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Abstract

We investigate estimation and inference in difference in difference econometric models

used in the analysis of treatment effects. When the innovations in such models display serial

correlation, commonly used ordinary least squares (OLS) procedures are inefficient and

may lead to tests with incorrect size. Implementation of feasible generalized least squares

(FGLS) procedures is often hindered by too few observations in the cross section to allow

for unrestricted estimation of the weight matrix without leading to tests with similar size

distortions as conventional OLS based procedures. We analyze the small sample properties

of FGLS based tests with a formal higher order Edgeworth expansion that allows us to

construct a size corrected version of the test. We also address the question of optimal

temporal aggregation as a method to reduce the dimension of the weight matrix. We

apply our procedure to data on regulation of mobile telephone service prices. We find that

a size corrected FGLS based test outperforms tests based on OLS.
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1. Introduction

We investigate estimation and inference in difference in difference (DID) econometric models.

DID models have become a widely used method to investigate changes in policy variables, which

often arise from changes in legislation. An example would arise when a group of states passes

new legislation that mandates firms to provide a change in benefit levels to their employees. A

DID model allows estimation of the effect, if any, on an outcome variable such as wages. The

typical approach is to use panel data on the 50 U.S. states for a time period of say 5 or more years

to estimate a fixed effects model with fixed effects for both states and for time. A given state

that adopts the legislation acts as its own “control” in the pre-legislation period while states

that do not adopt the legislation act as “control observations” in the post-legislation period.

The most straightforward situation occurs when all states that adopt the legislation do so in the

same year. Assuming that state characteristics do not change over the period, the difference of

the before and after period for the adopting states minus the difference of the before and after

period for the non-adopting states yields the DID estimator. When states adopt the legislation

in different periods or state characteristics change over time, a fixed effects estimator typically

replaces the more straightforward DID approach, but the underlying logic remains similar.

However, this approach does not yield the best estimator in terms of efficiency or the

most precise inference. Both the DID approach and the fixed effects approach do not utilize

all of the time series variation in the data if the stochastic disturbances are serially correlated.

Consider the panel data model

(1.1) yit = Titγ + z0itθ + αi + εit; i = 1, ..., n; t = 1, ..., T

where Tit measures an exogenous policy variable or is a dummy variable for an exogenous change

in policy or regulation and zit are exogenous covariates which are allowed to be constant across

i to accomodate time fixed effects. The parameter θ is the parameter vector for the covariates

zit, the αi are the state fixed effects and εit is orthogonal to the right hand side variable,

independent across i but possibly correlated with εis for all s, t = 1, ...T. We do not assume

stationarity or any parametric form of dependence for εit such that the matrix Σ̃ with elements

2



σ̃t,s of serial covariance parameters σ̃t,s = Cov(εit, εis) is unconstrained. Least squares (OLS)

on Equation (1.1) yields unbiased estimates, but the estimate of the variance of the estimated

parameters must be adjusted for accurate inference to take account of the non-diagonality of Σ̃,

as Bertrand et.al. (2004) have recently emphasized. Otherwise, as Moulton (1986) pointed out,

the unadjusted OLS standard errors often have a substantial downward bias.

However, the more efficient estimator of equation (1) would be generalized least squares

(GLS) if Σ̃ were known. Indeed, GLS is the Gauss-Markov estimator and would lead to optimal

inference, e.g. uniformly most powerful tests, on the effect of the legislation. In the usual

situation when Σ̃ is unknown and needs to be estimated, the usual estimator would be “feasible”

GLS (FGLS) where a consistent estimate b̃Σ replaces Σ̃ in the GLS formula. Indeed, if the

estimate of Σ̃ is unrestricted, FGLS is unbiased along with OLS and GLS. However, very few

empirical examples of DID appearing in the literature use FGLS1. Instead, OLS is the estimator

of choice.

FGLS on equation (1) is easy to implement. We estimate b̃Σ from either an OLS

estimator of Equation (1.1) using an approach that we develop to eliminate the bias from

fixed effects estimators or we first difference the data to eliminate the state effects and pro-

ceed with the differenced model. If N were large enough, we would use the usual result that

plim
h√

n
³
δ̂GLS − δ̂FGLS

´i
= 0 where δ = (θ0, γ)

0 so long as plim b̃Σ = Σ̃. However, in many

applications of DID, N is unlikely to be large enough in relation to the number of time periods

T to permit the first order asymptotic approximation to be sufficiently accurate to provide ac-

curate inference. For example, if T = 10, the number of unknown elements in Σ̃ is 55 compared

to a sample size of 500. Thus, in this paper we use the second order Edgeworth approximation

approach of Rothenberg (1988) that accounts for the uncertainty in estimating b̃Σ. We derive
explicit formulas for the size distortions of test statistics based on FGLS and use these formulas

to construct size corrected tests which we denote by FGLS-SC. Without these size corrections

the actual size of the test may considerably exceed the nominal size of the test because the usual

test statistics assume that the FGLS estimator is close enough to the GLS estimator so that no

1Bertrand et. al. (2004) in their survey of the literature find only one paper out of nearly 100 papers that

uses this approach where Σ is unrestricted.
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adjustment for the estimation of b̃Σ is needed.
Once we consider the effects of uncertainty in the estimate of b̃Σ, the question arises

of whether a trade-off exists between some amount of averaging across time to reduce the

dimension of the variance-covariance matrix needed for FGLS estimation to improve estimator

efficiency. Since the number of unknown parameters in an unrestricted Σ̃ increases at rate T 2,

aggregation to reduce the dimension of Σ̃ can lead to a significant decrease in the number of

unknown parameters. The prior literature has emphasized this idea, e.g. Moulton (1986), with

the DID approach of using OLS on the two before and after periods the most extreme possible

approach. In this paper for a given design matrix [Tit, zit] and an unrestricted estimate
b̃Σ, we

analyze the effects of temporal aggregation on size and power using the Edgeworth expansions

of Rothenberg (1988). We demonstrate that for a commonly occurring situation where once the

treatment begins in a state it continues thereafter, that small sample improvements in terms of

local power from time aggregation can arise, but only under the somewhat unrealistic assumption

that the degree of serial correlation is small and that this fact is known to the investigator.

In our analysis we focus on Wald tests of the hypothesis H0 : γ = 0. Rothenberg (1984b)

shows that for hypotheses only involving one dimensional parameters LR, LM and Wald tests

have the same power up to order o (n−1) after correcting for size distortions. This result means

that all three tests are affected in similar ways by the problem of estimating Σ̃. The focus on

the Wald test is further motivated by the fact that it is the most commonly used test in practice

and that the invariance properties of the LR test play a lesser role in the context of the linear

restrictions we are focusing on here. Heteroskedasticity robust inference for the OLS estimator

of (1.1) has been considered by Arellano (1987), Kézdi (2004) and Bertrand et.al. (2004). We

focus on the case of homoskedastic errors in this paper and leave the development of efficient,

heteorskedasticity robust inference procedures for future research.

We then consider some Monte Carlo evidence on the performance of our approach and

the second order Edgeworth approximations. We consider a situation with positive serial corre-

lation across time for states, which is the usual situation found in applied research. We focus on

the single treatment date situation in our Monte Carlo experiments and empirical application.
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Our results suggest to use full sample FGLS-SC whenever serial correlation is high in levels. If

the regressions are run in first differences the 3 period version of FGLS-SC seems to perform

best. An argument for running the specification in levels can be made in cases where adjustment

to the new policy takes more than one time period. In this case, the first difference specification

is less robust to misspecification and will tend to underestimate the total effect of the policy

relative to the level specification.

In a final section we provide an application of our method to a data set for mobile telephone

service prices. We exploit a 1994 FCC ruling that required all states to abolish price regulation of

the mobile telephone industry. This ruling provides a natural experiment to test the hypothesis

that regulation led to higher service charges for mobile telephone services prior to 1994 in

the states that had such price regulation in place. When we run robust OLS on the entire

sample the t-statistic for a significant difference between pre and post regulatory regimes comes

in insignificantly. We compare this result with full sample FGLS using the higher order size

correction. The test statistic now indicates a significant treatment effect. Moreover, the point

estimate of the FGLS regression is almost identical to the estimated price effect of regulation in

an earlier cross-sectional study by Hausman (1995).

2. Tests based on OLS and GLS

2.1. Level Specification

In this section we turn to the original model formulated in levels. The analysis is complicated

by the presence of fixed effects, which amongst other things complicate estimation of the weight

matrix. We consider

(2.1) yit = Titγ + z0itθ + αi + εit

where we define Ỹt = [y1t, ..., ynt]
0, Ỹ =

h
Ỹ 0
1 , ..., Ỹ

0
T

i0
, Z̃t = [z1t, ..., znt]

0, Z̃ =
h
Z̃ 01, ..., Z̃

0
T

i0
, ε̃t =

[ε1t, ..., εnt]
0 and ε̃ = [ε̃01, ..., ε̃

0
T ]
0
. The vector Υ̃ is defined as Υ̃t = [T1t, ..., Tnt]

0 , Υ̃ =
h
Υ̃01, ..., Υ̃

0
T

i0
and we let α = [α1, ..., αn]

0 . We assume that γ is a scalar to simplify the subsequent arguments
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and that zit is a (k − 1)× 1 vector where k = dim (γ, θ0). Then we can write

Ỹ = Υ̃γ + Z̃θ + (1T ⊗ In)α+ ε̃

where E (ε̃) = 0 and Var(ε̃) = Σ̃ ⊗ In ≡ Ω̃. Also define Vit = [Tit, z
0
it] with regressor matrix

V = [V 0
1 , ..., V

0
n]
0 where Vi = [Vi1, ..., ViT ] . We note that V is n × (Tk) as opposed to Z̃ which

is nT × (k − 1) . We use V to estimate Σ̃ free of fixed effects bias as we discuss in more detail

below. We impose the following condition on the fixed effects.

Condition 1. Let MV = In − V (V 0V )−1 V 0 be the matrix projecting onto the orthogonal

complement of V. Conditional on Z̃ and Υ̃, the fixed effects αi satisfy one of the two conditions

below:

i) The αi are independent across i and independent of εjt for all i, j, t.Moreover, E (α0MV α|V ) /n
is bounded for all n, almost surely.

ii) The αi are fixed parameters such that α0MV α/n is bounded for all n almost surely.

Remark 1. Condition 1i) generalizes the specification of Mundlak (1978) in the sense that αi

is random but can depend on Vi in a possibly nonlinear way. .

Due to the presence of fixed effects and the associated incidental parameter problem it is

not possible to construct unbiased estimates of the weight matrix directly. Bias corrections

may be available in some cases but they usually do not completely remove the bias and they

typically depend on a stationarity assumption, which may not be accurate. This is particularly

the case when a policy change occurs which is the typical situation in difference in difference

regressions. Here we propose an alternative weight matrix estimator for the level case that is an

unbiased estimate of a certain transformation of the weight matrix2. Unlike more well-known

bias corrected estimators our estimator does not require the serial correlation in εit to be of

a particular parametric form, nor does it require the process εit to be stationary. Absence

of stationarity may lead to poor performance of the usual bias corrected estimators and a

stationarity assumption is inconsistent with our assumption of an unrestricted Σ̃.

2A similar procedure was proposed by Kiefer (1980) but he did not establish unbiasedness.
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The idea behind our estimator is to fit a misspecified OLS regression where the fixed effects

are not estimated for each time period separately. The residuals from this regression are then

used to compute temporal covariances. Due to the omitted fixed effects the covariances will all

have the same constant bias3. The final step consists of projecting out the common constant. For

this purpose define the projection matrix M1T = IT − T−11T1
0
T projecting onto the orthogonal

complement of 1T . We estimate the (t,s)-th element σt,s of Σ̃ as

(2.2) σ̂t,s =
Ỹ 0
tMV Ỹs
tr(MV )

.

We now form the T × T matrix S̃ consisting of the elements σ̂t,s. We then form the estimate b̃Σ
of M1T Σ̃M1T as

b̃Σ =M1T S̃M1T .

Note that b̃Σ is of rank T − 1 due to a loss of degrees of freedom resulting from removing

the fixed effects. A full rank matrix can be obtained by deleting the first column and row fromb̃Σ which amounts to only using time periods 2, ..., T. For this purpose define the (T − 1) × T

matrix B obtained from deleting the first row of IT . Estimation of (2.1) can be achieved by

applying the transformation

(BM1T ⊗ In) Ỹ = (BM1T ⊗ In) Z̃θ + (BM1T ⊗ In) Υ̃γ + (BM1T ⊗ In) ε̃.

We define Y = (BM1T ⊗ In) Ỹ . Similarly we define Υ = (BM1T ⊗ In) Υ̃, Z = (BM1T ⊗ In) Z̃

and ε = (BM1T ⊗ In) ε̃. Note thatE (ε) = 0 andE (εε0) = Ω = Σ⊗In where Σ = BM1T Σ̃M1TB
0

such that GLS can be implemented by using the estimator4

(2.3) Σ̂ = BM1T S̃M1TB
0.

Additional regularity conditions needed to formally justify the expansions of Rothenberg

(1988) used in the development of our results are stated next.
3The bias of the estimated autocovariances σ̂t,s defined in (2.2) is constant by construction and withouth

any additional assumptions beyond Conditions 1 and 2. The reason is that the bias only depends on α which

is constant over time and the regressor matrix V. The matrix V is the same for each time period in which the

residuals are computed and thus time-invariant itself. The fact that V contains all leads and lags of zit and Tit

is thus critical for our unbiasedness result.
4This approach to an unbiased estimate of Σ avoids the typical bias of autoregressive parameters known as

"Hurwicz bias" in the literature because only covariances, not regression coefficients, are estimated.
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Condition 2. All asymptotic arguments are for T fixed and n → ∞. Let X = [Z,Υ] be a

n(T −1)×k matrix and similarly define X̃ =
h
Z̃, Υ̃

i
. Assume that conditional on X̃, ε̃ is jointly

normal with ε̃ ∼ N(0, Σ̃⊗In).Assume thatX has full column rank k almost surely (a.s.). Assume

that Σ is of full rank. Let ϑ0 = vechΣ. Assume that ϑ0 is in the interior of some parameter

space Φ ⊂ RT (T−1)/2. Use the notation Ω (ϑ)−1 to emphasize the dependence of Ω−1 on ϑ and

for the j-th element of ϑ, denoted by ϑj, let Ω̇−1j = ∂Ω (ϑ0)
−1 /∂ϑj, Ω̇

−1
jl = ∂2Ω (ϑ0)

−1 / (∂ϑj∂ϑl)

and Ω̇−1jlm = ∂3Ω (ϑ0)
−1 / (∂ϑj∂ϑl∂ϑm) be n (T − 1) × n (T − 1) dimensional matrices of partial

derivatives. Assume that the limits as n → ∞ of X 0Ω−1X/n, X 0Ω̇−1j X/n, X 0Ω̇−1jl X/n and

X 0Ω̇−1jlmX/n exist and are bounded a.s. for all j, l,m. Let Q = In(T−1) −X (X 0Ω−1X)
−1

X 0Ω−1.

Assume that the limits of X 0Ω̇−1j QΩQΩ̇−1j X/n, X 0Ω̇−1jl QΩQΩ̇
−1
jl X/n and X 0Ω̇−1jlmQΩQΩ̇

−1
jlmX/n

as n →∞ exist and are bounded a.s. for all j, l,m. Assume that uniformly in a neighborhood

of ϑ0, X 0
³
Ω̇−1ijlm

´2
X/n is bounded a.s. as n → ∞ where Ω̇−1ijlm = ∂4Ω (ϑ0)

−1 / (∂ϑi∂ϑj∂ϑl∂ϑm)

is an n (T − 1)× n (T − 1) dimensional matrix of partial derivatives.

Remark 2. We regard the analysis as being conditional on a particular draw of regressors X.

If the regressors are fixed the qualifier ’almost surely’ can be omitted in Condition 2.

Remark 3. Note that Σ is of full rank implies that Ω = Σ⊗ In is full rank for all n. Together

with the rank condition on X this implies that X 0X/n > 0, X 0ΩX/n > 0 and X 0Ω−1X/n > 0

a.s for all n where the inequality denotes that the matrix on the l.h.s is positive definite.

The following theorem establishes the unbiasedness of the covariance matrix estimator Σ̂ for

B0M1T Σ̃M1TB
0 and establishes its asymptotic variance.

