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Abstract

This paper analyzes autoregressive time series models where the errors are assumed to

be martingale difference sequences that satisfy an additional symmetry condition on their

fourth order moments. Under these conditions Quasi Maximum Likelihood estimators of

the autoregressive parameters are no longer efficient in the GMM sense. The main result of

the paper is the construction of efficient semiparametric instrumental variables estimators

for the autoregressive parameters. The optimal instruments are linear functions of the

innovation sequence.

It is shown that a frequency domain approximation of the optimal instruments leads to

an estimator which only depends on the data periodogram and an unknown linear filter.

Semiparametric methods to estimate the optimal filter are proposed.

The procedure is equivalent to GMM estimators where lagged observations are used

as instruments. Due to the additional symmetry assumption on the fourth moments the

number of instruments is allowed to grow at the same rate as the sample. No lag truncation

parameters are needed to implement the estimator which makes it particularly appealing

from an applied point of view.
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1. Introduction

This paper develops new instrumental variables (IV) estimators for autoregressive time

series models when the errors are martingale difference sequences rather than being inde-

pendent. The specification includes error processes which are conditionally heteroskedastic.

Efficiency gains are obtained without having to specify a model for the dependence in the

errors. The setup is general enough to account for stylized facts in many economic time

series displaying features such as thick tailed distributions and time dependent conditional

variances.

Classical efficiency results for the quasi maximum likelihood estimator (QMLE) of

the autoregressive parameters such as Hannan (1973) depend on the independence of the

errors. In the more general case of conditional heteroskedasticity considered here the

QMLE does no longer attain a GMM lowerbound for the asymptotic covariance matrix

which now depends on fourth moments of the innovation process. In Kuersteiner (1997)

it is shown how a decomposition of the higher moment terms leads to a lower bound for

the covariance matrix. An instrumental variables estimator based on this decomposition

is shown to achieve the lower bound for the covariance matrix in the class of IV estimators

with instruments that are linear in the innovations.

The feasible GMM estimators developed in this paper are similar to the estimators

of Hayashi and Sims (1983), Stoica, Soderstrom and Friedlander (1985) and Hansen and

Singleton (1991, 1996). In this literature lagged observations are used as instruments to

account for unmodelled MA(q) innovations which lead to inconsistent OLS estimators.

Here lagged observations are used as instruments to account for unmodelled conditional
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heteroskedasticity of the error terms which renders OLS inefficient.

Apart form the different motivation for the use of instruments, inefficiency versus incon-

sistency, this paper extends the previous literature as it explicitly treats feasible estimation.

The number of instruments in our case is allowed to grow at the same rate as the sample

size. This is made possible at the cost of an additional restriction on the fourth order cu-

mulants compared to the treatment in Kuersteiner (1999). The advantage of making this

assumption is that the estimator can be implemented without the need for a truncation

or bandwidth parameter for the number of instruments used.

Since the optimal instruments are unobservable they need to be estimated nonpara-

metrically. Assumptions about the generating mechanism of the volatility process or more

generally the dependence in higher moments are replaced by smoothness assumptions for

higher order cumulant spectra of the errors. This setup allows to treat the dependence

in higher moments as a nuisance parameter. Nonparametric estimators of this nuisance

parameter are used to construct the optimal instruments.

Other semiparametric procedures proposed to handle conditional heteroskedasticity in-

clude Robinson (1987) and Newey (1991). No parametric assumptions about the form of

conditional heteroskedasticity are made in these treatments. However, in order to estimate

the conditional variance these authors have to assume serially independent errors. This as-

sumption has precluded direct application of their techniques to the stochastic conditional

variance case. Hidalgo (1992) relaxes the independence assumption for the errors but has

to assume instead that the conditional variance is a smooth function of an independent

stationary process. Hansen (1995) treats the stochastic volatility model in a semipara-
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metric GLS framework. He assumes that the conditional variance process converges to a

Brownian motion in the limit. Sample path continuity of the limit process then allows for

consistent kernel estimation of the conditional variance.

More generally Hansen (1985) and Hansen, Heaton and Ogaki (1988) prove existence

of instrumental variable estimators achieving a GMM lowerbound in the presence of con-

ditional heteroskedasticity. The high dimensional and nonlinear character of these instru-

ments has so far precluded implementation of such an estimator.

Here we limit ourselves to the implementation of optimal procedures in the much

smaller class of IV estimators with instruments that are linear functions of the observa-

tions. Ordinary least squares is a particular member of this class. In the general case of

conditional heteroskedasticity it is inefficient. This paper achieves the construction of a

feasible version of the most efficient IV estimator with linear instruments.

The remainder of the paper is organized as follows. Section 2 describes the model as-

sumptions. Section 3 develops the efficient IV estimator for the AR(p) model. A frequency

domain approximation for the IV estimator is derived in Section 4. Section 5 shows that a

semiparametric estimator with the same optimality properties can be constructed. Some

Monte Carlo simulations are reported in Secition 6 and concluding remarks are made in

Section 7. Proofs are contained in an Appendix.

2. Model

We start by defining the stochastic environment of the model. Let (Ω ,F , P ) be a general

probability space and define a filtration Ft to be an increasing sequence of σ-fields such
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that Ft ⊆ Ft+1 ⊆ F ∀ t. There is a doubly infinite sequence of random variables generating

the filtration Ft. We assume that we observe a sample of size n of a univariate time series

yt where t = {1, ..., n}. More specifically, we assume that yt is generated by the following

autoregressive model

φ(L)yt = εt (1)

where εt is a martingale difference sequence generating Ft. Here φ(L) = 1−φ1L−...−φpLp

where L is the lag operator. The parameters φ0 =
¡
φ1, ...,φp

¢
describe the mean equation

of the model. It is assumed that φ(L) has all roots outside the unit circle. We are interested

in estimating the parameter vector φ.

Assumption A-1. The polynomial φ(L) has all roots outside the unit circle and φp 6= 0.

The martingale difference assumption for εt implies absence of correlation between the

errors. However, it is not assumed that the errors are independent. Rather we allow

for dependence in higher than second moments to account for thick tails and conditional

heteroskedasticity.

Assumption A-2. (i) εt is strictly stationary and ergodic, E (εt | Ft−1) = 0, E
¡
ε2t
¢
=

σ2 > 0, (ii) E(ε2t ε
2
t−s − σ4) = σ (s) < ∞ for s ≥ 0, (iii) E

¡
ε2t εt−sεt−r

¢
= 0 for s 6= r,

s, r > 0, (iv)
P |s| |σ (s)| = B <∞, E ¡ε2t ε2t−s¢ 6= 0 for all s.

Remark 1. Assumption (A-2) is similar to the first part of assumption A in Andrews

(1991) if we set vt = εtyt−j . The summability condition (iv) is slightly stronger than

Andrews’ summability condition.In addition we impose strict stationarity to simplify some

of the asymptotic theory.
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Remark 2. Assumption (iii) is added to the assumptions in Kuersteiner (1999) in order

to simplify the form of the optimal instruments. It is somewhat restrictive as it rules out

some nonsymmetric parametric examples such as EGARCH. The IV estimators proposed

in Section 3 are still consistent and asymptotically normal if (iii) fails. However, in this

case they lose their optimality properties.

Remark 3. Assumption (iv) guarantees that E
¡
ε2t ε

2
t−s
¢ ≥ α > 0 for some constant α

uniformly in s.

Remark 4. No assumptions about third moments are made. In particular this allows for

skewness in the error process.

Remark 5. It should be emphasized that no parametric structre is imposed on the joint

distribution of εt. Neverteless parametric models for conditional heteroskedasticity can be

shown to satisfy Assumption (A-2). Let a GARCH (p,q) process be defined as εt = uth
1/2
t

where ht = γ0 +
Pq
j=1 γjε

2
t−j +

Pp
j=1 βjht−j with ut ∼ N(0, 1). This process satisfies

Asssumption (A-2) under certain conditions. Nelson (1990) obtains sufficient conditions for

stationarity and ergodicity of the GARCH(1,1) model. The martingale difference property

follows immediately from the definition of a GARCH process. Assumption (A-2iii) is

shown to hold for the ARCH(p) case in Milhoj (1985) for symmetric innovation densities.

The same argument extends to the GARCH(p, q) case as shown in Bollerslev (1986) and

He and Teräsvirta (1999). If the innovation distribution is normal then fourth moments

are known to exist for the GARCH(1, 1) case if 3γ21 + 2γ1β1 + β
2
1 < 1. This condition

is valid for β = 0 and thus covers the ARCH case. In Milhoj (1985) and Bollerslev

(1986) , the autocorrelation structure σ (s) is shown to be identical to the AR(p) and
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ARMA(max(p, q), q) case for ARCH(p) and GARCH(p, q) respectively. This implies

that the summability condition holds if fourth moments exist. Similar arguments can be

made to show that stochastic volatility models satisfy the assumptions.

Based on the results in Kuersteiner (1997), we will now introduce the optimal linear

instrumental variables estimator for the AR(p) model. The estimator is constructed by

reweighting the innovation sequence by the unconditional fourth moments σ (k) + σ4 of

the error process. This operation corresponds to using an optimal weight matrix in an

overidentified GMM estimator with lagged innovations as instruments. Without paramet-

ric assumptions about the form of conditional heterogeneity these moments typically have

to be estimated.

3. Instrumental Variables Estimator

The parameter vector φ can be consistently estimated by OLS. Under the assumptions in

this paper OLS amounts to an inefficient IV estimator in the class of IV estimators with

linear instruments. Kuersteiner (1997) derives the form of the optimal linear instrument

as a function of the fourth moments and the impulse response function of the underly-

ing process yt in a more general context. In this section these more general results are

specialized to the autoregressive model.

Let zt ∈ Rp be Ft−1 measurable and square integrable, strictly stationary and ergodic.

Then, the instrument satisfies the moment condition E [(φ (L) yt) zt] = 0 where φ (L) yt =

εt. Let y0t = [yt, yt−1, ..., yt−p] and φ =
£
1,−φ0¤0 . An instrumental variables estimator then
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is defined as

φ̃ =
³
Z
0
Y−1

´−1
Z
0
Y (2)

where Y
0
= [y1+p, . . . , yn] and Y

0
−1 =

£
yp, ...,yn−1

¤
where y0t = [yt, yt−1, ..., yt−p+1] . The

matrix Z is the matrix of instruments defined by Z0 = [zp+1, ..., zn] . Note that Y =

Y−1φ+ ε. By the ergodic theorem it follows that φ̃ is consistent. The formulation of the

IV estimator is not complete without a specification of the instruments.

As argued before, instruments zt which are linear in past observations are considered.

