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Abstract

In this paper we consider parameter estimation in a linear simultaneous equations model. It
is well known that two stage least squares (2SLS) estimators may perform poorly when the
instruments are weak. In this case 2SLS tends to suffer from substantial small sample biases.
It is also known that LIML and Nagar-type estimators are less biased than 2SLS but suffer
from large small sample variability. We construct a bias corrected version of 2SLS based on the
Jackknife principle. Using higher order expansions we show that the MSE of our Jackknife 2SLS
estimator is approximately the same as the MSE of the Nagar-type estimator. We also compare
the Jackknife 2SLS with an estimator suggested by Fuller (1977) that significantly decreases the
small sample variability of LIML. Monte Carlo simulations show that even in relatively large
samples the MSE of LIML and Nagar can be substantially larger than for Jackknife 2SLS. The
Jackknife 2SLS estimator and Fuller’s estimator give the best overall performance. Based on
our Monte Carlo experiments we conduct formal statistical tests of the accuracy of approximate
bias and MSE formulas. We find that higher order expansions traditionally used to rank LIML,
2SLS and other IV estimators are unreliable when identification of the model is weak. Overall,
our results show that only estimators with well defined finite sample moments should be used

when identification of the model is weak.
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1 Introduction

Over the past few years there has been renewed interest in finite sample properties of econo-
metric estimators. Most of the related research activities in this area are concentrated in the
investigation of finite sample properties of instrumental variables (IV) estimators. It has been
found that standard large sample inference based on 2SLS can be quite misleading in small
samples when the endogenous regressor is only weakly correlated with the instrument. A partial
list of such research activities is Nelson and Startz (1990), Maddala and Jeong (1992), Staiger
and Stock (1997), and Hahn and Hausman (2002).

A general result is that controlling for bias can be quite important in small sample situations.
Anderson and Sawa (1979), Morimune (1983), Bekker (1994), Angrist, Imbens, and Krueger
(1995), and Donald and Newey (2001) found that IV estimators with smaller bias typically have
better risk properties in finite sample. For example, it has been found that the LIML, the
JIVE, or Nagar’s (1959) estimator tend to have much better risk properties than 2SLS. Donald
and Newey (2000), Newey and Smith (2001) and Kuersteiner (2000) may be understood as an
endeavor to obtain a bias reduced version of the GMM estimator in order to improve the finite
sample risk properties.

In this paper we consider higher order expansions of LIML, JIVE, Nagar and 2SLS estima-
tors. In addition we contribute to the higher order literature by deriving the higher order risk
properties of the Jackknife 2SLS. Such an exercise is of interest for several reasons. First, we
believe that higher order MSE calculations for the Jackknife estimator have not been available
in the literature. Most papers simply verify the consistency of the Jackknife bias estimator.
See Shao and Tu (1995, Section 2.4) for a typical discussion of this kind. Akahira (1983), who
showed that the Jackknife MLE is second order equivalent to MLE, is closest in spirit to our
exercise here, although a third order expansion is necessary in order to calculate the higher order
MSE.

Second, Jackknife 2SL.S may prove to be a reasonable competitor to the LIML or Nagar’s
estimator despite the fact that higher order theory predicts it should be dominated by LIML.
It is well-known that LIML and Nagar’s estimator have the “moment” problem: With normally
distributed error terms, it is known that LIML and Nagar do not possess any moments. See
Mariano and Sawa (1972) or Sawa (1972). On the other hand, it can be shown that Jackknife
2S5LS has moments up to the degree of overidentification. LIML and Nagar’s estimator have
better higher order risk properties than 2SLS, based on higher order expansions used by Rothen-
berg (1983) or Donald and Newey (2001). These results may however not be very reliable if the
moment problem is not only a feature of the extreme end of the tails but rather affects dispersion

of the estimators more generally. Large dispersions and lack of moments are technically distinct



problems, but we identify these problems for historical reasons. On the other hand, these two
problems seem to be identical problems for all practical purpose, as our Monte Carlo results
demonstrate.

We conduct a series of Monte Carlo experiments to determine how well higher order approxi-
mations predict the actual small sample behavior of the different estimators. When identification
of the model is weak the quality of the approximate MSE formulas based on higher order ex-
pansions turns out to be poor. This is particularly true for the LIML and Nagar estimators
that have no moments in finite samples. Our calculations show that estimators that would be
dismissed based on the analysis of higher order stochastic expansions turn out to perform much
better than predicted by theory.

We point out that the literature on exact small sample distributions of 2SLS and LIML such
as Anderson and Sawa (1979), Anderson, Morimune and Sawa (1983), Anderson, Naoto and Sawa
(1982), Holly and Phillips (1979), Phillips (1980) and more recently Oberhelman and Kadiyala
(2000) did not focus on the weak instrument case and therefore the small sample behavior of
LIML under these circumstances is still an open issue. We show that the parametrizations used
in these papers imply values for the first stage R? that are much larger than typically thought
relevant for the weak instrument case.