Theorem 2.1. Assume that Conditions 1 and 2 hold and that yit is generated by (2.1). Let

Σ̂ be defined as in (2.3). Then E
³
Σ̂|X

´
= Σ a.s. Let T̃ = T − 1 and let the KT̃ T̃ be the

(T − 1)2 × (T − 1)2 commutation matrix of Magnus and Neudecker (1979) defined as KT̃ T̃ =P(T−1)
i,j=1 aia

0
j ⊗ aja

0
i where ai is the i-th unit vector of dimension T − 1. It then follows that

nVar
³
vec

³
Σ̂
´
|X
´
= VΩ +O

¡
n−1

¢
a.s.
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where

VΩ = (IT−1 ⊗KnT̃ ⊗ In)
¡
VΣ ⊗ vec In (vec In)0

¢ ¡
IT−1 ⊗K 0

nT̃
⊗ In

¢
with KnT̃ =

P
i,j=1Eij ⊗ E0

ij where Eij is an n × (T − 1) matrix with i, j th position equal

to one and all the other elements are equal to zero, VΣ = (IT−1 ⊗ IT−1 +KT̃ T̃ ) (Σ⊗Σ) and

Σ = BM1T Σ̃M1TB
0.

Remark 4. Note that VΣ is singular because of repeated elements in Σ.

For the time being the autocorrelation structure of Σ̃ is assumed unrestricted. Thus, OLS,

GLS and FGLS are all unbiased estimators. Estimation of the parameter γ can be done using

OLS or GLS5. The model can be written as Y = Υγ + Zθ + ε. If Σ were known, two tests for

the hypothesis H0 : γ = γ0 could be considered. Let Ωz = Ω−1 − Ω−1Z(Z 0Ω−1Z)−1Z 0Ω−1 and

MZ = InT − Z(Z 0Z)−1Z 0. In Rothenberg’s (1988) terminology we define the test

(2.4) T̄1 =
(Υ0ΩzΥ)

−1Υ0ΩzY − γ0

(Υ0ΩzΥ)
−1/2

based on GLS estimation for γ which is the Gauss Markov (BLUE) estimator and the test

T̄2 =
(Υ0MzΥ)

−1Υ0MzY − γ0¡
(Υ0MzΥ)

−1Υ0MzΩMzΥ (Υ0MzΥ)
−1¢1/2

which is based on the OLS estimate for γ and on robust standard errors. Under the additional

assumption of Gaussian errors or under standard first order asymptotics where n → ∞ it can

be shown that the power of both tests depends on

b1 =
γ − γ0

(Υ0ΩzΥ)
−1/2

5If the dimension of T is relatively large compared to the dimension of n, it has been argued in the literature

(see for example Bertrand et. al. (2004) or Moulton (1986)) that averages across time can be used to reduce

the dimensionality of the variance-covariance matrix needed for GLS estimation and for hypothesis testing in

both the OLS and GLS case. The working paper version of this paper provides details on how to handle time

averaging and more general grouping of time periods but to preserve space and notation we omit these results

in what follows.

9



and

b2 =
γ − γ0¡

(Υ0MzΥ)
−1Υ0MzΩMzΥ (Υ0MzΥ)

−1¢1/2 .
Note, that in the same way as Rothenberg (1988, p. 1001) we assume that b1 and b2 stay fixed

as n tends to infinity. This is equivalent to assuming Pitman type local alternatives to analyze

power of the tests. From standard arguments it follows that b1 ≥ b2 so that the power of the test

based on GLS exceeds the power of the test based on robust OLS. For first order asymptotics,

because of orthogonality between γ̂ and Ω̂, Ω is treated as known in the expansions.

We now turn to the analysis of tests where Ω is replaced with the estimator Ω̂ where Ω̂ =

BM1T S̃M1TB
0⊗ In with S̃ defined as in (2.3).We use the Edgeworth expansions of Rothenberg

(1988) to obtain more precise statements about the finite sample behavior of the feasible test

statistic T1 where

(2.5) T1 =

³
Υ0Ω̂zΥ

´−1
Υ0Ω̂zY − γ0³

Υ0Ω̂zΥ
´−1/2

For this purpose, let Ω̂z = Ω̂−1 − Ω̂−1Z(Z 0Ω̂−1Z)−1Z 0Ω̂−1 and write T1 as a function of the

infeasible test T̄1 where T̄1 is defined in (2.4). As noted in Rothenberg, the statistic T1 can be

written as

T1 =
T̄1 + n−1/2R̃³
1 + n−1/2Ũ

´
where

Ũ =
√
n

³
Υ0Ω̂zΥ

´−1
− (Υ0ΩzΥ)

−1

(Υ0ΩzΥ)
−1 , R̃ =

√
n

³
Υ0Ω̂zΥ

´−1
Υ0Ω̂zY − (Υ0ΩzΥ)

−1Υ0ΩzY

(Υ0ΩzΥ)
−1/2 .

We use a stochastic expansion of the variables Ũ and R̃ to obtain an Edgeworth expansion for

the test statistic. Define h = ΩzΥ (Υ
0ΩzΥ)

−1 and H = Ωz −ΩzΥ (Υ
0ΩzΥ)

−1Υ0Ωz and let

(2.6) U =
(h0 ⊗ h0)

h0Ωh

√
n vec

³
Ω− Ω̂

´
−
√
n
tr
h
vec(Ω− Ω̂) vec(Ω− Ω̂)0 (H ⊗ hh0)

i
h0Ωh

and

(2.7) R =
(ε0H ⊗ h0)

(h0Ωh)1/2
√
n vec

³
Ω− Ω̂

´
.
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We state the following result which will be needed for the distributional approximation of our

test statistics.

Theorem 2.2. Assume that Conditions 1 and 2 hold and that yit is generated by (2.1). Then,

Ũ − U = Op (n
−1) and R̃−R = Op (n

−1) and E (R|X) = 0 a.s., cov(R,U |X) = O(n−1) a.s.,

E (U |X) = −n−1/2 trVΩ (H ⊗ hh0)

h0Ωh
+O(n−1) a.s.

var (U |X) = trVΩ (hh
0 ⊗ hh0)

(h0Ωh)2
+O(n−1) a.s.

and

var (R|X) = trVΩ (H ⊗ hh0)

h0Ωh
+O(n−1) a.s.

We also define the feasible Wald test based on the OLS estimator using robust standard

errors,

(2.8) T2 =
(Υ0MzΥ)

−1Υ0MzY − γ0³
(Υ0MzΥ)

−1Υ0MzΩ̂zMzΥ (Υ0MzΥ)
−1
´1/2 ,

where Ω̂ is the same unbiased estimator of Ω as used for T1. For the test T2 define x =
√
nMzΥ (Υ

0MzΥ)
−1 where the t-th n× 1 block of x is denoted as xt.

We now state the first main result of the paper which gives explicit formulas for the higher

order size correction terms of the tests T1 and T2 by providing formal Edgeworth approximations

to the distribution of T1 and T2.

Theorem 2.3. Assume that Conditions 1 and 2 hold and that yit is generated by (2.1). Then

Pr(T1 ≤ t|X) = Φ

∙
t

µ
1− A1 (t,Ω)

2n

¶
− b1

µ
1− B1 (t,Ω)

2n

¶¸
+ o(n−1) a.s.

and

Pr (T2 ≤ t|X) = Φ

∙
t

µ
1− A2 (t,Ω)

2n

¶
− b2

µ
1− B2 (t,Ω)

2n

¶¸
+ o(n−1) a.s.

for arbitrary nonrandom t where Φ (.) the standard normal CDF. The functions A1 (t,Ω) and

B1 (t,Ω) are defined as

A1 (t) =
1

4

¡
1 + t2

¢ trVΩ (hh0 ⊗ hh0)

(h0Ωh)2
+ 2

trVΩ (H ⊗ hh0)

h0Ωh
, A2 (t,Ω) =

1

4

¡
1 + t2

¢ trVΩ (xx0 ⊗ xx0)

(x0Ωx)2
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and

B1 (t) =
1

4
t2
trVΩ (hh

0 ⊗ hh0)

(h0Ωh)2
+
trVΩ (H ⊗ hh0)

h0Ωh
, B2 (t,Ω) =

1

4
t2
trVΩ (xx

0 ⊗ xx0)

(x0Ωx)2
.

Note that these results make explicit use of the fact that the weight matrix Ω is estimated

without bias. Additional bias terms would need to be included in A1 (t,Ω) and A2 (t,Ω) if biased

estimators were used.

The most important application of these expansions lies in the construction of a size corrected

test based on the GLS estimator. Based on Rothenberg (1988) one can proceed as follows. A

size corrected test is achieved by rejecting H0 : γ = γ0 if

T1 > tc

where

tc = tα

µ
1 +

A1 (tα,Ω)

2n

¶
where tα is the critical value satisfying Φ (tα) = 1− α. In principle similar size corrected tests

could be achieved for robust OLS. However, our analysis of a special case of particular interest

in the next section reveals, that robust OLS seems to be far less sensitive to the dimension of the

unknown covariance matrix Σ. Monte Carlo evidence indicates that tests based on robust OLS

have approximately correct size even without the correction but that their good size properties

come at the cost of lower power compared with GLS based tests.

In general the constant A1 (tα,Ω) needs to be replaced with an estimate. As Rothenberg

(1988) points out this is usually without consequences. This argument remains valid under our

asymptotic approximation where n → ∞ while T is kept fixed. An estimator for A1 (tα,Ω) is

obtained from V̂Σ = (IT−1 ⊗ IT−1 +KT̃ T̃ )
³
Σ̂⊗ Σ̂

´
, replacing VΣ with V̂Σ in VΩ to obtain V̂Ω

and by replacing Ωz with Ω̂z in H and h to obtain Ĥ and ĥ. Since the analysis is conditional

on X, the only parametric estimate needed is Ω̂ and we denote the estimate of A1 (tα,Ω) by

A1

³
tα, Ω̂

´
. The following Theorem states that A1

³
tα, Ω̂

´
can be used instead of A1 (tα,Ω)

without affecting the size of the corrected test up to order o (n−1) .
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Theorem 2.4. Assume that Conditions 1 and 2 hold and that yit is generated by (2.1). Then,

Pr
¡
T1 ≤ tα

¡
1 + (2n)−1A1 (tα,Ω)

¢
|X
¢
− Pr

³
T1 ≤ tα

³
1 + (2n)−1A1

³
tα, Ω̂

´´
|X
´
= o

¡
n−1

¢
.

Computation of A1 (tα,Ω) requires us to evaluate trVΩ (hh0 ⊗ hh0) and trVΩ (H ⊗ hh0) . Be-

cause the dimensions of VΩ (hh0 ⊗ hh0) and VΩ (H ⊗ hh0) can be very large it is more convenient

for computational purposes to use the expression

trVΩ (hh
0 ⊗ hh0)(2.9)

=
Pn

i,j=1

¡
h0
¡
Σ⊗ eie

0
j

¢
h
¢2

+
P(T−1)

l,m=1

Pn
i,j=1

¡
h0
¡
ala

0
mΣ⊗ eie

0
j

¢
h
¢ ¡

h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢

where ei is the i-th unit vector of length n. Moreover one can write

trVΩ (H ⊗ hh0)(2.10)

=
Pn

i,j=1 tr
£¡
Σ⊗ eie

0
j

¢
H
¤ ¡
h0
¡
Σ⊗ eie

0
j

¢
h
¢

+
P(T−1)

l,m=1

Pn
i,j=1 tr

¡¡
ala

0
mΣ⊗ eie

0
j

¢
H
¢ ¡

h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢
.

A derivation of these formulas is contained in the Appendix. Furthermore, the analysis in

Section 3 considers a case where A1 (tα) takes a particularly simple form that does not depend

on VΩ and thus no estimation is required.

2.2. First Difference Specification

An alternative to the level specification is a transformation to first differences. This approach is

often advocated to remove fixed effects. One caveat of applying a first difference transformation

is that it may lead to tests with low power when the model is misspecified in terms of the

timing of policy effects6. Despite these potential problems we turn to models formulated in first

6Consider the model where yit+1 = Titγ + εit and Tit is binary. The effect of the policy Tit occurs with one

period delay. If the estimated model is misspecified such that ∆yit is regressed on ∆Tit rather than on ∆Tit−1

then E (∆yit∆Tit) = ∆Tit−1∆Tit = 0. Thus the OLS estimator of the misspecified first difference model is zero

in large samples while the estimator for the misspecified model in levels will be asymptotically biased with a bias

of O
¡
T−1

¢
as n→∞.

13



differences and show that the previous results essentially remain valid without change. We thus

consider the model

∆yit = ∆z0itθ +∆Titγ +∆εit

where ∆yit = yit−yit−1 is the first difference of yit and is used to remove fixed effects. The k−1
dimensional exogenous regressor ∆zit contains time dummies as well as other covariates.

We stack the observations as∆Y = [∆y12, ...,∆yn2, ...,∆y1T , ...,∆ynT ]
0, Υ∆

t = [∆T1t, ...,∆Tnt]
0 ,

Υ∆ =
£
Υ∆0
2 , ...,Υ∆0

T

¤0
, Z∆

t = [∆z1t, ...,∆znt]
0 and Z∆ =

£
Z∆0
2 , ..., Z∆0

T

¤0
with ∆ε̃ being the corre-

sponding vector of error terms. The model then can be written as

(2.11) ∆Y = Z∆θ +Υ∆γ +∆ε

with E (∆ε) = 0 and E (∆ε∆ε0) = Σ∆,T ⊗ In ≡ Ω∆. If we define the T − 1× T matrix

B∆ =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1

−1 1
. . . . . .

−1 1

⎤⎥⎥⎥⎥⎥⎥⎦
then (2.11) can be obtained from the level specification by noting that ∆Y =

¡
B∆ ⊗ In

¢
Ỹ ,

Z∆ =
¡
B∆ ⊗ In

¢
Z̃, Υ∆ =

¡
B∆ ⊗ In

¢
Υ̃ and ∆ε =

¡
B∆ ⊗ In

¢
ε̃. It thus follows that Ω∆ =

B∆Σ̃B∆0 ⊗ In. Moreover, because B∆1T = 0 it also follows that E
³
B∆S̃B∆

´
= B∆Σ̃B∆0. In

other words we continue to use the same estimator S̃ for the covariance matrix but apply the

operator B∆ when the model is specified in first differences.

Because the estimator of the covariance matrix remains unbiased under the first differ-

ence transformation the expansions developed for the level case remain valid except for no-

tational adjustments. As before we therefore define h∆ = Ω∆
z Υ

∆
¡
Υ∆0Ω∆

z Υ
∆
¢−1

and H∆ =

Ω∆
z −Ω∆

z Υ
∆
¡
Υ∆0Ω∆

z Υ
∆
¢−1

Υ∆0Ω∆
z where Ω

∆
z = Ω−1∆ −Ω−1∆ Z∆(Z

∆0Ω−1∆ Z∆)−1Z∆0Ω−1∆ . Using these

results we conclude from Rothenberg (1988) and our previous analysis for the level case that

Pr(T1 ≤ t) = Φ

∙
t

µ
1− A1 (t,Ω∆)

2n

¶
− b1

µ
1− B1 (t,Ω∆)

2n

¶¸
+ o(n−1)
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where

A1 (t,Ω∆) =
1

4

¡
1 + t2

¢ trVΩ∆
(h∆h

0
∆ ⊗ h∆h

0
∆)

(h0∆Ω∆h∆)
2 + 2

trVΩ∆
(H∆ ⊗ h∆h

0
∆)

h0∆Ω∆h∆

and

B1 (t,Ω∆) =
1

4
t2
trVΩ∆

(h∆h
0
∆ ⊗ h∆h

0
∆)

(h0∆Ω∆h∆)
2 +

trVΩ∆
(H∆ ⊗ h∆h

0
∆)

h0∆Ω∆h∆
.

For the robust OLS based test define x∆ =
√
nMz∆Υ

∆
¡
Υ∆0Mz∆Υ

∆
¢−1

and Mz∆ is the

matrix projecting onto the orthogonal complement of Z∆. Then the Edgeworth approximation

for T2 is given by

Pr (T2 ≤ t) = Φ

∙
t

µ
1− A2 (t,Ω∆)

2n

¶
− b2

µ
1− B2 (t,Ω∆)

2n

¶¸
where

(2.12) A2 (t,Ω∆) =
1

4

¡
1 + t2

¢ trVΩ∆
(x∆x

0
∆ ⊗ x∆x

0
∆)

(x0∆Ωx∆)
2

and

(2.13) B2 (t,Ω∆) =
1

4
t2
trVΩ∆

(x∆x
0
∆ ⊗ x∆x

0
∆)

(x0∆Ωx∆)
2 .

Size corrected tests can be constructed in the same way as before.