Such instruments are equivalent to instruments that are linear functions of past innova-

tions. This set up is formalized here. Using φ−1 (L) =
P∞
j=0 ψjL

j, the time series yt can

be expressed as a linear filter of past shocks yt =
P∞
j=0 ψjεt−j. Also, let

αj = E
¡
ε2t ε

2
t−j
¢
= σ (j) + σ4 (3)

and b
0
j = (ψj−1, ...,ψj−p) with ψj = 0 for j < 0. Then define P

0
m = [b1, ..., bm].

In Kuersteiner (1997) it is shown that for zt =
P∞
j=1 ajεt−j with aj ∈ Rp such that for

the i-th element of aj,i of aj
P∞
j=1 |aj,i| <∞∀i the asymptotic distribution of φ̃ is normal

with mean zero and covariance matrix

lim
m→∞σ

−4(P
0
mAm)

−1A
0
mΩmAm(A

0
mPm)

−1

where A0m = [a1, ..., am]. The lower bound is

Ξ = lim(σ4P
0
mΩ

−1
m Pm)

−1 (4)
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where it should be noted that under Assumption (A-2), Ωm = diag(α1, ...,αm). Under

Assumptions (A-1) and (A-2) it is shown in Theorem 5.1 in Kuersteiner (1999) that Ξ is a

positive definite matrix. For a detailed analysis of the properties of Ξ the reader is referred

to Kuersteiner (1999).

The optimal linear instruments leading to the lowerbound (4) are now defined by setting

z0t = [zt,1, ...zt,p] with zt,k =
P∞
j=0

ψ
j

αj+k
εt−j−k. It then follows immediately that the optimal

instrument has weights aj = bj/αj. Let h(φ, L) be a lag polynomial of optimal weights

and the parameter value φ defined as h(φ, L) =
P∞
j=1 bj/αjL

j. We write h0 for a filter

based on the true underlying coefficients bj and αj. We can then write zt = h(φ0, L)εt. A

different way of writing the optimal instrument is zt = limm→∞ P 0mΩ−1m εmt almost surely

where εmt = [εt−1, ..., εt−m]
0 .

A consistent but inefficient estimator for φ0 frequently used in pratice is the OLS esti-

mator φ̂ =
³
Y
0
−1Y−1

´−1
Y
0
−1Y. Using the notation introduced in this section the asymptotic

variance covariance matrix of φ̂ is given by ΞOLS = limm→∞(P
0
mPm)

−1P 0
mΩmPm(P

0
mPm)

−1.

Theorem 4.4 in Kuersteiner (1999) establishes that Ξ− ΞOLS is positive semidefinite. In

the case of conditionally homoskedastic innovations, ie. when Ωm = σ4Im it follows im-

mediatly that ΞOLS = limm→∞(P
0
mPm)

−1 = Ξ which restates Hannan’s famous efficiency

result.

The potential asymptotic efficiency gains of using an IV procedure as opposed to con-

ventional OLS can be easily analyzed for an AR(1) model with ARCH(1) innovations.

Let yt = φyt−1 + εt where εt is generated by the ARCH(1) process εt = uth
1/2
t where

ht = γ0+ γ1ε
2
t−1 with ut ∼ N(0, 1). From Milhoj (1985) it follows that εt has finite fourth
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moments for values of γ1 ∈ [0,
p
1/3).

Figure 1

Figure 1 shows the potential efficiency gains of the IV estimator relative to the Gaussian

QMLE as a function of the autoregressive parameter φ. The efficiency gains are computed

based on the asymptotic covariance matrix. More explicitly, the asymptotic covariance

matrix of φ̂ can be expressed as

σ2OLS (φ, γ0, γ1) =

¡
1− φ2¢2
σ4

∞X
i=0

φ2iai+1 (5)

where σ4 = (γ0/1 − γ1)2 and ai+1 = 2γ20γ
i+1
1 /[(1 − γ1)2(1 − 3γ21)] + σ4. The asymptotic

covariance matrix for the optimal IV estimator can be obtained from (4). It is given by

σ2IV (φ, γ0, γ1) =

"
σ4

∞X
i=0

φ2ia−1i+1

#−1
. (6)

Figure 1 plots σ2IV (φ, .1, γ1) /σ
2
OLS (φ, .1, γ1) for φ ∈ [0, 1) and different values of γ1.

The estimator introduced so far is not feasible for several reasons. First of all it depends

on an infinite sequence of unobservable innovations. If we define the sequence of residuals

that can be estimated from the data as εt(φ) = φ0yt with εt(φ) = 0 for t < p+ 1 or t > n

then ẑt = h(φ0, L)εt(φ0). Stacking the instruments as Ẑ = [ẑp+1, ..., ẑn] the approximate

version of φ̃ is now

φ̃(h) =
³
Ẑ
0
Y−1

´−1
Ẑ
0
Y. (7)
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This approximation to φ̃ is still not feasible since the optimal filter h0 depends on unknown

coefficients bj/αj. We denote a feasible version of the filter where bj/αj is replaced by

estimated quantities by ĥ. The proof of feasibility proceeds in two steps. In Section 4 it is

shown that
√
n(φ̃(h0)− φ̃) = op(1) and in Section 5 we establish that √n(φ̃(ĥ)− φ̃(h0)) =

op(1).

In the next two sections Approximation (7) is represented in terms of frequency domain

integrals. This imposes no practical limitations since the freqeuncy domain version differs

from (7) by the exclusion of only a few observations at the beginning of the sample. The

difference is asymptotically of order Op(n−1) and therefore does not affect the first order

asymptotic properties of the estimator.

Formulating the estimator in the frequency domain however offers the potential for im-

provements in terms of computational efficiency since the frequency domain formulation

can be used to implement FFT-algorithms. Using FFT algorithms reduces the compu-

tational complexity of φ̃(ĥ) from O(n2) to O(n logn). This improvement is substantial

in applications where the dataset is extremly large and the estimator is computed many

times. Leading examples are model selection procedures in forecasting applications and

simulation studies.

4. IV Estimation in the Frequency Domain

In this section a frequency domain approximation to the optimal IV estimator is derived.

Consider the inverse of the spectral density for the AR(p) model f−1yy (λ) = 2π
σ2

¯̄
φ(eiλ)

¯̄2
and let

¯̄
φ(eiλ)

¯̄2
= g−1yy (φ,λ). Define the lag operator a(λ) =

£
eiλ, ...., eiλp

¤
and denote
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the complex conjugate transpose by a(λ)∗. Also introduce the matrix A (λ) = a(λ)∗a (λ) .

Then g−1yy (φ,λ) can be represented as

g−1yy (φ,λ) =
h
1,−φ0

i 1 a(λ)

a(λ)∗ A(λ)


 1
−φ

 .

Define

η̇(φ,λ) =
∂ ln gyy(φ,λ)

∂φ
, (8)

introduce the discrete Fourier transform of the data as ωy (λ) = 1√
n

Pn
t=1 yte

−itλ and the

periodogram as In,yy (λ) = |ωy (λ)|2 . Similarly, the discrete Fourier transform of the instru-

ments is given by ωz (λ) = 1√
n

Pn
t=1 zte

−itλ where zt = h(φ0, L)εt. The cross periodogram

between instruments and regressors is then defined as In,zy(λ) = ωz (λ)ωy (λ)
∗ .

With these definitions we turn to the frequency domain implementation of the in-

strumental variables estimator introduced at the beginning. It is easy to show that the

infeasible IV estimator using instruments that are based on a sequence of innovations

stretching into the infinite past can be represented in the frequency domain as

φ̃ =

·Z π

−π
Re [In,zy (λ) a (λ)] dλ

¸−1 Z π

−π
Re [In,zy (λ)] dλ+Op(n

−1). (9)

where Re[c] = 1/2 [c+ c̄] is the real part of any complex number c.

The main focus of the paper consists in analyzing feasible versions of this estimator

that only depend on observable data. In a first step this is achieved by decomposing the

cross periodogram into the data periodogram and an unknown optimal filter.
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For the purpose of this and the next section, we introduce the spaces Lk [−π,π] of

functions f : [−π,π] → Cp such that
R |f |k dλ <∞. Also, define the spaces Ck [−π,π] of

functions f : [−π,π] → Rp such that f is k times continuously differentiable. Define the

optimal filter for the k-th instrument as lψ,k (λ) =
P∞
j=0

ψj
αk+j

e−iλ(j+k) and let the p × 1

vector of optimal filters be

lψ (λ) =

·
lψ,1 (λ) · · · lψ,p (λ)

¸0
. (10)

and let lη(λ) = Re [lψ (λ)] . The properties of lψ (λ) determine the asymptotic distribution

of the instrumental variables estimator. Lemma (A.6) gives a representation of lψ (λ) in

terms of convolution operators. This shows that lψ (λ) is sufficiently smooth to apply a

central limit theorem.

It is convenient to define

hx (φ,λ) = Re
h
lψ (−λ)φ(eiλ)a (−λ)

i

and

h(φ,λ) = Re
h
lψ (−λ)φ(eiλ)

i
.

Using these definitions we are now ready to approximate the data based IV estimator in

time domain by a frequency domain version

φ̃(h0) =

·Z π

−π
In,yy (λ)h

x (φ,λ)dλ

¸−1 Z π

−π
In,yy (λ)h(φ,λ)dλ+Op(n

−1). (11)
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This result can again be checked straightforwardly by evaluating the intregrals and noting

that the resulting sums differ from the formulation of φ̃(h0) in (7) by only a finite number

of terms independent of the sample size. An actual frequency domain version of the IV

estimator φ̃(h0) can be constructed by replacing the integrals in (11) by discrete sums over

the fundamental frequencies λj = 2πj/n. Such an estimator is then defined by

φ̃FD(h0) =

n−1X
j=1

In,yy (λj)h
x (φ,λj)

−1 n−1X
j=1

In,yy (λj)h(φ,λj) (12)

Implicit in the frequency domain formulation of φ̃(h0) is a discrete Fourier transform

approximation for zt in terms of the DFT for the data. The representation of the discrete

Fourier transforms of the instruments allows to obtain a frequency domain version of φ̃(h0)

without the need to go through an explicit calculation of the instruments in the time

domain. The approximation relies on the fact that convolutions in the time domain are

transformed into multiplications in the frequency domain and the fact that the residuals

can be computed by a simple multiplication of ωy (λ) by φ(eiλ).

In order to demonstarte consistency of the estimator it is enough to note that

φ̃(h0)− φ0 =
·Z π

−π
In,yy (λ)h

x(φ,λ)dλ

¸−1 Z π

−π
In,εε (λ)Re [lψ (λ)] dλ+ op

³
n−1/2

´

as is shown in the proof of Proposition (4.1). It then follows from ergodicity and the fact

that

E

Z π

−π
In,εε (λ)Re [lψ (λ)] dλ = σ

2

Z π

−π
Re [lψ (λ)] dλ = 0

that the estimator is consistent. It is transparent from equation (11) that φ̃(h0) is infeasible
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as it stands, since it depends on knowledge of the true parameter values and the correlation

structure of the squared errors. Feasible versions of φ̃(h0) will be discussed in Section 5

below.

