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Abstract

This paper extends kernel weighted GMM estimators recently proposed by the author in
the context of homoskedastic processes to a class of models with conditionally heteroskedastic
innovations. GMM estimation of such models was previously studied by Kuersteiner (1997,
1999a/b) in the context of ARMA processes and Guo and Phillips (1997) in the context of
ARCH processes. Optimal implementation of the GMM estimator requires to include more and
more instruments as the sample size grows. The use of kernel weighted moment conditions is a
natural way to handle the infinite dimensionality of the instrument space. In addition a higher
order asymptotic theory is provided to choose the optimal number of instruments in a finite
sample context. The higher order analysis reveals that the GMM implementation proposed in
Kuersteiner (1997) does not suffer from the usual bias problems of standard 2SLS procedures.
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1 Introduction

GMM estimators are one of the main tools for analyzing models of financial markets. Estimation

of these models is often motivated by exploiting Euler equations for optimal investment and

consumption decisions. This leads to a set of conditional moment restrictions that can be

used to set up a GMM estimator. Rational expectations hypotheses imply that the estimation

equation is augmented by an error that satisfies a martingale difference sequence property or in

other words that is orthogonal to the information set of the agent.

While the informational structure of rational choice models implies lack of correlation be-

tween the innovation and elements of the information set of the agent it does not imply a

particular structure for the correlation pattern of nonlinear functions of the innovations. In fact

an enormous empirical literature has documented correlations between squared residuals and

between other nonlinear functions of the innovation process. A good summary of this literature

is Bollerslev, Chou and Kroner (1992) .

In the context of GMM estimation this lack of restrictions on the higher order moments of

data and innovations complicates estimation of the optimal weight matrix and correct standard

errors for the parameter estimates. Newey and West (1987), Andrews (1991) and Andrews

and Monahan (1992) address the issue of consistent covariance matrix estimation in the pres-

ence of conditionally heteroskedastic and autocorrelated errors while White (1980) considers the

conditionally heteroskedastic case without autocorrelation. Andrews (1991) and Andrews and

Monahan (1992) develop automated bandwidth selection procedures that minimize the asymp-

totic mean squared error of the estimated covariance matrix. Such bandwidth selection rules are

not directly applicable for the estimation of the optimal weight matrix in the GMM problem.

Xiao and Phillips (1998) obtain optimal data dependent bandwidth rules for the weight matrix

in a regression model with serially correlated but homoskedastic errors.

Efficiency properties of GMM estimators in the context of conditionally heteroskedastic errors

have been analyzed by Hansen (1985), Bates and White (1990) and Newey (1991). More recently

Kuersteiner (1997) and Guo and Phillips (1997) have constructed GMM estimators based on

a linear set of instruments in a time series context that allows for general forms of conditional

heteroskedasticity. In Kuersteiner (1997) a fully feasible efficient GMM estimator in a more

restricted class of problems is analyzed. In the context of an autoregressive model additional
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restrictions on the fourth order moments of the innovation sequence are used to construct an

estimator that is free of truncation or bandwidth parameters. This is achieved by exploiting

the parametric structure and moment restrictions in a way that essentially allows to reduce the

infinite dimensional instrument problem to a finite dimensional one.

In Kuersteiner (1999b) consistency and asymptotic normality of an infeasible GMM estimator

for ARMA models with martingale difference errors is analyzed. No specific restrictions on

the form of conditional heteroskedasticity are imposed. A feasible version of such an estimator

requires, unlike in the case of Kuersteiner (1997), a truncation parameter that limits the number

of instruments used for estimation. The higher order analysis provided in this paper reveals that

the dominant distortion from adding more instruments is to the variance of the estimator. This

contrasts with the usual result for 2SLS where adding more instruments primarily affects the bias

of the estimator. The reason for this difference lies in the way the IV estimator is implemented

here. While the weight matrix is truly infinite dimensional under the more general martingale

assumptions there is still a parametric component in the construction of the optimal instrument.

The presence of the parametric component is responsible for the good bias properties of these

alternative IV procedures.

The problem of selecting the right number of instruments has been analyzed by Donald and

Newey (1997) in the context of a cross sectional regression. Kuersteiner (2000) extends their

approach to a time series context and proposes a new kernel weighted GMM estimator. It

is shown that kernel weighting reduces the asymptotic higher order bias of the estimator. In

the context of covariance stationary time series processes kernel weighting has intuitive appeal

as it exploits an approximate natural ordering of the instruments implied by the summability

properties of the autocovariance function of stationary processes.

In this paper we propose to apply the kernel weighting technique to the problem of effi-

cient GMM estimation of univariate time series models with general martingale difference errors

similar to the ones studied in Kuersteiner (1999b). We analyze the second order asymptotic

properties of such estimators by means of an approximation to the asymptotic mean squared

error. It is shown that the particular implementation strategy used in Kuersteiner (1999b)

effectively eliminates the dependence of the higher order bias on the number of instruments.

The higher order analysis also confirms findings in Kuersteiner (1999a) that under additional

diagonality restrictions on the fourth moments of the innovation process the higher order MSE
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of the estimator essentially becomes independent of the number of instruments. This leads to

an efficient GMM estimator that can be implemented without the need to select the number of

instruments.

2 Kernel Weighted GMM

We consider the problem of estimating the parameters of a univariate time series model of the

form

yt = φ(1)µ+ φ1yt−1 + ...+ φpyt−p + εt − θ1...− θqεt−q (1)

where the innovations εt are a martingale difference sequence with E |εt|12 <∞. We define the
lag polynomials φ(L) = 1− φ1L− ...− φpLp and θ(L) = 1− θ1L− ...− θqLq where L is the lag
operator. The vector of parameters determining (1) is defined as β = (φ1, ...,φp, θ1, ..., θq). We

allow for special cases of (1) where q = 0. Here we consider estimation of φ = (φ1, ...,φq) while

the moving average part of the model is treated as a nuisance parameter. Estimators for this

model were proposed by Hayashi and Sims (1983), Stoica, Soderstrom and Friedlander (1985)

Hansen and Singleton (1996) and Kuersteiner (2000).

The martingale difference property of εt imposes restrictions on the fourth order cumulants.

These restrictions can be conveniently summarized by defining the following function

σ (s, r) =

½
E
¡
ε2t εt−|s|εt−|r|

¢
r 6= s

E
¡
ε2t ε

2
t−s
¢− σ4 r = s

for r, s ∈ {0,±1,±2, ...} . (2)

It should be emphasized that σ (s, r) is equal to the fourth order cumulant for s, r > 0. Let

αs,r =

½
σ (s, r) if s 6= r
σ (r, r) + σ4 if s = r

(3)

We assume that we have a probability space (Ω,F , P ) with a filtration Ft of increasing σ-
fields such that Ft ⊆ Ft+1 ⊆ F ∀t. The doubly infinite sequence of random variables {εt}∞t=−∞
generates the filtration Ft such that Ft = σ(εt, εt−1, ...). The assumptions on {εt}∞t=−∞ are

summarized as follows:

Condition 1 (i) εt is strictly stationary and ergodic, (ii) E (εt | Ft−1) = 0 almost surely, (iii)
E
¡
ε2t
¢
= σ2 > 0, (iv)

P∞
r=1

P∞
s=1 |σ (s, r)| = B <∞, (v) E

¡
ε2t ε

2
t−s
¢ 6= 0 for all s.
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Remark 1 Assumption 1(iii) rules out degenerate distributions. A consequence of the martin-

gale assumption (i) is that in general terms of the form E
¡
ε2t εt−sεt−r

¢
are nonzero for s 6= r 6= 0

and depend on s for s = r 6= 0. Assumption (iv) limits the dependence in higher moments by

imposing a summability condition on the fourth cumulants. The assumption is needed to prove

invertibility of the infinite dimensional weight matrix of the optimal GMM estimator. Assump-

tion (v) together with
P∞
s=1 |σ (s, s)| <∞ implied by (iv) insures that E

¡
ε2t ε

2
t−s
¢
>α uniformly

in s.

For the higher order expansions in the next section we need additional moment restrictions

in the form of summability conditions on higher order cumulants. Such conditions are com-

mon in the literature on optimal weight matrix estimation as for example Andrews (1991). We

first define the higher order cumulants. Let ξ = (ξ1, ..., ξk) ∈ Rk and ε = (εt1 , ..., εtk), then

φt1,...,tk (ξ) ≡ E
³
eiξ

0ε
´
is the joint characteristic function with corresponding cumulant generat-

ing function lnφj1,...jk,t1,...,tk (ξ). The joint v-th order cross-cumulant is

cumv1,...,vk (εt1, ..., εtk) ≡
∂v1+...+vk

∂ξv11 · · ·∂ξvkk
lnφj1,...jk,t1,...,tk (ξ)

¯̄̄̄
ξ=0

(4)

where vi are nonnegative integers v1 + ...+ vk = v. When v1, ..., vk = 1 the shorthand notation

cum(εt1 , ..., εtk) for cum1,...,1 (εt1 , ..., εtk) is used.

Condition 2 For cum(εt1 , ..., εtk) defined in (2) with E |εt|12 <∞
∞X

t1,...,tk−1=−∞
|1 + tk| |cum(εt1 , ..., εtk)| <∞ for k = 2, 3, ..., 12

In order to guarantee identification of the parameters φ =
¡
φ1, ...,φp

¢
we impose restrictions

on the parameter space Θ. These restrictions insure the existence of a stationary solution to (1)

and guarantee that the autoregressive and moving average parts of the model do not cancel out.

Condition 3 Let C(β, L) = θ (L) /φ(L). The parameter space Θ ⊂ intΘ0 where Θ0 is a subset
of Rd defined by Θ0 = {β ∈ Rd |φ(ζ) 6= 0 for |ζ| ≤ 1, θ (ζ) 6= 0 for |ζ| ≤ 1, θ (ζ) ,φ(ζ) have no

common zeros, θq 6= 0,φp 6= 0}. Assume that Θ is compact in Rd.

