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Abstract 
 
This paper considers a class of GMM estimators for general dynamic panel models, allowing for 
cross sectional dependence due to spatial lags and due to unspecified common shocks. We 
significantly expand the scope of the existing literature by allowing for endogenous spatial 
weight matrices, time-varying interactive effects, as well as weakly exogenous covariates. The 
model is expected to be useful for empirical work in both macro and microeconomics. An 
important area of application is in social interaction and network models where our specification 
can accommodate data dependent network formation. We discuss explicit examples from the 
recent social interaction literature. Identification of spatial interaction parameters is achieved 
through a combination of linear and quadratic moment conditions. We develop an orthogonal 
forward differencing transformation to aid in the estimation of factor components while 
maintaining orthogonality of moment conditions. This is an important ingredient to a tractable 
asymptotic distribution of our estimators. In the social interactions example, orthogonal forward 
differencing amounts to controlling for unobserved correlated effects by combining multiple 
outcome measures. 
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1 Introduction1

In this paper we develop an estimation theory for a dynamic panel data model with inter-

active fixed effects and sequentially (rather than only strictly) exogenous regressors.2 The

model allows for cross sectional dependence, which may stem from two potential sources: (i)

Cross sectional interactions in the form of “spatial” lags in the endogenous variables, exoge-

nous variables, and/or disturbances. The notion of “space” should be interpreted liberally,

and is not confined to geographic space. Importantly, proximity between cross sectional

units is not defined by physical location, but in essence only in terms of some measure of

distance, which could be a measure of social distance. (ii) Cross sectional dependence may

also stem from common shocks, which are accounted for by some underlying -field, but

are otherwise left unspecified in line with Andrews (2005) and Ahn et al. (2013). However,

in contrast to those papers, and as in Kuersteiner and Prucha (2013), we do not maintain

that the data are conditionally i.i.d. The common shocks may effect all variables, including

the common factors appearing in the interactive fixed effects. Another important feature is

that the weights used in forming the spatial lags are allowed to be stochastic. Our analysis

assumes the availability of data indexed by  = 1      in the cross sectional dimension

and  = 1      in what is typically referred to as the time dimension, although we allow

for a broader interpretation of this index. Our focus is on short panels with  fixed.

The classical dynamic panel data literature has generally assumed that the data are

distributed independently and identically in the cross sectional dimension. This included

the data on the exogenous variables, which were predominantly treated as sequentially

exogenous. The assumption of cross sectional independence is satisfied in many settings

where the randomly sampled cross sectional units correspond to individuals, firms, etc.,

and/or decisions are not interdependent. However in many other settings the assumption

may be violated. This includes situations where there are spillovers between units, common

1We gratefully acknowledge financial support from the National Institute of Health through the SBIR

grant R43 AG027622 and R44 AG027622. We thank David M. Drukker, Stata, for his very helpful col-

laboration on computations issues. Earlier versions of the paper were presented at the International Panel

Data Conference 2013, London, the Econometric Workshop 2104, Shanghai, Joint Statistical Meetings 2014,

Boston, Labor Workshop 2014, Laax, VII World Conference of the Spatial Econometrics Association, 2014,

Zurich, 14th International Workshop of Spatial Econometrics and Statistics 2015, Paris, as well as at sem-

inars at Michigan State University, Penn State University, Columbia University, University of Rochester,

Chicago Booth, University of Michigan, Colorado University and Harvard/MIT. We would like to thank the

participants of those conferences and seminars for their helpful comments.
2Endogenous regressors in addition to spatial lags of the l.h.s. variable can in principle be accommodated

as well, at the cost of additional notation to separate covariates that can be used as instruments from those

that cannot. We do not explicitly account for this possibility to save on notation.
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shocks, or where the cross sectional units refer to counties, states, countries or industries

or generally, in situations where cross-sections are not sampled at random.

A widely used approach to model cross sectional dependence is through common factors;

see, e.g., Phillips and Sul (2003, 2007), Bai and Ng (2006a,b), Pesaran (2006), and Andrews

(2005). Recent contributions to panel data models with interactive fixed effects include

Ahn et al. (2013), Bai (2009, 2013), and Moon and Weidner (2013a,b). This represents an

important class of models, however they are not geared towards modeling cross sectional

interactions.3 In addition to general unmodelled cross-sectional dependence stemming from

common shocks, our approach also allows for interactive fixed effects as considered in Holtz-

Eakin et al. (1988) and Ahn et al. (2001, 2013).

In the spatial literature a widely used approach to model spatial interactions is through

spatial lags dating back to Whittle (1954). Those models are often referred to as Cliff-Ord

(1973, 1981) type models. Dynamic panel data models that allow for spatial interactions

in terms of spatial lags have recently been considered by Mutl (2006), and Yu, de Jong

and Lee (2008, 2012), Elhorst (2010), Lee and Yu (2014) and Su and Yang (2014). None

of these papers consider interactive fixed effects and common shocks. In contrast to the

theory developed in this paper, all of those papers assume that the exogenous variables are

strictly exogenous, treat the spatial weights as fixed, do not consider higher order spatial

lags, and postulate homoskedasticity for the basic innovations. The literature on panel data

models, which allows for both cross sectional interactions in terms of spatial lags and for

common shocks, is limited. It includes Chudik and Pesaran (2013), Bai and Li (2013), and

Pesaran and Torsetti (2011). All of these papers assume that both  and  tend to infinity,

and the latter two papers only consider a static setup.

This paper extends the literature on dynamic panel data models in several important

directions by allowing for - possibly higher order - Cliff-Ord type spatial lags in the endoge-

nous and exogenous variables and in the disturbance process, and furthermore by allowing

for common shocks. The latter are left unspecified, in contrast to, e.g. Chudik and Pesaran

(2013). Our specification is fully dynamic by allowing for both lagged dependent variables

and other weakly exogenous and cross-sectionally dependent covariates. An important limi-

tation of the typical specification of Cliff-Ord models is that the spatial interaction matrices

are assumed to be known constants. We relax this constraint by allowing for stochastic data

3All of these papers assume that both  and  tend to infinity, except for Ahn et al. (2013) and Bai

(2013). Apart from not being geared towards modeling cross sectional interactions, a difference between

the setups considered in the latter two papers to the setup considered in this paper is that in those papers

the observations are modeled as independent in the cross sectional dimension conditional on the common

shocks.
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dependent weights. The weights can be endogenous in the sense that they can be correlated

with the disturbances. Data dependent weights are important tools in modelling network

formation and other aspects of social interactions, such as group composition and group

heterogeneity. Added flexibility of our model is achieved by allowing for interactive effects

that can be used to capture outcome and individual specific effects as well as unmodelled

cross-sectional dependence. We exemplify the importance of these extensions to the Cliff-

Ord model with applications to the recent literature on social interaction models of Graham

(2008) and Carrell, Sacerdote and West (2013). We expect this extension to be important

in other applications. An example are models of growth convergence with productivity

spillovers depending on trade shares.

We propose a Generalized Method of Moments (GMM) estimator for our extended class

of dynamic spatial panel models with unobserved common shocks, and establish its asymp-

totic properties. With the data and multiplicative factors allowed to depend on common

shocks, our asymptotic theory needs to accommodate objective functions that are stochastic

in the limit. We present a set of general results that establish the properties of M-estimators

in situations with random limiting objective functions and stochastic estimands. Our analy-

sis builds on the classical M-estimation theory summarized in, e.g., Newey and McFadden

(1994) for the case of i.i.d. data and Gallant and White (1988), White (1994), and Pötscher

and Prucha (1997) for the case of non-i.i.d. data. The CLT developed in this paper ex-

tends our earlier results in Kuersteiner and Prucha (2013) to the case of linear-quadratic

moment conditions. Quadratic moments play a key role in identifying cross-sectional inter-

action parameters but pose major challenges in terms of tractability of the weight matrix

which in general depends on hard to estimate cross-sectional sums of moments. We achieve

significant simplifications and tractability by developing a quasi-forward differencing trans-

formation to eliminate interactive effects while ensuring orthogonality of the transformed

moments. This transformation contains the Helmert transformation as a special case. We

also provide general results regarding the variances and covariances of linear quadratic

forms of forward differences.

The paper is organized as follows. Section 2 introduces the model and considers exam-

ples. Section 3 introduces a generalized forward differencing operator to remove interactive

effects and provides general results on the variances and covariances of linear quadratic

forms. Section 4 defines the GMM estimator and discusses identification. Section 5 con-

tains formal assumptions while Section 6 contains the theoretical results establishing as-

ymptotic properties of the estimators. Concluding remarks are given in Section 7. Basic

results regarding stable convergence in distribution as well as all proofs are relegated to the

appendices. A supplementary appendix available separately provides additional details for
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the proofs.

2 Model

We consider panel data {  }=1 defined on a common probability space (ΩF   ),
where  = [1  ]

0,  = [01  
0
]
0
, and  = [

0
1  

0
]
0
denote the vector of the

endogenous variables, and the matrices of  weakly exogenous and  strictly exogenous

variables. All variables are allowed to vary with the cross sectional sample size , although

we suppress this dependence for notational convenience. The specification allows for tem-

poral dynamics in that  may include a finite number of time lags of the endogenous

variables.

