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1 Instrumental Variables: Intro.

e Bias in OLS:

— Consider a linear model:

Y =XpB+c¢€
— Suppose that
cov(X,e) =p
— then OLS vyields:
Pors = (X'x) Xy -

(X’X)_l X' (XB +¢)
= BBors =8+ (X'X)p



e Two Stage Least Squares

— One solution to the problem of bias in OLS is
to find variables correlated with Y only through
their correlation with X and use only the variation
in X correlated with these other variables (called

instruments) Z. First run:

X =Zv+6

— From this we get an estimate of v which we call
4 and a predicted X:

Z (Z’Z) Lox

— then run:

X'Z(2'2)7 22 (2'2)" Z'X| -
X'z (zZ'z) 2y



® [ hree cases:

1. Under-identified: number of regressors in Z <
number of regressors in X

2. Just Identified: number of regressors in Z = num-
ber of regressors in X

3. Over identified: number of regressors in Z > num-
ber of regressors in X

— In the under-identified case, the model can not
be estimated

— In the just identified case the dimension of X7Z
is the dimension of Z/Z in which case:
(Z'X)(2'2)(2'2)" (2'2) (X'2) 7]
X'z(z2'2)" 2y

— (Z’X) 7'y



e \Weak Instruments Problem

— One problem is that if Z/X ~ 0 = Z'Y, then
the distribution (Z’X) "1 Z'Y is the ratio of two
normals with mean zero and is approximated well
even in very large samples by a Cauchy Distribu-
tion, whose mean and variance do not exist. This
can be very problematic.

— What is?

E [(Z’X)_l 7'y — 5]

— In general, we dont know. However,

plim _<Z’X)_1 7'y — 5]

— plim :(Z’X)_l Z'(XB +¢€) — 5]

— plim |8+ (Z’X)_lZ’e - 5]
= plim[8 - f] =0



e Bias in OLS vs. 25LS: ¢

Z2'X) 7
X'e

— Re-expressed:
O Ze

OXZ0Xe

— Another way to write the 25LS estimator is:

(R'R) 7 Rle = z 3

X

— as opposed to the OLS bias:

—1
(X'X) " Xe = X
0x
— So the small bias of the 2SLS is in the direction
of the OLS estimator.



e \Wald Estimator:

— One special example is the so-called Wald Esti-
mator:

Y, = an+6X;+e
Xi = apg+yDi+9

— where D; is a dummy variable taking on the val-
ues of {0,1}. Then:

WALD — Xl_XO

— where Y7, Yy are the average Y when Z = 1,0
respectively and X7, X are the average X when
Z = 1,0 respectively.



e Small Sample Bias of 2SLS:

— Approximate Bias Formula for small samples (de-
rived using power series approximations):

——— (K =2
T (K =2)

2
o
= 4075 (k-2

05 *y’Z’Z'y

— where K is the number of excluded instruments.

2
o
2 d

V' 2 Zy

- 72 s caIIed a concentration parameter and is

equal to R2 from the first stage regression.

— Commonly thought that bias is proportional to
K. In fact, this is only true in the case where
oxz = 0 (or oxz =~ 0). Otherwise v'Z'Z~
and thus 72 depend upon K.

— So is adding more instruments a good thing? De-
pends if they are correlated with LHS variables



conditional on the other instruments. Similar to
out of sample prediction... not always a good
Idea.

Can you test if instruments are too weak? You
can run a joint F-test on the first stage (essen-
tially the concentration parameter). Usually you
want at least F-Statistic of 4 or 5 in the litera-
ture. Some will want at least 10.



e Limited Information Maximum Likelihood

— Can also estimate with Limited Information Max-
imum Likelihood. It turns out that though the as-
symptotic distribution of the 2SLS estimator and
the LIML estimator are the same, the small sam-
ple distributions can be quite different in overi-
dentified models. In particular, with LIML, the
parameter being estimated is close to its popula-

tion median rather than mean. The formula for
LIML is:

N Q| — L(Yi—B87Z;
LB, Q)= 3, ( 2|Q|1(Y<5§Z’SZZ> )

n=1 Xi—vZ;

— Example with real and random instruments:

( Single Instr. 500 Instr. 2SLS
Real 0.089 (0.011) 0.073 (0.008)***
Random —1.958 (18.116) 0.059 (0.085)
500 Instr. LIML
Real 0.095 (0.017)***
\ Random —0.330 (0.1001)***




e 2SLS Inference:

— Suppose you run 2SLS in two stages. Then you
compute SEs as:

(R'R) 82

— Instead you should take the assymptotic variance
of:

[(Z/X)—l (7'7) (Z/Z)—l (2'7) (X’Z)_l]
X'z (2'2)7t 2y

— In which case you get:
(X'2) (#'z) - (2'x) g2

— You can show that the true SEs are large than
the second stage OLS because they include the
variation from the first stage which the second
stage OLS standard errors do not.



2 Average Treatment Effects

e Setup: Binary Instrument and Binary Endogenous
RHS Variable.

