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Abstract

This paper analyzes the higher order asymptotic properties of Generalized Method of Moments

(GMM) estimators for linear time series models using many lags as instruments. A data dependent

moment selection method based on minimizing the approximate mean squared error is developed.

In addition, a new version of the GMM estimator based on kernel weighted moment conditions

is proposed. It is shown that kernel weighted GMM can reduce the asymptotic bias compared

to standard GMM. Kernel weighting also helps to simplify the problem of selecting the optimal

number of instruments. A feasible procedure similar to optimal bandwidth selection is proposed for

the kernel weighted GMM estimator.
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1. Introduction

This paper analyzes the higher order asymptotic properties of GMM estimators for linear time series

models where the number of lagged instruments is potentially large. It is well known in the cross-

sectional literature that using a large number of instruments can result in substantial second order

bias of GMM estimators. This limits the implementation of effi cient procedures. Similar results are

obtained in this paper for the time series case. The analysis of the higher order mean squared error

shows that the trade off between bias and variance can be manipulated by using a kernel weighting

procedure for the instruments.

Expansions similar to the ones of Donald and Newey (2001) are obtained for the case of GMM

estimators in models with lagged dependent right hand side variables and many lagged instruments.

Based on these expansions, approximations for the higher order asymptotic mean squared error are

obtained. The time series case is more diffi cult to analyze than the situation with cross-sectional

samples and exogenous instruments because the expansion cannot be developed conditional on the

instruments. Most work on many instrument asymptotics therefore considers situations where the

data are sampled independently. Nevertheless, moment selection for the time series case when the

number of instruments is fixed was considered by Inoue (2006) and bias properties of GMM estimators

for time series models with a fixed number of instruments were investigated by Anatolyev (2005).

Minimizing the asymptotic approximation to the MSE with respect to the number of lagged instru-

ments leads to a feasible GMM estimator for time series models. The trade-off in adding additional

instruments is between asymptotic effi ciency and bias. Because of the endogeneity of lagged instru-

ments, the Mallow’s criterion employed by Donald and Newey (2001) cannot be readily applied to the

time series case. The approach taken here is to estimate nuisance parameters that enter the MSE

formula with a VAR approximation to the reduced form data-generating process. The approximating

VAR is allowed to grow in dimension as the sample size expands.

A second contribution of the paper is to propose a new kernel weighted version of GMM. Kernel

weighting is based on the insight that in a time series context where lagged endogenous variables are

used as instruments, more distantly lagged instruments are typically less informative for the first stage

and contribute more to estimator bias in proportion to their information content than more recent

instruments. Kernel weighting then modifies the GMM weight matrix to put less weight on moment

conditions with farther lagged instruments. Since the first version of this paper was circulated1 this idea

has been adapted to cross-sectional settings by Okui (2005), Canay (2006) and Kuersteiner and Okui

(2010). Regularization methods to address the many instrument problem are considered by Carrasco

1See Kuersteiner (2002b)
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(2011) for iid models. Here, it is shown that the asymptotic bias can be reduced if suitable kernel

weights are applied to the moment conditions. An added benefit of kernel weighting is that it simplifies

the instrument selection problem to a bandwidth selection problem similar to the one encountered

in the HAC estimation literature. The downside of kernel weighting is a higher order effi ciency loss.

However, Monte Carlo experiments indicate that the benefits of kernel weighting outweigh the effi ciency

loss for a wide range of data-generating processes.

The paper is organized as follows. Section 2 presents the time series models and introduces nota-

tion. Section 3 introduces the kernel weighted GMM estimator, contains the analysis of higher order

asymptotic MSE terms and derives a selection criterion for the optimal number of instruments. Section

4 discusses implementation of the procedure, in particular consistent estimation of the criterion func-

tion for optimal bandwidth selection. Section 5 contains a small Monte Carlo experiment. Technical

definitions, assumptions and proofs are collected in the appendix. Additional proofs and lemmas are

collected in an auxiliary appendix published on the author’s web-page.

2. Linear Time Series Models

The econometric model considered in this paper is similar to the linear time series framework of Hansen

and Singleton (1991). Let yt ∈ Rp be a strictly stationary stochastic process. It is assumed that yt
satisfies a structural econometric equation implied by restrictions obtained from economic theory. In

order to describe this structural equation partition yt =
[
yt,1, y

′
t,2, y

′
t,3

]
. Here, yt,1 is the scalar left hand

side variable, yt,2 are the included and yt,3 are the excluded contemporaneous variables. The vector

Xt is defined to contain, possibly a subset, of the lagged variables yt−1, ..., yt−r where r is known and

fixed. The structural equation then takes the form

(2.1) yt,1 = α0 + β′0yt,2 + β′1Xt + εt.

The structural model also imposes restrictions on the innovations εt. More specifically, εt is strictly

stationary with E [εt] = 0 and follows a moving average (MA) process of order m− 1 for m ≥ 1, where

m is assumed known and finite. Denote the autocovariance function of εt by γεj = E [εtεt−j ] with

γεj = 0 for |j| ≥ m.
Letting β =

(
β′0, β

′
1

)′ ∈ Rd and collecting all the regressors in xt where xt =
(
y′t,2, X

′
t

)′ one can
write (2.1) as yt,1 = α0 + β′xt + εt. An alternative representation of (2.1) is obtained by setting

a(z, β) = a0 + a1z + ...+ arz
r with 1× p vectors ai and z ∈ C, the set of complex numbers, such that

a(L, β)yt = α0 +εt where L is the lag operator. Note that ai are subject to exclusion and normalization

restrictions implied by (2.1).
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The assumption of strict stationarity together with assumptions that guarantee the existence of

moments of suffi ciently high order imply that yt admits an infinite order moving average representation

(2.2) yt = µy +B(L)ut

by the Wold representation theorem. Here, µy ∈ Rp is a constant, ut is a strictly stationary white
noise sequence and B (z) =

∑∞
j=0Bjz

j with B0 = Ip where Ip is the p-dimensional identity matrix.

It is assumed that B (z)−1 exists for |z| ≤ 1 and has a convergent expansion π (z) = I −
∑∞

j=1 πjz
j .

The coeffi cient matrices πj are the coeffi cients of the infinite order AR representation of yt and are

assumed to satisfy
∑∞

j=k ‖πj‖ = O
(
νk
)
for some ν ∈ [0, 1). The structural equation (2.1) imposes

certain constraints on B (z). To see this, partition B (z) =
[
B1 (z)′ , B2 (z)′

]′
where B1 (z) is a 1 × p

vector, B2 (z) is a (p− 1)×p matrix of lag polynomials and µy =
[
µy1, µ

′
y2

]
is partitioned conformingly.

Define α0 ≡ a(1, β)µy and let

A (L) =

 a(L, β)

0 Ip−1

 .
Now premultiply both sides of (2.2) with A (L) such that

A (L) yt =

[
α0

µy,2

]
+

[
εt

B2(L)ut

]

with εt = b (L)ut. The polynomial b (L) is of order m− 1. The restrictions imposed on B (L) then are

that a(L, β)B(L) = b (L) and a (L, β)µ = α0. Note that (2.1) does not impose any constraints on the

elements of Bj related to the excluded variables yt,3.

The restrictions imposed on B (L) do not imply that there is a reduced form for xt that depends

on a finite dimensional parameter, as would be the case for example if xt had a finite order VAR

representation. The higher order asymptotic expansions of this paper therefore do not apply to GMM

estimators such as the ones by West and Wilcox (1996), Kuersteiner (2001, 2002a) and West, Wong

and Anatolyev (2009) that explicitly rely on such a parameterization. These estimators depend on the

correct specification of the reduced from for xt to achieve the first order asymptotic effi ciency bounds

while the estimators considered in this paper achieve the bounds irrespective of the data generating

mechanism for xt.

The economic model (2.1) implies moment restrictions of the form

(2.3) E [εt+myt−j ] = 0 for all j ≥ 0

because εt+m = b (L)ut+m depends on ut+m, ..., ut+1 while the instruments yt, yt−1, ... only depend on

ut, ut−1, ... and because ut is white noise. The moment restrictions (2.3) are the basis for the formulation
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of GMM estimators using an Mp dimensional vector of instruments z̃t,M =
(
y′t, y

′
t−1, ..., y

′
t−M+1

)
.

Alternatively, the moment restrictions (2.3) are often implied by economic theory and then lead to the

formulation of a structural model of the form (2.1). A well known example are the asset pricing models

discussed in Hansen and Singleton (1996).

The innovations ut are not assumed to be martingale difference sequences. As a result the moment

condition (2.3) is an unconditional rather than a conditional moment restriction and the only valid

instruments are linear in yt−j for j ≥ 0. This is in contrast to effi ciency results for models with

conditional moment restrictions due to Hansen (1985) and Hansen, Heaton and Ogaki (1988) who

develop GMM effi ciency bounds achieved by instruments that are possibly non-linear in yt−j .

One of the main contributions of this paper is to develop a data-dependent method for selecting the

parameterM based on a higher order approximation to the mean squared error of the GMM estimator.

Asymptotically, M needs to tend to infinity in order to exploit all moment conditions in (2.3) and to

achieve first order effi ciency. In finite samples, the choice ofM is limited by data-availability, but more

importantly by a need to balance bias and variance when including additional instruments. The higher

order analysis in Section 3 provides the tools to choseM optimally in a way that letsM tend to infinity

with the sample size for effi ciency reasons but does so slowly enough to control for higher order and

finite sample bias.

Detailed technical assumptions are listed in the appendix. It is assumed that ut is a homoskedastic

white noise sequence. In addition, a restriction proposed by Hayashi and Sims (1983) is imposed,

namely that E(utu
′
s|z̃t−1,M ) = E (utu

′
s) for all t ≥ s and M. More specifically, this implies that

E(utu
′
t|z̃t−1,M ) = Σ for some positive definite and nonrandom matrix Σ and E(utu

′
s|z̃t−1,M ) = 0 for

t > s. The assumption that the covariance structure of the process ut does not depend on z̃t,M is

restrictive as it rules out time changing variances and conditional heteroskedasticity. Relaxing this re-

striction results in more complicated GMM weight matrices of the type analyzed in Kuersteiner (2001).

Homoskedasticity both simplifies the higher order expansion and thus expressions that determine the

optimal choice of M and allows to establish theoretical properties of data-dependent choices for M

that are more diffi cult to establish in a more general setting. In principle, the higher order moment

restriction implied by conditional homoskedasticity could be used for estimation in addition to the

conditions (2.3). The resulting estimator is however nonlinear and will not be considered here.

The regularity conditions listed in the Appendix also involve the existence of moments of up to order

12 for the innovation sequence. Existence of moments up to order 12 is not necessary to establish the

first order asymptotic properties of the GMM estimator but is required to derive the approximation to

the higher order MSE of the estimator. The assumptions on higher order moments are more stringent
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than the ones typically found in the cross-sectional literature. The reason is that the MSE of the

GMM estimator cannot be computed conditionally on the instruments z̃t,M unless they are strictly

exogenous.2

3. Kernel Weighted GMM

In this paper a generalized class of GMM estimators based on kernel weighted moment restrictions is

introduced. In Theorem 3.1 it is shown that certain kernel functions reduce the higher order bias of

GMM estimators. In other words, kernel weighting is a way to change the higher order variance-bias

trade-off of an increasing number of overidentifying restrictions that is known to affect GMM.

It is assumed that a sample of size n, y1, ..., yn, generated by the process (2.2) and subject to

the restrictions imposed by (2.1) is observed. The kernel weighted GMM estimator β̂n,M is now

discussed. Define the instrument vector z̃t,M = (y′t, y
′
t−1, ..., y

′
t−M+1)′. An instrument selection matrix

SM (t) = diag(1 {t ≥ 1} , ....,1{t ≥ M}), where 1{.} is the indicator function, is introduced to exclude
instruments for which there is no data in the sample. The vector of available instruments is denoted by

zt,M = (SM (t)⊗ Ip) (z̃t,M−1M⊗ ȳ) where ȳ = n−1
∑n

t=1 yt, Ip is the p-dimensional identity matrix and

1M = (1, ..., 1)′ is a vector of length M with all elements equal to 1. Let ZM be the matrix of stacked

instruments ZM = [zmax(1,r−m+1),M , ..., zn−m,M ]′ and X = [xmax(m+1,r+1)− x̄, ..., xn− x̄]′ the matrix of

regressors. Also, Y is the stacked vector of the first demeaned element in yt. Then define the d×Mp

matrix P̂ ′M = n−1X ′ZM as well as the Mp× 1 vector P̂ yM = n−1Z
′
MY. Let Ω̂M be an estimator of the

optimal weight matrix ΩM =
∑m−1

l=−m+1 γ
ε
l Cov [z̃t,M , z̃t+l,M ] . Assuming that M is such that M ≥ d/p,

where d is the dimension of β, the GMM estimator β̂n,M can now be written as

(3.1) β̂n,M =
(
P̂ ′MWM Ω̂−1

M WM P̂M

)−1
P̂ ′MWM Ω̂−1

M WM P̂
y
M .

The weight matrix WM is defined as WM = (wM ⊗ Ip) where wM is a diagonal matrix

wM = diag(k(0), ..., k((M − 1) /M))′

having weight k((j − 1) /M) in the j-th diagonal element and zeros otherwise and where k (.) is a kernel

function satisfying properties outlined in Assumption A below. The general kernel weighted approach

covers standard GMM as a special case when the truncated kernel k(j/M) = 1{|j/M | ≤ 1} is used.
In that case WM = IMp and β̂n,M is the conventional GMM estimator based on the instrument vector

zt,M .

2See for example Donald and Newey (2001) or Kuersteiner and Okui (2010).
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The formulation of β̂n,M does not depend on homoskedasticity. The weight matrix ΩM can be

estimated by a HAC type estimator such as Andrews (1991) or Newey and West(1994) which will lead

to improved first order asymptotic effi ciency when ut is heteroskedastic. The optimal data-dependent

choice for M developed in this paper on the other hand does depend on homoskedasticity. If M is

chosen according to the methods of this paper but homoskedasticity fails in the data then the choice

of M will be suboptimal. However, since ΩM affects first order properties and M only affects higher

order properties of β̂n,M it is plausible that an estimator β̂n,M with robust weight matrix and with a

data-dependent M that ignores heteroskedasticity will still do well in finite samples.

The constant α0 in (2.1) can be estimated as α̂0 ≡ ȳ − x̄′β̂n,M . The estimator
(
α̂0, β̂

′
n,M

)′
has the

same first order limiting distribution as an alternative GMM estimator that includes a constant both

in xt and zt,M rather than working with the demeaned variables as is done here. The latter estimator

has a stochastic expansion with additional higher order terms because it implicitly estimates the mean

of the instruments with less than n observations.

To describe estimation of the weight matrix Ω̂M , let γ̂ε(l) = 1
n

∑n
t=m+r+1 ε̂tε̂t−l for l ≥ 0 with

ε̂t = a(L, β̃n,M )(yt− ȳ), some consistent first stage estimator β̃n,M and γ̂ε(l) = γ̂ε(−l) for l < 0.3 Then

define Ω̂M (l) = 1
n

∑n
t=1 zt,Mz

′
t−l,M for l ≥ 0, Ω̂M (l) = Ω̂M (−l)′, for l < 0, Ω̂∗M =

∑m−1
l=−m+1 γ̂

ε(l)Ω̂M (l)

and

(3.2) Ω̂M = Ω̂∗M1
{

min ξ̂Ω ≥ 0
}

+
(

1− 1
{

min ξ̂Ω ≥ 0
}) m−1∑

l=−m+1

(
1− |l|

m

)
γ̂ε(l)Ω̂M (l)

where min ξ̂Ω is the smallest eigenvalue of Ω̂∗M . The estimator Ω̂M is equal to the simpler form Ω̂∗M

with probability approaching one (wpa1), but unlike Ω̂∗M , is guaranteed to be positive semi-definite in

finite samples.

The effects of using kernel weighted moments can be inferred from (3.1). The kernel matrix WM

distorts the variance of the estimator by usingWM Ω̂−1
M WM instead of the optimal Ω̂−1

M as weight matrix.

As is shown below, these effects are second order for suitable choices of the kernel function k(j/M) and

bandwidth M. Regularity conditions for kernel weights k (.) are introduced next.

Assumption A. Let K = {k(.)|k(.) : R→ [−1, 1] , k(0) = 1, k (x) = 0 for |x| > 1, k(x) = k(−x), k(.) is

continuous except at a countable number of points}. Define kq = limx→0(1 − k(x))/ |x|q . In addition
k (.) ∈ K satisfies one of the following two assumptions:

3For M fixed and possibly small, a first stage estimator can be obtained from standard ineffi cient GMM procedures

where Ω̂M = IMp. In the Monte Carlo simulations the first stage estimator is based on the choice M that is selected as

the optimal lag length in a VAR(p) approximation to π (z) .
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A1 (Truncated Kernel). For all q ∈ [0,∞) it follows that kq = 0.

A2 (Smooth Kernel). There exists a smallest number q ∈ (0,∞) such that 0 < kq <∞.

The most important kernel satisfying A1 is the truncated kernel k(x) = 1 {|x| ≤ 1} . Assumption
A2 rules out certain parametric kernel functions such as the Quadratic Spectral kernel but is satisfied

by a number of well known kernels such as the Truncated, Bartlett, Parzen and Tukey-Hanning kernels.

Assumption A1 and A2 correspond to the assumptions made in Andrews (1991) except that here an

additional requirement is that k(x) = 0 for |x| > 1. This ensures that only a finite number of moment

conditions, controlled by the bandwidth parameter, are used and therefore simplifies estimation of the

weight matrix Ω̂M . The constraint k(0) = 1 is introduced for notational convenience only since β̂n,M
is invariant to the scale of WM .

3.1. Higher Order Approximations

The higher order approximation to the MSE of β̂n,M is derived from a Nagar (1959) type approximation

similar to the one used in Donald and Newey (2001) for the iid case. Let β̂n,M be stochastically

approximated by bn,M such that

(3.3) n1/2(β̂n,M − β) = bn,M + rn,M

where rn,M is an error term with properties discussed below. To that end define PM = Cov(zt,M , xt+m)

and let D = limM→∞DM where DM = P ′MΩ−1
M PM such that D−1 is the effi ciency lowerbound for

β̂n,M .
4 ,5 For ` ∈ Rd with `′` = 1 define the approximate mean squared error ϕn(M, `, k(.)) of `′β̂n,M

as in Donald and Newey (2001) as

`′E
[
bn,Mb

′
n,M

]
` = `′D−1`+ ϕn(M, `, k(.)) +Rn,M

4The matrix D depends on the infinite dimensional inverse of Ω, Ω−1. The existence of this inverse is established

in Lemma A.7 by showing that the elements of Ω−1 have closed form expressions. The proof uses a similar result

established by Lewis and Reinsel (1985). The representation in Lemma A.7 depends on the homoskedasticity of the error

term. Invertibility of Ω when the errors are heteroskedastic is a more delicate problem - see Kuersteiner (2001) for some

discussion.
5The effi ciency lowerbound depends on infinitely many lagged instruments zt, zt−1, ...It can only be achieved asymp-

totically as M,n→∞. However, by Kolmogorov’s existence theorem the process zt exists for t ∈ {, ...,−1, 0, 1, ...} which
allows to define D.
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and require that the error terms rn,M and Rn,M satisfy6

(3.4)
‖rn,M‖2 +Rn,M
ϕn(M, `, k(.))

= op(1) as M →∞, n→∞,M/n1/3 → 0.

The main difference to Donald and Newey (2001) is that in the time series case ϕn(M, `, k(.)) is

an unconditional expectation. As noted by Donald and Newey, the approximation is only valid for

M →∞. Theorems 3.1 and 3.3 below establish that the approximate MSE, ϕn(M, `, k(.)), consists of a

bias term which is of order O (M/
√
n) and a variance term which is of order O (‖D −DM‖) for kernels

satisfying Assumption A1 and of order O
(
M−2q

)
for kernels satisfying Assumption A2. By assumption

M,n→∞ and M/
√
n→ 0 such that ϕn(M, `, k(.)) = o (1) . This means that ϕn(M, `, k(.)) is a higher

order MSE term that disappears asymptotically. To first order, the asymptotic distribution of β̂n,M is

unbiased with variance D−1.

The first result concerns the exact nature of the bias term which does depend on the kernel function.

Theorem 3.1. Suppose k (.) satisfies Assumption A and Assumptions B and C in the Appendix

hold. Let Γεxt−s = E [εtxs] , Γεyt−s = E [εt+mys+1] , Γxyj = cov (xt+m, yt−j+1) and define fεx(λ) =

1
2π

∑∞
j=−∞ Γεxj e

−iλj , fε (λ) = 1
2π

∑m−1
j=−m+1 γ

ε
je
−iλj and fεy(λ) = 1

2π

∑∞
j=−∞ Γεyj e

−iλj . Let fa (λ) =∑∞
j1,j2=1 Γxyj1 ϑj1,j2e

−iλj2 where ϑj,k is the j, k-th block of Ω−1 which is shown to exist in Lemma (A.7).

Define

(3.5) A1 = (4π)−1
∫ π

−π
fεx(λ)f−1

ε (λ)dλ, A2 = 2−1

∫ π

−π
fa (λ) fεy(λ)dλ

Assume that M,n→∞ and M/n1/3 → 0. Then, for bn,M defined in (3.3),

(3.6) lim
n→∞

√
n

M
E [bn,M − β] = pD−1

(
A1

∫ 1

−1
k2(x)dx+A2

∫ 1

−1
k(x)dx

)
.

