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1. Introduction2

This paper considers instrumental variables (IV) estimators for linear time series models.

Efficient estimation in this framework has been studied by Hayashi and Sims (1983), Stoica,

Söderström and Friedlander (1985; 1987a,b) and Hansen and Singleton (1991, 1996). In

these papers efficient estimation of autoregressive roots under the presence of moving

average errors has been analyzed. The moving average part of the model is not estimated

but rather treated as a nuisance parameter. The class of instruments is restricted to linear

functions of past observations. It is also assumed in this literature that the innovations

are conditionally homoskedastic. Instrumental variables methods using overidentifying

restrictions have also been applied to autoregressive (AR) models in the context of missing

observations by Chen and Zadrozny (1998).

Here it is shown that the same type of IV estimators based on linear functions of

past observations can be used to improve efficiency of estimators for linear time series

models in the presence of unmodelled conditional heteroskedasticity. A consequence of

the results of this paper is that standard estimators of linear process models based on

Gaussian pseudo maximum likelihood (PML) functions are inefficient generalized method

1This paper is partly based on results in my Ph.D. dissertation at Yale University, 1997. I wish to

thank Peter C.B. Phillips for continued encouragement and support. I have also benefited from comments

by Donald Andrews, Jinyong Hahn, Jerry Hausman, Whitney Newey, Oliver Linton, Chris Sims and

participants of the econometrics workshop at Yale and the University of Pennsylvania. I have also received

very helpful comments from an associate editor and two referees that lead to a substantial improvement

of the paper. All remaining errors are my own. Financial support from an Alfred P. Sloan Doctoral

Dissertation Fellowship is gratefully acknowledged.
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of moments (GMM) estimators if the innovations are conditionally heteroskedastic. This

means in particular that ordinary least squares (OLS) estimators for autoregressive models

of order p (AR(p)) are inefficient GMM estimators if the innovations are heteroskedastic.

In Kuersteiner (1999) a feasible efficient IV estimator for the AR(p) model with martin-

gale innovations satisfying some additional moment restrictions is developed. In this paper

we extend the previous results in two directions. First, the form of the optimal instrument

is analyzed under more general assumptions about the innovation process, relaxing some

of the restrictions on the fourth moments of the innovations that were previously main-

tained. Second, the class of models is extended to include general ARMA(p,q) processes

that require minimization of a nonlinear criterion function. While Kuersteiner (1999) is

mainly concerned with the semiparametric implementation of the IV procedure we focus

on identification issues which are the most important aspect in extending the previous

results to nonlinear models.

In addition, the paper extends the current literature in two directions. First, IV esti-

mation is extended to general autoregressive-moving average (ARMA) models when the

innovations are conditionally heteroskedastic. Second, for the class of IV estimators with

linear instruments the paper derives exact functional forms of optimal filters of the type

developed in Hansen and Singleton (1991) for a simpler estimation problem. It is shown

how the filters depend on fourth order cumulants of the innovation distribution and the

impulse response function of the underlying process. This formulation allows to give exact

conditions on the distribution of the error process under which optimal instrumental vari-

ables estimators are feasible. A detailed analysis of the properties of the optimal weight
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matrix is provided.

The results in this paper are presented for the case of martingale difference innovations

driving the linear process. Alternatively similar formulas with the same efficiency implica-

tions could be obtained under the weaker assumption of white noise innovations. In this

case the space of permissible instruments is generated by all linear combinations of past

observations and the efficiency bounds would be identical to the bounds of Hansen (1985)

and Hansen, Heaton and Ogaki (1988). In the case of martingale difference innovations

Hansen’s bounds are based on a larger class of instruments and are therefore tighter than

the bounds obtained here.

The main technical difficulty in extending previous procedures to the estimation of

the moving average case lies in the consistency proof. We give a general characterization

of instrument processes that lead to consistent estimators. We then establish that the

optimal instrument satisfies these criteria.

In this paper we do not focus on implementation issues. For most parts of the analysis

it is assumed that the optimal instrument is known a priori. It is clear that in practice a

procedure for estimating the weight matrix is needed. In Kuersteiner (1997) such a feasible

procedure is developed under stronger assumptions on the martingale difference innova-

tions. If these assumptions are satisfied then the procedures developed in Kuersteiner

(1997) can be directly applied to the present context. Explicit formulas are provided for

this case. We also discuss feasible versions of the optimal procedure under the more gen-

eral conditions analyzed in this paper without giving proofs of feasibility. In this case the

feasible estimator depends on a bandwidth parameter. Monte Carlo simulations for this
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case are reported to give some guidance in the choice of the bandwidth parameter.

The paper is organized as follows. Section 2 introduces the assumptions about the

innovation sequence and specifies the inference problem. Section 3 develops an instru-

mental variables estimator for estimation of linear process models and proves consistency

and asymptotic normality of estimators for the ARMA class. In Section 4 it is shown

how to factorize the asymptotic covariance matrix of this class of instrumental variables

estimators in a way to obtain a lower bound. Section 5 uses the lowerbound to derive an

explicit formulation of the optimal IV estimator depending on the data periodogram and

an optimal frequency domain filter. Numerical Examples for the ARMA(1,1) model and

some Monte Carlo simulations are reported in Section 6. Proofs of some important lemmas

are contained in Appendix A while the proofs of the results in the paper are contained in

Appendix B.

2. Model Specification

The econometrician observes a finite stretch of data {yt}nt=1 from a univariate process

which is generated by the following mechanism

yt =
∞X
j=0

c(β, j)εt−j (1)

for a given β = β0 ∈ Rd and c(β, j) : Rd ×N→ R. The parameter β0 is unknown but the

functions c(., j) are known. We define the lag polynomial C(β, L) =
P∞
j=0 c(β, j)L

j where

L is the lag operator and impose the identifying restriction c(β, 0) = 1.

The innovations εt are assumed to be a univariate martingale difference sequence. The
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martingale difference property imposes restrictions on the fourth order cumulants. These

restrictions can be conveniently summarized by defining the following function

σ (s, r) =


E
¡
ε2t εt−|s|εt−|r|

¢
if r 6= s

E
¡
ε2t ε

2
t−s
¢− σ4 if r = s

for r, s ∈ {0,±1,±2, ...} (2)

where σ4 =
¡
Eε2t

¢2
. It should be emphasized that σ (s, r) is equal to the fourth order

cumulant for s, r > 0. We assume that we have a probability space (Ω,F , P ) with a

filtration Ft of increasing σ-fields such that Ft ⊆ Ft+1 ⊆ F ∀t. The doubly infinite sequence

of random variables {εt}∞t=−∞ generates the filtration Ft such that Ft = σ(εt, εt−1, ...). The

assumptions on {εt}∞t=−∞ are summarized as follows:

Assumption A1. (i) εt is strictly stationary and ergodic, (ii) E (εt | Ft−1) = 0 almost

surely, (iii) E
¡
ε2t
¢
= σ2 > 0, (iv)

P∞
r=1

P∞
s=1 |σ (s, r)| = B <∞, (v) E

¡
ε2t ε

2
t−s
¢
>α some

α> 0 for all s.

Remark 1. Assumption A1(ii) could be relaxed to Eεtεs = 0 for t 6= s at the cost of

slightly more complicated expressions for the optimal instruments. Assumption (iii) guar-

antees that εt has a nondegenerate distribution. Assumption (iv) limits the dependence

in higher moments by imposing a summability condition on the fourth cumulants. The

assumption is needed to prove invertibility of the infinite dimensional weight matrix of the

optimal GMM estimator. Assumption (v) together with (iii) rules out degenerate joint

distributions of εt and εt−s.

Remark 2. It can be checked that processes in the autoregressive conditionally het-
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eroskedastic family such as ARCH, GARCH, EGARCH as well as stochastic volatility

models satisfy the assumptions, provided that Eε4t < ∞. It is well known from Milhoj

(1985) or Nelson (1990) that this condition is satisfied only if additional restrictions lim-

iting the temporal dependence of conditional variances and/or the innovation distribution

are imposed.

Assumption (A1) implies that ε2t is strictly stationary and ergodic and therefore co-

variance stationary. It should be emphasized that no assumptions about third moments

are made. In particular this allows for skewness in the error process.

For the special case of an ARMA(p,q) process, the lag polynomial has the familiar

rational form

C(β, z) =
θ (z)

φ (z)
(3)

with θ (z) = 1−θ1z−. . .−θqzq and φ (z) = 1−φ1z−. . .−φpzp and β
0
= (φ1, ...,φp, θ1, ..., θq).

Let gyy(β,λ) =
¯̄
C(β, eiλ)

¯̄2
where |z| = (zz∗)1/2 for z ∈ C and z∗ is the complex conjugate

of z. Under Assumption (A1), the spectrum of yt is given by fyy(β,λ) = σ2

2πgyy(β,λ).

Further restrictions on C(β, eiλ) are needed to insure identification of the model and for

consistency and asymptotic normality of the estimators. The necessary assumptions are

discussed in Hannan (1973), Dunsmuir and Hannan (1976), and Deistler, Dunsmuir and

Hannan (1978). As shown in these articles, a careful distinction between convergence of

the parameters in c(β, j) and the structural form parameters is needed. Consistency proofs

typically establish convergence in the pointwise topology. An identification condition is

then needed to obtain convergence in the quotient topology.

Some of the results of this paper are presented for the general formulation C(β, z).
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At some points however a specialization to the ARMA case is made in order to obtain

sharper results. This is especially the case for the consistency proof. In that case abstract

high level assumptions can be made precise for the specific functional form of the ARMA

model.

In the general case the functions c(β, j) ∈ C(£Rd ×N¤ ,R) are restricted to satisfy the
following additional constraints.

Assumption B1. Let C(β, z) =
P∞
j=0 c(β, j)z

j . The parameter space Θ is a closed subset

of Θ0 defined by Θ0 = {β ∈ Rd
¯̄̄
|C(β, z)|−2 6= 0 for |z| ≤ 1, |C(β, z)|2 6= 0 for |z| ≤ 1}

where we assume that Θ0 is open in Rd and has a compact closure denoted by Θ. Assume

β0 ∈ Θ. The coefficients c(β, j) are twice continuously differentiable in β ∈ Θ for all j and

c(β, 0) = 1. We require for β ∈ Θ thatP∞
j=0 |j| |c(β, j)| <∞ and

P∞
j=0 |j|

¯̄̄
∂
∂β c(β, j)

¯̄̄
<∞.

Assumption B2. For all β,β0 ∈ Θ, gyy(β0,λ) 6= gyy(β,λ) whenever β 6= β0 for some

subsets L ⊂ [−π,π] with nonzero Lebesgue measure.

Assumption B3. For a neighborhood U of β0, U ⊂ Θ0, ∂2gyy(β,λ)/∂β∂β
0
is continuous

in λ ∈ [−π,π] and β ∈ U.

Remark 3. Assumption (B1) implies that the functions gyy(β,λ) and ∂gyy(β,λ)/∂β are

Lipschitz continuous. The Lipschitz condition also implies that g−1yy (β,λ) is Lipschitz

continuous on Θ and therefore that ∂
∂β ln gyy(β,λ) is Lipschitz continuous on Θ.