GMM estimation of (1) exploits moment conditions of the form

E(φ0(L)(yt+q − µ)εt−j) = 0 for all j > 0.

5



Note that this representation is valid for the pure AR(p) case as well as for the case where

the moving average part is treated as a nuisance parameter. It is convenient to collect the

instruments εt, εt−1, ... in a vector ε∗t,n = (εt−1, εt−2, ...εt−n)0. In practice such an instrument

vector is not available. We introduce the observable instrument εt,n = Sn(t)ε∗t,n where Sn(t) =

diag({t > 1 + p+ q} , ..., {t > n+ p+ q}) where {.} is the indicator function. An efficient GMM
estimator with instruments εt is then obtained by weighting the moment conditions by a weight

matrix Ωn.

When q = 0 then ΩM = n−1
Pn
t,s=1Eεtεsεt,Mε

0
s,M . Using the martingale property of the

innovations this expression simplifies to

ΩM = n−1
nX
t=1

Eε2t εt,Mε
0
t,M = n−1

nX
t=1

SM(t)Ω̃MSM(t)

with Ω̃M = Eε2t ε
∗
t,Mε

∗0
t,M which is independent of t due to the stationarity of εt. In fact

Ω̃M =

 σ(1, 1) + σ4 · · · σ(1,M)
...

. . .
...

σ(M, 1) · · · σ(M,M) + σ4


and for M fixed ΩM → Ω̃M as n→∞

For the case where q > 0 the instruments need to be adjusted for the potential presence of

moving average terms. The optimal weight matrix is now given by

Ωn = n
−1

qX
j=−q

n−qX
t=q+1

Eut+qut+q−jεt,nε0t−j,n

with ut = θ(L)εt. Let γu(j) = Eutut−j/Eu2t =
Pq
k=0 θkθk+j where θ0 = 1 and θk = 0 for k > q.

It then follows that Eut+qut+q−jεt,nε0t−j,n = γu(j)Sn(t)Ωn(j)Sn(t− j) where Ωn(j) is defined as
Ωn(j) = Eε

2
t+qε

∗
t,nε

∗0
t−j,n.

We now introduce the kernel weighted GMM estimator proposed in Kuersteiner (2000).

Define the matrix

KM = diag(k(1/M), ..., k((n− 1)/M))0

having kernel weight k(j/M) in its j-th diagonal. M is a bandwidth parameter that controls

the number of lagged instruments used in estimation. The kernel function satisfies the following

conditions.
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Condition 4 The kernel function k(.) satisfies k : R 7→ [−1, 1] , k(0) = 1, k(x) = 0 for |x| >
1, k(x) = k(−x)∀x ∈ R, R |k(x)| dx <∞, k(.) is continuous at 0 and at all but a finite number
of points.

Condition 5 The kernel function k(.) satisfies Assumption (4) and for q ∈ (0,∞) there exists
a constant kq such that kq = limx→0(1 − k(x))/ |x|q . Assume that there exists a largest q such
that kq ∈ (0,∞) .

Letting X = [xmax(q,p)+1 − x̄, ..., xn − x̄]0 with xt = [yt−1 − ȳ, ..., yt−p − ȳ]0 and QM =£
εmax(q,p)+1,M , ..., εn,M

¤0 the GMM estimator can now be written as a 2SLS estimator

β̂ =
¡
X 0QMKMΩ−1M KMQ

0
MX

¢−1
X 0QMKMΩ−1M KMQ

0
MY

where Y =
£
ymax(q,p)+1 − ȳ, ..., yn − ȳ

¤
. The higher order properties of this estimator, which

corresponds to standard GMM when the truncated kernel is used, were analyzed in Kuersteiner

(2000) under the additional assumption that εt is conditionally homoskedastic. It is shown there

that using a suitable kernel function reduces the bias of the kernel weighted GMM estimator

relative to classical 2SLS.

This bias reduction comes at the cost of an increased second order variance. The reason

for this inefficiency lies in the fact that the kernel weighted GMM procedure uses an inefficient

weight matrixKMΩ−1M KM rather than the efficient weight matrix Ω−1n . This inefficiency however

only affects the higher order properties of the estimator while first order efficiency is maintained.

Here we focus on an alternative version of the estimator that was proposed in Kuersteiner

(1997). The idea behind the alternative estimator is to replace n−1X 0Q by the population

moments. These population moments depend on the underlying parameters in a way that allows

to estimate them at parametric rates. Note that En−1X 0QM ≈ PM where PM = [b1, ..., bM ]

with the l-th element of bk given by [bk]l = (2π)−1
R π
−π C(β, L)e

iλ(k−l)dλ. One can then define

the alternative estimator based on Z 0M = PMΩ
−1
M KMQ

0 by

β̂if =
¡
Z0MX

¢−1
Z0MY.

Using a parametric estimate for Pn essentially removes the higher order bias that is typically

associated with standard 2SLS procedures where the bias is explained by the correlation between

X 0Q and Q0ε. The summability properties of Pn also make it possible to eliminate one of the

kernel functions.
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In order to arrive at a feasible procedure we need to replace the unobservable quantities

ZM by estimated counterparts. We assume that we have
√
n consistent first stage estimates φ̃

which can be obtained from simple OLS regressions when q = 0 or from inefficient IV procedures

using yt−q, ...., yt−p−q as instruments when q > 0. Using the first stage estimates of φ we can

then obtain corresponding consistent residuals ε̃t. In the case where we only estimate the AR

part of an ARMA model consistent estimates of ut = θ(L)εt are obtained from ũt = φ̃(L)yt.

Using these estimated ũt the parameters θ can be consistently estimated. Since we only require
√
n consistency for these parameters a simple procedure such as pseudo maximum likelihood or

nonlinear leas squares can be used. Such a procedure is discussed in Kuersteiner (2000).

A
√
n consistent estimator of Pn is straight forwardly available fromh

b̃k

i
l
= (2π)−1

Z π

−π
C(β̃,λ)eiλ(k−l)dλ

where β̃ is the set of first order estimates φ̃ and θ̃. When we only estimate the AR part of

an ARMA model an estimate of C(β,λ) can be obtained from θ(eiλ)/φ(eiλ). If q = 0 then

C(β,λ) = 1/φ(eiλ) and the coefficients bk are the impulse response coefficients of the AR model.

The covariance matrix Ωn is estimated by n−1
Pn
t=1 ε̃

2
t ε̃t,nε̃

0
t,n in the case where model (1)

is of the restricted form q = 0. The innovations ε̃t are easily obtained from ε̃t = φ̃(L)yt. In the

case of AR estimation in an ARMA model we set

Ω̃M = n−1
nX
t=1

qX
j=−q

ũt+qũt+q−j ε̃t,M ε̃0t−j,M .

Here estimation of ũt = φ̃(L)yt proceeds as described before. The martingale innovations can

be estimated recursively by using the consistent estimate θ̃. The details of this procedure are

outlined in the Appendix.

We are now in a position to define the feasible version of β̂if .Defining Ẑn,M = P̂M Ω̂
−1
M KMQ̂M

where P̂M = [b̂1, ..., b̂M ] and Q̂M =
£
ε̂max(p+q)+1,M , ..., ε̂n,M

¤
we have

β̂n,M = (Ẑ 0n,MX)
−1Ẑ0n,MY.

It is convenient to let n−1Ẑ 0n,MX = D̂M and n−1/2Ẑ 0n,Mε = d̂M . Then
√
n(β̂ − β0) = D̂−1M d̂M .

When Ω−1n is a diagonal matrix, q = 0, k(.) is the truncated kernel and M = n then β̂n,M

corresponds to the estimator analyzed in Kuersteiner (1997). It is shown there that under these

conditions the estimator is first order asymptotically equivalent to an infeasible optimal IV
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estimator. In the more general case when Ω−1n is not diagonal this result no longer holds and the

number M of instruments used can grow at most at rate o(n). This rate however is not optimal

as the higher order analysis in this paper shows. The need to estimate a high dimensional weight

matrix adds to the higher order variance of the estimator. This additional variance has to be

balanced against the efficiency gains from using more instruments.

An alternative to implementing the estimator β̂n,M can be obtained from defining an ap-

proximation to the optimal weight matrix Ωn as

Ω∗n,M =

·
ΩM 0
0 σ4In−M

¸
.

It is shown in Kuersteiner (1999) that as n,M → ∞ the matrix Ω∗n,M converges to Ωn in an

apropriate operator norm on the space of square summable sequences. The inverse of Ω∗n,M is

given by diag
¡
Ω−1M ,σ

−4I
¢
. The infeasible estimator β∗if is then obtained from Z∗0M = PnΩ

∗−1
n,MQ

0
n

by

β∗if =
³
Z
∗0
MX

´−1
Z∗0MY.

Feasible versions of this estimator are formulated in the same manner as before by replacing ΩM

by an estimate Ω̂M and Pn by an estimate P̂n. Note that Pn can be estimated
√
n-consistently

independent of the dimension n.

3 Second Order Asymptotic Approximation

Approximations are developed around the optimal infeasible version of the estimators. These

can be obtained by letting εt,∞ = (εt−1, εt−2, ....) and defining the optimal weight matrix

Ω(j) = Eε2t+qεt,∞ε
0
t−j,∞

and Ω =
Pq
j=−q γu(j)Ω(j). In the case where q = 0 this matrix simplifies to Ω = Ω(0). In the

terminology developed in Kuersteiner (1999b) Ω defines an invertible operator on an l2 space.

It follows that P 0Ω−1 ∈ l2 for P 0 = [b1, b2, ....] which has rows that are in l2. This implies that
z∞t = P 0Ω−1εt,∞ exists almost surely, is stationary and has finite second moments.

