
Supplement to "Semiparametric Estimates of Monetary Policy

Effects: String Theory Revisited" - More on Inference∗

Joshua D. Angrist

MIT and NBER

Òscar Jordà

Federal Reserve Bank of San Francisco

and U.C. Davis

Guido M. Kuersteiner

University of Maryland

June 12, 2016

1 Setup

This supplement derives the limiting distribution of the specification tests in Appendix D and contains

a more detailed discussion of the regularity conditions. We demonstrate that our regularity conditions

imply the conditions in Newey and West (1994), justifying the use of their robust standard error estimator.

For ease of reference we repeat a number of definitions from the main paper. The identification

restriction is:

Condition 1 Selection on observables:

yψt,l (dj)⊥Dt|zt for all l ≥ 0 and for all dj, with ψ fixed; ψ ∈ Ψ.

Let

δt,j (ψ) = δt,j (zt, ψ) =
1 {Dt = dj}
pj (zt, ψ)

− 1 {Dt = d0}
p0 (zt, ψ)

and define the residual weights as
..
δt,j = δt,j(ψ̂) − δ̂t,j where δ̂t,j is the predicted value formed from a

regression of δt,j(ψ̂) on zt, the variables included in the propensity score model. Define ĥj,t = Yt,L
..
δt,j and

hence ĥt = (ĥ′1,t, ..., ĥJ,t)
′. Therefore,

θ̂ = T−1
∑T

t=1
ĥt. (1)
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The estimator θ̂ can also be obtained as the solution to the following minimum distance problem:

θ̂ = arg min
θ

(
T−1

∑T
t=1 ĥt − θ

)′
Ω−1

(
T−1

∑T
t=1 ĥt − θ

)
, (2)

Below we discuss estimates of the spectral density of ĥt that take into account first step estimation of ψ.

First note that our estimates of the optimal Ω are equivalent to estimates of the optimal weight matrix

given in Hansen (2008, Section 4.2).

Assume ψ̂ is the maximum likelihood estimator with representation

T 1/2
(
ψ̂ − ψ

)
= Ω−1ψ T−1/2

T∑
t=1

l(Dt, zt, ψ0) + op (1) (3)

where Ωψ = E [l(Dt, zt, ψ0)l(Dt, zt, ψ0)
′] and the function

l(Dt, zt, ψ) =
J∑
j=0

1 {Dt = dj}
pjt (zt, ψ)

∂p
dj
t (zt, ψ)

∂ψ

is the score of the maximum likelihood estimator. Define the population projection πy as

πy = arg min
b
E
[
‖Yt,L − bzt‖2

]
,

define ϑ =
(
ψ′, (vecπy)

′)′ and let ht (ϑ0) = (Yt,L − πyzt) δt,j (ψ0) . The representation in (3) is used to

expand ĥt around ψ0 leading to θ̂ − θ0 = T−1
∑T

t=1 vt (ϑ0) + op
(
T−1/2

)
where vt (ϑ0) = ht (ϑ0) − θ0 +

ḣ(ϑ0)Ω
−1
ψ l(Dt, zt, ψ0) and ḣ(ϑ0) = E

[
∂ht (ϑ0) /∂ψ

′] . The covariance matrix Ωθ is the typical spectrum at

frequency zero matrix of vt (ϑ0) found in the HAC-standard error literature (see Newey and West (1994))

and is given by

Ωθ =

∞∑
i=−∞

E
[
vt (ϑ0) vt−i (ϑ0)

′] (4)

The formula for Ωθ takes into account that the ‘observations’ ĥt used to compute the sample averages

are based on estimated, rather than observed data. Confidence intervals for θ can be constructed from

Ωθ. We use the procedure in Newey and West (1994) to estimate Ωθ. Below, we provide further details

regarding regularity conditions needed for the Newey West procedure.

Using ϑ̂ =
(
ψ̂
′
, (vec π̂y)

′
)′
where π̂y is the OLS estimator in a regression of Yt,L on zt we estimate Ωθ

from the sample averages

̂̇
h(ϑ̂) = T−1

T∑
t=1

∂ht

(
ϑ̂
)
/∂ψ′, Ω̂ψ = −T−1

T∑
t=1

∂l(Dt, zt, ψ̂)

∂ψ′

and by letting vt
(
ϑ̂
)

= ht

(
ϑ̂
)
−θ̂+

̂̇
h(ϑ̂)Ω̂−1ψ l(Dt, zt, ψ̂). As in Newey and West (1994), we use the Bartlett
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kernel with prewhitening and a data-dependent plug in estimator to obtain the necessary bandwidth

parameter.