These previous papers present finite sample results summarized around the “concentration
parameter”.! The concentration parameter 62 is approximately equal to nR? / (1 — RQ) under
our normalization, where n denotes the sample size.? In Anderson et. al. (1982, Table I, p.
1012) the minimum concentration parameter equals 30, which far exceeds the weak instrument
cases we consider where the first stage R? is equal to 0.01. Rather, for the case of n = 100, one
needs R? = 0.3 in order to get 62 = 30, which is quite high. Subsequent tables in Anderson et.al.
continue to have this problem with the minimum 62 = 10 which for R? = 0.1 means that one
needs n = 1000. Our Monte Carlo experiments show that the weak instrument problem pretty
much disappears for n this large. Similarly, the graphs reported in Anderson et.al., p.1022-1023
do not apply to the weak instrument case because they are based on 62> = 100 which would
require R? = 0.1 for n = 1000. The parametrizations of Anderson et. al. were used by other
researchers such as Oberhelman and Kadiyala (2000, p. 171). Anderson and Sawa (1973) use
values of 62 ranging from 20 to 180 in their numerical work and Anderson and Sawa (1979) use
values of 62 ranging from 10 to co. Holly and Phillips (1979) use 6% > 40 and Phillips (1980)
considers 2SLS estimators for the case of multiple endogenous variables such that his results
are not directly comparable here. Nevertheless, the implied values of 62 are roughly 80 with a

sample size of n = 20 which implies an R? of 0.8.

'The concentration parameter is formally defined later on page 11.
2See the discussion on page 11.



Precisely for the cases with very low first stage R? we find previously undocumented behavior
of LIML estimators. In particular, LIML tends to be biased and has large inter-quantile ranges
that can dominate those of 2SLS and certainly those of the Jackknife 2SLS advocated here.
Anderson et. al. (1983, p. 233) claim: “The infinite moments are due to the behavior of
the distributions outside of the range of practical interest to the econometrician.” However,
the approximations that they use to reach this conclusion do not work in the weak instrument
case. In particular they claim on p.233 that, “The MSE of the asymptotic expansion to order
1/6 of the LIML estimator is smaller than that of the TSLS estimator if Ko > 7 and |a| >
2/ (K3 —T7)...,” where Kj is the degree of overidentification. It can be checked easily that
this inequality holds for all the parameter values that we consider in our simulations and we
would thus expect to find smaller interquartile ranges for LIML compared to 2SLS. But quite
to the contrary, our simulation results indicate that LIML does worse than 2SLS in the weak
instrument cases. This is further evidence that the finite sample analysis did not address the
weak instrument case. The reason is of course that in the weak instrument case of Staiger and
Stock (1997) §* = O(1) such that the approximations analyzed in Anderson et. al. (1983) do
not converge and are thus not useful guides to assess the properties of estimators in the weak
instrument case. Contrary to Anderson et.al. we find that the large dispersion of LIML is around
parameter values very much of relevance to the econometrician. We also find that the actual
median bias of LIML can be significant and is increasing in the number of instruments. Both of
these findings are in contrast to the fact that the higher order median bias of LIML according
to the traditional expansion is zero. We try to provide an explanation of this discrepancy by
using an alternative asymptotic analysis put forth by Staiger and Stock (1997).

Based on our Monte Carlo experiments we conduct informal statistical tests of the accuracy
of predictions about bias and MSE based on higher order stochastic expansions. We find that
when identification of the model is weak such bias and MSE approximations perform poorly
and selecting estimators based on them is unreliable. The issue of how a small concentration
parameter may lead to a break down of the reliability of the traditional higher order expansion
has been recognized in the literature, although the practical relevance of this problem does not
seem to have been extensively investigated. See, e.g., Rothenberg (1984).

In this paper, we also compare the Jackknife 2SLS estimator with a modification of the
LIML estimator proposed by Fuller (1977). Fuller’s estimator does have finite sample moments
so0 it solves the moment problems associated with the LIML and Nagar estimators. We find the
optimum form of Fuller’s estimator. Our conclusion is that both this form of Fuller’s estimator
and JN2SLS have improved finite sample properties and do not have the “moment” problem in
comparison to the typically used estimators such as LIML. However, neither the Fuller estimator

nor JN2SLS dominate each other in actual practice.



Our recommendation for the practitioner is thus to use only estimators with well defined

finite sample moments when the model may only be weakly identified.

2 MSE of Jackknife 2SLS

The model we focus on is the simplest model specification with one right hand side (RHS) jointly
endogenous variable so that the left hand side variable (LHS) depends only on the single jointly
endogenous RHS variable. This model specification accounts for other RHS predetermined (or

exogenous) variables, which have been “partialled out” of the specification. We will assume that

vi = b+,
v, = fitui=zZn+u i=1,...,n (1)

Here, x; is a scalar variable, and z; is a K-dimensional nonstochastic column vector. The first
equation is the equation of interest, and the right hand side variable x; is possibly correlated with
g;. The second equation represents the “first stage regression”, i.e., the reduced form between
the endogenous regressor x; and the instruments z;. By writing f; = E'[x;] 2] = zim, we are
ruling out a nonparametric specification of the first stage regression. Note that the first equation
does not include any other exogenous variable. It will be assumed throughout the paper (except
for the empirical results) that all the error terms are homoscedastic.
We focus on the 2SLS estimator b given by
/ /
b= S =0+ S

where P = Z(2'Z)" ' Z'. Here, y denotes (y1,...,yn). We define z, €, u, and Z similarly.