To further analyze the bias components let vt,i = εt+m
(
yt+1−i − µy

)
, ψt,M =

(
v′t,1, ..., v

′
t,M

)′
and

VM = n−1/2
∑n−m

t=1 ψt,M . The two components A1 and A2 in (3.5) can be shown to equal

(3.7) pA1

∫ 1

−1
k2(x)dx = lim

n→∞

√
n

M
E
[(
P̌M − PM

)′
WMΩ−1

M WMVM

]
where P̌M is the same as P̂M except that ȳ is replaced with µy and

(3.8) pA2

∫ 1

−1
k(x)dx = lim

n→∞

√
n

M
E
[
P ′MWMΩ−1

M Ω∆
MΩ−1

M WMVM
]

6The requirement that M/n1/3 → 0 is slightly stronger than M/n1/2 → 0 imposed by Donald and Newey (2001).

This is without consequence because the optimal M∗ is M∗ = O (logn) for the truncated kernel and M∗ = O
(
n1/4

)
for kernels with q ≥ 1 such that M∗/n1/3 → 0. The rate M/n1/3 → 0 is only used at one point to show that a certain

remainder term is small.
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where Ω∆
M =

∑m−1
l=−m+1 γ

ε
l

(
Ω̂M (l)− ΩM (l)

)
+ Op (M/n). These expressions correspond to, yet are

somewhat different from, expressions in Donald and Newey (2001) and Newey and Smith (2004). In

Donald and Newey (2001) A2 = 0 because in their case zt,M is exogenous and all expectations are

taken conditional on zt,M . Here, Ω∆
M and VM are correlated because of correlation between εs and zt,M

and zt,M appearing in both terms. Newey and Smith (2004) consider non-linear GMM estimators with

a finite number of moment conditions. Thus, the decomposition given in their Theorem 4.1 applies

here with the following modifications: Using their notation it follows that a = 0 because εt only

depends linearly on β and the remaining terms in BI are of lower order when M →∞. Similarly BW
is of lower order. The term ΣE

[
GiΩ

−1gi
]
in BG corresponds to D−1pA1

∫ 1
−1 k

2(x)dx while the term

HE
[
gig
′
iΩ
−1gi

]
corresponds to D−1pA2

∫ 1
−1 k(x)dx. The remaining terms in BG and BΩ are of lower

order when M →∞. To better understand the relationship between the two notations note that ψt,M
corresponds to the moment vector gi and ∂ψt,M/∂β

′ corresponds to Gi with n−1
∑n

t=1 ∂ψ
′
t,M/∂β =

−P̌ ′M . For the truncated kernel, the right hand side of (3.7) then can be written as
(3.9)

E
[(
P̌M − PM

)′
Ω−1
M VM

]
= E

[
P̌ ′MΩ−1

M VM
]

= n−1/2

n−1
n−m∑
t,s=1

E

[
∂ψ′t,M
∂β

Ω−1
M ψs,M

]+ o
(
M/
√
n
)

which reduces to the term E
[
GiΩ

−1gi
]
of Newey and Smith (2004) under independence and when

M is fixed. The term BG is the dominating bias term in GMM estimators but is absent in certain

Generalized Empirical Likelihood (GEL) estimators. This is the reason for the smaller bias of GEL

compared to GMM as discussed in Donald, Imbens and Newey (2009). However, GEL estimators are

typically diffi cult to implement for time series models.

For (3.8) note that the estimator Ω̂M imposes homoskedasticity. As a result, Ω̂M does not involve

averages n−1
∑n

t=1 ψt,Mψ
′
t,M as is the case for the GMM estimator analyzed by Newey and Smith

(2004). The appendix shows that the estimation error related to the estimator of γε (l) is of smaller

order when M →∞. Then, (3.8) depends on

E
[
P ′MΩ−1

M Ω∆
MΩ−1

M VM
]

= n−1/2

P ′MΩ−1
M n−1

n−m∑
t,s=1

m−1∑
l=−m+1

γε (l)E
[
zt,Mz

′
t−l,MΩ−1

M ψs,M
]+ o

(
M/
√
n
)

where, under independence and M fixed, γε (0)E
[
zt,Mz

′
t,MΩ−1

M ψt,M

]
corresponds to E

[
gig
′
iΩ
−1gi

]
aside from the differences due to the imposed homoskedasticity in Ω̂M .

Anatolyev (2005) provides results for the Bias of GMM estimators with a fixed number of instru-

ments for non-linear time series models. It can be seen from (3.9) that (3.7) corresponds to the term

−
∑∞

u=−∞ΣE
[
mθtV

−1mt−u
]
in Anatolyev (2005, Theorem 1). The remaining terms in B∂mΩm (u),
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again using Anatolyev’s notation, are of smaller order under asymptotics withM →∞. Similarly, (3.8)
corresponds to

∑∞
u,v=−∞ ΞE

[
mtm

′
t−uV

−1mt−v
]
with the remaining terms in Bm3 (u) being of smaller

order. The remaining terms corresponding to Anatolyev (2005, Theorem 1) involving BW (u) , B∂mΞm

and B∂2m are either zero or of smaller order for the same reasons as in the comparison with the results

of Newey and Smith (2004).

The following result characterizes conditions under which kernel weighted GMM is less biased than

standard GMM.

Corollary 3.2. Fix ` ∈ Rd with `′` = 1. Let c1 = `′D−1A1 and c2 = `′D−1A2. Suppose Assumptions

B and C in the Appendix hold, k(.) satisfies Assumption A2 and n,M → ∞, M/n1/3 → 0 . If k(.)

satisfies the additional constraint

(3.10)

∣∣∣∣c1

∫ 1

−1
k2(x)dx+ c2

∫ 1

−1
k(x)dx

∣∣∣∣ ≤ 2 |c1 + c2|

then

(3.11) lim
n→∞

∣∣√n/ME`′(bn,M − β)
∣∣ ≤ lim

n→∞

∣∣√n/ME`′(bTn,M − β)
∣∣

where bTn,M is the stochastic approximation of the GMM estimator based on the truncated kernel. If

the inequality in (3.10) is strict then the inequality in (3.11) is also strict.

The result of the Corollary is based on the fact that for the truncated kernel
∫ 1
−1 k

2(x)dx =∫ 1
−1 k(x)dx = 2 such that the bias in that case is 2pD−1 (A1 +A2) . Note that Condition (3.10) is

satisfied if
∫ 1
−1 k

2(x)dx =
∫ 1
−1 k(x)dx ≤ 2 although much weaker conditions may hold for many val-

ues of c1 and c2. In particular, if c1 > 0 and c2 > 0 then it is enough to have
∫ 1
−1 k

2(x)dx ≤ 2 and

0 <
∫ 1
−1 k(x)dx ≤ 2 which is satisfied for many standard kernels. For well known kernels such as the

Bartlett, Parzen or Tukey-Hanning
∫ 1
−1 k (x)2 dx is equal to 2/3, .53 and 3/4 respectively. The linear

component
∫ 1
−1 k (x) dx is equal to 1, 3/4 and 1 for the Bartlett, Parzen and Tukey-Hanning kernel.

Bias properties are only one aspect of estimator performance. By construction, the weight matrix

WM increases the variability of β̂n,M relative to the case where WM = IMp. This happens despite the

fact that the first order limiting distribution of
√
n
(
β̂n,M − β0

)
is unaffected by the choice of WM as

long as Assumption A holds and M → ∞. The next result allows to quantify the trade-off between
higher order bias and variance of β̂n,M .

11



Theorem 3.3. Suppose Assumptions B and C in the Appendix hold and ` ∈ Rd with `′` = 1 is fixed.

Let σ1M = D − P ′MΩ−1
M PM = D −DM . Assume that n,M →∞ such that M/n1/3 → 0. Then,

i) for k(x) = 1 {|x| < 1}, let A0 = 2 (A1 +A2) and define A =`′D−1A0A0
′D−1`,

(3.12) ϕn(M, `, k(.)) =
(Mp)2

n
A+ `′D−1σ1MD

−1`,

ii) for k(.) such that Assumption A2 is satisfied define A0 = A1

∫ 1
−1 k(x)2dx + A2

∫ 1
−1 k(x)dx and

A =`′D−1A0A0
′D−1`. It follows that

ϕn(M, `, k(.)) =
(Mp)2

n
A+M−2qk2

q`
′D−1B(q)D−1`

with B(q) =
(
B(q)

2 − B
(q)
1 D−1B(q)′

1

)
where B(q)

2 is defined as

B(q)
2 =

∞∑
k=1,j=1

|k|q |j|q Γxyk ϑk,jΓ
yx
−j(3.13)

+
∞∑

j1,...,j4=1

Γxyj1 ϑj1,j2 |j2|
q ωj2,j3 |j3|

q ϑj3,j4Γ
yx
−j4 + B(2q)

1

and B(q)
1 is defined as B(q)

1 =
∑∞

j1,j2=1

(
Γxyj1 ϑj1,j2 |j2|

q Γyx−j2 + Γxyj1 |j1|
q ϑj1,j2Γ

yx
−j2

)
.

Remark 1. Note that εt and the elements of zt,M enter both with up to second powers in Ω̂M , while

they enter as a product in VM . Consequently, the expansion of P̂ ′MWM Ω̂−1
M WMVM has a mean that to

first order involves 8-th moments and a variance that involves 16-th moments. A further analysis shows

that P̂ ′MWM Ω̂−1
M WMVM can be decomposed into terms that are stochastically smaller by replacing Ω̂−1

M

with Ω−1
M Ω∆

MΩ−1
M , or in other words γ̂εj with γ

ε
j . This reduces the required moments of the highest order

terms to 6-th and 12-th moments respectively.

The higher order MSE ϕn(M, `, k(.)) of β̂n,M consists of a bias component that depends on the

constant A and on the kernel as well as a variance term that depends on the constants B(q)
1 and B(q)

2 .

The terms involving B(q)
1 and B(q)

2 measure the asymptotic discrepancy between the variance of GMM

based on a kernel, and the asymptotic variance of GMM based on lag truncation.

Note that
(
P ′MΩ−1

M PM
)−1

is the asymptotic variance of β̂n,M based on the truncated kernel when

M is held fixed as n→∞, while

ΞM =
(
P ′MΩ−1

W,MPM

)−1 (
P ′MΩ−1

W,MΩMΩ−1
W,MPM

)(
P ′MΩ−1

W,MPM

)−1

with Ω−1
W,M = WMΩ−1

M WM is the corresponding variance of β̂n,M based on a kernel satisfying Assump-

tion A2 for M fixed and n → ∞. The term M−2qk2
qB(q) then can be understood as the approximate,

12



asymptotic difference P ′MΩ−1
M PM − Ξ−1

M as M,n→∞. Because the weighting matrix WM distorts the

optimal weighting matrix ΩM , the higher order variance of β̂n,M also depends on the kernel through

the constant kq. The constant kq measures the higher order loss in effi ciency due to the kernel function.

The loss for instrument yt+1−i is proportional to 1− k(i/M) = kqM
−q |i|q for large M .

For the truncated kernel analyzed in Theorem 3.3i) the difference P ′MΩ−1
M PM − Ξ−1

M = 0. The next

largest variance term then depends on D − DM . The constant D−1 is the variance lowerbound for

β̂n,M . This implies that σ1M = D − DM can be interpreted as a measure of how close β̂n,M is to

achieving the effi ciency bound. The approximation to the MSE thus reveals a second order trade-off

of the instrument choice between more bias and reduced asymptotic variance. Note that the term

D−1σ1MD
−1 is similar to the result in Donald and Newey (2001, Proposition 1) for the two stage least

squares estimator in cross-sectional settings.

When kernels satisfying A2 are used the termM−2qk2
qB(q) dominates σ1M . This implies that kernels

satisfying A2 lead to a higher order MSE that goes to zero at a slower rate than the higher order MSE in

case i) of Theorem 3.3. Whether the slower rate of convergence is of practical importance is investigated

by Monte Carlo experiments reported in Section 5.

3.2. Special Cases

This section considers a number of special cases of model (2.1) to illustrate the results in Theorem 3.1

and relating them to similar results in the literature.

A special case of interest arises when m = 1. Then, εt is serially uncorrelated and fε (λ) = γε0/ (2π) .

This implies that A1 = (2γε0)−1 ∫ π
−π fεx(λ)dλ = E [εtxt] / (2γε0) .With a truncated kernel,

∫ 1
−1 k

2(x)dx =

2 such that the first term in (3.6) equals 2pD−1A1 = pD−1E [εtxt] /γ
ε
0. In addition, ΩM = γε0 Var (z̃t,M )

such that D = H/γε0 where H = limM→∞ (P ′M Var (z̃t,M )PM ) . This reduces the first part of the bias

to pH−1E [εtxt] .

Next, assume that zt,M is based on yt,3 only and that yt,3 is strictly exogenous. If in addition it also

holds thatm = 1, the bias formula can be further simplified. Note that for z̃t,∞ =
[
y′t,3, y

′
t−1,3, ...

]′ it fol-
lows that E [εtxt] = E [εtvt] where vt = xt−γε0P ′Ω−1z̃t,∞ with P = E [xtz̃t,∞] and Ω = E

[
ε2
t+1zt,∞z

′
t,∞
]

is the residual from the reduced form equation relating xt to zt,∞. In addition, because for m = 1,

Ω̂M = γ̂ε0Ω̂M (0), the term γ̂ε0 cancels in β̂n,M . The term Ω∆
M in A2 then only depends on the exogenous

zt,M which means that 2pA2 = limn→∞E
[
P ′MWMΩ−1

M Ω∆
MΩ−1

M WME [VM |ZM ]
]

= 0. The bias in (3.6)

thus reduces to

(3.14) MpH−1E [εtvt] /
√
n
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where Mp is the number of instruments. This expression corresponds to the formula given by Donald

and Newey (2001) for the 2SLS estimator in a cross-sectional setting.

An even closer analogy to Donald and Newey (2001) can be obtained by imposing further restrictions

on B (L) and Σ. To that end, assume that for lag polynomials πxz (L) and πz (L) satisfying Assumption

C, the structural model and associated reduced form can be written as y1t = β′0yt,2 + ut,1, yt,2 =

πxz (L) yt,3 + ut,2 and πz (L) yt,3 = ut,3 where ut =
(
ut,1, u

′
t,2, u

′
t,3

)
is partitioned in accordance with

yt =
(
yt,1, y

′
t,2, y

′
t,3

)
and ut,3 is independent of u1,t, ut,2. In this case B (L), partitioned conformingly

with yt =
(
yt,1, y

′
t,2, y

′
t,3

)
, satisfies the constraints

B (L) =


1 β′0 −β′0πxz (L)π−1

z (L)

0 I −πxz (L)π−1
z (L)

0 0 π−1
z (L)


which implies that β1 = 0 in (2.1) and m = 1. If zt,M is based on yt,3 only as before, it follows that vt =

ut,2 = yt,2 − πxz (L) yt,3 and the bias formula in (3.14) then is MpH−1ρ/
√
n where ρ = cov (ut,1, ut,2) .

It is also of interest to consider the bias approximation for the model used in the Monte Carlo

experiments in Section 5. The parameters φ and ρ control instrument strength and correlation between

reduced from and structural errors and θ is the parameter of the MA polynomial. Detailed calculations

discussed in the auxiliary appendix show that 2A1 = ρ as before while A2 is of a more complicated

form. Contour plots reported in the auxiliary appendix depict the bias as a function of φ and ρ and are

given for various values of θ. These graphs confirm findings in the Monte Carlo simulations that the bias

generally increases with ρ, decreases with φ and decreases in θ. In particular, the bias is largest when

θ is close to −1 and smallest when θ is close to 1. The auxiliary appendix also contains closed form

expressions for the approximate MSE ϕn(M, `, k(.)) in Model 5.1. Manageable closed from expressions

are only available when M = 1. For that case, the variance component D−1σ1MD
−1 of ϕn(M, `, k(.))

can be analyzed in detail. The exact expressions are again too complex to report here but contour

plots of D−1/2σ1MD
−1/2 show that the variance component increases in both ρ and φ as well as in the

absolute value of θ. One reason for these effects lies in the correlation between the explanatory variable

and the instruments at lag j which is

Γxyj =

[
φ1+j (1− φθ) ρ+ φ1+j/

(
1− φ2

)
φ1+j/

(
1− φ2

) ]
.

Thus, Γxyj is an increasing function in both ρ and φ. This means that the larger these parameters

are, the bigger the discrepancy σ1M between the effi ciency bound D and the inverse of the asymptotic

variance of the GMM estimator.
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3.3. Bias Reducing Kernels

The result in Corollary 3.2 that kernels reduce the higher order bias depends on the constants c1 and

c2 taking values in a certain range. Corollary 3.2 also implies that kernels satisfying the additional

constraint
∫ 1
−1 k

2(x)dx =
∫ 1
−1 k(x)dx reduce the bias for all values of the constants c1 and c2. Such

kernels can be constructed from the class of bias reducing kernels introduced by Bierens (1987). Let

kr(x) = (2π)−1/2
r∑
j=1

aj |σj |−1 exp
(
−1/2x2/σ2

j

)
and consider the transformation to the interval [−1, 1] given by

(3.15) kBR(x) = kr
(
tan

(
π
2x
))

π
2 sec

(
π
2x
)2
, x ∈ [−1, 1]

and kBR (x) = 0 for x /∈ [−1, 1] where sec (x) = cos(x)−1. For certain choices of σj it is possible to

solve the system of equations ∫ 1

−1
kBR (x) dx =

∫ 1

−1
kBR (x)2 dx

kBR (0) = 1

for the parameters aj . A specific choice of parameters that produces a well behaved kernel is r = 2,

σ1 = 1/
√

2 and σ2 = 2/
√

2. The parameter values aj that solve the two integral equations are a1 =

1.37621 and a2 = −0.495668 with a value of
∫ 1
−1 k(x)dx = 0.880545 which is well below 2. For these

parameter values, kq = 0.40645 for q = 2.

When the constant c2 6= 0, which typically is the case unless the instruments are strictly exogenous,

and if c1 6= 0, kernel functions can be constructed to eliminate the bias term. To see this let a =

(a1, ..., ar) be the coeffi cients of kr (x) and define K2 as the matrix with k, j-th element∫ 1

−1

π

8
sec
(π

2
x
)4
|σk|−1 |σj |−1 exp

(
−1/2 tan

(π
2
x
)2 (

σ−2
k + σ−2

j

))
dx.

The r × 1 vector K1 is defined similarly with typical element j∫ 1

−1

√
π

2
√

2
sec
(π

2
x
)2
|σj |−1 exp

(
−1/2 tan

(π
2
x
)2
σ−2
j

)
dx.

It then follows that
∫ 1
−1 kBR (x)2 dx = a′K2a is a quadratic form in a while

∫ 1
−1 kBR (x) dx = a′K1 is

linear in a. The approximate bias now is c1a
′K2a+ c2a

′K1. For given choices of σj the optimal choice

for a is

a∗ = −c2

c1
K−1

2 K1.
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Use the notation k∗BR (x) to denote a kernel with parameters a∗. For example, when r = 2,

(3.16) k∗BR (x) =

√
π

2
√

2
sec
(π

2
x
)2
(
a∗1
σ1

exp

(
−

tan
(
πx
2

)2
2σ2

1

)
+
a∗2
σ2

exp

(
−

tan
(
πx
2

)2
2σ2

2

))
, x ∈ [−1, 1] .

A potential disadvantage of k∗BR (x) is that it depends on the unknown nuisance parameter c2/c1

which needs to be estimated and may affect the finite sample behavior of an estimator using k∗BR (x) .

4. Fully Feasible GMM

Implementation of the estimator β̂n,M based on the truncated kernel or a smooth kernel requires a data-

dependent choice of M. The approximate higher order mean squared error of β̂n,M for the truncated

case is given by

(4.1) ϕn(M, `, kTR(.)) =
(Mp)2

n
A+ `′D−1σ1MD

−1`.

The number of moment conditions Mp are selected such that the approximate mean squared error

ϕn(M) is minimized. Feasible choices ofM are such thatM ∈ I where I = {[d/p] + 1, [d/p] + 2, ...,Mmax}
and [a] denotes the largest integer smaller than a. The set I is constructed to guarantee identification

of β for all M ∈ I. It should be noted that I depends on n and Mmax → ∞ as n → ∞. The optimal
M∗ then is defined as

(4.2) M∗ = arg min
M∈I

ϕn(M, `, kTR(.)).

Note that M∗ is a function of n with M∗ → ∞ as n → ∞. Implementing any criterion based on
ϕn(M, `, kTR(.)) is complicated by the fact that asymptotically the choice of M depends on the rate at

which σ1M tends to zero, a parameter that is diffi cult to estimate. A sieve type approximation to the

data-distribution is used to achieve this task. The details of the procedure are laid out in the auxiliary

appendix and only a brief description is given here.