The Newey and West procedure is implemented as follows. Prewhitening is achieved by fitting a

AR(1) model to each element vt,j
(
ϑ̂
)
of vt

(
ϑ̂
)
. For this purpose define the autoregressive parameter

estimate

Âjj =

T∑
t=2

vt,j

(
ϑ̂
)
vt−1,j

(
ϑ̂
)′( T∑

t=2

vt−1,j
(
ϑ̂
)
vt−1,j

(
ϑ̂
)′)′

and let r̂t
(
ϑ̂
)

= vt

(
ϑ̂
)
− Âvt−1

(
ϑ̂
)
where Â is a diagonal matrix with diagonal elements Âjj . Then

define Ω̂θ,j = (T − 1)−1
∑T

t=j+1 r̂t

(
ϑ̂
)
r̂t−j

(
ϑ̂
)′
for j = 0 and Ω̂θ,j = Ω̂′θ,−j for j < 0. Let 1 = [1, ..., 1]′

be an r-dimensional vector where r is the dimension of θ. Define σ̂j = 1′Ω̂θ,j1, ŝ(q) =
∑n

j=−n |j|
q σ̂j and

γ̂ = cγ
(
ŝ(1)/ŝ(0)

)2/3
where1 cγ = 1.1447 and n =

⌊
4 (T/100)2/9

⌋
where b.c denotes the integer part of a

real number. Set the bandwidth parameter to B̂ =
⌊
γ̂T 1/3

⌋
.

The estimator for Ωθ is now defined as

Ω̂θ =
(
Ir − Â

)−1(
Ω̂θ,0 +

∑B̂
j=1

(
1− j

B̂ + 1

)(
Ω̂θ,j + Ω̂′θ,j

))(
Ir − Â

)−1
.

An important diagnostic for our purposes looks at whether lagged macro aggregates are independent

of policy changes conditional on the policy propensity score. In other words we would like to show that

the policy shocks implicitly defined by our score model look to be “as good as randomly assigned.”Angrist

and Kuersteiner (2011) develop semiparametric tests that can be used for this purpose.

The specification tests are based on the following fact. If wt is a vector of kw elements of zt or χt−1,

then correct specification of the propensity score implies that

E [δt,j (ψ0) |wt] = 0 for all j = 1, ..., J.

All J conditional moment restrictions, or a subset of them, can be summarized into a vector. Let

Dt (zt, ψ) = (δt,j1 (ψ) , ..., δt,jk (ψ)) . Set k ≤ J and 1 ≤ j1 < ... < jk ≤ J. In our case, we use this

setup to focus on dj = {−.25, 0, .25} . Then, E [Dt (zt, ψ0) |wt] = 0 must hold. To test this condition,

consider the unconditional moment restriction E [Dt(zt, ψ0)⊗ wt] = 0. Since our estimators are based

on
..
δt,jwe similarly define our test based on

..
δt,j . For this purpose, let

..
Dt (zt, ψ) =

(..
δt,j1 (ψ) , ...,

..
δt,jk (ψ)

)
and consider the test statistic T−1/2

∑T
t=1

..
Dt(zt, ψ̂) ⊗ wt. Let πw be the population projection para-

meter of a projection of wt onto zt, and π̂w the corresponding sample OLS estimator. Define ξ =(
ψ′, vec (πw)′

)′
, let mt (ξ) = (Dt(zt, ψ))⊗(wt − πwzt) and define m̄ (ξ) = T−1

∑T
t=1mt (ξ) . It then follows

that T−1
∑T

t=1

..
Dt(zt, ψ̂)⊗wt = m̄

(
ξ̂
)
where ξ̂ =

(
ψ̂
′
, vec (π̂w)′

)′
and we base our statistic on m̄

(
ξ̂
)
. The

limiting distribution of m̄
(
ξ̂
)
is affected by the fact that ψ0 is estimated. Define ṁ (ξ) = E

[
∂mt (ξ) /∂ψ′

]
,

1See Newey and West (1994, Tables I and II).
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m̂t = mt

(
ξ̂
)
and consider the expansion

m̂t = mt (ξ0) + ṁ (ξ0) Ω−1ψ l(Dt, zt, ψ0) + op

(
T−1/2

)
.

A key insight is that under the null-hypothesis, m̂t is approximately a martingale difference sequence

and thus is mean zero. This feature significantly simplifies estimation of the asymptotic variance nor-

malizing the test. Then, letting m̄ = m̄
(
ξ̂
)
, νt (ξ0) = mt (ξ0) + ṁ (ξ0) Ω−1ψ l(Dt, zt, ψ0) and V̂ =

T−1
∑T

t=1 νt

(
ξ̂
)
νt

(
ξ̂
)′
leads to the test statistic

Tm̄′V̂ −1m̄→d χ
2
(k·kw) (5)

under the null hypothesis that E [1 {Dt = j} |zt] = pj(zt, ψ0). The limiting distribution in (5) is established

below.