2SLS is a special case of the k-class estimator given by

’Py—k-x'My
o'Pr —k-2'Mx’

where M = I — P and k is a scalar. For k = 0, we obtain 2SLS. For x equal to the smallest
cigenvalue of the matrix W/ PW (W MW) ™', where W = [y,z], we obtain LIML. For x =
%/ (1- %), we obtain B2SLS, which is Donald and Newey’s (2001) modification of Nagar’s
(1959) estimator.

Donald and Newey (2001) compute the higher order mean squared error (MSE) of the k-class
estimators. They show that n times the MSE of 2SLS, LIML, and B2SLS are approximately

equal to

2 2
K o3,

2
e | B0
H n H?2



for 2SLS,

o  Kojol—o.,
H n H?

for LIML and

2 2 .2 2
O¢ +£O-uo-a+o-ua

H n H?

for B2SLS, where we define H = % The first term, which is common in all three expressions,
is the usual asymptotic variance obtained under the first order asymptotics. Finite sample prop-
erties are captured by the second terms. For 2SLS, the second term is easy to understand. As
discussed in, e.g., Hahn and Hausman (2001), 2SLS has an approximate bias equal to %i

Therefore, the approximate expectation for \/n (b — ) ignored in the usual first order asymp-

2
totics is equal to %, which contributes (%) = KTZ% to the higher order MSE. The

second terms for LIML and B2SLS do not reflect higher order biases. Rather, they reflect higher
order variance that can be understood from Rothenberg’s (1983) or Bekker’s (1994) asymptotics.

Higher order MSE comparison alone suggest that LIML and B2SLS should be preferred to
2SLS. Unfortunately, it is well-known that LIML and Nagar’s estimator have the “moment”
problem. If (e;,u;) has a bivariate normal distribution, it is known that LIML and B2SLS do
not possess any moments. On the other hand, it is known that 2SLS does not have a moment
problem. See Mariano and Sawa (1972) or Sawa (1972). This theoretical property implies that
LIML and B2SLS have thicker tails than 2SLS. It would be nice if the moment problem could
be dismissed as a mere academic curiosity. Unfortunately, we find in Monte Carlo experiments
that LIML and B2SLS tend to be more dispersed (measured in terms of interquartile range, etc)
than 2SLS for some parameter combinations. This is especially true when identification of the
model is weak. Under these circumstances higher order expansions tend to deliver unreliable
rankings of estimators. In this sense, 2SLS can still be viewed as a reasonable contender to
LIML and B2SLS.

Given that the poor higher order MSE property of 2SLS is based on its bias, we may hope to
improve 2SLS by eliminating its finite sample bias through the jackknife. Jackknife 2SLS may
turn out to be a reasonable contender given that it can be expressed as a linear combination of
2SLS, and hence, free of the moment problem. This is because the jackknife estimator of the

bias is given by
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and the corresponding jackknife estimator is given by

b %’Ziziyz‘ n—1 (%/(Z) Zj;éizjyj %’Ziziyi>
;- Fha_noly
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Here, 7 denotes the OLS estimator of the first stage coefficient 7, and 7(;) denotes an OLS
estimator based on every observation except the ¢th. Observe that b is a linear combination of
-~ ~/ ~/
7Sz W) 2o g ZiYi T(n) Djti 2iYi

PN

=/ y ~/ 9.
T 3T W1y Doy % T T(n) 2_jti Zi%j

and all of them have finite moments if the degree of overidentification is sufficiently large (K > 2).
See, e.g., Mariano (1972). Therefore, by has finite second moments if the degree of overidentifi-
cation is large.

We show that, for large K, the approximate MSE for the jackknife 2SLS is the same as in
Nagar’s estimator or JIVE. As in Donald and Newey (2001), we let h = fTI‘E We impose the

following assumptions. First, we assume normality?:

Condition 1 (i) (g;,u;) i=1,...,n arei.i.d.; (i) (g, w) has a bivariate normal distribution

with mean equal to zero.
We also assume that z; is a sequence of nonstochastic column vectors satisfying
Condition 2 max P; = O (), where P;; denotes the (i,1)-element of P = Z (Z'2) 7.

Condition 3 (i) max|fi| = max|z{n| = O (n'/") for some r sufficiently large (r > 3); (ii)
Ly =0

After some algebra, it can be shown that

7?/(1-) Z zZj€; = 2’ Pe + 64, 7?/(2) sz:rj =2/ Px + 6,
JF#i J#i

where

61 = —wigi+ (1 — Py) ! (Mz), (Me);, 6 =—x7+(1— P! (MJU)Z2

3We expect that our result would remain valid under the symmetry assumption as in Donald and Newey

(1998), although such generalization is expected to be substantially complicated.
4If {£:} is a realization of a sequence of i.i.d. random variables such that E [|f;|"] < oo for r sufficiently large,

Condition 3 (i) may be justified in probabilistic sense. See Lemma 1 in Appendix.