3. A Special Case: Same Treatment Date for all States for Which

Treatment Occurs

This case implies additional structure for the regression equation that can be exploited to sim-

plify the test and size corrections. We assume that if treatment occurs in state i it is at a fixed

time τ which is known to the investigator. We assume a simplified version of the model

(3.1) yit = αi + βt + Titγ + εit

where αi are individual specific fixed effects, βt is a time effect common to all states but changing

over time and Tit is the treatment indicator where Tit = 0 for t < τ and all i and Tit takes values

in {0, 1} . We also assume that once treatment takes effect in state i and at time τ it remains

15



in effect. Formally, this means that Tiτ = 1 implies Tit = 1 and that Tit = 0 implies Tiτ = 0 for

all t > τ . The fixed effects αi are assumed to satisfy Condition 1, εit satisfies Condition 2 and

Vi is defined in the same way as before, but using the covariates of (3.1). We thus consider the

transformed model

(BM1T ⊗ In) Ỹ = (BM1T ⊗ 1n) β̃ + (BM1T ⊗ In) Υ̃γ + (BM1T ⊗ In) ε̃

where β̃ = [β1, ..., βT ]
0 . For the transformed model we let Y = (BM1T ⊗ In) Ỹ , Z = (IT−1 ⊗ 1n) ,

Υ = (BM1T ⊗ In) Υ̃, ε = (BM1T ⊗ In) ε̃ and β =
£
β2 − β̄, ..., βT − β̄

¤0
a (T − 1)×1 vector where

β̄ = T−1
PT

t=1 βt. The transformed model then takes the form

Y = (IT−1 ⊗ 1n)β +Υγ + ε.

The properties of the tests T1 and T2 are again determined by the functions A1, B1, A2 and B2.

We derive these functions in the Appendix with the help of (2.9) and (2.10) and summarize the

results in the following Theorem.

Theorem 3.1. Assume Conditions 1 and 2 hold with yit generated by (3.1). Let T1 be defined

as in (2.5) with Z = (IT−1 ⊗ 1n) and let T2 be defined as in (2.8) with Z = (IT−1 ⊗ 1n) . Then

Pr(T1 ≤ t|X) = Φ

∙
t

µ
1− A1 (t)

2n

¶
− b1

µ
1− B1 (t)

2n

¶¸
+ o(n−1) a.s.

and

Pr(T2 ≤ t|X) = Φ

∙
t

µ
1− A2 (t)

2n

¶
− b1

µ
1− B2 (t)

2n

¶¸
+ o(n−1) a.s.

where

(3.2) A1 (t) =
1

2

¡
1 + t2

¢
+ 2 (T − 2) , A2 (t) =

1

2

¡
1 + t2

¢
and

(3.3) B1(t) =
1

2
t2 + T − 2, B2(t) =

1

2
t2

These results turn out to be the same as for the first difference version of the test. Further,

it turns out that robust OLS is unaffected by the dimension T as far as the second order terms
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are concerned. Using the result for B1 it now follows that the power of the test T1 can be

approximated by

(3.4)
γ − γ0³

σττΥ̃∆0
τ M1nΥ̃

∆
τ

´−1/2 µ1− 1

4n
t2 − T − 2

2n

¶

where Υ̃∆
τ = [T1τ − T1τ−1, ..., Tnτ − Tnτ−1]

0 is the vector of changes in treatment status at time

τ for each state and

σττ = ξ0τM1TB
0Σ−1BM1T ξ

0
τ

where ξτ =
£
00τ−1,1

0
T−τ+1

¤0
and 0τ−1 is a (τ − 1)×1 vector of zeros. Note thatΣ = BM1T Σ̃M1TB

0

and Υ0ΩzΥ = σττ Υ̃∆0
τ M1nΥ̃

∆
τ as shown in (A.4) in the Appendix.

We can exploit the simple structure of (3.4) to analyze the question of optimal temporal

aggregation. For this purpose we introduce the averaging matrix C of dimension (T − 1)×r such
that C 0C = Ir. We define YC = (C 0BM1T ⊗ In) Ỹ . Similarly we define ΥC = (C

0BM1T ⊗ In) Υ̃,

ZC = (C 0BM1T ⊗ In) Z̃ and εC = (C 0BM1T ⊗ In) ε̃. Note that E (εC) = 0 and E (εCε
0
C) =

ΩC = ΣC ⊗ In where ΣC = C 0BM1T Σ̃M1TB
0C.

It can be shown7 that for general C of dimension (T − 1)× r, A1 (t) = 1
2
(1 + t2) + 2 (r − 1).

This result shows that the size distortion can be reduced by choosing r small. This is likely to

occur at the cost of lower power. In fact, as a function of C, (3.4) is

(γ − γ0)³
σττ (C) Υ̃∆0

τ M1nΥ̃
∆
τ

´−1/2 µ1− 1

4n
t2 − r − 1

2n

¶

with σττ (C) = ξ0τM1TB
0CΣ−1C C 0BM1T ξ

0
τ . Maximizing (3.4) thus amounts to choosing C opti-

mally. The expression for approximate power shows that there is a first order effect on power

determined by the efficiency of the estimator as captured by σττ (C) . Estimation errors of the

elements in the optimal weight matrix affect power to order n−1 through the term (r − 1) /2n.
An algorithm for maximizing (3.4) thus consists in choosing C optimally for r fixed and then

choosing the overall optimal r ∈ (1, ..., T − 1) . Thus, for any given r, C is chosen such that

(3.5) C∗r = argmax
C s.t. C0C=Ir

σττ (C) = argmax
C s.t. C0C=Ir

ξ0τM1TB
0CΣ−1C C 0BM1T ξ

0
τ .

7Derivations are available on request from the authors.
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Theorem 3.2. Let C∗r be as defined in (3.5). Then, for σ
ττ (C) = ξ0τM1TB

0CΣ−1C C 0BM1T ξ
0
τ it

follows that

max
r=1,..T−1

σττ (C∗r ) = σττ (C∗1)

with

C∗1 = (BM1T Σ̃M1TB
0)−1BM1T ξτ .

and approximate power defined (3.4) is maximized for C = C∗1 .

This result shows that in general optimal aggregation is infeasible. The optimal matrix C

depends on the unknown covariance matrix Σ̃. A special case occurs when Σ̃ = IT . As it turns

out, this case is of particular interest for the discussion regarding difference in difference regres-

sions. Firstly, note that for this case OLS and GLS are equivalent. However, an investigator

may not be willing to assume that Σ̃ is known and instead still estimate Σ̃ in an unrestricted

way and use a size corrected test based on GLS. Calculations of C∗ for this case then reveal

that C∗ = −[00τ−2,10T−τ+1]0 which implies that

C∗0BM1T =

∙
T − τ + 1

T
10τ−1,−

τ − 1
T

10T−τ+1

¸
.

In other words, optimal aggregation leads to the ’classical’ difference in difference estimator

where pre and post treatment periods are averaged and the difference between them is tested

for a significant effect. A consequence of our analysis is then that this procedure is not optimal

in terms of power when Σ̃ is not the identity matrix. To put it differently, addressing the size

problem by using the difference in difference approach is likely to result in lower power, especially

when Σ̃ differs from IT .

This result helps explain some findings in our Monte Carlo experiments where time aggrega-

tion methods to correct size distortions lead to a significant loss in power when serial correlation

in ε is high but have little effect on power when serial correlation is low. Because of the large

power loss when Σ̃ 6= IT the ’classical’ difference in difference approach thus can only be recom-

mended if it is known on a priori grounds that Σ̃ = IT holds.

We now turn to the first difference specification of (3.1)

∆yit = βt − βt−1 +∆Titγ +∆εit.
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Note that ∆Tit = 0 except for t = τ . The regressor matrix X̃ for this particular case takes on

the form

X̃ =

⎡⎢⎢⎢⎣
1n 0 0

. . . Υ̃∆
τ

0 1n 0

⎤⎥⎥⎥⎦
where Υ̃∆

τ = [∆T1τ , ...,∆Tnτ ]
0 and 1n is a vector of ones with length n. Using the notation at for

the t-th unit vector of length T−1 we can define Z∆ =
PT

t=2

¡
at−1a

0
t−1 ⊗ 1n

¢
= I(T−1)⊗1n, Y ∆ =PT

t=2

³
at−1 ⊗ Ỹ ∆

t

´
and Υ∆ =

³
aτ−1 ⊗ Υ̃∆

τ

´
. Also let σt,s∆ = a0t−1Σ

−1
∆ as−1, σ∆;t,s = a0t−1Σ∆as−1

with corresponding expressions for σ̂t,s∆ and σ̂∆;t,s by replacing Σ∆ by Σ̂∆. Then,

γGLS =
³
σττ∆ Υ̃∆0

τ M1nΥ̃
∆
τ

´−1 ³PT
t=2 σ

τt
∆Υ̃

∆0
τ M1nỸ

∆
t

´
with M1n = In − 1n10n

n
. The variance of γGLS then is

³
σττ∆ Υ̃∆0

τ M1nΥ̃
∆
τ

´−1
.

The OLS estimator for this case is

γOLS =
³
Υ̃∆0
τ M1nΥ̃

∆
τ

´−1
Υ̃∆0
τ M1nỸ

∆
τ

with variance equal to σ∆;ττ
³
Υ̃∆0
τ M1nΥ̃

∆
τ

´−1
. Based on these results the tests T1 and T2 spe-

cialize to

(3.6) T1,∆ =

³
σ̂ττ∆ Υ̃∆0

τ M1nΥ̃
∆
τ

´−1 ³P
t σ̂

τt
∆Υ̃

∆0
τ M1nỸ

∆
t

´
− γ0³

σ̂ττ∆ Υ̃∆0
τ M1nΥ̃

∆
τ

´−1/2
and

(3.7) T2,∆ =

³
Υ̃∆0
τ M1nΥ̃

∆
τ

´−1
Υ̃∆0
τ M1nỸ

∆
τ − γ0

σ̂
1/2
∆,ττ

³
Υ̃∆0
τ M1nΥ̃

∆
τ

´−1/2 .

Theorem 3.3. Assume Conditions 1 and 2 hold with yit generated by (3.1). Let T1 be defined

as in (3.6). Then Pr(T1 ≤ t|X) = Φ
h
t
³
1− A1(t)

2n

´
− b1

³
1− B1(t)

2n

´i
+ o(n−1) a.s. and Pr(T2 ≤

t|X) = Φ
h
t
³
1− A2(t)

2n

´
− b1

³
1− B2(t)

2n

´i
+o(n−1) a.s. where A1 (t) , A2 (t) , B1 (t) and B2 (t) are

the same as in (3.2) and (3.3).
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As before it can be shown that the previous result generalizes to the case where the temporal

averaging matrix C is used. As argued for the level case, conventional pre and post treatment

averaging does improve the size properties of T1 but usually comes at the cost of reduced power.

For the OLS based test T2 we note as before that size is not affected by the number of time

periods which suggest that temporal aggregation is not needed for the robust OLS based tests

as far as achieving correct size is concerned. The power function can be approximated by

γ − γ0

σ
1/2
∆;ττ

³
Υ̃∆0
τ M1nΥ̃

∆
τ

´−1/2 µ1− 1

4n
t2
¶

which is dominated by the power curve of the GLS based test. Size corrections can again be

based on A2 (t,Ω) .

4. Monte Carlo

We first consider some Monte Carlo evidence on the performance of our approach and the second

order Edgeworth approximations. We consider a situation with positive serial correlation across

time for states, which is the usual situation found in applied research. So far in our empirical

research, we have considered the single treatment date situation. Our Monte Carlo design uses

N=50 and T = (5,10, 15, 20) and the first order serial correlation, ρ = [0, 0.4, 0.8, 0.9].

In order to asses the different procedures numerically we now make more specific assumptions

about the generating process. We assume that

εit = ρεit−1 + uit(4.1)

εi0 ∼ N

µ
0,

1

1− ρ2

¶
where uit ∼ N(0, 1) is iid both across i and t. We generate εitfor t = 1, ...T +500 for each i and

discard the first 500 realizations to enforce stationarity. We assume that αi ∼ N (0, 1) , βt ∼
N (0, 1) and generate

(4.2) yit = αi + βt + Titγ + εit
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where the treatment Tit is drawn in a two stage process. First we draw treated states i with

probability p. Then we draw a common treatment time τ randomly from [T/4] , ..., T − [T/4]
where [a] is the largest integer smaller than a. Then Tit = 1 if t ≥ τ and i is a selected state and

Tit = 0 otherwise. We generate 50,000 random samples for parameter values γ = [0, .1, .6, 1] and

ρ = [0, 0.4, 0.8, 0.9] . Note that αi and βt are drawn before we generate the 50,000 Monte Carlo

samples, ie. they are fixed parameters for all the Monte Carlo samples.

In Tables 1a-1d we find that size corrected FGLS, FGLS-SC8, in levels does well in terms of

size for T equal 5,10 and 15. However, for T = 20 we find that the size correction based on the

second order Edgeworth expansion does not completely solve the size distortion problem when

serial correlation is very high. For ρ = .9 the actual size is 0.081 when the nominal size is 0.05.

While this amounts to a small size distortion, overall the performance of the size correction is

remarkable even when T = 20. For the T = 20 case the number of unknown elements of Σ̂ is

210 which is over 20% of the total number of observations. Apparently, such a large number

of unknown parameters causes a slight inaccuracy of the Edgeworth approximation when ρ is

close to one. When T = 10 so that the number of unknown elements of Σ̂ is 55 which is

11% of the total number of observations, the size correction is very accurate for all values of ρ

we consider. We also find that FGLS-SC has significantly more power than does OLS with a

robustly estimated covariance matrix, which we call robust OLS (ROLS)9. For example, in the

situation of ρ = 0.9 in Table 1d, FGLS-SC often has almost 2 times more power than robust

OLS for the cases of T = 10 or 15. Thus FGLS appears to be the better estimator even with

additional parameter uncertainty created by the estimated Σ̂. In summary, we do recommend

FGLS-SC even for “large Σ̂” because the remaining size distortion is negligible.

However, also note that in Table 1d that non-robust OLS on the entire sample has an actual

size that exceeds 0.25 when T = 10, 15, and 20 although the nominal size is only 0.05. Thus,

as the previous literature found, OLS cannot be used without a correction to the estimated

8In the tables we use the acronyms GLS and GLS-SC to denote the feasible GLS based tests without and

with size corrections to save space.
9Robust OLS is the estimator studied by Bertrand et. al. (2002).
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variance matrix of the estimates or severe size distortions may result10.

We also consider two other versions of FGLS for 3 periods (before, change period, and after)

and the “traditional” 2 periods (before and after) DID approach11. We find that both of these

alternative approaches involving time aggregation have significantly reduced power compared to

FGLS-SC. We find that the power of FGLS-SC on the full sample is often 50%-100% higher than

the 2 or 3 period time aggregated version when ρ is large. Thus, we do not recommend their

use. The traditional DID approach loses too much power to solve the problem of a consistent

estimate of the variance of the estimated parameters.

We next consider in Tables 2a-2d a first difference specification that also eliminates the

fixed effects but can also lead to a reduced effect of the positive serial correlation. Note that

because of the way we estimate the covariance matrix for both the level and the first difference

specification the two are numerically identical for the full sample specification. This outcome is

because BM1T and B∆ map into the same T − 1 dimensional subspace and on that subspace
the tests are invariant to orthogonal rotations.

We thus only consider 3 period and 2 period time aggregation estimators12. The middle

period of the 3 period specification of time aggregation has the first difference of the single time

period when the treatment occurs. The treatment effect parameter appears only in this period

because first difference eliminates it in all other periods. However, the before and after periods

still lead to an efficiency improvement in FGLS estimation because of the correlation of the

stochastic disturbances. We find that all size distortions have been eliminated in FGLS-SC. We

also find that FGLS does approximately as well as non-size corrected FGLS, because the size

corrections are now quite small.

We also find that the 3 period version of FGLS outperforms the 2 period version by a large

amount. Indeed, the 3 period aggregation FGLS-SC estimator seems to do the best of all the

10Significant size distortion for OLS also occur when ρ = 0.4 although they are not as severe.
11For the pre-treatment average we drop the first time period of the sample. This ensures comparability with

the full sample tests where the first time period is dropped as well.
12Since the data have been initially transformed to first differences, these estimators differ from the earlier

fixed effects estimators on 2 or 3 periods.
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feasible GLS estimators considered with correct size and maximum power. Nevertheless, a word

of caution with regard to the first difference transformation is in place. If the effect on the

treatment group occurs only with a time lag after the policy change then the 3 period version of

the first difference specification is not expected to have as much power and the level specification

is likely to be preferred in terms of power. Considering that FGLS-SC performs well for the

level specification in terms of power and size we tend to recommend its use over the three period

first difference specification.