2 Regularity Conditions

We repeat some of the definitions and derivations already reported in the paper to make the supplement

easier to follow. Assume that {χt}∞t=−∞ is strictly stationary with values in the measurable space (Rr,Br)
where Br is the Borel σ-field on Rr and r is fixed with 2 ≤ r < ∞. Let Alk = σ (χk, ..., χl) be the sigma

field generated by χk, ..., χl. The sequence χt is ϕ-mixing if

ϕm = sup
l

 sup
A∈A∞l+m,B∈Al−∞,P (B)>0

|Pr (A|B)− P (A)|

→ 0 as m→∞.

Condition 2 Let χt be a stationary, ϕ-mixing sequence such that for some 2 < p < ∞ the ϕ-mixing

coeffi cient of χt satisfies ϕm ≤ cm
− 1+p
p−4/p for some bounded constant c > 0. For each element χt,j of χt it

follows that E
[∣∣χt,j∣∣p] <∞.

Condition 2 implies that
∑∞

m=1 ϕ
1−1/p
m < ∞ as required for Corollary 3.9 of McLeish (1975a). In

addition, ϕm satisfies (2.6) of McLeish (1975b) required for a strong law of large numbers. This follows

because for any p > 2 the inequality p/(p − 2) < (1 + p) /(p − 4/p) holds and, since p > 2, the moment

restrictions imposed below are stronger than required by McLeish. Using Corollary A.2 of Hall and

Heyde (1980), and assuming that, for each element vt,j (ϑ0) of vt (ϑ0), E [|vt,j (ϑ0)|p] <∞ it also follows

that
∑∞

m=1 |m|
q
∥∥E [vt (ϑ0) vt−m (ϑ0)

′]∥∥ < ∞ for some q > 7/4 as required by Assumption 2 of Newey

and West (1994) when the Bartlett kernel is used. If the size of the mixing coeffi cients is weakened to

− (1 + p) / (p− 2/p) then Assumption 2 of Newey and West holds for all p > 2 +
√

6 and some q > 7/4.

Also note that p > 2 is suffi cient to satisfy Assumption 3 of Newey and West (1994) when the Bartlett

kernel is used as suggested here.
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The next condition states that the propensity score p(zt, θ) is the correct parametric model for the

conditional expectation of Dt and lists a number of additional regularity conditions.

Condition 3 Let Θ be a compact subset of Rkϑ where kϑ is the dimension of ϑ. Let ψ0 ∈ Ψ ⊂ Θ

where Ψ ⊂ Rkψ is a compact set and kψ < ∞. Assume that E [1 {Dt = dj} |zt] = pjt (zt, ψ0) and for

all ψ 6= ψ0 it follows E [1 {Dt = dj} |zt] 6= pj(zt|ψ). Assume that pj(zt|ψ) is differentiable a.s. for

ϑ ∈ {ϑ ∈ Θ| ‖ϑ− ϑ0‖ ≤ δ} := Nδ(ϑ0) for some δ > 0. Let N(ϑ0) be a compact subset of the union

of all neighborhoods Nδ (ϑ0) where ∂pj(zt|ψ)/∂ψ, ∂2pj(zt|ψ)/∂ψi∂ψj exists and assume that N(ϑ0) is not

empty. Assume that for all j ∈ {0, ..., J} and some δ0 > 0 and any δ > 0, ϑ, ϑ∗ with ‖ϑ− ϑ∗‖ < δ ≤ δ0

there exists a random variable Bt which is a measurable function of Dt, zt and Yt,L and a constant α > 0

such that for all i

‖ht,j (ϑ)− ht,j (ϑ∗)‖ ≤ Bt ‖ϑ− ϑ∗‖α ,

and

‖∂ht,j (ϑ) /∂ϑ− ∂ht,j (ϑ∗) /∂ϑ‖ ≤ Bt ‖ϑ− ϑ∗‖α (6)∥∥∂2ht,j (ϑ) /∂ϑ∂ϑ′ − ∂2ht,j (ϑ∗) /∂ϑ∂ϑ′
∥∥ ≤ Bt ‖ϑ− ϑ∗‖α (7)

‖zt (δt,j (ψ)− δt,j (ψ∗))‖ ≤ Bt ‖ψ − ψ∗‖α (8)

and ϑ, ϑ∗ ∈ intN (ϑ0). Let ht,j,i (ϑ) be the i-th element of ht,j (ϑ) and ϑk the k-th element of ϑ. Assume

