 0.961
Shutting down input prices and wedges (only markup disp. remain) 1.030 1.011 1.029 1.054 1.021 1.073
Shutting down input prices and markups (only wedges remain) 1.087 0.969 0.993 1.621 1.064 1.198
Shutting down wedges (only input price and markup disp. remain) 0.990 1.019 1.005 0.899 0.994 0.975
Shutting down markups (only input price disp. and wedges remain) 1.449 1.008 1.149 3.215 1.244 2.421
Shutting down input prices (only markup disp. and wedges remain) 1.354 0.998 1.143 2.641 1.156 2.289

Number of sectors 23 5 16 2 19 4
Range of parameter [0.18, 0.31] [0.37, 0.6] [0.65, 0.69] < 0.1 > 0.1

M Alternative estimation methods

This appendix describes in detail each of the alternative methods to estimate the production
and demand functions, the results of which are presented in section 7 of the main text.
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Cost Shares, CS We assume constant returns to scale and estimate production elas-
ticities for labor, material inputs, and capital as the respective cost shares (averaged across
plants within each sector). We use direct observations on the wage bill and the cost of mate-
rial inputs for the first two, and assume a rental rate of r = 12% (as in De Loecker, Eeckhout
and Unger, 2020) to obtain the cost of capital as r ∗K. Since we are tying our hands to use
only Rft data (rather than production or price data), we follow HK to impose σ = 3 in this
cost share method.

Proxy methods We estimate the production function specified in equation (20) in the
appendix, but using revenue as the dependent variable and materials costs rather than our
internally-deflated materials. We use our original control function ((19) in the appendix),
which is derived from the First Order Condition for materials in the plant’s problem. How-
ever, because in these alternative methods we tie our hands to use revenue and materials
costs rather than quantities–in line with most of the literature–, compared to Appendix’

equation (19) the control function excludes ln
P ∗
ftPfB

PM∗
ftPMfB

, ΛQ
ft, and ΛM

ft . We also use the cost

of material inputs rather than their quantity.
The moment conditions used for identification vary across the different versions of proxy

estimations that we use, as do the revenue function specifications. In particular:

• ACF, following (Ackerberg, Caves and Frazer, 2015). The following moments are used for
identification:

E


ln(Pm ∗M)ft−1 × ξAft

lnLft × ξAft
lnKft × ξAft

lnAft

 = 0 (51)

As in our Cost Share case, we impose σ = 3.

• DEU, following (De Loecker, Eeckhout and Unger, 2020): We proceed as in the ACF
version described above, but the revenue function is written in the following way, that
recognizes the absence of proper plant deflators and thus controls for market shares (see
(De Loecker, Eeckhout and Unger, 2020)):

lnRft = α lnKft + β lnLft + ϕ ln(Pmft ∗Mft) + δ ln sft + lnAft (52)

The moment conditions are:

E


ln(Pm ∗M)ft−1 × ξAft

lnLft × ξAft
lnKft × ξAft
ln sft × ξAft

lnAft

 = 0 (53)

We impose σ = 3.

• KG, Blackwood et al. (2021) propose a way to use insights from Klette and Griliches
(1996) to address the biases generated by the use of revenue as a proxy for production in
the production function estimation. The method also yields an estimate for σ.
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In particular, using Pft = DtdftQ
− 1

σ
ft and its implication that Pt = DtQ

− 1
σ

t we have that
Pft

Pt
= Q

1
σ
t Q

− 1
σ

ft dft. Thus, Rft can be written:

Rft = PftQft = PtQ
1
σ
t Q

1− 1
σ

ft dft = PtQ
1
σ
t

(
AftX

γ
ft

)1− 1
σ dft (54)

Based on this implication, Blackwood et al. (2021) estimate the following version of the
revenue function:

lnRft = α lnKft + β lnLft + ϕ ln(Pmft ∗Mft) +
1

σ
lnEt +

((
1− 1

σ

)
(lnAft + lnPt) + ln dft

)
(55)

where α = α
(
1− 1

σ

)
, β = β

(
1− 1

σ

)
, ϕ = ϕ

(
1− 1

σ

)
, and Et = QtPt. The parameter

that accompanies Et allows us to estimate (
(
1− 1

σ

)
so that we can obtain the production

elasticities by adjusting the estimated revenue elasticities correspondingly.

Blackwood et al. (2021) treat Qt in the moment conditions in a way analogous to the way
they treat Lft and Kft. Thus, the moment conditions we use are

E


ln(Pm ∗M)ft−1 × ξAft

lnLft × ξAft
lnKft × ξAft
lnEt × ξAft
lnAft

 = 0 (56)

We also estimate a version where we use the lagged value of Et in the moment conditions
(i.e. we impose orthogonality between Et−1 and ξAft.

Uniproduct: De Loecker et al. (2016) suggest the use of the sample of uniproduct
plants as an alternative for the need to aggregate across products in multi-product units.
We also estimate a version of our baseline estimation restricting the sample to uniproduct
establishments, for which output Qft corresponds to physical quantity of the (homogeneus)
product. We define as uniproduct an establishment that produces a single product which is
the same for all years. The estimation and moment conditions are identical to the baseline,
and thus provides estimations of production elasticities and σ, but note that in this case
lnΛQ

ft = 0.4

OLS demand estimation: To assess the importance of having access to production
data to form our instrument for demand, we also carry an OLS estimation of demand func-
tion (equation 26 of the main text) to estimate σ. Such estimation takes advantage of the
information on Pft and Qft but ignores the information on input use that is taken advantage
of in our baseline joint estimation to identify σ.

4Since the uniproduct plant does have multiple inputs, the estimation is still able to estimate σw, but
relying on information from this limited source of variation
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