Remark 4. Assumption (B1) is stronger than C2.2 in Dunsmuir (1979) where on the other

hand conditional homoskedasticity is assumed. The stronger summability restrictions are

needed to justify approximations of the instruments based on the innovation sequence.
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Remark 5. Assuming Θ to be compact is of little practical importance and is commonly

done in the time series literature. See for example Hosoya and Taniguchi (1982), Kabaila

(1980), Taniguchi (1983).

The assumptions specified here are sufficient to identify the parameters β in C(β, eiλ).

For specific functional forms of C(β, eiλ) the assumptions can be made more explicit. A

leading example is the ARMA model where the identifiable subset of Rd can be described

more accurately. The following Assumption is equivalent to the previous assumptions for

the case of an ARMA model.

Assumption B4. Let C(β, z) = θ (z) /φ(z). The parameter space Θ is a closed subset of

Θ0 defined by Θ0 = {β ∈ Rd |φ(z) 6= 0 for |z| ≤ 1, θ (z) 6= 0 for |z| ≤ 1, θ (z) ,φ(z) have no

common zeros, θq 6= 0 or φp 6= 0}. Assume β0 ∈ Θ.

Remark 6. Deistler, Dunsmuir and Hannan (1978) show that Θ defined in Assumption

(B4) satisfies the conditions of Assumption (B1). It is easy to show that all ARMA models

in Θ satisfy the summability and differentiability requirements of (B1).

In the following analysis of the IV estimator results will first be obtained for the general

linear process case. It will then be shown that high level assumptions needed for these

results are satisfied for the case when Assumptions (B1-B3) are specialized to (B4).

3. Instrumental Variables Estimators

In this section a class of instrumental variables estimators is introduced. The instruments

are constructed from linear filters of lagged innovations εt. An alternative, equivalent for-
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mulation would be to allow for linear filters of the observable process yt. Estimators of

this form have been proposed by Hayashi and Sims (1983), Stoica, Söderström and Fried-

lander (1985, 1987a,b) and Hansen and Singleton (1991). Efficiency of these procedures

is achieved by exploiting all the moment conditions of the form Eεtεs = 0 for t 6= s.

The innovations εt are functions of the observable data g(yt, yt−1, ...,β0) = gt(β0) = εt.

If we stack a finite number m of innovations in εmt = [εt−1, ..., εt−m]0 then a standard

GMM estimator minimizes the population equivalent of E (g(β)εmt )
0Ω−1m E (g(β)εmt ) where

Ωm is a suitable weight matrix. The first order conditions of this problem are given by

E
³
∂g(β)
∂β0 ε

m
t

´0
Ω−1m E (g(β)εmt ) = 0.We will later use the notation Pm = E

³
∂g(β)
∂β0 ε

m
t

´
where

Pm is a m × d dimensional matrix. In the context of linear instrumental variables esti-

mators Pm corresponds to the matrix of covariances between regressors and instruments.

Using this notation we can now set up an equivalent problem which is to solve the set of

equations E
¡
g(β)P 0mΩ−1m εmt

¢
= 0. Letting zt = P 0mΩ−1m εmt be the d dimensional vector of

instruments then leads to the formulation of an equivalent, exactly identified IV estimator

that solves the population equivalent of E (g(β)zt) = 0. Clearly, the two formulations of

the problem are equivalent as far as their first order asymptotic efficiency properties are

concerned.

The advantage of this transformation lies in the fact that in our context of ARMA

models the matrix Pm can be estimated
√
n consistently irrespective of the size of m. It is

shown in Kuersteiner (1997, 1999) that under additional restrictions on the weight matrix

Ωm it is possible to set m = n or in other words to let the number of moment conditions

grow at the same rate as the sample size. This is not the case for the usual implementation
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of GMM where E (g(β)εmt ) is replaced by a sample average.

We now discuss the estimation problem for a general class of linear instruments. In-

troduce the space of absolutely summable sequences l1 such that x ∈ l1 if P |xj| <∞ for

x = {xj}∞j=1 . Define the set A of sequences of vectors aj ∈ Rd such that

A =
n
a = {aj}∞j=1 : aj ∈ Rd,

©
[aj ]k

ª∞
j=1

∈ l1 for all 1 ≤ k ≤ d
o

where [.]k denotes the k-th element of a vector. We define zt(ω) : Ω→ Rd for all t as

zt =
∞X
k=1

akεt−k a.s.

for a ∈ A, a fixed. The instruments satisfy the orthogonality condition

E
£¡
C−1(β0, L)yt

¢
zt
¤
= 0 (4)

since C−1(β0, L)yt = εt from (1). The estimator based on this condition is constructed

in the time domain. If C−1(β0, L) is of infinite order, as is the case for MA(q) models,

a sample analog to (4) needs to be based on an approximation. Such an approximation

can be conveniently analyzed in the frequency domain. It should be stressed however that

the estimator is set up in time domain. Let the expansion of the polynomial C−1(β, L) be

C−1(β, L) =
P∞
j=0 c̃

β
jL

j . The sample analog of the moment restriction is then given by

Gn(β, a) =
1

n

nX
t=1

zt

t−1X
j=0

c̃βj yt−j = 0 (5)
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for a ∈ A. The criterion function is indexed by a to emphasize the fact that each choice

of an instrument results in a different estimator. From (4) we see that zt has to be

approximated as well. Discussion of this issue will be delayed until Section 5 where an

optimal instrument is considered. For the time being it is therefore assumed that zt is

known.

In the frequency domain the analog of (4) is

Z π

−π
C−1(β0, e

−iλ)fyz(λ)dλ = 0

where fyz(λ) =
P∞
j=−∞ γyz(j)e

−iλj and γyz(j) = Eytzt−j . We set

G(β, a) = (2π)−1
Z π

−π
C−1(β, e−iλ)fyz(λ)dλ.

Note that fyz(λ) typically is a complex vector valued function fyz(λ) : [−π,π]→ Cd. Also

note that
R π
−π C

−1(β, e−iλ)fyz(λ)dλ is real valued.

We introduce discrete Fourier transforms of the data defined as ωn,y(λ) = 1√
n

Pn
t=1 yte

−itλ

and for the instrument as ωn,z(λ) = 1√
n

Pn
t=1 zte

−itλ. The cross periodogram is In,yz(λ) =

ωn,y(λ)ωn,z(−λ). It is easy to check that Gn(β, a) defined in (5) is identical to

Gn(β, a) = (2π)
−1
Z π

−π
C−1(β, e−iλ)In,yz(λ)dλ.

We follow Hansen (1982) in defining the estimator βn. Unless otherwise stated all

conditions are for a ∈ A, a fixed
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Assumption C1. The sequence of estimators βn ∈ Rd is defined by

βn =argmin
β∈Θ

kGn(β, a)k2 . (6)

Assumption C2. Let the sets Bk(β0) for k = 1, 2, ... form a countable local base3 around

β0. The sets Bk(β0) can be taken as the set of balls with rational radius centered at β0.

Let zt =
P∞
k=1 akεt−k a.s. where εt−k satisfies Assumption (A1). Let A∗ ⊆ A be the set

of all sequences {ak}∞k=1 such that

A∗ =
½
a ∈ A

¯̄̄̄
inf

β∈Bk(β0)C∩Θ
kG(βn, a)k > 0 for k = 1, 2, ...

¾

where Bk(β0)
C are the complements of Bk(β0). Assume that A∗ 6= ∅.

Remark 7. Assumption (C1) is the definition of the estimator. We show in the consis-

tency proof that kGn(βn, a)k2 = 0 almost surely is implied by the assumptions on Gn. (C2)

is a familiar identification condition for global identification. Assumption (C2) specializes

(B2) to the case of IV estimators. The difference is that identification of an entire class of

estimators indexed by a needs to be guaranteed. Identification depends on the choice of

the instrument or a ∈ A and does not hold for all a ∈ A (see Remark 10 for an example).

We therefore define the subset A∗ of instruments that satisfy the identification condition.

3A collection of open subsets B of a space X is called a base if for each open set O ⊂ X and each x ∈ O

there is a set B ∈ B such that x ∈ B ⊂ O. A collection Bx of open sets containing a point x is called a

local base at x if for each open set O containing x there is a B ∈ Bx such that x ∈ B ⊂ O. Every metric

space has a countable base at each point (see Royden (1988), p. 175).
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This imposes restrictions on zt or a. A complete description of the set A∗ is possible for a

given parametric class C(β, z). A characterization will be given for the ARMA case.

Lemma 3.1. Assume (A1), (B1-B3), (C1-C2). Let zt = limm→∞A
0
mε

m
t a.s. with A

0
m =

[a1, ..., am] , {ak}∞k=1 ∈ A∗ and εmt = [εt−1, . . . , εt−m]
0
. Then βn → β0 almost surely.

Consistency of the IV estimator depends both on restrictions on the parameter space

and the instruments zt. Assumption (C2) restricts the class of allowable instruments. The

conditions given are necessarily high level without further knowledge regarding the func-

tion C(β, L). For practical purposes it is however important to characterize the set of

instruments A∗ leading to consistent estimators. In the case of an ARMA(p,q) model it is

possible to give conditions on the sequences a ∈ A∗. This is done in the next proposition.

Proposition 3.2. Assume C(β, L) = θ0(L)/φ0(L) is an ARMA(p,q) lag operator and the

parameter space Θ satisfies Assumption (B4). Let

S =
n
x = [x1, ...] ∈ l2 : φ0(L)x = 0 for xj , j > d, [x1, ..., xd]0 = κ,κ ∈ Rd

o

be the set of solutions to the difference equation φ0(L)x = 0 with d initial conditions

κ. Define kerA0 =
©
x ∈ l2 : A0x = 0ª for A = [a1, ...]

0 and a ∈ A. Let a ∈ A with

Ad = [a1, ..., ad]
0 where d = p + q. If p = 0 and Ad is nonsingular then a ∈ A∗. If 0 < p,

A = [a1, ....]0 is of full column rank and kerA0 ∩ S = 0 then a ∈ A∗.

Remark 8. Proposition (3.2) shows that ARMA models can be consistently estimated

by instrumental variables techniques provided that the instruments satisfy the specified

restrictions.
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Remark 9. The usual conditions for consistency in IV estimation are Eεtzt = 0 and

E ∂gt(β)
∂β zt is of full rank. For linear models these two conditions are equivalent to Assump-

tion (C2). In our context C2 may hold even if E ∂gt(β)
∂β zt is of reduced rank. An example

is an ARMA(1,1) model with instruments zt defined by a1 = [1, 0]
0 , a2 =

£−θ−10 , 1¤0 and
a3 =

£
0,−θ−10

¤0
with aj = 0 for j > 3. Then A is of full row rank, kerA0 ∩ S = 0 but

E ∂gt(β)
∂β zt is of reduced rank. On the other hand E

∂gt(β)
∂β zt being full rank implies A0 to be

of full row rank and A⊥ ∩ S = 0. In other words the identification conditions given here

are weaker than standard conditions would imply.