E [|Bt|p] <∞, and for all i, j, k that E [|ht,j,i (ϑ0)|p] <∞, E [|∂ht,j,i (ϑ0) /∂ϑk|p] <∞, and

E
[∣∣∂2ht,j,i (ϑ0) / (∂ϑk∂ϑk′)

∣∣p] <∞.
Condition 4 Assume that ϑ̂ − ϑ0 = op (1) , T 1/2

(
ψ̂ − ψ0

)
= Ω−1ψ T−1/2

∑T
t=1 l(Dt, zt, ψ0) + op (1) . As-

sume that E [ztz
′
t] is positive definite. Let li(Dt, zt, ψ0) be the i-th element of l(Dt, zt, ψ). Let p be given

as in Condition 2 and assume that E [‖l(Dt, zt, ψ0)‖p] <∞, supψ∈N(ϑ0) ‖l(Dt, zt, ψ)‖ ≤ Bt,

sup
ψ∈N(ϑ0)

‖∂l(Dt, zt, ψ)/∂ψ‖ ≤ Bt

and supψ∈N(ϑ0)
∥∥∂2li(Dt, zt, ψ)/∂ψ∂ψ′

∥∥ ≤ Bt.
Condition 5 Assume that Ωψ is positive definite for all ψ in some neighborhood N ⊂ Ψ such that

ψ0 ∈ intN and 0 < ‖Ωψ‖ <∞ for all ψ ∈ N. Assume that Ωθ defined in (4) is positive definite.

Conditions 2, 3 and 4 imply that Assumption 2 of Newey and West is satisfied. The results of their

paper thus apply to the estimates of Ωθ proposed here.

Regularity conditions for the specification tests are given below.
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Condition 6 Let N(ξ0) a neighborhood of ξ0 defined similarly to the one in Condition 3. Let p be given

as in Condition 2. For some random variable Bt which is a measurable function of Dt, zt and wt and for

which E [Bp
t ] < ∞, it holds that for some ε > 0 and ξ, ξ∗ with ‖ξ − ξ∗‖ < δ ≤ δ0 and ξ, ξ∗ ∈ intN (ξ0)

that

i) E
[
‖mt (ξ0)‖p+ε

]
<∞, E

[∥∥∂mt (ξ0) /∂ξ
′∥∥p+ε] <∞, E [‖l(Dt, zt, ψ0)‖p+ε

]
<∞

ii) ‖l(Dt, zt, ψ)− l(Dt, zt, ψ
∗)‖ ≤ Bt ‖ψ − ψ∗‖α ,

iii)
∥∥∂mt (ξ) /∂ξ′ − ∂mt (ξ∗) /∂ξ′

∥∥ ≤ Bt ‖ξ − ξ∗‖α .
3 Proofs

The proof of the following theorem appears in the Appendix to the paper and is repeated here for

convenience.

Theorem 1 Let θ̂ be defined in (1) and assume that Conditions 1, 2, 3, 4, and 5 hold. Then, θ̂ →p θ

and

T 1/2
(
θ̂ − θ

)
d→ N (0,Ωθ)

where Ωθ is defined in (4).

Proof. Let Z = (z1, ..., zT )′ , YL = (Y1,L, ..., YT,L)′ and δj
(
ψ̂
)

=
(
δ1,j

(
ψ̂
)
, ..., δT,j

(
ψ̂
))′

. Define the

population projection πy as πy = arg minbE
[
‖Yt,L − bzt‖2

]
and sample analog π̂y = Y ′LZ (Z ′Z)−1 . Recall

that ĥt,j = Yt,L

(
δt,j

(
ψ̂
)
− δ̂t,j

)
where δ̂t,j = z′t(Z

′Z)−1Z ′δj
(
ψ̂
)
and let ht,j (ϑ0) = (Yt,L − πyzt) δt,j (ψ0) .

First observe that

∑T

t=1
ĥt,j =

∑T

t=1
Yt,L

(
δt,j

(
ψ̂
)
− δ̂t,j

)
=

∑T

t=1
Yt,Lδt,j

(
ψ̂
)
−
∑T

t=1
Yt,Lz

′
t(Z
′Z)−1

∑T

s=1
z′sδs,j

(
ψ̂
)

=
∑T

t=1
Yt,Lδt,j

(
ψ̂
)
− π̂y

∑T

s=1
z′sδs,j

(
ψ̂
)

=
∑T

t=1

(
Yt,L − π̂yz′t

)
δt,j

(
ψ̂
)
.

