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Abstract

We consider a dynamic panel AR(1) model with fixed effects when both n and T are large. Under the

“T fixed n large” asymptotic approximation, the ordinary least squares (OLS) or Gaussian maximum

likelihood estimator (MLE) is known to be inconsistent due to the well-known incidental parameter

problem. We consider an alternative asymptotic approximation where n and T grow at the same rate. It

is shown that, although OLS or the MLE is asymptotically biased, a relatively simple fix to OLS or the

MLE results in an asymptotically unbiased estimator. Under the assumption of Gaussian innovations,

the bias-corrected MLE is shown to be asymptotically efficient by a Hajék type convolution theorem.



1 Introduction

In this paper, we consider estimation of the autoregressive parameter θ0 of a dynamic panel data model

with fixed effects. The model has additive individual time invariant intercepts (fixed effects) along with a

parameter common to every individual. The total number of parameters is therefore equal to the number

of individuals (n) plus the dimension of the common parameter. When the number of individuals (n) is

large relative to the time series dimension (T ), the ordinary least squares (OLS) or Gaussian maximum

likelihood estimator (MLE) would lead to inconsistent estimates of the common parameter of interest.

This is the well-known incidental parameter problem.1 Inconsistency of OLS under T fixed n large

asymptotics led to a focus on instrumental variables estimation in the recent literature. Most instrumental

variables estimators are at least partly based on the intuition that first differencing yields a model free

of fixed effects.2 Despite its appeal as a procedure which avoids the incidental parameter problem, the

instrumental variables based procedure is problematic as a general principle to deal with potentially

nonlinear panel models because of its inherent reliance on first differencing. Except for a small number

of cases where conditioning on some sufficient statistic eliminates fixed effects, there does not seem to

exist any general strategy for potentially nonlinear panel models.

In this paper, we develop a strategy that could potentially be extended to nonlinear models by

considering an alternative asymptotic approximation where both n and T are large. We analyze properties

of OLS under this approximation for quite general innovation distributions. It is shown that OLS is

consistent and asymptotically normal, although it is not centered at the true value of the parameter. The

noncentrality parameter under our alternative asymptotic approximation implicitly captures bias of order

O
¡
T−1

¢
, which can be viewed as an alternative form of the incidental parameter problem. We develop

a bias-corrected estimator by examining the noncentrality parameter. Our strategy can be potentially

replicated in nonlinear panel models, although analytic derivations for nonlinear models are expected to

be much more involved than in linear dynamic panel models. We can in principle iterate our strategy to

eliminate biases of order O
¡
T−2

¢
or O

¡
T−3

¢
, although we do not pursue such a route here.

Having removed the asymptotic bias, we raise an efficiency question for the case of Gaussian in-

novations where OLS is equivalent to the maximum likelihood estimator. Is the bias-corrected MLE

asymptotically efficient among the class of all reasonable estimators? In order to assess efficiency, we de-

rive a Hajék-type convolution theorem, and show that the asymptotic distribution of the bias-corrected

MLE is equal to the minimal distribution in the convolution theorem.

Our alternative asymptotic approximation is expected to be of practical relevance if T is not too

small compared to n as is the case for example in cross-country studies.3 The properties of dynamic

panel models are usually discussed under the implicit assumption that T is small and n is large relying on

T fixed n large asymptotics. Such asymptotics seem quite natural when T is indeed very small compared
1See Neyman and Scott (1948) for a general discussion of the incidental parameter problem, and Nickell (1981) for its

implication in the particular linear dynamic panel model of interest.
2For discussion of various instrumental variables estimators and moment restrictions, see Holtz-Eakin, Newey, and Rosen

(1988), Arellano and Bond (1992), Chamberlain (1992), Ahn and Schmidt (1995), Arellano and Bover (1995), Blundell and

Bond (1995), and Hahn (1997).
3 Inter-country comparison studies seem to be a reasonable application for our perspective. See Islam (1995) and/or Lee,

Pesaran, and Smith (1998) for recent examples of inter-country comparison studies.
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to n. In cases where T and n are of comparable size we expect our approximation to be more accurate.

2 Bias Corrected OLS (MLE) for Panel VARs with Fixed Effects

In this section, we consider estimation of the autoregressive parameter θ0 in a dynamic panel model with

fixed effects

y0it = α
0
i + y

0
it−1θ

0
0 + ε

0
it, i = 1, . . . , n; t = 1, . . . , T, (1)

where yit is an m-dimensional vector and εit is i.i.d. normal. We establish the asymptotic distribution

of the OLS estimator (MLE) for θ0 under the alternative asymptotics, and develop an estimator free

of (asymptotic) bias. We go on to argue that the bias-corrected MLE is efficient using a Hajék type

convolution theorem, and provide an intuitive explanation of efficiency by considering the limit of the

Cramer-Rao lower bound. Finally, we point out that the asymptotic distribution of the bias-corrected

MLE is robust to nonnormality by presenting an asymptotic analysis for a model where εit violates the

normality assumption. We leave the efficiency analysis of models with nonnormal innovations for future

research.

Model (1) may be understood as a parametric completion of the univariate dynamic panel AR(1)

model with additional regressors. If we write yit =
¡
Yit,X

0
it+1

¢0
, then the first component of the model

(1) can be rewritten as

Yit = ci + β0 · Yit−1 + γ00Xit + eit, i = 1, . . . , n; t = 1, . . . , T (2)

where ci and (β0, γ
0
0)
0denote the first component of αi and the first column of θ00. This implies that, under

the special circumstances where Xit follows a first order VAR, we can regard model (1) as a completion

of model (2). Under this interpretation, model (1) encompasses panel models with further regressors such

as (2).

Even more generally, model (1) can be parametrized to be the reduced form of a dynamic simultaneous

equation system in yit allowing for higher order VAR dynamics as well as exogenous regressors. This

requires imposing blockwise zero and identity restrictions on θ0. It is well-known that MLE reduces to

blockwise OLS as long the restrictions are block recursive. Even though we do not spell out the details of

this interpretation of our model, this more general case could in principle be dealt with in our framework.

If we assume εit is i.i.d. over t and i, and has a zero mean multivariate normal distribution, then the

MLE (fixed effects estimator/OLS) takes the form

bθ0 = Ã nX
i=1

TX
t=1

¡
yit−1 − yi−

¢ ¡
yit−1 − yi−

¢0!−1Ã nX
i=1

TX
t=1

¡
yit−1 − yi−

¢
(yit − yi)0

!
,

where ȳi ≡ 1
T

PT
t=1 yit, yi− ≡ 1

T

PT
t=1 yit−1. We examine properties of bθ under potential nonnormality of

εit under the alternative asymptotics. If the innovations εit are not normal then the resulting estimator bθ
is a pseudo-MLE, and does no longer possess the efficiency properties of the exact MLE. For this reason

we impose the additional assumption of normality for our discussion of asymptotic efficiency later in this

section. We impose the following conditions:
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Condition 1 (i) εit is i.i.d. across i and strictly stationary in t for each i, E [εit] = 0 for all i and t,

E [εitε0is] = Ω · 1{t = s}; (ii) 0 < lim n
T ≡ ρ < ∞; (iii) limn→∞ θn0 = 0; and (iv) 1

n

Pn
i=1 |yi0|2 = O (1)

and 1
n

Pn
i=1 |αi|2 = O (1).