In Table 4 we explore the robustness of our results to changes in the cross-sectional sample

size. Keeping T = 10 fixed and only considering the case of ρ = .8 we find that FGLS-SC

performs well for cross-sectional sample sizes as small as n = 25 while the uncorrected FGLS

procedure shows rapidly deteriorating size properties as n becomes smaller. For n = 15 FGLS-

SC no longer performs well but the three period averaging version of FGLS-SC still works

well. Based on these limited experiments we recommend temporal aggregation combined with

FGLS-SC when the ratio of observations to estimated covariance parameters falls below 5.

In Table 5 we investigate how important the assumption of normally distributed innovations

is for our procedure. We draw uit from a t-distribution with 4 degrees of freedom and generate

εit according to (4.1). Stationarity is enforced by discarding the first 500 draws of εit for each

cross-sectional unit. The t-distribution with low degrees of freedom has higher kurtosis than the

normal distribution and provides a robustness check to outliers. The results in Table 5 show

that FGLS-SC continues to have approximately correct size for all sample sizes considered. We

repeat the same exercise for uit drawn from a demeaned chi-square distribution with 4 degrees of

freedom. This distribution is skewed. The results again show that our procedure is not sensitive

to departure from normality. The drop in power for these tests is a result of the higher variance

of the t and chi-square distributions. We also note that the size of the uncorrected FGLS test

only deteriorates marginally relative to the corresponding results for normal innovations in Table

1c. This is further evidence that the shape of the innovation distribution is not the main factor

driving our results.

Recently Hansen (2007) proposed to fit a parametric model, in his case an AR(p) model,
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to the serial correlation process of εit. Based on Hahn and Kuersteiner’s (2002) method of bias

correction Hansen (2007) uses a formula of Nickell (1981) to correct for fixed effects bias in the

estimated AR(p) model. We replicate this procedure by computing the residuals ε̂ =Mx̃Ỹ where

Mx̃ is the projection onto the orthogonal space spanned by X̃ =
h
1T ⊗ In, Z̃, Υ̃

i
. We then fit a

panel AR(1) model to ε̂it = ρε̂it−1+η̂it. Since ε̂it is already demeaned fromMx̃Ỹ this panel AR(1)

estimator is essentially the within estimator of the model yit = αi + ρyit−1 + z0itθ − ρz0it−1θ + ηit

where ηit is iid if εit is an AR(1) process. Once we obtain an estimate ρ̂ we subtract the estimated

bias and form an estimate Σ̃ρ̂ of Σ̃ based on the assumption that εit indeed follows an AR(1)

process13. We then construct Σ̂ = BM1T Σ̃ρ̂M1TB
0 or Σ̂ = B∆Σ̃ρ̂B

∆0 depending on whether the

model is estimated in first differences or in levels. Note that we estimate ρ̂ on the full sample

even for the cases where we consider averages over 2 or 3 subperiods because it was shown by

Hahn and Kuersteiner (2002) that the performance of the bias correction improves with larger

T.

A potential problem of the parametric estimator for Σ̃ lies in its stationarity and functional

form assumption. If the parametric model is misspecified the resulting GLS estimator is inef-

ficient and the estimated standard errors generally are incorrect. In Monte Carlo simulations

not reported here we found that if εi0 is not drawn from its stationary distribution, the perfor-

mance of the parametric covariance matrix estimator can be quite poor. It also suffers from the

disadvantage that for small T the parametric estimator tends to be more biased and thus has

inferior small sample behavior even when the model is stationary.

Monte Carlo designs where only the initial observation is not drawn from the stationary

distribution tend to be quite artificial and have the disadvantage that the form of the non-

stationarity mostly affects observations at the beginning of the sample. In order to have a

more realistic design we estimate a simple treatment model for the dataset on cellular telephone

service prices analyzed in more detail in Section 5. We calibrate the variance covariance matrix

of our simulated innovations εit to the estimated covariance matrix of the residuals from that

model. Denote the calibrated variance covariance matrix by Ω̂. Table 7 contains the entries of

13In Tables 1,2 and 4 we compute GLS-AR assuming that the variance of uit is known. In Table 3 we compute

GLS-AR based on the estimated variance of uit, assuming that the variance is the same for all i and t.
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the estimated correlation matrix corresponding to Ω̂. The sample size is T = 11. We then draw

εi ∼ N(0, Ω̂) for εi = (εi1, ..., εi,11)
0 . The variables αi, βt and the treatment indicators Tit are

generated as before where now the treatment time τ is fixed at τ = 8 to coincide with the change

in regulation of the actual sample. The outcome variable yit is then defined as in (4.2) where

we again vary the size of the treatment effect measured by γ = [0, .1, .6, 1].

Results for 50,000Monte Carlo replications on samples of size n = 50 and T = 11 are reported

in Table 3. It is striking that under the more realistic correlation patterns for the residuals which

are not well approximated by an AR(1) or for that matter any stationary parametric time

series model, the parametric estimator (GLS-AR) performs quite poorly with size distortions

in the range of 9%. These size distortions are of the same order of magnitude as the size

distortions of the uncorrected test based on feasible GLS. This contrasts with the unrestricted

covariance matrix estimator used in FGLS with a size correction. This procedure continues

to have approximately correct size as it did previously in stationary designs. The parametric

GLS-AR method however has two additional disadvantages: because the weight matrix for the

GLS estimator is biased when the data are not generated by an AR(1), the resulting test has less

power. The results in Table 3 show that GLS-AR has lower power for γ = [.6, 1] than FGLS-SC,

despite the fact that it does not have correct size. The second disadvantage is that unlike for the

uncorrected FGLS test, the size distortion of GLS-AR does not disappear for the 3 and 2 period

based tests. The size distortion of GLS-AR worsens in these versions of the test as compared to

the full sample. Thus, imposing a stationary AR(p) specification in a non-stationary situation

may not solve the problem of obtaining the correct size of tests, which is the most important

problem for applied research of policy evaluation.

In Table 3 we also report the performance of the bootstrap procedure proposed by Bertrand

et.al. (2004). Because the bootstrap is more time consuming to compute we run the simulations

with 5000 instead of 50,000 replications. As suggested by Bertrand et.al. we use 200 bootstrap

replications to compute critical values for each sample in our 5000 simulation draws. The boot-

strap based tests, GLS-B, are somewhat undersized for the level specification and approximately

correctly sized for the first difference specification in the full sample. The problem of undersized
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tests becomes more pronounced for the 3 and 2 period versions of the tests both for the level

and first difference specifications. As a result, power also suffers for these cases when γ = [.1, .6].

Based on our results we can not fully recommend the bootstrap because it loses power due to a

tendency to undersize the tests.

5. Effect of Regulation on Cellular Telephone Service Prices

In the U.S. for the first 12 years of operation, 1983-1995, cellular telephone operated as

a duopoly. However, the two facilities-based carriers were required to sell cellular airtime to

resellers who also sold cellular service to consumers. In the U.S. each of 51 state regulatory

commissions decided on whether to regulate cellular prices or to use market outcomes.14 In an

interesting natural experiment 26 states regulated cellular prices, while the other 25 did not. In

Table 6 we list monthly service prices in 1994 for the least expensive plan for average usage of

160 minutes per month (80% peak)15 for up to a 1-year contract in the 10 largest MSAs, which

are the metropolitan areas where cellular licenses were granted.16

Table 6 demonstrates that price regulation of cellular telephone was associated

with higher prices for consumers in the U.S. However, other factors such as higher costs in

the regulated states could be the reason for the higher prices. Hausman (1995) used a cross-

section approach to quantify the higher prices that consumers pay in regulated states. He

specified a model of cellular prices in the top 30 MSAs where the right had side variable included

MSA population, average commuting time, average MSA income, and an index of constructions

costs.17 These top 30 MSAs contain about 41% of the entire U.S. population and about 60% of

cellular subscribers in 1994. Hausman treated price regulation as a jointly endogenous variable

and used instrumental variables in estimation.18 The estimated coefficient of the price regulation

14In the U.S. the District of Columbia acts as the 51st state.
15This usage, 160 minutes per month, was the approximate average usage of cellular customers in 1994.
16While in most other countries national cellular licenses were granted, the US has followed the framework of

granting licenses on a significant disaggregated geographical level.
17See Hausman (1995)
18The instruments were state tax rates and whether the state regulated paging prices. By 1994 paging had

numerous competitors in each MSAs and no economic reason existed to regulate paging prices.
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variable is 0.149, which means that regulated states had cellular prices that are 15% higher,

holding other economic factors equal. The coefficient is estimated very precisely (standard error

= 0.052) and the finding is highly statistically significant (t statistic = 2.87). Thus, states that

regulate had significantly higher cellular prices in large MSAs.

To explore this issue further Hausman also collected data from cellular companies for

the years 1989-93 and ran a similar regression. Over this time period price regulation led to a

higher price of 14.2% which is again estimated quite precisely (standard error = .029) and is

very statistically significant (t statistic = 4.9). Thus, the results of the effect of price regulation

are very similar for the period 1989-93 and for the single year 1994. However, these estimates

could be objected to (and were objected to by defenders of price regulation) on the grounds that

unmeasured variables led to higher prices in the regulatory states. Since the regulatory status

of the states did not change over time, this possible objection was untestable.

However, a “natural experiment” occurred that allowed a further test of the regulatory

hypothesis. In 1993 U.S. Congress instructed the Federal Communications Commission (FCC)

to deregulate cellular prices unless a given state that was regulating cellular prices could show

price regulation was “necessary”.19 Eight states petitioned the FCC to continue price regulation,

and the FCC turned them down in late 1994. One state appealed, but regulation completely

ended in 1995. Thus, Congress and the FCC provided a natural experiment that permitted

an analysis of how cellular prices changed in the regulated and unregulated states, after price

regulation was prohibited.

A complicating factor arose because cellular prices decreased significantly in 1995-96 both

because of new PCS entry and because of deregulation.20 Thus, the econometric specification,

as in Equation (1.1) has a fixed effect for each MSA, and a time effect for each year, which allows

for the effect of new entry. A single indicator variable allows for the effect of price regulation.

The econometric specification was estimated over 11 years of data with 7 years prior to the end

19In the U.S. a dual regulatory framework exists where the FCC, at the national level, and each state has

regulatory authority over telecommunications. However, each state regulatory body must implement FCC rules.
20PCS is a “second generation” cellular technology. The FCC auctioned off additional spectrum, which per-

mitted entry of additional cellular service providers. Hausman (2002) discusses the new entry in greater detail.
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of price regulation and 4 years after the end of regulation. Given the 30 MSAs we have a total

of 330 observations.

First, we estimate the model by the traditional “differences in differences” OLS approach.

That is, we average across all observations for a given MSA during the regulatory period and also

average across observations for the post-regulatory period and compare the change in average

price for regulated MSAs to the non-regulated MSAs after price regulation ended. The point

estimate is 0.180, consistent with the earlier estimates that regulation led to higher prices for

consumers. However, the estimated t-statistic is 1.35, which is not significant at usual test levels.

When OLS is run on the complete sample so that T = 11, the estimated OLS t-statistic is 2.11,

which would indicate statistical significance. However, the estimated robust t-statistic that

allows for a non-diagonal covariance matrix is 1.65, which again indicates a lack of statistical

significance. Thus, if OLS is used on the complete sample the effect of non-independence across

periods can affect inference in important ways. Table 7 shows the serial correlations between

regression residuals from OLS estimation of Equation (1.1). Apart from the magnitude of the

serial correlation coefficients which reaches up to .6 in absolute value a striking feature of this

correlation matrix is the non-stationarity of the residuals as evidenced in the changing magnitude

of the first order serial correlation coefficient for different years in the sample.

We now use FGLS on the entire sample. We allow for an unrestricted covariance matrix

and estimate it using an unbiased estimator. The FGLS point estimate is 0.150, which is very

close to the 0.149 estimate from the original cross section specification from 1994 before price

regulation was prohibited. The conventional first-order FGLS t-statistic that does not account

for estimation of the covariance matrix is 3.68. However, the second order approximation that

accounts for estimation of the covariance matrix, is 2.67, which yields a p-value of 0.004 indi-

cating a highly significant result. Thus, the “natural experiment” of the end of price regulation

demonstrates the effect of regulation on prices, and the result is less subject to criticism of

omitted or unmeasured variables. Taking account of the estimated covariance matrix is also

important and has an important effect on the estimated precision of the estimator.

We next consider FGLS on the 2 period specification, where FGLS accounts for correlation
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across periods rather than taking an unweighted average across periods as does the difference

in differences approach. The 2 period FGLS estimate is 0.140 with the estimated t-statistic of

1.72, which is greater than the difference in differences t-statistic but is still below conventional

significant levels. We lastly consider FGLS on a 3 period specification, where the periods are

during price regulation, the year of the change, and the period follow regulation. The FGLS

point estimate is 0.160 with an estimated t-statistic of 1.94, slightly below conventional level

of statistical significance. Thus, in this application FGLS on the entire sample appears to be

the best estimator. However, using different “cuts” of the data permit additional estimates,

which allow for specification tests following Hausman (1978). The specification tests do not

reject the orthogonality of the econometric specification, as expected given the rather close

point estimates using the three different approaches. The economic conclusion is that state

regulators, by attempting to protect cellular resellers from competition by the two facilities

based carriers, led to significantly higher prices to consumers.

6. Conclusions

We derive higher order expansions of the distribution of the t-statistic for the significance of

treatment variables in difference in difference regressions. When serial correlation in the errors

is present, standard OLS based inference leads to tests with distorted size. OLS with a robustly

estimated covariance matrix, robust OLS, does not suffer from this problem and is shown to be

immune to a dimension problem when N, the number of cross-sectional units, is small relative

to the number of time periods. A more efficient procedure is GLS. Our expansions show, that

unlike robust OLS, feasible GLS does suffer from a many parameter problem and exhibits severe

small sample size distortions when N is not large enough. Using our expansions we obtain a size

correction for FGLS.

We find that size corrected FGLS, FGLS-SC, in levels is of accurate size and significantly

more powerful than robust OLS when serial correlation in the level data is high. Thus FGLS

appears to be the better estimator even with additional parameter uncertainty created by the

estimated Σ̂. We also consider two other versions of FGLS for 3 periods (before, change period,
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and after) and the “traditional” 2 period (before and after) DID approach. We find that both

of these alternative approaches involving time aggregated data have significantly reduced power

compared to FGLS-SC. Thus, we do not recommend their use.

The first difference specification also eliminates the fixed effects but can also lead to

a reduced effect of the positive serial correlation. We consider 3 period and 2 period time

aggregation estimators. We find that all size distortions have been eliminated in FGLS-SC. We

also find that the 3 period version of FGLS outperforms the 2 period version by a large amount.

Unlike in the case of the level specification, the loss of power for the 3 period version of feasible

GLS using first differenced data is negligible.

These results suggest to use full sample FGLS-SC whenever serial correlation is high in levels.

If the regressions are run in first differences the 3 period version of FGLS-SC seems to perform

best. An argument for running the specification in levels can be made in cases where adjustment

to the new policy takes more than one time period. In this case, the first difference specification

will underestimate the total effect of the policy relative to the level specification.
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A. Appendix

A.1. Unbiased Weight Matrix Estimation

Proof of Theorem 2.1 . Let ε̂it be the residual from a regression of yit onto Tis and all elements of Zis,

s = 1, ..., T and define Vit = [Tit, Z0it] with regressor matrix V = [V 0
1 , ..., V

0
n]
0 where Vi = [Vi1, ..., ViT ] such that

ε̂it = εit − Vi (V
0V )
−1

V 0εt + αi − Vi (V
0V )
−1

V 0α.

Let yt = [y1t, ..., ynT ]
0 and yt = α+ Z̃tθt +Υtγ + εt where α, θt, εt are defined in the obvious way. First assume

that Condition 1i) holds. Now consider

E (σ̂t,s|V ) = E

µ
y0tMV ys
tr(MV )

|V
¶
=

E (
Pn

i=1 ε̂itε̂is|V )
tr(MV )

=
tr
£
MVE

¡
(α+ εs) (α+ εt)

0 |V
¢
MV

¤
tr(MV )

=
E (α0MV α|V )
tr(MV )

+ σ̃t,s

where trE (α0MV α|V ) / tr(MV ) is bounded by Condition (1). Since E (α0MV α|V ) / tr(MV ) does not depend on

t or s it follows that

E
³
S̃|V

´
= Σ̃+

E (α0MV α|V )
tr(MV )

1T1
0
T

and thus

E
³b̃Σ|V ´ =M1T Σ̃M1T .