By the Mean Value Theorem we then obtain

T 1/2
(
θ̂j − θ0,j

)
= T−1/2

∑T

t=1
ĥt,j − θ0,j (9)

= T−1/2
∑T

t=1
(Yt,L − πyzt) δt,j

(
ψ̂
)
− θ0 + (πy − π̂y)T−1/2

∑T

t=1
ztδt,j

(
ψ̂
)

= T−1/2
∑T

t=1
ht,j (ϑ0)− θ0 + T−1

∑T

t=1
∂ht,j (ϑ0) /∂ψ

′T 1/2
(
ψ̂ − ψ0

)
+T−1

∑T

t=1

(
∂ht,j

(
ϑ̌
)
/∂ψ′ − ∂ht,j (ϑ0) /∂ψ

′)T 1/2 (ψ̂ − ψ0)
+ (πy − π̂y)T−1/2

∑T

t=1
ztδt,j

(
ψ̂
)
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where
∥∥ϑ̌− ϑ0∥∥ ≤ ∥∥∥ϑ̂− ϑ0∥∥∥ and ∂ht (ϑ) /∂ψ′ = [∂ht,1 (ϑ) /∂ψ′, ..., ∂ht,J (ϑ) /∂ψ′] with

∂ht,j (ϑ) /∂ψ = (Yt,L − πyzt)
(
− Dt,j

pj (zt, ψ)2
∂pj (zt, ψ)

∂ψ
+

Dt,0

p0 (zt, ψ)2
∂p0 (zt, ψ)

∂ψ

)
. (10)

By (6) it follows that for δ0 given in Condition 3 and any δ such that δ0 > δ > 0,

P

(∥∥∥∥T−1∑T

t=1

(
∂ht,j

(
ϑ̌
)
/∂ψ′ − ∂ht,j (ϑ0) /∂ψ

′)∥∥∥∥ > η

)
(11)

≤ P

(
sup

‖ϑ−ϑ0‖≤δ

∥∥∥∥T−1∑T

t=1

(
∂ht,j (ϑ) /∂ψ′ − ∂ht,j (ϑ0) /∂ψ

′)∥∥∥∥ > η,
∥∥ϑ̌− ϑ0∥∥ < δ

)
+ P

(∥∥ϑ̌− ϑ0∥∥ ≥ δ)
=

E [|Bt|p] δpα

ηp
+ P

(∥∥ϑ̌− ϑ0∥∥ ≥ δ)
where both terms can be made arbitrarily small by choosing η =

√
δ and δ > 0 for T large enough by

using Conditions 4 and 3. By McLeish (1975b, Theorem 2.10) T−1
∑T

t=1 ∂ht,j (ϑ0) /∂ψ
′ p→ ḣj(ϑ0) where

we defined E
[
∂ht,j (ϑ0) /∂ψ

′] = ḣj(ϑ0). This implies that the third term in (9) is op (1) .

For the last term in (9) note that (πy − π̂y) = Op
(
T−1/2

)
by McLeish (1975b, Theorem 2.10), Corol-

lary 3.9 of McLeish (1975a) and standard arguments for linear regressions. Now consider

(πy − π̂y)T−1/2
∑T

t=1
ztδt,j

(
ψ̂
)

(12)

= T 1/2 (πy − π̂y)T−1
∑T

t=1
ztδt,j (ψ0)

+T 1/2 (πy − π̂y)T−1
∑T

t=1
zt

(
δt,j

(
ψ̂
)
− δt,j (ψ0)

)
.

The first term in (12) is op (1) because from E [ztδt,j (ψ0)] = 0 it follows that

T−1
T∑
t=1

ztδt,j (ψ0) = op (1) . (13)

For the second term in (12) use Condition 3 to show that

T−1
∑T

t=1
zt

(
δt,j (ψ0)− δt,j

(
ψ̂
))

= op (1) (14)

by arguments similar to those in (11). Then, (13) and (14) establish that (12) is op (1) . It then follows

from (12) and (14) that (9) is

T−1/2
∑T

t=1
ht,j (ϑ0)− θ0

+T−1
∑T

t=1
∂ht,j (ϑ0) /∂ψ

′T 1/2
(
ψ̂ − ψ0

)
+ op (1)

= T−1/2
∑T

t=1

[
ht,j (ϑ0)− θ0 + ḣj(ϑ0)Ω

−1
ψ l(Dt, zt, ψ0)

]
+ op (1) .
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Stack ht (ϑ) =
[
ht,1 (ϑ)′ , ..., ht,J (ϑ)′