Remark 10. If the instruments are replaced by a1 = [1, 0]0 , a2 =
£−φ−10 , 1¤ and a3 =£

0,−φ−10
¤
in the ARMA(1,1) example then kerA0 ∩ S 6= 0 which shows that A0 being full

row rank is not sufficient for identification and clearly A∗ 6= A.

We now state additional assumptions that are sufficient to establish a result for the

limiting distribution of
√
n(βn − β0). Introduce the notation η̇(β,λ) = ∂ lnC(β, e−iλ)/∂β

and bk = (2π)−1
R
η̇(β0,λ)e

ikλdλ. It follows immediately that b−k = 0 and b0 = 0. Let

la(λ) =
P∞
k=1 ake

−iλk and define the matrices P 0
m = [b1, ..., bm], A

0
m = [a1, ..., am] and

Ωm =


α1,1 · · · α1,m

...
. . .

...

αm,1 · · · αm,m

 . (7)

where

αs,r =


σ (s, r) if s 6= r

σ (r, r) + σ4 if s = r

. (8)
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It is easy to check that limm P 0mAm = (2π)−1
R
η̇(β0,λ)la(−λ)0dλ. Also note that using

our earlier notation limm σ2P 0mAm = E ∂gt(β)
∂β zt. The following additional conditions are

needed to prove the existence of a limiting distribution of βn.

Assumption D1. Define A∗∗ ⊆ A as A∗∗ = ©
a ∈ A ¯̄det R η̇(β0,λ)la(−λ)0dλ 6= 0ª . As-

sume that A∗ ∩A∗∗ 6= ∅.

Remark 11. Assumption (D1) guarantees that there is an instrument a ⊆ A that satisfies

both the identification condition C2 and det
R
η̇(β0,λ)la(−λ)0dλ 6= 0. Assumption (D1)

corresponds to Assumption 3.4 in Hansen (1982). Note that for linear models there is no

difference between the identification assumptions and Assumption (D1) while this is not

true for nonlinear models. In general C2 does not imply D1.

The next lemma shows that for the ARMA model D1 does indeed imply C2 while we

have seen in Remark 9 that the reverse is not true.

Lemma 3.3. Assume C(β, L) = θ0(L)/φ0(L) is an ARMA(p,q) lag operator and the

parameter space Θ satisfies Assumption (B4) and that a ∈ A. Then a ∈ A∗∗ ⇒ a ∈ A∗.

The limiting distribution of the instrumental variables estimator is stated in the next

theorem. For notational efficiency define limm→∞ σ−4(P
0
mAm)

−1A0
mΩmAm(A

0
mPm)

−1 =

σ−4(P 0
A)−1A0

ΩA(A
0
P )−1. This notation will be justified in the next section in terms of

operators on infinite dimensional spaces.

Theorem 3.4. Assume (A1), (B1-B3), (C1, C2) and (D1). Let zt = limm→∞A
0
mε

m
t with

A
0
m = [a1, ..., am] , {ak}∞k=1 ∈ A∗ ∩ A∗∗ and εmt = [εt−1, . . . , εt−m]

0
. Then the estimator
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defined by βn = argmin kGn(βn, a)k2 has a limiting distribution given by

√
n(βn − β0) d→ N(0,σ−4(P

0
A)−1A

0
ΩA(A

0
P )−1)

Remark 12. If βn is obtained from minimizing a Gaussian PML criterion function then

the asymptotic covariance matrix is σ−4(P 0
P )−1P 0

ΩP (P
0
P )−1. Such an estimator there-

fore corresponds to an IV estimator where A = P. This shows that Gaussian estimators

have the interpretation of inefficient IV or GMM estimators when the innovations are

conditionally heteroskedastic.

The main result of the paper will now be developed in two steps. We first obtain a

lower bound for the covariance matrix

σ−4(P
0
A)−1A

0
ΩA(A

0
P )−1 (9)

in the next section. This lower bound is then used to construct an optimal instrumental

variables estimator.

4. Covariance Matrix Lowerbound

Finding a lower bound for (9) poses certain technical difficulties having to do with the

infinite dimensional nature of the instrument space. We investigate the properties of the

fourth order cumulant matrix Ωm, first by holding m fixed and then by looking at a re-

lated infinite dimensional problem. In particular we establish that the infinite dimensional

operator Ω, associated with Ωm in a way to be defined, has a well behaved inverse.

17



Invertibility of Ωm for all m is not enough to show that Ω is invertible. We briefly

review the theory of invertible operators (see Gohberg and Goldberg, 1980), p.65. For

two Banach spaces B1 and B2 denote the set of bounded linear operators mapping B1

into B2 by L(B1, B2). Then A ∈ L(B1, B2) is invertible if there exists an operator A−1 ∈

L(B2, B1) such that A−1Ax = x for all x ∈ B1 and AA−1y = y for all y ∈ B2. Let

kerA = {x ∈ B1 : Ax = 0} and ImA = {Ax : x ∈ B1} . Then A is invertible if kerA = {0}

and ImA = B2.

Following Hanani, Netanyahu and Reichaw (1968) we now choose B1, B2 as linear

spaces whose points are sequences of real numbers denoted by x = {x1, x2, ...} and y =

{y1, y2, ...} . Define the norm kxk2 = (
P
i |xi|2)1/2. Then B is the space of all sequences

that are bounded under the k.k2 norm and is denoted by l2. An operator A : l2 7→ l2 is

defined by the infinite dimensional matrix A = (ai,j), i, j = 1, 2, .... such that y = Ax ∈ l2

for all x ∈ l2. The operator A can be defined element by element as yi =
P∞
j ai,jxj for

all i. The operator A is invertible if the only solution to Ax = 0 is x = {0, 0, ....} and

ImA = l2. Note that l2 is a Hilbert space with inner product hx, yi = P∞
j xjyj . From

Theorem 11.4 in Gohberg and Goldberg (1980) it follows KerA⊥ = ImA for a self adjoint

operator A. It is thus enough to show KerA = 0 for A : l2 → l2, A selfadjoint.

Consider now the following infinite dimensional operator associated with Ωm. Define

the operator Ω component-wise by its image for all x ∈ l2 by bi = limm→∞
Pm
j αi,jxj

where αi,j is defined in (8). In other words Ω is the infinite dimensional matrix such that

any left upper corner sub matrix of dimension m×m has the same elements as Ωm.

Lemma 4.1. Let Ωm be defined as in (7). Then Ω−1m exists for all m, Ω ∈ L(l2, l2) and
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Ω−1 exists.

Proof. See Appendix B

Remark 13. The fact that the image of Ω is square summable, i.e. Ωx ∈ l2, depends

on the summability properties of σ(k, l). The interpretation of the summability condition

is that the instruments εt become unrelated in their fourth cumulants as the time spread

between them increases.

By the Closed Graph Theorem (Gohberg and Goldberg (1980), Theorem X.4.2) it also

follows that Ω−1 is bounded, i.e.,
°°Ω−1°° = supkxk2≤1 °°Ω−1x°°2 <∞. Thus supi,j |ωi,j | <∞

where [Ω−1]i,j = ωi,j.

Next, we need to establish properties of the matrix Ω−1m as m tends to infinity. In

particular we want to establish that the inverse Ω−1m approximates Ω−1 as m→∞.

Lemma 4.2. Let Ωm be as defined in (7). Define Ω−1m such that Ω−1m Ωm = Im and

ΩmΩ
−1
m = Im ∀m. Let

Ω∗m =

 Ωm 0

0 σ4I

 (10)

where I stands for an infinite dimensional identity matrix. ThenΩ∗−1m exists and
°°Ω∗−1m −Ω−1°°→

0 as m→∞.

Proof. See Appendix B

Remark 14. A consequence of the convergence of Ω∗−1m to Ω−1 in the operator norm is

that
°°P 0(Ω∗−1m −Ω−1)°°

2
→ 0 in the l2 norm. In other words Var(zmt − zt)→ 0 as m→∞
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where zmt = P
0Ω∗−1m ε∞t and zt = P 0Ω−1ε∞t . In this sense Lemma (4.2) provides an algorithm

to approximate the infinite dimensional inverse Ω−1. For m fixed, the finite dimensional

inverse of Ωm is computed and used to construct Ω∗−1m . The resulting instrument then

converges in a mean squared sense.

We define the d dimensional product of sequence spaces l2d = l
2 × ... × l2. Define the

infinite dimensional matrix P = [b1, ...]
0 by stacking elements of the sequence {bk}∞k=1 ∈ l2d.

Introduce notation for the reverse operation of extracting a sequence from the rows of a

matrix by defining b(P ) := {bk}∞k=1 . Define the matrix Ξ = (P 0Ω−1P )−1.

Using this notation we can state our next theorem which establishes a lower bound for

the covariance matrix (9).

Theorem 4.3. For any a ∈ A let A0 = [a1, ...] and P and Ω as previously defined. If

a(A) ∈ A∗∗ then the matrix (P 0A)−1A0ΩA(A0P )−1 satisfies

(P 0A)−1A0ΩA(A0P )−1 − (P 0Ω−1P )−1 ≥ 0

where ≥ 0 stands for positive semi-definite.

Proof. See Appendix B

Remark 15. If a ∈ A∗ ∩ A∗∗ then (P 0A)−1A0ΩA(A0P )−1 is the asymptotic covariance

matrix of an estimator based on a. However, it is important to point out that the lower-

bound is for IV estimators in the class of all instruments which are linear functions of the

innovation process and have an innovation filter in A∗∗. The construction of the lower
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bound does not involve consistency restrictions for the instruments. In order to construct

an efficient estimator in practice it has to be established that the optimal instrument does

in fact satisfy consistency restrictions.

5. Optimal Instrumental Variables Estimators

Theorem (4.3) immediately leads to the construction of an efficient IV estimator. The

optimal instrument is determined by the linear filter A0 = P 0Ω−1. It is not a priori true

that the optimal filter also results in a consistent estimator. However, for important

parametric examples such as the ARMA class this is indeed the case.

Theorem 5.1. Assume C(β, L) = θ(L)/φ(L) and the parameter space Θ satisfies As-

sumption (B4). If A
0
= P 0Ω−1 then the sequence a = a(P 0Ω−1) defined by the rows of A

satisfies a ∈ A∗ ∩A∗∗.

Theorem (5.1) together with Theorem (3.4) and Theorem (4.3) establish that the IV es-

timator for the ARMA model constructed with instruments based on A0 = P 0Ω−1 achieves

a lowerbound of the same type as in Hansen and Singleton (1991) but under the weaker

martingale difference sequence assumptions on εt detailed in Assumption (A1). This result

is summarized in the following Corollary.