For the case of Condition 1ii) note thatE (σ̂t,s|V ) = α0MV α/ tr(MV )+σ̃t,s and E
³b̃Σ|V ´ =M1T Σ̃M1T as before.

For the variance first assume that Condition 1i) holds. Consider

vecM1T S̃M1T = (M1T ⊗M1T ) vec S̃

such that it is enough to look at

E (σ̂t,sσ̂q,r|V,α)−E (σ̂t,s|V,α)E (σ̂q,r|V, α)

=
E
¡
(α+ εt)

0
MV (α+ εs) (α+ εq)

0
MV (α+ εr) |V, α

¢
tr(MV )2

−
µ
α0MV α

tr(MV )
+ σ̃t,s

¶µ
α0MV α

tr(MV )
+ σ̃q,r

¶
=

(σ̃r,t + σ̃s,q)α
0MV α

tr(MV )2
+
(σ̃q,t + σ̃s,r)α

0MV α

tr(MV )2
+

σ̃q,tσ̃s,r + σ̃r,tσ̃s,q
tr(MV )

=
(σ̃r,t + σ̃s,q + σ̃q,t + σ̃s,r)σ

2
α

n
+

σ̃q,tσ̃s,r + σ̃r,tσ̃s,q
n

+O(n−2).

where second equality uses the fact that εt is Gaussian and where

σ2α ≡
α0MV α

tr(MV )
.
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It follows that

nE

µ
vec

³
S̃ − Σ̃

´
vec

³
S̃ − Σ̃

´0
|V,α

¶
= (IT ⊗ IT +KTT )
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´
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0
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´
−
¡
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0
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0
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¢´
+O(n−1)

where KTT is the T 2 × T 2 commutation matrix of Magnus and Neudecker (1979) and
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µ
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where the last line follows from Magnus and Neudecker (1988, p.47) and T̃ = T − 1. Note that similar results
hold when M1T is replaced by B∆. Since the conditional expectation in (A.1) does not depend on α it follows

that
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vecΩ = (IT−1 ⊗KnT̃ ⊗ In) (vecΣ⊗ vec In)

such that Var
³
n1/2

³
vec

³
Ω̂−Ω

´´
|X
´
= VΩ +O

¡
n−1

¢
where

VΩ = (IT−1 ⊗KnT̃ ⊗ In)
¡
VΣ ⊗ vec In (vec In)0

¢ ¡
IT−1 ⊗K0

nT̃
⊗ In

¢
.

Since (A.1) holds conditional on α the case of Condition 1ii) follows by the same argument.

A.2. Proofs for Theorems in Section 2.1

Proof of Theorem 2.2. We first note that
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with
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by the delta method. In the same way,
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In the Taylor expansion the term d2Ω = 0 because all the elements are linear functions of the parameters. We

thus have Ũ − U = Op(n
−1) by the delta method where
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Ω− Ω̂

´
vec

³
Ω− Ω̂

´0
(Hεε0H ⊗ hh0)

¶
= tr [VΩ (HΩH ⊗ hh0)] +O(n−1 tr [VΩ (HΩH ⊗ hh0)]).

Since Ωz(I − Z(Z0Ω−1Z)−1Z 0Ω−1) = Ωz it follows that

HΩH = H(I − Z(Z0Ω−1Z)−1Z0Ω−1)
³
I −Υ (Υ0ΩzΥ)−1Υ0Ωz

´
= H

which implies

VarR =
tr [VΩ (H ⊗ hh0)]

(h0Ωh)
+O(n−1)

and Var (R) = −n1/2E (U) +O(n−1/2).

Proof of Theorem 2.3. From Theorem 2.1 it follows that
√
n vec(Ω− Ω̂) = Op (1) and from Theorem 2.2

it follows that R̃ = Op (1) and Ũ = Op(1). Using a result from Rothenberg (1988, p.1017) this implies that

T1 = T̄1 + n−1/2
µ
R̃− 1

2
T̄1Ũ

¶
+ n−1

µ
3

8
T̄1Ũ −

1

2
ŨR̃

¶
+Op

³
n−3/2

´
Next we verify the assumptions of Rothenberg (1984a). This then implies that the expansions of Rothenberg

(1988) are valid and the remainder of our work can be limited to finding explicit algebraic expressions of the

terms in the expansions. For this purpose consider the transformed model Y = Zθ + Υγ + ε. Let X = [Z,Υ]

and δ =
£
θ0, γ

¤0
. If ε̃ is jointly normal as in Condition (2) then ε ∼ N (0,Σ⊗ In) . Let M = IT ⊗MV such that

ε̂ = MỸ = M (ε̃+ (1T ⊗ In)α) with α = (α1, ..., αn)
0. Let ε̂t = (ε̂1t, ..., ε̂nt)

0 be the cross-section of estimated

residuals for period t and note that ε̂t =MV (ε̃t + α) . Then stack Ê = [ε̂1, ..., ε̂T ]
0 such that Σ̂ =M1T

ÊÊ0

tr(MV )
M1T .

Consider a typical element

y0tMV ys
tr(MV )

=

√
n

n− kT

¡
ε̃0tMV ε̃s + α0MV ε̃s + ε̃0tMV α+ α0MV α

¢
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such that for Ẽ = (ε̃1, ..., ε̃T )
0

M1T

ÊÊ0

tr (MV )
M1T =

1

n− kT
M1T

³
ẼMV Ẽ

0 + 1Tα
0MV Ẽ

0 + ẼMV α1
0
T + α0MV α1T1

0
T

´
M1T

=
1

n− kT
M1T ẼMV Ẽ

0M1T .

It follows that Ω̂ is an even function of ε̃ and does not depend on δ. Thus Assumption A of Rothenberg (1984a)

is satisfied. Assumption B of Rothenberg (1984a) follows by verifying Assumptions 1-5 of Rothenberg (1984a,

p.817) except that here we only require approximations of order o(n−1). Assumptions 1-3 of Rothenberg (1984a)

follow directly from Condition (2). Next, consider

√
n

µ
1

n− kT
M1T ẼMV Ẽ

0M1T −Σ
¶
=M1T

√
n

µ
1

n− kT
ẼMV Ẽ

0 − Σ̃
¶
M1T .

Since T is fixed as n→∞ it is enough to consider a typical element

√
n

µ
1

n− kT
ẼMV Ẽ

0 − Σ̃
¶
t,s

=
√
n

µ
1

n− kT
ε̃0tMV ε̃s − σ̃t,s

¶
.

Let kT = d such that for n > d,
√
n (n− d)

−1
= n−1/2

³
1 + d/n+ (d/n)

2
+ ...

´
= n−1/2 + d/n3/2 (1− d/n)

−1
.

Then
√
n

µ
1

n− kT
ε̃0tMV ε̃s − σ̃t,s

¶
= ζn,ts +

ςn,ts
n

where

ςn,ts =
d√

n (1− d/n)

nX
i=1

(εitεis − σ̃t,s)

and

ζn,ts =
1√
n

nX
i=1

(εitεis − σ̃t,s)−
d
√
n

n− d
σ̃t,s +

1

n

1

(1− d/n)

nX
i=1

εisVi
¡
n−1V 0V

¢−1
n−1/2

nX
i=1

Viεit

where the stacked vector containing ζn,ts for all combinations of t and s is asymptotically

N (0, (IT ⊗ IT +KTT ) (Σ⊗Σ)) ,

the mean is O
¡
n−1/2

¢
and the covariance matrix is (IT ⊗ IT +KTT ) (Σ⊗Σ) +O(n−1). Furthermore, ζn,ts has

bounded moments of all orders. For ςn,ts we note that (εitεis − σ̃t,s) are iid zero mean random variables with

variance σ̃t,tσ̃s,s+ σ̃2t,s. For any random variable V and constants a, λ > 0 such that E
£
eλV

¤
exists it follows that

P (V ≥ a) ≤ e−λaE
£
eλV

¤
and P (V ≤ −a) ≤ e−λaE

£
e−λV

¤
(see Chow and Teicher, 1997, p.109). For λ = 2,

V = ςn,ts and a = log (n) one obtains, provided that n is large enough so that E
£
e2ςn,ts

¤
and E

£
e−2ςn,ts

¤
are

bounded21,

Pr [ςn,ts ≥ logn] ≤ e−2 lognE
£
e2ςn,ts

¤
21The moment generating function of ςn,ts is given by E

£
eλςn,ts

¤
=
³¡
1− σ̃t,sdnn−1/2λ

¢2 − σ̃t,tσ̃s,sd2nn
−1λ2

´−n/2
e−λ

√
ndnσ̃t,s

where dn = 2d (1− d/n)−1 .
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and

Pr [ςn,ts ≤ − logn] ≤ e−2 lognE
£
e−2ςn,ts

¤
.

By the central limit theorem, E
£
e2ςn,ts

¤
and E

£
e2ςn,ts

¤
both converge to e2(σ̃t,tσ̃s,s+σ̃

2
t,s). It follows that

Pr [|ςn,ts| > logn] = n−2e2(σ̃t,tσ̃s,s+σ̃
2
t,s) + o

¡
n−2

¢
.

This establishes Assumption 4 of Rothenberg (1984a). For T1 the result now follows from Theorem (2.2) and

Rothenberg (1988).

For T2 define M = IT ⊗MV , x =
√
nMzΥ (Υ

0MzΥ)
−1 where 0Mz is projecting onto the orthogonal comple-

ment of Z and v = MΩx/
√
x0Ωx where Ω = (Σ⊗ I) . Then let T̄2− b2 ≡ Y and note that Y = x0Mzε/

√
x0Ωx.

Since Z and Υ are orthogonal to M and ε is Gaussian it follows that Y and Ê are independent. This in turn

implies that Σ̂ = BM1T ÊÊ
0M1TB

0/ tr (MV ) and Y are independent.

Then, consider T2 = T̄2/ (1 +W/
√
n)
1/2 with

W =
√
n
(Υ0MzΥ)

−1
Υ0Mz

³
Ω̂−Ω

´
MzΥ (Υ

0MzΥ)
−1

(Υ0MzΥ)
−1
Υ0MzΩMzΥ (Υ0MzΥ)

−1 =
√
n
x0
³
Ω̂−Ω

´
x

x0Ωx

such that

(A.2)
√
nE

£
W |T̄2

¤
= 0

and

(A.3) var
¡
W |T̄2

¢
=
trVΩ (xx

0 ⊗ xx0)

(x0Ωx)2
+O

¡
n−1

¢
by Theorem 2.1.

The formal Edgeworth expansion can be established in the same way as for T1 and by noting, that as in

Rothenberg (1988, p.1017), T2 = T̄2 − (2
√
n)
−1

T̄2W + 3 (8n)−1 T̄2W
2 + Op

¡
n−3/2

¢
. Then use the expansion

W =
√
nx0

³
Ω̂−Ω

´
x/ (x0Ωx) from before, together with the properties established earlier for Ω̂−Ω to conclude

that the relevant terms in the expansion depend on the first two approximate moments of W derived in A.2 and

A.3.

Proof of Theorem 2.4. Note that the result follows if T1−tα (2n)−1A1 (tα,Ω) and T1−tα (2n)−1A1
³
tα, Ω̂

´
have the same formal Edgeworth expansion up to order o(n−1). The latter result follows if one can show that

A1 (tα,Ω)− A1

³
tα, Ω̂

´
= n−1/2∆A + RA/n with Pr (|RA| > logn) = o

¡
n−1

¢
and ∆A is asymptotically normal

with a mean which is O
¡
n−1/2

¢
and a variance which is O (1) . Using a two term Taylor expansion in ϑ around

ϑ0 and following the same arguments as in the proof of Theorem 2.3 is sufficient to establish these properties.
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A.3. Derivation of (2.9) and (2.10)

Note that In =
Pn

i=1 eie
0
i and vec eie

0
i = ei ⊗ ei. Then vec In (vec In)

0 =
Pn

i,j=1 eie
0
j ⊗ eie

0
j . Next, consider¡

I(T−1) ⊗Kn(T−1) ⊗ In
¢ ¡
Σ⊗Σ⊗ vec In (vec In)0

¢ ³
IT ⊗K0

n(T−1) ⊗ In

´
=

Pn
i,j=1

³
Σ⊗Kn(T−1)

¡
Σ⊗ eie

0
j

¢
K0
n(T−1) ⊗ eie

0
j

´
=

Pn
i,j=1

¡
Σ⊗ eie

0
j ⊗Σ⊗ eie

0
j

¢
.

We then find that

tr
nX

i,j=1

¡
Σ⊗ eie

0
j ⊗Σ⊗ eie

0
j

¢
(hh0 ⊗ hh0) =

Pn
i,j=1

¡
h0
¡
Σ⊗ eie

0
j

¢
h
¢2
.

Next consider

Pn
i,j=1

¡
I(T−1) ⊗Kn(T−1) ⊗ In

¢ ¡
KT̃ T̃ (Σ⊗Σ)⊗ eie

0
j ⊗ eie

0
j

¢ ³
IT ⊗K0

n(T−1) ⊗ In

´
=

P(T−1)
l,m=1

Pn
i,j=1

¡
I(T−1) ⊗Kn(T−1) ⊗ In

¢ ¡
ala

0
mΣ⊗ ama

0
lΣ⊗ eie

0
j ⊗ eie

0
j

¢ ³
IT ⊗K0

n(T−1) ⊗ In

´
=

P(T−1)
l,m=1

Pn
i,j=1

¡
ala

0
mΣ⊗ eie

0
j ⊗ ama

0
lΣ⊗ eie

0
j

¢
such that

tr
P(T−1)

l,m=1

Pn
i,j=1

¡
ala

0
mΣ⊗ eie

0
j ⊗ ama

0
lΣ⊗ eie

0
j

¢
(hh0 ⊗ hh0)

=
P(T−1)

l,m=1

Pn
i,j=1

¡
h0
¡
ala

0
mΣ⊗ eie

0
j

¢
h
¢ ¡
h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢

and

tr (VΩ (hh
0 ⊗ hh0)) =

Pn
i,j=1

¡
h0
¡
Σ⊗ eie

0
j

¢
h
¢2

+
P(T−1)

l,m=1

Pn
i,j=1

¡
h0
¡
ala

0
mΣ⊗ eie

0
j

¢
h
¢ ¡
h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢

It now also follows immediately that

tr (VΩ (H ⊗ hh0)) =
Pn

i,j=1 tr
¡¡
Σ⊗ eie

0
j

¢
H
¢ ¡¡

h0
¡
Σ⊗ eie

0
j

¢
h
¢¢

+
P(T−1)

l,m=1

Pn
i,j=1 tr

¡¡
ala

0
mΣ⊗ eie

0
j

¢
H
¢ ¡
h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢

A.4. Derivations for Results in Section 3

Proof of Theorem 3.1. The results follow from specializing the expressions for var (U) and var (R) to this

case. First consider

Z0Ω−1Z = nΣ−1,

Ω−1Z
¡
Z0Ω−1Z

¢−1
Z0Ω−1 = Σ−1 ⊗ 1n1

0
n

n
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and

Ω−1z = Σ−1 ⊗M1n .

Next, we express Υ = BM1T ξτ ⊗ Υ̃∆τ . Then

(A.4) n−1Υ0ΩzΥ = n−1Υ̃∆0τ M1nΥ̃
∆
τ

PT
t,s=τ

¡
a0tM1TB

0Σ−1BM1T as
¢

which implies that for σττ = ξ0τM1TB
0Σ−1BM1T ξτ we can write

h =
Σ−1BM1T ξτ ⊗M1nΥ̃

∆
τ

σττ Υ̃∆0τ M1nΥ̃
∆
τ

and

H = Σ−1 ⊗M1n −
Σ−1BM1T ξτξ

0
τM1TB

0Σ−1 ⊗M1nΥ̃
∆
τ Υ̃

∆0
τ M1n

σττ Υ̃∆0τ M1nΥ̃
∆
τ

.

Since the denominator of h cancels out in A1 (t,Ω) and B1 (t,Ω) we consider h = Σ−1BM1T ξτ ⊗M1nΥ̃
∆
τ without

loss of generality. Then,

h0 (Σ⊗ eiej)h = ξ0τM1TB
0Σ−1BM1T ξτ Υ̃

∆0
τ M1neie

0
jM1nΥ̃

∆
τ

= σττ Υ̃∆0τ M1neie
0
jM1nΥ̃

∆
τ

andPn
i,j=1 (h

0 (Σ⊗ eiej)h)
2
= (σττ )2

Pn
i,j=1 Υ̃

∆0
τ M1neie

0
iM1nΥ̃

∆
τ Υ̃

∆0
τ M1nejejM1nΥ̃

∆
τ = (σ

ττ )2
³
Υ̃∆0τ M1nΥ̃

∆
τ

´2
.