A finite order VAR(h) approximation to the infinite order reduced form process of yt is used to

estimate the parametersDM andD. The approximate model with VAR coeffi cient matrices π1,h, ..., πh,h

is given by

(4.3) yt = µy,h + π1,hyt−1 + ...+ πh,hyt−h + ut,h

where Σh = E
[
ut,hu

′
t,h

]
is the mean squared prediction error of the approximating model. Using a

parametric model to approximate the autocovariance function of yt simplifies the estimation of parame-

ters such as D which depend on the entire autocovariance function of yt. Kuersteiner (2005) discusses
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data dependent rules for the selection of h and the asymptotic validity of the procedure used here

is based on these results. In particular, the sequential testing procedure proposed in Ng and Per-

ron (1995) is used to select h ∈ [hmin, hmax] where ĥ is used to denote the data-dependent choice of

h.7 Let
(
π̂′

1,ĥ
, π̂′

2,ĥ
, ..., π̂′

ĥ,ĥ

)
be the parameter estimates of the approximating VAR and denote by Σ̂h

the estimated error covariance matrix of the approximating VAR where Σ̂h = n−1
∑n

t=h+1 ût,hû
′
t,hand

ût,h = π̂ĥ (L) yt where π̂ĥ (z) = I− π̂1,hL− ...− π̂h,hLh. In order to estimate the autocovariance function
of yt note that Γyyj = Γ (j, π (z)) is a functional of π (z) such that the estimator Γ̂yy

j,ĥ
is obtained as

Γ̂yy
j,ĥ

= Γ
(
j, π̂ĥ (z)

)
. For numerical evaluation, define the companion matrix

Ĥh =


π̂1,h π̂2,h · · · π̂h,h

Ip 0 · · · 0

0
. . .

... Ip 0

 ,

where Ĥh is of dimension ph × ph and let Eh = (Ip, 0, ..., 0)′ be a ph × p selector matrix. For a data-
dependent choice ĥ of h, an approximation to the autocovariance function Γyyj is obtained by first

computing

vec Ĝyy
0,ĥ

=
(
Ipĥ − Ĥĥ ⊗ Ĥĥ

)−1
vec

[
Σ̂ĥ 0

0 0

]
and

(4.4) Γ̂yy
j,ĥ

= E′
ĥ
Ĝyy

0,ĥ
Ĥj

ĥ
Eĥ

for 0 ≤ j ≤ kmax where kmax = O
(√

n/ log n
)
and Γ̂yy

j,ĥ
= Γ̂yy′

−j,ĥ
for −kmax ≤ j < 0.8 The autoco-

variance matrices Γxyj can be estimated by selecting the appropriate elements from Γ̂yy
s,ĥ
. From these

estimates construct the matrix P̂ ′
M,ĥ

.

Let β̃n,M be a consistent first step estimate and obtain estimated residuals ε̂t = yt−ȳ−β̃n,M (xt − x̄) .

The estimated residuals are then used to obtain consistent estimates of the parameter θ = (θ1, .., θm−1)′,

7The procedure of Ng and Perron (1995) uses downward testing starting at h = hmax. In the implementation used here

the search is stopped once h reaches hmin. For the simulations and theory in this paper hmax is set to hmax = (logn)2 ,

and hmin = ((log(logn)) logn)/10.
8The proof of Theorem 4.1 requires establishing certain rates of convergence which can only be obtained uniformly in

j ≤ kmax. In practice, σ1M is a function of M only with regard to Γyyj for j ≤ Mmax. Thus, kmax = Mmax is suffi cient

in practice. The choice of kmax and Mmax is expected to only affect higher order asymptotic terms of the estimator.

The sensitivity to changes in kmax is investigated in the Monte Carlo section. The results reported in Section 5 use

kmax = Mmax = 10
√
n/ logn. In the auxiliary appendix Tables 10-12 report results comparing kmax = 10

√
n/ logn to

kmax = 20
√
n/ logn. The differences are negligible.
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denoted by θ̂, by fitting a univariate MA(m-1) model to the time series ε̂t. The proof of Theorem 4.1 only

requires that θ̂ − θ = Op
(
n−1/2

)
. A variety of estimators for the MA(m-1) model, including nonlinear

least squares, satisfy this requirement.9 Let f̂ε(λ) = σ̂2
ε

∣∣∣θ̂ (e−iλ)∣∣∣2 where θ̂(L) = 1−θ̂1L−...−θ̂m−1L
m−1

and σ̂2
ε = n−1

∑n
t=r+m

(
ε̂t − θ̂1ε̂t−1 − ...− θ̂m−1ε̂t−m+1

)2
. Obtain ζ̂j = (2π)−1 ∫ π

−π f̂
−1
ε (λ)eiλjdλ for all

j ≤ kmax where ζ̂j is used to compute Â1. Denote the estimated autocovariance function of εt by

γ̂ε
θ̂

(j) = (2π)−1 ∫ π
−π f̂ε(λ)eiλj for j = 0, ..,m − 1 and γ̂ε

θ̂
(j) = γ̂ε

θ̂
(−j) for j < 0. Define Ω̂ĥ (l) with

typical k, j-th block Γ̂yy
k−j−l,ĥ

, Ω̂∗
M,ĥ

is estimated as Ω̂∗
M,ĥ

=
∑m−1

l=−m+1 γ̂
ε
θ̂

(l) Ω̂ĥ (l) . The estimator Ω̂M,ĥ

of ΩM is then obtained from (3.2) after replacing Ω̂∗M with Ω̂∗
M,ĥ

, Ω̂M (l) with Ω̂ĥ (l) and ξ̂Ω with

min ξ̂ĥ, the smallest eigenvalue of Ω̂∗
M,ĥ

. An estimate of DM can be formed as D̂M,ĥ = P̂ ′
M,ĥ

Ω̂−1

M,ĥ
P̂M,ĥ.

Estimate D by D̂kmax,ĥ
= P̂ ′

kmax,ĥ
Ω̂−1

kmax,ĥ
P̂kmax,ĥ.

The constants A1 and A2 are now obtained from

(4.5) Â1 =
1

2

∑(n−1)/2

j=−(n−1)/2
ζ̂jΓ̂

εx
j

with Γ̂εxj = n−1
∑min(n,n+j)

t=max(j,r)+1 ε̂txt−j and, letting Γ̂εyj = n−1
∑min(n−m,n+j)

t=max(j,r−m) ε̂t+myt+1−j ,

(4.6) Â2 =
1

2

∑kmax
j1,j2=1 Γ̂xy

j1,ĥ
ϑ̂j1j2,ĥΓ̂εy−j2 .

The constant B(q) can be computed in a similar way by replacing population quantities for Γxyj1 and

ϑj1j2 in (3.13) with the estimates proposed here. Feasible optimal bandwidth parameters M̂
∗ for the

truncated kernel are then obtained by solving

(4.7) M̂∗ = arg min
M∈I

ϕ̂n(M, `, kTR(.))

for ϕ̂n(M, `, kTR(.)) = (Mp)2

n Â+ `′D̂−1

kmax,ĥ

(
D̂kmax,ĥ

− D̂M,ĥ

)
D̂−1

kmax,ĥ
`, where Â is the plug-in estimator

using Â1, Â2 and D̂kmax,ĥ
. The following theorem establishes the sense in which ϕ̂n approximates ϕn

and M̂∗ approximates M∗ defined in (4.2).

Theorem 4.1. Suppose Assumptions B, C and D hold. In addition assume that E (ut|ut−1, ...) =

0 and θ̂ − θ = Op
(
n−1/2

)
, kmax = O

(√
n/ log n

)
, hmin = cmin((log(log n)) log n) for some 0 <

cmin < ∞, hmax = O
(

(log n)2
)
and ν−M`′D−1σ1MD

−1` ≥ ε > 0 for some ε and all M. Assume

there exists a twice differentiable function g (M) such that limM `′D−1σ1MD
−1`/g (M) = 1 and

lim infM M2∂2g (M) / (∂M)2 /g (M) > 0. Let M̂∗ be as defined in (4.7) and M∗ as defined in (4.2).

Then, for any δ > 0, Mmax = O
(
n

1
2τ (log n)−

5+δ
2τ

)
and τ ≥ 3

(4.8)
ϕ̂n(M̂∗, `, kTR(.))

ϕn(M∗, `, kTR(.))
− 1 = op (1)

9 In the Monte Carlo simulations the parameter θ is estimated using the MATLAB routine ’armax’.
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and
(
M̂∗/M∗ − 1

)
= op(1).

Remark 2. The additional condition that E (ut|ut−1, ...) = 0, i.e. that ut is a martingale difference

sequence (mds), is needed because the proof of Theorem 4.1 uses results established in Hannan and

Deistler (1988) and Kuersteiner (2005) that rely on this assumption. Relaxing the mds condition may

be possible but is beyond the scope of this paper.

Remark 3. A possible alternative estimator for ϕn is one where population moments are replaced by

sample analogs. However, such an estimator does not have desirable properties. The reason is that

supj

∥∥∥Γ̂yyj − Γyyj

∥∥∥ = Op

(√
log n/n

)
is the best possible uniform rate at which autocovariances can be

estimated. In order to achieve (4.8) one needs to establish

(4.9) |ϕ̂n(M, ., .))− ϕn(M, ., .)| = ϕn(M, ., .)op (1)

uniformly in M ≤Mmax. Since the left hand side cannot be shown to be smaller than Op
(√

log n/n
)

while at the same time ϕn(M, ., .) = O
(
νM
)
, it follows that Mmax can be at most Mmax = o (log n)

to achieve the necessary uniform convergence in (4.9). Such a slow rate for Mmax is not suffi cient to

guarantee that M∗ ∈ I. On the other hand, the approximation of Γyyj by a parametric model proposed

here implicitly imposes additional smoothness properties of the population spectral density of yt on the

estimated Γ̂yyj in Assumption D. The smoothness of the estimated spectrum is the key to establishing

(4.8). It should be noted that Assumption D is not required for data-dependent moment selection of

the kernel weighted GMM estimator in (4.11). Thus, feasible kernel weighted GMM is justified under

weaker assumptions, giving it a further advantage over standard GMM.

Remark 4. The restrictions imposed on the distribution of ut, in particular homoskedasticity are

needed to express the elements of Ω−1 in terms of parameters of an approximating VAR (see Lemma

A.7). Such an approximation is not possible in a more general setting with heteroskedastic errors.

To see this let vt,i = εt+m
(
yt+1−i − µy

)′ and ψt,M =
(
v′t,1, ..., v

′
t,M

)′
such that even when imposing

the additional assumption that ut is an mds sequence, ΩM =
∑m−1

l=−m+1E
[
ψt−l,Mψ

′
t,M

]
. Without

homoskedasticity, the j, k-th block of ΩM , E
[
vt,jv

′
t,k

]
, is essentially unrestricted. Because of Remark

3 it appears impossible to establish suffi ciently fast rates of convergence for an estimator of ΩM under

these more general conditions.

One advantage of using a smooth kernel is that it leads to a closed form expression for the optimal

bandwidth M. The optimal bandwidth for smooth kernels is given by

(4.10) M∗k =

(
nqk2

q`D
−1B(q)D−1`

p2A

) 1
2+2q

.
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The empirical counterpart of M∗k is obtained by plugging in estimators for A and B(q) into formula

(4.10) such that

(4.11) M̂∗k =

nqk2
q`
′D̂−1

kmax,ĥ
B̂(q)D̂−1

kmax,ĥ
`

p2Â

 1
2+2q

.

Expression 4.10 depends on constants A and B(q) that are easier to estimate than the term σ1M which

needs to be evaluated uniformly in M over some range of permissible values for M. Consequently,

establishing that M̂∗k/M
∗
k − 1 = op (1) is much simpler than proving the result in Theorem (4.1). All

that is required is that Â −A = op (1) and B̂(q) −B(q) = op (1). This can be achieved with a variety of

estimators, including the spectral density estimators discussed in Andrews (1991) or Newey and West

(1994).

5. Monte Carlo Simulations

A small Monte Carlo experiment is conducted to assess the performance of the proposed moment

selection methods. For the simulations the following data generating process is used

yt,1 = βyt,2 + ut,1 − θut−1,1(5.1)

yt,2 = φyt−1,2 + ut,2

with ut = (ut,1, ut,2) ∼ N(0,Σ) where Σ has elements σ2
1 = σ2

2 = 1 and ρ. The parameter β is the

parameter to be estimated and is set to β = 1 in all simulations. All remaining parameters are nuisance

parameters not explicitly estimated. The parameter ρ is one of the determinants of the small sample

bias of both Ordinary Least Squares (OLS) and GMM estimators and is varied over ρ = {.1, .5, .9}.
The parameter φ controls the quality of lagged instruments and is chosen in {.1, .3, .5} . Low values of
φ imply that the model is poorly identified. The parameter θ finally is set to {−.9,−.5, 0, .5, .9} .

Samples of size n = {128, 512} from Model (5.1) are generated. Starting values are y0 = 0 and

u0 = 0. In each sample the first 1,000 observations are discarded to eliminate dependence on initial

conditions. The simulations are based on 1,000 replications.

In order to estimate ΩM an ineffi cient but consistent estimate β̃n,M̃ based on (3.1) settingWM̃ = IM̃p

and ΩM̃ = IM̃p is used. The parameter M̃ is selected as the number of lags chosen for the approximate

VAR in (4.3) by the sequential testing procedure proposed in Ng and Perron (1995).10 Then construct

residuals ε̃t = y1t − β̃n,My2t and estimate Ω̃M̃ as described in (3.2). The initial estimator β̃n,M̃ then

10This choice of M attempts to capture the most relevant lags for the implicit first stage used in β̃n,M . It is similar in

spirit to the use of the first stage cross-validation criterion in Donald and Newey (2001, p.1173).
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is reestimated using Ω̃M̃ as weight matrix. Residuals used in subsequent steps are based on the

reestimated first step estimator β̃n,M , leading to an estimate Ω̂M where M now is a parameter to

be determined by the automatic procedures described in the previous section. In the second stage

apply (3.1) with Ω̂M and the matrix WM for the Bartlett, Tukey-Hanning as well as the bias reducing

kernel developed in (3.15). Feasible conventional GMM with data-dependent moment selection is

implemented using the selection method described in (4.7). The estimated number of instruments M̂∗

is then substituted in the estimator (3.1) by setting WM̂∗ = IM̂∗p. Feasible kernel weighted estimators

are constructed in the same way with M̂∗ selected based on (4.11) and substituted into Formula (3.1)

where WM̂∗ now is a matrix with corresponding kernel weights.
11

The results of the Monte Carlo experiment are reported in Tables 1a-3c in the appendix. For each

estimator the median bias, decile range, mean squared error (MSE), mean absolute error (MAE), the

size of a two sided t-test of H0 : β = 1 at nominal level 5% (Size) and the median number of instruments

or the median bandwidth for kernel based estimators is reported. OLS stands for the ordinary least

squares estimator, GMM-1 for the standard GMM estimator with one lag of the full set of instruments

z̃t,1 = (yt,1, yt,2) , GMM-25 is the standard GMM estimator with 25 lags of instruments, such that

z̃t,25 = (yt, ..., yt−24) and yt = (yt,1, yt,2) . GMM-Tuk-Han is the kernel weighted GMM estimator based

on the Tukey-Hanning and GMM-BR is based on the bias reducing kernel introduced in (3.15) where in

both cases M̂∗ is selected based on (4.11).12 GMM-Trunc is the standard GMM estimator with data-

dependent number of instrument selection as defined in (4.7). CUE-1 and CUE-25 are the continuous

updating estimators of Hansen, Heaton and Yaron (1996) based on one and 25 lagged instruments

respectively. Finally, WWA is the estimator proposed by West, Wong and Anatolyev (2009).13

To gain some insight into how estimator bias depends on the parameters φ, θ and ρ, it is useful to

consider the approximate large sample bias of the OLS estimator. When identification is weak GMM

can be expected to be as biased as the OLS estimator. Simple calculations show that asymptotically,

OLS tends to
(
1− φ2

)
(1− φθ) ρ. Thus, the OLS bias is increasing in ρ and is decreasing both in φ and

11A more detailed step-by-step description of the estimators is given in Section 7 of the Auxiliary Appendix.
12Tables in the Auxiliary Appendix report additional results for the Bartlett kernel, the Bias minimal kernel (3.16)

and a bias corrected version of the truncated kernel developed in the Auxiliary Appendix. To save space these results

are not discussed in detail. The Bartlett has similar properties as the Tukey-Hanning but performs generally a bit less

well, especially when identification is weak. Bias correction methods reduce bias, in particular when the model is well

identified. However, the associated increase in variability often off-sets these gains and the MAE seldomly improves.
13The results reported for WWA are based on the same implementation of the estimator as the one considered in West,

Wong and Anatolyev (2009). Their implementation estimates a heteroskedasticity robust weight matrix to construct

the instruments. In the Auxiliary Appendix an additional alternative version of WWA that imposes homoskedasticity is

considered for the Monte Carlo designs with homoskedastic errors. At least for the MC designs where weak identification

is a prevalent feature, the performance of WWA is not significantly affected by imposing homoskedasticity.
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θ over the range of parameter values considered here. This is consistent with the results in the Monte

Carlo simulations.

Table 1a-1c contains results for the case when φ = .1. This constitutes a situation where the

instruments are weak, especially when the sample size is n = 128. As is well known from the cross-

sectional literature (c.f. Hahn, Hausman and Kuersteiner, 2004), the Nagar approximation to the

MSE of the 2SLS estimator may become unreliable under these circumstances. One way in which this

manifests itself is in the fact that estimator bias does not increase with the number of instruments as

predicted by (3.12). This feature, most notably visible by comparing GMM-1 and GMM-25, can be

observed for all values of ρ and n = 128. A larger value of ρ implies that the endogeneity problem, and

thus the bias of OLS, is more severe. When instruments are weak, a higher or lower value of ρ does

however not seem to affect the bias trade-off of adding more instruments. As a consequence, moment

selection approaches which essentially are based on the idea of optimizing this trade-off do not work

that well. Their MSE is often higher than the MSE of a GMM estimator with a large, but fixed number

of instruments such as GMM-25. These findings are analogous to findings for the cross-sectional case

in Donald and Newey (2001). Amongst the data-dependent methods, KGMM with the Tukey-Hanning

kernel performs best while GMM-Trunc often performs least well, especially in terms of the MSE and

MAE criteria.

Similar results obtain for the case of the large sample with n = 512 in Tables 1a-1c. GMM-Trunc

continues to perform poorly compared to the other data-dependent methods. GMM-BR based on the

bias reducing kernel now does quite well, sometimes performing at par with the Tukey-Hanning kernel.

CUE and more so WWA are generally less biased than GMM based estimators, although their bias

is still significant when ρ ≥ .5. While the bias properties of CUE and WWA are more favorable, they

show more dispersion, as measured by the decile range and MAE, than the best data-dependent GMM

estimators in most designs. The CUE performs particularly poorly in this regard. Size distortions are

generally mild when ρ = .1 except for WWA and CUE-25 when |θ| ≥ .5. With increasing values of

ρ the size distortions of GMM based tests become very severe. WWA is a bit less sensitive in this

regard, however size is heavily distorted for this estimator as well. The best performance is achieved by

GMM-1 and CUE-1. At least for ρ = .5 the size of tests based on these estimators remains relatively

accurate while for ρ = .9 it is distorted but less so than for GMM based tests.

In Tables 2a-2c the case where φ = .3 is considered. Here, the instruments are more informative

about the parameter β. Nevertheless, when n = 128 the asymptotic approximation to the MSE over-

estimates the effect more instruments have on the bias. Consequently, GMM-25 continues to do well

compared to the data-dependent procedures when ρ = .1 and ρ = .5. When ρ = .9 and θ ≤ 0 the
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Tukey-Hanning kernel outperforms GMM-25. When n = 512 the asymptotic approximation is more

relevant and better captures the bias variance trade-off. The Tukey-Hanning kernel continues to per-

form best in terms of MAE amongst the data-dependent procedures. When n = 512 in Table 2b and

more so in Table 2c data-dependent procedures dominate the fixed instrument estimators GMM-1 and

GMM-25. When θ ≤ 0 this dominance in terms of MSE and MAE criteria is quite pronounced. CUE

and WWA continue to have similar properties as when φ = .1. They are generally less biased than

GMM based procedures but have more variation. The net result on MAE is that in most cases the

best data-dependent GMM based estimator dominates. The only exception are the results on Table 2c

with n = 512 where bias reduction pays off and identification is suffi ciently strong for WWA to work

well. However, even in this case, data-dependent GMM procedures do quite well too and the difference

to WWA in terms of MAE is not that large. The size properties of a t-test are similar to the ones

reported in Tables 1a-1c. GMM-1 and CUE-1 are overall the best procedures. WWA has some size

problems when ρ = .1 and θ is large, while data-dependent GMM generally works well for ρ = .1.With

increasing correlation, size deteriorates dramatically. However, the data-dependent GMM procedures

perform generally much better than GMM-25 and CUE-25.

In Tables 3a-3c finally, the case where φ = .5 is considered. For this parameter value, even samples

with n = 128 are quite informative about the parameter β and the asymptotic approximation to the

MSE is more accurate. The Tukey-Hanning kernel dominates the other data-dependent procedures in

terms of MAE in many cases in Tables 3a-3c and for n = 128. When n = 512, WWA is best when

ρ = .5 or ρ = .9. WWA is generally less biased than the other estimators which, combined with strong

identification, explains the good performance in Tables 3b and 3c and n = 512. As before, the data-

dependent methods perform significantly better than GMM-25 when ρ ≥ .5. The results for the size of
t-tests remain similar to the previous cases. GMM-1 and CUE-1 are generally most reliable across the

range of different designs, while GMM-25 and CUE-25 are worst. The data-dependent GMM methods

and WWA partly correct for these large size distortions but do not always completely remove them.

