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Abstract

We consider a dynamic panel AR(1) model with �xed e¤ects when both n and T are large. It is shown

that the MLE motivated by the random e¤ects assumption is asymptotically unbiased even when the

assumption is violated.
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1 Introduction

In this paper, we consider estimation of a dynamic panel data model with �xed e¤ects. We consider

estimation of the autoregressive parameter �0 in a dynamic panel model with �xed e¤ects

yit = �i + �0yi;t�1 + "it; t = 1; 2; : : : ; T ; i = 1; : : : ; n: (1)

The model has additive individual time invariant intercepts (�xed e¤ects) along with a parameter common

to every individual. The total number of parameters is therefore equal to n plus the dimension of the

common parameter, say K. When n is large relative to T , a maximum likelihood estimator (MLE) of

all n+K parameters would lead to a severely biased estimate of the common parameter of interest. See

Neyman and Scott (1948), and Nickell (1981). Some of the recent literature proposed to remove such

bias, adopting an asymptotic framework where n and T grow to in�nity at the same rate. See Hahn and

Kuersteiner (2002), Alvarez and Arellano (2003), or Hahn and Newey (2003).

In this paper, we consider the asymptotic properties of a random e¤ects MLE. To be exact, we will

consider the MLE computed under the (possibly) incorrect assumption that �i is a normally distributed

random variable independent of yi0. It is shown that such a random e¤ects MLE has a zero asymptotic

bias. Moreover, the asymptotic distribution is the same as the bias corrected MLE developed in Hahn and

Kuersteiner (2002). Therefore, the random e¤ects MLE is e¢ cient according to the convolution theorem

derived there. These results hold regardless of the correctness of the random e¤ects assumption.

Alvarez and Arellano (2003) obtained a similar but slightly more restrictive result. They showed that

the pseudo MLE based on the correlated random e¤ects model, where �i is speci�ed to be normally dis-

tributed with arbitrary unknown correlation with yi0, is asymptotically unbiased. Our result strengthens

their by showing that the pseudo MLE remains asymptotically unbiased even when �i is speci�ed to be

independent of yi0.

2 Random E¤ects Mis-Speci�cation

We consider a panel model with �xed e¤ects

yit = �i + �0yit�1 + "it; i = 1; : : : ; n; t = 1; : : : ; T (2)

where we observe the sample yi0; :::; yiT for each individual.We �rst examine the sampling properties of

the maximum likelihood estimator (�xed e¤ects estimator) when both n and T are large. We impose the

following regularity condition.

Condition 1 (i) "it � N
�
0; �20

�
i.i.d.; (ii) 0 < lim n

T � � < 1; (iii) j�0j < 1; and (iv) 1
n

Pn
i=1 y

2
i0 =

O (1) and 1
n

Pn
i=1 �

2
i = O (1).

Observe that the MLE b is such that

p
nT (b� �0) =

1p
nT

Pn
i=1

PT
t=1 ("it � "i) �

�
yit�1 � yi�

�
1
nT

Pn
i=1

PT
t=1

�
yit�1 � yi�

�2 ; (3)
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where yi� =
1
T

PT
t=1 yit�1 and "i =

1
T

PT
t "it. Under our asymptotics, we can obtain the result that the

�xed e¤ects MLE is asymptotically biased:
p
nT (b� �0)! N

�
�p� (1 + �0) ; 1� �20

�
:

See Hahn and Kuersteiner (2002) or Alvarez and Arellano (2003).

We now consider the maximum likelihood estimator computed under the possibly incorrect assumption

that �i is a normally distributed random variable independent of yi0:

�ij yi0 � N
�
�; !2

�
: (4)

The nature of misspeci�cation is that �i is assumed to be independent of yi0 when in fact they may have

arbitrary correlation. It will be established that the maximum likelihood estimator of the misspeci�ed

model is e¢ cient under the alternative asymptotic approximation we adopt in this paper.