Letting D = P 0Ω−1P an infeasible efficient estimator for β̂ can be written as
√
n(β̂ − β0) =

D−1d0 where d0 = n−1/2
P
t ut+qz

∞
t and it follows from results in Kuersteiner (1999b) that

D−1d0 → N(0,D−1).
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The bandwidth parameter M is chosen such that the approximate MSE of the estimator

β̂n,M is minimized. We approximate the MSE by first expanding β̂n,M in terms of its elements

and then obtaining the MSE for the terms in the expansion that are largest in probability and

depend both onM and n. For this purpose a second order Taylor approximation of D̂−1M around

D−1 leads to

√
n(β̂n,M − β) = D−1[I + (D̂M −D)D−1 + (D̂M −D)D−1(D̂M −D)D−1]d̂M + op(M/n).

The expansion is valid as long as M/n → 0. We decompose the expansion into D̂M − D =

H1 + ...+Hk and d̂n = d0 + d1 + ...+ dp such that

√
n(βn,M − β) = D−1

X
i

di +D
−1X

i

X
j

HiD
−1dj + op(M/n).

We now denote by
√
n (bn,M − β) all the terms D−1di and D−1HiD−1dj which have biases and

variances of order O(M/n) or terms that are mean zero with variance O(M−q). The remaining

terms Rn,M =
√
n(βn,M −bn,M) are of order op(M/n). The size of the mean squared error of the

estimator is given in the next lemma. Define the approximate mean squared error of βn,M as

ϕn(M, `, k(.)) = n`
0ED1/2(bn,M − β)(bn,M − β)D1/20`− 1

where the normalization D1/2 is used to standardize the asymptotic variance. The vector ` ∈ Rd

is a vector of weights given to the elements in β. It is usually assumed that `0` = 1 although

that is not crucial to the results. The next proposition gives an expression for the asymptotic

MSE using the largest in probability terms depending on M and n. For this purpose we define

the i, j-th element of the infinite dimensional inverse Ω−1 as ϑi,j.

Proposition 1 Suppose Assumptions (1), (2) and (3) hold and k() satisfies Assumptions (4)

and (5). If M →∞ and M2q+1/n→ κ then for any ` ∈ Rd with `0` = 1

lim
n
n/Mϕn(M, `, k(.)) = A+k2qB(q)/κ

with the constants A =`0D−1/2A1D−1/2` and B(q) = 1/2`0D−1/2(B(q)1 B(q)
0

1 −B(q)1 D−1B(q)
0

1 )D−1/2`

where A1 and B(q)1 is defined as

A1 = lim
M
M−1

∞X
j1,...,j7=1

bj1ϑj1,j2ϑj3,j4k(j4/M)
2ϑj4,j2−j3+j6ϑj6,j7bj7 , (5)

B(q)1 =
∞X
l,j=1

blϑlj |j|q b0j (6)
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This result is remarkable in several ways. If we compare the size of the MSE depending

positively on M we note that it is of order O(M/n). This contrasts with standard GMM which

is of order O(M2/n) as shown in Kuersteiner (2000). In other words the MSE of the estimators

here is comparable to bias corrected GMM. If we analyze the size of the bias we find that

it is independent of M altogether. The largest terms appearing in the mean squared error

approximation are thus variance terms. Here we find a trade-off between first order efficiency

which requires to add more instruments and second order distortion where more instruments

increase the variability of the estimator.

If a truncated kernel is used then the efficiency gains from using more instruments are of

secondary importance and the second term in the asymptotic mean squared error vanishes such

that limn n/Mϕn(M, `, k(.)) = A. In this case the optimal rate of increase of the number of
instruments is log(n).

We now analyze the IV estimator under the additional assumption that the optimal weight

matrix is diagonal with all off diagonal elements equal to zero. This assumption was proposed

in Kuersteiner (1997, 1999) and is satisfied for example for GARCH models with symmetric

innovation distributions and many stochastic volatility models.

Condition 6 Assume that σ(s, r) = 0 for s 6= r.

It was shown in Kuersteiner (1997, 1999a/b) that under this assumption there is no need for

kernel smoothing of the instruments and that the number of instruments is allowed to grow at

the same rate as the sample. This result is confirmed by the second order approximation of the

mean squared error which now does no longer depend positively on the number of instruments

used.

Corollary 1 Suppose Assumptions (1), (2), (3) and (6) hold and k() satisfies Assumptions (4)

and (5). If M →∞ and M2q+1/n→ κ then for any ` ∈ Rd with `0` = 1

lim
n
n/Mϕn(M, `, k(.)) = k

2
qB(q)/κ

with the constants B(q) = 1/2`0D−1/2(B(q)1 B(q)
0

1 − B(q)1 D−1B(q)
0

1 )D−1/2` where B(q)1 is defined as

B(q)1 =
∞X
l=1

|l|q
αl,l
blb

0
l (7)
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Under the Condition (6) it is therefore optimal from a second order point of view to use the

truncated kernel for which kq = 0 and to set M = n. This is exactly the estimator that was

proposed by Kuersteiner (1997). The second order expansion shows that this estimator does not

have the usual bias problems associated with GMM procedures.

4 Monte Carlo Simulations

In this section we report a small Monte Carlo experiment to demonstrate the behavior of a

number or estimators discussed in the previous sections. We generate samples of size n = 2k for

k = 7, 8, 9 from the following model

yt = φyt−1 + εt (8)

where εt is generated by the process εt = uth
1/2
t with ut ∼ N(0, 1) and ht = .1 + .5ε2t−1.

Starting values are y0 = 0, h0 = 0 and ε0 = 0. In each sample the first 500 observations are

discarded to eliminate dependence on initial conditions. Small sample properties are evaluated

for different values of φ ∈ (−1, 1).
The parameter φ is estimated by using different implementations of

φ̂(M) =
¡
X 0QMKMΩ−1M KMQ

0
MX

¢−1
X 0QMKMΩ−1M KMQ

0
MY.

Define X = [y1, ..., yn−1] and Y = [y2, ..., yn] . We use the pseudo maximum likelihood estimator

φ̃ = (X 0X)−1X 0Y as our first stage consistent estimator leading to residuals ε̂t = yt − φ̃yt−1.
We define the instruments Qε,M = [ε̂n−M,n, ..., ε̂n,n] and Qy,M = [yn−M,n, ..., yn,n] where yt,M =

Sn(t) [y1, ..., yn]
0 . We use the Parzen kernel defined by kP (x) = (1− 6x2 + 6 |x|3){|x| ≤ 1/2}+

(2(1 − |x|3){1/2 ≤ |x| ≤ 1} to implement the kernel weighted procedures. The optimal weight
matrix Ω̂M is estimated as Ω̂M = n−1

Pn
t=1 ε̂

2
t ε̂t,M ε̂

0
t,M . Using these definitions we define four

different implementations of φ̂(M) summarized in the following table:

φ̂y(M) : QM = Qy,M KM = IM
φ̂ε(M) : QM = Qε,M KM = IM
φ̂k,y(M) : QM = Qy,M KM = diag(kp(1/M), ..., kp(1))

φ̂k,ε(M) : QM = Qε,M KM = diag(kp(1/M), ..., kp(1)).

For the implementation of β̂n,M we use the first stage estimator φ̃ to obtain the vector

P̃M =
h
φ̃, φ̃

2
, ..., φ̃

M
i
and construct ẐM = P̂M Ω̂

−1
M KMQ̂ε,M such that φ̂n,M =

³
Ẑ 0MX

´−1
Ẑ 0MY.
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We are also considering an estimator that imposes the diagonality restriction implied by the

ARCH residuals on Ω. This estimator was proposed in Kuersteiner 1997. It is defined as

φ̃FD =

n−1X
j=1

In,yy (λj) ĥ
x(φ̂,λj)

−1 n−1X
j=1

In,yy (λj) ĥ(φ̂,λj)

where

ĥ
³
φ̂,λ

´
= Re

h
l̂ψ (−λ) (1− φ̂eiλ)

i
,

l̂ψ (λ) =
n−2X
j=1

α̂−1j (φ̂)b̂je
−iλj

and α̂j(φ̂) = 1
n

Pn
t=p+j+1 ε̂

2
t ε̂
2
t−j. This estimator uses a frequency domain representation of

P̂n−2Â−1n−2Qε,n−2 where Ân−1 = diag(α̂1(φ̂), ..., α̂n−2(φ̂)). This estimator in other words imposes

the diagonality restriction on Ω and uses as many instruments as observations in the sample.

Tables 1-4 show the sample quantiles from 1,000 simulation replications of the estimators

φ̂y(M), φ̂ε(M), φ̂k,y(M), φ̂k,ε(M) and φ̂n,M for M = 1, 2, 3, 4, 5, 10 and n = 128. We also report

estimates for φ̃FD which does not require the choice of a bandwidth parameter. For φ1 the bias

of OLS and instrumental variables procedures using just one instrument is generally very small.

It increases as the number of instruments increases.The results also show that kernel weighting

reduces the bias especially when M is large. This is true both for implementations using yt as

instruments as well as εt. The bias of φ̃FD is larger than the OLS bias but still relatively small

while the bias for φ̂n,M is generally larger than for the other implementations of the estimator.

In terms of mean absolute error (MAE) and mean squared error (MSE) φ̃FD dominates all other

estimators. For the non-kernel weighted procedures the MSE generally increases monotonically

with M while for the kernel weighted implementations generally slightly lower MAE and MSE

values are achieved for M > 1. As far as variance is concerned only φ̃FD manages to outperform

the OLS estimator while φ̂n,M has a generally a slightly larger variance than the other procedures.

As φ1 increases towards 1 the performance of φ̂n,M relative to the other estimators starts to

improve. For φ1 = .6 and φ1 = .9 φ̂n,M has lowest bias for all reported choices of M. As far as

variance and MSE is concerned φ̂n,M is still dominated by other procedures. The lowest values

for MAE, MSE and variance are achieved for φ̃FD as long as φ1 ≤ .6. Only for φ1 = .9 does the
implementation φ̂y(M) seem to dominate. The differences are however small. Bias reduction

through kernel methods seems to be less reliable on the other hand when φ1 is large.
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The same simulations for lareger sample size are repeated where n is now 256 and 512 respec-

tively. The results remain essentially unchanged compared to the situation for 128 observations

and are therefore not reported.