Our setup allows for fairly general forms of cross-sectional dependence. As in Andrews

(2005) and Kuersteiner and Prucha (2013) we allow in each period  for the regressors and

disturbances (and thus for the dependent variable) to be affected by common shocks, which

are captured by a sigma field, say, C ⊂ F but which is otherwise left unspecified. In the

following let C = C1 ∨    ∨ C where ∨ denotes the sigma field generated by the union of
two sigma fields. An important special case where common shocks are not present arises

when C = C = {∅Ω}.
Alternatively or concurrently with common shocks we allow for cross sectional depen-

dence from “spatial lags” in the endogenous variables, the exogenous variables and in the

disturbance process. Our specification accommodates higher order spatial lags, as well as

time lags thereof which may be included in the . Spatial lags represent weighted cross

sectional averages, where the weights will typically be reflective of some measure of distance

between units.4 We emphasize that distance does not have to be geographic distance, and

could, for example and as illustrated below, be a measure of social distance. The spatial

weights will be summarized by  ×  spatial weight matrices denoted as  = ()

and  = (). We do assume that the weights  and  are known or observed

in the data.

In the following  = [1  ]
0 denotes the vector of regression disturbances,  =

[1  ]
0 denotes the vector of unobserved idiosyncratic disturbances, and  is an × 1

vector of unobserved factor loadings or individual specific fixed effects, which may be time

varying through a common unobserved factor . The factor  is assumed to be measurable

with respect to a sigma field C. Furthermore, let  and  be  respectively  dimensional

vectors of parameters with typical elements  and  and define  () =
P

=1 

4We note that spatial lags will generally depend on the sample size, which motivates why the variables

are allowed to form triangular arrays.
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and () =  −P
=1  for a spatial autoregressive error term or () = ( +P

=1  )
−1 for a spatial moving average error term.

The dynamic and cross sectionally dependent panel data model we consider can be

written as

 = () +  +  +  = +  (1)

() =  + 

where  = [1      ] and  = [0 0]0 with  = [0 
0
]
0, which are the

parameters of interest. As a normalization we take  =  = 0, and  = 1.

Note that (1) is a system of  equations describing simultaneous interactions between the

individual units. The weighted averages, say,  =
P

=1 and  =
P

=1

model contemporaneous direct cross-sectional interactions in the dependent variables and

the disturbances. Those weighted averages are typically referred to as spatial lags, and the

corresponding parameters are typically referred to as spatial autoregressive parameters.

The specification of spatial lags dates back to Cliff and Ord (1973,1981).5 In contrast to

standard specifications of Cliff-Ord type spatial models we do not assume that the weights

are given constants, but allow them to be stochastic. The weights are allowed to be endoge-

nous in that they can depend on 1      and , apart from predetermined variables

and common shocks, and thus can be correlated with the disturbances .
6 In fact, we do

not impose any particular restrictions on how the weights are generated. This extension is

important for example to model sequential group formation as in Carrell et.al. (2013) or

endogenous network formation as in Goldsmith-Pinkham and Imbens (2013).

For  = 1   let  = (1      ), 

 = [1     ], 


 = [1     ], − =

[1     −1 +1 ]. We next formulate our main moment conditions for the idio-

syncratic disturbances.

Assumption 1 Let  be some finite constant (which is taken, w.o.l.o.g., to be greater

then one), and define the sigma fields

B = 
³©

 

  


−1 

ª
=1

 −
´
, B = 

³©
 


  


−1 

ª
=1

´
5An alternative specification, analogous to specifications considered in Baltagi et al (2008), would be

to model the disturbance process in (1) as  =  + , where  and  follow possibly different spatial

autoregressive processes. Since we are not making any assumptions on the unobserved components  it is

readily seen that the above specification includes this case, provided that the spatial weights do not depend

on .
6 In addition to the spatial lags in  other endogenous variables could be readily included on the r.h.s.

of (1). We do not explicitly list those variables for notational simplicity. In cases where the weights depend

on  contemporaneous spatial lags in the exogenous variables would be separated out of  and , and

included as additional endogenous variables.
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and

Z=({  }=1)

For some   0 and all  = 1      ,  = 1     ,  ≥ 1:
(i) The 2 +  absolute moments of the random variables  ,  and  exist, and the

moments are uniformly bounded by .

(ii) Then the following conditional moment restrictions hold for some constant   0:

 [|B ∨ C] = 0 (2)


£
2|B ∨ C

¤
= 2

2
 with 2  

2
 ≥ , (3)


h
||2+ |B ∨ C

i
≤  (4)

The variance components  = (
2
1     

2
 )
0 are assumed to be measurable w.r.t. C. The

variance components 2 = 2 () are taken to depend on a finite dimensional parameter

vector  and are assumed to be measurable w.r.t. Z ∨ C.

Condition (2) clarifies the distinction between weakly exogenous covariates  and

strictly exogenous covariates  The later enter the conditioning set at all leads and lags.

We shall also use the notation Σ = diag(2 ) and Σ = diag(2 ). As a normalization

we may, e.g., take 2 = 1 or −1 tr(Σ) = 1. Specifications where 2 and 2 are non-

stochastic, and specifications where the  are conditionally homoskedastic are covered as

special cases.

The reduced form of the model is given by

 = ( −())
−1 + ( −())

−1  (5)

 = ()
−1 ( + ) 

Applying a Cochrane-Orcutt type transformation by premultiplying the first equation in

(1) with () yields

() = () +  +  (6)

The first example illustrates the use of both spatial interaction terms and interactive effects

in a social interaction model.

Example 1 (Social Interactions) Graham (2008) considers a linear social interactions

model. Here we analyze a modification of Graham (2008) assuming that we have, as is the

case for the data Graham (2008) analyzes, two measures of academic achievement 

where  is the classroom index,  is the individual student in classroom , and  = 1 2

indicates two distinct performance measures. These could be the quantitative and verbal
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scores on a standardized test. We use two outcome measures to control for unobserved

and possibly correlated student characteristics. Identification rests on the assumption that

all unobserved, cross-sectionally correlated characteristics affect both outcomes in the same

way, up to an unobserved scale factor which can very with the performance measure. To

the best of our knowledge this is a new identification strategy in the social interactions

literature where disentangling unobserved correlated effects from social interactions is a

major challenge. More specifically, student specific characteristics are modelled using a

common factor structure of the form  +  where  is a student fixed effect for

student  in classroom ,  is a common factor, and the  are idiosyncratic components.

Student fixed effects  are allowed to be arbitrarily correlated between individuals.

Assuming a sample of  classrooms of size , and a total number of students  = 1 +

+ , we consider the following version of Graham’s model:
7

 =  + ( + ) + 
h
( − 1)−1

P
=1 6=( + )

i
where  captures class room level heterogeneity. Organizing the data by class room for each

test  let  = [1  ]
0,  = [1  ]

0and  = [1      ]
0. Defining

1 = (1  1)0 as a  × 1 vector, () = (11
0
 − )  ( − 1) where  is the  × 

identity matrix, Graham’s model can be written as  = ∗ +
¡
 + ()

¢
 with ∗ =

1 + ( + ()), or in stacked notation

 = ∗ + ( + ) (7)

where  = [
0
1  

0
]

0
,  = diag=1

¡
()

¢
,  = [01  

0
]

0
and ∗ = [∗01      

∗0
 ]
0
. It

is easily seen that model (7) is a special case of what we called the reduced form (5) if we

impose the restrictions  = 0,  () = 0,  = ( + )−1 ∗ and  () = ( + )−1 

The inverse of +  exists (in closed form) as long as  6= −1 and  6= − 1 for all .
Let  be an indicator variable for small classes, and define  = . Furthermore, let

 = ( ) be a one-to-one mapping and consider the simplified information set B() =
({  −1  }=1 −()). Then, consistent with Graham (2008), we assume


£
|B() ∨ C

¤
= 0 (8)

and model the conditional variances as


£
2|B() ∨ C

¤
= 2

2
() (9)

7Unlike Graham we use averages that do not include an individual’s own characteristics to account for

peer interaction effects. This modification is a simple parameter normalization that is convenient for our

purposes. Our identification strategy does not rely on this normalization.
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where 2
()

= 2 + 2(1 − ). We note that both moment restrictions can be relaxed

for purposes of identifying the model. As a normalization we take 2 = 1 and denote

 = 2. (Class room heterogeneity can be captured through the fixed effects.) Since

 [|C] =  [∗|C]  the common factor  accounts for different means in scores of the two
tests. These could be due to different levels of difficulty, or different standards in grading.

The assumption that  is constant across the two tests implies that on average (but not

necessarily individually) higher ability students tend to do better on both tests.

Clearly the above moment conditions are covered as a special case of (2) and (3). We note

that, while remaining within our general framework, the above example can be extended to

accommodate some randomness in the assignment of students to classrooms, assuming that

the selection process is defined by a set of strictly exogenous variables, and that the ele-

ments of  are measurable w.r.t. the corresponding -field. The matrix  then provides

a convenient description of the realized network.8

The next example is based on Carrell et. al. (2013) with certain simplifications to aid

exposition. It illustrates the use of higher order, and data-dependent spatial lags to model

within-group heterogeneity. By allowing  () to depend on predetermined outcomes we

can accommodate the fact that, as in Carrell et.al. (2013), group membership is not

exogenous.

Example 2 (Group Level Heterogeneity) With the same notation as in Example 1

let  be a diagonal matrix of size  with diagonal elements  = 1 if student  is a

high type (for example as measured by SAT scores) and  = 0 if student  is a low

type. The test score for test  and class  then is, following Carrell et.al., given by  =

1 +
¡
1 ( −)() + 2()

¢
 + , or in stacked notation

 = (11 + 22)  +  +  (10)

with 1 = diag=1
£
( −)()

¤
, 2 = diag=1

£
()

¤
, and  = [1011     1

0
 ]

0
.

The implication of the model is that students with high type react differently to average

performance in the class than students with low type. In this example  () = 11+22,

and  () = .