Overall, the results demonstrate the advantages of data-dependent moment selection in models

with moderate to severe endogeneity and suffi ciently strong instruments to validate the asymptotic

approximations to the MSE. Amongst the data-dependent procedures the Tukey-Hanning kernel shows

the best overall performance. The standard GMM estimator with data-dependent instrument selection

generally performs less well than the kernel weighted GMM estimators. CUE and WWA do well in

terms of bias but often have inflated variances. In some designs the increase in variability is severe.

WWA does not perform well in terms of MAE when identification is weak. In Tables 3b and 3c, with

strong identification and large enough samples, it does well as long as θ ≤ .5. However, in those
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circumstances the data-dependent GMM estimators are not far behind. When the goal of the analysis

is to have tests with accurate size, the preferred choice is to use CUE-1 or GMM-1. It is expected

however, that this choice will come at the cost of reduced power. GMM-25 and CUE-25 cannot be

recommended in general, both from a testing and estimation point of view. Tests based on these

estimators can have very severe size distortions. GMM-25 can be severely biased while CUE-25 suffers

from large small sample variability.

6. Conclusions

The higher order asymptotic properties of GMM estimators for time series models with many instru-

ments are analyzed. Using expressions for the asymptotic mean squared error a selection rule for the

optimal number of lagged instruments is derived. Fully feasible GMM estimators where the number of

instruments are based on a data-dependent selection rule are developed and investigated in a Monte

Carlo study.

A new version of the GMM estimator for linear time series models is proposed where the moment

conditions are weighted by a kernel function. It is shown that suitably chosen kernel weights of the

moment restrictions reduce the asymptotic bias. A fully automatic procedure to chose the number of

instruments through an automated bandwidth choice is developed. Monte Carlo experiments demon-

strate the advantages of kernel weighting relative to conventional GMM.

Instrument choice is based on the assumption of homoskedastic errors. If the data are heteroskedas-

tic the selected number of instruments will in general be suboptimal. Monte Carlo experiments as well

as the fact that the choice of the number of instruments is based on higher order properties of the

estimators suggest that the homoskedasticity assumption may lead to reasonable simplifications in

practice. Whether this statement can be established theoretically remains an open question that would

require the development of selection procedures under heteroskedasticity. The latter is a topic for

future research.
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A. Proofs

A.1. Definitions

Definition A.1. Let ut ∈ Rp be a strictly stationary vector process with elements uit such that E
[
uit
]

=

0 and E
[(
uit
)k]

< ∞. Let ς = (ς1, ..., ςk) ∈ Rk and u = (ui1t1 , ..., u
ik
tk

) then φi1,...ik,t1,...,tk(ς) = E
[
eiς
′u
]

is the joint characteristic function of u. The joint k-th order cumulant is

cum∗i1,...,ik(t1, ..., tk) =
∂k

∂ς1 · · · ∂ςk
|ς=0 lnφi1,...ik,t1,...,tk(ς).

Alternatively the notation cum∗(ui1t1 , ..., u
ik
tk

) is used where more convenient. By stationarity it is enough

to define

cumi1,...,ik(t1, ..., tk−1) = cum∗i1,...,ik(t1, ..., tk−1, 0).

Definition A.2. Let µx = E [xt] . Define wt,i = (xt+m − µx)
(
yt−i+1 − µy

)′
, Γxyi = E [wt,i] and Γyx−i =

E
[
w
′
t,i

]
and let w̌t,i = wt,i − Γxyi . Next define w

y
t,j =

(
yt − µy

) (
yt−j − µy

)′ with E
[
wyt,j

]
= Γyyj .

Let w̌yt,j = wyt,j − Γyyj . Define vt,i = εt+m(yt−i+1 − µy) and E [εt+mys+1] = Γεyt−s. Define the infinite

dimensional instrument vector z̃t,∞ = (y′t, y
′
t−1, ...)

′ and let P ′ = Cov(xt+m, z̃t,∞)′. Define the infinite

dimensional matrix Ω =
∑m−1

l=−m+1 γ
ε
l Cov [z̃t,∞, z̃t+l,∞] by its typical j, k-th block ωj,k where

ωj,k =
∑m−1

l=−m+1 γ
ε (l) Γyyk−j−l.

Denote by ϑj,k and ϑMj,k the j, k-th block of Ω−1 and Ω−1
M . Let D = P ′Ω−1P and d0 = P ′Ω−1V where

V = n−1/2
∑n

t=1 εt+m(zt,∞ − 1∞ ⊗ µy).

Definition A.3. Let fΩ(λ) = 1
2π

∑∞
j=−∞

∑m−1
l=−m+1 γ

ε
lΓ

yy
j−le

−iλj which can be represented as fΩ(λ) =

2πfε(λ)fy(λ) where fy(λ) = 1
2π

∑∞
j=−∞ Γyyj e

−iλj .

Definition A.4. For a matrix A, ‖A‖2 = trAA′. The matrix norm ‖A‖22 is given by

‖A‖22 = sup
x 6=0

x′A′Ax/x′x.

The p2 × p2 commutation matrix Kpp =
∑p

i,j=1 eie
′
j ⊗ eje′i where ⊗ is the Kronecker product and ei is

the i-th unit p-vector; see Magnus and Neudecker (1979).

A.2. Assumptions

In addition to the structural restrictions of Equation (2.1) the following formal assumptions on ut and

B(L) are imposed.
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Assumption B. Let ut ∈ Rp be strictly stationary and ergodic, with E [ut] = 0, E(utu
′
t|z̃t−1,M ) = Σ

for some positive definite and nonrandom matrix Σ and E(utu
′
s|z̃t−1,M ) = 0 for t > s. Let uit be the

i-th element of ut and cumi1,...,ik(t1, ..., tk−1) the k-th order cross cumulant of ui1t1 , ..., u
ik
tk
. Assume that

∞∑
t1=−∞

· · ·
∞∑

tk−1=−∞
|cumi1,...,ik(t1, ..., tk−1)| <∞ for k ≤ 12.

Assumption C. The lag polynomial B(z) with coeffi cient matrices Bj satisfies detB (z) 6= 0 for

|z| ≤ 1. Define B (z)−1 = π (z) = I −
∑∞

j=1 πjz
j . Moreover, let b(z) = α (z, β)B (z) and assume that

b(z) =
∑m−1

j=0 bjz
j with b (z) 6= 0 for |z| ≤ 1. Let fε(λ) = (2π)−1 b(eiλ)′Σb(e−iλ) and assume that

there exists a constant σ2
ε and lag polynomial θ (z) = 1 − θ1z − ... − θm−1z

m−1 such that fε(λ) can

be represented as fε(λ) = (2π)−1 σ2
ε

∣∣θ(eiλ)
∣∣2 . Let θ (z)−1 =

∑∞
j=0 ζ

θ
jz
j . For some ν with ν ∈ (0, 1)

and some generic constant C, assume that
∑∞

j=k ‖πj‖ ≤ Cνk,
∑∞

j=k ζ
θ
j ≤ Cνk and

∑∞
j=k ‖Bj‖ ≤ Cνk

uniformly in k = 1, 2, ... . Assume that P has full column rank.

Assumption D. Assume that∥∥Γ
(
j, π̂ĥ (z)

)
− Γ (j, π (z))

∥∥ = jνjOp

(
sup|z|≤1

∥∥π̂ĥ (z)− π (z)
∥∥)+ j3νj∗Op

(
sup|z|≤1

∥∥π̂ĥ (z)− π (z)
∥∥3
)

uniformly in j for ν < ν∗ < 1. Let Ky

ĥ

(
eiλ
)
be the spectral density with Fourier coeffi cients Γ

(
j, π̂ĥ (z)

)
and assume that Ky

ĥ

(
eiλ
)

= K̃y

ĥ

(
eiλ
)
K̃y

ĥ

(
e−iλ

)′
where K̃y

ĥ
(z) is a matrix valued (infinite order) poly-

nomial in z.

Remark 5. The column rank assumption for P is needed for identification (see Kuersteiner (2001) for

an extensive discussion of this point). Assumption C guarantees that fε(λ) 6= 0 for λ ∈ [−π, π]. Then

1/fε(λ) exists and corresponds to the spectral density of an AR(m-1) model.

A.3. Auxiliary Lemmas

Proofs for the following Lemmas are given in the Auxiliary Appendix.

Lemma A.5. Let X,Y,W,Z be random matrices with all elements xij , yij , wij , zij such that E [xij ] =

... = E [zij ] = 0 and E
[
|xij |4

]
< ∞, ..., E

[
|zij |4

]
< ∞. Let A,B,C and D be matrices with fixed

coeffi cients such that the matrix products CWAXY ′BZD and DC are well defined. Then

E
[
trCWAXY ′BZD

]
=

(
vecB′

)′
E [Y ⊗ Z] (I ⊗DC)E

[
X ′ ⊗W

]
vecA

+ tr
(
E
[
D′Z ′ ⊗AX

]
E
[
vec(Y ′B) vec(W ′C ′)′

])
+ tr

[
(E
[
AXY ′B

]
)(E [ZDCW ])

]
+K4

where K4 =
∑
k

∑
...
∑

j1,...,j7

aj2,j3bj5,j6ck,j1dj7,k cum∗(wj1,j2 , xj3,j4 , yj4,j5 , zj6,j7).
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Lemma A.6. If vt,i = εt+m(yt−i+1 − µy) and wt,i = (xt+m − µx)
(
yt−i+1 − µy

)′ and ` ∈ Rd is a vector
of constants such that `′` = 1 then

i) E
[
vt,i ⊗ w̌′s,j`

]
= ((vec(Γyys−t+i−j)⊗

(
Γεxt−s

)′
)+Kpp(Γ

εy
t−s+j⊗Γyxt−i−s)+K1

4)(I⊗ `) where K1
4 is a p

2×d
matrix with typical element (a, b) equal to[

K1
4

]
a,b

= cum∗(εt+m, y
[(a−1)/p]+1
t−i+1 , y

amod(p−1)
s−j+1 , xbs+m),

where [a] is the largest integer smaller than a, amod p is the remainder on division of a by p, and Kpp

is defined in (A.4),

ii) E [vt,i`
′ws,j ] = (`′Γεxt−s)Γ

yy
t−s+j−i + (`′Γxys−t+i)

′Γεy′t−s+j + K2
4 where K2

4 is a p × p matrix with typical
element (a, b) [

K2
4

]
a,b

= cum∗(εt+m, y
b
t−i+1, y

a
s−j+1, `

′xs+m),

iii) E
[
vt,iv

′
s,j

]
= γεt−sΓ

yy
t−i+j−s,

iv) E
[
wt,iw

′
s,j

]
= Γxyi Γyx−j + γyyt−i+j−sΓ

xx
t−s + Γxyt−i−sΓ

yx
t−s+j +K4

4 where K4
4 is a p× p matrix with typical

element (a, b) [
K4

4(t, s, i, j)
]
a,b

=
∑
l

cum∗(xas+m, x
b
t+m, y

l
t−i+1, y

l
s−j+1)

and γyys−t = E
[
(yt−j − µy)

′
(ys−j − µy)

]
.

Lemma A.7. Let θ(L) be as defined in Assumption C and fε(λ) = (2π)−1 σ2
ε

∣∣θ(eiλ)
∣∣2 . Define π̃(L) =

θ(L)−1π(L) where π̃(L) =
∑∞

j=0 π̃jL
j . Then it follows that the j,k-th block element ϑj,k of Ω−1, where

Ω is defined in Definition A.2, is given by

(A.1) ϑj,k = σ−2
ε

∑j−1
l=0 π̃

′
lΣ
−1π̃l+k−j = σ−2

ε

∑k−1
l=0 π̃

′
l+j−kΣ

−1π̃l

where π̃j = 0 for j < 0.

Lemma A.8. Let fΩ(λ) = 2πfε(λ)fy(λ).Define ϑ∞j = (2π)−2 ∫ π
−π fΩ (λ)−1 eiλjdλ = σ−2

ε

∑∞
l=0 π̃

′
lΣ
−1π̃l+j

for j ≥ 0 and ϑ∞j = ϑ∞−j for j < 0. Let ϑMk,j be the k, j-th element of Ω−1
M . Then, as M →∞,∥∥ϑMzM,zM−j → ϑ∞−j

∥∥ = o (1) uniformly in z ∈ (0, 1) and j > 0.

Lemma A.9. Let Ω̂M be defined in (3.2). Let M̄ →∞ such that M̄/n1/3 → 0. Then Pr
(

min ξ̂Ω ≥ 0
)
→

1 and

Pr
(

Ω̂∗M = Ω̂M

)
→ 1

uniformly in M ≤ M̄. In addition,
∥∥∥Ω̂M − ΩM

∥∥∥2
= Op

(
M2/n

)
uniformly in M ≤ M̄.
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Lemma A.10. Let Ω̂M be defined in (3.2) and
√
n(β̃n−β0) = Op(1). Let M̄ →∞ such that M̄/n1/3 →

0. Then
∥∥∥Ω̂−1

M − Ω−1
M

∥∥∥
2

= Op(M/n1/2) and
∥∥∥Ω̂−1

M

∥∥∥
2

= Op(1) uniformly in M ≤ M̄.

A.4. Lemmas

Lemma A.11. Define ρn,M = O
(√

ϕn(M, `, k(.))
)
. Assume that Conditions A, B and C hold. Let

M →∞ such that M/n1/3 → 0. Then

(A.2)
√
n(βn,M − β) = bn,M + op(ρn,M )

with

(A.3) bn,M = D−1∑9
i=0 di −D

−1∑4
i=1

∑9
j=0HiD

−1dj

where di are defined in (A.22)-(A.30) below, D and d0 are defined in Definition A.2 and Hi are defined

in (A.4)-(A.6) and (A.20) below.

Proof. First note that ϕn(M, `, k(.)) ≥ (Mp)2

n A and

ϕn(M, `, k(.)) ≥ max
(
`′D−1σ1MD

−1`,M−2qk2
q`
′D−1B(q)D−1`

)
.

Because M → ∞ and M/n1/3 → 0 it follows that M2/n = o (1) , `′D−1σ1MD
−1` = o (1) and

M−2q = o (1) . Then, any stochastic sequence Tn = op (M/
√
n) satisfies Tn = op

(
ρn,M

)
. Similarly,

Tn = op
(
max

{√
`′σ1M`,M

−q}) implies Tn = op
(
ρn,M

)
. Consider a second order Taylor approxima-

tion of D̂−1
M around D−1 such that for d̂M = P̂ ′MWM Ω̂−1

M WMn
−1/2

∑n−m
t=1 εt+mzt,M ,

√
n(β̂n,M − β) = D−1[I − (D̂M −D)D−1 + (D̂M −D)D−1(D̂M −D)D−1]d̂M + op(ρn,M )

where for M/n1/3 → 0 the error term is op(ρn,M ) by the Taylor theorem, and the fact that detD 6= 0,

D̂M −D = Op(M/n1/2) and d̂M = Op(1) as shown in the auxiliary appendix. It is shown below that

d̂M =
∑9

i=0 di + op
(
ρn,M

)
and D̂M −D =

∑4
i=1Hi which establishes (A.2). To see this consider the

decomposition of d̂M and D̂M −D. Decompose the expansion into D̂M −D = H1 + ...+H4 where

H1 = P ′MWMΩ−1
M WMPM − P ′Ω−1P,(A.4)

H2 = P̂ ′MWMΩ−1
M WM P̂M − P ′MWMΩ−1

M WMPM ,(A.5)

H3 = −P̂ ′MWMΩ−1
M (Ω̂M − ΩM )Ω−1

M WM P̂M(A.6)

and H4 is defined in (A.20). Also, d̂M = d0 + d1 + ...+ d9 with di defined in (A.21)-(A.30). The terms

H3 and H4 contain an expansion of Ω̂−1
M around Ω−1

M given by

(A.7) Ω̂−1
M = Ω−1

M − Ω−1
M (Ω̂M − ΩM )Ω−1

M +B
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where B = Ω̂−1
M (Ω̂M − ΩM )Ω−1

M (Ω̂M − ΩM )Ω−1
M . The term

∥∥∥Ω̂M − ΩM

∥∥∥2
= op(1) by Lemma A.9 and∥∥∥Ω̂−1

M

∥∥∥
2

= Op(1) by Lemma A.10. In the auxiliary appendix it is shown thatH1 = H11+H12+H13+H14

is

H11 ≡ P ′MΩ−1
M PM − P ′Ω−1P = −σ1M ,(A.8)

H12 ≡ P ′M (I −WM )Ω−1
M (I −WM )PM = O(M−2q),(A.9)

H13 ≡ −P ′MΩ−1
M (I −WM )PM = O(M−q),(A.10)

H14 ≡ −P ′M (I −WM )Ω−1
M PM = O(M−q),(A.11)

where ≡ means ’equal by definition’ and H12 = H13 = H14 = 0 for the truncated kernel. In the

auxiliary appendix the term H2 = H211 +H212 +H221 +H222 is analyzed to be

H211 ≡ −
(
P̂M − P̌M

)′
WMΩ−1

M WM (P̂M − P̌M ) = Op(M/n2),(A.12)

H212 ≡ P̂ ′MWMΩ−1
M WM (P̂M − P̌M ) + (P̂M − P̌M )′WMΩ−1

M WM P̂M(A.13)

= Op(M/n3/2) +Op
(
n−1

)
,

H221 ≡ −
(
P̌M − PM

)′
WMΩ−1

M WM

(
P̌M − PM

)
= Op(M/n),(A.14)

H222 ≡ P̌ ′MWMΩ−1
M WM (P̌M − PM ) + (P̌M − PM )′WMΩ−1

M WM P̌M(A.15)

= Op(M/n) +Op

(
n−1/2

)
,

where P̂M is defined in Section 3 and P̌M is defined from Γ̌xyj = n−1
∑n−m

t=j+1wt,j as P̌M =
[
Γ̌xy1 , ..., Γ̌xyM

]′
.

The auxiliary appendix shows that H3 = H31 +H32 +H33 +H34 is

H31 ≡ (P̂M − PM )′WMΩ−1
M (Ω̂M − ΩM )Ω−1

M WM (P̂M − PM ) = op(M/n1/2),(A.16)

H32 ≡ P ′MWMΩ−1
M (Ω̂M − ΩM )Ω−1

M WM (P̂M − PM ) = op(M/n1/2),(A.17)

H33 ≡ (P̂M − PM )′WMΩ−1
M (Ω̂M − ΩM )Ω−1

M WMPM = op(M/n1/2),(A.18)

H34 ≡ P ′MWMΩ−1
M (Ω̂M − ΩM )Ω−1

M WMPM = Op(n
−1/2),(A.19)

and H4 which is a remainder term defined as

(A.20) H4 ≡ P̂ ′MWM (Ω̂−1
M − Ω−1

M + Ω−1
M (Ω̂M − ΩM )Ω−1

M )WM P̂M = op(M/n1/2)

where the last equality is established in the auxiliary appendix.
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Define VM =
[
n−1/2

∑n−m
t=1 v′t,1, ..., n

−1/2
∑n−m

t=1 v′t,M

]′
with V ≡ V∞ as in Definition A.2. In the

auxiliary appendix it is shown that d̂M =
∑9

j=0 dj + op(ρn,M ) with

d0 ≡ P ′Ω−1V = Op(1),(A.21)

d1 ≡ P ′MΩ−1
M VM − P ′Ω−1V = Op(‖σ1M‖),(A.22)

d2 ≡ P ′M (I −WM )Ω−1
M (I −WM )VM = Op(M

−2q),(A.23)

d3 ≡ −P ′M (I −WM )Ω−1
M VM − P ′MΩ−1

M (I −WM )VM = Op(M
−q),(A.24)

d4 ≡
(
P̂M − P̌M

)′
WMΩ−1

M WMVM = Op(M/n),(A.25)

d5 ≡
(
P̌M − PM

)′
WMΩ−1

M WMVM = Op(M/
√
n),(A.26)

d6 ≡
(
P̂M − PM

)′
WMΩ−1

M (ΩM − Ω̂M )Ω−1
M WMVM = op(M/

√
n),(A.27)

d7 ≡ P ′MWMΩ−1
M (ΩM − Ω̂M )Ω−1

M WMVM = Op(M/
√
n),(A.28)

d8 ≡ P̂ ′MWMBWMVM = op(M/
√
n),(A.29)

d9 ≡ P̂ ′MWM Ω̂−1
M WM

(
ṼM − VM

)
= op(M/

√
n)(A.30)

where ṼM = n−1/2
∑n−m

t=1 ψ̃t,M with ψ̃t,M =
(
ṽ′t,1, ..., ṽ

′
t,M

)′
and ṽt,i = εt+m (yt+1−i − ȳ) if i ≤ t and

ṽt,i = 0 otherwise. All rate results are established in the auxiliary appendix.