Corollary 5.2. Assume (A1), C(β, L) = θ0(L)/φ0(L) is an ARMA(p,q) lag operator, the

parameter space Θ satisfies Assumption (B4) and zt = limm→∞ P
0
mΩ

−1
m ε

m
t . Then

√
n(βn − β0) d→ N

µ
0,σ−4

³
P
0
Ω−1P

´−1¶
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Feasible versions of the optimal IV procedure have to be based on approximations of

the optimal instrument zt. Such approximations proceed in two steps. First, the infinite

number of unobserved innovations is replaced by a finite number of proxies based on

the observed sample and constructed from ε̂t = yt −
Pt−1
j=1 c(β0, j)yt−j for t = 1, ..., n

where ε̂1 = y1. This leads to a pseudo feasible estimator β̃ based on the instruments

ẑt =
Pt−1
j=1 aj ε̂t−j . A fully feasible estimator denoted by β̃(â) is obtained by substituting

β0 for a first stage consistent estimator β̂ in the construction of ε̂t and by replacing the

weights aj by estimated quantities âj. Gaussian PMLE procedures which are consistent

but inefficient in our context can be used to generate first stage estimators β̂.

The empirical analog of the moment restriction for the pseudo feasible estimator be-

comes

G̃n(β̃, a) =
1

n

nX
t=1

ẑt

t−1X
j=0

c̃βj yt−j = 0. (11)

It is shown in the proof of Corollary (5.4) that supβ∈Θ
¯̄̄
G̃Fn (β, a)− G̃n(β̃, a)

¯̄̄
= Op(n

−1)

where

G̃Fn (β, a) = (2π)
−1
Z π

−π
C−1(β, e−iλ)h(β0,λ)In,yy(λ)dλ. (12)

Here In,yy(λ) is the data periodogram and the filter h(λ) : [−π,π] → Cd is defined as

h(β0,λ) = lψ(−λ)C−1(β0, eiλ) with

lψ(λ) =
∞X
j=1

aje
−iλj .
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The coefficients of the optimal instrument are given by

aj =
∞X
k=1

bkωkj

where bk is the Fourier coefficient of the derivative of the log spectral density of yt and ωkj

is the kj-th entry of the inverse Ω−1. The bk coefficients have simple interpretations in

special parametric models. In the case of an AR(p) model for example they are equivalent

to the impulse response function and can therefore be computed easily. It can also be

noted that the Gaussian estimators are obtained by setting aj = bj .

It is shown in Kuersteiner (1997) that a sufficient condition for the validity of the

approximation ẑt for zt is that the coefficients of the instruments satisfy

∞X
j=1

j
¯̄
[aj]k

¯̄
<∞ for k = 1, ..., d. (13)

The following lemma shows that under strengthened summability restrictions on the

fourth order cumulants Condition (13) is satisfied for the optimal instrumental variables

estimator of the ARMA(p, q) model. The Corollary summarizes the result that based

on Theorem (5.3) the instruments can be approximated without affecting the first order

asymptotic distribution.

Theorem 5.3. Assume C(β, L) = θ(L)/φ(L) and the parameter space Θ satisfies As-

sumption (B4). Strengthen Assumption (A1v) to
P∞
r=1

P∞
s=1 s |σ (s, r)| = B < ∞. By

symmetry this implies
P∞
r=1

P∞
s=1 r |σ (s, r)| = B <∞. If A

0
= P 0Ω−1 then a = a(P 0Ω−1)

satisfies (13).
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Proof. See Appendix B

Corollary 5.4. Assume that the conditions of Theorem 5.3 hold together with Assump-

tion A1. Let β̃ ∈ Θ satisfy G̃n(β̃, a) = op(n−1/2). Then √n(β̃ − βn) = op(1).

Proof. See Appendix B

Feasible versions of the optimal estimator are then obtained by replacing G̃n(β, a) by

G̃n(β, â) where in G̃n(β, â) we replace h(β0,λ) by l̂ψ(λ)C
−1(β̂, eiλ) and β̂ is a consistent first

stage estimate. The challenging part is to estimate l̂ψ(λ) consistently. Here we only discuss

a special case where Ωm is diagonal. This case with the additional restrictions αj,k = 0

for j 6= k on the moments of εt has been analyzed in Kuersteiner (1997) in the context

of estimating an AR(p) model. The restriction αj,k = 0 is satisfied for GARCH processes

with symmetric innovation distributions and stochastic volatility models. Under these

circumstances it is possible to estimate l̂ψ(λ) consistently without the need to introduce

bandwidth parameters controlling the number of instruments. The simplification comes

from the fact that in that particular case Ω−1 is diagonal such that aj = bj/αj,j. An

estimate of the optimal instrument is obtained from

ẑt =
t−1X
j=1

b̂j/α̂j,j ε̂t−j (14)

where b̂j = (2π)
−1 R π

−π η̇(β̂,λ)e
iλjdλ. To define α̂j,j introduce a truncation sequence dn =

cn−1/2+ν for some 0 < ν < 1/2 and some constant c > 0. Then define α̂j,j = α̂∗j,j if

α̂∗j,j > dn and α̂j,j = dn otherwise where α̂
∗
j,j =

1
n

Pn
t=1+j ε̂

2
t ε̂
2
t−j . In simulation experiments

this truncation parameter does not affect the outcome and in practice dn = 1 works well. In
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order to prove the result formally we need to require that additional higher order moments

exists.

Assumption E1. Let cε...ε (t1, . . . , tk−1) be the k-th order cumulant of the error process

εt and assume that

X
t1

· · ·
X
tk−1

(1 + |tj |) |cε...ε (t1, . . . , tk−1)| <∞, for all j = 1, ..., k − 1 and k = 2, 3, .., 8.

Theorem 5.5. Assume (A1), αj,k = 0 for j 6= k and (E1), C(β, L) = θ0(L)/φ0(L) is an

ARMA(p,q) lag operator, the parameter space Θ satisfies Assumption (B4). Let β̃(â) ∈ Θ

satisfy G̃n(β̃, â) = op(n−1/2) with ẑt defined in (14). Then
√
n(β̃(â)− βn) = op(1).

Proof. See Appendix B

In the more general case where αj,k 6= 0 for j 6= k the elements ωkj can be es-

timated from a sample analog of the approximation matrix Ω∗m defined in (10). De-

note by ω∗kj the k, j-th element of the inverse Ω
∗−1
m and let z∗t =

Pt−1
j=1

Pt−1
k=1 bkω

∗
kj ε̂t−j

be the instrument based on the approximation and denote by G̃n(β, a∗(m)) the corre-

sponding criterion function where a∗(m) indicates that instruments depend on m. Let

β̃
∗
= argmin

°°°G̃n(β, a∗(m))°°°2 . From Ω̂m = n
−1Pn

t=m+1 ε̂
2
t ε̂
m
t ε̂

m0
t we form the n× n ma-

trix

Ω̂∗−1m =

 Ω̂−1m 0

0 In−m
¡
σ̂4
¢−1


and obtain estimates ω̂∗kj of ωkj where ω̂

∗
kj is the k, j-th element of Ω̂

∗−1
m . Here In−m is an

n −m dimensional identity matrix and σ̂4 =
¡
1
n

Pn
t=1 ε̂

2
t

¢2
. We then form the truncated
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estimate of the aj coefficients by setting âj(m) =
Pn
k=1 b̂kω̂

∗
kj. The feasible estimator

resulting from minimizing
°°°G̃n(β, â(m))°°°2 is denoted by β̃∗(â(m)). In the next section we

use Monte Carlo experiments to evaluate some selection rules for m.

6. Numerical Examples

In this section we take the case of an ARMA(1,1) model and analyze its asymptotic

efficiency properties for the case when εt is an ARCH(1) process. We also show plots

of the likelihood contour. We finally conduct a small Monte Carlo experiment to explore

the performance of the IV procedures in finite samples.

The model we investigate is a univariate process yt defined as the stationary solution

to

yt = φyt−1 + εt − θεt−1. (15)

The innovations εt are an ARCH(1) process generated by εt = uth
−1/2
t and ht+1 = γ0+γ1ε

2
t

where ut˜N(0, 1) is an iid sequence of random variables. We assume that γ0 > 0 and set it

to .1 for all numerical calculations. In this case β = [φ, θ]0 and Θ0 = {β| |φ| < 1, |θ| < 1} .

The parameter α1 satisfies 0 ≤ γ1 <
p
1/3 which guarantees that Eε4t < ∞. It is shown

in Milhoj (1985) that σ4 = (γ0/1 − γ1)2, Cov(ε2t , ε2t−i) = 2γ20γ
i
1/[(1 − γ1)2(1 − 3γ21)] for

i > 0 and E(ε2t εt−kεt−j) = 0 for j 6= k. It follows that Ωm = diag(α1,1, ....,αm,m) where

αk,k = Cov(ε
2
t , ε

2
t−k) + σ

4.

The polynomial C(β, L) = (1− θL) / (1− φL) has log derivative η̇(β,λ) = [e−iλ/(1−

φe−iλ),−e−iλ/(1− θe−iλ)]0. It follows that bj =
£
φj−1,−θj−1¤0 .

For γ1 = 0 it follows that Cov(ε
2
t , ε

2
t−k) = 0 and αk,k = σ

4 for k > 0 since εt = γ0ut is
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iid in this case. The optimal instrument then is zt = limm→∞ P 0mεmt a.s. and the limiting

distribution of βn is
√
n(βn − β0) → N(0, (P 0P )−1) which is the same as the limiting

distribution of the maximum likelihood estimator. Figure 1 shows a contour plot of the

function − arctan kG(β, a)k2 which has the shape of a long flat valley with a unique global

minimum at β0 where − arctan kG(β, a)k2 = 0.

Figure 1

When γ1 > 0 the optimal instrument is given by

zt =

" ∞X
k=1

φk−10 /αk,kεt−k,−
∞X
k=1

θk−10 /αk,kεt−k

#0
.

In Figure 2 we plot the asymptotic relative efficiency σ2(φPML)/σ
2(φIV ) of the PML

estimator which reaches .7 around φ = −.9 and improves as φ gets closer to zero. The

overall shape and magnitude of the efficiency improvement of IV over PML is very similar

to the pure AR(1) model analyzed in Kuersteiner (1999). In Figure 3 we plot the same

efficiency gains for the parameter θ when φ is varied over [−1, 1] . Note that here the shape

of the efficiency curve is much less symmetric.

Figure 2,3

We now report a Monte Carlo experiment to investigate how well the asymptotic effi-

ciency properties of the IV procedure hold in finite samples. We generate samples of size
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n = 2k for k = 7, 8, ..., 10 from Model (15) with ARCH(1) innovations.

Starting values are y0 = 0, h0 = 0 and ε0 = 0. In each sample the first 500 observations

are discarded to eliminate dependence on initial conditions. Small sample properties are

evaluated for different values of β, γ1 ∈ [0, 1) . For GARCH processes it was shown in

Milhoj (1985) and Bollerslev (1986) that asymptotic normality established in previous

chapters only obtains for a subset of values for γ1. Nevertheless, simulation results are

reported for parametrizations outside this range in order to analyze the robustness of the

proposed IV procedure to departures from the assumptions.

The parameter β is estimated in several different ways. The PML estimator based

on a Gaussian likelihood is denoted by β̂OLS and was computed using the NAG Fortran

routine G13AFF, Mark 18. This routine forces the parameters to be in Θ. The opti-

mal instrumental variables estimator is obtained from the consistent first stage estimator

β̂OLS as β̃(â) = argmin
°°°G̃n(β, â)°°°2 . We also compute the more general IV estimator

β̃(â(m)) = argmin
°°°G̃n(β, â(m))°°°2 where m is set to 5, 10,

√
n, n2/5. Both problems are

solved numerically with the constrained nonlinear optimization routine nag_nlp_sol of

the NAG fl90 (release 3) library of Fortran 90 subroutines using β̂OLS as a starting value.