Apart from applications to social interactions the model in (1) has a wide range of

potential applications in empirical micro, macro, regional science and urban economics,

geography and health. Our setup contains the standard Cliff-Ord type spatial models as

8For further discussions of the use of Cliff-Ord type spatial models in modeling social interactions see,

e.g., Liu and Lee (2010), Lee et al. (2010), Blume et al. (2011), and Patacchini et al. (2013).
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special cases. In the past such models have, for example, been applied in empirical studies

of spatial price competition, growth convergence, real estate prices, financial contagions,

and technology adoption. The next example is in the area of health, and considers the

spread of an infectious disease.

Example 3 (Infectious Disease) Let  denote the rate of infection with genital herpes

in county  in period , and consider the following illustrative model:9

 =  + −1+ −1+  +  +  +  +  +  (11)

where  denotes a vector of sequentially exogenous variables, which may include the rate

of vaccination,  denotes a vector of strictly exogenous variables, which may include de-

mographic variables, and , , and  denote spatial lags to account for interactions of

the population across counties. Then clearly the above dynamic model is a special case of

the scalar representation of model (1) with  = [−1 −1  ],  = [ ] and

parameter vectors  = [  
0 0]0 and  = [

0 0]0. Now suppose that the spatial weights

of the spatial lag  are modelled as  =
P

=1 (1)
 where  is a distance measure

and the  are unknown parameters. Then

 = 
P

=1 =
P

=1 

hP
=1

i
(12)

with  =  and  = (1)
, and substitution of the expression in (12) into (11)

yields a -order spatial autoregressive model as considered in (1).

In the above examples the spatial weights do not vary with . We emphasize that in our

general model we allow for the spatial weights to vary with , and to depend on sequentially

and strictly exogenous variables. As a result, the model can also be applied to situations

where the location decision of a unit is a function of sequentially and strictly exogenous

variables, in that we can allow for the distance between units to vary with  and to depend

on those variables.

3 Forward Differencing and Orthogonality of Linear Quadratic

Forms

In the classical panel literature the Helmert transformation was proposed by Arellano and

Bover (1995) as an alternative forward filter that, unlike differencing, eliminates fixed ef-

9The specification is in line with specifications considered in, e.g., Keeling and Rohani (2008) and Chen

et al. (2014).

10



fects without introducing serial correlation.10 In this section we introduce an orthogonal

quasi-forward differencing transformation for the more general case where factors  appear

in the model. Our moment conditions involve both linear and quadratic forms of forward

differenced disturbances. Thus we also present a general result on the variances and covari-

ances of linear quadratic forms, which establishes sufficient conditions for the orthogonality

of both the linear and the quadratic forms.

For  =  +  and  = 1      − 1 consider the forward differences

+ =
P

=  + =
P

= 

with  = [0     0       ]. Now define the upper triangular  − 1 ×  matrix

Π = [01  
0
 ]
0
and let  = [1      ]. Then Π = 0 is a sufficient condition for the

transformation to eliminate the unit specific components such that + = + . If in addition

ΠΣΠ
0 =  then under our assumptions the transformed errors + will be uncorrelated

across  and . The following proposition introduces such a transformation. To emphasize

that the elements of Π are functions of the ’s and ’s we sometimes write  ( ).

Proposition 1 (Generalized Helmert Transformation) Let  = () be a  − 1×  quasi

differencing matrix with diagonal elements  = 1, +1 = −+1, and all other elements
zero. Let  be an upper triagonal  − 1 ×  − 1 matrix such that Σ 0 =  0. Then,

the  − 1×  matrix Π = −1 is upper triagonal and satisfies Π = 0 and ΠΣΠ
0 = 

Explicit formulas for the elements of Π = Π( ) are given as

 ( ) =
¡p

+1
¢


 ( ) = −
¡p

+1
¢

¡
+1

2


¢
for   

 = 0 for   

with  =
P

=( )
2 For computational purposes observe that  = ()

2 + +1.

Also note that if 2 = 1 as a normalizations, then  = 1.

Proposition 1 is an important result because it gives explicit expressions for the elements

of Π. Such expression are crucial from a computational point of view, especially if  is

estimated as an unobserved parameter of the model. Although we do not adopt this in the

following, for computational purposes it may furthermore be convenient to re-parameterize

the model in terms 

=  and  in place of  and . We note that for  = 1 and  =

1 we obtain as a special case the Helmert transformation with  =
p
( − )( − + 1)

and  = −
p
( − )( − + 1)( − ) for   .

10Hayakawa (2006) extends the Helmert transformation to systems estimators of panel models by using

arguments based on GLS transformations similar to Hayashi and Sims (1983) and Arellano and Bover (1995).
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We also note that because  = 0 any transformation of the form Π( ̄) = ̄−1

with  Σ̄
0 = ̄ ̄ 0 and Σ̄ = diag(̄) some positive diagonal matrix removes the in-

teractive effect. An important special case is the transformation with weights  ( 1 )

corresponding to Σ̄ =  .

In (1) the disturbance process was specified to depend only on a single factor for sim-

plicity. Now suppose that the disturbance process is generalized to () = 11 +

   +   +  where 

 denotes the -th factor and  the corresponding vector of fac-

tor loadings. We note that multiple factors can be handled by recursively applying the

above generalized Helmert transformation, yielding a  −  ×  transformation matrix

Π = Π   Π2Π1 where the matrices Π are of dimension ( − ) × ( −  + 1), and

Π1ΣΠ
0
1 = −1, ΠΠ0 = − for   1, and Π(Π−1Π1) = 0 with  = [


1      


 ]
0.

Of course, this in turn implies that ΠΣΠ
0 = − and Π[1      ] = 0. The elements of

each of the Π matrices have the same structure as those given in Proposition 1. A more

detailed discussion, including a discussion of a convenient normalization for the factors, is

given in an supplementary appendix.

We next give a general result on the variance covariances of linear quadratic forms based

on forward differenced, but not necessarily orthogonally forward differences, disturbances.

The optimal weight matrix of a GMM estimator based on both linear and quadratic moment

conditions depends on these covariances. Simplifying them as much as possible is critical

to the implementation of the estimator. Our result establishes the conditions under which

such simplifications can be achieved. We also give sufficient conditions for the validity of

linear and quadratic moment conditions.

Proposition 2 11 Let the information sets B, B, Z be as defined in Section 2.

Furthermore assume that for all  = 1      ,  = 1     ,  ≥ 1,  [|B ∨ C] = 0,


£
2|B ∨ C

¤
= 2

2
  0, 

£
3|B ∨ C

¤
= 3, 

£
4|B ∨ C

¤
= 4, where  is

finite and measurable w.r.t. C, and , 3 and 4 are finite and measurable w.r.t. Z∨C.
Define Σ = diag

¡
21  

2


¢
and Σ = diag

¡
21  

2


¢
. Let  = () and  = () be

× matrices, and let  = () and  = () be × 1 vectors, where , , ,  are
measurable w.r.t. B ∨ C. Let  = [0     0       ] and  = [0     0       ]

be 1 ×  vectors where  and  are measurable w.r.t. C, and consider the forward
differences + =

£
+1     

+


¤0
and × =

£
×1     

×


¤0
with

+ =
P

=  = 
0
 and × =

P
=  = 

0


11Further details and an explicit proof are given in the Supplementary Appendix B.
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Then


£
+0 

×
 + +0 |C

¤
= Σ tr [ (Σ|C)]  (13)

Cov(+0 
×
 + 0

+
  

+0
 

×
 + 0

+
 |C) (14)

= (Σ
0
)(Σ

0
)

£
tr(Σ

0
Σ)|C

¤
+ (Σ

0
)
2 [tr(ΣΣ)|C]

+(Σ
0
)

£
0Σ|C

¤
+K1

Cov(+0 
×
 + 0

+
  

+0
 

×
 + 0

+
 |C) = K2 for all    (15)

where K1 and K2 are random functionals that depend on , ,  and . Explicit ex-

pressions for K1 and K2 are given in the supplementary appendix. Sufficient conditions
that ensure that 

£
+0 

×
 + +0 |C

¤
= 0 and that K1 = K2 = 0 are that vec () =

vec () = 0 Π = Γ with Π = 0 and ΠΣΠ
0 =  Specialized expressions for K1 and K2

when one or several of these conditions fail are again given in the supplementary appendix.

First consider the special case where Σ = 2. In this case a sufficient condition

for the validity of the moment conditions 
£
+0 

×
 + +0 |C

¤
= 0 is that tr() = 0.

Consistent with this observation and under cross sectional homoskedasticity, quadratic

moment conditions where only the trace of the weight matrices is assumed to be zero,

have been considered frequently in the spatial literature12However, tr() = 0 does not

insure that the linear quadratic forms are uncorrelated across time because the terms K1
and K2 are not necessarily zero, even in the case of orthogonally transformed disturbances,
i.e., Π = Γ and ΠΣΠ

0 = . This is in contrast to the case of pure linear forms (where

 =  = 0). The terms K1 and K2 depend on cross-sectional sums that are potentially
difficult to estimate.

Next consider the case where (possibly) Σ 6= 2. In this case a sufficient condition

for 
£
+0 

×
 + +0 |C

¤
= 0 is that vec() = 0. We note that with vec() = 0 no

restrictions on 
£
2|B ∨ C

¤
are necessary to ensure 

£
+0 

×
 + +0 |C

¤
= 0. An in-

spection of K1 and K2 shows that strengthening the assumptions to vec() = vec() =

0 for all  and using orthogonally transformed disturbances ensures that K1 = K2 = 0, and
thus simplifies the optimal GMM weight matrix. Also note that under this setup the ex-

pressions on the r.h.s. of (14) simplify to  [tr(Σ( +0)Σ)|C] +  [0Σ|C], while
(15) implies that the linear quadratic forms are uncorrelated over time. Another important

implication of Proposition 2 is that under this setup the covariances between linear sample

moments and quadratic sample moments are zero. Expressions for the variance of linear

quadratic forms are obtained as a special case where  =  and  = . The results

12See, e.g., Kelejian and Prucha (1998,1999), Lee and Liu (2010) and Lee and Yu (2014).
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of Proposition 2 are consistent with some specialized results given in Kelejian and Prucha

(2001, 2010) under the assumption that the coefficients  and  in the linear quadratic

forms are non-stochastic.