— Note, according to Angrist (Journal of Econo-
metrics, 1991): Grouped-data estimation and test-
ing in simple labor-supply models, continuous IV
models can be reduced to binary IV models.

e Define Four Types of Reactions to Instrument:

D;(0)=0 D;(0)=1
D; (1) =0 Never-Taker Defier
D;(1)=1 Complier Always-Taker

e Then if we see the following combinations of instru-
ment and RHS variable, we know that:

D; =0 Complier/Never-Taker  Never-Taker/Defier
D; =1 Always-Taker/Defier ~Complier/Always-Taker



e Assuming monotonicity (D; (1) > D; (0) Vi), we can
eliminate defiers. Then from combinations of instru-

ment and RHS variable, we can figure out:

Z; =0 Z; =1
D; =0 Complier/Never-Taker Never-Taker
D; =1 Always-Taker Complier/Always-Taker

e S0 we define fraction complier = ¢, fraction Never-
Taker = ay and fraction Always-Taker = a4

— Thenag+any +ay =1

— Morever we get that P (D; =1|Z; =0) = ay
and P(D; = 1|Z; = 0) = ay and finally o =
l—any —ay

— So, under the assumption that there are no de-
fiers, we can recover, o, apy, and ay



e With one regressor:
(Z’D)_l Z'y
- (z0)(72) (22) (2
- ((z2)Y) "(#p) *(z2) 7 (2v)
(Z2'2)"t (2'Y)
(z'2)~1(2'D)

In other words, we can interpret the IV coefficient as

the ratio of the regression coefficient of the outcome
variable on the instrument to the regression coeffi-
cient of the endogenous explanatory variable on the

Instrument.

e Now look at the numerator of this formula:

E(Y|Z=1)- E(Y|Z =0)

— We can break it up into the expectation condi-
tional on Z = 0 and the expectation conditional



on Z = 1. Starting with Z =0 :

E(Y|Z=0) =
E(Y|Z=0,C)P(C|Z =0)+
E(Y|Z=0,N)P(N|Z =0)+
E(Y|Z =0,A)P(A|Z =0)

— And now turningto Z =1

E(Y|Z=1) =
E(Y|Z=1,C)P(C|Z=1)+
E(Y|Z=1,N)P(N|Z=1)+
E(Y|Z=1,A)P(A|Z =1)

e Note that Always-Takers and Never-Takers are not
affected by the instrument:

E(Y|Z=1,N)=E(Y|Z =0, N)

E(Y|Z=1,A)=E(Y|Z =0, A)



e Also since Z is randomized, probabilities of getting
assigned the instrument are independent of type:

P(A|Z=1) = P(A|Z =0)
P(N|Z=1) = P(N|Z=1)
P(C|Z=1) = P(C|Z=0)

e Now we can compute the numerator conditioning on
type:

22) (7Y) -

E(Y|Z=1,C)P(C|Z=1)+
E(Y|Z=1,N)P(N|Z=1)+
E(Y|Z=1,A)P(A|Z=1) —
E(Y|Z=0,C)P(C|Z =0)—
E(Y|Z=0,N)P(N|Z =0) —
E(Y|Z =0,A)P(A|Z = 0)




e But the conditional expectations and probabilities
for the Never-Takers and Always-Takers second two
terms are the same (the always and never takers are
not affected by the instrument) and they thus cancel
out, leaving:

(Z’Z) ! (Z’Y)
= [E(Y|Z=1,C)—E(Y|Z=0,C)] ac

e Similarly (without showing computations) for the de-
nominator:

(#2) (/D) -
[ P(C)1+P(A)1+ P(N)O
—P(A)1—-P(C)0—P(N)O
a0 +0p — 0 = OO

e Finally, we get our expression:
—1
Brv = (2'D) 7y =
[E(Y|Z=1,C) - E(Y|Z=0,C)]ac

aC
— E(Y|Z=1,C)—E(Y|Z=0,C)




or in other words, the |V instrument gives the lo-
cal average treatment effect for the compliers to the
instrument (and thus since different instruments will
have different sets of compliers, different instruments
may yield different IV estimates).



3 Control Function Approach

e Equivalence of controlling for first stage residuals and
standard 2SLS approach of putting in fitted values
from first stage. Assume model:

Y = XB8+7yW +e
W = X84+ uzZ+v

— We are interested in v; X is a set of controls, W
is an endogenous variable, Z is a valid instrument

cov(W,e) # 0
cov(Z,e) # 0
cov(Z,v) = 0

— 1st stage: regress

W =X+ puzZ +v

— Obtain first stage residuals D



2nd stage: plug in residuals into first equation.
Regress:

Y =XB8+ YW + oD + ¢
Then
¥ = Y25LS

The coefficient matrix [y|5] can be obtained us-
ing the Frisch-Waugh-Lovell Theorem:

I8l = [V (I = P)V] V' [I - PlY

where

Note that the coefficient on ~ using this method
Is not just assymptotically equivalent to v597,g,
it is identical. Therefore:

V = [W[X]

Q = [Z]X]

P=11-Q(QQ) @@



x T he standard errors on ~ will be identical to
the v, standard errors and

* T he second stage OLS standard errors will not
be equal to the true standard errors.

3.1 Random Coefficients

e Now we relax that coefficients on the impact of W
are the same for the entire population. First we ass-
sume that

>.<

XB+~yW + €
W = XB+uzZ+v



cov (6, W) =0

In this case, the 2SLS estimator consistently estimates
the average effect of W:

plim (251.5) =7

e However, often times the impact of W may be dif-
ferent for different values of W :

cov (0, W) #0

— In this case, 9597 g does not estimate an average
treatment effect but rather a weighted average of
treatment effects (weighted by W).

— In this case, we can still estimate (with a linearity
assumption) a control function:

Y = XB+AW +p0 +npW + 0
W = XB+uzZ+v



p captures endogeneity bias

71 captures selectivity (a positive 7 means that
those likely to select into higher W are more
likely to have higher residual Y; a negative n
means that those likely to select into lower W
are more likely to have higher residual Y")

Note that only in the case of cov (6, W) = 0
is § (as the population average of consistently
estimated with normal IV.

Also, note that this is a more general model (as-
symptotically). Anytime that 45 g7 g consistently
estimates the true 7, then so does 4~ (the con-
trol function 4). However, if cov (6, W) # 0,
Yo F still consistently estimates & but 45571 g
does not.