We can compare the asymptotic gains reported in Figure 1 with the empirical efficiency

of the estimators β̃(â) and β̃(â(m)) based on 1, 000 replications for sample sizes ranging

from 128 to 1024. The results are summarized in Tables 1-16. The results for γ1 = .5 in

Tables 1-8 can be directly compared to the theoretical efficiency gain calculations. For the

estimator β̃(â) based on the diagonal weight matrix, reported in Tables 1-4, the sample

sizes needed to achieve efficiency gains are relatively large with 1024 observations. As
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expected, the strongest gains are achieved for |φ| > .5. The moving average parameter

θ is generally less well estimated by this method than the autoregressive parameter φ.

For parameter values near the point of non-identification where θ = φ the IV procedure

performs relatively poorly compared to Gaussian pseudo likelihood estimators. Overall

the performance of the IV estimator is superior for large sample sizes and at well chosen

points in the parameter space. For smaller sample sizes and at less favorable points in the

parameter space the Gaussian estimators tend to dominate but IV performs reasonable

even under these circumstances.

In Tables 5-8 we report the performance of the unrestricted IV procedures β̃(â(m)).

These procedures perform better than β̃(â) and achieve gains over the Gaussian estimator

at favorable points in the parameter space even in small samples of 128 observations. In

larger samples they almost uniformly dominate Gaussian estimators, with the exception

of points very close to θ = φ. As has to be expected from the theoretical calculations the

estimators for θ again fare slightly worse than for φ. The overall preferred choice for m is

m = n2/5.

In Tables 9-16 we report results for γ1 = .9. Strictly speaking these experiments are not

covered by the theoretical results because γ1 >
p
1/3 implies that Eε4t does not exist. The

IV estimators nevertheless perform well and in fact achieve even larger efficiency gains.

This is especially true for β̃(â(m)) which achieves variance reductions of up to 60% in

large samples. There is however an outlier problem for this estimator. This is particularly

evident from Table 14 where the mean absolute error for β̃(â(m)) is improved over βOLS

while the same is not always true for the variance measure. Looking at the inter quantile

29



range however shows that the distribution of β̃(â(m)) is more concentrated than for βOLS

at least as long as |φ| > .5.

The simulations show that even if the true weight matrix Ω is diagonal it is better

not to impose this restriction and to estimate the full non-diagonal weight matrix. The

recommendation that can be given based on the simulation results is to use β̃(â(m)) with

m = n2/5. The choice of m reported here is clearly limited by the small scale of the Monte

Carlo experiment and no claim is made that this choice is optimal from a theoretical point

of view. The simulations however also seem to indicate that the performance of β̃(â(m))

is not very sensitive to the choice of m at least in the cases considered.

7. Conclusions

In this paper we have analyzed the instrumental variables estimator for stationary linear

process models and ARMA models in particular. It was shown that a GMM estima-

tor based on the infinite number of moment conditions Eεtεs can be constructed. The

maintained hypothesis in this paper is that the innovations εt are martingale difference

sequences. The overidentified GMM estimator can be conveniently represented in the form

of an exactly identified IV estimator. It is shown that under the additional restrictions used

in Kuersteiner (1999) a feasible version of the GMM estimator is available even when the

number of moment conditions used in estimation is the same as the number of observations.

The procedures proposed in this paper are optimal in the class of GMM estimators

based on instruments that are linear in the observed data. While inclusion of nonlinear

instruments is possible in principle and would improve asymptotic efficiency it creates
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difficult issues of implementation. Linear instruments have the advantage of being approx-

imately ordered by their time lag in terms of their importance. This ordering is lost when

nonlinear instruments are included and a more sophisticated selection procedure has to be

implemented to make any such procedure feasible.

The proposed procedures are developed for univariate time series models. Extensions to

the class of vector ARMA models could be proved along similar lines. If h0(L)yt = g0(L)εt

in the notation of Dunsmuir and Hannan (1976) then IV procedures would be constructed

based on the moment conditions Eεt ⊗ εs. Consistent estimates then have to be based on

instruments that are not orthogonal to any process g−1(L)h(L)yt in the VARMA class.

Simulation evidence for a univariate ARMA(1,1) model shows that the procedures do

achieve, sometimes significant, efficiency gains in finite samples. This is especially true

when the model is well identified and the autoregressive parameter is larger than .5 in

absolute value.
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A. Appendix - Lemmas

Lemma A.1. Under Assumption (A1) for each m ∈ {1, 2...} , m fixed, the vector

1√
n

nX
t=1

[εtεt−1, ..., εtεt−m]⇒ N(0,Ωm)

with Ωm defined in (7).

Proof. We note that individually all the terms εtεt−k with k ≥ 1 are martingale difference

sequences (mds). Now define Y 0t = [εtεt−1, ..., εtεt−m] . Then it is enough to show that for

all ` ∈ Rm such that `
0
` = 1 we have 1√

n

P
`
0
Ỹt ⇒ N(0, 1) where now Ỹt = Ω

−1/2
m Yt and

Ωm = EYtY
0
t . Note that `

0
Ỹt is a mds and a martingale CLT (see Hall and Heyde , 1980,

Theorem 3.2, p.52) can be applied to the sum
P
t Ynt =

1√
n

P
t Ỹt.

Lemma A.2. Let εt satisfy Assumption (A1). Then @α ∈ l2, α 6= 0 such that
P∞
i=0 αiεt−i =

0 a.s.

Proof. If ∃α ∈ l2, α 6= 0 such that
P
αiεt−i = 0 a.s assume without loss of generality

α1 6= 0. If αi = 0 for all i = 2, 3, ... then
P
αiεt−i = 0 a.s. is trivially contradicted. Now

assume αi 6= 0 for at least one i = 2, 3, .... such that εt−1 = −α−11
P∞
i=2 αiεt−i a.s. But then

E(εt−1|Ft−2) = −α−11
P∞
i=2 αiεt−i a.s. so that E(εt−1|Ft−2) 6= 0 with positive probability.

This contradicts the martingale difference assumption.

Lemma A.3. Let In,yz (λ) = ωn,y(λ)ωn,z(−λ). In,εε (λ) is the periodogram of {ε1, . . . , εn} .

Assume εt satisfy Assumption (A1) and that yt =
P∞
j=0 ψjεt−j with ψ(λ) =

P∞
j=0 ψje

−iλj
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such that
P∞
j=0 |j|

¯̄
ψj
¯̄
<∞. Also let zt =

P∞
j=1 ajεt−j with a ∈ A. Let ς (.) be a function

on [−π,π] → C with absolutely summable Fourier coefficients {ck,−∞ < k <∞} such

that ς (λ) =
P∞
j=−∞ cje

−iλj . Then for any η, ² > 0

P

µ√
n(2π)−1

¯̄̄̄Z π

−π
In,yz (λ) ς (λ)dλ−

Z π

−π
In,εz (λ)C(β0,λ)ς (λ) dλ

¯̄̄̄
> η

¶
< ²

as n→∞.

Proof. First an expression for Rn (λ) = In,yz (λ)− In,εz (λ)ψ(λ) is obtained. Using

ωn,y (λ) = ψ(λ)ωn,ε (λ) + n
−1/2

∞X
j=0

ψje
−iλjUnj (λ) (16)

where Unj (λ) =
Pn−j
t=1−j εte

−iλt −Pn
t=1 εte

−iλt leads to

Rn (λ) := In,yz (λ)− ψ(λ)In,εz (λ) = ωz (−λ)n−1/2
∞X
j=0

ψje
−iλjUnj (λ)

Note that (2π)−1
R
Rn (λ) ς (λ) dλ = n

−1P∞
k=1

P∞
l=0

Pl
r=1

P∞
m=−∞ akψlcmεr+j+m−k (εr−l − εn−l+r) .

Then using the Markov inequality it is enough to consider

E
√
n

¯̄̄̄
(2π)−1

Z π

−π
Rn (λ) ς (λ) dλ

¯̄̄̄
≤ 2 sup

k
α
1/2
k n−1/2

∞X
k=1

∞X
l=0

∞X
m=−∞

|akψlcm| |l|→ 0

since the last term is bounded from
P∞
k=1 |ak| <∞ and

P∞
l=0 |l| |ψl| <∞.

Lemma A.4. Let In,εz (λ) = ωn,ε(λ)ωn,z(−λ). Assume εt satisfy Assumption (A1) and
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let zt =
P∞
j=0 ajεt−j with a ∈ A. Then for any ` ∈ Rd such that `0` = 1,

n1/2(2π)−1
Z π

−π
`0In,εz (λ) dλ

d→ N

Ã
0,

∞X
l=1

∞X
k=1

αk,l`
0aka0l`

!
.

Proof. First note that (2π)−1
R π
−π In,εz (λ) dλ = n

−1Pn
t=1 εtzt such thatEn

1/2(2π)−1
R π
−π In,εz (λ) dλ =

0. It also follows that εtzt is a martingale difference sequence. However zt =
P∞
k=1 akεt−k

such that a direct application of Lemma (A.1) is not possible.

For a fixedm we introduce zmt =
Pm
k=1 akεt−k such that ω

m
n,z(λ) = n

−1/2Pk
t=1 z

m
t e

−iλk

and Imn,εz(λ) = ωn,ε(λ)ω
m
n,z(−λ). From Billingsley (1968, Theorem 4.2) it is enough to show

that for all ² > 0,

lim
m→∞ lim supn→∞

P

½¯̄̄̄
n1/2

Z π

−π
`0(Imn,εz (λ)− In,εz(λ))dλ

¯̄̄̄
≥ ²
¾
= 0

where

n1/2(2π)−1
Z π

−π
`0(Imn,εz (λ)− In,εz(λ))dλ = n−1/2

nX
t=1

∞X
k>m

`0akεtεt−k

Since Eakεtεt−k = 0 it is enough to consider

n−1E

Ã
nX
t=1

∞X
k>m

`0akεtεt−k

!2
= n−1

nX
t=1

∞X
j>m

∞X
k>m

`0aka0l`αk,l → 0 as m→∞.

Applying Lemma (A.1) then gives the result.

Lemma A.5. Assumption (B1) implies that c̃(β, j) = (2π)−1
R
C−1(β,λ)eiλjdλ satisfiesP

j |c̃(β, j)| <∞ for all β ∈ Θ.
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Proof. Since C−1(β,π) = C−1(β,−π) it follows from integration by parts that

|c̃(β, j)| = j−1
¯̄̄̄
(2π)−1

Z
∂C−1(β,λ)/∂λeiλjdλ

¯̄̄̄
. (17)

From ∂C−1(β,λ)/∂λ = C−2(β,λ)∂C(β,λ)/∂λ and the fact thatC(β,λ) satisfies
P
j |c(β, j)| <

∞ it follows that ∂C−1(β,λ)/∂λ has absolutely summable Fourier coefficients. Rearrang-

ing (17) and summing over j then gives the result.