The innovations εit are uncorrelated but not independent over t. Their higher order dependence allows for

conditional heteroskedasticity. In order to be able to establish central limit theorems for our estimators

and to justify covariance matrix estimation we need to impose additional restrictions on the distribution

of the innovations. The dependence is limited by a fourth order cumulant summability restriction slightly

stronger than in Andrews (1991). These conditions could be related to more primitive mixing conditions

on the underlying εit as shown in Andrews(1991). We define u∗it ≡
P∞
j=0 θ

j
0εit−j .

Condition 2
∞X

t1,t2,t3=−∞

¯̄
cumj1,...,j4

¡
u∗it1 , εit2 , u

∗
it3 , εi0

¢¯̄
<∞ ∀ i and j1, ..., jk ∈ {1, ...,m} .

In the same way as Andrews (1991), we define zit ≡
¡
Im ⊗ u∗it−1

¢
εit where Im is the m-dimensional

identity matrix and impose an additional eighth order moment restriction on εit, which takes the form

of a fourth order cumulant summability condition on zit.

Condition 3
∞X

t1,t2,t3=−∞
|cumj1,...,j4 (zit1 , zit2 , zit3 , zi0)| <∞ ∀ i and j1, ..., jk ∈ {1, ...,m}.

Remark 1 In Condition 1, our requirement that 0 < lim n
T ≡ ρ < ∞ corresponds to the choice of a

particular set of asymptotic sequences. The choice of these sequences is guided by the desire to obtain

asymptotic approximations that mimic certain moments of the finite sample distribution, in our case the

mean, of the estimator. Bekker (1994, p.661) argues that the choice of a particular sequence can be

justified by its ability to “generate acceptable approximations of known distributional properties of related

statistics”.

In our case it seems most appropriate to investigate the properties of the score related to the dynamic

panel model. After concentrating out the fixed effects, we are led to consider the normalized score process

SnT =
1√
nT

Pn
i=1

PT
t=1

¡
Im ⊗

¡
yit−1 − yi−

¢¢
(εit − εi). In the appendix, we show that4 SnT d→ S un-

der the alternative asymptotics with n/T → ρ, where S has a normal distribution with mean equal to

−√ρ (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω). Clearly, under fixed T large n asymptotics the score process has
an explosive mean leading to the inconsistency result. The exact finite sample bias for the score is given by

E [SnT ] = −
p
n/TT−1

PT
t=1

PT
j=0

³
Im ⊗ θj0

´
vec (Ω). The term −√ρT−1PT

t=1

PT
j=0

³
Im ⊗ θj0

´
vec (Ω)

converges to −√ρ (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) = E [S] by the Toeplitz lemma5 as T → ∞, and is
closer to E [S] for small values of θ0. In other words our asymptotic sequence preserves the mean of

the score process in the limit. The form of the approximation error also may explain simulation findings

indicating that the approximation improves for larger values of T and deteriorates with θ getting closer

to the unit circle.
4Lemma 6 in Appendix A.
5 See Hall and Heyde, 1980, p. 31.
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Our asymptotics may also be understood as an attempt to capture the bias of the score of order

O
¡
T−1

¢
. We show in the appendix that the score process is well approximated by a process, say S∗nT ,

6 such

that E [S∗nT ] = −
p

n
T
1
T

PT
t=1

Pt−1
j=0

³
Im ⊗ θj0

´
vec (Ω).7 Because the term 1

T

PT
t=1

Pt−1
j=0

³
Im ⊗ θj0

´
vec (Ω)

is of order O (1), the approximate mean of the normalized score process can be elicited only by consid-

ering the alternative approximation where n and T grow to infinity at the same rate. The mean of the

score process that our asymptotics captures may also be identified as the bias of the score up to O
¡
T−1

¢
.

Because the score 1√
nT
SnT is approximated by 1√

nT
S∗nT , and because

E

·
1√
nT
S∗nT

¸
= − 1

T

1

T

TX
t=1

t−1X
j=0

³
Im ⊗ θj0

´
vec (Ω) =

1

T

³
− (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) + o (1)

´
,

we may understand − 1
T (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) as the bias of the score of order O

¡
T−1

¢
.

Remark 2 Condition 2 implies
P∞
j=−∞ |Covk1,k2 (zit, zit−j)| <∞, because

Covk1,k2(zit, zit−j) = cuml1,..,l4
¡
u∗it−1, εit, u

∗
it−1−j , εit−j

¢
+Covl1,l3

¡
u∗it−1, u

∗
it−1−j

¢
Covl2,l4 (εit, εit−j)

+ Covl1,l4
¡
u∗it−1, εit−j

¢
Covl3,l2

¡
u∗it−1−j , εit

¢
,

where k1 = l1m+ l2+1 and k2 = l3m+ l4+1 with l1, ..., l4 ∈ {0, 1, ...,m}. In this sense our Condition 2
is stronger than the first part of Assumption A in Andrews (1991). Condition 3 is identical to the second

part of Assumption A in Andrews (1991).

Remark 3 In the special case where εit is iid across i and t Conditions 2 and 3 are equivalent to

E

·¯̄̄
ε
(j)
it

¯̄̄8¸
<∞ for all j where ε(j)it is the j-th element in εit. See Lemma 1 in Appendix A.

We show below that the OLS estimator bθ is consistent, but √nT vec³bθ0 − θ00´ is not centered at zero:
Theorem 1 Let yit be generated by (1). Under Conditions 1, 2 and 3, we have

√
nT vec

³bθ0 − θ00´
→ N

³
−√ρ(Im ⊗Υ)−1 (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) , (Im ⊗Υ)−1 (Ω⊗Υ+K) (Im ⊗Υ)−1

´
,

where Υ ≡ Ω+θ0Ωθ00+θ20Ω
¡
θ00
¢2
+· · · , K ≡P∞

t=−∞K (t, 0), K (t1, t2) ≡ E
£¡
Im ⊗ u∗it1−1

¢
εit1ε

0
it2

¡
Im ⊗ u∗0it2−1

¢¤
− E £εit1ε0it2¤⊗E [u∗i0u∗0i0], and u∗it ≡P∞

j=0 θ
j
0εit−j. If in addition all the innovations εit are independent

for all i and t then

√
nT vec

³bθ0 − θ00´→ N
³
−√ρ(Im ⊗Υ)−1 (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) ,Ω⊗Υ−1

´
.