The log likelihood under (4) is equal to

L
�
�2; �; �; �

�
= �nT log �2 + n log �� n log (T + �)� n�

2

�2
�

� 1

�2

nX
i=1

TX
t=1

(yit � �yit�1)2 +
1

�2
1

T + �

nX
i=1

�
T
�
yi � �yi�

�
+ ��

�2
;

where yi � 1
T

PT
t=1 yit, yi� � 1

T

PT
t=1 yit�1, and � � �2

�
!2. Let b�RE denote the (pseudo-) maximum

likelihood estimator solving max2�;�;�;� L
�
�2; �; �; �

�
. It is shown that b�RE is consistent and asymptoti-

cally normal:

Theorem 1 Under Condition 1, we have
p
nT
�b�RE � �0�! N

�
0; 1� �20

�
.

Proof. See Appendix C.

The asymptotic distribution of b�RE is the same as the bias corrected maximum likelihood estimator

developed in Hahn and Kuersteiner (2002), and the result holds regardless of the correctness of the

random e¤ects assumption. This surprising result seems to have at least two practical consequences.

Our result casts reasonable doubt on the �nite sample properties of Hausman tests for this particular

model. Consider an econometrician faced with a dynamic panel model with �xed e¤ects. He is entertain-

ing two estimators: A maximum likelihood estimator for the random e¤ects model, and an IV estimator

based on �rst di¤erencing. Assume that he approximates the model by the usual T �xed n ! 1 as-

ymptotics. Under the null, i.e., under assumption (4), both estimators are consistent but MLE is more

e¢ cient. Under the alternative that (4) is incorrect, there would be a statistically signi�cant di¤erence

between the two. If the di¤erence is rather small, he will opt to use the random e¤ects MLE. If the

di¤erence is large, he will use the IV estimator. Now, suppose that the alternative asymptotic approxi-

mation considered in this paper is a better one. It then follows that the di¤erence between the two will

be asymptotically nonzero whether the null is correct or not. It is quite possible that the econometrician

would conclude that the di¤erence between the two estimators is statistically signi�cant, based on which

he will opt to report the IV estimator. But the IV estimator is asymptotically biased under the alternative

asymptotic approximation as argued by Alvarez and Arellano (2003). It therefore follows that, with high

probability, an econometrician would choose to use an inferior estimator due to the puzzling property of

the random e¤ects estimator.
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Appendix

Maximizing it over (�; �), we obtain the concentrated likelihood

L
�
�2; �

�
=� n (T � 1) log �2 � n log

8<: 1n
nX
i=1

�
yi � �yi�

�2 � 1
n

nX
i=1

�
yi � �yi�

�!29=;
� 1

�2

nX
i=1

TX
t=1

(yit � �yit�1)2 + T
1

�2

nX
i=1

�
yi � �yi�

�2
:

It can also be shown that

b� ��2; �� = �2

��2

T + 1
n

Pn
i=1

�
yi � �yi�

�2 � � 1nPn
i=1

�
yi � �yi�

��2 ;
b� ��2; �� = 1

n

nX
i=1

�
yi � �yi�

�
;

where
�b� ��2; �� ; b� ��2; ��� � argmax(�;�) L ��2; �; �; ��. Let �b�2RE ; b�RE ; b�RE ; b�RE� denote the maxi-

mum likelihood estimator.

A Technical Lemmas

Lemma 1 1
nT

Pn
i=1

PT
t=1 (�i + "it)

2
= lim 1

n

Pn
i=1 �

2
i+�

2
0+op (1),

1
n

Pn
i=1 (�i + "i)

2
= lim 1

n

Pn
i=1 �

2
i+

op (1).

Proof. With some abuse of notation, we can write

1

nT

nX
i=1

TX
t=1

(�i + "it)
2
=
1

n

nX
i=1

�2i +
1

nT

nX
i=1

TX
t=1

"2it + 2
1

nT

nX
i=1

�i

TX
t=1

"it

=
1

n

nX
i=1

�2i + �
2
0

�2 (nT )

nT
+N

 
0;
4�20
n2T

nX
i=1

�2i

!
;

which establishes the �rst claim. The second can be similarly established.

Lemma 2 1
n

Pn
i=1 y

2
i� =

1
(1��0)2

lim 1
n

Pn
i=1 �

2
i + op (1).