Lemma A.6. Assume (A1), (B1-B3), (C1-C2). Let zt = limm→∞A
0
mε

m
t with A

0
m =

[a1, ..., am] , {ak}∞k=1 ∈ A∗ and εmt = [εt−1, . . . , εt−m]
0
. Then for any convergent sequence

βn ∈ Θ with βn → β ∈ Θ there exists an event E with probability one such that for all

outcomes in E, Gn(βn, a)→ G(β, a).

Proof. Without loss of generality assume that zt takes values in R. Let Eytzs =

γyz(t− s), and cum(yt, zs, yq, zr) = cyyzz(t− s, t− q, t− r). Then, from Assumption (A1)

and the proof of Theorem 2.8.1 in Brillinger (1981) it follows that
P
j

¯̄
γyz(j)

¯̄
< ∞ andP

s,q,r |cyyzz(s, q, r)| < ∞. For each ² > 0 there exists an n0 < ∞ and δ > 0 such that

kβn − βk < δ and

sup°°°β0−β°°°<δ supλ
¯̄
C−1(β0,λ)−C−1(β,λ)¯̄ < ²

for n > n0 by continuity of C−1(β,λ) at β ∈ Θ. For β0 such that
°°β0 − β°° < δ the lag poly-

nomial C−1(β0, z) has an expansion with coefficients c̃(β0, j) such that
P∞
j=1 j

¯̄
c̃(β0, j)

¯̄
<

∞. We will use the short hand notation c̃0 = c̃(β0, j). LetXn(β) = Gn(β, a)−EGn(β, a) and

defineXn = sup°°°β0−β°°°<δ ¯̄Xn(β0)¯̄ . Since EGn(β0, a)→ G(β0, a) and
¯̄
G(β0, a)−G(β, a)¯̄ ≤

²
R |fyz(λ)| dλ uniformly for all β0 such that °°β0 − β°° < δ it is enough to show that Xn → 0
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almost surely. Thus letting Xn(j) =
Pn−j
t=1 ytzt+j − γyz(−j)

Xn ≤ sup°°°β0−β°°°<δ n
−1

nX
j=0

¯̄̄
c̃
0
j

¯̄̄
|Xn(j)| ≤ K0n−1

 nX
j=0

j−2 |Xn(j)|2
1/2

where K0 = sup°°°β0−β°°°<δ
³P∞

j=0

¯̄̄
c̃
0
j

¯̄̄
j
´
. We consider

EX2
n ≤ K2

0n
−2

nX
j=0

j−2
¡
EXn(j)

2
¢
.

Since

EXn(j)
2 ≤ n

∞X
k=−∞

¯̄
γyy(k)γzz(k) + γyz(k)γyz(k)

¯̄
+ n

∞X
j,k,l=−∞

|cyyzz(j, k, l)|

for all j there is a K1such that EX2
n ≤ K2n−1 where K2 = π2

6 K1K
2
0 . For n/2 ≤ n1 < n

consider Xn,n1 = sup
°°°β0−β°°°<δ

¯̄
Xn(β

0)−Xn1(β0)
¯̄
such that

Xn,n1 ≤ K0(n− n1) (nn1)−1
 n1X
j=0

j−2 |Xn1(j)|2
1/2

+K0n
−1
 nX
j=0

j−2
 n−jX
t=max(n1−j,1)

ytzt+j − γyz(−j)
21/2 .

Now

K2
0(n− n1)2 (nn1)−2E

n1X
j=0

j−2 |Xn1(j)|2 ≤ K2(n− n1)n−2
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and

K2
0n
−2

nX
j=0

j−2E

 n−jX
t=max(n1−j,1)

ytzt+j − γyz(−j)
2 ≤ K2n−2(n− n1)

together withE (Y + Z)2 ≤ EY 2+2 ¡EY 2EZ2¢1/2+EZ2 implies thatEX2
n,n1 ≤ K2n−2(n−

n1). It now follows from Lemma 3 in Gaposhkin (1980) that Xn → 0 almost surely. Let

this event be E. From |Gn(βn, a)−Gn(β, a)| ≤ Xn for all n > n0 the result follows.

B. Appendix - Proofs

Proof of Lemma 3.1 From the definition of βn it follows that

0 ≤lim inf
n

kGn(βn, a)k2 ≤lim sup
n

kGn(βn, a)k2 ≤lim sup
n

kGn(β0, a)k2 . (18)

From Lemma (A.6) it follows that Gn(β0, a)→ G(β0, a) = 0 almost surely. Thus

lim sup
n

kGn(βn, a)k2 = limn kGn(βn, a)k2 = 0 almost surely. (19)

Let E be the probability one event in Lemma (A.6). Now consider the sequence βn ∈ Θ. If

βn does not converge to β0 then by compactness of Θ there exists a subsequence βnk such

that βnk → β ∈ Θ. By Lemma (A.6) and Assumption (C2) lim infk
°°Gnk(βnk , a)°°2 > 0

a.s. contradicting (19). Therefore βn → β0.

Proof of Proposition 3.2 We only prove that Assumption (C2) holds. We first note
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that fyz(λ) = C(β0, e
−iλ)la(−λ) where la(λ) =

P∞
k=1 ake

−iλk such that

G(β, a) = (2π)−1
Z π

−π
ψ(β, e−iλ)la(−λ)dλ

with ψ(β, e−iλ) = C−1(β, e−iλ)C(β0, e−iλ). It is clear that ψ(β0, e−iλ) = 1 so thatG(β0, a) =

0.

We need to show that for C(β, e−iλ) = θ(e−iλ)/φ(e−iλ) there is no other β ∈ Θ such

that G(β, a) = 0. The orthogonality conditions can be written as

(2π)−1
Z π

−π
(ψ(β, e−iλ)− 1)la(−λ)dλ = 0. (20)

We want to show that the only function ψ(β, e−iλ) − 1 : [−π,π] → C satisfying this

condition is

ψ(β, e−iλ)− 1 ≡ 0. (21)

If the assumptions of Proposition (3.2) hold then the only value β for which ψ(β, e−iλ)−1 ≡

0 is β0.

Now showing that ψ(β, e−iλ)−1 ≡ 0 is equivalent to showing φ(e−iλ)θ0(e−iλ)/φ0(e−iλ)−

θ(e−iλ) ≡ 0 since the polynomial θ(e−iλ) is not zero for any λ ∈ [−π,π] for β ∈ Θ. It is

more convenient to rewrite this equation as

³
φ(e−iλ)− φ0(e−iλ)

´
C(β0, e

−iλ)−
³
θ(e−iλ)− θ0(e−iλ)

´
≡ 0.

Here C(β0, e
−iλ) = θ0(e−iλ)/φ0(e−iλ) is the lag polynomial of an ARMA(p, q) with a one
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sided Fourier expansion
P∞
j=0 cje

−iλj .

For j ≥ max(p, q + 1)− p the coefficients cj satisfy the well known restriction

cj − φ0,1cj−1 − ...− φ0,pcj−p = 0. (22)

We define the infinite dimensional matrixC with p rows as C =
£
c, [0, c0]0 , [02, c0]0 , ..., [0p−1, c0]0

¤
with c0 = [c0, c1, ...] and 0k is the k-dimensional column vector of zeros then Condition (20)

has a matrix representation

A0C(φ− φ0)−A0q(θ − θ0) = 0. (23)

which can be written as Rδ = 0 where R is the d× d matrix R = A0D where

D =

C, −I
0


with 0 an ∞ × q dimensional matrix of zeros and δ = β − β0. We need to show that

kerR = 0 which follows if R is of full rank. We can distinguish two cases. If p = 0 then

R = A0q and δ = (θ − θ0) such that δ = 0 if Aq is of full rank. If p > 0 then C contains p

linearly independent vectors in l2 which are also linearly independent of [−I, 0]0 . So D has

full column rank. It is a finite rank operator mapping Rd into the d-dimensional subspace

ImD of l2. Since l2 is a Hilbert space this subspace is closed and has an orthogonal

complement (ImD)⊥ (see Gohberg and Goldberg, p.205). The finite rank operator A0

maps l2 into Rd. If ImD ∩ kerA0 = 0 then ImD = (kerA0)⊥ since l2 = kerA0 ⊕ (kerA0)⊥
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where ⊕ is the direct sum. Then, by theorem II.11.4 in Gohberg and Goldberg (1980),

ImA0 = (kerA)⊥ = Rd where the last equality is due to kerA = 0 since A is of full column

rank. It follows that {A0x|x ∈ ImD} = Rd and A0x = 0 for x ∈ ImD if and only if x = 0.

But this means that ImR = Rd showing that R is of full rank.

Finally, we show that ImD is the space of all the solutions x = [x1, ...] to φ0(L)x = 0

for xj, j > d with d = p + q initial conditions determining x1, ..., xd. To see this note

that c = {cj}∞j=0 is the solution to φ0(L)c = 0 for cj , j > max(p, q + 1) − p which has

general form cj =
Pk
i=1

Pri
n=0 κinj

nξ−ji where ξi, i = 1, ..., k are the distinct zeros of

φ0(L) with multiplicity ri. The first max(p, q+1)−p coefficients cj are determined by the

max(p, q+1) boundary conditions implied by C(β0, L). The l
2 sequence Dδ then has j-th

element c̃j =
Pp
i=1 δicj−i with cj−m =

Pk
i=1

Pri
n=0

Pn
l=0

¡n
l

¢
κ̃inj

lmn−lξ−j−mi such that the

p coefficients κ̃in of c̃j can be set arbitrarily to satisfy p initial conditions. The remaining

q initial conditions can be set by appropriately choosing δp+1, ..., δd.

Remark 16. For finite dimensional matrices it is known from Corollary 6.2 in Marsaglia

and Styan (1974) that rank(A0D) = rank(D) − dim(kerA0 ∩ ImD). Our proof extends

this result to finite rank operators on Hilbert spaces when A and D are of identical and

full column rank.

Proof of Lemma 3.3: Remember that
R π
−π η̇(β0,λ)la(−λ)dλ = A0P with P = [b1, b2, ...]0

where bk = (2π)−1
R π
−π ∂ lnC(β0, e

−iλ)/∂βeiλkdλ. For C(β0, e−iλ) = θ0(λ)/φ0(λ) we have

∂ lnC(β0, e
−iλ)/∂β =

·
e−iλ

φ0(λ)
, · · · , e

−iλp

φ0(λ)
,
e−iλ

θ0(λ)
, · · · , e

−iλq

θ0(λ)

¸0
.
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Define the expansions of φ−10 (z) =
P∞
j=0 ψφ,jz

j and θ−10 (z) =
P∞
j=0 ψθ,jz

j. The coefficients

in the expansion satisfy the difference equation ψφ,j−φ0,1ψφ,j−1−...−φ0,pψφ,j−p = 0 which

has p linearly independent solutions. A similar expression holds for ψθ,j . Set ψφ,j = ψθ,j =

0 for j < 0. Then bk =
£
ψφ,k−1, · · · ,ψφ,k−p,ψθ,k−1, · · · ,ψθ,k−q

¤0
. Any set of d = p + q

vectors bk1 , bk2 , ..., bkd is linearly independent because of the linear independence of the

solutions to φ0(L)x = 0 and θ0(L)x = 0 together with the requirement that φ (L) and

θ (L) have no common zeros and that φp 6= 0 or θq 6= 0. Thus P has full column rank.