]′
and ḣ(ϑ) =

[
ḣ1(ϑ)′, ..., ḣJ(ϑ)′

]′
, let

vt (ϑ0) = ht (ϑ0)− θ + ḣ(ϑ0)Ω
−1
ψ l(Dt, zt, ψ0)

and vt,j (ϑ0) is the j-th element of vt (ϑ0) . Note that vt,j (ϑ0) is β-mixing with E [vt,j (ϑ0)] = 0. Then it

follows that

T−1E
[∑τ

t=1

∑τ
t=s vt (ϑ0) vs (ϑ0)

′] (15)

=
T−1∑

j=−T+1

(
1− |j|

T

)
E
[
v1 (ϑ0) v1−j (ϑ0)

′]→ Ωθ (16)

by stationarity of vt = vt (ϑ0) and the Toeplitz lemma. Fix λ ∈ Rk with ‖λ‖ = 1 and let ST =

T−1/2
∑T

t=1 λ
′vt. Then, E

[
S2T
]
→ λ′Ωθλ > 0 by (15) and Condition 5. In addition

E
[∣∣λ′vt∣∣p] ≤ E [(∑k

l=1 |λl| |ṽt,l|
)p]
≤
(∑k

l=1 |λl|
p
p−1
)p−1

E
[∑k

l=1 |ṽt,l|
p
]

by Hölder’s inequality (Magnus and Neudecker, 1988, p.220) and where ṽt,l is the l-th element of vt. Since

p/ (p− 1) ≤ 2 and ‖λ‖ = 1 it follows that
∑k

l=1 |λl|
p
p−1 < k. Denote by ht,j (ϑ0) and θ(j) the j-th element

of ht (ϑ0) and θ respectively and by ḣj(ϑ0) the j-th row of ḣ(ϑ0). Then,

E [|ṽt,j |p] ≤ E
[(
|ht,j (ϑ0)|+

∣∣θ(j)∣∣+
∥∥∥ḣj(ϑ0)∥∥∥∥∥∥Ω−1ψ

∥∥∥ ‖l(Dt, zt, ψ0)‖
)p]

≤ 3p−1
(
E [|ht,j (ϑ0)|p] + |θj |p +

∣∣∣ḣj(ϑ0)∣∣∣p ∥∥∥Ω−1ψ

∥∥∥p ‖l(Dt, zt, ψ0)‖p
)

again by Hölder’s inequality. It follows that
∣∣θ(j)∣∣p ≤ E [|ht,j (ϑ0)|p] by Jensen’s inequality and

∥∥∥Ω−1ψ

∥∥∥p <
∞ by Condition 5. Similarly, E [‖l(Dt, zt, ψ0)‖p] <∞ by Condition 4 and∣∣∣ḣj(ϑ0)∣∣∣p ≤ E [|∂ht,j (ϑ0) /∂ψ|p] <∞

by Condition 3. By Condition 3 E [|ht,j (ϑ0)|p] <∞ such that E [|ṽt,j |p] <∞. These arguments together
with Condition 2 show that all the conditions of Corollary 3.9 of McLeish (1975a) are satisfied. Thus,

ST →d N
(
0, λ′Ωθλ

)
. The result now follows from the Cramer-Wold theorem.

Consistency of θ̂ follows directly from the asymptotic distribution which implies that T 1/2
(
θ̂ − θ

)
=

Op (1) such that θ̂ = θ + op (1) .

The following theorem establishes the limiting distribution of the test statistic in (5).

Theorem 2 Assume that Conditions 2, 3, 4, 5 and 6 hold. For νt = νt (ξ0) let Vt = νtν
′
t − V where V

is a fixed, positive definite matrix. Assume that for any element νt,i of νt, E
[
|νt,i|p+ε

]
< ∞ where ε is

8



the same as in Condition 6. Then,

Tm̄′V̂ −1m̄→d χ
2
(k·kw)

Proof. First consider
∑T

t=1

..
Dt(zt, ψ̂)⊗ wt with representative element

T∑
t=1

..
δt,j (ψ)wt =

T∑
t=1

(
δt,j

(
ψ̂
)
− z′t(Z ′Z)−1Z ′δj

(
ψ̂
))

wt

=
T∑
t=1

(
δt,j

(
ψ̂
)
−

T∑
s=1

δjs

(
ψ̂
)
z′s(Z

′Z)−1zt

)
wt

=
T∑
t=1

δt,j

(
ψ̂
)
wt −

T∑
t=1

δjs

(
ψ̂
)
z′sπ̂
′
w

=
T∑
t=1

δt,j

(
ψ̂
)

(wt − π̂wzs) .