Lemma A.12. Let dj and Hij be as defined in Lemma A.11. Then,

i) E [d0d
′
0]D−1H11 = H11 +O

(
‖σ1M‖2 n−1

)
,

ii) E [d0d
′
0]D−1H12 = M−2qk2

qB
(q)
0 + o(M−q2) where B(q)

0 =
∑∞

j1,j2=1 Γxyj1 |j1|
q ϑj1,j2 |j2|

q Γyx−j2 ,

iii) E[d1d
′
1] = −H11 +O(n−1),

iv) E [d1d
′
0] = H11 +O(n−1),

v) E [d1d
′
3] = O(n−1),

vi) E [d0d
′
2] = M−2qk2

qB
(q)
0 +O(n−1) + o(M−2q),

vii) E [d0d
′
3] = −M−qkqB(q)

1 +O(n−1) + o(M−2q) where B(q)
1 is defined as

B(q)
1 =

∑∞
j1,j2=1

(
Γxyj1 ϑj1,j2 |j2|

q Γyx−j2 + Γxyj1 |j1|
q ϑj1,j2Γ

yx
−j2

)
,

viii) H13 +H14 = −M−qkqB(q)
1 + o(M−q),

ix) E [d3d
′
3] = M−q2k2

qB
(q)
2 + o(M−q2) where B(q)

2 is defined in (3.13),

x) `′D−1E [d5d
′
5]D−1` = M2/n

(∫∞
−∞ k(x)2dx

)2
`′D−1A1A′1D−1` + o(M2/n) where A1 is defined in

(3.5),

xi) E [d7d
′
7] = M2/n

(∫ 1
−1 k(x)dx

)2
A2A′2 + o(M2/n) where A2 is defined in (3.5),

xii) E [d7d
′
5] = M2/n

(∫ 1
−1 k(x)dx

∫ 1
−1 k(x)2dx

)
A2A′1 + o(M2/n).
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Proof. For i) note that E [d0] = 0. Using Lemma (A.6iii)

E
[
d0d
′
0

]
=

1

n

∑n−m

t,s=1

∑∞

j1,...,j4=1
Γxyj1 ϑj1,j2γ

ε
t−sΓ

yy
t−s−j2+j3

ϑj3,j4Γ
yx
−j4

=
∑m−1

l=−m+1

n− |l|
n

∑∞

j1,...,j4=1
Γxyj1 ϑj1,j2γ

ε
lΓ

yy
l+j3−j2ϑj3,j4Γ

yx
−j4

→ P ′Ω−1P as n→∞

where the second line follows from the fact that γεl = 0 for l ≥ m. Then, E [d0d
′
0] = D +O(n−1).

For ii) write H12 = M−2q
∑M

j1,j2=1 Γxyj1 |j1|
q 1−k(j1/M)
|j1|qM−q ϑ

M
j1,j2

1−k(j2/M)
|j2|qM−q |j2|

q Γyx−j2 . Note that ϑ
M
j1,j2 →

ϑj1,j2 as M → ∞ for all j1, j2 fixed and finite by Lemma 2.7i) in the Auxiliary Appendix. By the

Dominated Convergence Theorem it follows that

M∑
j1,j2=1

Γxyj1 |j1|
q 1− k (j1/M)

|j1|qM−q
ϑMj1,j2

1− k (j2/M)

|j2|qM−q
|j2|q Γyx−j2 → k2

qB
(q)
0 as M →∞

where we have used Assumption A such that H12 = M−2qk2
qB

(q)
0 + o(M−2q) = O(M−2q). The result

then follows immediately from the same argument as in the proof of part i).

For iii) consider

E
[
d1d
′
1

]
= P ′MΩ−1

M E
[
VMV

′
M

]
Ω−1
M PM − P ′Ω−1E

[
V V ′M

]
Ω−1
M PM

−P ′MΩ−1
M E

[
VMV

′]Ω−1P + P ′Ω−1E
[
V V ′

]
Ω−1P

where the i, j-th p× p block of E [VMV
′
M ] is

n−1
n−m∑
t,s=1

E
[
vt,iv

′
s,j

]
= n−1

n−m∑
t,s=1

γεt−sΓ
yy
t−s+i−j = ωi,j +O(n−1).

The same argument shows that the i, j-th p× p block of the∞×Mp matrix E [V V ′M ] is ωi,j +O(n−1).

It then follows that E [VMV
′
M ] Ω−1

M = IMp +O(n−1) and E [VMV
′] Ω−1 = [IMp,0Mp×∞] +O(n−1) with

a similar expression for Ω−1E [V V ′M ] . This shows that

E
[
d1d
′
1

]
= P ′Ω−1P − P ′MΩ−1

M PM +O(n−1) = −H11 +O(n−1).

For iv) now directly evaluate

E
[
d1d
′
0

]
= P ′MΩ−1

M E
[
VMV

′]Ω−1P − P ′Ω−1E
[
V V ′

]
Ω−1P

= P ′MΩ−1
M E

[
VMV

′]Ω−1P − P ′Ω−1P +O
(
n−1

)
where the M ×∞ matrix E [VMV

′] Ω−1 has j, k-th block
∑∞

l=1 ωj,lϑl,k = I if j = k and 0 otherwise.

Thus, P ′MΩ−1
M E [VMV

′] Ω−1P = P ′MΩ−1
M PM +O(n−1) which implies that E [d1d

′
0] = H11 +O(n−1).
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For v) directly evaluate

E
[
d1d
′
3

]
= −P ′MΩ−1

M E
[
VMV

′
M

]
Ω−1
M (I −WM )PM + P ′Ω−1E

[
V V ′M

]
Ω−1
M (I −WM )PM

−P ′MΩ−1
M E

[
VMV

′
M

]
(I −WM ) Ω−1

M PM + P ′Ω−1E
[
V V ′M

]
(I −WM ) Ω−1

M PM

= −P ′MΩ−1
M (I −WM )PM + P ′MΩ−1

M (I −WM )PM

−P ′M (I −WM ) Ω−1
M PM + P ′M (I −WM ) Ω−1

M PM +O(n−1)

= O(n−1)

by the same arguments as in the proof of iii) and iv).

For vi) directly evaluate

E
[
d0d

′
2

]
=

1

n

∑n−m

t,s=1

∑∞

j1,j2=1

∑M

j3,j4=1
Γxyj1 ϑj1,j2E

[
vt,j2v

′
s,j3

]
(1− k (j3/M))ϑMj3,j4(1− k (j4/M))Γyx−j4

= M−2qk2
q

∑∞

j1,j2=1

∑M

j3,j4=1
Γxyj1 ϑj1,j2ωj2,j3 |j3|

q ϑMj3,j4 |j4|
q Γxy−j4 +O(n−1)

= M−2qk2
q

∑∞

j1,j2=1
Γxyj1 |j1|

q ϑj1,j2 |j2|
q Γxy−j2 + o(M−q2) +O(n−1)

= M−2qk2
qB

(q)
0 + o(M−q2) +O(n−1)

where the Toeplitz Lemma is used for the second equality and dominated convergence for the third

equality.

For vii) directly evaluate

E
[
d0d

′
3

]
= − 1

n

∑n−m
t,s=1

∑∞
j1,j2=1

∑M
j3,j4=1 Γxyj1 ϑj1,j2E

[
vt,j2v

′
s,j3

]
×
[
(1− k (j3/M))ϑMj3,j4 + ϑMj3,j4(1− k (j4/M))

]
Γyx−j4

= −M−qkq
∑∞

j1,j2,j3,j4=1 Γxyj1 ϑj1,j2ωj2,j3 [|j3|q ϑj3,j4 + ϑj3,j4 |j4|
q] Γyx−j4 + o(M−q) +O(n−1)

= −M−qkq
∑∞

j1,j2=1

(
Γxyj1 ϑj1,j2 |j2|

q Γyx−j2 + Γxyj1 |j1|
q ϑj1,j2Γ

yx
−j2

)
+ o(M−q) +O(n−1).

For viii) write H13 = −M−q
∑M

j1,j2=1 Γxyj1 k (j1/M)ϑMj1,j2
(1−k(j2/M))
|j2|qM−q |j2|

q Γyx−j2 such that

M−qH13 = kq
∑M

j1,j2=1
Γxyj1 ϑ

M
j1,j2 |j2|

q Γyx−j2 + o(1)

= kq
∑∞

j1,j2=1
Γxyj1 ϑj1,j2 |j2|

q Γyx−j2 + o(1).

The second equality uses the convergence of ϑMj1,j2 → ϑj1,j2 for all j1, j2 fixed as well as the fact that

ϑMj1,j2 is bounded uniformly in M , j1 and j2 and that
∥∥∥Γxyj1

∥∥∥ is summable in j1 by Kuersteiner (2005,
Lemma 4.6) such that the result follows by a dominated convergence argument.

For ix) write d3 = d31 + d32 where

(A.31) d31 =
1√
n

n−m∑
t=1

M∑
j1,j2=1

Γxyj1 (1− k (j1/M))ϑMj1,j2vt,j2
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and

(A.32) d32 =
1√
n

n−m∑
t=1

M∑
j1,j2=1

Γxyj1 ϑ
M
j1,j2 (1− k (j2/M)) vt,j2 .

Then

M2qE
[
d31d

′
31

]
=

∑M

j1,j2,j3,j4=1
|j1|q |j4|q Γxyj1

1− k (j1/M)

|j1|qM−q
ϑMj1,j2ωj2,j3ϑ

M
j3,j4

1− k (j4/M)

|j4|qM−q
Γyxj4 + o(1)

= k2
q

∑∞

j1,j4=1
|j1|q |j4|q Γxyj1 ϑj1,j4Γ

yx
j4

+ o(1)

and

M2qE
[
d32d

′
32

]
=

∑M

j1,j2,j3,j4=1
Γxyj1 ϑ

M
j1,j2 |j2|

q 1− k (j2/M)

|j2|qM−q
ωj2,j3 |j3|

q 1− k (j3/M)

|j3|qM−q
ϑMj3,j4Γ

yx
−j4 + o(1)

= k2
q

∑∞

j1,j2,j3,j4=1
Γxyj1 ϑj1,j2 |j2|

q ωj2,j3 |j3|
q ϑj3,j4Γ

yx
−j4 + o(1).

Finally we consider the cross-product

M2qE
[
d32d

′
31

]
= k2

q

∑M

j1,j2,j3,j4=1
Γxyj1 ϑ

M
j1,j2 |j2|

q ωj2,j3ϑ
M
j3,j4 |j4|

q Γyx−j4 + o(1)

= k2
q

∑∞

j1,j2=1
|j2|2q Γxyj1 ϑj1,j2Γ

yx
−j2 + o(1).

For x) only consider the largest order term, while the remainder terms are analyzed in the Auxiliary

Appendix,

d51 = n−3/2
∑M

j1,j2=1

∑n−m

t=max(r−m,j1)+1
w̌t,j1k (j1/M)ϑMj1,j2k (j2/M)

∑n−m

t=1
vt,j2

where w̌t,j1 = wt,j1 − Γxyj1 . Let
˜̀= D−1`. Noting that

E
[
˜̀′w̌s2,j4 ⊗ ϑMj1,j2vt1,j2

]
E
[
vec(v′t2,j3ϑ

M ′
j3,j4) vec(w̌′s1,j1

˜̀)′
]

= ϑMj1,j2E
[
vt1,j2

˜̀′w̌s2,j4

]
ϑMj3,j4E

[
vt2,j3

˜̀′w̌s1,j1

]
and using Lemma A.5 leads to

E
[
˜̀′d51d

′
51

˜̀
]

=
1

n3

M∑
j1,..,j4

n−m∑
t1,t2s1,s2

4∏
l=1

k (jl/M)
{(

vecϑM ′j1,j2
)′
E
[
(vt1,j2 ⊗ w̌′s1,j1

]
(I ⊗ ˜̀̀̃ ′)E

[
w̌s2,j4 ⊗ v′t2,j3

]
vecϑMj3,j4

+ tr
[
ϑMj1,j2E

[
vt1,j2

˜̀′w̌s2,j4

]
ϑMj3,j4E

[
vt2,j3

˜̀′w̌s1,j1

]]
+ tr

[
ϑMj1,j2E

[
vt1,j2v

′
t2,j3

]
ϑMj3,j4E

[
w̌′s2,j4

˜̀̀̃ ′w̌s1,j1

]]}
+ ˜̀′K8

˜̀

where the matrix of eighth order cumulant terms K8 contains elements of the form

1

n3

M∑
j1,..,j4

n−m∑
t1,t2s1,s2

[
ϑMj1,j2

]
i2,i3

cum∗
(
w̌i1,i2t1,j1

, w̌i4,i5t2,j1
, vi3s2,j2 , v

i4
s1,j4

) [
ϑMj1,j2

]
i5,i4

= O

(
M2

n2

)
= o

(
M2

n

)
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which are of lower order due to Assumption (B). The first term can be written as

1

n3

M∑
j1,j2

n−m∑
t1,s1=1

4∏
l=1

k( jlM )
(
vecϑM ′j1,j2

)′
E
[
(vt1,j2 ⊗ w̌′s1,j1

] (
I ⊗ ˜̀̀̃ ′

) M∑
j3,j4

n−m∑
t2,s2=1

E
[
w̌s2,j4 ⊗ v′t2,j3

]
vecϑMj3,j4

where

(A.33) E
[
vt1,j2 ⊗ w̌′s1,j1

]
=
(

vec
(

Γyys1−t1−j1+j2

)
⊗ Γεx′t1−s1

)
+Kpp(Γ

εy
t1−s1+j1

⊗ Γyxt1−s1−j2) +K1
4

by Lemma A.6i) with K1
4 being a term of fourth order cumulants. Focusing on the first term one finds

1

nM

n−m∑
t1,s1

M∑
j1,j2

2∏
l=1

k (jl/M)
(
vecϑM ′j1,j2

)′ (
vec
(

Γyys1−t1−j1+j2

)
⊗ Γεx′t1−s1

)
= 2π

∫ π

−π

∫ π

−π

1

M

M∑
j1,j2

2∏
l=1

k (jl/M)
(
vecϑM ′j1,j2

)′
(vec fy(λ)⊗ fεx′(µ)) eiλ(−j1+j2)Kn(λ)dλdµ+ o (1)

where Kn(λ) = (2π)−1 n−1
∑n

t1,s1=1 e
iλ(t1−s1) is the Fejer kernel (see Brockwell and Davis, 1991, p.70).

Let ηM (λ) = 1
M

∑M
j1,j2

∏2
l=1 k (jl/M)

(
vecϑM ′j1,j2

)
eiλ(−j1+j2). Based on Parzen (1957) we set u1 = j1,

u2 = j1 − j2 and z = u1/M such that

ηM (λ) =
1

M

1∑
z=1/M

M−1∑
u2=−M+1

k(z − u2

M
)k(z)

(
vecϑM ′zM,zM−u2

)
e−iλu2

where
∑1

z=1/M stands for the sum over u1/M for u1 = 1, ...,M. Let π̃(L) = θ(L)−1π(L) such that ωj,k =

(2π)−1 ∫ π
−π π̃

(
e−iλ

)−1
Σπ̃
(
eiλ
)′−1

eiλ(k−j)dλ.Now, for any ε > 0 fix k0 such that
∑M−1
|u2|≥k0

∥∥ϑM ′zM,zM−u2
∥∥ ≤∑M−1

|u2|≥k0
∑zM−1

l=0

∥∥∥π̃′l,l+M−zM∥∥∥∥∥Σ−1
l+M−zM

∥∥ ‖π̃l+u2,zM+M−l‖ ≤ ε where the representation of Lewis and
Reinsel (1985, p.402) for ϑM ′zM,zM−u2 and summability of π̃j,k across j uniformly in k, established in the

Auxiliary Appendix, is used. Then

ηM (λ) =
1

M

1∑
z=1/M

k0−1∑
u2=−k0+1

k(z − u2

M
)k(z)

(
vecϑM ′zM,zM−u2

)
e−iλu2 + εc0

for some constant c0. As M → ∞, k(z − u2
M ) → k(z) uniformly in z ∈ [0, 1] and u2 ∈ [−k0, k0] and

ϑMzM,zM−u2 → ϑ∞−u2 =
∑∞

l=0 π̃
′
lΣ
−1π̃l−u2 uniformly in z ∈ (0, 1) by Lemma A.8. Note that ϑ∞u2 does not

depend on z any more. By definition ϑ∞−u = (2π)−2 ∫ π
−π f

−1
Ω (λ)dλeiλu and by Dominated Convergence

ηM (λ)→ (2π)−1 vec
(
f−1

Ω (λ)
)′ ∫ 1

0
k(z)2dz ≡ η(λ)

uniformly in λ ∈ [−π, π] . Now consider∥∥∥∥∫ π

−π
ηM (µ− λ)Kn(λ)dλ− η(µ)

∥∥∥∥ ≤
∥∥∥∥∫ π

−π
(ηM (µ− λ)− η(µ− λ))Kn(λ)dλ

∥∥∥∥
+

∥∥∥∥∫ π

−π
η(µ− λ)Kn(λ)dλ− η(µ)

∥∥∥∥
≤ ε1 + ε2
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where
∥∥∥∫ π−π (ηM (µ− λ)− η(µ− λ))Kn(λ)dλ

∥∥∥ ≤ supµ |ηM (µ)− η(µ)|
∫ π
−πKn(λ)dλ ≤ ε1 for M large

enough by uniform convergence of ηM (λ) and
∥∥∥∫ π−π η(µ− λ)Kn(λ)dλ− η(µ)

∥∥∥ ≤ ε2 for n large enough
by Theorem 2.11.1 of Brockwell and Davis (1991). It follows that∫ π

−π

∫ π

−π
2πηM (λ) (vec fy(λ)⊗ fεx′(µ))Kn(λ− µ)dµdλ

→ 2−1

∫ 1

−1
k(z)2dz

∫ π

−π
vec
(
f−1

Ω (λ)′
)′

(vec fy(λ)⊗ fεx′(λ)) dλ.

The terms involving Kpp(Γ
εy
t1−s1+j1

⊗Γyxt1−s1−j2) and K
1
4 in (A.33) go to zero by the same arguments as

in Parzen (1957, p. 341) because∥∥∥∥∥ 1

n

n−m∑
t1,s1=1

M∑
j1,j2=1

∏2
l=1 k (jl/M)

(
vecϑM ′j1,j2

)′
Kpp(Γ

εy
t1−s1+j1

⊗ Γyxt1−s1−j2)

∥∥∥∥∥
≤ 1

n

n−m∑
t1,s1=1

M∑
j1,j2=1

∥∥ϑMj1,j2∥∥∥∥∥Kpp(Γ
εy
t1−s1+j1

⊗ Γyxt1−s1−j2)
∥∥∥ = O (1)

and the cumulant term is of lower order. Next turn to

ϑMj1,j2E
[
vt1,j2

˜̀′w̌s2,j4

]
ϑMj3,j4E

[
vt2,j3

˜̀′w̌s1,j1

]
= ϑMj1,j2(

˜̀′Γεxt1−s2Γ
yy
t1−s2−j2+j4

+
(

˜̀′Γxys2−t1+j2

)′ (
Γεyt1−s2+j4

)′
+K2

4)′ϑMj3,j4

× (˜̀′Γεxt2−s1Γ
yy
t2−s1−j3+j1

+
(

˜̀′Γxys2−t1+j2

)′ (
Γεyt1−s2+j4

)′
+K2

4)

which follows from Lemma A.6ii) where for a typical term in this product one obtains

∑
j1,j2,j3,j4

4∏
l=1

k (jl/M)ϑMj1,j2
˜̀′

n−m−1∑
h1=−n+m+1

[
(1− |h1|n )Γεxh1Γ

yy
h1−j2+j4

]
ϑMj3,j4

n−m−1∑
h2=−n+m+1

(1− |h2|n )Γεyh2+j1
˜̀′Γxyh2+j3

and changing variables k2 = h2 + j1, u1 = j1 − j2, u2 = j4 − j2 and u3 = j4 − j3 leads to∥∥∥∥∥∥
∑

u1,u2,u3,j4

4∏
l=1

k (jl/M)ϑMu1−u2+j4,−u2+j4
˜̀′
∑
h1

[
(1− |h1|n )Γεxh1Γ

yy
h1+u2

]
ϑMj4−u3,j4

∑
k2

(1− |k2−j1|n )Γεyk2
˜̀′Γxyk2+u1−u2+u3

∥∥∥∥∥∥
≤

∑
u1,u2,u3,j4

 4∏
l=1

|k (jl/M)|
∥∥ϑMu1−u2+j4,−u2+j4

∥∥∥∥∥∥∥∥˜̀′
∑
h1

(1− |h1|n )Γεxh1Γ
yy
h1+u2

∥∥∥∥∥∥
×
∥∥ϑMj4−u3,j4∥∥

∥∥∥∥∥∥
∑
k2

(1− |k2−j1|n )Γεyk2
˜̀′Γxyk2+u1−u2+u3

∥∥∥∥∥∥
 = O(M).
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Similar arguments show that the remaining terms of E
[
˜̀′d5d

′
5
˜̀
]
are all O(M/n). Finally, note that

fΩ(λ) = 2πfε(λ)fy(λ) such that fy(λ)f−1
Ω (λ) = (2π)−1 f−1

ε (λ)Ip. From

(vec f−1
Ω (λ)′)′ (vec fy(λ)) = tr f−1

Ω (λ)fy(λ) = (2π)−1 pf−1
ε (λ)

it follows that (vec f−1
Ω (λ)′)′ [vec fy(λ)⊗ fεx(λ)′] = (2π)−1 pf−1

ε (λ)fεx(λ)′.