When p > 0 we distinguish two cases. For the case where q = 0, ImP = ImD where

D was defined in the proof of Proposition (3.2). This implies that kerP 0 ∩ ImD = 0 since

ImP = (kerP 0)⊥ .

When q > 0 then ImP = S1 where

S1 =
n
x = [x1, ...] ∈ l2 : φ0(L)θ0(L)x = 0 for xj, j > d, [x1, ..., xd]0 = κ,κ ∈ Rd

o

while ImD = S. Since φ0(L)x = 0 ⇒ φ0(L)θ0(L)x = 0 it follows that ImP ⊃ ImD.

But ImP = (kerP 0)⊥ and kerP 0 ∩ (kerP 0)⊥ = 0 which implies that ImD ∩ kerP 0 = 0.

To see that ImP = S1 note that the j-th element cj in ImP is cj =
Pp
i=1 δiψφ,j−i +Pq

i=1 δp+iψθ,j−1 for δ ∈ Rd. Since ψφ,j−m =
Pk
i=1

Pri
n=0

Pn
l=0

¡n
l

¢
κinj

lmn−lξ−j−mφ,i from the

general solution with a similar expression for ψθ,j−m it follows that δmψφ,j−m+δp+wψθ,j−w

is the general solution of a difference equation with roots ξφ,i and ξθ,i which is the same as

φ0(L)θ0(L)x = 0. Since there are d free parameters δi, cj can be made to satisfy d initial

conditions.

We now show that A∗∗ ⊂ A∗. First let p = 0. Then a ∈ A∗∗ implies rank(A0P ) = q.
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Assume that rankA < q. Then dim(ImA0) < q because kerA 6= 0. This contradicts A0P

to be of full rank. Thus Aq is of full rank and a ∈ A∗.

For p > 0 it follows by the same argument that the row rank of A0 has to be full. To

show that kerA0 ∩ S = 0 assume that kerA0 ∩ S 6= 0. We have shown that S = ImD

and ImD ⊆ ImP. This implies kerA0 ∩ ImP 6= 0. But then ∃x ∈ Rd, x 6= 0 such that

Px ∈ kerA0 thus A0Px = 0. This contradicts A0P being full rank.

Proof of Theorem 3.4: Let Mn(β, a) = Gn(β, a) − G(β, a). We use a mean value

expansion forMn(β, a)−Mn(β0, a) =
∂
∂β0Mn(β

+, a) (β − β0) with
°°β+ − β0°° ≤ kβ − β0k .

Then

sup
kβ−β0k<δ

kMn(β, a)−M(β0, a)k ≤ δn−1
n−1X
j=0

°°°° ∂∂β c̃β+j − ∂

∂β
c̃j

°°°° kXn(j)k
+δ

∞X
j=n

°°°° ∂∂β c̃β+j − ∂

∂β
c̃j

°°°°°°γyz(−j)°°

where the second term is O(n−1). Note that ∂
∂βC

−1(β,λ) = C−2(β,λ) ∂∂βC(β,λ) such

that j
°°° ∂
∂β c̃

β
j

°°° is summable by Assumption (B1). It then follows from arguments similar

to the proof of Lemma (A.6) that E supkβ−β0k<δ kMn(β, a)−M(β0, a)k ≤ Kδ/
√
n for

some constant K. For any sequence δn → 0 the Markov inequality then implies that

supkβ−β0k<δn
√
n kMn(β, a)−M(β0, a)k = op(1). From Theorem 3.2.5 in van der Vaart

and Wellner (1996) it follows that kβ − β0k = Op(n−1/2). Following the proof of Theorem

3.3 in Pakes and Pollard (1989) we now consider

°°°°Gn(βn)−Gn(β0)− · ∂∂βiGn(βn)0
¸
(βn − β0)

°°°°
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≤ kMn(βn, a)−M(β0, a)k+
°°°°G(βn)− · ∂∂βiGn(βin)0

¸
(βn − β0)

°°°° .
Pick a sequence δn such that P (kβn − β0k ≥ δn) → 0. Then for any ², η > 0 there exists

an n such that

P (
√
nkMn(βn, a)−M(β0, a)k > ²) ≤ P ( sup

kβ−β0k<δn

√
nkMn(βn, a)−M(β0, a)k > ²)

+P (kβn − β0k ≥ δn) ≤ η

The term
°°°G(βn)− h ∂

∂βi
Gn(β

i
n)
0
i
(βn − β0)

°°° = op(n−1/2) by a mean value expansion ar-
gument of G(βn) around β0 and the fact that convergence of

h
∂
∂βi
Gn(β

i
n)
0
i
can be shown

by the same arguments as convergence of Gn(β, a) noting that both yt and zt are strictly

stationary and ∂ lnC(β, e−iλ)/∂β is uniformly continuous on [−π,π]×U for U ⊂ Θ, U com-

pact, β0 ∈ Θ. A set U with these properties exists by local compactness of the parameter

space. The details are omitted.

We have thus established that

[
∂

∂β
Gn(βn)]

√
nGn(βn) = (M + op(1))[

√
nGn(β0) +

·
∂

∂βi
Gn(β

i
n)
0
¸√

n(βn − β0)] + op(1)

where M = σ2(2π)−1
R π
−π ∂ lnC(β0, e

−iλ)/∂βla(λ)dλ. Next, turn to

√
nGn(β0) =

√
n(2π)−1

Z π

−π
C−1(β0, e

−iλ)In,yz(λ)dλ.

From Lemma (A.3) it follows that
√
n
R π
−π C

−1(β0, e−iλ)In,yz(λ)dλ−
√
n
R π
−π In,εz(λ)dλ =

43



op(1). Using Lemma (A.4) then shows that
√
nGn(β0)

d→ N(0,
P∞
l=1

P∞
k=1 αk,laka

0
l) where

it should be noted that
P∞
l=1

P∞
k=1 αk,laka

0
l = limA

0
mΩmAm. The result now follows from

∂ lnC(β0, e
−iλ)/∂β =

P∞
k=1 bke

−iλk such that (2π)−1
R π
−π ∂ lnC(β0, e

−iλ)/∂βla(λ)0dλ =P∞
k=1 bka

0
k.

Proof of Lemma 4.1 From Assumption (A1) it is clear that Ωx ∈ l2 for all x ∈ l2.

It remains to show that kerΩ = 0. Assume there is x ∈ l2 such that x 6= {0, 0, ...} and

Ωx = 0. Then also x
0
Ωx = 0 which can be written as E(

P∞
i=1 xiεtεt−i)

2 = 0. But this is

only possible if
P
xiεtεt−i = 0 with probability one. Now

P
xiεtεt−i = 0 a.s. if εtεt−i = 0

a.s. or the functions εt−i are linearly dependent a.s. which is ruled out by Lemma (A.2).

On the other hand if εtεt−i = 0 a.s. for all i then ε2t ε2t−i = 0 a.s. But then E(ε2t ε2t−i) = 0

for all i which contradicts Assumption (A1). Therefore Ωx = 0 can only hold if x = 0.

Thus kerΩ = 0. Symmetry of Ω now implies that ImΩ = l2 therefore Ω−1 exists and is

bounded on l2.

Finally, it follows at once from before that x
0
mΩmxm = E(

P
xi,mεtεt−i)2 > 0 where

the inequality is strict by Assumption (A1). So Ωm is positive definite such that λmj > 0

∀j,m. This shows that Ωm has full rank.

Proof of Lemma 4.2 By Assumption (A1) we know that
PP |σ (k, l)| < B thusP

k |σ (k, l)| < B for any l. Therefore for any fixed l, σ (k, l) → 0 as k → ∞. This holds

also if the roles of k and l are reversed. Also
P
k |σ (k, k)| < B such that σ (k, k) → 0

as k → ∞. Define the infinite dimensional matrices Sm12, Sm21 and Sm22 according to the
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following partition

Ω =

 Ωm Sm12

Sm21 Sm22

 .
Then tr(Sm12S

m0
12 ) =

P∞
l=m+1

Pm
k=1 |σ (k, l)|2 → 0, tr(Sm21S

m0
21 )→ 0 and tr(Sm22−σ4I)(Sm22−

σ4I)
0 → 0 as m→∞. Define the infinite dimensional approximation matrix

Ω∗m =

 Ωm 0

0 σ4I

 .

Clearly Ω∗−1m exists ∀m by Lemma (4.1) and the partitioned inverse formula. We now have

(Ω−1 −Ω∗−1m ) = Ω∗−1m (Ω−Ω∗m)Ω−1

such that °°Ω−1 −Ω∗−1m

°° ≤ °°Ω∗−1m

°° kΩ−Ω∗mk°°Ω−1°° .
where k.k is the matrix norm defined by kAk = supkxk2≤1 kAxk2 . First show that

°°Ω∗−1m

°°
is bounded. By the partitioned inverse formula

Ω∗−1m =

 Ω−1m 0

0 σ−4I



such that
°°Ω∗−1m

°° ≤ °°Ω−1m °°+σ−4.We have shown in Lemma (4.1) that 0 < minx0x=1 x0Ωx
which together with minx0x=1 x0Ωx ≤ minx0mxm=1 x

0
mΩmxm ∀m implies that the smallest

eigenvalue λm1 of Ωm is bounded away from zero uniformly in m. Then by a familiar
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inequality for all x ∈ Rm x
0
Ω−1m x/x

0
x ≤ 1/λm1 < ∞ ∀m such that

°°Ω−1m °° < ∞ since for

finite m all norms are equivalent. Also
°°Ω−1°° <∞ by Lemma (4.1) and

kΩ−Ω∗mk = sup
kxk≤1

 mX
k=1

¯̄̄̄
¯

∞X
l=m+1

σ (k, l)xl

¯̄̄̄
¯
2

+
∞X

k=m+1

¯̄̄̄
¯
∞X
l=1

σ (k, l)xl

¯̄̄̄
¯
2
1/2

≤ sup
kxk≤1

mX
k=1

∞X
l=m+1

|σ (k, l)| |xl|+ sup
kxk≤1

∞X
k=m+1

∞X
l=1

|σ (k, l)| |xl|

≤ 2
∞X

l=m+1

∞X
k=1

|σ (k, l)|→ 0 as m→∞.

Thus
°°Ω−1 −Ω∗−1m

°°→ 0 as m→∞

Proof of Theorem 4.3 For all m fixed it follows from standard results that

(P 0mAm)
−1(A0mΩmAm)(A

0
mPm)

−1 − (P 0mΩ−1m Pm)−1 ≥ 0.