Proof. See Appendix A.

Under our alternative asymptotic sequence OLS is therefore consistent but has a limiting distribution

that is not centered at zero. The non-centrality parameter results from correlation between the averaged

error terms and the regressors yit−1. Because averaging takes place for each individual the estimated
6The exact definition of S∗nT is given in (11) in Appendix A.
7 See Lemma 3.
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sample means do not converge to constants fast enough to eliminate their effect on the limiting distri-

bution. Under our asymptotics the convergence is however fast enough to eliminate the inconsistency

problem found for fixed T large n asymptotic approximations.

When the innovations are not i.i.d. then the limiting distribution is affected by higher order moments

reflecting the conditional heteroskedasticity in the data. The limiting covariance matrix Ω ⊗ Υ + K
can also be expressed as limT−1

PT
t1t2=−T E

£¡
Im ⊗ u∗it1−1

¢
εit1ε

0
it2

¡
Im ⊗ u∗0it2−1

¢¤
. Standard tools for

consistent and optimal estimation of Ω⊗Υ+K were discussed in Andrews (1991). Under our conditions
the results of Andrews are directly applicable.

Our theorem 1 predicts that vec
³bθ0 − θ00´ is approximately distributed as

N
µ
− 1
T
(Im ⊗Υ)−1 (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) , 1

nT
(Im ⊗Υ)−1 (Ω⊗Υ+K) (Im ⊗Υ)−1

¶
.

Therefore, the noncentrality-parameter −√ρ(Im ⊗ Υ)−1 (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) can be viewed
as a device to capture bias of order up to O

¡
T−1

¢
.

Our bias-corrected OLS estimator is given by

vec

µbbθ0¶ ≡
Im ⊗Ã 1

nT

nX
i=1

TX
t=1

¡
yit−1 − yi−

¢ ¡
yit−1 − yi−

¢0!−1
·
"
1

nT

nX
i=1

TX
t=1

¡
Im ⊗

¡
yit−1 − yi−

¢¢
(yit − yi)0 +

1

T

³
Im ⊗ Im −

³
Im ⊗ bθ´´−1 vec³bΩ´# ,(3)

where

bΥ ≡ 1

nT

nX
i=1

TX
t=1

¡
yit−1 − yi−

¢ ¡
yit−1 − yi−

¢0
, and vec

³bΩ´ ≡ ³Im ⊗ Im − ³bθ ⊗ bθ´´ vec³bΥ´ . (4)

We show below that the bias-corrected OLS estimator bbθ is consistent, and √nT vecµbbθ0 − θ00¶ is centered
at zero:

Theorem 2 Let yit be generated by (1). Then, under Conditions 1, 2 and 3, we have

√
nT vec

µbbθ0 − θ00¶→ N
³
0, (Im ⊗Υ)−1 (Ω⊗Υ+K) (Im ⊗Υ)−1

´
.

If in addition all the innovations εit are independent for all i and t then

√
nT vec

³bθ0 − θ00´→ N ¡0,Ω⊗Υ−1¢ .
Proof. See Appendix B.

For the case of Gaussian innovations where OLS is equivalent to the MLE, we now show that the

bias-corrected MLE is asymptotically efficient. We do so by showing that the asymptotic distribution of

the bias-corrected MLE is ‘minimal’ in the sense of a Hajék type convolution theorem.8 We show that

the asymptotic distribution of any reasonable estimator can be written as a convolution of the ‘minimal’

normal distribution and some other arbitrary distribution. In this sense, the bias-corrected MLE can be

understood to be asymptotically efficient.
8 See Appendix C for the exact sense under which the asymptotic distribution of the bias corrected MLE is ‘minimal’.
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Condition 4 (i) εit ∼ N (0,Ω) i.i.d.; (ii) 0 < lim n
T ≡ ρ < ∞; (iii) limn→∞ θn0 = 0; and (iv)

1
n

Pn
i=1 |yi0|2 = O (1) and 1

n

Pn
i=1 |αi|2 = O (1).

In order to discuss efficiency we naturally have to guarantee that θ̂ is the exact MLE. For this reason

we impose the additional requirement of normal innovations in condition (4).

Theorem 3 Let yit be generated by (1). Suppose that Condition (4) is satisfied. Then, the asymptotic

distribution of any regular estimator of vec (θ0) cannot be more concentrated than N
¡
0,Ω⊗Υ−1¢.

Proof. See Appendix C.

It should be emphasized that Theorem 3 in itself does not say anything about the attainability of the

bound Ω⊗Υ−1. The asymptotic variance bound it provides is a lower bound of the asymptotic variances
of regular estimators. On the other hand, it is not clear whether such a bound is attainable. Comparison

with Theorem 2 leads us to conclude that the bound is attained by the bias-corrected OLS estimator as

long as the innovations εit are i.i.d. Gaussian.

Corollary 1 Under Condition 4, the bias-corrected MLE bbθ is asymptotically efficient.
3 Application to Univariate Dynamic Panel Models with Fixed

Effects

In this section, we apply Theorems 1 and 2 in the previous section to the univariate stationary panel

AR(1) model with fixed effects

yit = αi + θ0yit−1 + εit, i = 1, . . . , n; t = 1, . . . , T. (5)

We also consider estimation of fixed effects αi in the univariate contexts. Finally, we examine how the

result changes under the unit root. It turns out that the distribution of the MLE is quite sensitive to such

a specification change. As such, we expect that our bias-corrected estimator will not be (approximately)

unbiased under a unit root.

We first apply Theorems 1 and 2 to the univariate case. Obviously, Condition 4 would now read

(i) εit ∼ N (0,Ω) i.i.d.; (ii) 0 < lim n
T ≡ ρ < ∞; (iii) |θ0| < 1; and (iv) 1

n

Pn
i=1 y

2
i0 = O (1) and

1
n

Pn
i=1 α

2
i = O (1). Note that the MLE (OLS) is given by

bθ = 1√
nT

Pn
i=1

PT
t=1 (yit − yi) ·

¡
yit−1 − yi−

¢
1
nT

Pn
i=1

PT
t=1

¡
yit−1 − yi−

¢2 .

Applying (3) and (4) to the univariate model, we obtain

bbθ ≡ Ã 1

nT

nX
i=1

TX
t=1

¡
yit−1 − yi−

¢2!−1 " 1
nT

nX
i=1

TX
t=1

¡
yit−1 − yi−

¢
(yit − yi) +

1

T

³
1− bθ´−1 bΩ#

where bΩ = ³1− bθ2´ bΥ = ³1− bθ2´Ã 1

nT

nX
i=1

TX
t=1

¡
yit−1 − yi−

¢2!
.
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Therefore, our bias-corrected estimator is given by

bbθ = bθ + 1

T

1

1− bθ
³
1− bθ2´ = bθ + 1

T

³
1 + bθ´ = T + 1

T
bθ + 1

T
. (6)

Because Υ = Ω
1−θ20 in the univariate case, we can conclude from Theorem 2 that

√
nT

µbbθ − θ0¶→ N ¡0, 1− θ20¢
From Theorem 3, we can also conclude that bbθ is efficient under the alternative asymptotics where n, T →
∞ at the same rate.