5 Conclusions

We have provided a higher order asymptotic analysis of estimators for the autoregressive pa-

rameters in ARMA models when the innovations are general martingale difference sequences.

Instrumental variables estimators which are based on instruments that are linear in the inno-

vations are frequently used to estimate such models. First order asymptotic efficiency requires

that the number of instruments tends to infinity. In practice such a rule can not be directly im-

plemented due to limitations of sample size. More importantly standard 2SLS procedures suffer

from significant small sample bias. This bias is increasing with the number of instruments.

Here it is shown that parametric estimation of the sample correlation between instruments

and regressors essentially eliminates the instrument induced bias. Despite the good behavior

of these estimators as far as their bias is concerned they do suffer from increased small sample

variance which is increasing with the number of instruments. The source of this variance is the

estimate of the optimal weight matrix.

It also turns out that if the weight matrix is sufficiently simple, in particular if it is diag-

onal then the instrument set can grow at the same rate as the sample size. In this case the

efficiency variance trade-off between adding additional instruments disappears and the optimal

instrumental variables estimator can essentially be implemented.
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A Proofs

Frequent reference will be made to the proofs in Kuersteiner (2000) which will be abbreviated

by MRG.

Proof of Proposition 1:

We note thatD = P 0Ω−1P =
P∞
k,j=1 bkb

0
jϑkj where ϑkj is the k, j-th element of Ω

−1 andD =

H11+H12+H13 whereH11 = −
P∞
k,j=n+1 bkb

0
jϑkj+2

Pn
k,j=1

P∞
j=n+1 bkb

0
lϑkl = o(n

−2s) for all s by

Lemma A.9 in MRG andH12 =
Pn
l,j=1 bl(1−k( lM )ϑkjb0j =M−qkq

Pn
l,j=1 bl |l|q ϑljb0j+o(M−q) by

Lemma A.11 in MRG. H13 =
Pn
l,j=1 blk(

l
M )ϑkjb

0
j can now be decomposed. Let H13 = H21+H22

where H21 =
Pn
l,j=1

³
bl − b̂l

´
k( lM )ϑljb

0
j and H22 =

Pn
l,j=1 b̂lk(

j
M )ϑlj(b

0
j − Γ̂ε̂xj ). The term H21

is bounded by

H21 ≤ sup
l

°°°bl − b̂l°°° nX
l,j=1

kϑljk
°°b0j°° = Op(n−1/2).

Next for any ² > 0 and M > sup |bl|

P (kH22k > ²) ≤ P
 nX
l,j=1

°°°b̂l°°° kϑljk°°°b0j − Γ̂ε̂xj °°° > ²


≤ P

 nX
l,j=1

kblk kϑljk
°°°b0j − Γ̂ε̂xj °°° > ²

+ P
°°°β̂ − β°°° nX

l,j=1

°°°°∂bl∂β
°°°° kϑljk°°°b0j − Γ̂ε̂xj °°° > ²


A typical element r in Γ̂ε̂xj is n

−1Pn
t=1+j+p+q ε̂t−j(yt+q−j−r−ȳ) = n−1

Pn
t=1+j+p+q (ε̂t−j − εt−j) (yt+q−j−r−

ȳ)+n−1
Pn
t=1+j+p+q εt−j(yt+q−j−r−ȳ). Following the notation in Kreiss (1987), we set θ(L)−1 =P∞

k=0 ζkL
k. It then follows that

ε̂t =

t−pX
k=0

ζ̂k(yt−k − ȳ − φ̂1(yt−1−k − ȳ)− ...− φ̂p(yt−p−k − ȳ))

and consequently

ε̂t − εt =
t−pX
k=0

pX
i=0

³
ζkφi − ζ̂kφ̂i

´
(yt−k−i − ȳ) +

∞X
k=t−p+1

pX
i=0

ζkφi(yt−k−i − ȳ).
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Using these results we can write b0j − Γ̂ε̂xj = b0j − Γ̂εxj +Rεx1 +Rεx2 +Rεx3 where

Rεx1 = n−1
nX

t=1+j+p+q

t−pX
k=0

pX
i=0

φ̂i

³
ζk − ζ̂k

´
(yt−j−k−i − ȳ)(xt − x̄)

Rεx2 =

pX
i=0

(φi − φ̂i)n−1
nX

t=1+j+p+q

t−pX
k=0

ζk(yt−j−k−i − ȳ)(xt − x̄)

Rεx2 = n−1
nX

t=1+j+p+q

∞X
k=t−p+1

pX
i=0

φiζk(yt−j−k−i − ȳ)(xt − x̄).

We further divide Rεx1 = Rεx11 +R
εx
12 +R

εx
13 +R

εx
14 where

Rεx11 = n
−1

nX
t=1+j+p+q

t−pX
k=0

pX
i=0

φ̂i

³
ζk − ζ̂k

´
(yt−j−k−i − µy)(xt − µx) +

Rεx12 = (ȳ − µy)n−1
nX

t=1+j+p+q

t−pX
k=0

pX
i=0

φ̂i

³
ζk − ζ̂k

´
(xt − µx)

Rεx13 = (x̄− µx)n−1
nX

t=1+j+p+q

t−pX
k=0

pX
i=0

φ̂i

³
ζk − ζ̂k

´
(yt−j−k−i − µy)

Rεx14 = (x̄− µx)(ȳ − µy)
n− 1− j − p− q

n

t−pX
k=0

pX
i=0

φ̂i

³
ζk − ζ̂k

´
where kx̄− µxk = Op(n−1/.2),

°°ȳ − µy°° = Op(n−1/2) and °°°n−1Pn
t=1+j+p+q

Pt−p
k=0 ζk(yt−j−k−i − µy)

°°° =
op(1). We split Rεx2 and Rεx3 into similar subparts. By the mean value theorem we obtain

ζk − ζ̂k = ∂ζk
∂θ |θ(θ̂ − θ) + o(θ̂ − θ). Note that ∂ζk∂θ |θ is absolutely summable for θ(L) invertible.

We thus bound

kR11k ≤
°°°θ̂ − θ°°°

 pX
i=0

¯̄̄
φi − φ̂i

¯̄̄ °°°°°°n−1
nX

t=1+j+p+q

t−pX
k=0

∂ζk
∂θ
|θ(yt−j−k−i − µy)(xt − µy)

°°°°°°
+

pX
i=0

|φi|
°°°°°°n−1

nX
t=1+j+p+q

t−pX
k=0

∂ζk
∂θ
|θ=θ̇(yt−j−k−i − ȳ)(xt − x̄)

°°°°°°
+ op(θ̂ − θ).
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whit the same type of expansions holding for R12, R13, R14. Next consider

E

°°°°°°n−1
nX

t=1+j+p+q

t−pX
k=0

ζk

h
(yt−j−k−i − µy)(xt − µx)− Γyx−(j+k+i)

i°°°°°°
2

= n−2
nX

t,s=1+j+p+q

t−pX
k,l=0

ζkζlE(ys−j−l−i − µy)(yt−j−k−i − µy)(xt − µx)(xs − µx)0

= n−2
nX

t,s=1+j+p+q

t−pX
k,l=0

ζkζ l

h
Γyys−l−t+kΓ

xx
t−s + Γ

xy
s−j−l−i−tΓ

yx
t−j−k−i + cum(ys−j−l−i, yt−j−k−i, xt, x

0
s)
i

= O(n−1)

which shows that
°°°n−1Pn

t=1+j+p+q

Pt−p
k=0 ζk(yt−j−k−i − µy)(xt − µx)

°°° = Op(1) uniformly in

j.and k Similar arguments establish that
°°°n−1Pn

t=1+j+p+q

Pt−p
k=0

∂ζk
∂θ |θ=θ̇(yt−j−k−i − ȳ)(xt − x̄)

°°° =
Op(1) uniformly in j and k. This implies that

Pn
l,j=1 kblk kϑljk

°°°Γ̂εxj − Γ̂ε̂xj °°° = Op(n−1/2).
Next consider a typical element r of Γ̂εxj ,

h
Γ̂εxj

i
r
=
h
Γ̂εx̄j

i
r
= +(µy − ȳ)n−1

Pn
t=1+j+p+q εt−j

where Γ̂εx̄j = n−1
Pn
t=1+j+p+q εt−j(xt+q − µx). Then n−1

Pn
t=1+j+p+q εt−j = Op(n

−1/2) and

Eεt−j(yt+q−r − µy) = [bj]r . Then E
h
bj − Γ̂εx̄j

i
= (j + p+ q)/nbj . We now bound

nX
l,j=1

kblk kϑljk
°°°b0j − Γ̂εxj °°° ≤

nX
l,j=1

kblk kϑljk
³°°°Γ̂εx̄j −EΓ̂εx̄j °°°+ (j + p+ q)/n kbjk´

+
¯̄
µy − ȳ

¯̄ nX
l,j=1

kblk kϑljk
°°°°°°n−1

nX
t=1+j+p+q

εt−j

°°°°°° = Op(n−1/2)
such that

E
°°°Γ̂εx̄j −EΓ̂εx̄j °°°2

= n−2
nX

t,s=1+j+p+q

tr(γε(t−s)Γxxs−t+Γεxt−s−q−jΓεxs−t+j+q+cum(εt−j, εs−j , xt+q, xs+q)) = O(n−1)

which establishes the last equality. We have shown that H22 = Op(n−1/2).