For xi) and xii) let aMj2 =
∑M

j1=1 Γxyj1 ϑ
M
j1,j2 . Note that∑M

j1=1 Γxyj1 k (j1/M)ϑMj1,j2 − a
M
j2 = M−qkq

∑M
j1=1 |j1|

q Γxyj1 ϑ
M
j1,j2 + o

(
M−q

)
uniformly in j2 such that the presence of the weight function can be neglected. As shown in the

auxiliary appendix the largest term of E [d7d
′
7] is

E [d7] =
1

Mn

M∑
j2,...,j4=1

n−m∑
t1=1,t2=r2

k (j4/M)
(
I ⊗ aMj2

)
×
((

vec
(∑m−1

l1=−m+1 γ
ε
l1Γ

yy
t2−t1+j4−j3−l1

))′
⊗ Γεyt1−t2+j2

)
vecϑMj3,j4

=

∫ π

−π

∫ π

−π

1

M

M∑
j3,j4=1

k (j4/M) (I ⊗ faM (λ))
(
vec (fΩ(λ))′ ⊗ fεy(µ)

)
vecϑMj3,j4e

iλ(j4−j3)Kn(µ− λ)dλdµ

where faM (λ) =
∑M

j2=1 a
M
j2
eiλj2 and Definition A.3 was used to substitute for fΩ(λ). Then by the same

arguments as in the proof of Lemma A.12x), set u1 = j4, u2 = j4 − j3 and z = u1/M and define

ηM (λ) =
1

M

1∑
z=1/M

M−1∑
u2=−M+1

k(z) (I ⊗ faM (λ))
(
vec (fΩ(λ))′ ⊗ fεy(µ)

) (
vecϑM ′zM−u2,zM

)
eiλu2 .

Now, faM (λ) ≤
∑M

j2=1

∥∥∥aMj2 ∥∥∥ < ∞ by Lemma 2.7iv) in the Auxiliary Appendix such that faM (λ) →
fa (λ) =

∑∞
j1,j2=1 Γxyj1 ϑj1,j2e

−iλj2 uniformly in λ by Folland (1984, p.240) and
∑M−1

u2=−M+1 ϑ
M ′
zM−u2,zMe

iλu2 →
(2π)−1 f−1

Ω (λ)′ . Then,
√
n/ME [d7] converges to

2−1

∫ 1

−1
k(z)dz

∫ π

−π

(
vec (fΩ(λ))′ ⊗ fa (λ) fεy(λ)

)
vec
(
f−1

Ω (λ)′
)
dλ

=

(∫ 1

−1
k(z)dz

)
p

2

∫ π

−π
fa (λ) fεy(λ)dλ

because fa (λ) fεy(λ) is a vector of dimension d×1 and vec (fΩ(λ))′ vec
(
f−1

Ω (λ)′
)

= tr fΩ(λ)′f−1
Ω (λ)′ =

p. Note that
∫ π
−π f

a (λ) fεy(λ)dλ =
∑∞

j1,j2=1 Γxyj1 ϑj1,j2Γ
εy
−j2 . In the auxiliary appendix it is shown that

E [d5d
′
7] = E [d5]E [d′7] + o (M/

√
n) .
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A.5. Main Results

Proof of Proposition 3.1. Let bn,M be defined in Lemma A.11. For E [bn,M ] consider E [di] and

E [HiDdj ] . First, E [di] = 0 for i ≤ 3. The terms d4, d6, d8, d9 are of lower order by the proof of

Lemma A.11. The terms HiD
−1dj are all of lower order. To see this note that Hi = op(M/n1/2) for

i ≥ 2, dj = Op (M/
√
n) for j ≥ 4 such that for i ≥ 2 and j ≥ 4, HiD

−1dj = op
(
M/n1/2

)
. Also, for

j < 4, E [dj ] = 0 such that E
[
H1D

−1dj
]

= 0 for j < 4. Finally, H1D
−1dj = op (M/

√
n) for j ≥ 4

because H1 = o (1) asM →∞. The largest order term is therefore E [d5 + d7] . By the proof of Lemma

A.12x-xi) it follows that E [d5 + d7] = pM/
√
n
(
A1

∫ 1
−1 k(x)2dx+A2

∫ 1
1 k(x)dx

)
+ o(M/

√
n).

Proof of Theorem 3.3. First focus on smooth kernels. Consider the terms in the expansion

D−1
∑9

i=0 di−D−1
∑4

i=1

∑9
j=0HiD

−1dj of the estimator which depend on M and n and are largest in

probability. From the results in Equations (A.8) to (A.30) it follows that the largest such terms are H1,

d0, d2, d3, d5 and d7. Of those terms examine cross products of the form E
[
did
′
j

]
, E [did

′
0]D−1Hi and

HiD
−1E [d0d

′
0]D−1Hj . Letting B(q)

1 = k−1
q limM→∞ (H13 +H14) /M−q, the largest terms vanishing

at rate M−q as M → ∞ are E [d0d
′
3] = −M−qkqB(q)

1 + o(M−q) as shown in Lemma A.12vii) and

−E [d0d
′
0]D−1(H13 + H14) = M−qkqB(q)

1 + o(M−q) by Lemmas A.12i) and A.12viii) . The two terms

cancel because they are of opposite sign.

Now define B(q)
0 = k−2

q limM→∞ P
′
M (I−WM )Ω−1

M (I−WM )PM/M
−q2. Terms of orderM−2q include

E [d0d
′
2] = M−2qk2

qB
(q)
0 +o(M−2q) by Lemma A.12vi) and−E [d0d

′
0]D−1H ′12 = −M−2qk2

qB
(q)
0 +o(M−2q)

by Lemma A.12ii). Since E [d0d
′
2] and −E [d0d

′
0]D−1H ′12 are of opposite sign these terms cancel. We are

left with E
[
(d3 − (H13 +H14)D−1d0)(d3 − (H13 +H14)D−1d0)′

]
= O(M−2q) by Lemmas A.12vii-ix).

The term that grows with M and is largest in order is d5 + d7 where E [(d5 + d7) (d5 + d7)′] =

O(M2/n) by Lemma A.12x-xii). Then ϕn (M, `, k (.)) = O(M2/n) +O(M−2q).

Next turn to the case of the truncated kernel. Now H11, d0, d1, d5 and d7 are largest in probability.

From Lemmas A.12i) and A.12iv) it follows that E [d0d
′
0]D−1H11 = E [d1d

′
0] such that these terms

cancel out. The largest terms remaining are therefore E [d1d
′
1] = −H11 + o (σ1M ), d5 and d7. The

largest term growing with M is E [(d5 + d7) (d5 + d7)′] = O(M2/n) as before.

To summarize, the dominating terms in ϕn (M, `, k (.)) are An = E [(d5 + d7) (d5 + d7)′] and

Bn = E
[
(d3 − (H13 +H14)D−1d0)(d3 − (H13 +H14)D−1d0)′

]
+ E

[
d1d
′
1

]
such that ϕn (M, `, k (.)) = An +Bn + o

(
ρn,M

)
. For all n ≥ 1 it holds that An ≥ 0 and Bn ≥ 0.

From Lemma A.12x-xii) it follows that for A0 = A1

∫ 1
−1 k(x)2dx+A2

∫ 1
−1 k(x)dx,

E
[
`′D−1 (d5 + d7) (d5 + d7)′D−1`

]
= (Mp)2 /n`′D−1A′0A0D

−1`+ o(M2/n).
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From Lemma A.12vii) it follows that M2qE [d0d
′
3] = −kqB(q)

1 + o(1) and from Lemma A.12i) it follows

that E [d0d
′
0] = D + o(1) such that

M2q(H13 +H14)D−1E
[
d0d
′
0

]
D−1(H13 +H14)′ = k2

qB
(q)
1 D−1B(q)′

1 + o(1).

This implies that

(H13 +H14)D−1E
[
d0d
′
3

]
− (H13 +H14)D−1E

[
d0d
′
0

]
D−1(H13 +H14)′ = o(M−2q)

or in other words Bn = E [d3d
′
3]− (H13 +H14)D−1E [d0d

′
0]D−1(H13 +H14)+o(M−2q). Here E [d3d

′
3] =

M−2qk2
qB

(q)
2 + o(M−2q) as shown in Lemma A.12ix) where B(q)

2 is defined in (3.13). This implies that

for smooth kernels Bn = M−2qk2
q

(
B(q)

2 − B
(q)
1 D−1B(q)′

1

)
+ o

(
M−2q

)
since E [d1d

′
1] = −H11 + o (σ1M )

is of lower order. For the truncated kernel on the other hand, d3, H13 and H14 vanish such that

Bn = −H11 + o (σ1M ) .

Proof of Theorem 4.1. Use the short hand notation ϕn(M) = (Mp)2

n A + `′D−1σ1MD
−1` and

ϕ̂n(M) = (Mp)2

n Â+ `′D̂−1

kmax,ĥ
σ̂1MD̂

−1

kmax,ĥ
` where σ̂1M =

(
D̂kmax,ĥ

− D̂M,ĥ

)
. Consider

∣∣∣∣ ϕ̂n(M)− ϕn(M)

ϕn(M)

∣∣∣∣ ≤ ∣∣∣∣`′D−1 (σ̂1M − σ1M )D−1`

ϕn(M)

∣∣∣∣+

∣∣∣∣∣A−ÂA
∣∣∣∣∣

+2

∣∣∣∣∣∣
`′
(
D−1 − D̂−1

kmax,ĥ

)
σ1MD

−1`

`′D−1σ1MD−1`

∣∣∣∣∣∣+ op

(
M3hmax (log n/n)1/2 + op

(
M−2

))
because ϕn(M) ≥ M2/np2A and `′D−1 (D −DM )D−1` ≥ 0. By Lemmas 4.7, 4.8 and 4.9 in the

Auxiliary Appendix it follows that Â−A = Op

(
hmax (log n/n)1/2

)
. By Lemma 4.6ii) of the Auxiliary

Appendix it follows that

(A.34) ϕn(M)−1
(
`′D−1 (σ̂1M − σ1M )D−1`

)
= M3Op(hmax (log n/n)1/2) + op

(
M−2

)
and D−1 − D̂−1

kmax,ĥ
= Op

(
hmax

√
log n/n

)
by Lemma 4.7 in the Auxiliary Appendix. This shows that

(A.35) ϕ̂n(M) = ϕn(M)
(

1 +M3Op(hmax (log n/n)1/2 + op
(
M−2

))
= ϕn(M) (1 + op(1))

uniformly inM ≤Mmax. Let ϕ̃n(M) = ϕn(M)+g(M)−`′D−1σ1MD
−1` where g(M)−`′D−1σ1MD

−1` =

o
(
νM
)
because `′D−1σ1MD

−1`/g(M) − 1 = o (1) by assumption. It follows that ϕn(M) − ϕ̃n(M) =

o(g(M)). Let M̃∗1 minimize ϕ̃n(M). By the same arguments as in Hannan and Deistler (1988, p.333) it

now follows that M̃∗1 /M
∗
1 − 1→ 0, M̂∗1 /M̃

∗
1 − 1 = op(1) and ϕ̃n(M̂∗1 )/ϕ̃n(M̃∗1 ) = 1 + op(1).

38



Table 1a corr(ut,vt) = .1,  = .1

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.11 0.32 0.03 0.13 0.16 0.11 0.16 0.02 0.11 0.46
GMM-1       0.15 3.93 10.79 1.48 0.05 1.0 0.07 3.65 4.88 1.31 0.05 1.0
GMM-25      0.11 0.51 0.05 0.18 0.08 25.0 0.10 0.53 0.05 0.18 0.07 25.0
GMM-Tuk-Han 0.11 1.38 0.41 0.46 0.03 7.5 0.14 1.09 0.21 0.36 0.02 9.9
GMM-BR      0.12 1.87 0.79 0.62 0.06 3.9 0.13 1.51 0.48 0.51 0.04 5.2
GMM-Trunc   0.23 2.50 2.69 0.92 0.07 1.0 0.26 2.01 2.06 0.80 0.08 2.0
CUE-1       0.09 9.42 49.69 3.74 0.01 1.0 -0.01 9.29 46.08 3.58 0.00 1.0
CUE-25      0.02 9.82 45.67 3.56 0.82 25.0 0.01 8.88 42.35 3.41 0.83 25.0
WWA         0.03 2.12 109.83 1.33 0.12 0.02 2.04 9.71 0.98 0.13

-0.5 OLS         0.10 0.26 0.02 0.12 0.20 0.11 0.13 0.01 0.11 0.57
GMM-1       0.14 3.06 24.65 1.33 0.04 1.0 0.06 3.07 4.73 1.12 0.03 1.0
GMM-25      0.10 0.42 0.04 0.15 0.07 25.0 0.10 0.42 0.04 0.16 0.07 25.0
GMM-Tuk-Han 0.11 1.44 0.65 0.51 0.02 4.5 0.10 1.26 0.47 0.44 0.01 5.0
GMM-BR      0.10 1.91 1.87 0.68 0.03 2.4 0.10 1.64 0.84 0.58 0.01 2.6
GMM-Trunc   0.16 2.13 17.58 0.89 0.04 1.0 0.14 2.07 2.27 0.72 0.04 2.0
CUE-1       0.10 7.44 35.61 2.97 0.01 1.0 0.02 7.64 37.63 3.09 0.00 1.0
CUE-25      0.04 7.43 38.80 3.10 0.81 25.0 0.07 6.81 35.27 2.91 0.80 25.0
WWA         0.06 2.11 3.57 0.80 0.10 0.09 1.91 326.76 1.34 0.09

0 OLS         0.10 0.23 0.02 0.11 0.19 0.10 0.11 0.01 0.10 0.62
GMM-1       0.14 2.54 2.64 0.95 0.02 1.0 0.05 2.48 15.19 1.06 0.01 1.0
GMM-25      0.09 0.36 0.03 0.13 0.06 25.0 0.10 0.37 0.03 0.14 0.06 25.0
GMM-Tuk-Han 0.09 1.71 1.57 0.64 0.03 2.1 0.09 1.88 13.23 0.78 0.01 1.6
GMM-BR      0.10 1.80 1.64 0.67 0.02 1.1 0.09 1.85 13.31 0.79 0.01 0.8
GMM-Trunc   0.11 1.99 1.53 0.69 0.03 1.0 0.12 2.02 1.69 0.71 0.02 1.0
CUE-1       0.15 6.16 33.15 2.77 0.00 1.0 0.00 6.76 31.22 2.70 0.00 1.0
CUE-25      0.05 6.23 31.32 2.70 0.82 25.0 0.07 5.97 29.29 2.62 0.82 25.0
WWA         0.04 2.03 1.38 0.69 0.08 0.09 1.79 10.09 0.76 0.05

0.5 OLS         0.09 0.24 0.02 0.11 0.15 0.09 0.12 0.01 0.10 0.49
GMM-1       0.13 3.37 7.07 1.25 0.03 1.0 0.06 3.29 3.54 1.11 0.03 1.0
GMM-25      0.09 0.37 0.03 0.14 0.04 25.0 0.09 0.40 0.03 0.15 0.06 25.0
GMM-Tuk-Han 0.10 1.50 0.60 0.51 0.03 4.8 0.10 1.24 0.36 0.41 0.01 5.4
GMM-BR      0.10 1.97 3.76 0.73 0.03 2.5 0.09 1.62 1.13 0.58 0.02 2.8
GMM-Trunc   0.10 2.06 1.19 0.68 0.04 1.0 0.13 1.74 1.53 0.65 0.03 2.0
CUE-1       0.11 8.15 36.92 3.20 0.01 1.0 0.01 7.63 38.53 3.18 0.00 1.0
CUE-25      0.03 7.25 31.00 2.81 0.80 25.0 0.00 7.27 36.55 3.01 0.83 25.0
WWA         0.04 3.19 8.0E+06 95.11 0.20 0.07 1.91 76.40 1.48 0.12

0.9 OLS         0.08 0.29 0.02 0.11 0.11 0.09 0.15 0.01 0.09 0.33
GMM-1       0.15 4.08 10.14 1.58 0.06 1.0 0.11 3.93 5.11 1.37 0.05 1.0
GMM-25      0.10 0.45 0.04 0.16 0.04 25.0 0.10 0.47 0.04 0.17 0.05 25.0
GMM-Tuk-Han 0.11 1.24 0.40 0.42 0.03 8.3 0.12 0.95 0.17 0.32 0.02 11.2
GMM-BR      0.15 1.78 0.83 0.61 0.06 4.3 0.11 1.30 0.37 0.44 0.04 5.8
GMM-Trunc   0.19 2.22 2.84 0.86 0.06 2.0 0.21 1.68 1.43 0.67 0.06 4.0
CUE-1       0.12 11.10 52.35 4.03 0.01 1.0 -0.01 9.87 52.45 3.91 0.00 1.0
CUE-25      0.08 9.45 45.79 3.59 0.80 25.0 0.05 9.41 48.00 3.65 0.83 25.0
WWA         0.02 46.82 1.1E+07 141.13 0.53 0.01 18.57 10325.00 21.12 0.47

n=128 n=512
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Table 1b corr(ut,vt) = .5,  = .1

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.54 0.29 0.30 0.54 1.00 0.54 0.14 0.30 0.54 1.00
GMM-1       0.66 3.39 9.90 1.54 0.11 1.0 0.62 3.38 5.67 1.35 0.09 1.0
GMM-25      0.54 0.47 0.32 0.54 0.80 25.0 0.54 0.46 0.33 0.54 0.82 25.0
GMM-Tuk-Han 0.55 1.19 0.52 0.61 0.31 9.2 0.57 0.86 0.43 0.58 0.38 12.7
GMM-BR      0.62 1.48 1.10 0.75 0.28 4.8 0.58 1.18 0.55 0.64 0.30 6.6
GMM-Trunc   0.64 1.78 4.82 1.01 0.38 3.0 0.66 1.49 1.40 0.89 0.47 6.0
CUE-1       0.65 9.03 43.07 3.53 0.05 1.0 0.61 7.73 33.73 3.11 0.05 1.0
CUE-25      0.52 8.70 38.64 3.33 0.82 25.0 0.44 7.99 40.02 3.28 0.83 25.0
WWA         0.33 2.02 7.88 0.94 0.12 0.30 1.97 6.34 0.90 0.12

-0.5 OLS         0.52 0.23 0.28 0.52 1.00 0.52 0.11 0.27 0.52 1.00
GMM-1       0.58 2.68 6.32 1.20 0.10 1.0 0.54 2.56 2.78 1.08 0.09 1.0
GMM-25      0.52 0.37 0.29 0.51 0.82 25.0 0.52 0.37 0.29 0.52 0.87 25.0
GMM-Tuk-Han 0.52 1.20 0.65 0.63 0.28 5.2 0.52 1.05 0.50 0.58 0.26 6.2
GMM-BR      0.56 1.57 1.35 0.78 0.22 2.7 0.55 1.29 0.81 0.69 0.20 3.2
GMM-Trunc   0.58 1.76 2.64 0.87 0.28 2.0 0.60 1.78 1.44 0.85 0.30 2.0
CUE-1       0.58 6.72 29.84 2.77 0.06 1.0 0.52 7.23 37.43 3.03 0.06 1.0
CUE-25      0.48 6.52 34.40 2.92 0.83 25.0 0.48 5.88 28.08 2.62 0.85 25.0
WWA         0.42 1.79 5.01 0.83 0.17 0.45 1.66 39.72 1.00 0.14

0 OLS         0.49 0.20 0.25 0.49 1.00 0.49 0.10 0.25 0.50 1.00
GMM-1       0.52 2.25 4.63 1.04 0.08 1.0 0.44 2.17 40.49 1.13 0.06 1.0
GMM-25      0.49 0.32 0.25 0.49 0.82 25.0 0.50 0.32 0.26 0.50 0.81 25.0
GMM-Tuk-Han 0.49 1.52 2.69 0.80 0.30 2.2 0.50 1.56 39.18 0.96 0.24 1.6
GMM-BR      0.49 1.55 2.75 0.82 0.22 1.2 0.48 1.58 39.26 0.97 0.18 0.8
GMM-Trunc   0.49 1.70 2.40 0.83 0.24 1.0 0.50 1.71 1.49 0.81 0.24 1.0
CUE-1       0.50 5.26 31.27 2.61 0.06 1.0 0.39 5.79 29.07 2.58 0.04 1.0
CUE-25      0.46 5.38 23.71 2.36 0.84 25.0 0.45 5.37 27.04 2.47 0.86 25.0
WWA         0.44 1.82 1.23 0.75 0.17 0.48 1.56 7.07 0.82 0.16

0.5 OLS         0.46 0.22 0.23 0.47 1.00 0.47 0.11 0.22 0.47 1.00
GMM-1       0.52 2.92 5.05 1.23 0.08 1.0 0.50 2.85 3.77 1.13 0.07 1.0
GMM-25      0.47 0.34 0.24 0.47 0.76 25.0 0.47 0.37 0.25 0.48 0.81 25.0
GMM-Tuk-Han 0.47 1.19 0.55 0.58 0.23 5.5 0.47 1.01 0.42 0.54 0.21 6.2
GMM-BR      0.51 1.67 2.00 0.78 0.20 2.9 0.51 1.36 0.80 0.66 0.16 3.2
GMM-Trunc   0.51 1.76 1.32 0.80 0.24 2.0 0.54 1.67 1.80 0.85 0.25 2.0
CUE-1       0.51 7.26 41.99 3.27 0.05 1.0 0.48 6.49 37.14 3.04 0.04 1.0
CUE-25      0.41 6.53 32.58 2.80 0.83 25.0 0.39 6.13 31.98 2.75 0.82 25.0
WWA         0.32 2.19 460770.00 25.30 0.20 0.0 0.36 1.63 338.35 1.56 0.13 0.0