We now consider estimation of fixed effects αi. Recently, Geweke and Keane (1996), Chamberlain

and Hirano (1997), and Hirano (1998) examined predictive aspects of the dynamic panel model from

a Bayesian perspective. From a Frequentist perspective, prediction requires estimation of individual

specific intercept terms. We argue that intercept estimation is asymptotically unbiased to begin with,

and is affected very little by bias-corrected estimation of θ0. It follows that estimation of θ0 can be

separately analyzed for the purpose of prediction. Observe that the MLE of αi is given by

ai ≡ 1

T

TX
t=1

³
yit − bθyit−1´ = αi + 1

T

TX
t=1

εit −
³bθ− θ0´ 1

T

TX
t=1

yit−1. (7)

so that

√
T (ai − αi) = 1√

T

TX
t=1

εit −
√
T
³bθ− θ0´ · 1

T

TX
t=1

yit−1 =
1√
T

TX
t=1

εit −Op
µ
1√
n

¶
·Op (1)

=
1√
T

TX
t=1

εit + op (1) .

Because 1√
T

PT
t=1 εit converges in distribution to N

¡
0,σ20

¢
as T → ∞, the MLE is asymptotically

unbiased. Furthermore, we have

√
T (bai − αi) = 1√

T

TX
t=1

εit + op (1) ,

where bai denotes the estimator of αi obtained by replacing the MLE bθ in (7) by the bias-corrected
estimator bbθ. It follows that more efficient estimation of θ0 does not affect the estimation of αi.
We now consider the nonstationary case where θ0 = 1. We first consider a simple dynamic panel

model with a unit root, where individual specific intercepts are all equal to zero but the econometrician

does not know that. The econometrician therefore estimates fixed effects along with θ.

Theorem 4 Suppose that (i) εit ∼ N ¡0,σ2¢ i.i.d; (ii) αi ≡ 0; (iii) θ0 = 1; and (iv) n,T → ∞.9 We
then have √

nT 2
µbθ − θ0 + 3

T + 1

¶
→ N

µ
0,
51

5

¶
.

9No particular rate on the growth of n and T is imposed.
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Proof. See Appendix D.1.

One obvious implication of Theorem 4 is that the bias correction for the stationary case is not expected

to work under the unit root.

We now consider the case where individual specific intercepts are nonzero, and the econometrician

estimates them along with θ.

Theorem 5 Suppose that (i) εit ∼ N
¡
0,σ2

¢
i.i.d; (ii) lim 1

n

Pn
i=1 α

2
i > 0; (iii) θ0 = 1; and (iv) lim

p
n
T

exists. We then have

n1/2T 3/2
³bθ − θ0´→ N

Ã
− 6σ2 lim

p
n
T

lim 1
n

Pn
i=1 α

2
i

,
12σ2

lim 1
n

Pn
i=1 α

2
i

!
.

Proof. See Appendix D.2.

Although Theorem 5 shares the same feature as Theorem 1 as far as the asymptotic bias being

proportional to lim
p

n
T , it is quite clear that the bias correction for the stationary case does not work

because the asymptotic bias under the unit root depends on lim 1
n

Pn
i=1 α

2
i .

4 Monte Carlo

We conduct a small Monte Carlo experiment to evaluate the accuracy of our asymptotic approximations

to the small sample distribution of the MLE and bias-corrected MLE. We generate samples from the

model

yit = αi + θ0yit−1 + εit

where yit ∈ R, θ0 ∈ {0, .3, .6, .9}, αi ∼ N (0, 1) independent across i, and εit ∼ N (0, 1) independent
across i and t. We generate αi and εit such that they are independent of each other. We chose yi0|αi ∼
N
³

αi
1−θ0 ,

Var(εit)
1−θ20

´
. The effective sample sizes we consider are n = {100, 200} and T ∈ {5, 10, 20}.10 For

each sample of size n and T we compute the bias-corrected MLE bbθ based on formulation (6). We also
compute the usual GMM estimator bθGMM based on first differences

yit − yit−1 = θ0 (yit−1 − yit−2) + εit

using past levels (yi0, . . . , yit−2) as instruments. In order to avoid the complexity of weight matrix

estimation, we consider Arellano and Bover’s (1995) modification.11

Finite sample properties of both estimators obtained by 5000 Monte Carlo runs are summarized in

Table 1. We can see that both estimators have some bias problems. Unfortunately, our bias-corrected

estimator does not completely remove the bias. This suggests that an even more careful small sample

analysis based on higher order expansions of the distribution might be needed to account for the entire

bias. On the other hand, the efficiency of bbθ measured by the root mean squared error (RMSE) often
dominates that of the GMM estimator, suggesting that our crude higher order asymptotics and the related

convolution theorem provide a reasonable prediction about the efficiency of the bias-corrected MLE.
10More extensive Monte Carlo results are available from authors upon request.
11Arellano and Bover (1995) proposed to use the moment restrictions obtained by Helmert’s transformation of the same

set of information. Strictly speaking, therefore, their estimator is not based on first differences with past level instruments.
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5 Summary

In this paper, we considered a dynamic panel model with fixed effects where n and T are of the same

order of magnitude. We developed a method to remove the asymptotic bias of OLS, and, under the

assumption of Gaussian innovations, showed that the bias-corrected MLE is asymptotically efficient in

the sense that its asymptotic variance equals that of the limit of the Cramer-Rao lower bound. Our

simulation results compare our efficient bias-corrected MLE to more conventional GMM estimators. It

turns out that our estimator has comparable bias properties and often dominates the GMM estimator in

terms of mean squared error loss for the sample sizes that we think our procedure is most appropriate

for.

Our theoretical result may be related to Kiviet’s (1995) result. He derived an expression of approxi-

mate bias of the MLE, which is slightly different from ours. His expression for the approximate bias is a

nonlinear function of the unknown parameter values including θ0. He showed by simulation that the in-

feasible bias-corrected MLE, based on knowledge of θ0, has much more desirable finite sample properties

than various instrumental variable type estimators. Because his bias correction depends on the unknown

parameter value θ0, feasible implementation appears to require a preliminary estimator of θ0. He con-

sidered instrumental variable type estimators as preliminary estimators in his simulation study, but he

failed to produce any asymptotic theory for the corresponding estimator. Our bias-corrected estimator,

which does not require a preliminary estimator of θ0, may be understood as an implementable version of

Kiviet’s estimator.