Under the assumption that the weight matrix Re
£
lψ (−λ)φ

¡
eiλ
¢¤
is known, the as-

ymptotic distribution of φ̃(h0) is now a straight forward consequence of Lemmas (A.2) and

(A.3). The next proposition summarizes this result.

Proposition 4.1. Let φ (L) satisfy Assumption (A-1) and εt satisfy Assumption (A-2)

then for φ̃ defined in (2), φ̃(h0) defined in (7) and φ̃FD(h0) defined in (12) we have

φ̃FD(h0)− φ̃ = op(n−1/2), φ̃(h0)− φ̃ = op
¡
n−1/2

¢
and

√
n
³
φ̃(h0)− φ0

´
⇒ N

¡
0,σ−4Ξ

¢

where Ξ is defined in (4).

Proof. See Appendix B

This result establishes that the time domain estimator φ̃(h0) and the frequency domain

estimator φ̃FD(h0) are first order asymptotically equivalent. The remainder of the paper

will now be concerned with the construction of a semiparametric estimator with the same

distribution as φ̃(h0).

5. Adaptive Estimation

To develop a feasible efficient IV procedure, it has to be established that h (φ,λ) =

Re
£
lψ (λ)φ

¡
e−iλ

¢¤
and hx (φ,λ) = Re

£
lψ (λ)φ

¡
e−iλ

¢
a (λ)

¤
can be replaced by consistent
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estimates without affecting the limiting properties of the estimator. A semiparametric

estimator having this property is called adaptive. No confusion should arise between this

use of the terminology and the literature on feasible local minimax estimators such as

Bickel (1982), Kreiss (1987), Linton (1993) and Steigerwald (1994). The main difference,

apart from efficiency issues, is the fact that here a nonparametric correction to the crite-

rion function is made while the local minimax literature makes a nonparametric one step

Newton Raphson improvement to a consistent first stage estimator.

Different approaches to prove adaptiveness are used in the semiparametric literature.

Direct calculation is used in Robinson (1987,1988) in the context of iid models and par-

tially linear models and by Hidalgo (1992) in the context of time series regression models.

Newey (1991) applies similar techniques as Robinson (1987) to the instrumental variables

case for iid data. Andrews (1994) develops a general methodology based on stochastic

equicontinuity arguments and applies it to the partially linear framework. Andrews’ ap-

proach will be used here to break the proof into two parts. First, it is shown that a

nonparametric estimate ĥ(φ̂,λ) converges to h (φ0,λ) uniformly with probability one. The

second step is to established that uniformly in a shrinking neighborhood of the true filter

h (φ0,λ) the distribution of the feasible estimator is arbitrarily close to the distribution of

the infeasible estimator based on the true unknown filter.

This argument will now be formalized. Let lψ : [−π,π] → Cp and φ : [−π,π] → C

where C is the complex plane. Then introduce a set of functions H defined as

H =
n
h : [−π,π]→ Rp

¯̄̄
h = Re

h
lψ (−λ)φ(eiλ)

i
; Re [lψ (−λ)] ,Re

h
φ
³
eiλ
´i
∈ Ck [−π,π]

o
.

(13)
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where Ck [−π,π] denotes the space of k times continuously differentiable functions for all

k finite. Define the L∞ Sobolev norm of order one as

kfks1 = sup
λ∈[−π,π]

kf (λ)k+ sup
λ∈[−π,π]

°°°° ∂∂λf (λ)
°°°°

where k.k is the Euclidean matrix norm defined by kAk = (trAA∗)1/2 . Introduce the metric

on H as

ρ (h1, h2) = klψ,1 − lψ,2ks1 + kφ1 − φ2ks1

such that (H, ρ) is a complete metric space. If φ satisfies Assumption (A-1) and lψ is

defined in (10) then it follows from Lemma (A.6) that lη (φ,λ) ∈ Ck [−π,π] for all k finite.

Therefore h (φ,λ) ∈ H.

We proceed by defining the estimator for h (φ,λ) . We have established that we can

obtain a consistent estimate φ̂ for example from φ̂ = (Y
0
−1Y−1)−1Y−1Y . Residuals as a

function of some fixed parameter value φ are obtained from

εt (φ) = εt + (φ− φ0)
0
(yt−1, . . . , yt−p) (14)

such that the estimated error εt (φ) can be decomposed into the true error and the Ft−1

measurable part (φ− φ0)
0
(yt−1, . . . , yt−p). We denote by α∗j(φ̂) the sample cross moments

of ε2t (φ̂) with ε
2
t−k(φ̂) defined as α

∗
j(φ̂) =

1
n

Pn
t=p+j+1 ε

2
t (φ̂)ε

2
t−j(φ̂). Then define the trun-
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cated sample moments α̂j(φ̂) by

α̂j(φ̂) =


1
n

Pn
t=p+j+1 ε

2
t (φ̂)ε

2
t−j(φ̂) if α∗j > dn

dn else

where the sequence dn > 0 for all n with dn = cn−1/2+ν for some 0 < ν < 1/2 and

some constant c > 0. The truncation numbers dn are used to avoid ”too large” values for

α̂−1j (φ̂). Truncation was introduced by Bickel (1982) in the context of score estimation.

More closely related to our context is Hidalgo’s (1992) semiparametric frequency domain

estimator. Simulation experiments indicate that the truncation playes no role in practice

and can therefore be ignored in applications.

Next, an estimate for bj = (2π)−1
R π
−π η̇ (φ,λ) e

iλjdλ is needed. The vector bj contains

the impulse response function of the AR(p) model evaluated at different points. Here

we want to express bj directly as a function of the underlying AR-parameters. From the

definition of η̇ (φ,λ) in (8) and the expansion φ−1 (z) =
P
ψjz

j with ψj = 0 for j < 0, bj

can be written as

bj =

·
ψj−1 · · · ψj−p

¸0

where the coefficients ψj satisfy the recursion ψs−φ1ψs−1− · · ·−φpψs−p = 0 for all s > 0

and ψ0 = 1. The Fourier coefficient bj is continuous in the underlying parameters for all

finite j and can therefore be consistently estimated from a consistent estimate φ̂.
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A nonparametric estimate of h (φ,λ) is now defined as

l̂ψ (λ) =

n−p−1X
j=1

α̂−1j (φ̂)b̂je
−iλj

where b̂j = (2π)−1
R π
−π η̇

³
φ̂,λ

´
eiλjdλ and

ĥn
³
φ̂,λ

´
= Re

h
l̂ψ (λ) φ̂

³
e−iλ

´i
. (15)

No additional kernel smoothing is needed. The reason is, that h (φ,λ) is already a con-

volution between a bounded sequence and a twice continuously differentiable function. In

fact, the b̂j decay to zero quickly for every φ inside the stationary region.

We will also need the matrix ĥxn(φ̂,λ), whose elements are continuous functions of

ĥn(φ̂,λ) and which is defined by

ĥxn

³
φ̂,λ

´
= Re

h
l̂ψ (λ) φ̂

³
e−iλ

´
a (λ)

i
.

The success of a semiparametric estimator depends on the ability to estimate the

weights α−1j sufficiently well. Additional assumptions about the moments of the driving

error process are needed to assure this. Since α̂j depends on fourth moments such con-

ditions necessarily involve higher than fourth moments. Here we prove convergence by a

mean square argument which necessitates summability assumptions on eighth moments.

The following assumption is sufficient to prove the main result.

Assumption B-1. Let cε...ε (t1, . . . , tk−1) be the k-th order cumulant of the error process
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εt. Then

X
t1

· · ·
X
tk−1

(1+ |tj |) |cε...ε (t1, . . . , tk−1)| <∞, for all j = 1, ..., k − 1 and k = 2, 3, .., 8

Remark 6. Assumption (B-1) corresponds to the second part of Assumption A in An-

drews (1991) but is slightly stronger than that assumption. A necessary albeit not sufficient

condition for Assumption (B-1) to hold is that E |εt|8 < ∞. For the GARCH class this

requirement imposes further restrictions on the parameters controlling the dependence in

the volatility process. Details can be found in Milhoj (1985) and Bollerslev (1986).

Assumption (B-1) enables us to state the following result.

Proposition 5.1. Let ĥn(φ̂n,λ) be as defined in (15), let Assumptions (A-1, A-2, B-1)

hold and assume that φ̂n → φ0 in probability. Then P
³
ρ
³
ĥn(φ̂n,λ), h (φ0,λ)

´
> δ

´
→ 0

for any δ > 0 as n→∞ and P
³
ĥn(φ̂n,λ) ∈ H

´
→ 1 as n→∞.

Proof. See Appendix

We proceed to define the semiparametric estimator φ̃(ĥn) by replacing h0 = h (φ0, L)

with a nonparametric estimate (15). Then the following theorem can be established.

Theorem 5.2. Let ĥn(φ̂n,λ) as defined in (15). Let Assumptions (A-1, A-2, B-1) hold

and let φ̂n be a first stage estimator for which φ̂n → φ0 in probability or almost surely.

Then, the semiparametric estimator φ̃FD(ĥn) has a limiting distribution characterized by

√
n
³
φ̃FD(ĥn)− φ0

´
⇒ N

¡
0,σ−4Ξ

¢
.
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The time domain estimator φ̃(ĥn) has the same limiting distribution and

√
n
³
φ̃FD(ĥn)− φ̃(ĥn)

´
= op(1).

Proof. See Appendix .

In order to carry out inference using the IV estimator a consistent estimate of the

variance covariance matrix Ξ is needed. Such an estimate is easily constructed by using

expression (4) and by setting

Ξ̂ =

n−p−1X
j=1

α̂−1j (φ̂)b̂j b̂
0
j . (16)

The next theorem establishes the consistency of the covariance matrix estimator.

Theorem 5.3. Let Ξ̂ as defined in (16).Let Assumptions (A-1, A-2, B-1) hold and let φ̂n

be a first stage estimator for which φ̂n → φ0 in probability or almost surely. Then

Ξ̂
p→ Ξ.

Proof. See Appendix

This result establish the feasibility of a semiparametric estimator that improves on the

efficiency of the conventional Gaussian estimator in the presence of higher order depen-

dence. The frequency domain representation allows to avoid estimating the instruments

for each observation in the sample. Instead an optimal filter applied to the periodogram

of the data leads to an asymptotically equivalent procedure. Moreover, the fact that the

optimal filter itself is a convolution integral in the frequency domain solves the problem
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of truncating the approximation of the optimal instrument at a given lag in a natural

and elegant way and eliminates the need for lag truncation parameters for the number of

instruments used.