Next we consider decomposition ofH3 = n−1P̂nΩ−1n KMQ0X = n−1P̂n [Ωn]−1 (Ω̂n−Ωn) [Ωn]−1KMQ0X.
Then

H3 = H31 +H32

=
nX

l,j=1

nX
h,i=1

b̂lϑlj(ω̂j,h − ωj,h)ϑh,ik( i
M
)(Γ̂ε̂xi − b0i)

+
nX

l,j=1

nX
h,i=1

b̂lϑlj(ω̂j,h − ωj,h)ϑh,ik( i
M
)b0i.
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Using a Taylor expansion for b̂l we find thatH32 =
Pn
h,j=1 a

n
j (ω̂j,h−ωj,h)k( hM )a0nh +

Pn
l,j=1

Pn
h,i=1

∂bl
∂β (β̂−

β)ϑlj(ω̂j,h−ωj,h)ϑh,ik( iM )b0i where anj =
Pn
l=1 blϑlj. The first term is Op(n

−1/2) by Lemma A.16

in MRG. The second term is bounded by
°°°β̂ − β°°°Pn

h,j=1

°°°Pn
l=1

∂bl
∂β ϑlj

°°° kω̂j,h − ωj,hk kanhk =
Op(n

−1). For H31 we note that as before we decompose Γ̂ε̂xi − b0i = Γ̂εxi − b0i + R1 + R2 + R3
where the remainder terms are of smaller order uniformly in i. We concentrate on the leading

term where
nX
j=1

nX
h,i=1

E
°°anj °° kω̂j,h − ωj,hk kϑh,ik°°°Γ̂εxi − b0i°°°

≤M
nX
j=1

nX
h,i=1

E
°°anj °°³E kω̂j,h − ωj,hk2´1/2 kϑh,ik |k(i/M)| /M µ

E
°°°Γ̂εxi − b0i°°°2¶1/2 = O(M/n)

by the Cauchy Schwartz inequality. Then
³
E kω̂j,h − ωj,hk2

´1/2
= O(n−1/2) and

µ
E
°°°Γ̂εxi − b0i°°°2¶1/2 =

O(n−1/2) uniformly in i.

Next we turn to the analysis of d̂M . From Lemma A.18 in MRG it follows that d0 =

n−1/2
Pn
t=1

P∞
j1,j2=1

bj1ϑj1,j2vt,j2 = Op(1) with vt,j2 = εt+qεt−j2 and limnEd0d00 = D. From

Lemma A.19 in MRG it follows that d1 = n−1/2
Pn
t=1

P∞
j1,j2=n+1

bj1ϑj1,j2vt,j2 = op(n
−2) and

from Lemma A.20 it follows that d2 = n−1/2
Pn
t,j2=1

P∞
j1=n+1

bj1ϑj1,j2vt,j2 = op(n
−1). The same

result obtains for d3 = n−1/2
Pn
t,j1=1

P∞
j2=n+1

bj1ϑj1,j2vt,j2 .Next turn to d4 = n
−1/2Pn

t,=1

Pn
j1,j2=1

bj1ϑj1,j2(1−
k(j2/M))vt,j2 for which Ed4d

0
4 = O(M

−2q) by Lemma A.22 in MRG. For

d6 = n
−1/2

nX
t,=1

nX
j1,j2=1

³
b̂j1 − bj1

´
ϑj1,j2k(j2/M)vt,j2

we use the Taylor approximation argument to bound

kd6k ≤
°°°β̂ − β°°° nX

j2=1

°°°°°°
nX

j1=1

∂bj1
∂β

ϑj1j2

°°°°°°
°°°°°n−1/2

nX
t=1

vt,j2

°°°°°+ op(n−1/2)
where E

°°°n−1/2Pn
t,=1 vt,j2

°°°2 = O(1) and °°°Pn
j1=1

∂bj1
∂β ϑj1j2

°°° is summable in j2 such that kd6k =
Op(n

−1/2). Next consider

d7 = n
−1/2

nX
t=1

nX
j1,..,j4=1

³
b̂j1 − bj1

´
ϑj1,j2(ω̂j2,j3 − ωj2,j3)ϑj3,j4k(j4/M)vt,j4

which by the previous argument can be bounded by

kd7k ≤M
°°°β̂ − β°°° nX

j2,..,j4=1

°°°°°°
nX

j1=1

∂bj1
∂β

ϑj1j2

°°°°°° kω̂j2,j3 − ωj2,j3k |ϑj3,j4 | |k(j4/M)| /M
°°°°°n−1/2

nX
t=1

vt,j4

°°°°° = Op(M/n)
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fromE
°°°n−1/2Pn

t,=1 vt,j

°°°2 = ³1− j
n

´
Eε2t+qε

2
t−j = O(1) uniformly in j andE kω̂j2,j3 − ωj2,j3k2 =

O(n−1). The term d8 = n−1/2
Pn
t=1

Pn
j1,..,j4=1

bj1ϑj1,j2(ω̂j2,j3−ωj2,j3)ϑj3,j4k(j4/M)vt,j4 = Op(M/
√
n)

by similar arguments.

In the same way as for the denominator we consider the remainder terms of n−1/2
Pn
t=1 vt,j−

v̂t,j = Rεε1 + R
εε
2 + R

εε
3 with v̂t,j = εt+qε̂t−j where Rεεi are defined as before replacing xt with

εt+q. By the same arguments as before it follows that the remainder terms are of lower order

and can be neglected.

We now compute the expectations of products and cross products of the largest terms in

probability involving M. These include d0, d4, d7, d8, H12, H22,H31.We have already established

that limn d0d00 = D. Next consider

Ed4d
0
4 = n−1

nX
t,s=1

nX
j1,...,j4=1

bj1ϑj1,j2(1− k(j2/M))E [vt,j2vs,j3 ] (1− k(j3/M))ϑj3,j4b0j4

= M−2qkq
∞X

j1,...,j4=1

bj1ϑj1,j2 |j2|q ωj2,j3 |j3|q ϑj3,j4b0j4 + o(M−2q)

and

Ed0d
0
4 = n−1

nX
t,s=1

nX
j1,...,j4=1

bj1ϑj1,j2E [vt,j2vs,j3 ] (1− k(j3/M))ϑj3,j4b0j4

= n−1M−q
nX

t,s=1

nX
j1,...,j4=1

bj1ϑj1,j2E [vt,j2vs,j3 ] |j3|q ϑj3,j4b0j4

= M−q
∞X

j1,j2=1

bj1 |j1|q ϑj1,j2b0j2 + o(M−q).

Ed8d
0
8 = n

−1
nX

t,s=1

nX
j1,..,j8=1

bj1ϑj1,j2(ω̂j2,j3 − ωj2,j3)ϑj3,j4k(j4/M)vt,j4vs,j5ϑj5,j6k(j5/M)(ω̂j6,j7 − ωj6,j7)ϑj7,j8bj8

where we focus on the random terms n−1
Pn
t,s=1(ω̂j2,j3 − ωj2,j3)vt,j4vs,j5(ω̂j6,j7 − ωj6,j7) noting

that ω̂j2,j3 − ωj2,j3 = n−1
P
t(ε

2
t+qεt−j2εt−j3 − Eε2t+qεt−j2εt−j3) + max(j2, j3)/nωj2,j3 . Letting
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wt(j2, j3) = ε
2
t+qεt−j2εt−j3 −Eε2t+qεt−j2εt−j3 we consider

n−1
nX

t,s=1

E(ω̂j2,j3 − ωj2,j3)vt,j4vs,j5(ω̂j6,j7 − ωj6,j7)

= n−3
nX

t,s,q,r

Ewq(j2, j3)vt,j4vs,j5wr(j6, j7)

= n−3
nX

t,s,q,r

Ewq(j2, j3)vt,j4Evs,j5wr(j6, j7) +Ewq(j2, j3)wr(j6, j7)Evt,j4vs,j5

+Ewq(j2, j3)vs,j5Evt,j4wr(j6, j7) + cum(wq(j2, j3), vt,j4 , vs,j5 , wr(j6, j7)).

The last expression is in terms of eights order moments taking the form of products of moments

and cumulants. Each of the elements depends on 10 arguments q, r, s, t, j2, ..., j7. We analyze

each individual term. First Ewt(j2, j3)vs,j4 = Cov(wt(j2, j3), vs,j4) which by Brillinger (1980,

Theorem 2.3.2) can be written as
P
τ cum(Xi,j ; i, j ∈ τ1)... cum(Xi,j ; i, j ∈ τ p) where the sum is

over all indecomposable partitions τ = τ1 ∪ ... ∪ τp of the table

X =

·
εt+q εt+q εt−j2 εt−j3
εs+q εs−j4

¸
.

In this case there are 12 partitions involving second order cumulants Cov(εu, εv) only. Be-

cause of the martingale structure these products of second order cumulants take the form

σ6 {t− s} {t−s+q+j4}{j3−j2} where {.} is the indicator function. A term that depends on three
indicator functions is summable over 3 of its arguments. The largest terms are therefore the ones

that only have two indicator functions. They are Var(εt+q)Cov(εt−j2 , εs+q)Cov(εt−j3 , εs−j4) =

σ6 {t− s− j2 − q} {t− s− j3+ j4} and similarly for Var(εt+q)Cov(εt−j3 , εs+q)Cov(εt−j2 , εs−j4).
Due to the summability assumptions on higher order cumulants all the terms involving cumu-

lants of order larger than two are summable to a larger degree (over more of their arguments).

These latter terms can therefore be neglected asymptotically. Next consider Evt,j4vs,j5 = σ
4{t =

s}{j4 = j5}+cum(εt+q, εs+q, εt−j4, εs−j5) where the first term is summable over t or s and j4 or j5
and the cumulant term is summable over t or s, j4 and j5. Finally consider Ewt(j2, j3)ws(j6, j7)

which can be represented as a sum over cumulants of indecomposable partitions of the table

X =

·
εt+q εt+q εt−j2 εt−j3
εs+q εs+q εs−j6 εs−j7

¸
.