It should be emphasized that some of the results in Sections 3 are independently found by Alvarez

and Arellano (1998). They derived basically the same result (and more) for the MLE and other IV

estimators under the assumption that (i) the initial observation has a stationary distribution, and (ii)

the fixed effects are normally distributed with zero mean. Although our result is derived under slightly

more general assumptions in that we do not impose such conditions, this difference should be regarded

as mere technicality. The more fundamental difference is that they were concerned with the comparison

of various estimators for dynamic panel data models whereas we are concerned with bias correction and

efficiency. Phillips and Moon (1999) recently considered a panel model where both T and n are large.

They considered asymptotic properties of OLS estimators for a panel cointegrating relation when both T

and n go to infinity. This paper differs from theirs with respect to the assumption that 0 < limn/T <∞
whereas they assume limn/T = 0 as n, T → ∞. It was shown in Section 3 that the asymptotic bias
of the MLE (OLS) is proportional to

p
n/T . Phillips and Moon (1999) showed that the OLS estimator

is consistent and asymptotically normal with zero mean. Although their setup is different from ours

in the sense that their regressor is assumed to be nonstationary, it is plausible that their asymptotic

unbiasedness of OLS critically hinges on the assumption that limn/T = 0.

One advantage of using bias-corrected MLE as the guiding principle for constructing estimators is

that it can more naturally be extended to nonlinear models. Except for a few well-known examples

for which ad-hoc solutions are available, we do not have any general method to deal with incidental

parameter problems for general panel models with fixed effects. We expect MLE to be consistent and

asymptotically normal even for nonlinear models under the alternative asymptotics where both n and T

grow to infinity at the same rate. We also expect that the limiting distribution is not centered at zero. By

9



estimating the non-centrality parameter and subtracting from the MLE, we can develop a bias corrected

estimator, which is expected to dominate the MLE. GMM estimators on the other hand ultimately rely

on transformations such as first differencing or similar averaging techniques to remove the individual fixed

effects. Such transformations are inherently linear in nature and therefore not suited for generalizations

to a nonlinear context.

Our technique can in principle be generalized to remove bias of higher order than T−1 by repeating the

alternative asymptotic approximation scheme for an appropriately rescaled version of the bias-corrected

estimator. We are planning to pursue this avenue in future research.

Our bias-corrected MLE is not expected to be asymptotically unbiased under a unit root. We leave

development of a bias-corrected estimator robust to nonstationarity to future research.
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Appendix

A Proof of Theorem 1

Theorem 1 is established by combining Lemmas 6 and 7 below. Note that

yit = θ
t
0yi0 + (Im − θ0)−1

¡
1− θt0

¢
αi + θ

t−1
0 εi1 + θ

t−2
0 εi2 + · · ·+ εit. (8)

In the stationary case where limn θ
n
0 = 0, we work with the stationary approximation to yit which is

given by

u∗it ≡
∞X
j=0

θj0εit−j , t ≥ 1 (9)

y∗it ≡ (Im − θ0)−1 αi + u∗it, t ≥ 0. (10)

The vectorized representation of the OLS estimator for θ00 is given by

vec
³bθ0 − θ00´ =

Im ⊗Ã nX
i=1

TX
t=1

¡
yit−1 − yi−

¢ ¡
yit−1 − yi−

¢0!−1" nX
i=1

TX
t=1

¡
Im ⊗

¡
yit−1 − yi−

¢¢
(εit − εi)

#

where ε̄i ≡ 1
T

PT
t εit.

Lemma 1 Let εit be iid across i and t and E
·¯̄̄
ε
(j)
it

¯̄̄8¸
<∞. Assume Conditions 4 (ii) - (iv) hold. Then

Conditions 2 and 3 hold.

Proof. See Hahn and Kuersteiner (2001).

Lemma 2 Let yit be generated by (1). Also, let S∗nT ≡ 1√
nT

Pn
i=1

PT
t=1 (Im ⊗ u∗it) (εit − εi). Then,

under Conditions 1, 2 and 3

1√
nT

nX
i=1

TX
t=1

¡
Im ⊗

¡
yit−1 − yi−

¢¢
(εit − εi) = S∗nT + op (1) (11)

Proof. See Hahn and Kuersteiner (2001).

Lemma 3 Let yit be generated by (1). Under Conditions 1, 2 and 3,

1√
nT

nX
i=1

TX
t=1

(Im ⊗ u∗it) εi =
√
ρ (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) + op (1) .

Proof. See Hahn and Kuersteiner (2001).

Lemma 4 Assume εt is a sequence of independent, identically distributed random vectors with E [εt] = 0

for all t. Then cumj1,...jk (εt1 , ..., εtk) = 0 unless t1 = t2 = · · · = tk. In this case we define cum(j1, ..., jk) ≡
cumj1,...jk (εt, ..., εt).
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Lemma 5 Let Conditions 1, 2 and 3 be satisfied. Then

1√
nT

nX
i=1

TX
t=1

¡
Im ⊗ u∗it−1

¢
εit → N (0,Ω⊗Υ+K)

where K =P∞
t=−∞K (t, 0) and K (t1, t2) ≡ E

£¡
Im ⊗ u∗it1−1

¢
εit1ε

0
it2

¡
Im ⊗ u∗0it2−1

¢¤−E £εit1ε0it2¤⊗E [u∗i0u∗0i0].
If in addition all the innovations εit are independent for all i and t then

1√
nT

nX
i=1

TX
t=1

¡
Im ⊗ u∗it−1

¢
εit → N (0,Ω⊗Υ) .

Proof. We need to check the generalized Lindeberg Feller condition for joint asymptotic normality

as in Theorem 2 of Phillips and Moon (1999). A sufficient condition for the theorem to hold is that for

all ` ∈ Rm2

such that `0` = 1 it follows E
·³

1√
T

PT
t=1 `

0(Im ⊗ u∗it−1)εit
´4¸

< ∞ uniformly in i and T .

Letting zit = `0
¡
Im ⊗ u∗it−1

¢
εit and noting that E [zit] = 0 we show in Hahn and Kuersteiner (2001) that

1
T2

PT
t1,...t4=1

E [zit1zit2zit3zit4 ] <∞. Now consider

E

Ã 1√
T

TX
t=1

¡
Im ⊗ u∗it−1

¢
εit

!2
=
1

T

TX
t,s=1

E
£¡
Im ⊗ u∗it−1

¢
εitε

0
is

¡
Im ⊗ u∗0is−1

¢¤
=
1

T

TX
t,s=1

vec
¡
E
£
u∗it−1ε

0
is

¤¢
vec

¡
E
£
u∗is−1ε

0
it

¤¢
+
1

T

TX
t,s=1

E [εitε
0
is]⊗E

£
u∗it−1u

∗0
is−1

¤
+
1

T

TX
t,s=1

K (t, s)

= Ω⊗Υ+K+o(1).

where K =P∞
t1=−∞K(t1, 0). Note that vec

¡
E
£
u∗it−1ε0is

¤¢
vec

¡
E
£
u∗is−1ε0it

¤¢
= 0 for all t and s and that

1
T

PT
t,s=1E [εitε

0
is]⊗ E

£
u∗it−1u

∗0
is−1

¤
= 1

T

PT
t=1E [εitε

0
it]⊗ E

£
u∗it−1u

∗0
it−1

¤
= Ω⊗Υ by strict stationarity.