6. Monte Carlo Simulations

In this section a small Monte Carlo experiment is reported. To keep the exposition as

simple as possible we focus on an AR(1) model. We consider the efficiency gains/losses of

the IV estimator relative to consistent but inefficient OLS.

Of particular interest is the question whether in finite samples the IV estimator is suf-

ficiently well approximated by its asymptotic distribution. Furthermore, robustness of the

procedure to different generating mechanisms for conditional heterogeneity is investigated.

We generate samples of size n = 2k for k = 5, 6, ..., 10 from the following model

yt = φyt−1 + εt (17)

where εt is generated by the process εt = utgt with ut ∼ N(0, 1). When εt is a GARCH

process then gt = h
1/2
t where ht = γ0+γ1ε

2
t−1+β1ht−1. We consider pure ARCH processes

with β1 set to zero and GARCH(1,1) processes. An alternative formulation is the stochastic

volatility model with gt = exp(ht/2) and ht = γ1ht−1+ σvvt with vt ∼ N(0, 1) and ut and

vs independent for all s and t.

Starting values are y0 = 0, h0 = 0 and ε0 = 0. In each sample the first 500 observations

are discarded to eleminate dependence on initial conditions. Small sample properties are

evaluated for different values of φ, γ1 ∈ [0, 1) . It is clear from Milhoj (1985) and Bollerslev
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(1986) that asymptotic normality established in previous chapters only obtains for a subset

of values for γ1. Nevertheless, simulation results are reported for parametrizations outside

this range in order to analyze the robustness of the proposed IV procedure to departures

from the assumptions. The parameter γ0 is fixed at .1 for all experiments.

The parameter φ is estimated by two different estimators. The least squares estimator

is denoted by φ̂ =
Pn
t=2 ytyt−1/

Pn
t=2 y

2
t−1. The optimal instrumental variables estimator

is obtained from the consistent first stage estimator φ̂ as

φ̃FD(ĥ) =

n−1X
j=1

In,yy (λj) ĥ
x(φ̂,λj)dλ

−1 n−1X
j=1

In,yy (λj) ĥ(φ̂,λj)

where ĥx (φ,λ) and ĥ(φ,λ) are computed as explained in Section 5.

In the case of an ARCH(1) process we can compare the asymptotic gains reported

in Figure 1 with the empirical efficiency of the estimators φ̂, and φ̃FD based on 10, 000

replications for sample sizes ranging from 32 to 1024. The results are summarized in Tables

1-3 .

Tables 1-3

As expected, gains for the IV estimator are achieved for models where the autoregressive

parameter is above .5. This conforms with the theoretical analysis based on asymptotic

approximations. For the sample sizes considered here, the theoretical efficiency gains are

not achieved completely. The table shows that the relative efficiency of the IV estimator

improves with the sample size. The most significant increase takes place from size 256

to 512. For smaller sample sizes φ̃FD can still be computed fairly well but tends to have
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slightly larger variance than OLS and can be sensitive to outliers. It is also interesting

to note that the IV procedure maintains its properties even for values of γ1 >
p
1/3. In

fact the gains are strongest when both autocorrelation and dependence in the conditional

variance are strong.

In order to obtain a clearer picture of the performance of the IV estimator we report

the 5, 50 and 95 percent quantile of the estimator as well as the mean, mean absolute

error and variance. We also report coverage probabilities of a t-test of the hypothesis of

φ̂ = φ0 under the null hypothesis. The standard errors for the OLS estimator are obtained

by using a White covariance matrix which is consistent in this context. The standard

errors for the IV estimator are obtained from using Ξ̂ defined in (16). The results reveal

reasonable performance for the IV estimator at all sample sizes but sensitivity to outliers

which manifests itself in inter quantile ranges that are comparable or better than the ones

for OLS but sometimes inflated MSE statistics. Considering the mean absolute errors

might therefore be more relevant. For sample sizes larger than 250 the IV estimator starts

to dominate OLS in terms of concentration around the true value. IV is slightly more

biased than OLS but the difference becomes marginal in larger samples.

The empirical sizes of a t-test of φ = φ0 are reported both for OLS and IV based on

the respective estimates for the standard errors. In small samples the t-test tends to have

slightly larger size when based on IV as compared to OLS. For sample sizes larger than

250 the pattern reverses in the case of a positive coefficient γ1. When γ1 = 0 then the

OLS based test using White’s covariance matrix has smaller and more accurate size. We

also report the average estimated standard error based on Ξ̂. For sample sizes larger than
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250 observations the IV based standard errors are smaller than OLS standard errors using

White’s covariance matrix and the difference for large values of γ1 can be substatial even

when φ0 = 0. The overall quality of the sizes for both OLS and IV are of comparable

order of magnitude. This is remarkable given the usual size distortions for tests based on

overidentified IV estimators.

Tables 4-6

We also report similar simulation exercises for IGARCH and stochastic volatility mod-

els. Overall the properties of IV relative to OLS are similar to the results reported for the

ARCH case. The efficiency gains are largest for IGARCH when γ1 is large relative to β1.

This result is not surprising as β1 = 1 and γ1 = 0 corresponds to the homoskedstic case.

In the case of stochastic volatility models a fairly large innovation variance in the volatility

equation is required for the IV estimator to be any different from OLS.

Tables 7,8

7. Conclusions

This paper develops efficient IV estimators for autoregressive models with martingale in-

novations. Popular parametric examples of such innovation processes are ARCH, GARCH

and stochastic volatility models. A vast empirical literature documents the presence of

these effects in many macroeconomic and financial time series.

The paper shows that estimation of the autoregressive parameters by standard Gaussian

ML techniques leads to inefficient estimators. An important result in Kuersteiner (1997) is
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that GMM estimators based on lagged instruments improve efficiency and therefore domi-

nate OLS. Here it is shown how to construct the best GMM estimator based on instruments

that are linear in past observations.

A common problem of GMM procedures based on a large number of instruments is

their bad small sample performance. We introduce a novel decomposition of the weight

matrix which leads to an orthogonalization of the instrument space. This decomposition

has the advantage that it can be computationally efficiently implemented by using FFT

algorithms. Moreover, the estimator does not require a bandwidth choice for the number

of instruments used and is therefore straight forward to use in practice.

The small sample properties of the procedures developed are promising. The estimators

are equivalent to conventional OLS even when the innovations are iid and strictly dominate

OLS when the innovations are conditionally heteroskedastic. These results hold for sample

sizes as small as 250 observations and are therefore relevant for macroeconomic time series.
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A. Proofs

Lemma A.1. Under Assumption (A-2) for each m ∈ {1, 2...} , m fixed, the vector

1√
n

nX
t=1

[εtεt−1, ..., εtεt−m]⇒ N(0,Ωm)

with Ωm = diag(σ(1) + σ4, ...,σ(m) + σ4).

Proof. We note that individually all the terms εtεt−k with k ≥ 1 are martingale differ-

ences. Now define Y 0t = [εtεt−1, ..., εtεt−m] . Then also E(Yt | Ft−1) = 0 so that Yt is a

vector martingale difference sequence. To show that 1√
n

P
Yt ⇒ N(0,Ωm) it is enough

to show that for all ` ∈ Rm such that `
0
` = 1 we have 1√

n

P
`
0
Ỹt ⇒ N(0, 1) where now

Ỹt = Ω
−1/2
m Yt and Ωm = EYtY

0
t . Next we note that for any ` ∈ Rm such that `

0
` = 1, `

fixed, `
0
Ỹt is a martingale by linearity of the conditional expectation and the fact that m

is fixed and finite. We can therefore apply a martingale CLT (see Hall and Heyde , 1980,

Theorem 3.2, p.52) to the sum
P
t Ynt =

1√
n

P
t Ỹt. Checking the conditions of the CLT is

straightforward and omitted.

Next we generalize Propositions 10.8.5 and 10.8.6 in Brockwell and Davis (1987) to

allow for innovations εt satisfying Assumption (A-2).

Lemma A.2. Let In,yy (λ) be the periodogram of {y1, . . . , yn} and In,εε (λ) the peri-

odogram of {ε1, . . . , εn} . Assume εt satisfies Assumption (A-2) and that yt =
P∞
j=0 ψjεt−j

is the stationary solution to (1) with spectral density σ
2

2πgyy(β0,λ) such that
P∞
j=0

¯̄
ψj
¯̄ |j| <

∞. Let ς (.) : [−π,π] → R be continuous with absolutely summable Fourier coefficients
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{zk,−∞ < k <∞} . Then for any ² > 0

P

µ√
n

¯̄̄̄Z π

−π
In,yy (λ) ς (λ)dλ−

Z π

−π
In,εε (λ) gyy(β0,λ)ς (λ) dλ

¯̄̄̄
> ²

¶
→ 0

as n→∞.

Remark 7. Brockwell and Davis (1987) also assume that ς (.) is an even function which

is equivalent to the condition zk = z−k. This condition plays a role in the CLT of Lemma

(A.3) as far as the asymptotic covariance matrix is concerned. For the approximation

result the symmetry is not required and only the absolute summability is used.

Proof. First an expression for Rn (λ) = In,yy (λ) − In,εε (λ) gyy(β0,λ) is obtained. Let

ωy (λ) be the discrete Fourier transform of the data and ωε (λ) = n−1/2
P
t εte

−iλt. Then

ωy (λ) = ψ
³
e−iλ

´
ωε (λ) + n

−1/2
∞X
j=0

ψje
−iλjUnj (λ) (18)

where Un,j (λ) =
Pn−j
t=1−j εte

−iλt −Pn
t=1 εte

−iλt. Then

Rn (λ) = Re
h
ψ
³
eiλ
´
ωε (−λ)R1n,ψ(λ)

i
+
¯̄
R1n,ψ(λ)

¯̄2

with R1n,ψ(λ) = n
−1/2P∞

j=0 ψje
−iλjUnj (λ) . Then using the Markov inequality it is enough

to show that E
√
n
¯̄̄R π
−π Rn (λ) ς (λ)dλ

¯̄̄
→ 0. First consider

E
√
n

¯̄̄̄Z π

−π
ψ
³
e−iλ

´
ωε (λ)R

1
n,ψ(−λ)ς (λ) dλ

¯̄̄̄
≤ 4π sup

k
α
1/2
k n−1/2

∞X
k=0

∞X
l=0

∞X
m=−∞

|ψkψlzm| |l|→ 0.