Proof. We have

yi� � N
 
1

T

1� �T0
1� �0

yi0 +
1

T

�0T � �0 � �20T + �T+10

(1� �0)
2
�0

�i; 
2
T

!
(5)

independent across is, where

T �

vuut�20T �1� �20�� 2�0 + 2�T+10 � �2T0 + 2�T0 � 1
T 2 (1� �0)

2 �
1� �20

� = o (1) : (6)
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based on which we obtain

1

n

nX
i=1

y2i� =
1

n

nX
i=1

E
�
y2i�
�
+ op (1)

=
1

n

nX
i=1

��
E
�
yi�
��2

+Var
�
yi�
��
+ op (1) =

1

(1� �0)
2 lim

1

n

nX
i=1

�2i + op (1) :

Lemma 3 1
nT

Pn
i=1

PT
t=1 (�i + "it) yit�1 =

1
1��0

lim 1
n

Pn
i=1 �

2
i .

Proof. We have

1

nT

nX
i=1

TX
t=1

(�i + "it) yit�1 =
1

n

nX
i=1

�iyi� +
1

nT

nX
i=1

TX
t=1

("it � "i)
�
yit�1 � yi�

�
+
1

n

nX
i=1

"iyi�: (7)

Using equation (5) in the proof of Lemma 2, we can show that

1

n

nX
i=1

�iyi� =
1

1� �0
lim

1

n

nX
i=1

�2i + op (1) (8)

By Hahn and Kuersteiner (2002, Lemma 6), we also have

1

nT

nX
i=1

TX
t=1

("it � "i)
�
yit�1 � yi�

�
= op (1) : (9)

Finally,
1

n

nX
i=1

"iyi� = op (1) ; (10)

because ����� 1n
nX
i=1

"iyi�

�����
2

�
����� 1n

nX
i=1

"2i

�����
����� 1n

nX
i=1

y2i�

����� =
���� �20nT �2 (n)

���� jOp (1)j = op (1) ;
where the �rst equality is based on Lemma 2. The conclusion follows from (7), (8), (9), and (10).

Lemma 4 1
nT

Pn
i=1

PT
t=1 y

2
it�1 =

1
(1��0)2

� lim 1
n

Pn
i=1 �

2
i +

�20
1��20

+ op (1).

Proof. We have

1

nT

nX
i=1

TX
t=1

y2it�1 =
1

nT

nX
i=1

 
Ty2i� +

TX
t=1

�
yit�1 � yi�

�2!
=
1

n

nX
i=1

y2i� +
1

nT

nX
i=1

TX
t=1

�
yit�1 � yi�

�2
:

The conclusion follows from Lemma 2 and Hahn and Kuersteiner (2002, Lemma 7).

B Consistency of
�b�RE; b�2RE�

The pointwise limit of L
�
�2; �

��
nT is equal to the limit of

� log �2 � 1

�2
1

nT

nX
i=1

TX
t=1

(yit � �yit�1)2 +
1

�2
1

n

nX
i=1

�
yi � �yi�

�2
: (11)
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Lemma 5 1
nT

Pn
i=1

PT
t=1 (yit � �yit�1)

2
=
�
lim 1

n

Pn
i=1 �

2
i

� �
1� ���0

1��0

�2
+ �20

�
1 + (���0)2

1��20

�
+ op (1).

Proof. We have

1

nT

nX
i=1

TX
t=1

(yit � �yit�1)2 =
1

nT

nX
i=1

TX
t=1

(�i + "it)
2 � 2 (� � �0)

1

nT

nX
i=1

TX
t=1

(�i + "it) yit�1

+ (� � �0)
2 1

nT

nX
i=1

TX
t=1

y2it�1: (12)

Conclusion follows from combination of (12), Lemmas 1, 3, and 4.

Lemma 6 1
n

Pn
i=1

�
yi � �yi�

�2
=
�
1� ���0

1��0

�2
lim 1

n

Pn
i=1 �

2
i + op (1).

Proof. Note that

1

n

nX
i=1

�
yi � �yi�

�2
=
1

n

nX
i=1

(�i + "i)
2
+ (� � �0)

2 1

n

nX
i=1

y2i� � 2 (� � �0)
1

n

nX
i=1

(�i + "i) yi�:

Combining this result with Lemma 1, and Lemma 2, equations (8), and (10), we obtain the desired

conclusion.

Theorem 2
�b�RE ; b�2RE� = ��0; �20�+ op (1) :

Proof. Combining (11) with Lemmas 5, and 6, we conclude that the pointwise limit of L
�
�2; �

��
nT

is equal to � log �2 � �20
�2

�
1 + (���0)2

1��20

�
, which is maximized at

�
�0; �

2
0

�
. Because the convergence is

uniform, as is veri�ed in Appendix D,
�b�; b�2� should be consistent for ��0; �20�. Conclusion follows.