The last line of the display follows by Cesàro summability and stationarity. The second part of the

theorem follows from Lemma 4, which implies that K (t1, t2) = 0 for all t1 and t2.

Lemma 6 Let yit be generated by (1). Under Conditions 1, 2 and 3,

1√
nT

nX
i=1

TX
t=1

¡
Im ⊗

¡
yit−1 − yi−

¢¢
(εit − εi)→ N

³
−√ρ (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) ,Ω⊗Υ+K

´
.

Proof. The result follows from Lemmas 2, 3, and 5.

Lemma 7 Let yit be generated by (1). Under Conditions 1, 2 and 3

1

nT

nX
i=1

TX
t=1

¡
yit−1 − yi−

¢ ¡
yit−1 − yi−

¢0
= E

h¡
y∗it−1 −Ey∗it−1

¢ ¡
y∗it−1 −Ey∗it−1

¢0i
+ op (1) = Υ+ op (1) .

Proof. See Hahn and Kuersteiner (2001).
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B Proof of Theorem 2

Because vec (Υ) = (Im − (θ0 ⊗ θ0))−1 vec (Ω), and bθ = θ0 + op (1), we haver
n

T

³
Im ⊗ Im −

³
Im ⊗ bθ´´−1 vec³bΩ´ = √ρ (Im ⊗ Im − (Im ⊗ θ0))−1 vec (Ω) + op (1) . (12)

Combining with Lemma 6, we obtain

1√
nT

nX
i=1

TX
t=1

¡
Im ⊗

¡
yit−1 − yi−

¢¢
(εit − εi)+

r
n

T

³
Im ⊗ Im −

³
Im ⊗ bθ´´−1 vec³bΩ´ d→ N (0, (Ω⊗Υ+K)) .

The conclusion follows by using Lemma 7.

C Proof of Theorem 3

For the discussion and derivation of the asymptotic variance bound, we adopt the same framework as in

van der Vaart and Wellner (1996, p. 412). For this purpose, we discuss some of their notation. Let H

be a linear subspace H of a Hilbert space with inner product h·, ·i and norm k·k, and let Pn,h denote a
probability measure on a measurable space (Xn,An). Consider estimating a parameter κn (h) based on
an observation with law Pn,h. Now, let {∆h : h ∈ H} be the “iso-Gaussian process” with zero mean and
covariance function E [∆h1∆h2 ] = hh1, h2i. We say that the sequence (Xn,An, Pn,h) is asymptotically
normal if

log
dPn,h
dPn,0

= ∆n,h − 1
2
khk2

for stochastic processes {∆n,h : h ∈ H} such that ∆n,h converges weakly to ∆h marginally under Pn,0.
Now, consider the sequence of parameters κn (h) belonging to a Banach space B, which is regular in the

sense that rn (κn (h)− κn (0)) → κ̇ (h) for every h ∈ H for a continuous, linear map κ̇ : H → B and

certain linear maps rn : B → B. A sequence of estimators τn is defined to be regular if rn (τn − κn (h))
converges weakly to the same measure L, say, regardless of h. The bound of the asymptotic variance of

a regular estimator can be found from the following theorem based on the modification of van der Vaart

and Wellner (1996, Theorem 3.11.2):

Theorem 6 Assume that (Pn,h : h ∈ H) is asymptotically normal. Also, suppose that (i) h = (δ,Ξ),

h0 = (0, 0); (ii) κn (h) ≡ ξn ≡ ξ0+ 1
rn
δ for some ξ0 ∈ R; and (iii) ∆h ≡ ∆1 · δ+∆2 (Ξ). Further suppose

that, with respect to the norm k·k, (iv) the mapping κ̇ : (δ,Ξ)→ δ is continuous; and (v) H is complete.

Then, for every regular sequence of estimators {τn}, we have

rn (τn − κn (h))→ N
µ
0,E

he∆12i−1¶⊕W
for some W , where ⊕ denotes convolution, and e∆1 is the residual in the projection of ∆1 on
{∆2 (Ξ) : (δ,Ξ) ∈ H}.12
12This theorem originally appeared in Hahn (1998), but is reproduced here for convenience.
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We show that our setup is covered by the preceding theorem. Ignoring irrelevant constants, the joint

likelihood of the model (1) is given by

L = nT

2
log det (Ψ)− 1

2

nX
i=1

TX
t=1

trace (ΨZit (αi, θ)) , (13)

where Zit (αi, θ) ≡
¡
yit − αi − θ0yit−1

¢ ¡
yit − αi − θ0yit−1

¢0
, and Ψ = Ω−1. We will localize the parame-

ter. Let α denote the sequence (α1,α2, . . .). We will attach subscript 0 to denote the ‘truth’. We will

localize the parameter around the ‘truth’, so that θ ≡ θ (n) ≡ θ0 + 1√
nT
eθ, Ψ ≡ Ψ (n) ≡ Ψ0 + 1√

nT
eΨ, and

α ≡ α (n) ≡ α0 + 1√
nT
eα. Let h ≡ ³eα,eθ, eΨ´, and let H denote a set of all possible values of

³eα,eθ, eΨ´.
Let Pn,h denote the joint probability under parameters characterized by h. It can be shown that the

sequence (Pn,h : h ∈ H) is asymptotically normal :

Lemma 8 Under Pn,0, we have

log
dPn,h
dPn,0

= ∆n,h − 1
2
k∆n,hk2 + op (1) ,

where

∆n,h ≡ ∆n
³eα,eθ, eΨ´

= − 1

2
√
nT

nX
i=1

TX
t=1

trace
³eΨ (εitε0it −Ω)´+ 1√

nT

nX
i=1

TX
t=1

³eαi + eθy∗it−1´0Ψεit
converges weakly (under Pn,0) to ∆h ∼ N

³
0, khk2

´
. Here, khk2 = hh, hi, andD³eα1,eθ1, eΨ1´ , ³eα2,eθ2, eΨ2´E ≡ 1

2
vec

³eΨ2´0 vec (Ω) · vec (Ω)0 vec³eΨ1´+ vec³eθ02´0 (Ψ⊗Υ) vec³eθ01´
+ lim
n→∞

1

n

nX
i=1

eα01iΨeα2i +
Ã
vec

Ã
lim
n→∞

1

n

nX
i=1

αieα01i
!!0 ³

Ψ⊗ ¡Im − θ0¢−1´vec³eθ02´
+

Ã
vec

Ã
lim
n→∞

1

n

nX
i=1

αieα02i
!!0 ³

Ψ⊗ ¡Im − θ0¢−1´vec³eθ01´
+
³
vec

³eθ02´´0
Ã
Ψ⊗ (Im − θ)−1

Ã
lim
n→∞

1

n

nX
i=1

αiα
0
i

!¡
Im − θ0

¢−1!
vec

³eθ01´ . (14)

Proof. See Hahn and Kuersteiner (2001).