Also,

h0Ωh = σττ Υ̃∆0τ M1nΥ̃
∆
τ .

Moreover note that

tr
£¡
Σ⊗ eie

0
j

¢
H
¤
= tr

¡
IT−1 ⊗ eie

0
jM1n

¢
−
tr
h¡
Σ⊗ eie

0
j

¢ ³
Σ−1BM1T ξτξ

0
τM1TB

0Σ−1 ⊗M1nΥ̃
∆
τ Υ̃

∆0
τ M1n

´i
σττ Υ̃∆0τ M1nΥ̃

∆
τ

= (T − 1) e0jM1nei −
e0jM1nΥ̃

∆
τ Υ̃

∆0
τ M1nei

Υ̃∆0τ M1nΥ̃
∆
τ

and Pn
i,j=1 (T − 1) e0jM1neih (Σ⊗ eiej)h = σττ

Pn
i,j=1 (T − 1) Υ̃∆0τ M1neie

0
iM1neje

0
jM1nΥ̃

∆
τ

= (T − 1)σττ Υ̃∆0τ M1nΥ̃
∆
τ ,

as well asPn
i,j=1

e0jM1nΥ̃
∆
τ Υ̃

∆0
τ M1nei

Υ̃∆0τ M1nΥ̃
∆
τ

h0 (Σ⊗ eiej)h = σττ
Pn

i,j=1

e0jM1nΥ̃
∆
τ Υ̃

∆0
τ M1neiΥ̃

∆0
τ M1neie

0
jM1nΥ̃

∆
τ³

Υ̃∆0τ M1nΥ̃
∆
τ

´
= σττ

³
Υ̃∆0τ M1nΥ̃

∆
τ

´
.
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Next consider ¡
h0
¡
ala

0
mΣ⊗ eie

0
j

¢
h
¢
= ξ0τM1TB

0Σ−1ala
0
mBM1T ξτ Υ̃

∆0
τ M1neie

0
jM1nΥ̃

∆
τ ,

PT−1
l,m=1

Pn
i,j=1

¡
h0
¡
ala

0
mΣ⊗ eie

0
j

¢
h
¢ ¡
h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢

=
PT−1

l,m=1 ξ
0
τM1TB

0Σ−1ala
0
mBM1T ξτξ

0
τM1TB

0Σ−1ama
0
lBM1T ξτ

³
Υ̃∆0τ M1nΥ̃

∆
τ

´2
=

PT−1
l,m=1 ξ

0
τM1TB

0Σ−1ala
0
lBM1T ξτξ

0
τM1TB

0Σ−1ama
0
mBM1T ξτ

³
Υ̃∆0τ M1nΥ̃

∆
τ

´2
=

¡
ξ0τM1TB

0Σ−1BM1T ξτ
¢2 ³
Υ̃∆0τ M1nΥ̃

∆
τ

´2
= (σττ )2

³
Υ̃∆0τ M1nΥ̃

∆
τ

´2
.

and

tr
¡¡
ala

0
mΣ⊗ eie

0
j

¢ ¡
Σ−1 ⊗M1n

¢¢
=
¡
a0male

0
jM1nei

¢
with PT−1

l,m=1

Pn
i,j=1 tr

¡¡
ala

0
mΣ⊗ eie

0
j

¢ ¡
Σ−1 ⊗M1n

¢¢ ¡
h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢

=
PT−1

m=1

Pn
i,j=1 e

0
jM1nei

¡
h0
¡
ama

0
mΣ⊗ eie

0
j

¢
h
¢

=
Pn

i,j=1 e
0
jM1nei

¡
h0
¡
Σ⊗ eie

0
j

¢
h
¢
= σττ

Pn
i,j=1 Υ̃

∆0
τ M1neie

0
iM1neje

0
jM1nΥ̃

∆
τ

= σττ Υ̃∆0τ M1nΥ̃
∆
τ .

Also,

tr
h¡
ala

0
mΣ⊗ eie

0
j

¢ ³
Σ−1BM1T ξτξ

0
τM1TB

0Σ−1 ⊗M1nΥ̃
∆
τ Υ̃

∆0
τ M1n

´i
= a0mBM1T ξτξ

0
τM1TB

0Σ−1ale
0
jM1nΥ̃

∆
τ Υ̃

∆0
τ M1nei

such thatPT−1
l,m=1

Pn
i,j=1 tr

h¡
ama

0
lΣ⊗ eie

0
j

¢ ³
Σ−1BM1T ξτξ

0
τM1TB

0Σ−1 ⊗M1nΥ̃
∆
τ Υ̃

∆0
τ M1n

´i ¡
h0
¡
ala

0
mΣ⊗ eie

0
j

¢
h
¢

σττ Υ̃∆0τ M1nΥ̃
∆
τ

=

PT−1
l,m=1

Pn
i,j=1 ξ

0
τM1TB

0Σ−1ala
0
mBM1T ξτξ

0
τM1TB

0Σ−1ama
0
lBM1T ξτ Υ̃

∆0
τ M1neie

0
jM1nΥ̃

∆
τ e

0
jM1nΥ̃

∆
τ Υ̃

∆0
τ M1nei

σττ Υ̃∆0τ M1nΥ̃
∆
τ

=
PT−1

l,m=1 ξ
0
τM1TB

0Σ−1ala
0
lBM1T ξτξ

0
τM1TB

0Σ−1ama
0
mBM1T ξτ

³
Υ̃∆0τ M1nΥ̃

∆
τ

´
/σττ

=
¡
ξ0τM1TB

0Σ−1BM1T ξτ
¢ ³
Υ̃∆0τ M1nΥ̃

∆
τ

´
= σττ

³
Υ̃∆0τ M1nΥ̃

∆
τ

´
and therefore PT−1

l,m=1

Pn
i,j=1 tr

¡¡
ala

0
mΣ⊗ eie

0
j

¢
H
¢ ¡
h0
¡
ama

0
lΣ⊗ eie

0
j

¢
h
¢
= 0.

It thus follows that

trVΩ (hh
0 ⊗ hh0) = 2 (σττ )

2
³
Υ̃∆0τ M1nΥ̃

∆
τ

´2
,

trVΩ (H ⊗ hh0) = (T − 2)σττ
³
Υ̃∆0τ M1nΥ̃

∆
τ

´
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Collecting these results and substitution in (2.9) and (2.10) leads to

trVΩ (hh
0 ⊗ hh0)

(h0Ωh)2
= 2

and
trVΩ (H ⊗ hh0)

h0Ωh
= T − 2

which establishes the results for T1.

For the test T2 note that in the same way as for tr (VΩ (hh0 ⊗ hh0)) ,

tr (VΩ (xx
0 ⊗ xx0)) =

Pn
i,j=1

¡
x0
¡
Σ⊗ eie

0
j

¢
x
¢2

+
P(T−1)

l,m=1

Pn
i,j=1

¡
x0
¡
ala

0
mΣ⊗ eie

0
j

¢
x
¢ ¡
x0
¡
ama

0
lΣ⊗ eie

0
j

¢
x
¢

and that

x =
√
n

BM1T ξτ ⊗M1nΥ̃
∆
τ

ξ0τM1TB
0BM1T ξτ Υ̃

∆0
τ M1nΥ̃

∆
τ

.

It follows that

(A.5) x0Ωx =
ξ0τM1TB

0ΣBM1T ξτ Υ̃
∆0
τ M1nΥ̃

∆
τ¡

ξ0τM1TB
0BM1T ξτ

¢2 ³
Υ̃∆0τ M1nΥ̃

∆
τ

´2 .
As before for the GLS case, the denominator of x cancels in tr (VΩ (xx0 ⊗ xx0)) / (x0Ωx)2 such that without loss

of generality we set x = BM1T ξτ ⊗M1nΥ̃
∆
τ . Then considerPn

i,j=1

¡
x0
¡
Σ⊗ eie

0
j

¢
x
¢2

=
Pn

i,j=1

³
ξ0τM1TB
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tr (VΩ (xx
0 ⊗ xx0)) = 2

¡
ξ0τM1TB
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∆
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.

Using (A.5) now leads to
tr (VΩ (xx

0 ⊗ xx0))

(x0Ωx)2
= 2
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which establishes the result.

Proof of Theorem 3.2. Note that Σ̃1/2M1TB
0CΣ−1C C0BM1T Σ̃

1/2 is a projection matrix. For r = 1 it

thus follows that σττ is maximized by minimizing
°°°Σ̃−1/2ξτ − Σ̃1/2M1TB

0C
°°° or equivalently °°°ξτ − Σ̃M1TB

0C
°°° .

This is achieved for C∗1 = (BM1T Σ̃M1TB
0)−1BM1T ξτ . Since the projection residual is equal to zero it follows

that σττ cannot be increased further by choosing any r > 1. Hence the overall optimum of 3.4 is given by r∗ = 1

and C∗ = (BM1T Σ̃M1TB
0)−1BM1T ξτ . Also note that σ

ττ is invariant under transformations C‡ = COr for any

orthogonal matrix Or. Solutions to the maximization problem are therefore unique subject to C 0C = Ir only.

Proof of Theorem 3.3. We derive explicit versions of the formulas (2.9) and (2.10). We first simplify the

expression for the GLS estimator

γGLS =
³
Υ0∆

³
Ω−1∆ −Ω

−1
∆ Z∆

¡
Z0∆Ω

−1
∆ Z∆
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Z0∆Ω
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´
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Υ0∆

³
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¡
Z 0∆Ω

−1
∆ Z∆
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∆

´
Y∆

´
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¡
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−1
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¡
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¢ Σ∆
n

¡
at2a

0
t2Σ
−1
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¢
= Σ−1∆ ⊗

1n1
0
n

n
.

Also let σt,s∆ = a0t−1Σ
−1
∆ as−1, σ∆;t,s = a0t−1Σ∆as−1. Then,

h∆ =

³
Σ−1∆ aτ−1 ⊗M1nΥ̃

∆
τ

´
a0τ−1Σ

−1
∆ aτ−1Υ̃∆0τ M1nΥ̃

∆
τ

and

H∆ = Σ
−1
∆ ⊗M1n −

Σ−1∆ aτ−1a
0
τ−1Σ

−1
∆ ⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n

a0τ−1Σ
−1
∆ aτ−1Υ̃∆0τ M1nΥ̃

∆
τ

.

Note that h∆ and H∆ differ from h and H only in that aτ−1 replaces BM1T ξτ and Σ∆ replaces Σ. Since

trVΩ (hh
0 ⊗ hh0) / (h0Ωh)2 and trVΩ (H ⊗ hh0) /h0Ωh do not depend on BM1T ξτ or Σ∆ it follows that

trVΩ∆ (h∆h
0
∆ ⊗ h∆h

0
∆)

(h0∆Ωh∆)
2 = 2

and
trVΩ∆ (H∆ ⊗ h∆h

0
∆)

h0∆Ωh∆
= T − 2

as before and the result is established for T1. For the test T2 we note that

x∆ =
√
n
aτ−1 ⊗M1nΥ̃

∆
τ

Υ̃∆0τ M1nΥ̃
∆
τ

which differs from x only in that aτ−1 replaces BM1T ξτ . Since tr (VΩ (xx
0 ⊗ xx0)) / (x0Ωx)2 does not depend on

BM1T ξτ it follows that
trVΩ∆ (x∆x

0
∆ ⊗ x∆x

0
∆)

(x0∆Ωx∆)
2 = 2

as before. This establishes the result for T2.
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Table 1a: Results for the Levels Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0 5 0.0441 0.0624 0.0725 0.0524 0.0518 0.0452 0.0595 0.0709 0.0524 0.0310 0.0480 0.0524 0.0533 0.0524 0.0560
0.1 0.0578 0.0803 0.0903 0.0672 0.0663 0.0594 0.0764 0.0889 0.0672 0.0410 0.0607 0.0672 0.0697 0.0672 0.0699
0.6 0.5651 0.6271 0.6447 0.5616 0.5640 0.5717 0.6194 0.6438 0.5616 0.4723 0.5428 0.5616 0.5739 0.5616 0.5636
1 0.9430 0.9594 0.9639 0.9342 0.9384 0.9449 0.9576 0.9640 0.9342 0.9024 0.9283 0.9342 0.9419 0.9342 0.9363

0 0 10 0.0475 0.0907 0.0590 0.0527 0.0510 0.0466 0.0606 0.0586 0.0520 0.0174 0.0470 0.0527 0.0524 0.0527 0.0564
0.1 0.0714 0.1253 0.0884 0.0804 0.0797 0.0706 0.0893 0.0882 0.0773 0.0287 0.0738 0.0804 0.0812 0.0804 0.0851
0.6 0.7912 0.8696 0.8576 0.8336 0.8420 0.8211 0.8505 0.8580 0.8044 0.6630 0.8217 0.8336 0.8460 0.8336 0.8400
1 0.9955 0.9983 0.9987 0.9978 0.9984 0.9976 0.9983 0.9988 0.9960 0.9877 0.9975 0.9978 0.9985 0.9978 0.9981

0 0 15 0.0587 0.1367 0.0556 0.0527 0.0513 0.0472 0.0608 0.0555 0.0515 0.0137 0.0472 0.0527 0.0524 0.0527 0.0568
0.1 0.0933 0.1889 0.0978 0.0912 0.0924 0.0823 0.1018 0.0976 0.0846 0.0271 0.0834 0.0912 0.0942 0.0912 0.0977
0.6 0.8875 0.9489 0.9469 0.9360 0.9431 0.9252 0.9411 0.9471 0.8825 0.7460 0.9303 0.9360 0.9433 0.9360 0.9414
1 0.9991 0.9998 0.9999 0.9999 1.0000 0.9998 1.0000 0.9999 0.9991 0.9967 0.9999 0.9999 1.0000 0.9999 0.9999

0 0 20 0.0847 0.2070 0.0535 0.0496 0.0518 0.0441 0.0572 0.0536 0.0490 0.0116 0.0446 0.0496 0.0525 0.0496 0.0569
0.1 0.1328 0.2771 0.1158 0.1056 0.1094 0.0953 0.1180 0.1155 0.0877 0.0267 0.0971 0.1056 0.1100 0.1056 0.1163
0.6 0.9442 0.9809 0.9891 0.9845 0.9887 0.9806 0.9860 0.9891 0.9171 0.8012 0.9824 0.9845 0.9887 0.9845 0.9875
1 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 1.0000 1.0000 1.0000 1.0000 1.0000

3 PeriodsFull Sample 2 Periods



Table 1b: Results for the Levels Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0.4 5 0.0425 0.0604 0.1005 0.0525 0.1010 0.0435 0.0581 0.1051 0.0525 0.0649 0.0473 0.0525 0.0682 0.0525 0.0555
0.1 0.0519 0.0726 0.1145 0.0627 0.1169 0.0539 0.0692 0.1188 0.0627 0.0762 0.0568 0.0627 0.0789 0.0627 0.0664
0.6 0.4496 0.5121 0.5516 0.4548 0.5766 0.4322 0.4796 0.5391 0.4548 0.4910 0.4356 0.4548 0.5046 0.4548 0.4563
1 0.8648 0.8962 0.9013 0.8572 0.9171 0.8467 0.8729 0.8912 0.8572 0.8800 0.8458 0.8572 0.8872 0.8572 0.8605

0 0.4 10 0.0440 0.0871 0.0702 0.0533 0.1386 0.0465 0.0599 0.0713 0.0536 0.0484 0.0478 0.0533 0.0578 0.0533 0.0557
0.1 0.0587 0.1081 0.0873 0.0687 0.1642 0.0588 0.0748 0.0862 0.0680 0.0607 0.0624 0.0687 0.0722 0.0687 0.0714
0.6 0.5747 0.6939 0.6637 0.5839 0.7579 0.5612 0.6082 0.6203 0.5892 0.5730 0.5670 0.5839 0.6057 0.5839 0.5889
1 0.9506 0.9753 0.9708 0.9465 0.9836 0.9401 0.9536 0.9548 0.9489 0.9458 0.9411 0.9465 0.9548 0.9465 0.9483

0 0.4 15 0.0511 0.1266 0.0623 0.0551 0.1557 0.0475 0.0622 0.0632 0.0541 0.0372 0.0495 0.0551 0.0552 0.0551 0.0578
0.1 0.0710 0.1558 0.0856 0.0738 0.1902 0.0664 0.0844 0.0848 0.0741 0.0525 0.0671 0.0738 0.0753 0.0738 0.0763
0.6 0.6575 0.8024 0.7499 0.6832 0.8483 0.6604 0.7042 0.7080 0.6746 0.6189 0.6667 0.6832 0.6986 0.6832 0.6891
1 0.9760 0.9921 0.9910 0.9816 0.9962 0.9780 0.9841 0.9844 0.9791 0.9714 0.9796 0.9816 0.9846 0.9816 0.9829