4 Moment Conditions and GMM Estimator

For clarity we denote the true parameters of interest and the true auxiliary parameters as

0 = (
0
0 

0
0 

0
0)
0 and 0 =

¡
00 

0
0

¢0
. Using (6) we define

+ (0 ) =
P

=  (0 ) =
P

=  (0 )(0) [ −0]  (16)

with the weights ( ) of the forward differencing operation defined by Proposition 1.

Note that this operation removes the unobserved individual effects even if  6= 0. Our

estimators utilize both linear and quadratic moment conditions based on

+∗(0 ) = Σ()
−12+ (0 ) (17)

Considering moment conditions based on +∗(0 ) is sufficiently general to cover initial

estimators with Σ =  and Σ = . Quadratic moment conditions are often required to

identify parameters associated with spatial lags in the disturbance process and may further

increase the efficiency of estimators due to spatial correlation in the data generating process.

Quadratic moment conditions have been exploited routinely in the spatial literature. They

can be motivated by inspecting the score of the log-likelihood function of spatial models; see,

e.g., Anselin (1988, p. 64) for the score of a spatial ARAR(1,1) model. Quadratic moment

conditions were introduced by Kelejian and Prucha (1998,1999) for GMM estimation of a

cross sectional spatial ARAR(1,1) model, and have more recently been used in the context

of panel data; see, e.g., Kapoor, Kelejian and Prucha (2007), Lee and Yu (2014).

Let  = (

) be some 1×  vector of instruments, where the instruments are measur-

able w.r.t. B∨C. Also, consider the ×1 vectors  = ()=1, then by Assumption
1 and Proposition 2 we have the following linear moment conditions for  = 1      − 1,



⎡⎢⎢⎣
10 

+
∗(0 )
...


0
 +∗(0 )

⎤⎥⎥⎦ = 

"
X
=1

0
+
∗(0 )

#
= 0 (18)

with +∗(0 ) = +(0 )(). For the quadratic moment conditions, let  = (

)

be a 1× vector of weights, where the weights are measurable w.r.t. B∨C. Also consider
the ×  matrices 

 = (

)=1 such that by Assumption 1 and Proposition 2, and
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imposing the constraint that  = 0 one obtains the following quadratic moment conditions

for  = 1      − 1,



⎡⎢⎢⎣
+∗(0 )

01
+
∗(0 )

...

+∗(0 )
0

 
+
∗(0 )

⎤⎥⎥⎦ = 

⎡⎣ X
=1

X
=1

0
+
∗(0 )

+
∗(0 )

⎤⎦ = 0 (19)

The requirement that  = 0 is generally needed for (19) to hold, unless Σ0 = .

W.o.l.o.g. we also maintain that  = .

By allowing for subvectors of  and  to be zero and by setting  = , the above

moment conditions can be stacked and written more compactly as

(0 ) = 0 with (20)

(0 ) = −12
X
=1

0
+
∗(0 ) + −12

X
=1

X
=1

0
+
∗(0 )

+
∗(0 )

It is worth noting that the formulation in (20) allows for nontrivial linear combinations

of (18) and (19) in addition to simply stacking both sets of moments. The particular

form of (20) is motivated by a need to minimize cross-sectional and temporal correlations

between empirical moments. Proposition 2 shows that only a very judicious choice of

moment conditions, moment weights  and forward differences Π leads to a moment vector

covariance matrix that can be estimated reasonably easily.

Let  = (0 0  0)0 and  =
¡
0 0

¢0
denote some vector of parameters, let  =

P−1
=1 ,

and define the × 1 normalized stacked sample moment vector corresponding to (20) as

( ) =
£
1( )

0    −1( )0
¤
 (21)

For some estimator ̄ of the auxiliary parameters  and a  ×  moment weights matrix

Ξ̃ the GMM estimator for 0 is defined as

̃ (̄) = arg min
∈Θ

−1( ̄)
0Ξ̃( ̄) (22)

where the parameter space Θ is defined in more detail in Section 5. The parameter  is a

nuisance parameter that can either be fixed at an a priori value or estimated in a first step.

For the practical implementation of ̃ choices of the instruments  and weights 

need to be made. Clearly  and  are available as possible instruments. However, when

the spatial weights are measurable w.r.t. B ∨ C, then taking guidance from the spatial

literature the instrument vector  may not only contain  and , but also spatial lags

thereof. One motivation for this is that for classical spatial autoregressive models the

conditional mean of the explanatory variables can be expressed as a linear combination
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of the exogenous regressors and spatial lags thereof, including higher order spatial lags.

Again, when the spatial weights are measurable w.r.t. B ∨ C, then taking guidance
from the spatial literature possible choices for the matrices 

 = (

) include the spatial

weight matrices up to period  and powers thereof (with the diagonal elements set to zero).

With endogenous weights, in the sense that the weights also depend on contemporaneous

idiosyncratic disturbances, possible candidates for 
 can be based on projections of the

weights onto B∨C, or can be constructed from spatial weight matrices up to period −1.
We note that the case where the spatial weights are measurable w.r.t. B ∨ C already
covers situations where endogeneity only stems from the spatial weights being dependent

on the unit specific effects.

For specific models the construction of a linear quadratic criterion function that iden-

tifies the parameters of interest requires a careful analysis. This is illustrated with the

following example.

Example 1 (Social Interactions, Cont.) We illustrate the identification of the parame-

ters 0 = (0 01) in the social interaction model (setting 02 = 1 as a normalization).

For identification we can exploit the availability of at least two outcome measures in the

form of scores from different tests. We also exploit the fact that scores are typically mea-

sured as positive integers. Utilizing Proposition 1 with  = 2 set 11 = 11(1 ) = ,

12 = 12(1 ) = −1, with  = (1 ) = 1
p
21

2
2 + 21 and  = (

2
1 

2
2)
0, and let

Σ() = =1
£
2

¤
with 2 = 2+(1−) and  = 2. Consistent with (17) define

+∗1( ) = 11(1 )Σ()
−12∗1 () + 12(1 )Σ()

−12∗2 () 

with ∗ () = ( + )−1, and consider the moment vector

 ( ) = −12
"

+∗1(0 )
01

+∗1(0 )
0+∗1(0 )

#
(23)

with  = . Let the parameter space for  and  = (21 
2
2 

2
) be a subset of (−1)×

[−] and [−1]3, respectively, with  = min 2−1  0 and for some 0   ∞
sufficiently large. Given the conditions on the first and second moments of the  and the

maintained assumptions it can be shown that  [ ( )] = 0 if and only if  = 0 for all

admissible .13 We note that  [ (0 )] = 0 follows immediately from Proposition 2.

Identification of 01 can be established from an inspection of the linear moment condition.

Identification of the social interaction parameter 0 can be established via an analysis of the

quadratic moment condition.

13A proof is given in the auxiliary appendix in Proposition D.1.
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A formal analysis of the identifiability of 0 is given in the auxiliary appendix; see Proposi-

tion D.1. In fact, this analysis shows that 0 can be identified even if we relax our restric-

tions on the idiosyncratic errors and allow for those errors to be correlated between tests

(but not between individuals). We emphasize further that no restrictions on  (other than

the fact that  does not depend on ) are needed to identify 0. Also, the analysis in the

appendix shows that neither knowledge of nor restrictions on heteroskedasticity in  and 

are necessary for the identification of 0. Thus initial estimates of 0 can be obtained with

Σ =  and Σ = .

5 Formal Assumptions

In the following we state the set of assumptions which we employ, in addition to Assumption

1, in establishing the consistency and limiting distribution of our GMM estimator. We first

postulate a set of assumptions regarding the instruments  and weights . Let  denote

some some random variable, then kk ≡ ( [||])1 denotes the -norm of  for  ≥ 1.

Assumption 2 Let   0, and let ,  and  denote finite constants (which are

taken, w.o.l.o.g., to be greater then one and do not vary with any of the indices and ),

then the following conditions hold for  = 1      and  = 1     :

(i) The elements of the 1× vector of instruments  = []=1 are measurable w.r.t.

B ∨ C. Furthermore, kk2+ ≤  ∞ for some   0

(ii) The elements of the 1×  vector of weights  = []=1 are measurable w.r.t.

B ∨ C. Furthermore,  = 0 and  = , and
P

=1 || ≤   ∞, andP
=1 kk2+ ≤  ∞.

(iii) The factors , with  = 1 as a normalization, are measurable w.r.t. C and satisfy
|| ≤  .

In the case where the  are non-stochastic kk2+ = ||. The next assumption
summarizes the assumed convergence behavior of sample moments of  and . The

assumption allows for the observations to be cross sectionally normalized by , where 

may differ from 0.

Assumption 3 Let the elements of Σ = diag=1(
2
 ) be measurable w.r.t. Z ∨ C with

0  

  2  


 ∞. The following holds for  = 1      − 1:

−1
X
=1



"µ
0



¶2
0

¯̄̄̄
¯ C
#

→  
 −1

X
=1

X
=1



"µ
0



¶2µ0


¶2
0

¯̄̄̄
¯ C
#

→  


17



where the elements of  
 and  

 are finite a.s. and measurable w.r.t. C, and

 
 = −1

X
=1

µ
0



¶2
0

→  
  

 = −1
X
=1

X
=1

µ
0



¶2µ0


¶2
0

→  


The matrix  = diag−1=1 () with  =  
 + 2


 is a.s. positive definite.