Now, note that we may write ∆n
³eα,eθ, eΨ´ = vec³eθ0´0∆1n +∆2n ³eα, eΨ´, where

∆1n ≡ 1√
nT

nX
i=1

TX
t=1

¡
Ψ⊗ y∗it−1

¢
εit,

∆2n

³eα, eΨ´ ≡ − 1

2
√
nT

nX
i=1

TX
t=1

trace
³eΨ (εitε0it −Ω)´+ 1√

nT

nX
i=1

TX
t=1

eα0iΨεit.
Theorem 6 implies that the ‘minimal’ asymptotic distribution is N

µ
0,
³
E
he∆1 e∆01i´−1¶, where e∆1 is the

residual in the projection of ∆1 on the linear space spanned by
n
∆2
³eα, eΨ´o. Here, ∆1 and ∆2 ³eα, eΨ´
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denote the ‘limits’ of∆1n and∆2n
³eα, eΨ´. Lemma 9 below establishes that De∆1, e∆01E = Ψ⊗Υ. Therefore,

the minimum variance of estimation of vec (θ0) is given by the inverse of Ψ⊗Υ, or Ω⊗Υ−1.

Lemma 9
De∆1, e∆01E = Ψ⊗Υ.

Proof. We first establish that

e∆1 ≡

e01
...

e0m2

∆1 −

∆2
³
D1 (Im − θ0)−1 α, 0

´
...

∆2
³
Dm2 (Im − θ0)−1 α, 0

´
 ,

where, e0j denotes the jth row of Im2 , and Dj is an m×m matrix such that vec
¡
D0j
¢
= ej . We minimize

the norm of e0j∆1 −∆2
³eα, eΨ´ for each j. From (14), we obtain

°°°e0j∆1 −∆2 ³eα, eΨ´°°°2 = e0j
Ã
Ψ⊗ (Im − θ0)−1

Ã
lim
n→∞

1

n

nX
i=1

αiα
0
i

!¡
Im − θ00

¢−1!
ej

− 2 lim
n→∞

1

n

nX
i=1

eα0iΨDj (Im − θ0)−1 αi + lim
n→∞

1

n

nX
i=1

eα0iΨeαi
+ e0j (Ψ⊗Υ) ej +

1

2

³
trace

³
ΩeΨ´´2 .

Therefore, the minimum of
°°°e0j∆1 −∆2 ³eα, eΨ´°°°2 is attained with eΨ = 0, and eα0i = Dj (Im − θ0)−1 αi.

Observe that the (j, k)-element of
De∆1, e∆01E is equal toD

e0j∆1 −∆2
³
Dj (Im − θ0)−1 αi, 0

´
, e0k∆1 −∆2

³
Dk (Im − θ0)−1 αi, 0

´E
.

After some tedious algebra, we can show that it is equal to e0j (Ψ⊗Υ) ek. In other words,
De∆1, e∆01E =

Ψ⊗Υ.

D Proofs of Theorems 4 and 5

Ignore the i subscript whenever obvious. Let HT = IT − 1
T `T `

0
T , y = (y1, . . . , yT )

0, y− = (y0, . . . , yT−1)
0,

and ε = (ε1, . . . , εT )
0. We can write

PT
t=1 (εt − ε)

¡
yt−1 − y−

¢
= ε0HTy−, and

PT
t=1

¡
yt−1 − y−

¢2
=

y0−HTy−. Here, `T denotes T -dimensional column vector consisting of ones. Note that

y− =



1

1

1
...

1


y0 +



0

1

2
...

T − 1


α+



0 0 0 · · · 0

1 0 0 · · · 0

1 1 0 · · · 0
...
...
... · · · · · ·

1 1 1 1 0


ε ≡ ξ1T y0 + ξ2Tα+AT ε.
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Let DT ≡ HTAT . We have HT ξ1T = 0, and hence, it follows that

HT y− =
µ
ξ2T −

T − 1
2

`T

¶
α+DT ε,

ε0HT y− = ε0
µ
ξ2T −

T − 1
2

`T

¶
α+ ε0DT ε,

y0−HT y− =
µ
ξ2T −

T − 1
2

`T

¶0µ
ξ2T −

T − 1
2

`T

¶
α2 + 2αε0

µ
ξ2T −

T − 1
2

`T

¶
+ ε0D0TDT ε

In the special case where α = 0, we have ε0HTy− = ε0DT ε, y0−HTy− = ε0D0TDT ε.

Lemma 10

trace (D0TDT ) =
1

6
T 2 − 1

6
, trace

h
(D0TDT )

2
i
=
1

90
T 4 +

1

36
T 2 − 7

180
,

trace
¡
D0TD

2
T

¢
= − 1

12
T 2 +

1

12
,

trace (DT +D
0
T ) = −T + 1, trace

³
(DT +D

0
T )
2
´
=
1

6
T 2 + T − 7

6
,

trace
³
(DT +D

0
T )
3
´
= −1

4
T 2 − T + 5

4
, trace

³
(DT +D

0
T )
4
´
=
1

72
T 4 +

11

36
T 2 + T − 95

72
.

Lemma 11 As n,T →∞ it follows that 1
nT2

P
i ε
0D0TDT ε =

σ2

6 + op (1) .

Proof. Examining the cumulant generating function, we can see that the first two cumulants of

ε0D0TDT ε are equal to σ
2 trace (D0TDT ), and 2σ

4 trace
h
(D0TDT )

2
i
. Using Lemma 10, we obtain the

desired conclusion.

Lemma 12 As n,T →∞ it follows that 1√
nT

P
i ε
0
³
DT +

3
T+1D

0
TDT

´
ε→ N

³
0, 17σ

4

60

´
.

Proof. We first note that the fourth central moment of ε0DT ε + 3
T+1ε

0D0TDT ε can be bounded

by eight times the sum of the fourth central moments of ε0DT ε and 3
T+1ε

0D0TDT ε, from which we can

conclude that the fourth central moment of ε0DT ε+ 3
T+1ε

0D0
TDT ε is of order T

4. Examining the cumulant

generating function, we can see that the first two cumulants of ε0
³
DT +

3
T+1D

0
TDT

´
ε ≡ ε0GT ε are given

by σ2

2 trace (GT +G
0
T ), and

σ4

2 trace
h
(GT +G0T )

2
i
. Using Lemma 10, we can show that

trace (GT +G
0
T ) = 0, trace

h
(GT +G

0
T )
2
i
=
1

30

17T 3 − 37T 2 + 37T − 17
T + 1

.