0 0.4 20 0.0634 0.1736 0.0595 0.0533 0.1708 0.0453 0.0599 0.0617 0.0531 0.0274 0.0481 0.0533 0.0531 0.0533 0.0571
0.1 0.0882 0.2126 0.0910 0.0789 0.2153 0.0703 0.0888 0.0894 0.0760 0.0437 0.0723 0.0789 0.0800 0.0789 0.0827
0.6 0.7516 0.8857 0.8454 0.7931 0.9234 0.7758 0.8104 0.8149 0.7487 0.6642 0.7797 0.7931 0.8071 0.7931 0.8000
1 0.9901 0.9977 0.9981 0.9952 0.9995 0.9945 0.9963 0.9962 0.9910 0.9839 0.9945 0.9952 0.9963 0.9952 0.9958

2 Periods3 PeriodsFull Sample



Table 1c: Results for the Levels Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0.8 5 0.0347 0.0512 0.1053 0.0449 0.1504 0.0383 0.0510 0.1192 0.0449 0.0981 0.0402 0.0449 0.1069 0.0449 0.0559
0.1 0.0455 0.0648 0.1183 0.0526 0.1634 0.0467 0.0607 0.1309 0.0526 0.1082 0.0469 0.0526 0.1181 0.0526 0.0635
0.6 0.4264 0.4918 0.5205 0.3349 0.5344 0.3748 0.4220 0.4876 0.3349 0.4476 0.3177 0.3349 0.4686 0.3349 0.3432
1 0.8522 0.8863 0.8758 0.7133 0.8615 0.7927 0.8253 0.8389 0.7133 0.8059 0.6988 0.7133 0.8233 0.7133 0.7212

0 0.8 10 0.0395 0.0796 0.0735 0.0522 0.2747 0.0421 0.0556 0.0913 0.0524 0.1089 0.0464 0.0522 0.1041 0.0522 0.0567
0.1 0.0495 0.0956 0.0877 0.0563 0.2875 0.0484 0.0631 0.0991 0.0571 0.1161 0.0510 0.0563 0.1113 0.0563 0.0617
0.6 0.4432 0.5694 0.5462 0.2503 0.5778 0.2899 0.3319 0.3780 0.2634 0.3830 0.2364 0.2503 0.3612 0.2503 0.2541
1 0.8701 0.9280 0.9143 0.5628 0.8487 0.6602 0.7030 0.7262 0.5872 0.7130 0.5448 0.5628 0.6834 0.5628 0.5646

0 0.8 15 0.0500 0.1235 0.0641 0.0534 0.3269 0.0457 0.0593 0.0772 0.0529 0.1020 0.0482 0.0534 0.0852 0.0534 0.0560
0.1 0.0618 0.1423 0.0794 0.0592 0.3351 0.0520 0.0673 0.0841 0.0597 0.1099 0.0537 0.0592 0.0904 0.0592 0.0618
0.6 0.4566 0.6300 0.5551 0.2477 0.6160 0.2710 0.3123 0.3322 0.2601 0.3666 0.2331 0.2477 0.3186 0.2477 0.2493
1 0.8714 0.9439 0.9297 0.5534 0.8645 0.6191 0.6633 0.6728 0.5790 0.6950 0.5355 0.5534 0.6357 0.5534 0.5542

0 0.8 20 0.0611 0.1711 0.0639 0.0544 0.3786 0.0454 0.0599 0.0772 0.0550 0.0910 0.0485 0.0544 0.0773 0.0544 0.0565
0.1 0.0749 0.1911 0.0790 0.0607 0.3900 0.0517 0.0673 0.0834 0.0610 0.0980 0.0550 0.0607 0.0836 0.0607 0.0629
0.6 0.4788 0.6836 0.5753 0.2544 0.6702 0.2726 0.3143 0.3297 0.2718 0.3546 0.2394 0.2544 0.3061 0.2544 0.2548
1 0.8760 0.9540 0.9383 0.5672 0.8937 0.6282 0.6724 0.6714 0.6035 0.6907 0.5492 0.5672 0.6311 0.5672 0.5663

2 Periods3 PeriodsFull Sample



Table 1d: Results for the Levels Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0.9 5 0.0331 0.0486 0.0935 0.0384 0.1553 0.0336 0.0463 0.1079 0.0384 0.0989 0.0337 0.0384 0.1014 0.0384 0.0561
0.1 0.0427 0.0606 0.1069 0.0453 0.1674 0.0424 0.0553 0.1183 0.0453 0.1101 0.0400 0.0453 0.1116 0.0453 0.0643
0.6 0.4202 0.4833 0.5190 0.3223 0.5478 0.3660 0.4146 0.4857 0.3223 0.4563 0.3048 0.3223 0.4646 0.3223 0.3491
1 0.8462 0.8826 0.8847 0.7059 0.8729 0.7881 0.8229 0.8454 0.7059 0.8170 0.6902 0.7059 0.8261 0.7059 0.7321

0 0.9 10 0.0408 0.0819 0.0696 0.0471 0.3105 0.0368 0.0493 0.0931 0.0469 0.1202 0.0415 0.0471 0.1214 0.0471 0.0582
0.1 0.0515 0.0965 0.0829 0.0499 0.3204 0.0416 0.0559 0.1008 0.0495 0.1255 0.0444 0.0499 0.1284 0.0499 0.0610
0.6 0.4215 0.5454 0.5421 0.1984 0.5556 0.2474 0.2879 0.3523 0.2112 0.3443 0.1851 0.1984 0.3346 0.1984 0.2098
1 0.8438 0.9109 0.9147 0.4542 0.8014 0.5915 0.6381 0.6841 0.4822 0.6369 0.4357 0.4542 0.6153 0.4542 0.4637

0 0.9 15 0.0577 0.1382 0.0617 0.0483 0.3832 0.0402 0.0535 0.0810 0.0487 0.1215 0.0437 0.0483 0.1079 0.0483 0.0549
0.1 0.0697 0.1547 0.0766 0.0516 0.3890 0.0442 0.0591 0.0857 0.0517 0.1286 0.0461 0.0516 0.1130 0.0516 0.0586
0.6 0.4343 0.6007 0.5451 0.1669 0.5726 0.2062 0.2423 0.2774 0.1770 0.3030 0.1551 0.1669 0.2689 0.1669 0.1724
1 0.8338 0.9171 0.9257 0.3701 0.7787 0.4891 0.5387 0.5681 0.4004 0.5581 0.3531 0.3701 0.5063 0.3701 0.3741

0 0.9 20 0.0811 0.2009 0.0598 0.0531 0.4547 0.0416 0.0564 0.0782 0.0526 0.1166 0.0471 0.0531 0.1046 0.0531 0.0576
0.1 0.0924 0.2214 0.0749 0.0539 0.4604 0.0461 0.0607 0.0825 0.0549 0.1215 0.0482 0.0539 0.1097 0.0539 0.0599
0.6 0.4513 0.6432 0.5526 0.1535 0.6137 0.1885 0.2221 0.2481 0.1668 0.2768 0.1429 0.1535 0.2389 0.1535 0.1571
1 0.8258 0.9221 0.9273 0.3351 0.7902 0.4484 0.4959 0.5150 0.3723 0.5136 0.3180 0.3351 0.4502 0.3351 0.3368

2 Periods3 PeriodsFull Sample



Table 2a: Results for the First Difference Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0 5 0.0441 0.0624 0.0685 0.0515 0.0386 0.0423 0.0558 0.0777 0.0515 0.0833 0.0432 0.0531 0.0683 0.0518 0.0313
0.1 0.0578 0.0803 0.0855 0.0590 0.0446 0.0532 0.0691 0.0930 0.0590 0.0948 0.0507 0.0609 0.0771 0.0594 0.0365
0.6 0.5651 0.6271 0.6364 0.3290 0.2844 0.4673 0.5150 0.5513 0.3290 0.4059 0.3506 0.3818 0.4114 0.3259 0.2462
1 0.9430 0.9594 0.9616 0.6987 0.6601 0.8822 0.9056 0.9172 0.6987 0.7716 0.7537 0.7798 0.7993 0.7017 0.6169

0 0 10 0.0475 0.0907 0.0574 0.0490 0.0445 0.0420 0.0556 0.0808 0.0490 0.2035 0.0428 0.0524 0.0696 0.0506 0.1104
0.1 0.0714 0.1253 0.0861 0.0579 0.0515 0.0522 0.0687 0.0944 0.0579 0.2160 0.0505 0.0614 0.0791 0.0579 0.1214
0.6 0.7912 0.8696 0.8552 0.3241 0.3012 0.4646 0.5113 0.5458 0.3241 0.5878 0.3481 0.3799 0.4066 0.3217 0.4453
1 0.9955 0.9983 0.9986 0.6963 0.6794 0.8787 0.9012 0.9138 0.6963 0.8837 0.7479 0.7732 0.7928 0.6932 0.7998

0 0 15 0.0587 0.1367 0.0549 0.0500 0.0473 0.0392 0.0519 0.0786 0.0500 0.2383 0.0405 0.0502 0.0694 0.0481 0.1257
0.1 0.0933 0.1889 0.0965 0.0571 0.0536 0.0499 0.0647 0.0933 0.0571 0.2522 0.0481 0.0592 0.0786 0.0553 0.1383
0.6 0.8875 0.9489 0.9464 0.3251 0.3067 0.4632 0.5124 0.5488 0.3251 0.6158 0.3476 0.3811 0.4080 0.3198 0.4790
1 0.9991 0.9998 0.9999 0.6925 0.6815 0.8799 0.9022 0.9145 0.6925 0.8979 0.7518 0.7780 0.7965 0.6930 0.8232

0 0 20 0.0847 0.2070 0.0531 0.0480 0.0472 0.0380 0.0514 0.0807 0.0480 0.2562 0.0406 0.0498 0.0708 0.0487 0.1165
0.1 0.1328 0.2771 0.1151 0.0563 0.0548 0.0480 0.0628 0.0954 0.0563 0.2683 0.0487 0.0588 0.0797 0.0566 0.1269
0.6 0.9442 0.9809 0.9891 0.3276 0.3115 0.4653 0.5146 0.5490 0.3276 0.6394 0.3506 0.3830 0.4095 0.3246 0.4630
1 0.9999 1.0000 1.0000 0.7001 0.6899 0.8789 0.9018 0.9129 0.7001 0.9069 0.7521 0.7773 0.7945 0.6982 0.8123

2 Periods3 PeriodsFull Sample



Table 2b: Results for the First Difference Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0.4 5 0.0425 0.0604 0.0920 0.0522 0.0373 0.0426 0.0565 0.0937 0.0522 0.0718 0.0432 0.0516 0.0911 0.0505 0.0244
0.1 0.0519 0.0726 0.1055 0.0616 0.0453 0.0524 0.0679 0.1092 0.0616 0.0833 0.0495 0.0604 0.1013 0.0569 0.0284
0.6 0.4496 0.5121 0.5452 0.4226 0.3685 0.4389 0.4878 0.5326 0.4226 0.4764 0.3104 0.3405 0.3979 0.3222 0.2124
1 0.8648 0.8962 0.9008 0.8244 0.7934 0.8557 0.8811 0.8904 0.8244 0.8616 0.6891 0.7184 0.7544 0.6899 0.5708

0 0.4 10 0.0440 0.0871 0.0677 0.0497 0.0420 0.0432 0.0562 0.0881 0.0497 0.1783 0.0432 0.0527 0.0843 0.0505 0.0943
0.1 0.0587 0.1081 0.0844 0.0602 0.0523 0.0532 0.0693 0.1028 0.0602 0.1991 0.0500 0.0599 0.0912 0.0563 0.1033
0.6 0.5747 0.6939 0.6582 0.4252 0.3967 0.4886 0.5371 0.5691 0.4252 0.6598 0.3042 0.3340 0.3766 0.2956 0.3896
1 0.9506 0.9753 0.9702 0.8272 0.8142 0.8960 0.9170 0.9209 0.8272 0.9431 0.6793 0.7087 0.7335 0.6467 0.7380

0 0.4 15 0.0511 0.1266 0.0609 0.0502 0.0456 0.0417 0.0554 0.0878 0.0502 0.2204 0.0406 0.0502 0.0834 0.0478 0.1171
0.1 0.0710 0.1558 0.0840 0.0604 0.0555 0.0522 0.0680 0.1033 0.0604 0.2394 0.0475 0.0576 0.0912 0.0544 0.1262
0.6 0.6575 0.8024 0.7475 0.4239 0.4025 0.4971 0.5475 0.5806 0.4239 0.6987 0.2929 0.3219 0.3673 0.2822 0.4188
1 0.9760 0.9921 0.9908 0.8272 0.8210 0.9052 0.9243 0.9306 0.8272 0.9546 0.6692 0.6990 0.7235 0.6292 0.7610

0 0.4 20 0.0634 0.1736 0.0587 0.0492 0.0466 0.0386 0.0527 0.0906 0.0492 0.2462 0.0405 0.0501 0.0863 0.0487 0.1040
0.1 0.0882 0.2126 0.0898 0.0599 0.0567 0.0503 0.0656 0.1074 0.0599 0.2670 0.0457 0.0569 0.0929 0.0547 0.1150
0.6 0.7516 0.8857 0.8437 0.4271 0.4103 0.5057 0.5545 0.5874 0.4271 0.7244 0.2904 0.3208 0.3677 0.2807 0.3948
1 0.9901 0.9977 0.9980 0.8284 0.8245 0.9083 0.9260 0.9312 0.8284 0.9596 0.6611 0.6909 0.7157 0.6243 0.7375

3 PeriodsFull Sample 2 Periods



Table 2c: Results for the First Difference Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0.8 5 0.0347 0.0512 0.0933 0.0452 0.0467 0.0361 0.0496 0.0926 0.0452 0.0725 0.0361 0.0453 0.1139 0.0447 0.0407
0.1 0.0455 0.0648 0.1076 0.0571 0.0580 0.0471 0.0614 0.1072 0.0571 0.0869 0.0421 0.0512 0.1208 0.0505 0.0457
0.6 0.4264 0.4918 0.5193 0.4664 0.4625 0.4338 0.4839 0.5190 0.4664 0.5364 0.2531 0.2804 0.3786 0.2759 0.2443
1 0.8522 0.8863 0.8824 0.8693 0.8757 0.8532 0.8812 0.8819 0.8693 0.9108 0.6001 0.6325 0.6983 0.6200 0.5824

0 0.8 10 0.0395 0.0796 0.0694 0.0486 0.0434 0.0408 0.0534 0.0708 0.0486 0.1492 0.0414 0.0506 0.0878 0.0495 0.0754
0.1 0.0495 0.0956 0.0836 0.0598 0.0541 0.0504 0.0659 0.0849 0.0598 0.1712 0.0453 0.0549 0.0919 0.0538 0.0807
0.6 0.4432 0.5694 0.5452 0.4965 0.4857 0.4708 0.5198 0.5417 0.4965 0.7004 0.2205 0.2458 0.2918 0.2392 0.2894
1 0.8701 0.9280 0.9155 0.8975 0.8988 0.8860 0.9084 0.9138 0.8975 0.9672 0.5228 0.5574 0.5917 0.5471 0.6069

0 0.8 15 0.0500 0.1235 0.0620 0.0484 0.0450 0.0417 0.0549 0.0654 0.0484 0.1896 0.0422 0.0515 0.0794 0.0502 0.0924
0.1 0.0618 0.1423 0.0782 0.0615 0.0579 0.0536 0.0696 0.0810 0.0615 0.2123 0.0467 0.0564 0.0851 0.0535 0.0970
0.6 0.4566 0.6300 0.5533 0.5022 0.4946 0.4825 0.5325 0.5479 0.5022 0.7493 0.1996 0.2241 0.2564 0.2134 0.2938
1 0.8714 0.9439 0.9301 0.9026 0.9050 0.9008 0.9205 0.9249 0.9026 0.9771 0.4728 0.5046 0.5301 0.4849 0.5869

0 0.8 20 0.0611 0.1711 0.0624 0.0488 0.0465 0.0406 0.0546 0.0676 0.0488 0.2224 0.0409 0.0504 0.0856 0.0498 0.0850
0.1 0.0749 0.1911 0.0778 0.0614 0.0591 0.0524 0.0687 0.0829 0.0614 0.2496 0.0449 0.0542 0.0891 0.0525 0.0890
0.6 0.4788 0.6836 0.5733 0.5053 0.5013 0.4964 0.5451 0.5600 0.5053 0.7770 0.1709 0.1935 0.2341 0.1810 0.2408
1 0.8760 0.9540 0.9384 0.9016 0.9063 0.9044 0.9229 0.9266 0.9016 0.9808 0.4042 0.4371 0.4691 0.4105 0.4874