For the case where  = 0 we will use in the following the simplified notation  
 , 


 ,

 and  for the matrices defined in the above assumption. The spatial weights matrices,

the spatial lag matrices () and (), and the parameters are assumed to satisfy the

following assumption.

Assumption 4 (i) The elements of the spatial weights matrices  and  are ob-

served. (ii) All diagonal elements of  and  are zero. (iii) 0 ∈ Θ, 0 ∈ Θ,

0 ∈ Θ, 0 ∈ Θ and 0 ∈ Θ where Θ ⊆ R , Θ ⊆ R, Θ ⊆ R+ , Θ ⊆ R−1

and Θ ⊆ R are open and bounded. Furthermore, 0 → ∗, 0 → ∗, 0 → ∗,

0 → ∗, 0 → ∗ as  → ∞ with ∗ ∈ Θ, ∗ ∈ Θ, ∗ ∈ Θ, ∗ ∈ Θ , ∗ ∈ Θ

and where ∗ and ∗ are C-measurable. (iii) For some compact sets Θ, Θ, Θ and

Θ = [−] we have Θ ⊆ Θ, Θ ⊆ Θ, Θ ⊆ Θ and Θ ⊆ Θ . (iv) The matrices

() and () are defined for  ∈ Θ,  ∈ Θ and nonsingular for  ∈ Θ,  ∈ Θ.

The GMM estimator is optimized over the set Θ = Θ×Θ×Θ×Θ . We observe, as

will be discussed in more detail below, that under the above assumptions the sample moment

vector ( ) given in (21), and thus the objective function of the GMM estimator, are

well defined for all  ∈ Θ.

The next assumption postulates a basic smoothness condition for the cross sectional

variance components and states basic assumptions regarding the convergence behavior of

the sample moments. (The first part of the assumption also ensures that the measurability

conditions and boundedness conditions of Assumption 3 are maintained over the entire

parameter space.)

Assumption 5 14(i) The cross sectional variances components 2 () are differentiable

and satisfy the measurability conditions and boundedness conditions of Assumption 3 for

 ∈ Θ
.

(ii) For  ≤  ≤  let  be a ×  matrix of the form Υ, Υ(), Υ((), Υ

Υ,

 ()
0Υ

Υ(), or  ()
0Υ

Υ(()), where Υ is an  ×  positive diagonal

14We implicitly assume that all derivatives are well defined on an open set containing the optimization

space.

18



matrix with elements which are uniformly bounded and measurable w.r.t. Z ∨ C. Then for
 ∈ Θ the probability limits (→∞) of

−10 −10 −10

−1 0
 −10 −1 0


(24)

exist for  = 1     , and the probability limits are measurable w.r.t. C, continuous in ,

and bounded in absolute value, where the bound does not depend on .

We note that typically those probability limits will coincide with the probability limits

of the corresponding expectations w.r.t. to C, e.g.,

plim
→∞

−10 = plim
→∞


£
−10|C

¤


For autoregressive disturbance processes  () = −P
=1 . In this case we have

 ()
0Υ

Υ() =
P

=0

P
=0  Υ


Υ with 0 = −1 and 0 =0 = ,

and furthermore () =. Observing that the parameter space Θ is compact it

is readily seen that for Assumption 5 to hold it suffices to consider matrices  of the form

Υ, Υ
Υ, Υ


Υ, or 

0
Υ


Υ, and we can suppress  from the assumption.

The following assumption guarantees that the moment conditions identify the parameter

0. To cover initial estimators for 0 our setup allows both for situations where the estimator

for 0 is based on a consistent or an inconsistent estimator of the auxiliary parameters 0.

In the following let ̄
→ ̄∗ with ̄ ∈ Θ and ̄∗ ∈ Θ denote a particular estimator and

its limit. For consistent estimators of the auxiliary parameters ̄∗ = ∗, and for inconsistent

estimators ̄∗ 6= ∗. The latter covers the case where in the computation of the first stage

estimator for 0 all auxiliary parameters are set equal to some fixed values, i.e., the case

where ̄ = ∗ = ̄.

Assumption 6 Let ∗ ∗ ∗ ∗ be as defined in Assumption 4, let ∗ = (
0
∗ 0∗  0∗)0, and

let ̄
→ ̄∗ with ̄ ∈ Θ and ̄∗ ∈ Θ, where ̄∗ is C-measurable. Furthermore, for  ∈ Θ

let m() = plim→∞ −12( ̄∗) and () = plim→∞ −12( ∗).15 Then the

following is assumed to hold:

(i) ∗ is identifiable unique in the sense that m(∗) = 0 a.s. and for every   0,

inf
{∈Θ:|−∗|}

km()k  0 a.s. (25)

15Lemma A.5 establishes the existence of the limit of the moment vector m() and the limit of the

derivatives of the moment vector (). To keep our notation simple, we have suppressed the dependence of

m() on ̄∗. The limiting matrix () is only considered at ̄∗ = ∗.
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(ii) sup∈Θ

°°−12 ( ̄)−m()
°° =  (1) for ̄

→ ̄∗

(iii) sup∈Θ

°°−12 ( ̄)  −()
°° =  (1) for ̄

→ ∗, and

plim
→∞

−12(̄ ̄) = 0

for ̄
→ ∗ and ̄

→ ∗.

We furthermore maintain the following assumptions regarding the moment weighting

matrix of our GMM estimator.

Assumption 7 Suppose Ξ̃
→ Ξ , where Ξ is C-measurable with  finite elements, and

Ξ is positive definite 

For autoregressive disturbance processes where () =  −P
=1   our specifi-

cation allows for the true autoregressive parameters to be arbitrarily close to a singular

point.16 Technically we distinguish between the parameter space and the optimization

space, which defines the estimator. Since our specification of the moment vector does not

rely on ()
−1 or ()

−1 it remains well defined even for parameter values where ()

and () are singular. Thus for autoregressive processes we can specify the optimization

space to be a compact set Θ = Θ×Θ ×Θ×Θ containing the parameter space, with-

out restricting the class of admissible models. We note that given that  = 1 the weights

 = ( ) of the Generalized Helmert transformation defined in Proposition 1 are

well defined on Θ ×Θ. At the same time we note that when () parametrizes a spatial

moving average process or is a of a more general form, it may not be well defined on the

boundaries of an open parameter space Θ In such cases it is necessary to shrink the set

Θ sufficiently such that () exists on Θ.
17

6 Asymptotic Properties of the GMM Estimator

6.1 Consistency

Consider a sequence of estimators of the auxiliary parameters ̄
→ ̄∗. The objec-

tive function of the GMM estimator ̃ (̄) defined in (22) is then given by R() =

−1( ̄)
0Ξ̃( ̄). Correspondingly consider the “limiting” objective function

16This is in contrast to some of the recent panel data literature; see, e.g., Lee and Yu (2014).
17An example is  () = ( − 11)

−1
and Θ = (−1 1)  Then,  () is not defined for  = 1 In

this case, we choose   0 Θ = (−1 1− ) and Θ = [−1 1− ]
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R() = m()0Ξm() with m() = plim→∞ −12( ̄∗). Because m() and Ξ are gener-

ally stochastic in the presence of common factors it follows that R() and the minimizer
∗ are also generally stochastic. Consistency proofs need to account for the randomness in

R() and ∗ The results given in this section build, in particular, on Gallant and White

(1988), White (1984), Newey and McFadden (1994), Pötscher and Prucha (1997, ch 3).18

The following proposition holds for general criterion functions R : Ω×Θ → R and R :
Ω×Θ → R, the finite sample objective function and the corresponding “limiting” objective

function, respectively. They include, but are not limited to the particular specification ofR

and R for our GMM estimator given above. The notation emphasizes that R is a random

function. Furthermore b = b() and ∗ = ∗() are the “minimizers” of R( ) and

R( ), where both b and ∗ are implicitly assumed to be well defined random variables.

For the following we also adopt the convention that the variables in any sequence, that

is claimed to converge in probability, are measurable. We now have the following general

module for proving consistency.

Proposition 3 (i) Suppose that the minimizer ∗ = ∗() of R( ) is identifiably unique
in the sense that for every   0, inf{∈Θ :|−∗|≥}R( ) − R( ∗())  0 a.s. (ii)

Suppose furthermore that sup∈Θ
|R( )−R( )| → 0 a.s. [i.p.] as  → ∞. Then

for any sequence b such that eventually R(b()) = inf∈Θ
R( ) holds, we haveb→ ∗ a.s. [i.p.] as →∞.

We note that for the above proposition compactness of Θ is not needed. The definition

of identifiable uniqueness adopted in the above proposition extends the notion of identifiable

uniqueness to stochastic limiting functions and stochastic minimizers. In case the limiting

objective function is non-stochastic it reduces to the usual definition of identification.

Assumptions 6(i) and 7 are crucial in establishing that ∗ is identifiable unique in the

sense of Proposition 3. We therefore have the following consistency result.

Theorem 1 (Consistency) Suppose Assumptions 1-7 hold for some estimator of the aux-

iliary parameters ̄
→ ̄∗. Then ̃ (̄)− 0

→ 0 as →∞.

Remark 1 Assumptions 6(iii) is not required by the above theorem. We note that the

theorem covers the case where ̄ = ̃ and ̃ is a consistent estimator of the auxiliary

parameters, as well as the case where ̄ = ̄∗ = ̄ for all  The latter case is relevant

18The latter reference also provides citations to the earlier fundamental contributions to the consistency

proof of M-estimators in the statistics literature. We would like to thank Benedikt Pötscher for very helpful

discussions on extending the notion of identifiable uniqueness to stochastic analogue functions, and the

propositions presented in this section.
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for first stage estimators that are based on arbitrarily fixed variance parameters. For  an

obvious choice is ̄ = 1  For  convenient choices depend on the specifics of the model.

