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1 Instrumental Variables: Intro.

� Bias in OLS:

� Consider a linear model:

Y = X� + �

� Suppose that

cov (X; �) = �

� then OLS yields:
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� Two Stage Least Squares

� One solution to the problem of bias in OLS is
to �nd variables correlated with Y only through
their correlation with X and use only the variation
in X correlated with these other variables (called
instruments) Z. First run:

X = Z
 + �

� From this we get an estimate of 
 which we call

̂ and a predicted X:

Z
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� then run:
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� Three cases:

1. Under-identi�ed: number of regressors in Z <
number of regressors in X

2. Just Identi�ed: number of regressors in Z = num-
ber of regressors in X

3. Over identi�ed: number of regressors in Z> num-
ber of regressors in X

� In the under-identi�ed case, the model can not
be estimated

� In the just identi�ed case the dimension of X0Z
is the dimension of Z0Z in which case:0@ h�
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� Weak Instruments Problem

� One problem is that if Z0X � 0 = Z0Y; then
the distribution

�
Z0X

��1Z0Y is the ratio of two
normals with mean zero and is approximated well
even in very large samples by a Cauchy Distribu-
tion, whose mean and variance do not exist. This
can be very problematic.

� What is?
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� In general, we dont know. However,
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� Bias in OLS vs. 2SLS:(Z
0X)�1Z0�
X 0�

� Re-expressed:
�Z�

�XZ�X�

� Another way to write the 2SLS estimator is:�
X̂ 0X̂

��1
X̂ 0� =

�
X̂�

�2
X̂

� as opposed to the OLS bias:�
X 0X

��1
X 0� =

�X�
�2X

� So the small bias of the 2SLS is in the direction
of the OLS estimator.



� Wald Estimator:

� One special example is the so-called Wald Esti-
mator:

Yi = �1 + �Xi + �

Xi = �2 + 
Di + �

� where Di is a dummy variable taking on the val-
ues of f0; 1g : Then:

�̂WALD =
�Y1 � �Y0
�X1 � �X0

� where �Y1; �Y0 are the average Y when Z = 1; 0

respectively and �X1; �X0 are the average X when
Z = 1; 0 respectively.



� Small Sample Bias of 2SLS:

� Approximate Bias Formula for small samples (de-
rived using power series approximations):

�Z;�
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(K � 2)

� where K is the number of excluded instruments.

�2 =
�2�


0Z0Z


� �2 is called a concentration parameter and is
equal to 1

R2
from the �rst stage regression.

� Commonly thought that bias is proportional to
K: In fact, this is only true in the case where
�XZ = 0 (or �XZ � 0): Otherwise 
0Z0Z

and thus �2 depend upon K:

� So is adding more instruments a good thing? De-
pends if they are correlated with LHS variables



conditional on the other instruments. Similar to
out of sample prediction... not always a good
idea.

� Can you test if instruments are too weak? You
can run a joint F-test on the �rst stage (essen-
tially the concentration parameter). Usually you
want at least F-Statistic of 4 or 5 in the litera-
ture. Some will want at least 10.



� Limited Information Maximum Likelihood

� Can also estimate with Limited Information Max-
imum Likelihood. It turns out that though the as-
symptotic distribution of the 2SLS estimator and
the LIML estimator are the same, the small sam-
ple distributions can be quite di¤erent in overi-
denti�ed models. In particular, with LIML, the
parameter being estimated is close to its popula-
tion median rather than mean. The formula for
LIML is:

L (�; �;
) =
NX
n=1
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� Example with real and random instruments:0BBBBBBBB@

Single Instr. 500 Instr. 2SLS
Real 0:089 (0:011) 0:073 (0:008)���

Random �1:958 (18:116) 0:059 (0:085)
500 Instr. LIML

Real 0:095 (0:017)���

Random �0:330 (0:1001)���
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� 2SLS Inference:

� Suppose you run 2SLS in two stages. Then you
compute SEs as: �

X̂ 0X̂
��1

�̂2

� Instead you should take the assymptotic variance
of:0@ h�
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� In which case you get:�
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��1 �
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��1
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� You can show that the true SEs are large than
the second stage OLS because they include the
variation from the �rst stage which the second
stage OLS standard errors do not.



2 Average Treatment E¤ects

� Setup: Binary Instrument and Binary Endogenous
RHS Variable.

� Note, according to Angrist (Journal of Econo-
metrics, 1991): Grouped-data estimation and test-
ing in simple labor-supply models, continuous IV
models can be reduced to binary IV models.

� De�ne Four Types of Reactions to Instrument:

Di (0) = 0 Di (0) = 1
Di (1) = 0 Never-Taker De�er
Di (1) = 1 Complier Always-Taker

� Then if we see the following combinations of instru-
ment and RHS variable, we know that:

Zi = 0 Zi = 1
Di = 0 Complier/Never-Taker Never-Taker/De�er
Di = 1 Always-Taker/De�er Complier/Always-Taker



� Assuming monotonicity (Di (1) � Di (0) 8i), we can
eliminate de�ers. Then from combinations of instru-
ment and RHS variable, we can �gure out:

Zi = 0 Zi = 1
Di = 0 Complier/Never-Taker Never-Taker
Di = 1 Always-Taker Complier/Always-Taker

� So we de�ne fraction complier = �C; fraction Never-
Taker = �N and fraction Always-Taker = �A

� Then �C + �N + �A = 1

� Morever we get that P (Di = 1jZi = 0) = �A
and P (Di = 1jZi = 0) = �N and �nally �C =
1� �N � �A

� So, under the assumption that there are no de-
�ers, we can recover, �C; �N ; and �A



� With one regressor:�
Z0D

��1
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In other words, we can interpret the IV coe¢ cient as
the ratio of the regression coe¢ cient of the outcome
variable on the instrument to the regression coe¢ -
cient of the endogenous explanatory variable on the
instrument.