2 Periods3 PeriodsFull Sample



Table 2d: Results for the First Difference Specification
gamma rho T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0 0.9 5 0.0331 0.0486 0.0830 0.0393 0.0499 0.0332 0.0448 0.0823 0.0393 0.0744 0.0309 0.0384 0.1065 0.0376 0.0481
0.1 0.0427 0.0606 0.0968 0.0503 0.0622 0.0426 0.0562 0.0957 0.0503 0.0896 0.0358 0.0446 0.1144 0.0432 0.0537
0.6 0.4202 0.4833 0.5178 0.4599 0.4988 0.4271 0.4770 0.5175 0.4599 0.5652 0.2411 0.2698 0.3722 0.2655 0.2712
1 0.8462 0.8826 0.8908 0.8677 0.9024 0.8509 0.8799 0.8908 0.8677 0.9285 0.5893 0.6223 0.6979 0.6097 0.6175

0 0.9 10 0.0408 0.0819 0.0663 0.0412 0.0465 0.0350 0.0469 0.0666 0.0412 0.1443 0.0369 0.0451 0.0894 0.0439 0.0801
0.1 0.0515 0.0965 0.0794 0.0533 0.0581 0.0450 0.0593 0.0796 0.0533 0.1672 0.0397 0.0482 0.0945 0.0479 0.0858
0.6 0.4215 0.5454 0.5428 0.4825 0.5105 0.4485 0.4976 0.5421 0.4825 0.7046 0.1909 0.2152 0.2773 0.2112 0.2797
1 0.8438 0.9109 0.9178 0.8900 0.9127 0.8750 0.9001 0.9171 0.8900 0.9691 0.4702 0.5045 0.5593 0.4954 0.5763

0 0.9 15 0.0577 0.1382 0.0599 0.0431 0.0459 0.0366 0.0495 0.0600 0.0431 0.1806 0.0394 0.0484 0.0783 0.0473 0.0901
0.1 0.0697 0.1547 0.0752 0.0561 0.0602 0.0489 0.0636 0.0761 0.0561 0.2041 0.0426 0.0520 0.0815 0.0501 0.0941
0.6 0.4343 0.6007 0.5454 0.4950 0.5155 0.4634 0.5111 0.5443 0.4950 0.7528 0.1674 0.1893 0.2260 0.1857 0.2637
1 0.8338 0.9171 0.9269 0.9027 0.9186 0.8876 0.9105 0.9262 0.9027 0.9794 0.4014 0.4346 0.4682 0.4272 0.5263

0 0.9 20 0.0811 0.2009 0.0590 0.0442 0.0479 0.0379 0.0505 0.0596 0.0442 0.2127 0.0389 0.0489 0.0790 0.0483 0.0796
0.1 0.0924 0.2214 0.0739 0.0576 0.0609 0.0491 0.0640 0.0746 0.0576 0.2377 0.0422 0.0514 0.0814 0.0512 0.0837
0.6 0.4513 0.6432 0.5516 0.5034 0.5218 0.4735 0.5226 0.5511 0.5034 0.7824 0.1366 0.1552 0.1911 0.1526 0.2004
1 0.8258 0.9221 0.9277 0.9046 0.9192 0.8920 0.9136 0.9265 0.9046 0.9825 0.3152 0.3461 0.3762 0.3402 0.4047

2 Periods3 PeriodsFull Sample



Table 3: Nonstationary Design with Empirical Covariance Matrix

gamma GLS-SC GLS GLS-B GLS-AR GLS-SC GLS GLS-B GLS-AR GLS-SC GLS GLS-B GLS-AR

0 0.0486 0.0966 0.0200 0.0919 0.0433 0.0565 0.0020 0.0978 0.0478 0.0537 0.0000 0.0827
0.1 0.0785 0.1434 0.0498 0.1136 0.0666 0.0847 0.0068 0.1213 0.0635 0.0702 0.0000 0.1045
0.6 0.8918 0.9423 0.8560 0.7660 0.7736 0.8097 0.6998 0.7315 0.6207 0.6379 0.6084 0.7170
1 0.9996 0.9999 0.9902 0.9903 0.9954 0.9970 0.9458 0.9832 0.9659 0.9694 0.8582 0.9822

0 0.0486 0.0966 0.0410 0.0874 0.0421 0.0552 0.0162 0.0935 0.0409 0.0516 0.0000 0.1811
0.1 0.0785 0.1434 0.0696 0.1078 0.0619 0.0794 0.0298 0.1113 0.0461 0.0566 0.0000 0.1908
0.6 0.8918 0.9423 0.8654 0.7616 0.7480 0.7864 0.6406 0.6301 0.2431 0.2702 0.0538 0.4398
1 0.9996 0.9999 0.9934 0.9902 0.9922 0.9947 0.9540 0.9527 0.5665 0.5978 0.5782 0.7311

First Difference Specification

2 Periods3 PeriodsFull Sample

Level Specification



Table 4: Results for the Levels Specification
gamma rho n T GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS GLS-SC GLS GLS-AR ROLS OLS

0.0 0.8 15 10 0.1539 0.3431 0.0820 0.0556 0.2811 0.0388 0.0818 0.1057 0.0567 0.1205 0.0395 0.0556 0.1146 0.0556 0.0718
0.1 0.1569 0.3481 0.0854 0.0577 0.2846 0.0399 0.0856 0.1069 0.0586 0.1236 0.0407 0.0577 0.1167 0.0577 0.0735
0.6 0.2611 0.4792 0.2264 0.1134 0.3873 0.0985 0.1708 0.1907 0.1174 0.2040 0.0869 0.1134 0.1906 0.1134 0.1296
1.0 0.4254 0.6541 0.4649 0.2195 0.5355 0.2063 0.3182 0.3353 0.2286 0.3423 0.1775 0.2195 0.3225 0.2195 0.2323

0.0 0.8 25 10 0.0583 0.1517 0.0773 0.0517 0.2796 0.0383 0.0658 0.0969 0.0519 0.1123 0.0413 0.0517 0.1077 0.0517 0.0617
0.1 0.0638 0.1602 0.0838 0.0543 0.2855 0.0422 0.0700 0.1007 0.0543 0.1169 0.0436 0.0543 0.1107 0.0543 0.0640
0.6 0.2409 0.4224 0.3241 0.1522 0.4473 0.1494 0.2088 0.2464 0.1573 0.2555 0.1303 0.1522 0.2408 0.1522 0.1606
1.0 0.5307 0.7273 0.6645 0.3251 0.6597 0.3543 0.4415 0.4711 0.3422 0.4697 0.2935 0.3251 0.4445 0.3251 0.3309

0.0 0.8 50 10 0.0395 0.0796 0.0735 0.0522 0.2747 0.0421 0.0556 0.0913 0.0524 0.1089 0.0464 0.0522 0.1041 0.0522 0.0567
0.1 0.0495 0.0956 0.0877 0.0563 0.2875 0.0484 0.0631 0.0991 0.0571 0.1161 0.0510 0.0563 0.1113 0.0563 0.0617
0.6 0.4432 0.5694 0.5462 0.2503 0.5778 0.2899 0.3319 0.3780 0.2634 0.3830 0.2364 0.2503 0.3612 0.2503 0.2541
1.0 0.8701 0.9280 0.9143 0.5628 0.8487 0.6602 0.7030 0.7262 0.5872 0.7130 0.5448 0.5628 0.6834 0.5628 0.5646

0.0 0.8 100 10 0.0392 0.0590 0.0701 0.0509 0.2725 0.0456 0.0529 0.0888 0.0501 0.1052 0.0481 0.0509 0.1018 0.0509 0.0531
0.1 0.0631 0.0889 0.0992 0.0609 0.2933 0.0601 0.0685 0.1045 0.0616 0.1213 0.0578 0.0609 0.1162 0.0609 0.0631
0.6 0.7785 0.8279 0.8203 0.4446 0.7658 0.5414 0.5653 0.6073 0.4661 0.5986 0.4349 0.4446 0.5703 0.4446 0.4452
1.0 0.9953 0.9974 0.9969 0.8530 0.9715 0.9307 0.9385 0.9420 0.8735 0.9303 0.8475 0.8530 0.9158 0.8530 0.8545

Full Sample 3 Periods 2 Periods



Table 5: Results for the Levels Specification - Non-Gaussian Innovation Distributions
gamma rho n T GLS-SC GLS GLS-SC GLS GLS-SC GLS GLS-SC GLS GLS-SC GLS GLS-SC GLS

0.0 0.8 50 5 0.0365 0.0536 0.0459 0.0651 0.0376 0.0513 0.0473 0.0625 0.0423 0.0470 0.0494 0.0544
0.1 0.0416 0.0606 0.0480 0.0680 0.0425 0.0560 0.0490 0.0635 0.0458 0.0510 0.0498 0.0550
0.6 0.2677 0.3221 0.1082 0.1391 0.2385 0.2764 0.1011 0.1242 0.2164 0.2299 0.0956 0.1042
1.0 0.6181 0.6745 0.2216 0.2689 0.5552 0.6005 0.2000 0.2337 0.4998 0.5178 0.1871 0.2003

0.0 0.8 50 10 0.0404 0.0825 0.0466 0.0920 0.0423 0.0557 0.0453 0.0596 0.0465 0.0517 0.0488 0.0541
0.1 0.0459 0.0918 0.0485 0.0938 0.0457 0.0602 0.0467 0.0604 0.0501 0.0561 0.0494 0.0550
0.6 0.2744 0.3866 0.1068 0.1762 0.1809 0.2152 0.0819 0.1022 0.1662 0.1783 0.0823 0.0892
1.0 0.6255 0.7365 0.2163 0.3135 0.4232 0.4707 0.1516 0.1820 0.3804 0.3978 0.1470 0.1584

0.0 0.8 50 15 0.0493 0.1216 0.0552 0.1336 0.0440 0.0592 0.0489 0.0645 0.0472 0.0530 0.0490 0.0552
0.1 0.0546 0.1321 0.0572 0.1370 0.0465 0.0618 0.0501 0.0650 0.0498 0.0552 0.0502 0.0552
0.6 0.2832 0.4443 0.1156 0.2232 0.1652 0.1965 0.0817 0.1024 0.1560 0.1677 0.0801 0.0872
1.0 0.6293 0.7733 0.2237 0.3667 0.3813 0.4283 0.1420 0.1720 0.3539 0.3710 0.1367 0.1478

0.0 0.8 50 20 0.0626 0.1737 0.0660 0.1790 0.0461 0.0616 0.0497 0.0648 0.0482 0.0534 0.0503 0.0553
0.1 0.0690 0.1845 0.0682 0.1830 0.0490 0.0639 0.0510 0.0649 0.0511 0.0566 0.0512 0.0568
0.6 0.3082 0.5048 0.1303 0.2765 0.1672 0.1976 0.0820 0.1026 0.1599 0.1719 0.0797 0.0878
1.0 0.6445 0.8112 0.2414 0.4257 0.3874 0.4318 0.1414 0.1702 0.3603 0.3777 0.1362 0.1462

Full Sample 3 Periods 2 Periods

t-dist Chi-Sq t-dist Chi-Sq t-dist Chi-Sq



Table 6: Average Cellular Prices in the Top 10 MSAs: 1994 

MSA No.  MSA  Monthly Price   Regulated      

1  New York $110.77   Yes
2  Los Angeles 99.99   Yes
3  Chicago 58.82       
4  Philadelphia 80.98       
5  Detroit 66.76       
6  Dallas 59.78       
7  Boston 82.16   Yes
8  Washington 76.89       
9  San Francisco 99.47   Yes
10  Houston 80.33       

160 minutes of use (80% peak)



Table 7: Correlation Structure

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
1.00                       
0.36 1.00                     
0.01 0.33 1.00                   
-0.21 0.32 0.61 1.00                 
0.05 -0.01 0.03 0.14 1.00               
-0.18 -0.27 -0.14 -0.17 -0.07 1.00             
-0.24 -0.22 -0.13 -0.14 -0.14 0.46 1.00           
-0.28 -0.25 -0.16 -0.13 -0.12 0.42 0.45 1.00         
-0.47 -0.24 -0.22 -0.18 -0.09 -0.08 -0.06 -0.02 1.00    
-0.53 -0.36 -0.29 -0.09 -0.06 -0.07 -0.06 0.01 0.45 1.00  
-0.62 -0.29 -0.03 -0.04 -0.35 -0.10 -0.08 -0.02 0.12 0.24 1.00



Table Legends 

 

Table 1a: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5%. The test statistics used are for 
the level version defined in Theorem 3.1. Rows corresponding to gamma=0 refer to rejection 
probabilities under the null hypothesis. Rows corresponding to gamma>0 refer to rejection 
probabilities under the corresponding alternative. The column labeled GLS‐SC reports results for 
Wald statistics based on the feasible GLS estimator with the size correction given in Equation (3.2). 
The column GLS contains results based on the feasible GLS estimator without size correction. GLS‐AR 
denotes the test statistic based on parametric covariance matrix estimators described in Section 4. 
ROLS is the Wald statistic based on the standard OLS estimator with robust standard errors and the 
covariance matrix is computed in the same way as for GLS. OLS is the usual OLS estimator with the 
non‐robust variance estimator. Results for 3 Periods and 2 Periods are based on time averaging the 
sample prior to carrying out the tests over three or two time periods. The rejection probabilities are 
based on 50,000 replications. The cross‐sectional sample size is kept fixed at n=50 for all cases. 

 

Table 1b: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.4. The test statistics 
used are for the level version defined in Theorem 3.1. See Table 1a for further details.   
         

Table 1c: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.8. The test statistics 
used are for the level version defined in Theorem 3.1. See Table 1a for further details. 

Table 1d: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.9. The test statistics 
used are for the level version defined in Theorem 3.1. See Table 1a for further details. 

Table 2a: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=0. The test statistics 
used are for the first difference version defined in (3.6) and (3.7). See Table 1a for further details. 



 

Table 2b: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.4. The test statistics 
used are for the first difference version defined in (3.6) and (3.7). See Table 1a for further details. 

Table 2c: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.8. The test statistics 
used are for the first difference version defined in (3.6) and (3.7). See Table 1a for further details. 

Table 2d: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.9. The test statistics 
used are for the first difference version defined in (3.6) and (3.7). See Table 1a for further details. 

 

Table 3: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5%. The innovations of (4.2) are 
drawn from a multivariate Gaussian distribution with a correlation matrix corresponding to the one 
reported in Table 7. Rows corresponding to gamma=0 refer to rejection probabilities under the null 
hypothesis. Rows corresponding to gamma>0 refer to rejection probabilities under the 
corresponding alternative. The column labeled GLS is the feasible GLS estimator without size 
correction, GLS‐SC reports results for Wald statistics based on the feasible GLS estimator with the 
size correction given in Equation (3.2). GLS‐B is the t‐statistic based on GLS with critical values 
computed by the bootstrap as described in Section 4. GLS‐AR denotes the test statistic based on 
parametric covariance matrix estimators described in Section 4. Results for 3 Periods and 2 Periods 
are based on time averaging the sample over three or two time periods prior to carrying out the 
tests. The rejection probabilities are based on 50,000 replications for GLS, OLS‐SC and GLS‐AR. The 
rejection probabilities for GLS‐B are based on 5,000 replications with 200 repetitions of the 
bootstrap at each replication to compute critical errors. The sample size is n=50 and T=11.   

 

Table 4: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.8. The test statistics 



used are for the level version defined in Theorem 3.1. The Monte Carlo design in this table is the 
same as in Table 1c except for the fact that T=10 is kept fixed while n varies from 15 to 100. 

 

Table 5: 

The entries in the table are estimated rejection probabilities for a one sided test of the hypothesis 
that gamma=0 in Model (4.2) at the nominal significance level of 5% when rho=.8. The test statistics 
used are for the level version defined in Theorem 3.1. The Monte Carlo design in this table is the 
same as in Table 1c except for the fact that the innovations in (4.1) are drawn from a t distribution 
with 4 degrees of freedom and a demeaned chi‐square distribution with 4 degrees of freedom 
respectively.  

 

Table 7: 

Serial correlations between regression residuals from OLS estimation of the cellular telephone data 
using Equation (1.1) with a fixed effect for each MSA, a time effect for each year and a single 
indicator variable to allow for the effect of price regulation. 