The least summable elements in this sum are products of second order cumulants involving

Var(εt+q) and Var(εs+q). The only two candidates are σ8{t− s− j2 + j7}{t− s− j3 + j6} and
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σ8{t− s− j2 + j6}{t− s− j3 + j7}. We also note that cum(wv(j2, j3), vt,j4 , vs,j5 , wr(j6, j7)) is a
sum of products of lower order cumulants over indecomposable partitions of the table

X =


εv+q εv+q εv−j2 εv−j3
εr+q εr+q εr−j6 εr−j7
εt+q εt−j4
εs+q εs−j5


where the least summable terms are again products of second order cumulants. We now consider

individual terms of Ed8d08 where we only take into account the least summable moments. For

n−3
Pn
t,s,v,r Ewv(j2, j3)vt,j4Evs,j5wr(j6, j7) we have

n−3σ12
nX

t,v=1

nX
j1,j2,j4=1

bj1ϑj1,j2ϑj2+j4+q,j4k(j4/M)
nX

j8,j7,j5=1

k(j5/M)ϑj5,j7+j5+qϑj7,j8bj8.

Invertibility of Ω implies that the noncentral diagonals of Ω−1 are summable such that
∞X

j1,j2,j4=1

|bj1ϑj1,j2ϑj2+j4+q,j4 | <∞

and the above expression is of orderO(n−1). For the second case involvingCov(εt−j3 , εs+q)Cov(εt−j2 , εs−j4)

note that j3 = j4 only occurs if j2 = 0 which is not possible. Therefore, also terms involving

this second case are O(n−1).

ForEwt(j2, j3)vs,j5 note that the implied restrictions are [t− s− j2 + q = 0, t− s+ j5 − j3 = 0]
and [t− s− j3 + q = 0, t− s+ j5 − j2 = 0] in combination with corresponding restrictions im-
plied by Evt,j4wr(j6, j7). We find

n−3σ12
nX

t,v=1

nX
j1,j2,j4,j5,j7,j8=1

bj1ϑj1,j2ϑj2+j5−q,j4k(j4/M)k(j5/M)ϑj5,j7+j4+qϑj7,j8bj8

≤ n−1σ12
nX

j1,j2,j7,j8=1

|bj1ϑj1,j2 | |ϑj7,j8bj8 |
∞X
j5

∞X
j4

|ϑj2+j5−q,j4 | |ϑj5,j7+j4+q| = O(n−1)

since ϑx,j4 is summable over j4 uniformly in x. Similar arguments apply to the remaining terms

of Ewt(j2, j3)vs,j5Evt,j4wr(j6, j7).

For terms involving Ewv(j2, j3)wr(j6, j7)Evt,j4vs,j5 we note that for Evt,j4vs,j5 the least

summable terms imply restrictions of the form t = s and j4 = j5. The least summable terms

in Ewv(j2, j3)wr(j6, j7) imply restrictions of the form v = r − j6 + j2 and j6 = j2 − j3 + j7. We
thus have

n−3σ12
nX

t,r=1

nX
j1,j2,j4,j7,j8=1

bj1ϑj1,j2ϑj3,j4k(j4/M)
2ϑj4,j2−j3+j7ϑj7,j8bj8 = O(M/n)
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because ϑj5,x is summable over j5 uniformly in x and
Pn
j3,j4

ϑj3,j4k(j4/M)
2 = O(M).

Finally we consider cum(wq(j2, j3), vt,j4 , vs,j5 , wr(j6, j7)) where the dominant terms are of the

form σ12{t = s}{j4 = j5}{v = r + j2 − j6}{j6 = j7 + j2 − j3} which as we have seen before
implies that the weighted sum over these terms is O(M/n).

For

kd7k ≤
nX

j1=1

¯̄̄̄
∂bj1
∂β

(β̂ − β)
¯̄̄̄ °°°°°°n−1/2

nX
t=1

nX
j2,..,j4=1

ϑj1j2 (ω̂j2,j3 − ωj2,j3)ϑj3,j4k(j4/M)vt,j4

°°°°°°
where (β̂−β) = Op(n−1/2) and

°°°n−1/2Pn
t=1

Pn
j2,..,j4=1

ϑj1j2 (ω̂j2,j3 − ωj2,j3)ϑj3,j4k(j4/M)vt,j4
°°°2

is uniformly O(M/n) by the same argument as for d8. This shows that d7 is Op(
√
M/n).

The cross term Ed0d
0
8 is given by

Ed0d
0
8 = n

−1
nX

t,s=1

nX
j1,..,j6=1

Ebj1ϑj1,j2(ω̂j2,j3 − ωj2,j3)ϑj3,j4k(j4/M)vt,j4vs,j5ϑj5,j6bj6 = O(n−1)

whereE (ω̂j2,j3 − ωj2,j3) vt,j4vs,j5 = n−1
P
r Ewr(j2, j3)vt,j4vs,j5 andEwr(j2, j3)vt,j4vs,j5 = Cov(wr(j2, j3), vt,j4vs,j5)

and the covariance term can be written as the sum over products of lower order cumulants over

the indecomposable partitions of the table

X =

 εr+q εr+q εr−j2 εr−j3
εt+q εt−j4
εs+q εs−j5


such that the largest terms imply restrictions of the from

[t = s, j4 = j5, j2 = j3]

and

[t = s, r = t+ j2 − j4, j4 = j5 − j3 + j2] .

Summing over these terms leads to the results.

Next,

EH22D
−1d0d00D

−1H22

= n−1
nX

l,j=1

nX
t,s=1

∞X
j0,...,j5=1

Eblϑlj0k(
j0
M
)
³
b0j0 − Γ̂εxj0

´
D−1bj1ϑj1,j2vt,j2vs,j3ϑj3,j4bj4D

−1
³
b0j5 − Γ̂εxj5

´
k(
j5
M
)ϑj5,mbm.
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Let the elements of the vector D−1bj1 be denoted by dk,j1 and the elements of b0j0− Γ̂εxj0 by γ̂εxk,j0.
Then we have

EH22D
−1d0d00D

−1H22

= n−1
nX

l,j=1

nX
t,s=1

nX
j0,...,j5=1

pX
k1,k2

blϑlj0dk1,j1ϑj1,j2E
£
γ̂εxk1j0γ̂

εx
k2j5vt,j2vs,j3

¤
ϑj3,j4dk2,j4ϑj5,mbm

≤ Cn−1
nX

l,j=1

nX
j0,...,j5=1

pX
k1,k2

kblϑlj0k |dk1,j1ϑj1,j2| |ϑj3,j4dk2,j4| kϑj5,mbmk = O(n−1)

where γ̂εxk,j0 = n
−1P

t (yt+q−k+1εt−j0 − bj0) and letting wxt (j0, k) = (yt+q−k+1εt−j0 − bj0) we can
write

E
£
γ̂εxk1j0γ̂

εx
k2j5vt,j2vs,j3

¤
= n−2

X
v,r

Ewxv (j0, k1)w
x
r (j5, k2)vt,j2vs,j3

= n−2
X
v,r

[Ewxv (j0, k1)w
x
r (j5, k2)Evt,j2vs,j3 +Ew

x
r (j5, k2)vt,j2Ew

x
v (j0, k1)vs,j3

+ Ewxr (j5, k2)vt,j2Ew
x
v (j0, k1)vs,j3 + cum(w

x
v (j0, k1), w

x
r (j5, k2), vt,j2 , vs,j3)] .

Then

Ewxv (j0, k1)w
x
r (j5, k2) = Eyv+q−k1+1εr−j5Eyr+q−k2+1εv−j0

+Eyv+q−k1+1yr+q−k2+1Eεr−j5εv−j0

+cum(yv+q−k1+1, yr+q−k2+1, εr−j5 , εt−j0)

and

Ewxr (j5, k2)vt,j2 = Eyr+q−k2+1εt−j2Eεr−j5εt+q

+Eyr+q−k2+1εt+qEεr+q−k1+1εt−j2

+cum(yr+q−k2+1, εt+q, εr+q−k1+1, εt−j2)

while cum(wxv (j0, k1), w
x
r (j5, k2), vt,j2 , vs,j3) can be represented as a sum of products of lower

order cumulants from indecomposable partitions of the table

X =


yv+q−k1+1 εv−j0
yr+q−k2+1 εr−j5
εt+q εt−j2
εs+q εs−j3
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which shows that E
£
γ̂εxk1j0γ̂

εx
k2j5vt,j2vs,j3

¤
= O(n−1) because all the moment restrictions imply at

least one restriction of the form r = v and t = s.

Next consider

EH22D
−1d0d00 = n

−1
nX

l,j=1

nX
t,s=1

∞X
j0,...,j5=1

Eblϑlj0k(
j0
M
)
³
b0j0 − Γ̂εxj0

´
D−1bj1ϑj1,j2vt,j2vs,j3ϑj3,j4bj4 .

which depends on E
£
γ̂εxkj0vt,j2vs,j3

¤
= n−1

P
v Cov(w

x
v (j0, k1), vt,j2vs,j3) where the covariance

depends on partitions of the table

X =

·
yv+q−k1+1 εv−j0
εt+q εs+q εt−j2 εs−j3

¸
which imply restrictions on t and v such that EH22D−1d0d00 = O(n−1).

The remaining cross products involving H22D−1d0 are of smaller order. For H12 we consider

EH12D
−1d0d00

= n−1M−qkq
nX

l,j=1

nX
t,s=1

∞X
j1,...,j4=1

bl |l|q ϑljb0jD−1bj1ϑj1,j2E [vt,j2vs,j3]ϑj3,j4bj4 + o(M−q)

= M−qkq
∞X
l,j=1

bl |l|q ϑljb0j + o(M−q)

while

H12D
−1d0d00D

−1H12 =M−2qk2q

 ∞X
l,j=1

blϑlj |j|q b0j

 ∞X
l,j=1

bl |l|q ϑljb0j

+ o(M−2q).