But since for any sequence {xm} such that xm ≥ 0 for all m it follows that lim infm xm ≥ 0

the above inequality also holds in the limit. Since both b(P ) ∈ l1 and a(A) ∈ l1 it follows

from a bounded convergence argument that limm P 0mAm exists and is finite. If a ∈ A∗∗ then

the inverse exists as well. The same arguments can be used to show that limmA0mΩmAm

exists and is finite.

Finally note that

lim
m
P
0
mΩ

−1
m Pm = P

0Ω−1P

by Lemma (4.2) since Pm ∈ l2.

Proof of Theorem 5.1 We first show that a(A) ∈ A for A0 = P 0Ω−1. From Assumption
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(A1) it follows that Ω maps l1 into l1. To see this write Ω = Σ+ σ4I where the matrix Σ

consists of elements σ(k, l). For x ∈ l1 we have Ωx = Σx+σ4x with Σx ∈ l1 because of the

summability restrictions on σ(k, l). From Lemma 4.1 we know that for x ∈ l1 ⊂ l2 we have

Ω−1x ∈ l2. Assume Ω−1x /∈ l1. Then x = ΩΩ−1x = ΣΩ−1x + σ4Ω−1x. But ΣΩ−1x ∈ l1.

Thus
°°σ4Ω−1x°°

1
=
°°x−ΣΩ−1x°°

1
≤ kxk1 +

°°ΣΩ−1x°°
1
and kxk1 becomes unbounded

because of
°°σ4Ω−1x°°

1
. But this contradicts the assumption that x ∈ l1. It follows that

the image of l1 under Ω−1 is also in l1 which in turn implies that
P∞
k=1 |ωlk| <∞ for all l.

This can be seen by considering the image under Ω−1 of the l-th unit vector. Since P ∈ A

it now follows that P 0Ω−1 ∈ A.

In light of Lemma (3.3) we only need to show that a(A) ∈ A∗∗ which implies a(A) ∈ A∗.

The optimal instrument is defined by A0 = P 0Ω−1 or A0Ω = P
0
. The row rank of A

0
is

therefore the same as the column rank of P which has full column rank, thus establishing

that Ad = [a1, ..., ad] is nonsingular.

Next,
R
η̇(β,λ)la(−λ)0dλ = P 0Ω−1P and P 0Ω−1P = E(ε2t ztz

0
t). Now, detP

0Ω−1P =

0 ⇒ ∃` ∈ Rd, ` 6= 0 such that `0E(ε2t ztz0t) = 0 ⇒ `0E(ε2t ztz0t)` = 0. Then for xt := `0zt,

0 = E(ε2tx
2
t ) = Ex2tE

£
ε2t |Ft−1

¤ ⇒ E
£
ε2t |Ft−1

¤
= 0 a.s. or x2t = 0 a.s. Now, clearly

E
£
ε2t |Ft−1

¤
= 0 a.s. is ruled out by Assumption (A1). Then x2t = 0 a.s. implies xt =

`0zt = 0 a.s. From Lemma (A.2) it follows that zt = 0 a.s. is impossible and we have

shown before that the column rank of A is full so that `0zt = 0 a.s. is also impossible.

Proof of Theorem 5.3: We need to show that
P∞
k=1 |k|

¯̄̄
[ak]j

¯̄̄
for j = 1, ..., d is bounded.

Since P ∈ A we can write P 0
= P

0
Ω−1Ω = P 0

Ω−1(σ4I+Σ). Define the vector `k = kek
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where ek is the k-th unit vector. Then

P
0
`k = P

0
Ω−1(σ4I +Σ)`k. (24)

Now, the sequence
n
P
0
`k

o∞
k=1

∈ A and Σ`k ∈ l1 for all k. Therefore, by the fact that

a(P 0Ω−1) ∈ A and by the summability assumption of Lemma (5.3),
n
P
0
Ω−1Σ`k

o∞
k=1

∈ A.

From (24) we have

¯̄̄
P
0
Ω−1`kσ4

¯̄̄
=

¯̄̄
P
0
`k − P 0

Ω−1Σ`k
¯̄̄

≤
¯̄̄
P
0
`k

¯̄̄
+
¯̄̄
P
0
Ω−1Σ`k

¯̄̄
.

where |.| is a vector norm on Rd. Without loss of generality we use |x| = supi |xi| for

x ∈ Rd. Summing over k gives σ4P∞
k=1

¯̄̄
P
0
Ω−1`k

¯̄̄
≤ P∞

k=1

³¯̄̄
P
0
`k

¯̄̄
+
¯̄
P 0Ω−1Σ`k

¯̄´
< ∞.

Note that
¯̄̄
P
0
Ω−1`k

¯̄̄
= k |P∞

l=1 blωlk| . This establishes the result .

Proof of Corollary 5.4: We first need to establish consistency. For this we show that

uniformly in Θ,
°°°G̃n(β, a)−Gn(β, a)°°° p→ 0. Note that zt − ẑt =

Pt−1
j=1 aj(εt−j − ε̂t−j) +P∞

j=t ajεt−j and εt−j − ε̂t−j =
P∞
l=t−j c(β0, l)yt−j−l. Without loss of generality assume

aj ∈ R. Then

¯̄̄
G̃n(β, a)−Gn(β, a)

¯̄̄
≤ n−1

¯̄̄̄
¯̄ nX
t=1

t−1X
j=1

aj

∞X
l=t−j

c(β0, l)yt−j−l
t−1X
r=0

c̃βr yt−r

¯̄̄̄
¯̄

+n−1

¯̄̄̄
¯̄ nX
t=1

∞X
j=t

ajεt−j
t−1X
r=0

c̃βr yt−r

¯̄̄̄
¯̄

where, using t ≤ 2 |j| |l| on the relevant range of summation, the first term can be bounded
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by

2n−1
nX
t=1

t−1X
j=1

j |aj |
∞X

l=t−j
t−1l |c(β0, l)|

t−1X
r=0

¯̄̄
c̃βr

¯̄̄ ¯̄
yt−j−lyt−r − γyy(j + l − r)

¯̄
+2n−1

nX
t=1

t−1X
j=1

j |aj|
∞X

l=t−j
t−1l |c(β0, l)|

t−1X
r=0

¯̄̄
c̃βr

¯̄̄ ¯̄
γyy(j + l − r)

¯̄
.

Note thatE
¯̄
yt−j−lyt−r − γyy(j + l − r)

¯̄
is uniformly bounded in t, j, l, r and the remaining

terms in the expression are summable in Θ. We can therefore bound the sum by

Kn−1
nX
t=1

t−1 < Kn−1+ν
nX
t=1

t−(1+ν) = O(n−1+ν)

for ν ∈ (0, 1/2) and some constant K. Thus by the Markov inequality the first term is

Op(n−1). The second term can be bounded by

n−1
nX
t=1

t−1
∞X
j=t

j |aj |
t−1X
r=0

¯̄̄
c̃βr

¯̄̄ ¯̄
yt−rεt−j − γyε(r − j)

¯̄
+n−1

nX
t=1

t−1
∞X
j=t

j |aj|
t−1X
r=0

¯̄̄
c̃βr

¯̄̄ ¯̄
γyε(r − j)

¯̄

where again E
¯̄
yt−rεt−j − γyε(r − j)

¯̄
is uniformly bounded and n−1

Pn
t=1 t

−1 = O(n−1+ν)

for ν ∈ (0, 1/2) . This establishes supβ∈Θ
¯̄̄
G̃n(β, a)−Gn(β, a)

¯̄̄
p→ 0 and thus β̃

p→ β0. Next

we show that supβ∈Θ
¯̄̄
G̃n(β, a)− G̃Fn (β, a)

¯̄̄
= Op(n

−1). Note that

G̃Fn (β, a) =
1

n

∞X
j=0

∞X
k=1

∞X
l=0

clc̃
β
j ak

min(n+k+l,n+j)X
t=max(k+l,j)

yt−jyt−k−l

= Gn(β, a) +
1

n

∞X
j=0

∞X
k=1

∞X
l=0

clc̃
β
j ak {max(j, k + l) < n}

min(n+k+l,n+j)X
t=n

yt−jyt−k−l
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+
1

n

∞X
j=0

∞X
k=1

∞X
l=0

clc̃
β
j ak {max(j, k + l) ≥ n}

min(n+k+l,n+j)X
t=max(k+l,j)+1

yt−jyt−k−l


where the second term is uniformly bounded in expectation by

1

n
sup
t,s
E |ytys| sup

β

nX
j=0

nX
k=1

nX
l=0

jlk |cl|
¯̄̄
c̃βj

¯̄̄
|ak| = O(n−1)

where we can exchange sup and E by a dominated convergence argument since j
¯̄̄
c̃βj

¯̄̄
is

uniformly summable on Θ. The third term can be uniformly bounded in expectation by

1

n
sup
t,s
E |ytys| sup

β

∞X
k=1

∞X
l=0

k+lX
j=0

(k + l) |cl|
¯̄̄
c̃βj

¯̄̄
|ak| {k + l ≥ n}

+
1

n
sup
t,s
E |ytys| sup

β

∞X
k=1

∞X
l=0

∞X
j=n

j |cl|
¯̄̄
c̃βj

¯̄̄
|ak|

which is also O(n−1). It then follows that E supβ
¯̄̄
G̃n(β, a)− G̃Fn (β, a)

¯̄̄
= O(n−1). The

result follows by the Markov inequality. For the limiting distribution expand (12) as

√
n(β̃ − β0) =

h
∂G̃Fn (β

+, a)/∂β
i−1√

nG̃Fn (β0, a) + op(1)

where
°°β+ − β0°° ≤ °°°β̃ − β0°°° where β+ varies across different rows in ∂G̃Fn (β+, a) by the

mean value theorem. From Lemma A.2 and A.3 in Kuersteiner (1999) it follows that

√
nG̃Fn (β0, a)

d→ N(0, P 0Ω−1P ) and by standard arguments

∂G̃Fn (β
+, a)/∂β

p→
Z
η̇(β0,λ)lψ(−λ)0dλ = P 0Ω−1P.
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Proof of Theorem 5.5: For consistency we establish that supβ∈Θ
¯̄̄
G̃Fn (β, a)− G̃Fn (β, â)

¯̄̄
p→

0. Here

sup
β∈Θ

¯̄̄
G̃Fn (β, a)− G̃Fn (β, â)

¯̄̄
≤ 1

2π
sup
β∈Θ,

λ∈[−π,π]

¯̄̄
C−1(β, e−iλ)

¯̄̄
sup
λ

¯̄̄
h(β0,λ)− ĥ(β̂,λ)

¯̄̄ Z π

−π
In,yy(λ)dλ

where supλ
¯̄̄
h(β0,λ)− h(β̂,λ)

¯̄̄
= op(1) by Theorem 5.1 in Kuersteiner (1999) such that

consistency follows by standard arguments. The same arguments also lead to

sup
β∈Θ

¯̄̄̄
∂

∂β
G̃Fn (β, a)−

∂

∂β
G̃Fn (β, â)

¯̄̄̄
p→ 0

The limit theory is established by showing that
√
n
³
G̃Fn (β0, a)− G̃Fn (β0, â)

´
= op(1). The

proof is essentially identical to the proof of Theorem 5.2 in Kuersteiner (1999) and is

omitted.
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