Here, (Mx), denotes the ith element of Mz, and M = I — P. We may therefore write the

jackknife estimator of the bias as

n—1 Z x' Pe + 61; B 2! Pe
no - ' Px + 6y 2'Px

n—1 1 x' Pe 1 2’ Pe
= 61; — 89 — 61102 + ———= 62, R,
n Z(x/Px ' (z/ Px)? 2 (! Px)? 102 % (' Px)? 21) *
where
_n—- 1 (Slié%i n —1 —$/P8
R = n4 / 221/13 1s / 321/p Ls
(ta'Pa T+ 202 n 2’ Pr) T+ 289

By the Lemma 2 in the Appendix, we have

n*?R, = 0, ( \FZMMS |+ IZM )-op 1),

and we can ignore it from our further computation.

We now examine the resultant bias corrected estimator (2) ignoring R,:

2’Pe n-—1 2'Pe +61; o' Pe
Hy/n <w’Pw o n Zz: (m’Pw—i—égi B w’Pw) + B

' Pe
H\/ﬁx/P:E
n—l H 1
_ 514
n ’P:r <f; 1)
1

2 /1 pe
n—11 H vn i252 ()
n H %x’Px %x’Px n? - 2i

Theorem 1 below is obtained by squaring and taking expectation of the RHS of (3):

Theorem 1 Assume that Conditions 1, 2, and 8 are satisfied. Then, the approximate MSE of
V/n(by — B) for the jackknife estimator up to O (%) is given by

Jg K0202+0

H H?



Proof. See Appendix. =

Theorem 1 indicates that the higher order MSE of Jackknife 2SLS is equivalent to that of
Nagar’s (1959) estimator if the number of instruments is sufficiently large (see Donald and Newey
(2001)). However, Jackknife 2SLS does have moments up to the degree of overidentification.
Therefore, the Jackknife does not increase the variance too much. Although it has long been
known that the Jackknife does reduce the bias, the literature has been hesitant in recommending
its use primarily because of the concern that the variance may increase too much due to the
Jackknife bias reduction. See Shao and Tu (1995, p. 65), for example.

Theorem 1 also indicates that the higher order MSE of Jackknife 2SLS is bigger than that of
LIML. In some sense, this result is not surprising. Hahn and Hausman (2002) demonstrated that
LIML is approximately equivalent to the optimal linear combination of the two Nagar estimators
based on forward and reverse specifications. Jackknife 2SLS is solely based on forward 2SLS,
and ignores the information contained in reverse 2SLS. Therefore, it is quite natural to have
LIML dominating Jackknife 2SLS on a theoretical basis.

3 Fuller’s (1977) Estimator

Fuller (1977) developed a modification of LIML of the form

' Py — (gb— an> -2’ My

x'Px — <¢>— an> Mz

(4)

where ¢ is equal to the smallest eigenvalue of the matrix W/PW (W MW) ™' and W = [y, z].
Here, a > 0 is a constant to be chosen by the researcher. Note that the estimator is identical
to LIML if « is chosen to be equal to zero. We consider values of alpha equal to a = 1 and
a = 4. The choice of a = 1 advocated, e.g. by Davidson and McKinnon (1993, p. 649), yields a
higher order mean bias of zero while a = 4 has a nonzero higher mean bias, but a smaller MSE
according to calculations based on Rothenberg’s (1983) analysis.

Fuller (1977) showed that this estimator does not have the “moment problem” that plagues
LIML. It can also be shown that this estimator has the same higher order MSE as LIML up to
(0] (%)5 Therefore, it dominates Jackknife 2SLS on higher order theoretical grounds for MSE,

although not necessarily for bias.

®See Appendix C for the higher order bias and MSE of the Fuller estimator.



4 Theory and Practice

In this section we report the results of an extensive Monte Carlo experiment and then do an
econometric analysis to analyze how well the empirical results accord with the second order
asymptotic theory that we explored previously. We have two major findings: (1) estimators that
have good theoretical properties but lack finite sample moments should not be used. Thus, our
recommendation is that LIML not be used in a “weak instruments” situation (2) approximately
unbiased (to second order) estimators that have moments offer a great improvement. The Fuller
adaptation of LIML and JN2SLS are superior to LIML, Nagar, and JIVE. However, depending
on the criterion used, 2SLS does very well despite its second order bias properties. 2SLS’s
superiority in terms of asymptotic variance, as demonstrated in the higher order asymptotic
expansions appears in the results. The second order bias calculation for 2SLS, e.g. Hahn and
Hausman (2001), which demonstrates that bias grows with the number of instruments K so that
the MSE grows as K2, appears unduly pessimistic based on our empirical results. Thus, our
suggestion is to use JN2SLS, a Fuller estimator, or 2SLS depending on the criterion preferred

by the researcher.