In many situations the first stage estimator will be based on the choice 2 (̄) = 1.

6.2 Central Limit Theorem

In the following we establish the limiting distribution of the sample moment vector  =



¡
0 0 

¢
defined by (21), evaluated at the true parameters, except possible for the

specification of the cross sectional variance components 2 . In particular, the results allow

for the leading cases 2 = 20 and 
2
 = 1. Observe from (20) that the subvectors of  are

given by

(0 0 ) = −12
P

=1 
0


+
∗ + −12

P
=1

P
=1 

0


+
∗

+
∗

+∗ = +∗(0 0 ) =
P

= 
¡
0 0

¢


(26)

We derive the limiting distribution of  by showing that it can be represented as a sum

of martingale differences to which the CLT of Kuersteiner and Prucha (2013, Theorem 1)

can be applied. In fact, we not only establish convergence in distribution of , but we

establish C-stable convergence in distribution of .
19 This allows us to accommodate

random norming which is needed because our criterion function may converge to mixed

normal limiting distributions. The result allows us to establish the joint limiting distribution

for ( ) for any matrix valued random variable  that is C measurable. Establishing
joint limits is a requirement for the continuous mapping theorem to apply and thus critical

for the asymptotic analysis of estimators and test statistics.

The CLT for the sample moment vector  given below establishes , defined in

Assumption 3, as the limiting variance covariance matrix. The form of  is consistent

with the results on the variance covariances of linear quadratic forms given in Proposition

2, after specializing those results to the case of orthogonally transformed disturbances, and

symmetric weight matrices with zero diagonal elements. We emphasize that due to (i)

employing an orthogonal transformation of the disturbances to eliminate the unit specific

effects and (ii) considering matrices with zero diagonal elements in forming the quadratic

moment conditions, all correlations across time are zero. An inspection of Proposition 2

also shows that the expressions for the variances and covariances are much more complex

for non-orthogonal transformations, and that the use of matrices with non-zero diagonal

19See Renyi (1963), Aldous and Eagleson (1978), Hall and Heyde (1980) and Kuersteiner and Prucha

(2013) for a definitions and discussion of C-stable convergence.
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elements in forming the quadratic moment conditions can introduce components which may

be difficult to estimate.

Theorem 2 Let the transformation matrix Π = Π(0 0) be as defined in Proposition 1,

and suppose Assumptions 1-3 hold with 2 = 2 () and  = diag−1=1 () and  =

 
 + 2


.

(i) Then



¡
0 0 

¢ →  12  (C-stably), (27)

where  ∼  (0 ), and  and C (and thus  and ) are independent.

(ii) Let  be some ∗×  matrix that is C measurable with finite elements and rank ∗ ,
then


→ (

0)12∗, (28)

where ∗ ∼  (0 ∗), and ∗ and C (and thus ∗ and 
0) are independent.

Theorem 2 can be of interest in itself as a CLT for vectors of linear quadratic forms of

transformed innovations. As a special case the theorem also covers linear quadratic forms

in the original innovations: for  =  = 1,  = 0 for    and 2 = 20 we have

+∗ = (00). The result generalizes Theorem 2 in Kuersteiner and Prucha (2013).

We emphasize that our result differs from existing results on CLTs for quadratic forms in

various respects:20 First it considers linear quadratic forms in a panel framework. To the

best of our knowledge, other results only consider single indexed variables. As stressed in

Kuersteiner and Prucha (2013) the widely used CLT for martingale differences by Hall and

Heyde (1980) is not generally compatible with a panel data situation. Second, Theorem

2 allows for the presence of common factors which can be handled, because Theorem 2

establishes convergence in distribution C-stably. Third, the theorem covers orthogonally

transformed variables, and demonstrates how these transformations very significantly sim-

plify the correlation structure between the linear quadratic forms.

6.3 Limiting Distribution

The next theorem establishes basic properties for the limiting distribution of the GMM

estimator ̃(̃) when ̃ is a consistent estimator of the auxiliary parameters so that ̃−
0

→ 0 and 0
→ ∗. Let ( ) = −12( ) and () = plim→∞( ∗)

20See, e.g., Atchad and Cattaneo (2012), Doukhan et al. (1996), Gao and Yongmiao (2007), Giraitis and

Taqqu (1998), and Kelejian and Prucha (2001) for recent contributions. To the best of our knowledge the

result is also not covered in the literature on  -statistics; see, e.g., Korolyuk and Borovskich (1994) for a

review.
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as defined in Assumption 6. In deriving the limiting distribution of ̃(̃) we establish

that () exists, and that () is C-measurable for all  ∈ Θ, and continuous in .

Let  = (∗) and observe that  is C-measurable, since ∗ is C-measurable in light of
Assumption 4.

Theorem 3 (Asymptotic Distribution). Suppose Assumptions 1-7 holds for ̄ = ̃ with

̃−0 = (
−12) and 2 = 20 = 2 (0), and that  has full column rank  Then,

(i)

12(̃ (̃)− 0)
→ Ψ12∗ as →∞

where ∗ is independent of C (and hence of Ψ), ∗ ∼ (0 ) and

Ψ = (0Ξ)−10Ξ Ξ(0Ξ)−1 (29)

(ii) Suppose  is some  ×  matrix that is C measurable with finite elements and rank 
, then

12(̃ (̃)− 0)
→ (Ψ0)12∗∗,

where ∗∗ ∼  (0 ), and ∗∗ and C (and thus ∗∗ and Ψ0) are independent.

The matrix  is defined in Assumption 3. Since 2 = 20 the expression simplifies to

 = diag−1=1

¡
 
 + 2




¢
with  =  

 + 2

 , where −1

P
=1 [

0
| C]

→  
 and

−1
P

=1

P
=1

h
0

¯̄̄
C
i

→  
 . In light of Assumption 3 a consistent estimator of 

is e = diag−1=1

³
 
 + 2




´
 (30)

where  
 = −1

P
=1 

0
, 


 = −1

P
=1

P
=1 

0
.

For efficiency, conditional on C, we select Ξ =  −1, in which case Ψ =
£
0 −1

¤−1
.

The corresponding feasible efficient GMM estimator is then obtained by choosing Ξ̃ =e −1 yielding

̂ = arg min
∈Θ

( ̃)
0 e −1 ( ̃) (31)

Clearly e −1
()

→  −1 in light of Assumption 3, with  −1 being C-measurable with  finite
elements, and with  −1 positive definite  Furthermore, from the proof of Theorem 3,

(̂ ̃)
→  where  is C-measurable with  finite elements, and with full column

rank ., we have that Ψ̂ =
h
0(̂ ̃)e −1 (̂ ̃)

i−1
is a consistent estimator for Ψ.

Let  be a  ×  full row rank matrix and  a  × 1 vector, and consider the Wald
statistic

 =

°°°°³Ψ̂
0
´−12√

(̂ − )

°°°°2 (32)
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to test the null hypothesis 0 : 0 =  against the alternative 1 : 0 6= . The next

theorem shows that  is distributed asymptotically chi-square, even if Ψ is allowed to be

random due to the presence of common factors represented by C.

Theorem 4 Suppose the assumptions of Theorem 3 hold. Then

Ψ̂−12

√
(̂ − 0)

→ ∗ ∼ (0 )

Furthermore


¡
  21−

¢→ 

where 21− is the 1−  quantile of the chi-square distribution with  degrees of freedom.

As remarked above, an initial consistent GMM estimator ̄ can be obtained by choosing

Ξ̃ =  and ̄ = 1, or equivalently by using the identity matrices as estimators for Σ and

Σ.

7 Conclusion

In this paper we develop an estimation theory for a panel data model with interactive effects

that permits for the data generating process to be (time) dynamic, and cross sectionally

dependent. Cross sectional dependence may stem from “Cliff-Ord type spatial” interac-

tions as well as from common shocks. The model allows for spatial interactions in the

endogenous variables, exogenous variables, and/or disturbances. The spatial interaction

matrices are themselves allowed to be endogenously determined. The model also allows for

heteroskedasticity in the time and cross sectional dimensions. In addition, our theory also

accommodates regressors that are only sequentially (rather than strictly) exogenous.

The paper considers a class of GMM estimators based on linear and quadratic moment

conditions and forward differenced data. It provides results on the consistency and the

limiting distribution of the estimators. The paper first develops a quasi-forward differencing

transformation, which eliminates the interactive effects while ensuring orthogonality of

the transformed moments. This transformation contains the Helmert transformation as a

special case. The paper also gives general results regarding the variances and covariances

of linear quadratic forms of forward differences. Due to the presence of common factors

the limiting distribution of the GMM estimator is nonstandard as a multivariate mixture

normal, which leads to the need for random norming. Despite of this it is shown that

corresponding Wald test statistics have the usual 2-distribution.

The estimation theory developed here is expected to be useful for analyzing a wide range

of data in micro economics, including social interactions, as well as in macro economics.
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Our theory is general in nature. Future work will examine specific models and estimators

in more detail. The exact specification of instruments and the estimation of nuisance

parameters are best handled on a case by case basis.
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A Appendix: Proofs

A.1 Martingale Difference Representation

To establish a martingale difference representation of the sample moment vector  =

(0 0 ) defined by (21) and (26) we employ the following sub--fields of F ( =

1     ):

F = 

µn
1   

o
=1

 {1}−1=1

¶
∨ C

F+ = 

µn
2   


1 

o
=1

 {2}−1=1

¶
∨ C

...

F(−1)+ = 

µn
    


−1 

o
=1

 {}−1=1

¶
∨ C

(A.1)

with F0 = C. Let  = (01     
0
−1)

0 ∈ R be a fixed vector with 0 = 1. Us-

ing the Cramer-Wold device and utilizing (26) consider 0 = 1 + 2 with 1 =

−12
P

=1

P−1
=1 00

+
∗ and 2 = −12

P
=1

P−1
=1 0

P
=1 

0


+
∗

+
∗ where +∗ =

+ = (0)
£
+0

¤
with +0 = +(0 0)0 =

P
= 

¡
0 0

¢ £
0

¤
.