(19)
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Next consider the term |Bn(λ)|2 . First a bound for the expected value is obtained by

E
¯̄
R1n,ψ(λ)

¯̄2 ≤
n−1/2 ∞X

j=0

¯̄
ψj
¯̄ ³
E |Unj|2

´1/22 ≤ 2σ2
n−1/2 ∞X

j=0

¯̄
ψj
¯̄
min(j, n)1/2

2

where we use the martingale property of εt to show E |Unj|2 ≤ 2min(j, n)σ2. This implies

E
√
n

¯̄̄̄Z π

−π

¯̄
R1n,ψ(λ)

¯̄2
ς (λ) dλ

¯̄̄̄
≤ 4πσ2

n−1/2 ∞X
j=0

¯̄
ψj
¯̄ |j|1/2

2 sup
λ∈[−π,π]

|ς (λ)|→ 0.

as had to be shown

Lemma A.3. Let In,εε (λ) be the periodogram of {ε1, . . . , εn} . Suppose the εt satisfy

Assumption (A-2). Let ς (.) be any continuous even function on [−π,π]→ R with Fourier

coefficients {bj ,−∞ < j <∞} such that

∞X
j=1

|bj | |j|1/2 <∞

and
R π
−π ς (λ) dλ = 0, then

n1/2 (2π)−1
Z π

−π
In,εε (λ) ς (λ)dλ

d→ N

0, 4 ∞X
j=1

αjb
2
j

 .
Proof. Define χm (λ) =

P
|j|<m bje

iλj where χm (λ) converges uniformly to χ (λ) by

absolute summability of bj. Using Theorem 4.2 in Billingsley (1968) it has to be shown

that for all ² > 0,

lim
m→∞ lim supn→∞

P

½¯̄̄̄
n1/2

Z π

−π
In,εε (λ) (χm (λ)− χ (λ)) dλ

¯̄̄̄
≥ ²
¾
= 0
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where

n1/2
Z π

−π
In,εε (λ) (χm (λ)− χ (λ)) dλ = n1/22π

nX
|j|>m

γ̃εε (j) bj

with γ̃εε (j) =
1
n

Pn−|j|
t=1 εtεt+|j|. It follows that Eγ̃εε (j) = 0,

Eγ̃ε (k) γ̃ε (j) =
1

n2

n−|k|X
t=1

Eε2t ε
2
t+|j| =

n− |j|
n2

αj

if j = k and zero otherwise. Using the Markov inequality we have

P

½¯̄̄̄
n1/2

Z π

−π
In,εε (λ) (χm (λ)− χ (λ))dλ

¯̄̄̄
≥ ²
¾
≤ 2π supj |αj |

²2

 nX
|j|>m

|bj|
2 → 0

From Lemma (A.1) we have

n1/2 (2π)−1
Z π

−π
In,εε (λ)χm (λ) dλ

d→ N

0, 4 mX
j=1

αjb
2
j

 .

LettingXm ∼ N
³
0, 4

Pm
j=1 αjb

2
j

´
it remains to show thatXm

d→ X whereX ∼ N
³
0, 4

P∞
j=1 αjb

2
j

´
.

By Billingsley (1968), Theorem 7.6 it is enough to show
Pm
j=1 αjb

2
j →

P∞
j=1 αjb

2
j . This

follows by absolute convergence.

Lemma A.4. For any δ > 0 let

Hδ = {h : [−π,π]→ Rp |h ∈ H, ρ (h, h0) < δ} . (20)

32



Then for δ > 0 such that Hδ ⊂ H◦ where H◦ is the interior of H

sup
h∈Hδ

n1/2

¯̄̄̄
¯̄n−1X
j=1

In,yy(λj)h(λj)−
Z π

−π
In,yy(λ)h(λ)dλ

¯̄̄̄
¯̄ = Op(n−1/2)

where λj = 2πj/n.

Proof. First note that for h ∈ Hδ, h is of uniformly bounded variation in the sense that

for any typical element hk of the vector of functions h it follows that

sup
h∈Hδ

sup
n,xj


nX
j=1

|hk(λj)− hk(λj−1)| ,−π ≤ λ1 < ... < λn ≤ π, n ∈ N
 ≤ c2π

by the fact that suph∈Hδ
|∂/∂λhk(λ)| < c < ∞ and the mean value theorem. The proof

then proceeds a long the lines of Proof 5.9.1 in Brillinger (1981). First
R π
−π In,yy(λ)hk(λ)dλ =R 2π

0 In,yy(λ)hk(λ)dλ by 2π periodicity of In,yy(λ)hk(λ). Then

¯̄̄̄
¯̄2πn

n−1X
j=1

In,yy(λj)hk(λj)−
Z 2π

0
In,yy(λ)hk(λ)dλ

¯̄̄̄
¯̄

≤
n−1X
j=1

Z 2π(j+1)/n

2πj/n
|hk(λj)− hk(λ)| In,yy(λj) + |hk(λ)| |In,yy(λj)− In,yy(λ)| dλ

+

Z 2π/n

0
|hk(λ)| In,yy(λ)dλ.

Then E suph
Pn−1
j=1

R 2π(j+1)/n
2πj/n |hk(λj)− hk(λ)| In,yy(λj)dλ ≤ c4π2n−2

Pn−1
j=1 EIn,yy(λj) =

O(n−1) from the fact that suph∈Hδ
|hk(λj)− hk(λ)| < c2π/n uniformly on λ ∈ [2πj/n, 2π(j + 1)/n] .

From Brillinger (1981) p.417 it follows that E |In,yy(λj)− In,yy(λ)| = O(n−1) for λ ∈

[2πj/n, 2π(j + 1)/n]. FinallyE |hk(λ)| In,yy(λ) <∞ such thatE
R 2π/n
0 |hk(λ)| In,yy(λ)dλ =
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O(n−1).

Lemma A.5. For α∗l (φ) =
1
n

Pn
t=l+p+1 ε

2
t (φ)ε

2
t−l(φ), α

n
l,φ = Eα

∗
l (φ) with ε

2
t (φ) defined in

(14), εt satisfying Assumptions (A-2) and (B-1) and for some ² > 0 and any fixed δ <∞

such that Nδ (φ0) =
©
φ ∈ Rp| kφ− φ0k < δ,

¯̄
ξj
¯̄
> 1+ ²

ª
where the ξj are the roots of φ(L)

it follows that

max
l
Var(n1/2 sup

φ∈Nδ(φ0)

¯̄
α∗l (φ)− αnl,φ

¯̄
) = O(1).

Proof. Note that αnl,φ = αl,φ(n − l − p)/n where αl,φ = Eεt (φ)
2 εt−l (φ)2 . By a slight

abuse of notation we let φq = 1 for q = 0 such that we can write

εt (φ)
2 εt−l (φ)2 =

pX
q1=0

· · ·
pX

q4=0

φq1 · · ·φq4yt−q1yt−q2yt−l−q3yt−l−q4 .

Now define µ̂0n,y...y(q1, ..., q4, l) = n−1
Pn
t=1+p+l yt−q1 · · · yt−l−q4 −Eyt−q1 · · · yt−l−q4. Then

sup
φ∈Nδ(φ0)

¯̄
α∗l (φ)− αnl,φ

¯̄ ≤ sup
φ∈Nδ(φ0)

pX
q1,...,q4=0

¯̄
φq1 · · ·φq4

¯̄ ¯̄
µ̂0n,y...y(q1, ..., q4, l)

¯̄
. (21)

Expression (21) can be bounded by

µ
max
i
(
¯̄
φi,0
¯̄
+ δ)

¶4 pX
q1=0

· · ·
pX

q4=0

¯̄
µ̂0n,y...y(q1, ..., q4, l)

¯̄

so that it remains to show Var
¯̄
µ̂0n,y...y(q1, ..., q4, l)

¯̄
= O(n−1) for all l. This follows from

the stationary solution yt =
P
ψjεt−j and considering

n−1
nX

t=1+l+p

nX
s=1+l+p

Cov(εt−q1−j1 · · · εt−l−q4−j4, εs−q5−j5 · · · εs−l−q8−j8). (22)
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The covariances can be represented by eighth and lower order cumulants by applying

Theorem 2.3.2 in Brillinger (1981). The summability assumption (B-1) implies that (22)

is uniformly bounded in l, j1, ..., j8. This shows that Var
¯̄
µ̂0n,y...y(q1, ..., q4, l)

¯̄
= O(n−1)

uniformly in l as had to be shown.

Lemma A.6. Let Assumption (A-1) and (A-2) hold. Then lη (λ) = Re [lψ (λ)] ∈ Ch [−π,π]

and

2lη (λ) =

Z π

−π
fα̃ (λ− ξ) η̇ (φ, ξ)dξ + 1

σ4
η̇ (φ,λ)

where fα̃ (λ) =
P∞
j=−∞ α̃je

−iλj with α̃j =
³
1
αj
− 1

σ4

´
.

Proof. First we show that fα̃ (λ) ∈ L1 [−π,π] which follows from
R π
−π |fα̃ (λ)| dλ ≤

2π
P∞
j=−∞

¯̄̄
1
αj
− 1

σ4

¯̄̄
<∞. Next note for a typical element k

Z π

−π
fã (λ− ξ) [η̇ (φ, ξ)]k dξ

=

Z π

−π

∞X
j=0

∞X
l=−∞

α̃lψje
−iξ(j+k)e−i(λ−ξ)l +

∞X
j=0

∞X
l=−∞

ψjα̃le
−i(λ−ξ)leiξ(j+k)dξ

=
∞X
j=0

ψj
αj+k

e−iλ(j+k) +
∞X
j=0

ψj
αj+k

eiλ(j+k) − 1

σ4

 ∞X
j=0

ψje
−iλ(j+k) +

∞X
j=0

ψje
iλ(j+k)


such that the result follows from Theorem 8.10 in Folland (1984).

Proof of Proposition 4.1 We first show that
√
n
³
φ̃(h0)− φ0

´
d→ N(0,Ξ). Using re-

lationship (11) it is enough to consider
hR π
−π In,yy (λ)h

x(φ,λ)dλ
i−1 R π

−π In,yy (λ)h(φ,λ)dλ.

Using (18) leads to

Z π

−π
In,yy (λ)Reh(φ,λ)dλ =

Z π

−π
In,yy (λ)Reh

x(φ,λ)φdλ
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+

Z π

−π
In,εε (λ) lη(λ)dλ+

Z π

−π
Rn(λ)dλ

where

Rn(λ) = Re

·
lψ(−λ)φ(eiλ)

µ
ωε(λ)R

1
n,ψ(−λ) + ωε(−λ)

φ(e−iλ)
φ(eiλ)

R1n,ψ(λ) + φ(e
−iλ)

¯̄
R1n,ψ(λ)

¯̄¶¸
.

Now since
R
Rn (λ)dλ = op

¡
n−1/2

¢
by the proof of Lemma (A.2) it follows that

√
n
³
φ̃(h0)− φ

´
=

·Z π

−π
In,yy (λ)Re [h

x(φ,λ)] dλ

¸−1√
n

Z π

−π
lη (λ) In,εε (λ) dλ+ op(1).