0.9 OLS         0.44 0.27 0.21 0.45 0.99 0.45 0.14 0.21 0.45 1.00
GMM-1       0.52 4.02 16.51 1.59 0.08 1.0 0.50 3.64 4.75 1.34 0.07 1.0
GMM-25      0.46 0.44 0.24 0.46 0.64 25.0 0.45 0.46 0.25 0.46 0.69 25.0
GMM-Tuk-Han 0.50 1.13 0.45 0.56 0.24 9.2 0.49 0.85 0.34 0.51 0.27 12.4
GMM-BR      0.53 1.51 0.81 0.70 0.22 4.8 0.51 1.15 0.50 0.59 0.22 6.5
GMM-Trunc   0.55 1.89 11.44 1.00 0.30 4.0 0.58 1.47 1.75 0.86 0.38 5.0
CUE-1       0.44 10.56 49.44 3.85 0.03 1.0 0.48 9.19 45.63 3.61 0.02 1.0
CUE-25      0.44 8.81 45.13 3.52 0.81 25.0 0.37 8.48 44.65 3.41 0.81 25.0
WWA         0.19 5.04 80234.00 21.81 0.27 0.21 2.03 238.46 1.99 0.12

n=128 n=512
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Table 1c corr(ut,vt) = .9,  = .1

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.97 0.21 0.95 0.97 1.00 0.97 0.11 0.95 0.97 1.00
GMM-1       1.05 2.28 6.82 1.41 0.27 1.0 1.01 2.25 5.88 1.28 0.26 1.0
GMM-25      0.98 0.34 0.98 0.98 1.00 25.0 0.98 0.33 0.98 0.98 1.00 25.0
GMM-Tuk-Han 0.97 0.73 1.00 0.96 0.86 12.8 0.95 0.58 0.94 0.94 0.91 16.8
GMM-BR      0.97 0.94 1.09 0.97 0.81 6.7 0.92 0.80 0.94 0.92 0.86 8.8
GMM-Trunc   1.03 0.91 1.63 1.11 0.75 5.0 1.02 0.71 1.26 1.05 0.82 7.0
CUE-1       1.05 5.68 37.25 3.06 0.21 1.0 0.99 6.02 33.02 2.94 0.21 1.0
CUE-25      1.12 4.31 22.50 2.45 0.86 25.0 1.06 4.30 21.57 2.41 0.85 25.0
WWA         0.92 1.76 1.80 1.05 0.36 0.89 1.58 4.45 1.02 0.32

-0.5 OLS         0.94 0.14 0.87 0.93 1.00 0.94 0.07 0.88 0.94 1.00
GMM-1       1.00 1.53 2.59 1.18 0.45 1.0 0.99 1.54 2.33 1.12 0.42 1.0
GMM-25      0.93 0.22 0.88 0.94 0.99 25.0 0.93 0.22 0.89 0.94 1.00 25.0
GMM-Tuk-Han 0.94 0.62 0.96 0.94 0.85 7.0 0.93 0.55 0.92 0.93 0.89 8.0
GMM-BR      0.96 0.74 1.20 1.00 0.79 3.7 0.96 0.68 1.01 0.95 0.83 4.2
GMM-Trunc   0.99 1.23 2.38 1.14 0.60 1.0 1.00 1.18 1.77 1.07 0.65 1.0
CUE-1       1.02 3.97 20.94 2.28 0.36 1.0 1.01 3.99 22.77 2.33 0.35 1.0
CUE-25      0.97 3.48 18.10 2.09 0.91 25.0 0.89 3.45 19.97 2.17 0.90 25.0
WWA         0.87 1.16 2.25 0.97 0.61 0.86 1.08 1.17 0.91 0.60

0 OLS         0.89 0.10 0.79 0.89 1.00 0.89 0.05 0.80 0.89 1.00
GMM-1       0.90 1.22 1.53 0.99 0.49 1.0 0.86 1.19 2.76 1.01 0.44 1.0
GMM-25      0.89 0.16 0.79 0.89 0.97 25.0 0.89 0.17 0.80 0.89 0.97 25.0
GMM-Tuk-Han 0.89 0.75 1.18 0.95 0.75 2.7 0.88 0.82 1.30 0.94 0.70 1.9
GMM-BR      0.89 0.79 1.21 0.95 0.72 1.4 0.88 0.85 2.30 0.97 0.66 1.0
GMM-Trunc   0.89 1.04 1.50 0.99 0.61 1.0 0.87 1.08 1.44 0.95 0.56 1.0
CUE-1       0.90 2.64 13.32 1.75 0.45 1.0 0.81 3.10 20.85 2.02 0.42 1.0
CUE-25      0.86 2.60 13.16 1.71 0.92 25.0 0.85 2.65 20.29 1.98 0.91 25.0
WWA         0.85 1.01 1.14 0.92 0.76 0.88 0.85 1.81 0.95 0.77

0.5 OLS         0.85 0.16 0.72 0.85 1.00 0.85 0.08 0.72 0.85 1.00
GMM-1       0.89 1.85 5.16 1.16 0.28 1.0 0.84 1.77 2.34 1.08 0.27 1.0
GMM-25      0.85 0.25 0.73 0.85 0.98 25.0 0.85 0.27 0.74 0.85 1.00 25.0
GMM-Tuk-Han 0.85 0.75 0.90 0.87 0.74 7.0 0.84 0.70 0.81 0.85 0.77 7.4
GMM-BR      0.88 1.02 1.29 0.95 0.68 3.7 0.88 0.90 0.96 0.89 0.72 3.8
GMM-Trunc   0.92 1.55 2.22 1.06 0.48 1.0 0.90 1.38 1.86 1.01 0.51 1.0
CUE-1       0.87 4.40 22.30 2.34 0.23 1.0 0.79 5.07 31.10 2.67 0.22 1.0
CUE-25      0.78 3.45 16.61 2.00 0.87 25.0 0.86 3.42 18.67 2.09 0.89 25.0
WWA         0.68 1.27 1.52 0.85 0.39 0.73 1.11 7.64 0.90 0.40

0.9 OLS         0.81 0.24 0.67 0.81 1.00 0.81 0.13 0.66 0.81 1.00
GMM-1       0.85 2.66 3.67 1.29 0.15 1.0 0.86 2.62 6.28 1.33 0.15 1.0
GMM-25      0.82 0.37 0.70 0.82 0.99 25.0 0.83 0.41 0.71 0.83 1.00 25.0
GMM-Tuk-Han 0.79 0.82 0.77 0.81 0.69 12.0 0.80 0.72 0.72 0.80 0.76 15.5
GMM-BR      0.80 1.12 0.93 0.85 0.63 6.2 0.77 0.96 0.74 0.78 0.67 8.1
GMM-Trunc   0.87 1.24 1.54 0.98 0.62 5.0 0.89 0.88 1.19 0.96 0.72 7.0
CUE-1       0.84 6.86 33.29 3.01 0.11 1.0 0.82 6.64 35.78 3.15 0.10 1.0
CUE-25      0.81 4.56 21.97 2.35 0.78 25.0 0.95 4.62 23.95 2.50 0.78 25.0
WWA         0.57 1.64 1.41 0.82 0.14 0.61 1.55 5.35 0.86 0.13

n=128 n=512
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Table 2a corr(ut,vt) = .1,  = .3

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.12 0.33 0.03 0.14 0.22 0.12 0.16 0.02 0.12 0.55
GMM-1       0.12 3.17 6.76 1.20 0.06 1.0 0.01 2.00 1.10 0.66 0.07 1.0
GMM-25      0.11 0.53 0.05 0.19 0.10 25.0 0.10 0.52 0.05 0.18 0.10 25.0
GMM-Tuk-Han 0.14 1.27 0.37 0.44 0.04 6.9 0.08 1.02 0.18 0.33 0.04 9.1
GMM-BR      0.15 1.68 0.93 0.59 0.07 3.6 0.07 1.24 0.30 0.41 0.05 4.7
GMM-Trunc   0.19 2.11 4.49 0.84 0.07 1.0 0.13 1.49 0.58 0.51 0.09 2.0
CUE-1       0.10 6.86 38.98 3.13 0.02 1.0 -0.03 3.04 16.91 1.61 0.04 1.0
CUE-25      0.02 8.03 40.89 3.29 0.82 25.0 -0.01 6.52 36.18 2.88 0.79 25.0
WWA         0.06 2.13 31.36 1.06 0.12 0.01 1.59 105.45 1.16 0.13

-0.5 OLS         0.10 0.27 0.02 0.12 0.23 0.11 0.14 0.01 0.11 0.61
GMM-1       0.11 2.55 3.76 0.93 0.05 1.0 0.03 1.61 0.72 0.54 0.03 1.0
GMM-25      0.10 0.43 0.04 0.16 0.09 25.0 0.09 0.43 0.04 0.15 0.11 25.0
GMM-Tuk-Han 0.08 1.25 0.50 0.43 0.03 4.6 0.06 0.97 0.19 0.32 0.02 5.9
GMM-BR      0.08 1.58 1.14 0.58 0.04 2.4 0.07 1.16 0.30 0.37 0.03 3.0
GMM-Trunc   0.10 1.75 1.09 0.61 0.04 2.0 0.08 1.19 0.47 0.41 0.04 2.0
CUE-1       0.10 5.64 27.43 2.51 0.01 1.0 -0.01 2.41 11.62 1.27 0.02 1.0
CUE-25      0.09 6.60 32.94 2.82 0.81 25.0 0.02 5.20 24.23 2.28 0.77 25.0
WWA         0.06 1.87 6.36 0.80 0.08 0.05 1.29 0.58 0.45 0.06

0 OLS         0.09 0.21 0.02 0.10 0.18 0.09 0.11 0.01 0.09 0.58
GMM-1       0.10 2.23 2.07 0.80 0.02 1.0 0.01 1.24 1.18 0.46 0.01 1.0
GMM-25      0.09 0.34 0.03 0.13 0.05 25.0 0.08 0.34 0.03 0.13 0.08 25.0
GMM-Tuk-Han 0.07 1.28 0.76 0.47 0.03 4.1 0.04 0.90 0.16 0.29 0.01 4.6
GMM-BR      0.08 1.43 1.06 0.55 0.02 2.1 0.04 1.03 0.93 0.37 0.01 2.4
GMM-Trunc   0.09 1.48 0.98 0.54 0.03 2.0 0.04 1.01 0.22 0.33 0.03 2.0
CUE-1       0.09 4.34 22.64 2.07 0.00 1.0 -0.01 1.86 6.66 0.97 0.01 1.0
CUE-25      0.06 5.78 27.37 2.47 0.81 25.0 0.02 4.44 19.31 1.92 0.77 25.0
WWA         0.07 1.74 4.34 0.67 0.07 0.03 1.17 0.30 0.37 0.04

0.5 OLS         0.08 0.21 0.01 0.09 0.10 0.08 0.11 0.01 0.08 0.36
GMM-1       0.09 2.57 4.19 0.97 0.03 1.0 0.00 1.36 0.87 0.51 0.02 1.0
GMM-25      0.08 0.33 0.02 0.12 0.03 25.0 0.07 0.34 0.02 0.12 0.04 25.0
GMM-Tuk-Han 0.06 1.28 0.52 0.44 0.01 5.5 0.05 0.83 0.16 0.27 0.00 7.0
GMM-BR      0.07 1.57 1.66 0.59 0.02 2.9 0.05 0.93 0.24 0.32 0.01 3.6
GMM-Trunc   0.08 1.63 2.34 0.61 0.02 2.0 0.05 0.97 0.26 0.32 0.01 3.0
CUE-1       0.07 6.17 33.43 2.68 0.01 1.0 -0.02 2.36 11.04 1.29 0.01 1.0
CUE-25      0.05 6.71 36.85 2.87 0.77 25.0 0.02 5.40 29.16 2.44 0.77 25.0
WWA         0.01 2.35 2193.70 4.62 0.21 0.01 1.05 2.36 0.44 0.08

0.9 OLS         0.06 0.24 0.01 0.09 0.05 0.07 0.13 0.01 0.07 0.19
GMM-1       0.12 3.28 9.49 1.25 0.04 1.0 -0.02 1.71 1.43 0.63 0.03 1.0
GMM-25      0.07 0.40 0.03 0.14 0.03 25.0 0.07 0.39 0.03 0.14 0.03 25.0
GMM-Tuk-Han 0.07 1.11 0.25 0.36 0.02 9.1 0.06 0.69 0.09 0.23 0.00 12.7
GMM-BR      0.07 1.48 0.59 0.49 0.04 4.7 0.07 0.88 0.15 0.29 0.02 6.7
GMM-Trunc   0.12 1.64 1.30 0.62 0.04 3.0 0.09 0.85 0.24 0.31 0.02 6.0
CUE-1       0.11 7.76 43.48 3.36 0.01 1.0 -0.06 3.22 19.67 1.74 0.02 1.0
CUE-25      0.08 9.01 48.93 3.60 0.78 25.0 0.02 7.53 36.77 2.96 0.76 25.0
WWA         -0.01 39.90 87377.00 36.23 0.54 0.00 14.08 4641.30 12.86 0.44

n=128 n=512
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Table 2b corr(ut,vt) = .5,  = .3

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.58 0.29 0.34 0.58 1.00 0.58 0.14 0.34 0.58 1.00
GMM-1       0.50 2.94 8.51 1.22 0.12 1.0 0.16 1.92 33.95 0.83 0.10 1.0
GMM-25      0.57 0.46 0.36 0.57 0.84 25.0 0.54 0.45 0.33 0.54 0.86 25.0
GMM-Tuk-Han 0.56 1.01 0.48 0.60 0.37 9.1 0.47 0.91 0.32 0.49 0.39 12.0
GMM-BR      0.58 1.30 0.87 0.69 0.31 4.7 0.44 1.09 0.37 0.50 0.30 6.2
GMM-Trunc   0.64 1.51 2.07 0.85 0.43 4.0 0.50 1.37 33.72 0.81 0.47 5.0
CUE-1       0.44 7.03 37.29 3.03 0.08 1.0 0.02 3.06 13.03 1.47 0.10 1.0
CUE-25      0.49 8.42 40.73 3.31 0.82 25.0 0.25 6.53 26.56 2.54 0.78 25.0
WWA         0.30 1.95 26.57 1.05 0.14 0.16 1.40 42.09 0.76 0.10

-0.5 OLS         0.52 0.23 0.28 0.52 1.00 0.53 0.12 0.28 0.53 1.00
GMM-1       0.43 2.30 10.78 1.00 0.11 1.0 0.13 1.47 0.65 0.52 0.08 1.0
GMM-25      0.52 0.37 0.29 0.51 0.86 25.0 0.48 0.37 0.26 0.49 0.88 25.0
GMM-Tuk-Han 0.48 1.02 0.54 0.56 0.30 5.1 0.35 0.92 0.25 0.41 0.28 6.2
GMM-BR      0.47 1.41 0.93 0.66 0.24 2.7 0.33 1.07 0.32 0.45 0.21 3.3
GMM-Trunc   0.49 1.50 0.93 0.69 0.30 2.0 0.34 1.27 0.45 0.50 0.29 2.0
CUE-1       0.37 5.35 24.39 2.36 0.08 1.0 0.00 2.43 12.79 1.33 0.09 1.0
CUE-25      0.46 6.35 32.41 2.76 0.83 25.0 0.23 4.87 25.99 2.28 0.80 25.0
WWA         0.37 1.63 3.02 0.78 0.16 0.19 1.20 0.48 0.45 0.10

0 OLS         0.45 0.19 0.21 0.45 1.00 0.46 0.10 0.21 0.46 1.00
GMM-1       0.35 1.99 1.65 0.79 0.05 1.0 0.10 1.19 0.77 0.46 0.05 1.0
GMM-25      0.45 0.30 0.22 0.45 0.81 25.0 0.42 0.31 0.20 0.43 0.83 25.0
GMM-Tuk-Han 0.40 1.13 0.71 0.57 0.29 4.1 0.26 0.91 0.20 0.37 0.24 4.3
GMM-BR      0.39 1.40 1.10 0.65 0.21 2.1 0.20 1.09 0.50 0.42 0.18 2.3
GMM-Trunc   0.41 1.42 0.75 0.61 0.25 2.0 0.25 1.01 0.24 0.39 0.24 2.0
CUE-1       0.30 4.19 19.67 1.99 0.06 1.0 0.01 1.81 7.53 0.97 0.05 1.0
CUE-25      0.37 5.00 25.85 2.33 0.83 25.0 0.20 4.06 19.64 1.90 0.77 25.0
WWA         0.34 1.49 13.27 0.75 0.14 0.18 1.09 0.29 0.38 0.09

0.5 OLS         0.38 0.20 0.16 0.39 1.00 0.39 0.10 0.15 0.39 1.00
GMM-1       0.32 2.49 5.47 0.99 0.05 1.0 0.09 1.33 0.83 0.50 0.02 1.0
GMM-25      0.39 0.31 0.16 0.39 0.67 25.0 0.36 0.32 0.15 0.37 0.70 25.0
GMM-Tuk-Han 0.34 1.11 0.43 0.48 0.15 5.6 0.24 0.82 0.19 0.34 0.14 6.4
GMM-BR      0.37 1.44 0.78 0.61 0.13 2.9 0.24 0.99 0.27 0.39 0.10 3.4
GMM-Trunc   0.38 1.59 3.79 0.73 0.16 2.0 0.26 1.07 0.35 0.43 0.17 2.0
CUE-1       0.25 5.49 31.35 2.62 0.04 1.0 0.00 2.30 10.70 1.24 0.03 1.0
CUE-25      0.34 6.24 33.80 2.78 0.79 25.0 0.17 5.12 24.73 2.24 0.74 25.0
WWA         0.17 1.84 1919.90 4.46 0.17 0.09 0.96 0.66 0.38 0.07

0.9 OLS         0.33 0.24 0.12 0.33 0.92 0.33 0.13 0.11 0.33 1.00
GMM-1       0.30 3.21 3.91 1.17 0.05 1.0 0.07 1.69 1.30 0.62 0.02 1.0
GMM-25      0.34 0.40 0.14 0.34 0.40 25.0 0.31 0.39 0.13 0.33 0.41 25.0
GMM-Tuk-Han 0.33 1.05 0.33 0.44 0.13 8.8 0.28 0.77 0.16 0.33 0.11 11.2
GMM-BR      0.36 1.52 0.71 0.59 0.13 4.5 0.27 1.02 0.23 0.39 0.09 5.8
GMM-Trunc   0.39 1.80 1.74 0.77 0.17 3.0 0.33 1.22 0.60 0.50 0.18 3.0
CUE-1       0.24 6.67 34.73 2.97 0.02 1.0 -0.01 3.02 16.60 1.55 0.03 1.0
CUE-25      0.34 8.53 40.44 3.33 0.78 25.0 0.13 7.15 36.81 2.87 0.73 25.0
WWA         0.03 5.33 9371.70 13.37 0.28 0.02 1.14 219.10 1.17 0.10

n=128 n=512

43



Table 2c corr(ut,vt) = .9,  = .3

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         1.04 0.17 1.08 1.04 1.00 1.04 0.09 1.09 1.04 1.00
GMM-1       0.74 2.37 3.53 1.19 0.37 1.0 0.24 1.69 1.10 0.64 0.25 1.0
GMM-25      1.04 0.29 1.08 1.03 1.00 25.0 0.98 0.28 0.97 0.98 1.00 25.0
GMM-Tuk-Han 0.98 0.63 1.00 0.96 0.91 14.3 0.82 0.65 0.70 0.79 0.87 16.0
GMM-BR      0.96 0.75 1.04 0.95 0.88 7.5 0.78 0.73 0.65 0.75 0.83 8.3
GMM-Trunc   1.01 1.05 1.85 1.06 0.78 5.0 0.83 1.34 0.89 0.80 0.68 4.0
CUE-1       0.50 7.04 37.37 2.96 0.24 1.0 -0.03 2.81 15.92 1.52 0.13 1.0
CUE-25      0.96 4.63 25.05 2.46 0.87 25.0 0.35 4.74 25.03 2.22 0.77 25.0
WWA         0.79 1.67 4.51 1.04 0.50 0.40 1.28 0.67 0.58 0.36

-0.5 OLS         0.94 0.12 0.89 0.94 1.00 0.94 0.06 0.89 0.94 1.00
GMM-1       0.67 1.73 2.75 0.97 0.44 1.0 0.23 1.28 1.65 0.55 0.27 1.0
GMM-25      0.93 0.20 0.88 0.93 0.99 25.0 0.88 0.21 0.79 0.88 1.00 25.0
GMM-Tuk-Han 0.86 0.64 0.79 0.84 0.85 7.0 0.59 0.72 0.42 0.59 0.71 6.2
GMM-BR      0.86 0.82 0.89 0.85 0.79 3.7 0.51 0.87 0.38 0.54 0.61 3.2
GMM-Trunc   0.79 1.39 2.41 0.95 0.59 1.0 0.29 1.39 0.76 0.54 0.39 1.0
CUE-1       0.43 5.53 30.20 2.50 0.30 1.0 -0.04 2.22 11.58 1.26 0.12 1.0
CUE-25      0.84 3.98 24.05 2.29 0.89 25.0 0.29 4.18 24.50 2.06 0.77 25.0
WWA         0.69 1.18 2.65 0.84 0.64 0.35 0.94 0.38 0.46 0.46