� Now look at the numerator of this formula:

E (Y jZ = 1)� E (Y jZ = 0)

� We can break it up into the expectation condi-
tional on Z = 0 and the expectation conditional



on Z = 1: Starting with Z = 0 :

E (Y jZ = 0) =

E (Y jZ = 0; C)P (CjZ = 0) +
E (Y jZ = 0; N)P (N jZ = 0) +
E (Y jZ = 0; A)P (AjZ = 0)

� And now turning to Z = 1 :

E (Y jZ = 1) =

E (Y jZ = 1; C)P (CjZ = 1) +
E (Y jZ = 1; N)P (N jZ = 1) +
E (Y jZ = 1; A)P (AjZ = 1)

� Note that Always-Takers and Never-Takers are not
a¤ected by the instrument:

E (Y jZ = 1; N) = E (Y jZ = 0; N)

E (Y jZ = 1; A) = E (Y jZ = 0; A)



� Also since Z is randomized, probabilities of getting
assigned the instrument are independent of type:

P (AjZ = 1) = P (AjZ = 0)
P (N jZ = 1) = P (N jZ = 1)
P (CjZ = 1) = P (CjZ = 0)

� Now we can compute the numerator conditioning on
type: �

Z0Z
��1 �

Z0Y
�
=

E (Y jZ = 1; C)P (CjZ = 1) +
E (Y jZ = 1; N)P (N jZ = 1) +
E (Y jZ = 1; A)P (AjZ = 1)�
E (Y jZ = 0; C)P (CjZ = 0)�
E (Y jZ = 0; N)P (N jZ = 0)�
E (Y jZ = 0; A)P (AjZ = 0)



� But the conditional expectations and probabilities
for the Never-Takers and Always-Takers second two
terms are the same (the always and never takers are
not a¤ected by the instrument) and they thus cancel
out, leaving:�

Z0Z
��1 �

Z0Y
�

= [E (Y jZ = 1; C)� E (Y jZ = 0; C)]�C

� Similarly (without showing computations) for the de-
nominator: �

Z0Z
��1 �

Z0D
�
="

P (C) 1 + P (A) 1 + P (N) 0
�P (A) 1� P (C) 0� P (N) 0

#
=

�C + �A � �A = �C

� Finally, we get our expression:

�IV =
�
Z0D

��1
Z0Y =

[E (Y jZ = 1; C)� E (Y jZ = 0; C)]�C
�C

= E (Y jZ = 1; C)� E (Y jZ = 0; C)



or in other words, the IV instrument gives the lo-
cal average treatment e¤ect for the compliers to the
instrument (and thus since di¤erent instruments will
have di¤erent sets of compliers, di¤erent instruments
may yield di¤erent IV estimates).



3 Control Function Approach

� Equivalence of controlling for �rst stage residuals and
standard 2SLS approach of putting in �tted values
from �rst stage. Assume model:

Y = X� + 
W + �

W = X� + �Z + �

� We are interested in 
; X is a set of controls,W
is an endogenous variable, Z is a valid instrument

cov (W; �) 6= 0

cov (Z; �) 6= 0

cov (Z; �) = 0

� 1st stage: regress

W = X� + �Z + �

� Obtain �rst stage residuals �̂



� 2nd stage: plug in residuals into �rst equation.
Regress:

Y = X� + 
W + ��̂ + �

� Then


̂ = 
2SLS

� The coe¢ cient matrix [
j�] can be obtained us-
ing the Frisch-Waugh-Lovell Theorem:

[
j�] =
h
V 0 (I � P )V

i�1
V 0 [I � P ]Y

where

� Note that the coe¢ cient on 
 using this method
is not just assymptotically equivalent to 
2SLS;
it is identical. Therefore:

V = [W jX]

Q = [ZjX]

P =
�
I �Q

�
Q0Q

��1
Q0
�
Q



� The standard errors on 
 will be identical to
the 
2SLS standard errors and

� The second stage OLS standard errors will not
be equal to the true standard errors.

3.1 Random Coe¢ cients

� Now we relax that coe¢ cients on the impact of W
are the same for the entire population. First we ass-
sume that

Y = X� + 
W + �

W = X� + �Z + �


 = �
 + �



cov (�;W ) = 0

In this case, the 2SLS estimator consistently estimates
the average e¤ect of W:

plim (
̂2SLS) = �


� However, often times the impact of W may be dif-
ferent for di¤erent values of W :

cov (�;W ) 6= 0

� In this case, 
̂2SLS does not estimate an average
treatment e¤ect but rather a weighted average of
treatment e¤ects (weighted by W ).

� In this case, we can still estimate (with a linearity
assumption) a control function:

Y = X� + 
W + ��̂ + ��̂W + �

W = X� + �Z + �



� � captures endogeneity bias

� � captures selectivity (a positive � means that
those likely to select into higher W are more
likely to have higher residual Y ; a negative �
means that those likely to select into lower W
are more likely to have higher residual Y )

� Note that only in the case of cov (�;W ) = 0

is � (as the population average of consistently
estimated with normal IV.

� Also, note that this is a more general model (as-
symptotically). Anytime that 
̂2SLS consistently
estimates the true �
; then so does 
̂CF (the con-
trol function 
̂): However, if cov (�;W ) 6= 0,

̂CF still consistently estimates �
 but 
̂2SLS
does not.