By standard arguments it also follows that

Z π

−π
In,yy (λ)Re [h

x(φ,λ)] dλ
p→ σ2

Z π

−π
gyy(φ,λ)Re [h

x(φ,λ)] dλ = 2πσ2
∞X
j=1

α−1j bjb
0
j .

Since lψ (λ) ∈ Ck [−π,π] by Lemma (A.6) and φ(eiλ) ∈ Ck [−π,π] it follows from Lemma

(A.3) that

√
n

Z π

−π
lη (λ) In,εε (λ)dλ⇒ N

0, 4π2 ∞X
j=1

α−1j bjb
0
j

 ,
where the matrix

P∞
j=1 αjbjb

0
j has typical k, l-th element

P∞
j=0 α

−1
j+k∨lψφ,jψφ,j+|k−l|.

In order to show that φ̃(h0)− φ̃ = op
¡
n−1/2

¢
note that

n−1
h
Ẑ 0Y−1 −Z 0Y−1

i
k,l

= n−1
nX

t=p+1

yt−l
∞X

j=t−p−k

ψj
αk+j

εt−j−k

≤ (p+ k)n−1
nX

t=p+1

t−2
∞X

j=t−p−k

j2
¯̄
ψj
¯̄

αk+j
|yt−lεt−j−k|
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such that by the Markov inequality n−1
h
Ẑ0Y−1 − Z 0Y−1

i
k,l
= Op(n

−1) from

n−1E
nX

t=p+1

t−2
∞X

j=t−p−k

j2
¯̄
ψj
¯̄

αk+j
|yt−lεt−j−k| ≤ n−1c

nX
t=p+1

t−2
∞X
j=0

j2
¯̄
ψj
¯̄

αk+j
= O(n−1)

where c is some constant such that E |yt−lεt−j−k| < c uniformly in t, j, k and l. The

difference n−1
³
Ẑ0Y − Z0Y

´
can be analyzed in the same way.

To prove that φ̃FD(h0) − φ̃ = op(n
−1/2) we show φ̃FD(h0) − φ̃(h0) = Op(n

−1). From

Lemma (A.4) it follows that
Pn−1
j=1 In,yy (λj)h

x (φ,λj) −
R π
−π In,yy (λ)Re [h

x(φ,λ)] dλ =

Op(n
−1) and

Pn−1
j=1 In,yy (λj)h(φ,λj) −

R π
−π In,yy (λ)Re [h(φ,λ)] dλ = Op(n

−1) such that

φFD(h0)− φ̃(h0) = Op(n−1). This completes the proof of the proposition.

Proof of Proposition 5.1 For the first part of the proposition we have to show that

for any η > 0

lim
n→∞P ( sup

λ∈[−π,π]

°°°ĥn ³φ̂n,λ´− h (φ0,λ)°°° > η) = 0.
This holds if there is a δ and a neighborhood Nδ (φ0) of φ0 such that Nδ (φ0) is contained

in the interior of the stationary region of the parameter space and

lim
n→∞P ( sup

λ∈[−π,π]
sup

φ∈Nδ(φ0)

°°°ĥn (φ,λ)− h (φ0,λ)°°° > η) + lim
n→∞P (φ̂ /∈ Nδ (φ0)) = 0.

Consistency of φ̂ implies P (φ̂ ∈ Nδ (φ0)) → 1 so that only the first term needs to be

considered. From ĥn (φ,λ) = Re
h
l̂ψ (λ)φ(e

−iλ)
i
and similarly for h (φ0,λ) it follows that

°°°ĥn (φ,λ)− h (φ0,λ)°°° ≤ °°°l̂ψ (λ)− lψ,0 (λ)°°° ¯̄̄φ(e−iλ)¯̄̄+ klψ,0 (λ)k ¯̄̄φ(e−iλ)− φ0(e−iλ)¯̄̄
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so that it is enough to show that

sup
λ

sup
φ∈Nδ(φ0)

°°°l̂ψ (λ)− lψ,0 (λ)°°° = op (1) ,
while

¯̄
φ(eiλ)− φ0

¡
eiλ
¢¯̄
< η/2 on Nδ (φ0) by uniform continuity of φ0

¡
eiλ
¢
on [−π,π] .

To establish supλ supφ∈Nδ(φ0)
°°°l̂ψ (λ)− lψ,0 (λ)°°° = op (1) it is enough to look at a typi-

cal element
¯̄̄
l̂ψ,k (λ)− lψ,k,0 (λ)

¯̄̄
. Now let bj,k denote the k-th element of bj and αj,φ =

Eε2t (φ)ε
2
t−j(φ). Then, using the definition of lψ,k (λ)

sup
λ∈[−π,π]

sup
φ∈Nδ(φ0)

¯̄̄
l̂ψ,k (λ)− lψ,k,0 (λ)

¯̄̄

≤ sup
λ

sup
φ∈Nδ(φ0)

¯̄̄̄
¯̄n−p−1X
j=1

(α̂j (φ)
−1 bj,k,φ − α−1j,φbj,k,φ + α−1j,φbj,k,φ − α−1j bj,k,0)e−iλj

¯̄̄̄
¯̄ (23)

+sup
λ

¯̄̄̄
¯̄ ∞X
j≥n−p

α−1j bj,k,0e
−iλj

¯̄̄̄
¯̄ .

We note that supλ
¯̄̄P∞

j≥n−p α
−1
j bj,k,0e

−iλj
¯̄̄
≤ supj α−1j n−1/2

P∞
j≥n−p j

1/2 |bj,k,0| = o(n−1/2).

Next

¯̄̄̄
¯̄n−p−1X
j=1

((αj,φ)
−1bj,k,φ − α−1j bj,k,0)e−iλj

¯̄̄̄
¯̄ ≤

¯̄̄̄
¯̄n−p−1X
j=1

(((αj,φ)
−1 − α−1j )bj,k,φ)e−iλj

¯̄̄̄
¯̄ (24)

+

¯̄̄̄
¯̄n−p−1X
j=1

(α−1j (bj,k,φ − bj,k,0))e−iλj
¯̄̄̄
¯̄ (25)

It is therefore enough to show that (24) and (25) go to zero uniformly on [−π,π] as δ → 0.
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First consider (25).

sup
λ∈[−π,π]

¯̄̄̄
¯̄Z π

−π

n−p−1X
j=1

α−1j e
−i(λ−µ)j (η̇k (φ, µ)− η̇k (φ0, µ)) dµ

¯̄̄̄
¯̄

≤ sup
λ∈[−π,π]

¯̄̄̄
¯̄Z π

−π

n−p−1X
j=1

µ
α−1j − 1

σ4

¶
e−i(λ−µ)j (η̇k (φ, µ)− η̇k (φ0, µ)) dµ

¯̄̄̄
¯̄

+
1

σ4
sup

λ∈[−π,π]

¯̄̄̄
¯̄n−p−1X
j=1

(bj,k,φ − bj,k,0) e−iλj
¯̄̄̄
¯̄ (26)

where, for φ ∈ Nδ (φ0) , the finite Fourier approximation of η̇ (φ, µ) converges uniformly on

[−π,π]×Nδ (φ0) such that

sup
λ∈[−π,π]

¯̄̄̄
¯̄n−p−1X
j=1

(bj,k,φ − bj,k,0) e−iλj
¯̄̄̄
¯̄

≤ sup
λ∈[−π,π]

|η̇ (φ,λ)− η̇ (φ0,λ)|k + 2 sup
φ∈Nδ(φ0)

∞X
j=n−p

|bj,k,φ|

≤ ²+ 2 sup
φ∈Nδ(φ0)

∞X
j=n−p

|bj,k,φ|

Then, letting α̃j = α−1j − σ−4 the first term in (26) is dominated by

≤ sup
λ∈[−π,π]

Z π

−π

¯̄̄̄
¯̄n−p−1X
j=1

α̃j
−1e−i(λ−µ)j

¯̄̄̄
¯̄ |η̇k (φ, µ)− η̇k (φ0, µ)| dµ

≤
n−p−1X

j=−n+p+1

¯̄
α̃j
−1¯̄ Z π

−π
|η̇k (φ, µ)− η̇k (φ0, µ)| dµ

< C² (δ) .

The constant C is bounded by
Pn−p−1
j=1

¯̄̄
ãj (φ0)

−1
¯̄̄
<
P∞
j=1

¯̄̄
ãj (φ0)

−1
¯̄̄
<∞. From uniform

continuity of η̇ (φ, µ) on [−π,π]×Nδ (φ0) we have |η̇ (φ, µ)− η̇ (φ0, µ)|k < ² for some δ > 0
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from which it follows that
R π
−π |η̇ (φ, µ)− η̇ (φ0, µ)|k dµ < 2π². The constant C can be

bounded by (2π
P∞
j=1

¯̄̄
ãj (φ0)

−1
¯̄̄
+ σ−4) independent of n and supφ∈Nδ(φ0)

P∞
j=n−p |bj,k,φ|

goes to zero as n→∞. Next we consider (24). First look at

¯̄̄
α−1j,φ − α−1j

¯̄̄
=
|αj,φ − αj |
αj,φαj

.

From αj,φ = E(φ(L)yt)2(φ(L)yt−j)2 it follows that αj,φ > αφ > 0 since otherwise φ(L)yt =

0 a.s. But, since φ(L)yt = φ(L)φ−10 (L)εt is an ARMA(p, p) process with parameters φ0

and φ, φ(L)yt has nonzero variance contradicting φ(L)yt = 0 a.s. Then

¯̄̄
(αj,φ)

−1 − α−1j
¯̄̄
< C1 |αj,φ − αj |

for some constant C1. Since Eε4t < ∞ we can uniformly bound |αj,φ − αj | by δC2 where

C2 is a finite constant depending on φ0 and Eε
4
t . Then

¯̄̄̄
¯̄n−p−1X
j=1

(((αj,φ)
−1 − α−1j )bj,k,φ)e−iλj

¯̄̄̄
¯̄ ≤ δC1C2 n−p−1X

j=1

|bj,k,φ|

where
Pn−p−1
j=1 |bj,k,φ| <∞ on Nδ (φ0). Now turn to the first two terms of (23)

¯̄̄̄
¯̄n−p−1X
j=1

(α̂j(φ)
−1 − α−1j,φ)bj,k,φe−iλj

¯̄̄̄
¯̄

≤ sup
φ∈Nδ(φ0)

n−p−1X
j=1

¯̄̄
α̂j (φ)

−1 − αj,φ−1
¯̄̄
|bj,k,φ| .
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Now
¯̄̄
α̂j (φ)