Thus, the test we consider is based on δt,j
(
ψ̂
)

(wt − π̂wzs) . Recall m̂t =
(
Dt(zt, ψ̂)

)
⊗ (wt − π̂wzt) such

that for mt (ξ) = (Dt(zt, ψ))⊗ (wt − πwzt) and mt,0 = mt (ξ0) and the mean value theorem it follows that

m̂t = mt (ξ0) + ∂mt

(
ξ̌
)
/∂ψ′

(
ψ̂ − ψ0

)
with

∥∥ξ̌ − ξ0∥∥ ≤ ∥∥∥ξ̂ − ξ0∥∥∥ . Using (3) as well as Condition 4 and setting ̂̇m (ξ) = T−1
∑T

t=1 ∂mt (ξ) /∂ψ′

we obtain

T−1/2
T∑
t=1

m̂t = T−1/2
T∑
t=1

mt,0 + ̂̇m (ξ̌)Ω−1ψ T−1/2
T∑
t=1

l(Dt, zt, ψ0) + (πw − π̂w)T−1/2
∑T

t=1
ztδt,j

(
ψ̂
)

+ op (1) .

= T−1/2
T∑
t=1

(
mt,0 + ṁ (ξ0) Ω−1ψ l(Dt, zt, ψ0)

)
+ op (1)

where the last line follows by the same arguments as in the proof of Theorem 1. With νt (ξ0) = mt (ξ) +

ṁ (ξ0) Ω−1ψ l(Dt, zt, ψ0) it follows from Corollary 3.9 of McLeish (1975a) that

T−1/2
T∑
t=1

m̂t = T−1/2
T∑
t=1

νt (ξ0) + op (1)→d N (0, V ) (17)

where V = E
[
νt (ξ0) νt (ξ0)

′] is a (k · kw) × (k · kw) non-singular matrix. A detailed verification of the

conditions is omitted but follows the same line of argument as given in the proof of Theorem 1 above.

To estimate V, define

ν̂t = m̂t + ̂̇m(ξ̂) Ω̂−1ψ l(Dt, zt, ψ̂)
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with

Ω̂ψ = −T−1
T∑
t=1

∂l(Dt, zt, ψ̂)

∂ψ′
.

Let

V̂ = T−1
∑T

t=1 ν̂tν̂
′
t.

By arguments similar to the proof of Theorem 1 it follows that

Ω̂ψ →p Ωψ (18)

and ̂̇m(ξ̂)→p ṁ (ξ0) . (19)

Next, expand

ν̂t = mt,0 + ∂mt

(
ξ̌
)
/∂ψ′

(
ψ̂ − ψ0

)
+
( ̂̇m(ξ̂) Ω̂−1ψ − ṁ (ξ0) Ω−1ψ

)
l(Dt, zt, ψ̂)

+ṁ (ξ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

)
+ṁ (ξ0) Ω−1ψ l(Dt, zt, ψ0)

and recalling νt = mt,0 + ṁ (ξ0) Ω−1ψ l(Dt, zt, ψ0). Then,∥∥∥T−1∑T
t=1 ν̂tν̂

′
t − V

∥∥∥ ≤ ∥∥∥T−1∑T
t=1

(
ν̂tν̂t − νtν ′t

)∥∥∥+
∥∥∥T−1∑T

t=1 νtν
′
t − V

∥∥∥ (20)

where the second term on the RHS of (20) is op (1) by Theorem 2.10 of McLeish (1995b). Next, consider

T−1
∑T

t=1

(
ν̂tν̂
′
t − νtν ′t

)
= T−1

∑T
t=1 (ν̂t − νt) (ν̂t − νt)′ + νt (ν̂t − νt)′ − (ν̂t − νt) ν ′t (21)

where

ν̂t − νt = ∂mt

(
ξ̌
)
/∂ψ′

(
ψ̂ − ψ0

)
+
( ̂̇m(ξ̂) Ω̂−1ψ − ṁ (ξ0) Ω−1ψ

)
l(Dt, zt, ψ̂) (22)

+ṁ (ξ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

)
.
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Thus,

T−1
∑T

t=1 νt (ν̂t − νt)′ = T−1
∑T

t=1 νt

(
∂mt

(
ξ̌
)
/∂ψ′

(
ψ̂ − ψ0

))′
(23)

+T−1
∑T

t=1 νt

(( ̂̇m(ξ̂) Ω̂−1ψ − ṁ (ξ0) Ω−1ψ

)
l(Dt, zt, ψ̂)

)′
+T−1

∑T
t=1 νt

(
ṁ (ξ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

))′
≡ R1 +R2 +R3.