4.1 Estimators Considered

We consider estimation of equation (1) with one RHS endogenous variable and all predetermined
variables have been partialled out. We then assume (without loss of generality) that 02 = 02 =1
and 0., = p. Thus, our higher order formula will depend on the number of instruments K, the
number of observations n, p, and the (theoretical) R? of the first stage regression.® Using the
normalization, the often used concentration parameter approach yields 6% ~ nR?/ (1 — R?).

The estimators that we consider are:

e LIML - see e.g. Hausman (1983) for a derivation and analysis. LIML is known not to have
finite sample moments of any order. LIML is also known to be median unbiased to second
order and to be admissible for median unbiased estimators, see Rothenberg (1983). The

higher order mean bias for LIML does not depend on K.

e 2SLS - the most widely used IV estimator. 2SLS has finite sample bias that depends on
the number of instruments used K and inversely on the R? of the first stage regression,
see e.g. Hahn and Hausman (2001). The higher order mean bias of 2SLS is proportional
to K. However, 2SLS can have smaller higher order mean square error (MSE) than LIML
using second order approximations when the number of instruments is not too large, see
Bekker (1994) and Donald and Newey (2001).

5The theoretical R? is defined later in (5).



e Nagar - mean unbiased up to second order. For a simplified derivation see Hahn and

Hausman (2001). The Nagar estimator does not have moments of any order.

e Fuller (1977) - this estimator is an adaptation of LIML designed to have finite sample
moments. We consider three different estimators with the a parameter in (4) chosen to
take on values 1 or 4 or the value that minimizes higher order MSE. The optimal estimator
uses a = 3 + 1/p%. This choice minimizes the higher order MSE regarded as a function of
a. These three estimators will be abbreviated F(1), F(4), and F(opt) throughout the rest
of the paper. For the optimal Fuller estimator, the higher order bias is greater, but the
MSE is smaller. This last estimator is infeasible since p is unknown in an actual situation,
but we explore it for completeness. The optimal estimator has the same higher order MSE

as LIML up to O (n—lg) but unlike LIML also has existing finite sample moments.

e JN2SLS - the higher order mean bias does not depend on K, the number of instruments.
JN2SLS has finite sample moments. However, as we discuss later, its MSE exceeds the

other estimators in some situations.

e JIVE - the jackknifed IV estimator of Phillips and Hale (1977) and Angrist, Imbens,
and Krueger (1999). This estimator is higher order mean unbiased similar to Nagar, but
we conjecture that it does not have finite sample moments. The Monte Carlo results

demonstrate a likely absence of finite sample moments.

e OLS - This estimator is to be considered as a benchmark.

Formal definitions of some of the k-class estimators for equation (1) are provided in Table 6:

4.2 Monte Carlo Design

We used the same design as in Hahn and Hausman (2002) with one RHS endogenous variable
corresponding to equation (1). We let 8 =0, and z; ~ N (0, Ix). Let

E [(77,21‘)2] _nn

R2 = =
F [(W’Zi)Q] + FE [vﬂ m'm+1

()

denote the theoretical R? of the first stage regression. We specify = = (,n,...,n)" so that
2
R2 — q-1
f q- 772 +1
We use n = (100, 500, 1000), K = (5,10,30), R? = (0.01,0.1,0.3), and p = (0.5,0.9), which are
considered to be weak instrument situations. Our results, which are reported in Tables 1 - 5,

are based on 5000 replications.
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In order to highlight the weak instrument nature of our simulation design we compare it
to parametrizations typically used in the exact finite sample distribution literature for LIML
and 2SLS. In particular consider the parametrization in Anderson, Kunitomo and Sawa (1982).
They define

52 — T (i #E) ™
wa2

am iz (5o m)
|Q\1/2 w22

where the reduced form covariance matrix is given by

and

011 + 28019 + (%022 012 + Boxn

o12 — Bo22 022

0=

w1l w12 ] _

war w22
for the structural errors [g;, u;) "N (0,%) and ¥ with elements o;;. Given our assumption about
2; it follows at once that 6% ~ n-7'm = n-q-n?. This implies that 6% ~ nR?/ (1 — R2) and we also
find that o = —p/+/1 — p? or p = —a/V/1 + a2. We compute values of § for the parametrizations

that we use in our simulations. The results are summarized in Table 7.