−1 − α−1j,φ
¯̄̄
≤ (α̂j (φ)αj,φ)−1 |α̂j (φ)− αj,φ| and

|α̂j (φ)− αj,φ| ≤
¯̄
α̂j (φ)− αnj,φ

¯̄
+
j + p

n
|αj,φ|

where αnj,φ =
n−j−p
n αj,φ is the expected value of α∗j (φ) . Then

n−p−1X
j=1

¯̄̄
α̂j (φ)

−1 − αj,φ−1
¯̄̄
|bj,k,φ| ≤

n−p−1X
j=1

(α̂j (φ)αj,φ)
−1 ¯̄α̂j (φ)− αnj,φ ¯̄ |bj,k,φ|

+

n−p−1X
j=1

(α̂j (φ)αj,φ)
−1 j + p

n
|αj,φ| |bj,k,φ|

First note, that since αj,φ is bounded away from zero and α̂j (φ)
−1 < cn1/2−υ, we can

replace (α̂j (φ)αj,φ)−1 by n1/2−υ times a constant that does not affect the argument. Then

the second term

n−1/2−υ
n−p−1X
j=1

(j + p) |αj,φ| |bj,k,φ|→ 0 as n→∞

uniformly on Nδ (φ0) . The first term now is shown to go to zero in probability by looking

at

P ( sup
φ∈Nδ(φ0)

n1/2−ν
Xn−p−1

j=1

¯̄
α̂j (φ)− αnj,φ

¯̄ |bj,k,φ| > η)
The term n1/2−ν

Pn−p−1
j=1

¯̄̄
α̂j (φ)− αnj,φ

¯̄̄
|bj,k,φ| is dominated by

n1/2−ν
Xn−p−1

j=1

¯̄
α∗j (φ)− αnj,φ

¯̄ |bj,k,φ|+ n1/2−νXn−p−1
j=1

¯̄
α̂j (φ)− α∗j (φ)

¯̄ |bj,k,φ| .
The last term is zero with probability tending to one if maxj P (supφ∈Nδ(φ0) α

∗
j (φ) < dn)→

0 which follows form maxj P (n
1/2 supφ∈Nδ(φ0)(α

∗
j (φ) − αnj,φ) > η) → 0. By Markov’s in-
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equality the first term is bounded by

n−ν

η
sup

φ∈Nδ(φ0)

Xn−p−1
j=1

|bj,k,φ|E
"
n1/2 sup

φ∈Nδ(φ0)

¯̄
α∗j (φ)− αnj,φ

¯̄#

≤ n−ν

η

Xn−p−1
j=1

|bj,k,φ|
Ã
Var(n1/2( sup

φ∈Nδ(φ0)

¯̄
α∗j (φ)− αnj,φ

¯̄
))

!1/2

The result then follows from n−ν
η

Pn−p−1
j=1 |bj,k,φ| = O(n−ν) if

nmax
j
Var( sup

φ∈Nδ(φ0)

¯̄
α∗j (φ)− αnj,φ

¯̄
) = O (1) .

This is shown in Lemma (A.5).

It remains to show that P (ρ(ĥn(φ̂n,λ), h (φ0,λ)) > δ) → 0. Using the result from the

first part it is enough to show that supλ∈[−π,π]
°°°∂ĥn(φ̂n,λ)/∂λ− ∂h (φ0,λ) /∂λ°°° = op (1) .

Since

∂hη̇ (φ,λ)k
∂λh

= (ik)h η̇ (φ,λ)k

implies that η̇ (φ,λ)k ∈ Ch [−π,π] ∀h < ∞ and ∂hη̇ (φ,−π)k /∂λh = ∂hη̇ (φ,π)k /∂λ
h it

follows from Folland (1984), Theorem 8.22e, that (ij)hbj (φ) =
R ³

∂h

∂λh
η̇(φ,λ)

´
e−iλjdλ. By

Bernstein’s Theorem,
P |j|h−1 |bj (φ)| <∞ such that

X
(ij)bj (φ) e

iλj → ∂

∂λ
η̇(φ,λ)

uniformly on [−π,π] . Using these facts, and noting that lη(λ) ∈ Ch [−π,π] , the proof of

the first part can be applied to the first derivative.
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Since (H, ρ) is a complete metric space P
³
ρ
³
ĥn(φ̂n,λ), h (φ0,λ)

´
> δ

´
→ 0 implies

that P (ĥn ∈ H)→ 1.

Proof of Theorem 5.2 First we note that for any ² > 0 and δ > 0 such that Hδ ⊂ H◦

P

n1/2
¯̄̄̄
¯̄n−1X
j=1

In,yy(λj)ĥn(λj)−
Z π

−π
In,yy(λ)ĥn(λ)dλ

¯̄̄̄
¯̄ > ²


≤ P

 sup
h∈Hδ

n1/2

¯̄̄̄
¯̄n−1X
j=1

In,yy(λj)h(λj)−
Z π

−π
In,yy(λ)h(λ)dλ

¯̄̄̄
¯̄ > ²

+ P ³ĥn /∈ H or ρ(ĥn, h0) > δ
´
→ 0

by Lemma (A.4) and Proposition (5.1) sucht that we focus on the integral representations.

We will establish that

√
n
³
φ̃(ĥn)− φ̃n (h0)

´
= op (1) . (27)

It is enough to show that
√
n
³
φ̃F (ĥn)− φ̃F (h0)

´
= op (1) and

√
n
³
φ̃(ĥn)− φ̃F (ĥn)

´
= op(1) (28)

for φ̃F (h) =
hR π
−π In,yy (λ)h

x (φ,λ)dλ
i−1 R π

−π In,yy (λ)h(φ,λ)dλ. We first show (28). Con-

sider

n−1Ẑ0Y−1 = n−1
nX

t=p+1

t−p−1X
j=1

b̂j

α̂j(φ̂)
φ̂
0
yt−j [yt−1, ..., yt−p] .

Compare this to the q-th column of

Z π

−π
In,yy (λ)h

x (φ,λ) dλ
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= n−1
nX

t=q+1

t−1X
j=1

b̂j

α̂j(φ̂)
yt−j +

t−2X
j=1

b̂j

α̂j(φ̂)
φ̂1yt−j−1 + ...+

t−p−1X
j=1

b̂j

α̂j(φ̂)
φ̂pyt−j−p

 yt−q
such that the difference between the two terms is

n−1
nX

t=q+1

 pX
j=1

jφ̂j
b̂t−j+1

α̂t−j+1(φ̂)
yj+1yt−q


+n−1

pX
t=q+1

 tX
j=1

b̂j

α̂j(φ̂)
yt−j −

t−1X
j=1

b̂j

α̂j(φ̂)
φ̂1yt−j−1 − ...−

t−pX
j=1

b̂j

α̂j(φ̂)
φ̂pyt−j−p

 yt−q.

We can now write
¯̄̄
b̂t−j

α̂t−j(φ̂)

¯̄̄
≤
¯̄̄
b̂t−j
bt−j

¯̄̄
|bt−j | c−1n1/2−ν . Since

Pn
t=q+1 |bt−j| |yj+1yt−q| = Op(1)

and
¯̄̄
b̂j/bj

¯̄̄
= Op(1) uniformly in j it follows that the difference is Op(n−1/2−ν). The same

can be shown for the difference between Ẑ 0Y and
R π
−π In,yy (λ)h (φ,λ)dλ which shows that

√
n
³
φ̃(ĥn)− φ̃F (ĥn)

´
= op(1). By applying (18) it can be shown that for h ∈ H

In,yy (λ)h (φ,λ) = In,yy (λ)Re
h
lψ (λ)φ(e

−iλ)a (λ)
i
φ0 + In,εε (λ)hφ0 (φ,λ) +Rn (λ) (29)

where the remainder term Rn (λ) = Re
£
lψ (−λ)φ(eiλ)R2n(λ)

¤
is defined using

R2n (λ) = ωε (λ)R
1
n,ψ (−λ) + ωε (−λ)

φ0
¡
e−iλ

¢
φ0 (e

iλ)
R1n,ψ (λ) + φ0

³
e−iλ

´ ¯̄
R1n,ψ (−λ)

¯̄2

and hφ0 (φ,λ) = Re
£
lψ (−λ)φ(eiλ)φ−10 (eiλ)

¤
such that hφ0 (φ0,λ) = Re [lψ (−λ)] with

ĥφ0

³
φ̂,λ

´
= Re

h
l̂ψ (−λ) φ̂(eiλ)φ−10 (eiλ)

i
. Note that here we need to distinguish between

φ0(e
iλ) from the true data generating process and the φ(eiλ) used in h (φ,λ) . Property
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(27) then follows if

°°°°Z π

−π
In,yy (λ)

³
ĥxn(φ̂n,λ)− hx (φ0,λ)

´
dλ

°°°° = op (1) (30)

and

√
n

°°°°Z π

−π
In,εε (λ)

³
ĥφ0(φ̂n,λ)− lη (λ)

´
dλ

°°°° = op (1) (31)

√
n

°°°°Z π

−π
Re
h³
lψ (−λ)φ(eiλ)− lψ,0 (−λ)φ0(eiλ)

´
R2n(λ)

i
dλ

°°°° = op (1) . (32)

First, (30) can be established easily with the help of Proposition (5.1) by the following

argument

°°°°Z π

−π
In,yy (λ)

³
ĥxn(φ̂n,λ)− hx (φ0,λ)

´
dλ

°°°°
≤ sup

λ∈[−π,π]

°°°ĥxn(φ̂n,λ)− hx (φ0,λ)°°°Z π

−π
In,yy (λ) dλ

≤ 2 sup
λ∈[−π,π]

°°°l̂ψ (−λ) φ̂(eiλ)− lψ,0 (−λ)φ0(eiλ)°°° sup
λ∈[−π,π]

ka (λ)k γ̂yy (0)→ 0

where the first inequality uses the fact, that In,yy (λ) is a positive scalar and the second

inequality uses tr(ab
0
ba

0
) = (a

0
a)(b

0
b) where a and b are two conformable vectors. The

last expression goes to zero by (5.1) and the fact that supλ∈[−π,π] ka (λ)k is bounded. To

prove (31) we work with the metric space (H, ρ) defined in (13). Also let h0 = h (φ0,λ) ,

ĥ = ĥn(φ̂n,λ), lψ = lψ (−λ) , lψ,0 = lψ,0 (−λ) φλ = φ(eiλ), φλ0 = φ0(eiλ) and

υn (h) =
√
n

Z π

−π
In,εε (λ)

¡
hφ0 (φ,λ)− lη,0

¢
+Re

h³
lψφ

λ − lψ,0φλ0)
´
R2n(λ)

i
dλ
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for h ∈ H. Choose the open neighborhood Hδ as in (20) for δ > 0 such that Hδ ⊂ H◦.