Since 0 and  satisfies the same measurability properties as  and , and since

0  

  20 

2
  


 ∞, we can w.o.l.o.g. set 0 =  = 1 and implicitly absorb these

terms into  and . Then

1 = −12
P

=1

P−1
=1 00

P
=  =

P
=1

P
=1  (A.2)

with

 =
P

=1 
0

0
 (A.3)

and where we set  = 0. Note that  only depends on  with  ≤  and , and thus

is measurable w.r.t. B ∨ C. This implies that  is measurable w.r.t. F(−1)+ and
B ∨ C. Next, observe that

2 =
P

=1

P
=1 2

³P−1
=1  +

P−1
=1

P
=1 

´
(A.4)

with

 =
P

=1 
0

0
 (A.5)

for  ≤ . Observe that  =  and 10 = 0 per our convention on summation, and

that  only depends on  for  ≤  ≤ . Thus  is measurable w.r.t. B∨C. This
implies that  is measurable w.r.t. F(−1)+ and B ∨ C. By Equations (A.2) and
(A.4) it follows that 0 =

P+1
=1  with 1 = 0 and, for  = 1       = 1     

(−1)++1 = −12
³
 + 2

³P−1
=1  +

P
=1

P−1
=1 

´´
(A.6)
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where  = 0. Given the judicious construction of the random variables  and the infor-

mation sets F with  = (−1)++1 we see that F−1 ⊆ F,  is F-measurable,
and that  [|F−1] = 

£
(−1)++1|F(−1)+

¤
= 0 in light of Assumption 1 and

observing that F(−1)+ ⊆ B∨C. This establishes that {F 1 ≤  ≤ + 1  ≥ 1}
is a martingale difference array.21

A.2 Lemmas

Lemma A.1 Suppose Assumptions 1 - 3 hold with 20 = 2 = 1, and let  and  be

as defined in (A.3) and (A.5) with  = 
¡
0 0

¢
. Then the following bounds hold for

some constant  with 1   ∞
(i) 

h
||2+

i
≤ 

(ii)
P

=1 || ≤ 

(iii) for  ≥ 1 P
=1 || ≤ 

(iv) for 1 ≤  ≤ 2 + 
P

=1 kk ≤ 

(v) for 1 ≤  ≤ 2 + , 
£|| |F(−1)+

¤ ≤ 

(vi) for  ≤ , 1 ≤  ≤ 2 +   [
P

=1 || || |B ∨ C] ≤ 

(vii) for  ≤ , 1 ≤  ≤ 2 +   [(
P

=1 || ||) |B ∨ C] ≤ 

Proof. See supplementary appendix “Proofs of Lemmas”.

Lemma A.2 Suppose Assumptions 1 - 3 hold with 20 = 2 = 1, and let  and  be as

defined in (A.3) and (A.5) with  = 
¡
0 0

¢
. Let 

(1)
 = 2, 

(2)
 = 4

³P−1
=1 

´2
,


(3)
 = 4

³P−1
=1

P
=1 

´2
, 

(4)
 = 4

P−1
=1 , 

(5)
 = 4

P−1
=1

P
=1 

and 
(6)
 = 8

P−1
=1 

P−1
=1

P
=1 .

Define the limits


(1)
 = plim

→∞
−1

X
=1


£
2|C

¤
 

(2)
 = plim

→∞
220

−1
X
=1

X
=1


£
2|C

¤



(3)
 = plim

→∞

−1X
=1

420
−1

X
=1

X
=1


£
2|C

¤


Then for  = 1 2 3

−1
P

=1 
()


→ 
()
 as →∞.

Furthermore, −1
P

=1 
(4)


→ 0, −1
P

=1 
2
0

P
=1 

(5)
 → 0 and −1

P
=1 

(6)


→ 0 as

→∞.
21 As to potential alternative selections of the information sets, we note that defining F(−1)+ =

B ∨ C yields information sets that are not adaptive, and defining F(−1)+ = 


1   

=1


∨ C

would violate the condition that  is F-measurable.
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Proof. See supplementary appendix.

The next lemma will be useful for, e.g., establishing the consistency of variance co-

variance matrix estimators. We consider general (not necessarily criterion) functions R :

Ω×Θ → R and R : Ω×Θ → R.

Lemma A.3 Suppose R( ) is a.s. uniformly continuous on Θ, where Θ is a subset of

R , suppose b and ∗ are random vectors with b→ ∗ a.s. [i.p.], and

sup
∈Θ

|R( )−R( )|→ 0 a.s.[i.p.] as →∞ (A.7)

then

R(b)−R( ∗)→ 0 a.s.[i.p.] as →∞ (A.8)

Proof. See Supplementary Appendix.

The next lemma is useful in establishing uniform convergence of the objective function

of the GMM estimator from uniform convergence of the sample moments. In the following

proposition m : Ω × Θ → R and m : Ω × Θ → R should be viewed as the sample

moment vector and the corresponding “limiting” moment vector.

Lemma A.4 Suppose Θ is compact, m( ) ⊆  ⊆ R for all  ∈ Θ a.s. with 

compact, and

sup
∈Θ

km( )−m( )k→ 0 a.s.[i.p.] as →∞ (A.9)

Furthermore, let Ξ and Ξ be  ×  real valued random matrices, and suppose that

Ξ − Ξ→ 0 a.s. [i.p.] where Ξ is finite a.s.. Then

sup
∈Θ

¯̄
m( )

0Ξm( )−m( )0Ξm( )
¯̄
→ 0 a.s.[i.p.] as →∞. (A.10)

Proof. See Supplementary Appendix.

Lemma A.5 Suppose Assumptions 1- 5 hold, and let ̄
→ ̄∗ with ̄ ∈ Θ and ̄∗ ∈ Θ,

where ̄∗ is C-measurable. Then
(i) m() = plim→∞ −12( ̄∗) exists for each  ∈ Θ,with m : Ω×Θ →  where 

a compact subset of R, m() is C-measurable for each  ∈ Θ
(ii) () = plim→∞ −12( ∗) exists and is finite for each  ∈ Θ, () is

C-measurable for each  ∈ Θ, and () is uniformly continuous on Θ

Proof. See Supplementary Appendix.
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A.3 Main Results

Proof of Proposition 1. Given the explicit expressions for the elements of Π the claims

of the proposition can be readily verified by straight forward calculations.22

Proof of Proposition 2. The proof of the proposition uses methodology similar to

that used in establishing (A.12) below in the proof of Theorem 2. Explicit derivations are

available in the supplementary appendix.

Proof of Proposition 3. An inspection of the proof of, e.g., Lemma 3.1 in Pötscher

and Prucha (1997) shows that the proof of the a.s. version of their Lemma 3.1 goes through

even if the “limiting” objective functions  and the minimizers  are allowed to be

random, and the identifiable uniqueness assumption (3.1) is only assumed to holds a.s..

The convergence i.p. version of the proposition follows again from a standard subsequence

argument. Consequently Proposition 3 is seen to hold as a special case of the generalized

Lemma 3.1 in Pötscher and Prucha (1997).

Proof of Theorem 1. R () = −1( ̄)
0Ξ̃( ̄) and R () = m()0Ξm ().

We use Proposition 3 to prove the theorem. Under the maintained assumptions, ∗ is

identifiable unique in the sense of Condition (i) of Proposition 3. This is seen to hold in

light of Condition (25) of Assumption 6, and by observing that R (∗) = m(∗)0Ξm (∗) = 0
and

R() = m()0Ξm() ≥ min (Ξ) km()k2 
with min (Ξ)  0 a.s. by Assumption 7 To verify Condition (ii) of Proposition 3 we

employ Lemma A.4. By Lemma A.5 we have m() ∈ , where  is compact, and m() is

C-measurable. By Assumption 6 we have

sup
∈Θ

°°°−12 ( ̄)−m()
°°° = (1)

Furthermore, observe that by Assumptions 7 we have Ξ̃− Ξ = (1) where Ξ is C-
measurable and finite a.s. Having verified all assumptions of Lemma A.4 it follows from

that Lemma that also Condition (ii) of Proposition 3, i.e.,

sup
∈Θ

kR ()−R ()k = (1)

holds. Having verified both conditions of Proposition 3 it follows from that proposition

that ̃ (̄)− ∗
→ 0 and consequently ̃ (̄)− 0

→ 0 as →∞.
Proof of Theorem 2. To derive the limiting distribution we apply the martingale

difference central limit theorem (MD-CLT) developed in Kuersteiner and Prucha (2013),

22A constructive proof, which allowed us to find the explicit expressions for the elements of Π, is signifi-

cantly more involved and available on request.
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which is given as Theorem 1 in that paper. To apply the MD-CLT we verify that the

assumptions maintained by the theorem hold here. Observe that F0 =
∞\
=1

F0 = C and

F0 ⊆ F1 for each  and  [1|F0] = 0 where  is defined in (A.6). In the proof

of Theorem 2 of Kuersteiner and Prucha (2013) it is shown that the following conditions

are sufficient for conditions (14)-(16) there, postulated by the MD-CLT, to hold:

X
=1


h
||2+

i
→ 0 (A.11)

 2 =

X
=1


£
2
|F−1

¤ → 2 (A.12)

sup



h
 2+

i
= sup




⎡⎣Ã X
=1


£
2
|F−1

¤!1+2⎤⎦ ∞ (A.13)

with  = + 1. In the following we verify (A.11)-(A.13) with 2 =  = 0  for any

 ∈ R such that 0 = 1.