For R1 note that

‖R1‖ ≤
∥∥∥T−1∑T

t=1 νt∂mt (ξ0) /∂ψ
′
∥∥∥∥∥∥ψ̂ − ψ0∥∥∥ (24)

+T−1
∑T

t=1 ‖νt‖
∥∥∂mt (ξ0) /∂ψ

′ − ∂mt

(
ξ̌
)
/∂ψ′

∥∥∥∥∥ψ̂ − ψ0∥∥∥
where

∥∥∥ψ̂ − ψ0∥∥∥ = Op
(
T−1/2

)
and

T−1
∑T

t=1 νt∂mt (ξ0) /∂ψ
′ = Op (1) (25)

because

E
[∥∥νt∂mt (ξ0) /∂ψ

′∥∥(p+ε)/2] ≤ (E [‖νt‖p+ε]E [∥∥∂mt (ξ0) /∂ψ
′∥∥p+ε])1/2 <∞

by Condition 6 and by Theorem 2.10 of McLeish (1975b).2 The second term in (24) can be bounded with

probability approaching 1 as T →∞, using Condition 6(iii), and noting that

∥∥∂mt (ξ0) /∂ψ
′ − ∂mt

(
ξ̌
)
/∂ψ′

∥∥ ≤ Bt ∥∥ξ̌ − ξ0∥∥α ,
by

T−1
∑T

t=1 ‖νt‖
∥∥∂mt (ξ0) /∂ψ

′ − ∂mt

(
ξ̌
)
/∂ψ′

∥∥∥∥∥ψ̂ − ψ0∥∥∥ (26)

≤
∥∥∥ξ̂ − ξ0∥∥∥1+α T−1∑T

t=1 ‖νt‖ |Bt|

where E
[
‖νt‖(p+ε)/2 |Bt|(p+ε)/2

]
≤
(
E
[
‖νt‖p+ε

]
E
[
|Bt|p+ε

])1/2
<∞ by Condition 6. This again implies

that

T−1
∑T

t=1 ‖νt‖ |Bt| = Op (1) (27)

by McLeish (1975b). Now (25) and (26) imply that R1 = op (1) .

2We use McLeish (1975), Equation (2.12) and stationarity to establish Condition (2.11) of Theorem (2.10).
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For R2 note that using Condition 6(ii), w.p.a.1 as T →∞,

‖R2‖ ≤
∥∥∥ ̂̇m(ξ̂) Ω̂−1ψ − ṁ (ξ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖νt‖ ‖l (Dt, zt, ψ0)‖

+
∥∥∥ ̂̇m(ξ̂) Ω̂−1ψ − ṁ (ξ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖νt‖

∥∥∥l (Dt, zt, ψ0)− l
(
Dt, zt, ψ̂

)∥∥∥
≤

∥∥∥ ̂̇m(ξ̂) Ω̂−1ψ − ṁ (ξ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖νt‖ ‖l(Dt, zt, ψ0‖

+
∥∥∥ ̂̇m(ξ̂) Ω̂−1ψ − ṁ (ξ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖νt‖ |Bt|

∥∥∥ψ̂ − ψ0∥∥∥α
where E

[
(‖νt‖ ‖l (Dt, zt, ψ0)‖)(p+ε)/2

]
<∞ as before. Then, T−1

∑T
t=1 ‖νt‖ ‖l (Dt, zt, ψ0)‖ = Op (1) and

(18), (19) and (27) imply that R2 = op (1) .

For R3 note that ∥∥∥∥T−1∑T
t=1 νt

(
ṁ (ξ0) Ω−1ψ

(
l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)

))′∥∥∥∥
≤

∥∥∥ṁ (ξ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖νt‖

∥∥∥l(Dt, zt, ψ̂)− l(Dt, zt, ψ0)
∥∥∥∥∥∥ṁ (ξ0) Ω−1ψ

∥∥∥T−1∑T
t=1 ‖νt‖ |Bt|

∥∥∥ψ̂ − ψ0∥∥∥
where

∥∥∥ψ̂ − ψ0∥∥∥ = op (1) by Condition 4. Then, R3 = op (1) follows from (27). The term T−1
∑T

t=1 (ν̂t − νt)×
(ν̂t − νt)′ in (21) can be analyzed in the same way as T−1

∑T
t=1 νt (ν̂t − νt)′ but the details are omitted.

It follows that T−1
∑T

t=1

(
ν̂tν̂
′
t − νtν ′t

)
= op (1) which in turn implies that

V̂ − V = op (1) . (28)

Then, for m̄ = T−1
∑T

t=1 m̂t, the statistic Tm̄′V̂ −1m̄ is asymptotically χ2(k·kw) because of (17), (28) and

the continuous mapping theorem.
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