Following Andrews (1994), (31) follows if for any given ϑ > 0 there exists a δ > 0 such

that

P
³°°°vn ³ĥn´− vn (h0)°°° > ϑ, ĥn ∈ H, ρ(ĥn, h0) < δ´+ P ³ĥn /∈ H or ρ(ĥn, h0) > δ

´
→ 0

as n→∞ where P
³
ĥn /∈ H or ρ(ĥn, h0) > δ

´
→ 0 follows from Proposition (5.1). There-

fore we need to show that

P

Ã
sup
h∈Hδ

√
n

°°°°Z π

−π

³
lψφ

λ − lψ,0φλ0
´
R2n(λ)dλ

°°°° > ϑ
!
→ 0. (33)

A more refined analysis of (19) is needed. Using the notation α0j for the weights of a filter

h ∈ Hδ note that the k-th element in lψφλ − lψ,0φλ0 is

sup
h∈Hδ

¯̄̄h
lψφ

λ − lψ,0φλ0
i
k

¯̄̄
= sup

h∈Hδ

¯̄̄̄
¯̄ pX
l=0

∞X
j=1

Ã
φl
bj,k,φ
α0j

− φ0,l
bj,k,0
αj

!
e−iλ(j+l)

¯̄̄̄
¯̄

≤ c1 sup
h∈Hδ

 ∞X
j=1

|bj,k,φ|+ |bj,k,0|
c2

+ ∞X
j=1

|bj,k,0| c3

≤
∞X
j=1

|z̃j| <∞

where c1 = pmax(1, |φ1| , ...,
¯̄
φp
¯̄
,
¯̄
φ0,1

¯̄
, ...,

¯̄
φ0,p

¯̄
), c2 = sup

¯̄̄
α
0
j

¯̄̄
> 0 and c3 = sup

¯̄̄
1/α

0
j − 1/αj

¯̄̄
<

∞ for h ∈ Hδ. If the polynomial φ(L) has d distinct roots ξs with multiplicities ds then

|bj,k,φ| ≤
Pd
r=1

Pds−1
s=0 |crs| |j − k|s |ξs|−j+k where the constants crs are bounded. For

h ∈ Hδ we have |ξs| > 1 such that |bj,k,φ| < |z̃j| is uniformly bounded by an absolutely
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summable sequence for all h in Hδ. Setting ψ
¡
e−iλ

¢
= φ0

¡
e−iλ

¢
/φ0

¡
eiλ
¢
it now follows

that

E
√
n sup
h∈Hδ

¯̄̄̄Z π

−π
ψ
³
e−iλ

´
ωε (λ)R

1
n,ψ(−λ)

h³
lψφ

λ − lψ,0φλ0
´i
k
dλ

¯̄̄̄
≤ 4π sup

j
α
1/2
j n−1/2

∞X
j=−∞

∞X
l=−∞

∞X
m=−∞

¯̄
ψjψl

¯̄ |z̃m| |l|→ 0.

With these adjustments (33) follows from a straight forward extension of the proof of

Lemma (A.2). Finally we show

P

Ã
sup
h∈Hδ

√
n

°°°°Z π

−π
In,εε (λ)

¡
hφ0 (φ,λ)− lη,0 (λ)

¢
dλ

°°°°
!
→ 0 (34)

The main idea of the proof is taken from Robinson where integration by parts is used

to separate h from In,εε (λ) .

sup
h∈Hδ

√
n

°°°°Z π

−π
In,εε (λ)

¡
hφ0 (φ,λ)− lη,0 (λ)

¢
dλ

°°°°
≤ sup

h∈Hδ

√
n

°°°°Z π

−π
(In,εε (λ)−EIn,εε (λ))

¡
hφ0 (φ,λ)− lη,0 (λ)

¢
dλ

°°°°
+ sup
h∈Hδ

√
n

°°°°Z π

−π
EIn,εε (λ)

¡
hφ0 (φ,λ)− lη,0 (λ)

¢
dλ

°°°°
Since EIn,εε (λ) = σ2 it follows that the last term is σ2

R π
−π
¡
hφ0 (φ,λ)− lη,0 (λ)

¢
dλ. Now

note that
R π
−π lη,0 (λ) dλ = 0 and

R π
−π hφ0 (φ,λ)dλ = 0. Next use integration by parts

sup
h∈Hδ

√
n

°°°°Z π

−π
(In,εε (λ)−EIn,εε (λ))

¡
hφ0 (φ,λ)− lη,0 (λ)

¢
dλ

°°°°
≤ sup

h∈Hδ

√
n

°°°°Z π

−π
∂

∂λ

¡
hφ0 (φ,λ)− lη,0 (λ)

¢ Z λ

−π
(In,εε (µ)−EIn,εε (µ))dµdλ

°°°°
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+ sup
h∈Hδ

√
n

°°°°¡hφ0 (φ,π)− lη,0 (π)¢ Z π

−π
(In,εε (µ)−EIn,εε (µ))dλ

°°°° (35)

Now for h ∈in Hδ both
°° ∂
∂λ

¡
hφ0 (φ,λ)− lη,0 (λ)

¢°° and °°hφ0 (φ,π)− lη,0 (π)°° are uniformly
bounded by Cδ for some constant C <∞ such that

sup
h∈Hδ

√
n

°°°°Z π

−π
∂

∂λ

¡
hφ0 (φ,λ)− lη,0 (λ)

¢ Z λ

−π
(In,εε (µ)−EIn,εε (µ))dµdλ

°°°°
≤ Cδ

√
n

Z π

−π

¯̄̄̄Z λ

−π
(In,εε (µ)−EIn,εε (µ))dµ

¯̄̄̄
dλ.

It remains to show that
√
n
R π
−π
¯̄̄R λ
−π (In,εε (µ)−EIn,εε (µ)) dµ

¯̄̄
dλ is bounded in probabil-

ity. Let I0n,εε(µ) = In,εε (µ)−EIn,εε (µ)and define the function

τ(λ, µ) =


1 µ ≤ λ

0 µ > λ

Since In,εε (µ) is 2π periodic we work with
√
n
R 2π
0

¯̄̄R λ
0 (In,εε (µ)−EIn,εε (µ))dµ

¯̄̄
dλ. Let-

ting µs =
2πs
n , we first show that

√
n

Z π

−π

¯̄̄̄
¯2πn

n−1X
s=1

τ(λ, µs)I
0
n,εε (µs)−

Z 2π

0
τ(λ, µ)I0n,εε (µ) dµ

¯̄̄̄
¯ dλ = op(1).

The inner integral can be split into a part

2π

n

n−1X
s=1

τ(λ, µs)I
0
n,εε (µs)−

Z 2π

0
τ(λ, µ)I0n,εε (µ) dµ

=
n−1X
s=1

Z 2π(s+1)/n

2πs/n

£
(τ(λ, µs)− τ (λ, µ))I0n,εε (µs) + τ(λ, µ)(I0n,εε (µs)− I0n,εε (µ))

¤
dµ
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+

Z 2π/n

0
τ(λ, µ)I0n,εε (µ) dµ (36)

and σ2(2πn
Pn−1
s=1 τ(λ, µs)−

R 2π
0 τ(λ, µ)dµ). If µs ≤ λ for all s ≤ t then 2π(t+ 1) > λn and

2πt ≤ λn implying that 0 < λ− 2πt/n < 2π/n such that

√
nσ2

¯̄̄̄
¯2πn

n−1X
s=1

τ(λ, µs)−
Z 2π

0
τ(λ, µ)dµ

¯̄̄̄
¯ = O(n−1/2)

uniformly in λ. Using Markov’s inequality we look at each term of (36) separately. First

√
nE

¯̄̄̄
¯
n−1X
s=1

Z 2π(s+1)/n

2πs/n
(τ(λ, µs)− τ(λ, µ))In,εε (µs) dµ

¯̄̄̄
¯

≤ √
n
n−1X
s=1

Z 2π(s+1)/n

2πs/n
sup
µ
|τ(λ, µs)− τ(λ, µ)|σ2dµ

where supµ |τ(λ, µs)− τ(λ, µ)| = 0 if λ /∈ [2πs/n, 2π(s+ 1)/n] and 1 otherwise. Therefore

√
n
n−1X
s=1

Z 2π(s+1)/n

2πs/n
sup
µ
|τ(λ, µs)− τ(λ, µ)|σ2dµ ≤ σ2

2π√
n

uniformly in λ. Also

√
nE

¯̄̄̄
¯
Z 2π/n

0
τ(λ, µ)I0n,εε (µ)dµ

¯̄̄̄
¯ ≤ σ2 2π√n

where the bound is again uniform in λ. Finally, since E(I0n,εε (µs)− I0n,εε (µ)) = 0,

√
nE

¯̄̄̄
¯
n−1X
s=1

Z 2π(s+1)/n

2πs/n
τ(λ, µ)(In,εε (µs)− In,εε (µ))dµ

¯̄̄̄
¯

49



≤
n−1X
s=1

Z 2π(s+1)/n

2πs/n
(nVar(In,εε (µs)− In,εε (µ)))1/2dµ

where, from Brillinger (1981), p.417, nVar(In,εε (µs) − In,εε (µ)) = O(n−1) uniformly on

2πs/n ≤ µ ≤ 2π(s+ 1)/n. This shows that

√
nE

¯̄̄̄
¯2πn

n−1X
s=1

τ(λ, µs)I
0
n,εε (µs)−

Z 2π

0
τ(λ, µ)I0n,εε (µ)dµ

¯̄̄̄
¯ = O(n−1/2)

uniformly in λ. We can therefore consider

√
n

Z π

−π

¯̄̄̄
¯2πn

n−1X
s=1

τ(λ, µs)I
0
n,εε (µs)

¯̄̄̄
¯ dλ

which is bounded in probability byMarkov’s inequality if supλ nE
¯̄̄
2π
n

Pn−1
s=1 τ(λ, µs)I

0
n,εε (µs)

¯̄̄2
is bounded. From Brillinger (1981), Theorem 5.10.1,

nE

¯̄̄̄
¯2πn

n−1X
s=1

τ(λ, µs)I
0
n,εε (µs)

¯̄̄̄
¯
2

=

Z λ

0
f2εε (µ) dµ+

Z λ

0

Z λ

0
fε..ε (µ1, µ2,−µ1)dµ1dµ2 +O

¡
n−1

¢

where the error is uniform in λ. Then f2εε (λ) = σ
4 and fε..ε (µ1, µ2,−µ1) is the fourth order

cumulant spectrum of εt is uniformly bounded under Assumption (A-2).

From Brillinger (1981), Theorem 5.10.1 and 5.10.2, it follows immediately that

√
nE

¯̄̄̄Z π

−π
(In,εε (µ)−EIn,εε (µ)) dµ

¯̄̄̄
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is bounded such that the second term in (35) is small in probability on Hδ. This completes

the proof.

Proof of Theorem 5.3: The proof is essentially identical to the proof of Theorem

(5.1) and is therefore omitted.
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