For the verification of Condition (A.11) let  = 2+, 1+1 = 1 and  = (−1)++1.
Observe that using inequality (1.4.4) in Bierens (1994) we have

|| ≤ 2( + 1)

1+2
||

⎧⎨⎩|| +
⎛⎝ −1X

=1

||1 ||1 ||
⎞⎠

+

−1X
=1

⎛⎝ X
=1

||1 ||1 ||
⎞⎠⎫⎬⎭

such that by Hölder’s inequality

|| ≤ 2( + 1)

1+2
||

⎧⎪⎨⎪⎩|| +
⎛⎝ −1X

=1

||
⎞⎠

−1X
=1

|| ||

+

−1X
=1

⎛⎝ X
=1

||
⎞⎠⎛⎝ X

=1

|| ||
⎞⎠
⎫⎪⎬⎪⎭ 

Consequently, recalling from Section A.1 that  and  are measurable w.r.t. F(−1)+
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it follows that

 [|| |F−1] ≤ 2( + 1)

1+2

£|| |F(−1)+

¤⎧⎪⎨⎪⎩|| +
⎛⎝ −1X

=1

||
⎞⎠

−1X
=1

|| ||

+

−1X
=1

⎛⎝ X
=1

||
⎞⎠⎛⎝ X

=1

|| ||
⎞⎠
⎫⎪⎬⎪⎭

≤ 2( + 1)

1+2


⎧⎨⎩|| +
X

=1

⎛⎝ X
=1

|| ||
⎞⎠⎫⎬⎭

where we have used bounds in Lemma A.1(ii),(v) to establish the last inequality. Employing

Lemma A.1(i) and (vi) we have

 [||] =  [ [|| |F−1]]

≤ 2( + 1)

1+2


⎧⎨⎩ [||] +
X

=1

⎛⎝ X
=1

 [|| ||]
⎞⎠⎫⎬⎭

≤ 2( + 1)

1+2

³
 + +1

´


Consequently, recalling that  = + 1

X
=1


h
||2+

i
≤

X
=1


h

h
||2+ |F−1

ii
≤ 2

2+( + 1)3+2

2

³
1 + 1+

´
→ 0

which verifies condition (A.11).

To verify (A.12) with 2 =  = 0  we first calculate


£
2
|F−1

¤
= 

h
2
(−1)++1|F(−1)+

i


Recall from Section A.1 that the 20 and  are absorbed into  and , and thus by

Assumption 1 we have 
£
2|F(−1)+

¤
= 20. Furthermore, recalling that  and 

are measurable w.r.t. F(−1)+.we have


£
2
|F−1

¤
= 

h
2
(−1)++1|F(−1)+

i
= −120

⎛⎝ + 2

−1X
=1

 + 2

−1X
=1

X
=1



⎞⎠2

= 20
−1

6X
=1


()
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where the 
()
 are defined in Lemma A.2. Thus

 2 =

X
=1


£
2
|F−1

¤
=

6X
=1

X
=1

20
−1

X
=1


()
  (A.14)

Given the probability limits of −1
P

=1 
()
 , for  = 1     6 derived in Lemma A.2 we

have

 2 =

X
=1


£
2
|F−1

¤
=

6X
=1

X
=1

20
−1

X
=1


()


→ 2∗

with

2∗ =

X
=1

20

³

(1)
 + 

(2)
 + 

(3)


´
= plim

→∞

Ã
X
=1

20
−1

X
=1


£
2|C

¤!

+ plim
→∞

⎛⎝2 X
=1

40
−1

X
=1

X
=1


£
2|C

¤
+ 4

X
=1

20

−1X
=1

20
−1

X
=1

X
=1


£
2|C

¤⎞⎠ 

Recall that for  = 1      we have  =
P

=1 
0

0
 =

P−1
=1 

0

0
 where the last

equality holds since  = 0 for   . Thus

X
=1

20

X
=1

2 =

X
=1

20

X
=1

−1X
=1

0
0


−1X
=1

0
0


=

X
=1

−1X
=1

−1X
=1

0
0


0

0


¡
Σ0

0


¢
=

X
=1

−1X
=1

0
0


0


observing that Σ0
0
 =

P
=1 

2
0 and ΠΣ0Π

0 = −1.

Recall further that for  = 1      ,  ≤ , we have  =
P

=1 
0

0
 =P−1

=1 
0

0
 where the last equality holds since  = 0 for   . Thus, by straight

forward algebra,

2

X
=1

40

X
=1

2 + 4

X
=1

20

−1X
=1

20

X
=1

2 = 2

X
=1

20
2
0

X
=1

2

= 2

−1X
=1

X
=1

0
0


0

0


¡
Σ0

0


¢2
= 2

−1X
=1

X
=1

0
0


observing again that ΠΣ0Π
0 = −1. From this we see that

2∗ = plim
→∞

−1X
=1

0

⎧⎨⎩−1
X
=1


£
0|C

¤
+ 2−1

X
=1


£
0|C

¤⎫⎬⎭

=

−1X
=1

0
h
 
 + 2




i
 = 0 
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which establishes that indeed  2
→ 2 = 0 .

Finally, we verify Condition (A.13). Analogously as in the verification of Condition

(A.11) observe that using the triangle inequality

||2 ≤ 4( + 1)2


||2

⎧⎨⎩||2 +
⎛⎝ −1X

=1

||12 ||12 ||
⎞⎠2

+

−1X
=1

⎛⎝ X
=1

||12 ||12 ||
⎞⎠2⎫⎬⎭

and by subsequently applying Hölder’s inequality we have

||2 ≤ 4( + 1)2


||2

⎧⎨⎩||2 +
⎛⎝ −1X

=1

||
⎞⎠ −1X

=1

|| ||2

+

−1X
=1

⎛⎝ X
=1

||
⎞⎠⎛⎝ X

=1

|| ||2
⎞⎠⎫⎬⎭ 

Consequently in light of Lemma A.1 (ii) and (v)


h
||2 |F−1

i
≤ 4( + 1)2



h
||2 |F(−1)+

i⎧⎨⎩||2 +

−1X
=1

|| ||2

+

−1X
=1

X
=1

|| ||2
⎫⎬⎭

≤ 4( + 1)22



⎧⎨⎩||2 +
−1X
=1

|| ||2 +
−1X
=1

X
=1

|| ||2
⎫⎬⎭ 
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In light of the above inequality


h
 2+

i
= 

⎡⎣Ã X
=1


£
2
|F−1

¤!1+2⎤⎦
≤ 22+( + 1)2+2+

1+2
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⎧⎨⎩

X
=1

⎛⎝||2 + −1X
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⎞⎠⎫⎬⎭
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⎤⎥⎦

≤ 22+( + 1)2+2+
2


1+2

X
=1



⎡⎢⎣
⎛⎝||2 + −1X

=1

|| ||2 +
−1X
=1

X
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|| ||2
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−1X
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⎡⎢⎣
⎛⎝ X
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|| ||2
⎞⎠1+2

⎤⎥⎦
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where we have used repeatedly inequality (1.4.3) in Bierens(1994). By Lemma A.1 (i) we

have 
h
||2+

i
≤ . Applying Hölder’s inequality with  = 1 + 2 and 1 + 1 = 1,

and utilizing Lemma A.1 (ii)-(vi) we have:
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||1 ||1 ||2
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X
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h
|| ||2+

i
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and by the same arguments 

∙³P−1
=1 || ||2

´1+2¸
≤ 1+. Consequently, ob-

serving that  = 2 and  ≤  + 1,


h
 2+

i
≤ 3222+( + 1)2+2+

2
 3 1+2

1+2

1+2

≤ 31+222+( + 1)4+23+32 ∞

which verifies condition (A.13). Consequently it follows from Kuersteiner and Prucha (2013,

Theorem 1) that 0 =
P+1

=1 
→ 0 (C-stably), where 0 and C are independent.

Applying the Cramer-Wold device - see, e.g., Kuersteiner and Prucha (2013, Proposition
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A.2) it follows further that 
→  12 (C-stably) where  ∼ (0 ) and  and C are

independent.

Recall that in establishing the martingale difference representation of 0 we have

absorbed 0 into  and . The expression for  given in Assumption 3 is obtained

upon reversing this absorption.

Proof of Theorem 3. The proof follows from standard arguments. Details are given

in the supplementary appendix.

Proof of Theorem 4. As remarked in the text, e −1

→  −1 with  −1 being C-
measurable with  finite elements, and with  −1 positive definite  Furthermore, as

established in the proof of Theorem 3, (̂ ̃)
→  where  is C-measurable with  fi-

nite elements, and with full column rank  Thus Ψ̂ =
³
(̂ ̃)

0 e −1 (̂ ̃)
´−1 →

Ψ = (0 −1)−1. It now follows from part (i) of Theorem 3 that

12(̂ − 0)
→ Ψ12∗ (A.15)

where ∗ is independent of C (and hence of Ψ),  ∼ (0 ). In light of (A.15), the

consistency of Ψ̂, and given that  has full row rank  it follows furthermore that under

0 ³
Ψ̂0

´−12
12(̂ − ) =

³
Ψ̂0

´−12

³
12(̂ − 0)

´
=

¡
Ψ0

¢−12

³
12(̂ − 0)

´
+ (1)

Since  = (Ψ0)−12 is C-measurable and Ψ =  it then follows from part (ii) of

Theorem 3 that ³
Ψ̂0

´−12
12(̂ − )

→ ∗∗ (A.16)

where ∗∗ ∼  (0 ). Hence, in light of the continuous mapping theorem,  converges

in distribution to a chi-square random variable with  degrees of freedom. The claim that

Ψ̂
−12


√
(̂− 0)

→ ∗ is seen to hold as a special case of (A.16) with  =  and  = 0.
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