0 OLS         0.82 0.11 0.67 0.82 1.00 0.82 0.06 0.67 0.82 1.00
GMM-1       0.56 1.45 1.11 0.75 0.30 1.0 0.17 1.09 0.63 0.44 0.15 1.0
GMM-25      0.81 0.18 0.66 0.81 0.94 25.0 0.76 0.19 0.60 0.77 0.95 25.0
GMM-Tuk-Han 0.73 0.75 0.74 0.75 0.69 4.2 0.44 0.81 0.30 0.47 0.50 3.6
GMM-BR      0.70 1.00 0.83 0.76 0.62 2.2 0.36 1.00 0.47 0.48 0.43 1.9
GMM-Trunc   0.64 1.23 0.89 0.74 0.46 1.0 0.25 1.08 0.42 0.43 0.27 1.0
CUE-1       0.36 4.34 22.46 2.05 0.26 1.0 -0.02 1.76 13.34 1.19 0.09 1.0
CUE-25      0.68 3.09 19.20 1.94 0.90 25.0 0.28 3.89 20.37 1.81 0.78 25.0
WWA         0.60 1.12 38.37 0.94 0.57 0.30 0.88 0.28 0.40 0.42

0.5 OLS         0.70 0.17 0.49 0.70 1.00 0.70 0.09 0.49 0.70 1.00
GMM-1       0.52 1.90 2.70 0.91 0.12 1.0 0.19 1.31 3.71 0.57 0.08 1.0
GMM-25      0.69 0.27 0.49 0.70 0.97 25.0 0.65 0.29 0.45 0.66 0.99 25.0
GMM-Tuk-Han 0.63 0.84 0.57 0.66 0.56 6.4 0.45 0.73 0.28 0.46 0.43 6.3
GMM-BR      0.62 1.20 1.52 0.75 0.51 3.3 0.43 0.98 0.36 0.50 0.42 3.3
GMM-Trunc   0.64 1.58 1.47 0.82 0.34 1.0 0.28 1.34 3.31 0.58 0.24 1.0
CUE-1       0.38 4.99 24.24 2.19 0.11 1.0 0.03 2.04 12.79 1.23 0.05 1.0
CUE-25      0.49 4.51 19.67 2.14 0.83 25.0 0.29 4.56 26.57 2.23 0.75 25.0
WWA         0.37 1.19 57.07 0.91 0.17 0.19 0.83 0.92 0.37 0.11

0.9 OLS         0.60 0.24 0.37 0.60 1.00 0.60 0.13 0.36 0.60 1.00
GMM-1       0.45 2.53 3.24 1.05 0.07 1.0 0.17 1.71 2.31 0.67 0.05 1.0
GMM-25      0.60 0.37 0.39 0.61 0.97 25.0 0.57 0.39 0.36 0.58 0.97 25.0
GMM-Tuk-Han 0.55 0.86 0.46 0.59 0.41 11.2 0.46 0.69 0.28 0.46 0.39 13.9
GMM-BR      0.58 1.18 0.63 0.65 0.45 5.8 0.43 0.91 0.32 0.48 0.39 7.2
GMM-Trunc   0.60 1.40 1.65 0.81 0.41 4.0 0.51 1.24 0.68 0.60 0.43 4.0
CUE-1       0.35 5.52 27.97 2.54 0.06 1.0 0.07 2.60 11.65 1.34 0.04 1.0
CUE-25      0.45 5.28 30.52 2.73 0.71 25.0 0.25 5.12 25.85 2.38 0.68 25.0
WWA         0.18 1.55 10.25 0.77 0.06 0.09 0.99 0.39 0.37 0.04

n=128 n=512
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Table 3a corr(ut,vt) = .1,  = .5

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.11 0.32 0.03 0.13 0.25 0.11 0.16 0.02 0.11 0.56
GMM-1       0.06 1.55 0.78 0.53 0.08 1.0 0.00 0.65 0.07 0.20 0.09 1.0
GMM-25      0.10 0.49 0.05 0.17 0.13 25.0 0.07 0.40 0.03 0.14 0.13 25.0
GMM-Tuk-Han 0.07 0.94 0.17 0.31 0.06 6.5 0.02 0.59 0.05 0.18 0.09 8.7
GMM-BR      0.08 1.16 0.28 0.38 0.10 3.4 0.01 0.60 0.06 0.19 0.09 4.5
GMM-Trunc   0.08 1.27 0.49 0.44 0.09 1.0 0.02 0.59 0.06 0.19 0.09 3.0
CUE-1       0.05 2.22 8.05 1.06 0.06 1.0 -0.01 0.68 0.08 0.22 0.10 1.0
CUE-25      0.02 5.36 28.29 2.40 0.77 25.0 -0.03 1.32 3.05 0.60 0.53 25.0
WWA         0.04 1.29 3.41 0.53 0.10 0.00 0.61 0.10 0.21 0.08

-0.5 OLS         0.09 0.25 0.02 0.11 0.23 0.10 0.13 0.01 0.10 0.60
GMM-1       0.05 1.24 0.53 0.43 0.06 1.0 -0.01 0.51 0.04 0.16 0.07 1.0
GMM-25      0.09 0.39 0.03 0.14 0.12 25.0 0.05 0.32 0.02 0.11 0.12 25.0
GMM-Tuk-Han 0.05 0.81 0.17 0.27 0.06 6.5 0.01 0.46 0.03 0.15 0.08 8.5
GMM-BR      0.05 0.91 0.36 0.32 0.07 3.4 0.01 0.49 0.04 0.15 0.08 4.4
GMM-Trunc   0.07 0.94 0.23 0.32 0.07 3.0 0.01 0.48 0.04 0.15 0.09 5.0
CUE-1       0.04 1.69 5.18 0.81 0.06 1.0 -0.01 0.54 0.05 0.17 0.07 1.0
CUE-25      0.05 3.98 20.18 1.93 0.76 25.0 -0.02 1.06 3.33 0.51 0.52 25.0
WWA         0.02 1.09 1.52 0.40 0.07 0.00 0.48 0.04 0.15 0.04

0 OLS         0.08 0.19 0.01 0.09 0.16 0.08 0.10 0.01 0.08 0.51
GMM-1       0.02 0.95 0.27 0.33 0.03 1.0 -0.01 0.38 0.03 0.12 0.02 1.0
GMM-25      0.07 0.30 0.02 0.11 0.07 25.0 0.05 0.26 0.01 0.09 0.07 25.0
GMM-Tuk-Han 0.05 0.68 0.11 0.23 0.03 7.6 0.01 0.36 0.02 0.11 0.03 10.1
GMM-BR      0.04 0.73 0.16 0.26 0.03 4.0 0.00 0.37 0.02 0.11 0.03 5.3
GMM-Trunc   0.05 0.69 0.13 0.23 0.03 4.0 0.02 0.37 0.02 0.11 0.04 6.0
CUE-1       0.01 1.24 4.33 0.64 0.03 1.0 -0.01 0.40 0.03 0.13 0.03 1.0
CUE-25      0.06 3.39 15.53 1.63 0.73 25.0 0.00 0.79 2.46 0.38 0.45 25.0
WWA         0.02 0.91 0.32 0.32 0.06 0.00 0.39 0.02 0.12 0.04

0.5 OLS         0.06 0.17 0.01 0.07 0.05 0.06 0.09 0.00 0.06 0.23
GMM-1       0.01 0.98 0.40 0.35 0.01 1.0 -0.01 0.36 0.02 0.11 0.00 1.0
GMM-25      0.05 0.27 0.01 0.10 0.02 25.0 0.04 0.23 0.01 0.08 0.02 25.0
GMM-Tuk-Han 0.03 0.65 0.11 0.22 0.02 8.2 0.00 0.32 0.02 0.10 0.00 11.1
GMM-BR      0.03 0.71 0.20 0.26 0.02 4.3 0.00 0.33 0.02 0.10 0.00 5.7
GMM-Trunc   0.04 0.66 0.25 0.25 0.01 5.0 0.01 0.33 0.02 0.10 0.01 6.0
CUE-1       0.00 1.32 3.83 0.65 0.02 1.0 -0.01 0.38 0.03 0.12 0.01 1.0
CUE-25      0.04 4.51 27.87 2.16 0.67 25.0 0.00 0.80 3.31 0.48 0.42 25.0
WWA         -0.01 1.07 539.74 2.85 0.19 -0.01 0.31 0.02 0.10 0.05

0.9 OLS         0.04 0.19 0.01 0.07 0.01 0.04 0.10 0.00 0.05 0.07
GMM-1       0.01 1.13 0.48 0.41 0.01 1.0 -0.01 0.40 0.03 0.13 0.01 1.0
GMM-25      0.04 0.30 0.02 0.10 0.01 25.0 0.03 0.25 0.01 0.08 0.02 25.0
GMM-Tuk-Han 0.04 0.67 0.09 0.22 0.01 10.3 0.01 0.34 0.02 0.11 0.00 14.4
GMM-BR      0.04 0.78 0.15 0.27 0.02 5.3 0.01 0.37 0.02 0.12 0.00 7.6
GMM-Trunc   0.03 0.77 0.24 0.27 0.02 5.0 0.00 0.35 0.02 0.11 0.01 7.0
CUE-1       0.00 1.72 5.90 0.86 0.02 1.0 -0.01 0.43 0.11 0.15 0.01 1.0
CUE-25      0.05 5.84 30.28 2.47 0.69 25.0 -0.01 1.01 5.98 0.64 0.40 25.0
WWA         -0.03 32.22 33962.00 25.04 0.53 0.00 4.71 5146.40 7.63 0.41

n=128 n=512
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Table 3b corr(ut,vt) = .5,  = .5

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.55 0.28 0.31 0.54 1.00 0.55 0.14 0.30 0.55 1.00
GMM-1       0.13 1.44 2.52 0.57 0.11 1.0 0.00 0.65 0.07 0.21 0.10 1.0
GMM-25      0.50 0.43 0.28 0.50 0.84 25.0 0.35 0.37 0.14 0.35 0.72 25.0
GMM-Tuk-Han 0.33 0.93 0.23 0.40 0.31 7.8 0.08 0.62 0.06 0.20 0.18 7.1
GMM-BR      0.28 1.06 1.12 0.45 0.28 4.0 0.06 0.65 0.07 0.21 0.17 3.7
GMM-Trunc   0.33 1.27 2.25 0.55 0.36 2.0 0.04 0.74 0.09 0.24 0.23 1.0
CUE-1       0.01 2.16 13.04 1.19 0.11 1.0 -0.03 0.70 0.10 0.23 0.09 1.0
CUE-25      0.20 5.11 26.21 2.32 0.77 25.0 -0.01 1.13 4.01 0.57 0.51 25.0
WWA         0.11 1.20 2.04 0.51 0.12 0.02 0.58 0.06 0.18 0.08

-0.5 OLS         0.47 0.22 0.23 0.47 1.00 0.47 0.12 0.22 0.47 1.00
GMM-1       0.10 1.22 0.66 0.42 0.10 1.0 0.00 0.51 0.05 0.17 0.08 1.0
GMM-25      0.43 0.35 0.21 0.43 0.84 25.0 0.30 0.29 0.10 0.30 0.73 25.0
GMM-Tuk-Han 0.25 0.76 0.16 0.33 0.26 5.8 0.06 0.49 0.04 0.16 0.15 5.7
GMM-BR      0.22 0.90 0.27 0.36 0.22 3.0 0.04 0.51 0.04 0.16 0.14 3.0
GMM-Trunc   0.24 0.99 0.29 0.39 0.29 3.0 0.06 0.53 0.05 0.18 0.19 3.0
CUE-1       0.01 1.66 10.20 0.97 0.10 1.0 -0.02 0.56 0.06 0.18 0.07 1.0
CUE-25      0.18 3.89 21.92 1.94 0.77 25.0 -0.02 0.91 1.51 0.41 0.48 25.0
WWA         0.13 1.02 0.42 0.38 0.12 0.02 0.48 0.04 0.15 0.07

0 OLS         0.37 0.18 0.15 0.38 1.00 0.38 0.09 0.14 0.38 1.00
GMM-1       0.05 0.93 0.27 0.32 0.05 1.0 -0.01 0.39 0.03 0.13 0.04 1.0
GMM-25      0.35 0.27 0.13 0.35 0.80 25.0 0.24 0.23 0.07 0.24 0.68 25.0
GMM-Tuk-Han 0.20 0.68 0.13 0.28 0.24 6.8 0.06 0.38 0.03 0.13 0.12 6.7
GMM-BR      0.17 0.78 0.18 0.30 0.18 3.5 0.04 0.39 0.03 0.13 0.09 3.5
GMM-Trunc   0.20 0.74 0.15 0.30 0.26 4.0 0.07 0.39 0.03 0.14 0.15 4.0
CUE-1       0.00 1.28 5.26 0.66 0.05 1.0 -0.02 0.41 0.03 0.13 0.03 1.0
CUE-25      0.14 3.26 18.96 1.73 0.74 25.0 -0.01 0.71 1.51 0.34 0.42 25.0
WWA         0.09 0.87 0.27 0.31 0.10 0.01 0.39 0.02 0.12 0.06

0.5 OLS         0.28 0.17 0.09 0.28 0.98 0.28 0.09 0.08 0.28 1.00
GMM-1       0.05 0.91 0.30 0.33 0.02 1.0 0.00 0.36 0.02 0.12 0.01 1.0
GMM-25      0.26 0.26 0.08 0.27 0.49 25.0 0.18 0.22 0.04 0.18 0.32 25.0
GMM-Tuk-Han 0.15 0.64 0.13 0.26 0.09 7.0 0.04 0.33 0.02 0.11 0.03 6.7
GMM-BR      0.13 0.76 0.19 0.29 0.07 3.7 0.03 0.35 0.02 0.11 0.02 3.5
GMM-Trunc   0.15 0.77 0.16 0.29 0.10 3.0 0.05 0.35 0.02 0.12 0.04 4.0
CUE-1       0.00 1.28 5.77 0.75 0.02 1.0 -0.01 0.38 0.03 0.12 0.01 1.0
CUE-25      0.12 4.41 25.05 2.07 0.66 25.0 0.00 0.77 3.22 0.44 0.35 25.0
WWA         0.02 0.86 520.48 1.81 0.13 -0.01 0.31 0.02 0.10 0.05

0.9 OLS         0.20 0.19 0.05 0.21 0.55 0.21 0.10 0.04 0.21 1.00
GMM-1       0.03 1.07 0.45 0.40 0.01 1.0 0.00 0.42 0.03 0.13 0.00 1.0
GMM-25      0.20 0.32 0.06 0.21 0.13 25.0 0.13 0.25 0.03 0.14 0.09 25.0
GMM-Tuk-Han 0.14 0.70 0.12 0.26 0.05 8.7 0.03 0.39 0.03 0.12 0.02 9.3
GMM-BR      0.13 0.86 0.17 0.30 0.05 4.5 0.03 0.41 0.03 0.13 0.02 4.8
GMM-Trunc   0.15 0.86 0.26 0.32 0.06 3.0 0.02 0.44 0.03 0.14 0.03 2.0
CUE-1       0.00 1.53 9.39 0.98 0.02 1.0 -0.01 0.44 0.04 0.14 0.01 1.0
CUE-25      0.10 6.36 36.53 2.70 0.67 25.0 0.01 0.92 5.88 0.61 0.34 25.0
WWA         -0.04 6.39 7434.10 13.43 0.33 -0.01 0.35 121.68 0.75 0.11

n=128 n=512
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Table 3c corr(ut,vt) = .9,  = .5

 Estimator Median Dec MSE MAE Size Median Median Dec MSE MAE Size Median
Bias Range # Inst Bias Range # Inst

-0.9 OLS         0.98 0.16 0.96 0.98 1.00 0.98 0.08 0.96 0.98 1.00
GMM-1       0.14 1.31 1.93 0.56 0.22 1.0 0.00 0.64 0.09 0.21 0.14 1.0
GMM-25      0.91 0.26 0.83 0.91 1.00 25.0 0.63 0.25 0.40 0.63 1.00 25.0
GMM-Tuk-Han 0.57 0.77 0.41 0.58 0.73 10.5 0.15 0.54 0.07 0.21 0.31 6.8
GMM-BR      0.54 0.91 0.40 0.56 0.68 5.4 0.13 0.64 0.07 0.22 0.32 3.5
GMM-Trunc   0.40 1.39 0.56 0.58 0.53 2.0 0.01 0.67 0.09 0.22 0.22 1.0
CUE-1       -0.07 2.08 14.27 1.25 0.10 1.0 -0.04 0.70 0.15 0.24 0.07 1.0
CUE-25      0.13 4.17 21.17 1.95 0.75 25.0 -0.05 0.81 0.89 0.31 0.36 25.0
WWA         0.23 1.07 0.41 0.43 0.36 0.04 0.58 0.06 0.19 0.28

-0.5 OLS         0.84 0.13 0.72 0.85 1.00 0.85 0.06 0.72 0.85 1.00
GMM-1       0.12 1.06 1.35 0.45 0.20 1.0 0.01 0.51 0.06 0.17 0.11 1.0
GMM-25      0.78 0.22 0.62 0.78 0.99 25.0 0.54 0.19 0.30 0.54 1.00 25.0
GMM-Tuk-Han 0.40 0.68 0.23 0.42 0.58 5.7 0.10 0.42 0.04 0.16 0.24 5.5
GMM-BR      0.34 0.82 0.27 0.41 0.51 2.9 0.07 0.47 0.04 0.16 0.20 2.9
GMM-Trunc   0.17 1.17 1.28 0.47 0.34 1.0 0.03 0.53 0.05 0.17 0.19 2.0
CUE-1       -0.05 1.66 9.65 0.97 0.10 1.0 -0.03 0.57 0.09 0.19 0.07 1.0
CUE-25      0.09 3.00 14.73 1.47 0.73 25.0 -0.04 0.65 0.28 0.24 0.34 25.0
WWA         0.21 0.89 4.75 0.44 0.42 0.04 0.47 0.04 0.15 0.30

0 OLS         0.68 0.13 0.46 0.68 1.00 0.68 0.06 0.46 0.68 1.00
GMM-1       0.09 0.84 0.33 0.32 0.11 1.0 0.00 0.39 0.04 0.13 0.04 1.0
GMM-25      0.62 0.20 0.40 0.63 0.97 25.0 0.43 0.17 0.19 0.43 0.99 25.0
GMM-Tuk-Han 0.35 0.61 0.19 0.37 0.50 5.9 0.11 0.37 0.03 0.15 0.22 6.4
GMM-BR      0.29 0.75 0.24 0.37 0.44 3.0 0.08 0.38 0.03 0.14 0.17 3.3
GMM-Trunc   0.24 0.82 0.21 0.35 0.33 2.0 0.08 0.38 0.03 0.14 0.17 3.0
CUE-1       -0.02 1.22 6.08 0.70 0.07 1.0 -0.02 0.43 0.06 0.15 0.03 1.0
CUE-25      0.14 2.44 15.40 1.46 0.72 25.0 -0.02 0.57 0.80 0.23 0.32 25.0
WWA         0.15 0.71 0.20 0.29 0.25 0.02 0.37 0.03 0.12 0.20

0.5 OLS         0.51 0.16 0.27 0.51 1.00 0.51 0.08 0.26 0.51 1.00
GMM-1       0.08 0.90 0.70 0.34 0.04 1.0 0.01 0.37 0.03 0.12 0.01 1.0
GMM-25      0.47 0.25 0.24 0.48 0.96 25.0 0.32 0.20 0.12 0.33 0.91 25.0
GMM-Tuk-Han 0.26 0.58 0.16 0.31 0.25 6.5 0.09 0.30 0.02 0.12 0.05 6.6
GMM-BR      0.23 0.79 0.21 0.34 0.28 3.4 0.06 0.39 0.03 0.13 0.10 3.4
GMM-Trunc   0.17 0.93 0.26 0.34 0.17 1.0 0.05 0.34 0.03 0.12 0.04 2.0
CUE-1       0.00 1.16 4.64 0.61 0.03 1.0 -0.01 0.40 0.06 0.13 0.01 1.0
CUE-25      0.17 4.19 25.46 2.03 0.65 25.0 0.00 0.68 1.88 0.34 0.27 25.0
WWA         0.07 0.67 0.36 0.26 0.07 0.01 0.32 0.02 0.10 0.05

0.9 OLS         0.37 0.20 0.15 0.38 1.00 0.37 0.10 0.14 0.37 1.00
GMM-1       0.08 1.11 1.62 0.43 0.02 1.0 0.02 0.45 0.04 0.14 0.01 1.0
GMM-25      0.34 0.33 0.15 0.36 0.63 25.0 0.24 0.26 0.07 0.25 0.43 25.0
GMM-Tuk-Han 0.21 0.65 0.13 0.28 0.14 9.9 0.08 0.39 0.03 0.14 0.05 9.8
GMM-BR      0.21 0.91 0.23 0.35 0.24 5.1 0.07 0.50 0.05 0.17 0.12 5.1
GMM-Trunc   0.21 1.01 0.25 0.37 0.16 3.0 0.04 0.52 0.05 0.16 0.06 2.0
CUE-1       0.03 1.42 5.52 0.73 0.02 1.0 0.00 0.48 0.08 0.16 0.01 1.0
CUE-25      0.10 5.68 27.07 2.32 0.58 25.0 0.01 0.73 4.98 0.54 0.28 25.0
WWA         -0.01 0.76 0.74 0.31 0.05 0.00 0.33 0.02 0.10 0.01

n=128 n=512
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