Cross products with d7, d8 are of lower order. Finally, examine EH22D−1d0d04 which is

EH22D
−1d0d04 = n−1M−2qk2q

nX
l,j=1

nX
t,s=1

∞X
j1,...,j4=1

bl |l|q ϑljb0jD−1bj1ϑj1,j2E [vt,j2vs,j3 ] |j3|q ϑj3,j4b0j4

= M−2qk2q

 ∞X
l,j=1

bl |l|q ϑljb0j

D−1
 ∞X
l,j=1

blϑlj |j|q b0j

+ o(M−2q)

Now consider H31D−1d0d0 where

EH31D
−1d0d0 = n−3

X
t,s,v,r

nX
j1,...j8=1

pX
k

anj1Ewr(j1, j2)ϑj2,j3k(
j3
M
)wxv (j3, k)dk,j4ϑj4,j5vt,j5vs,j6ϑj6,j7bj7
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and

E [wr(j1, j2)w
x
v (j3, k)vt,j5vs,j6] = Ewr(j1, j2)w

x
v (j3, k)Evt,j5vs,j6 +Ewr(j1, j2)vs,j6Evt,j5w

x
v (j3, k)

+Ewr(j1, j2)vt,j5Evs,j6w
x
v (j3, k) + cum(wr(j1, j2), vt,j5 , vs,j6 , w

x
v (j3, k))

where from previous results the least summable cumulants of Ewr(j2, j3)vs,j6 imply a restric-

tion between j6 and j2 which makes this term of lower order. The same argument holds for

Ewr(j1, j2)vt,j5 . For Ewr(j1, j2)w
x
v (j3, k) = Cov(wr(j1, j2), w

x
v (j3, k)) we consider the table

X =

·
yv+q−k+1 εv−j3
εt+q εt+q εt−j1 εt−j2

¸
where the least summable cumulants of second order are σ6 {v − j3 − t+ j1} bv−t+j2+q−k+1 which
is summable over j2. Finally consider cum(wr(j1, j2), vt,j5 , vs,j6 , w

x
v (j3, k)) which depends on the

table

X =


yv+q−k+1 εv−j3
εr+q εr+q εr−j1 εr−j2
εt+q εt−j5
εs+q εs−j6


where the least summable terms imply restrictions on s, r and j3 which implies that the terms

involving cum(wr(j1, j2), vt,j5 , vs,j6 , w
x
v (j3, k)) are summable. This implies that EH31D

−1d0d0 =

O(n−1). Consequently,H31D−1d0d00D−1H31 = op(n−1),H31D−1d0d07 = op(n−1) andH31D−1d0d08 =

op(n
−1).

To summarize these results, the largest term depending positively onM is Ed8d08 = O(M/n)

while the largest terms depending inversely on M are d4 and H12D−1d0 where

E(d4 +H13D
−1d0)(d4 +H13D−1d0)0

=M−2qk2q

 ∞X
l,j=1

blϑlj |j|q b0j

 (I +D−1)
 ∞X
l,j=1

bl |l|q ϑljb0j

 .
¥

Proof of Corollary 1: Here we only need to consider the largest terms inM of the previous

result, i.e.

Ed8d
0
8 = n

−1
nX

t,s=1

nX
j1,j2=1

Ebj1ϑ
2
j1,j1(ω̂j1,j1 − ωj1,j1)k(j1/M)vt,j1vs,j2k(j2/M)(ω̂j2,j2 − ωj2,j2)ϑ2j2,j2bj2
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where now
Pn
j1,j2=1

bj1ϑ
2
j1,j1k(j1/M)k(j2/M)ϑ

2
j2,j2bj2 <

³Pn
j1=1

¯̄
bj1ϑ

2
j1,j1

¯̄´2
< ∞ is absolutely

summable. This holds even though ϑ2j1,j1 itself is not summable. Using the results of the previous

proofs this implies that Ed8d8 = O(n−1).¥
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Table 1
Quantiles

Sample Size: 128, φ1 = 0.0
.01 .1 .5 .9 .99 MAE MSE Var

OLS -0.3418 -0.1778 -0.0004 0.1809 0.3126 0.1113 0.0198 0.0198
IVy 1 -0.3418 -0.1778 -0.0004 0.1809 0.3126 0.1113 0.0198 0.0198
IVe 1 -0.3469 -0.1804 0.0009 0.1767 0.3434 0.1130 0.0206 0.0206
IVky 1 -0.3418 -0.1778 -0.0004 0.1809 0.3126 0.1113 0.0198 0.0198
IVke 1 -0.3469 -0.1804 0.0009 0.1767 0.3434 0.1130 0.0206 0.0206
IVp 1 -0.3469 -0.1804 0.0009 0.1767 0.3434 0.1130 0.0206 0.0206

IVy 2 -0.3403 -0.1833 -0.0008 0.1780 0.3208 0.1121 0.0201 0.0201
IVe 2 -0.3286 -0.1868 -0.0008 0.1731 0.3407 0.1124 0.0203 0.0203
IVky 2 -0.3391 -0.1757 0.0005 0.1764 0.3120 0.1112 0.0197 0.0197
IVke 2 -0.3447 -0.1828 0.0016 0.1750 0.3434 0.1128 0.0205 0.0205
IVpe 2 -0.3915 -0.1939 -0.0002 0.1706 0.3504 0.1128 0.0209 0.0208

IVy 3 -0.3527 -0.1874 -0.0028 0.1714 0.3226 0.1118 0.0202 0.0202
IVe 3 -0.3359 -0.1898 -0.0007 0.1672 0.3379 0.1123 0.0204 0.0204
IVky 3 -0.3416 -0.1800 0.0001 0.1759 0.3120 0.1120 0.0200 0.0200
IVke 3 -0.3394 -0.1860 -0.0013 0.1725 0.3389 0.1129 0.0204 0.0204
IVpe 3 -0.3865 -0.1869 -0.0025 0.1723 0.3500 0.1136 0.0215 0.0215

IVy 4 -0.3522 -0.1880 -0.0017 0.1714 0.3195 0.1124 0.0204 0.0204
IVe 4 -0.3313 -0.1942 -0.0007 0.1714 0.3440 0.1132 0.0206 0.0206
IVky 4 -0.3484 -0.1804 0.0000 0.1775 0.3178 0.1122 0.0202 0.0202
IVke 4 -0.3376 -0.1880 -0.0016 0.1731 0.3388 0.1127 0.0204 0.0204
IVpe 4 -0.3897 -0.1911 -0.0035 0.1724 0.3481 0.1150 0.0221 0.0220

IVy 5 -0.3488 -0.1866 -0.0023 0.1708 0.3451 0.1143 0.0208 0.0208
IVe 5 -0.3319 -0.1931 -0.0027 0.1743 0.3632 0.1150 0.0211 0.0210
IVky 5 -0.3524 -0.1837 0.0006 0.1762 0.3252 0.1122 0.0202 0.0203
IVke 5 -0.3370 -0.1876 -0.0013 0.1732 0.3431 0.1126 0.0204 0.0204
IVpe 5 -0.3950 -0.1919 -0.0055 0.1781 0.3551 0.1178 0.0233 0.0232

IVy 10 -0.3371 -0.1894 -0.0042 0.1820 0.3294 0.1157 0.0213 0.0213
IVe 10 -0.3510 -0.1920 -0.0040 0.1783 0.3657 0.1157 0.0216 0.0216
IVky 10 -0.3482 -0.1845 -0.0009 0.1786 0.3303 0.1121 0.0201 0.0201
IVke 10 -0.3340 -0.1869 -0.0013 0.1718 0.3465 0.1120 0.0202 0.0202
IVpe 10 -0.4318 -0.1960 -0.0069 0.1771 0.3978 0.1213 0.0247 0.0247

IV FD -0.3415 -0.1743 0.0022 0.1750 0.3090 0.1094 0.0192 0.0192
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Table 2
Quantiles

Sample Size: 128, φ1 = 0.3
.01 .1 .5 .9 .99 MAE MSE Var

OLS -0.3090 -0.1704 -0.0025 0.1460 0.2996 0.0987 0.0157 0.0157
IVy 1 -0.3090 -0.1704 -0.0025 0.1460 0.2996 0.0987 0.0157 0.0157
IVe 1 -0.3192 -0.1741 0.0007 0.1708 0.3405 0.1076 0.0185 0.0185
IV ky 1 -0.3090 -0.1704 -0.0025 0.1460 0.2996 0.0987 0.0157 0.0157
IV ke 1 -0.3192 -0.1741 0.0007 0.1708 0.3405 0.1076 0.0185 0.0185
IV pe 1 -0.3192 -0.1741 0.0007 0.1708 0.3405 0.1076 0.0185 0.0185

IVy 2 -0.3111 -0.1690 -0.0013 0.1462 0.2581 0.0984 0.0155 0.0154
IVe 2 -0.3297 -0.1732 -0.0003 0.1641 0.2873 0.1047 0.0172 0.0172
IVky 2 -0.3056 -0.1677 -0.0016 0.1462 0.2968 0.0987 0.0156 0.0156
IVke 2 -0.3214 -0.1702 -0.0002 0.1699 0.3330 0.1067 0.0182 0.0182
IVpe 2 -0.3305 -0.1777 -0.0016 0.1682 0.3122 0.1069 0.0181 0.0181

IVy 3 -0.3273 -0.1661 -0.0037 0.1469 0.2707 0.0998 0.0158 0.0158
IVe 3 -0.3188 -0.1698 0.0041 0.1625 0.2813 0.1053 0.0172 0.0172
IVky 3 -0.3061 -0.1664 -0.0007 0.1468 0.2866 0.0990 0.0156 0.0156
IVke 3 -0.3182 -0.1720 -0.0017 0.1664 0.3120 0.1058 0.0177 0.0177
IVpe 3 -0.3280 -0.1814 -0.0053 0.1712 0.3022 0.1111 0.0276 0.0276