Therefore, we have

E

·
ε0
µ
DT +

3

T + 1
D0TDT

¶
ε

¸
= 0, Var

µ
ε0
µ
DT +

3

T + 1
D0TDT

¶
ε

¶
=
σ4

60

17T 3 − 37T 2 + 37T − 17
T + 1

.

Because the fourth central moment is of order T 4, and the variance is of order T 2, the Lyapounov

condition is satisfied. Therefore, we have

1q
nσ

4

60
17T 3−37T2+37T−17

T+1

X
i

ε0
µ
DT +

3

T + 1
D0TDT

¶
ε→ N (0, 1) ,

from which the conclusion follows.
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Lemma 13 Suppose that lim 1
n

Pn
i=1 α

2
i > 0. We then have

1

n1/2T 3/2

X
i

µ
ε0HTy− − σ

2

2
(−T + 1)

¶
→ N

Ã
0,
σ2

12
lim

1

n

nX
i=1

α2i

!

Proof. Because
¡
ξ2T − T−1

2 `T
¢0 ¡
ξ2T − T−1

2 `T
¢
= − 1

12T +
1
12T

3, we have

nX
i=1

ε0i

µ
ξ2T −

T − 1
2

`T

¶
αi ∼ N

Ã
0,σ2

µ
− 1

12
T +

1

12
T 3
¶ nX
i=1

α2i

!
= Op

³
n1/2T 3/2

´
. (15)

It therefore suffices to prove thatX
i

µ
ε0DT ε− σ

2

2
(−T + 1)

¶
= op

³
n1/2T 3/2

´
. (16)

Examining the cumulant generating function, we can show that the first, and second cumulants of ε0DT ε

are equal to σ2

2 trace [DT +D
0
T ], and

σ4

2 trace
h
(DT +D

0
T )
2
i
. Using Lemma 10 along with the well-known

relation between cumulants and central moments, we obtain E
·³
ε0DT ε− σ2

2 (−T + 1)
´2¸

= O
¡
T 2
¢
,

from which (16) follows.

Lemma 14 Suppose that lim 1
n

Pn
i=1 α

2
i > 0. We then have plim

1
nT3

P
i y
0−HTy− =

1
12 lim

1
n

Pn
i=1 α

2
i .

Proof. Note that

y0−HTy− =
µ
ξ2T −

T − 1
2

`T

¶0µ
ξ2T −

T − 1
2

`T

¶
α2 + 2αε0

µ
ξ2T −

T − 1
2

`T

¶
+ ε0D0TDT ε (17)

Because
¡
ξ2T − T−1

2 `T
¢0 ¡
ξ2T − T−1

2 `T
¢
= − 1

12T +
1
12T

3, we have

X
i

µ
ξ2T −

T − 1
2

`T

¶0µ
ξ2T −

T − 1
2

`T

¶
α2i =

µ
− 1

12
T +

1

12
T 3
¶ nX
i=1

α2i = O
¡
nT 3

¢
.

From (15) and Lemma 11, we can see that the first term on the right hand side of (17) dominates the

second and third terms. The conclusion follows.

D.1 Proof of Theorem 4

The conclusion follows from combining

√
nT

µbθ − θ0 + 3

T + 1

¶
=

1√
nT

P
i ε
0
³
DT +

3
T+1D

0
TDT

´
ε

1
nT2

P
i ε
0D0TDT ε

with Lemmas 11 and 12.

D.2 Proof of Theorem 5

The conclusion follows from combining

n1/2T 3/2
³bθ − θ0´ = 1

n1/2T3/2

P
i

³
ε0HTy− − σ2

2 (−T + 1)
´
+ 1

n1/2T3/2
σ2

2 n (−T + 1)
1
nT3

P
i y
0−HT y−

with Lemmas 13 and 14.
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Table 1: Performance of Bias Corrected Maximum Likelihood Estimator

Case Bias RMSE Test of Normality

T N θ0 bθGMM
bbθ bθGMM

bbθ bθGMM
bbθ

(1) 5 100 0 -0.011 -0.039 0.074 0.065 25.030 6.878

(2) 5 100 0.3 -0.027 -0.069 0.099 0.089 18.978 0.887

(3) 5 100 0.6 -0.074 -0.115 0.160 0.129 33.449 0.717

(4) 5 100 0.9 -0.452 -0.178 0.552 0.187 180.519 1.858

(5) 5 200 0 -0.006 -0.041 0.053 0.055 6.970 0.978

(6) 5 200 0.3 -0.014 -0.071 0.070 0.081 2.813 0.400

(7) 5 200 0.6 -0.038 -0.116 0.111 0.124 0.720 1.463

(8) 5 200 0.9 -0.337 -0.178 0.443 0.183 210.255 2.818

(9) 10 100 0 -0.011 -0.010 0.044 0.036 7.296 1.344

(10) 10 100 0.3 -0.021 -0.019 0.053 0.040 0.210 0.917

(11) 10 100 0.6 -0.045 -0.038 0.075 0.051 6.313 8.251

(12) 10 100 0.9 -0.218 -0.079 0.248 0.085 248.829 19.933

(13) 10 200 0 -0.006 -0.011 0.031 0.027 7.119 4.677

(14) 10 200 0.3 -0.011 -0.019 0.038 0.032 0.964 1.239

(15) 10 200 0.6 -0.025 -0.037 0.051 0.045 2.086 0.014

(16) 10 200 0.9 -0.152 -0.079 0.181 0.082 159.734 4.548

(17) 20 100 0 -0.011 -0.003 0.029 0.024 2.901 0.823

(18) 20 100 0.3 -0.017 -0.005 0.033 0.024 0.423 0.512

(19) 20 100 0.6 -0.029 -0.011 0.042 0.024 2.687 5.555

(20) 20 100 0.9 -0.100 -0.032 0.109 0.037 127.077 27.399

(21) 20 200 0 -0.006 -0.003 0.020 0.017 0.925 1.590

(22) 20 200 0.3 -0.009 -0.005 0.022 0.017 4.420 1.873

(23) 20 200 0.6 -0.016 -0.010 0.027 0.018 10.647 0.895

(24) 20 200 0.9 -0.065 -0.031 0.074 0.034 117.679 8.088

Simulations are based on 5000 replications. The fixed effects αi and the innovations ²it are assumed to

have independent standard normal distributions. The initial observations yi0 are assumed to be generated

by the stationary distribution N
³

αi
1−θ0 ,

1
1−θ20

´
. The last two columns report the statistic “sample size

×[skewness2/6 + (kurtosis− 3)2/24]”. The statistic is asymptotically χ2(2) under the null of normality.
The upper and lower 2.5 percentile of χ2(2) are 7.38 and .05. Normality of bθGMM is rejected for cases 1,

2, 3, 4, 8, 12, 16, 20, 23, and 24. Normality of bbθ is rejected for cases 11, 12, 20, and 24.
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