C Proof of Theorem 1

We have

p
nT
�b�RE � �0� = 1p

nT

Pn
i=1

PT
t=1 eyit�1e"it + Tb�RE

T+b�RE 1p
nT

Pn
i=1
eyi�e�i + Tb�RE

T+b�RE 1p
nT

Pn
i=1
eyi�e"i

1
nT

Pn
i=1

PT
t=1 ey2it�1 + 1

nT
Tb�RE
T+b�RE

Pn
i=1
ey2i� :

By Hahn and Kuersteiner (2002, Lemmas 6 and 7), we have

1p
nT

X
i

TX
t=1

eyit�1e"it ! �
r
n

T
�20

1

1� �0
+N

�
0;

�40
1� �20

�
; (13)

1

nT

nX
i=1

TX
t=1

ey2it�1 = �20
1� �20

+ op (1) : (14)

Using consistency of
�b�; b�2� along with equations (5) and (6), we also obtain b�RE = lim 1

n

Pn
i=1 �i +

op (1), Tb�RE
T+b�RE = �20

lim 1
n

Pn
i=1(�i��)

2 + op (1), 1
nT

Pn
i=1
ey2i� = op (1), Tb�RE

T+b�RE 1p
nT

Pn
i=1
eyi�e�i = p n

T
�20
1��0

+

op (1), 1p
nT

Pn
i=1
eyi�e"i = op (1), from which we can infer

1

nT

Tb�RE
T + b�RE

nX
i=1

ey2i� = op (1) ;
Tb�
T + b� 1p

nT

nX
i=1

eyi�e�i + Tb�
T + b� 1p

nT

nX
i=1

eyi�e"i =r n

T

�20
1� �0

+ op (1) :
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Combined with (13) and (14), we obtain the conclusion.

D Uniform Convergence

Let bQn ��2; �� � 1
nT L

�
�2; �

�
and Q

�
�2; �

�
� � log �2 � �20

�2

�
1 + (���0)2

1��20

�
. It was already shown thatbQn ��2; ��! Q

�
�2; �

�
pointwise. Therefore, the convergence is uniform as long as

1. bQn is maximized over ��2; �� 2 �, a compact set, and ��20; �0� 2 �;
2. bQn ��2; �� satis�es stochastic equicontinuity.

See Newey (1991) for details.

We will simply assume that � is compact. As for stochastic equicontinuity, we will show thatbQn ��2; �� satis�es Lipschitz condition. By Newey (1991, Corollary 2.2), this will be su¢ cient for uniform
convergence. We will show that the derivatives of bQn are Op (1): By the usual mean-value-theorem type

argument, this will establish Lipschitz.

We note that

@

@�2
bQn ��2; �� = �T � 1

T�2
+

1

(�2)
2

1

nT

nX
i=1

TX
t=1

(yit � �yit�1)2 �
1

(�2)
2

1

n

nX
i=1

�
yi � �yi�

�2
;

and

@

@�
bQn ��2; �� =2n

T

1
1
n

Pn
i=1

�
yi � �yi�

�2 � � 1nPn
i=1

�
yi � �yi�

��2
�
(
1

n

nX
i=1

�
yi � �yi�

�
yi� �

 
1

n

nX
i=1

�
yi � �yi�

�! 1
n

nX
i=1

yi�

!)

+
2

�2
1

nT

nX
i=1

TX
t=1

(yit � �yit�1) yit�1 �
2

�2
1

n

nX
i=1

�
yi � �yi�

�
yi�:

Therefore, Newey�s (1991) Assumption 3A would be satis�ed if 1
nT

Pn
i=1

PT
t=1 (yit � �yit�1)

2, 1n
Pn

i=1

�
yi � �yi�

�2
,

1
n

Pn
i=1

�
yi � �yi�

�
yi�,

1
n

Pn
i=1

�
yi � �yi�

�
, 1n
Pn

i=1 yi�, and
1
nT

Pn
i=1

PT
t=1 (yit � �yit�1) yit�1 are all

Op (1), which follow from the compactness of � and Lemma 6.
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