IVy 4 -0.3277 -0.1664 -0.0011 0.1493 0.2681 0.0995 0.0158 0.0158
IVe 4 -0.3328 -0.1748 0.0012 0.1617 0.2784 0.1051 0.0173 0.0173
IVky 4 -0.3043 -0.1668 -0.0002 0.1484 0.2798 0.0991 0.0156 0.0156
IVke 4 -0.3172 -0.1708 0.0003 0.1646 0.3132 0.1052 0.0174 0.0174
IVpe 4 -0.3530 -0.1853 -0.0067 0.1742 0.3189 0.1166 0.0783 0.0782

IVy 5 -0.3291 -0.1691 -0.0017 0.1489 0.2702 0.1001 0.0160 0.0160
IVe 5 -0.3326 -0.1724 -0.0012 0.1642 0.2784 0.1054 0.0174 0.0174
IVky 5 -0.3114 -0.1687 0.0001 0.1479 0.2813 0.0993 0.0157 0.0157
IVke 5 -0.3211 -0.1719 0.0004 0.1646 0.3078 0.1049 0.0174 0.0174
IVpe 5 -0.3577 -0.1765 -0.0062 0.1733 0.3095 0.1119 0.0223 0.0223

IVy 10 -0.3246 -0.1687 -0.0009 0.1449 0.2743 0.1005 0.0161 0.0161
IVe 10 -0.3235 -0.1674 -0.0015 0.1586 0.2743 0.1046 0.0171 0.0171
IVky 10 -0.3149 -0.1684 0.0043 0.1494 0.2698 0.0994 0.0157 0.0157
IVke 10 -0.3268 -0.1691 -0.0000 0.1632 0.2758 0.1046 0.0171 0.0171
IVpe 10 -0.3472 -0.1848 0.0004 0.1768 0.3085 0.1166 0.0318 0.0318

IV FD -0.3199 -0.1725 -0.0079 0.1393 0.2870 0.0977 0.0154 0.0152
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Table 3
Quantiles

Sample Size: 128, φ1 = 0.6
.01 .1 .5 .9 .99 MAE MSE Var

OLS -0.2994 -0.1597 -0.0183 0.0933 0.1698 0.0790 0.0108 0.0102
IV y 1 -0.2994 -0.1597 -0.0183 0.0933 0.1698 0.0790 0.0108 0.0102
IV e 1 -0.3416 -0.1823 -0.0122 0.1583 0.2756 0.1056 0.0184 0.0182
IV ky 1 -0.2994 -0.1597 -0.0183 0.0933 0.1698 0.0790 0.0108 0.0102
IV ke 1 -0.3416 -0.1823 -0.0122 0.1583 0.2756 0.1056 0.0184 0.0182
IV pe1 -0.3416 -0.1823 -0.0122 0.1583 0.2756 0.1056 0.0184 0.0182

IVy 2 -0.2984 -0.1557 -0.0194 0.0950 0.1590 0.0781 0.0107 0.0100
IVe 2 -0.3451 -0.1729 -0.0163 0.1211 0.2173 0.0914 0.0144 0.0139
IVky 2 -0.3075 -0.1581 -0.0184 0.0928 0.1736 0.0797 0.0110 0.0104
IVke 2 -0.3363 -0.1815 -0.0121 0.1503 0.2581 0.1031 0.0177 0.0174
IVpe 2 -0.3389 -0.1709 -0.0196 0.1265 0.2486 0.0958 0.0154 0.0149

IVy 3 -0.2953 -0.1543 -0.0182 0.0934 0.1661 0.0779 0.0106 0.0100
IVe 3 -0.3089 -0.1679 -0.0155 0.1205 0.2076 0.0889 0.0135 0.0130
IVky 3 -0.2984 -0.1560 -0.0169 0.0941 0.1670 0.0783 0.0107 0.0101
IVke 3 -0.3312 -0.1770 -0.0122 0.1387 0.2286 0.0970 0.0158 0.0155
IVpe 3 -0.3308 -0.1724 -0.0162 0.1245 0.2370 0.0940 0.0147 0.0143

IVy 4 -0.2918 -0.1527 -0.0167 0.0919 0.1696 0.0779 0.0105 0.0100
IVe 4 -0.3158 -0.1625 -0.0176 0.1156 0.1972 0.0867 0.0128 0.0123
IVky 4 -0.2967 -0.1542 -0.0130 0.0932 0.1654 0.0777 0.0105 0.0100
IVke 4 -0.3293 -0.1707 -0.0124 0.1274 0.2215 0.0933 0.0148 0.0144
IVpe 4 -0.3168 -0.1667 -0.0135 0.1277 0.2236 0.0922 0.0140 0.0137

IVy 5 -0.2947 -0.1530 -0.0162 0.0921 0.1724 0.0788 0.0108 0.0102
IVe 5 -0.3212 -0.1640 -0.0168 0.1125 0.1929 0.0871 0.0130 0.0125
IVky 5 -0.2950 -0.1522 -0.0134 0.0957 0.1629 0.0776 0.0105 0.0100
IVke 5 -0.3437 -0.1682 -0.0147 0.1252 0.2165 0.0910 0.0142 0.0138
IVpe 5 -0.3440 -0.1684 -0.0110 0.1237 0.2149 0.0924 0.0144 0.0141

IVy 10 -0.2929 -0.1591 -0.0154 0.1010 0.1735 0.0807 0.0111 0.0105
IVe 10 -0.3127 -0.1700 -0.0175 0.1123 0.2048 0.0874 0.0128 0.0122
IVky 10 -0.2838 -0.1539 -0.0138 0.0967 0.1664 0.0781 0.0105 0.0100
IVke 10 -0.3004 -0.1629 -0.0167 0.1189 0.2023 0.0879 0.0131 0.0126
IVpe 10 -0.3817 -0.1735 -0.0149 0.1220 0.2332 0.0962 0.0159 0.0155

IV FD -0.2943 -0.1575 -0.0234 0.0838 0.1586 0.0781 0.0106 0.0097
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Table 4
Quantiles

Sample Size: 128, φ1 = 0.9
.01 .1 .5 .9 .99 MAE MSE Var

OLS -0.1687 -0.0877 -0.0058 0.0390 0.0637 0.0403 0.0031 0.0028
IV y 1 -0.1687 -0.0877 -0.0058 0.0390 0.0637 0.0403 0.0031 0.0028
IV e 1 -0.3146 -0.1806 -0.0054 0.1670 0.3405 0.1101 0.0197 0.0197
IV ky 1 -0.1687 -0.0877 -0.0058 0.0390 0.0637 0.0403 0.0031 0.0028
IV ke 1 -0.3146 -0.1806 -0.0054 0.1670 0.3405 0.1101 0.0197 0.0197
IV pe 1 -0.3146 -0.1806 -0.0054 0.1670 0.3405 0.1101 0.0197 0.0197

IVy 2 -0.1654 -0.0842 -0.0067 0.0370 0.0605 0.0377 0.0027 0.0024
IVe 2 -0.2556 -0.1280 -0.0098 0.0896 0.1674 0.0691 0.0080 0.0078
IVky 2 -0.1682 -0.0869 -0.0070 0.0403 0.0693 0.0417 0.0032 0.0029
IVke 2 -0.3113 -0.1675 -0.0052 0.1534 0.2771 0.1008 0.0166 0.0165
IVpe 2 -0.2524 -0.1203 -0.0068 0.1005 0.1846 0.0700 0.0081 0.0081

IVy 3 -0.1676 -0.0797 -0.0072 0.0365 0.0618 0.0372 0.0026 0.0024
IVe 3 -0.1976 -0.1069 -0.0077 0.0779 0.1462 0.0581 0.0056 0.0055
IVky 3 -0.1607 -0.0858 -0.0087 0.0350 0.0605 0.0381 0.0028 0.0025
IVke 3 -0.2663 -0.1408 -0.0071 0.1103 0.2064 0.0805 0.0108 0.0107
IVpe 3 -0.1968 -0.1037 -0.0036 0.0831 0.1552 0.0583 0.0057 0.0057

IVy 4 -0.1703 -0.0817 -0.0060 0.0370 0.0631 0.0374 0.0027 0.0024
IVe 4 -0.1770 -0.1002 -0.0059 0.0634 0.1235 0.0511 0.0045 0.0044
IVky 4 -0.1526 -0.0840 -0.0076 0.0364 0.0623 0.0374 0.0027 0.0024
IVke 4 -0.2335 -0.1260 -0.0085 0.0952 0.1830 0.0711 0.0083 0.0082
IVpe 4 -0.1870 -0.0943 -0.0020 0.0692 0.1317 0.0522 0.0071 0.0070

IVy 5 -0.1674 -0.0796 -0.0067 0.0375 0.0649 0.0378 0.0027 0.0024
IVe 5 -0.1898 -0.0951 -0.0064 0.0612 0.1158 0.0487 0.0042 0.0040
IVky 5 -0.1515 -0.0815 -0.0078 0.0375 0.0632 0.0369 0.0026 0.0023
IVke 5 -0.2363 -0.1154 -0.0076 0.0868 0.1645 0.0653 0.0071 0.0069
IVpe 5 -0.1854 -0.0886 -0.0006 0.0677 0.1272 0.0500 0.0094 0.0094

IVy 10 -0.1609 -0.0800 -0.0068 0.0391 0.0684 0.0378 0.0026 0.0024
IVe 10 -0.1593 -0.0881 -0.0049 0.0468 0.0856 0.0421 0.0033 0.0031
IVky 10 -0.1587 -0.0770 -0.0034 0.0395 0.0632 0.0362 0.0025 0.0023
IVke 10 -0.1877 -0.0972 -0.0064 0.0669 0.1252 0.0528 0.0048 0.0047
IVpe 10 -0.1640 -0.0770 0.0011 0.0524 0.0914 0.0416 0.0030 0.0030

IV FD -0.1829 -0.0910 -0.0151 0.0289 0.0552 0.0403 0.0031 0.0026
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