4.3 Monte Carlo Results
4.3.1 Median Bias

We first consider the median bias results. Especially for the situation of R? = 0.01 the absence
of finite sample moments for LIML, Nagar, and JIVE is apparent. Among the three Fuller
estimators, F(1) has the smallest bias, in accordance with the second order theory. Also, the
median bias increases as we go to F(4) and F(opt), again as theory predicts. When R? increases
to 0.1 the F(1) estimator often does better than JN2SLS, but not by large amounts. Lastly, when
R? increases to 0.3, the finite sample problem ceases to be important, and LIML, Nagar and
the other estimators do well. We conclude that for sample sizes above 100 that R?=0.3 is high
enough that finite sample problems cease to be a concern. Overall, the JN2SLS estimator does
quite well in terms of bias - it is usually comparable and sometimes smaller than the “unbiased”
F(1) estimator, although on average F(1) does better than JN2SLS. Overall, JN2SLS has smaller
bias than either the F(4) estimator or the infeasible F(opt) estimator. JN2SLS also has smaller
bias than the 2SLS estimator, as expected. In general, LIML seems to have the smallest median
bias, at least under homoscedastic design. This is in agreement with the well-known fact that
LIML has a zero higher order median bias. On the other hand, the actual median bias of LIML
is not equal to zero, which can be explained by the alternative asymptotic analysis put forth by
Staiger and Stock (1997). See Section 5.3.
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4.3.2 MSE
For LIML, F(1), F(4), and F(opt), the approximate MSE is equal to
1— R2 1—p% [1-R2\? 1
K O|—= 6
nR? + n? < R? ) + <n2> (©)

To allow for a more refined expression for the MSE of the Fuller estimators, we also calculate
the MSE of F(4) using the approach of Rothenberg (1983):

1-R?  ,-1-K (1-R>\*> K-6(1-R?\’
nR? n? R2 n? R?
For Nagar, JN2SLS, and JIVE, the approximate MSE is equal to
1— R? 1+p% (1-R2\? 1
mELNY S ( - > +o<ﬁ> ®)

Thus, note that JN2SLS has the same MSE as Nagar or JIVE, but JN2SLS has finite sample

moments as we demonstrated above. For 2SLS, the MSE is equal to

1-R2 _,p? (1-R?\” 1
— +K§< = ) +0<§> ©)

The first order term is identical for all the estimators as is well known. The second order terms
depend on the number of instruments as K and for 2SLS as K?. Note that for 2SLS the second
order term is the square of the bias term of 2SLS from Hahn and Hausman (2001).

When we turn to the empirical results, we find that the theory does not give especially
good guidance to the actual empirical results. Although Nagar is supposed to be equivalent
to JN2SLS, it is not and performs considerably worse than JN2SLS when the model is weakly
identified. Presumably the lack of moments invalidates the Nagar calculations. Indeed we

3

strongly recommend that the “no-moment” estimators LIML, Nagar, and JIVE not be used in
weak instrument situations. The ordering of the empirical MSE of the Fuller estimators is in
accord with the higher order theory as discussed by Rothenberg (1983) and in the Appendix C.
If we compare the best of the feasible Fuller estimators F(4) to JN2SLS, the F(4) estimator does
better with a small number of instruments, but JN2SLS often does better when the number of
instrument increases. However, we might give a “slight nod” to the F(4) estimator over JN2SLS
here. Note that 2SLS turns in a respectable performance here, also.

2SLS tends to dominate OLS in terms of both bias and RMSE except most extreme cases

very small R?.

4.3.3 Interquartile Range (IQR)

We think that the IQR is a useful measure since extreme results do not matter. Thus, a

reasonable conjecture is that the “no moment” estimators would be superior with respect to
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the IQR. This is not what we find however. Instead, LIML, Nagar, and JIVE are all found to
have significantly larger IQR than the other estimators. Since the “no-moment” estimators also
have inferior empirical mean bias and MSE performance, we suggest that they are not useful
estimators in the weak instrument situation. For the IQR we find that the F(4) estimator does
significantly better than the F(1) estimator. 2SLS does better than JN2SLS for the IQR, but
often not by large amounts. The F(4) estimator has no ordering with respect to 2SLS and
JN2SLS.

Based on the mean bias, the MSE, and the IQR we find no overall ordering among the 2SLS,
F(4), and JN2SLS estimators. However, these estimators perform better than the “no moment”
estimators. We suggest that the Fuller estimator receive more attention and use than it seems to
have received to date. We also suggest that the 2SLS estimator and the JN2SLS be calculated
in a weak instrument situation. These three estimators seem to have the best properties of the
estimators we investigated. Overall, our finding is that 2SLS does better than would be expected

based on the theoretical calculations.

4.3.4 A Heteroscedastic Design

We now consider a heteroscedastic design where E [E?! z@] = 2}z;/ K. We only consider F(4),
2SLS, and JN2SLS because the “no-moment” estimators continue to have similar problems
as in the homoscedastic case. We find that in terms of mean bias that JN2SLS does better
than either F(4) or 2SLS. For MSE, F(4) often does better than JN2SLS, but also often does
considerably worse. 2SLS often does better than JN2SLS. Based on the MSE we thus again
suggest considering all three estimators. Our suggested use of all three estimators remains the
same based on IQR. Thus, the use of a heteroscedastic design continues to lead to the same

suggestion as the homoscedastic design.

4.3.5 How Important are Outliers?

In Table 5 we analyze the importance of outliers by comparing the 5—95% range of the empirical
distribution of our estimators to the range implied by the asymptotic distribution. The table
shows that the no-moment estimators, LIML, Nagar and Jive, have severely inflated ranges rela-
tive to their asymptotic distribution when R? = 0.01. This suggests that for the weak instrument
case the nonexistence of moments affects the entire distribution and is not a feature of extreme
tail behavior alone. On the other hand, the estimators with known finite moments, Fuller,
2S5LS and JN2SLS do not show inter quantile ranges larger than predicted by the asymptotic

distribution.

13



5 How Well Do the Higher Order Formulae Explain the Data?

All of our bias and MSE formula are higher order asymptotic expansions to O (1 / n2). We have
already ascertained that for the “no-moment” estimators the formulae are not useful in the weak
instrument situation. More generally, we have determined above from the Monte Carlo results
that the asymptotic expansions may not provide especially good guidance in the weak instrument
situation. Thus, we now test the asymptotic expansions given the data obtained from the Monte
Carlo experiments. We consider the formulae in two respects. We first take the MSE formulae
given above and run a regression, using our Monte Carlo design results, of the empirical MSE
on the theory predictions. We use a constant, which should be zero, and an intercept, which
should be one, if the formulae hold true. We then alternatively run a regression using the first
and second order terms separately from the MSE formulae. Each of the coefficients should be

unity. This latter approach allows us to sort out the first and second order terms.

5.1 Basic Regression Results

We first run the “0-1” regression with a constant and a coefficient for the MSE formulae that we
derived for the estimators. The results should be the constant=0 and the intercept coefficient
=1 if the formulae are correct for our Monte Carlo weak instrument design. The results are
given in Table 8.

Even for the estimators with finite sample moments, the higher formulae are all rejected
since none of the intercepts equals anywhere near unity. The JN2SLS, Fuller (4) and 2SLS have

some predictive power.

5.2 Further Regression Results

We now repeat the regressions, but we separate the RHS into the two terms corresponding to
the first order and second order terms in the approximate MSE formulae. The first term with
coefficient C1 is the first order term while the next term with coefficient C2 is the second order
term: We present the results in Table 9.

All the coefficients should be unity if the formulae are correct. None of the estimates are
unity. The first order terms are most important, as expected. The second order terms are
typically small in magnitude, but often significant. However, the signs of the second order
coefficients for JN2SLS and F(4) are incorrect while the second order coefficient for 2SLS is very
small and not significant. The fit of the regression is improved by dividing up the terms. Thus,

the second order terms do not do a good job in explaining the empirical results.
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5.3 Numerical Calculation of the Median of the Weak Instrument Limit Dis-
tribution of LIML

Our Monte Carlo result can be related to the alternative asymptotic analysis put forth by Staiger

and Stock (1997). Under their alternative approximation, our model is such that
yi =i+ e, x=zm 4y

where z; ~ N (0, Ix), v; = (4, u;)" with v; ~ N (0,%) and

1
. P
p 1

7 = (1,...,n)" /y/n for some constant 7. Define A = /n(n,...,n), and let é be the smallest
cigenvalue of the matrix W'W (W/MW) ™. Denote by ¢ the limit of n (5 - 1) . As in Staiger
and Stock (1997), we may then assume that (n (5 - 1) Y27, n_l/QZ’u) = (¢, Vze, Vzy),
where Uz, ¥z, have a marginal normal distribution (¥z., Uz,) ~ N (0,X ® I;). The limiting
distribution of the LIML estimator under local to zero asymptotics then is defined by letting
v1 = A+ Pz,) A+ Vz,) and va = (A + ¥yz,) ¥z, where A = (7, ...,n)". As Staiger and Stock
(1997) show,

Brivr —B= (v2—¢p) / (v1 - 9).

We draw samples from the distribution of (v2 — kp) / (v1 — k) by generating y, z, Z according to
(1) for sample sizes n = (100, 500, 1000). We chose r = {.01,.1,.3} and K = {5,10,30}. We use
(n (5 — 1) n Y27, nil/QZ/u> as an approximation to (5, Uy, \IJZu) and compute

(A + n71/2Z/u)/ n 127 —n(k—1)p

o 22 (2 — (k- 1)

for each Monte Carlo replication. We compute the median of the empirical distribution of
Gi,i = 1,....,5 as an approximation to the median of (vg —Ep) / (vl —5) The results for
10,000 replications are summarized in Table 11. The simulation results indicate that the ap-
proximation of Staiger and Stock (1997) implies the presence of a median bias for LIML when
the concentration parameter A is small. In those instances the median bias is also an increasing
function of the number of instruments K. The numerical evaluation of the Staiger and Stock
(1997) local to zero approximation is quite close to the actual finite sample distribution of LIML

obtained by Monte Carlo procedures as far as median bias properties are concerned.
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5.4 An Empirical Exploration

Our last set of empirical analysis consists of regressing the log of the MSE on the logs of the

determinants of the MSE: n, K, p, and 1}?2 = Ratto. The results are given in Table 10.

The effects of the number or observations n and R? have the expected magnitude and are

estimated quite precisely-the first order effect dominates as we would expect. However, the
second order effects of the correlation coefficient (squared) and the number of instruments are
considerably less important. While the number of instruments is most important for 2SLS as
the second order MSE formulae predict, the estimated coefficient is far below 2.0, which is the
theoretical prediction. Perhaps the most important finding is that the effect of the number of
instruments is considerably less than expected. Thus, “number of instruments pessimism” that
arises from the second order formulae on the asymptotic bias seems to be overdone. This finding
is consistent with our results that 2SLS does better than expected in many situations.

Lastly, we run a regression with the same RHS variables as controls but with the LHS side
variable the log of MSE and additional RHS variables as indicator variables. Thus, we run a
“horse race” among the different estimators. For the log of MSE estimators we find the “no
moments” estimators to have significantly higher log MSE than the baseline estimator, 2SLS.
We find 2SLS significantly better than all of the other estimators except JN2SLS. JN2SLS has
a smaller log MSE than 2SLS. Both estimators are significantly better than Fuller (4) which,
in turn, is significantly better than the “no moments” estimators. For log IQR we find that
2SLS is insignificantly better than F(4), which in turn is insignificantly better than JN2SLS. No
significant difference exist for the three estimators with respect to log IQR. The “no moments”
estimators do significantly worse than these three estimators. Thus, the choice of estimator may
depend on whether the researcher is interested more in the entire distribution as given by the
MSE or in the IQR. The overall finding is that the F(4) and JN2SLS should be used along with

2SLS in the weak instruments situation.
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Appendix

A Higher Order Expansion
We first present two Lemmas:

Lemma 1 Let v; be a sample of n independent random variables with max; E [|v;]"] < ¢" < 0o

for some constant 0 < ¢ < oo and some 1 <r < co. Then max; |v;| = O (nl/r).

Proof. By Jensen’s inequality, we have

E [mzax|vi|] < <E [miax\vi\’"Dl/r < (;E[Iw\’"o

1/r 1/r
< <nmaxE [|v@|r]> = /T <maXE [|U@|T]> < n're

1/r

The conclusion follows by Markov inequality. =

Lemma 2 Assume that Conditions 2 and 3 are satisfied. Further assume that E[|g;|"] < oo
and E [|u;|"] < oo for r sufficiently large (r > 12). We then have (i) n="/% max |61;| = 0, (1) and
1/6 max |02;| = 0, (1); and (i1) \/— o ‘(511621| =0p (1) and n\/—z ‘6 ! =o0p (1).

n-
Proof. Note that

max |61;| < (max | f;| + max |u;|) - max ||

+max (1 — Py) " - (max |u;| + max |(Pu),]) - (max |e;] + max |(Pe);|),

We have (max|f;| + max|u;) - max|e;| = O, (n¥") by Lemma 1. Because max |(Pu);|* <
max P; - w'u, and max P; = O (L), we also have max |(Pu),| = O, (1). Similarly, max |(Pe),| =
O, (1). Therefore, we obtain we obtain max|61;| = op (nl/6). That max|62i| = op (n 1/6) can
be established similarly. It then easily follows that ﬁ > !611-(5 ‘ < = 7 nax |61;] max |52Z| =
op (1), and n—\l/ﬁ > !5 | < == max\(521| =o0p(l). m

We note from Donald and Newey (2001) that we have the following expansion”:

/Pg ZT +op< ) (10)

"Our representation of Donald and Newey’s result reflects our simplifying assumption that the first stage is

correctly specified.
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where

K 1
T1 h Op (1), TQ - W1 - Op <%> 3 *Wth Op <%> 3
Ty =0, fW4 h Oy <K> = -—W3— Wl Op <K>a
1
T; = W3H2h Op (=~
and
_ fe_ _vPe_ o (KN
h = ﬁ_opu), Wl_ﬁ_ NG
Y N
Wg_zn_opﬁ,m - On

2
We now expand and (L) up to O, (%) Because %x’P:f: = H+ W3+ Wy, we

1’P Lo py
have

H H 1 1 1 K
= =1 =W3— =Wy + — W3 — 11

%WP:E HA4+ W3+ Wy HW3 H 4+H2W3+Op<n)7 1

2
H K
(%x’Pw) = 1-2— W3—2 W4+3 W3 +0p< ) (12)

We now expand ﬁ > ;615 Observe that
1 1 1 1
T = e Y0 R () )

— _h- %u’er % (Mu)' (I* 15)71 (Me)

= h%us+%u'Ms+\/1_(Mu) P (Me)

1 1 — 1 _ 1 — 1 _
= —h— —u'Pe+ —u'Pe — —u'PPe — —u'PPe + —u'PPPs¢

Vn Vn Vi Vn Vi
- _—_h— i 'O — i D L ' DD
= —h \/ﬁu C'e \/ﬁu PPe + \/ﬁu PPPe, (13)

where, as in Donald and Newey (2001), we let

— — — ~ ~\ —1
C=pP-P(I-P)=P_PM, PzP(I—P) ,

and P is a diagonal matrix with element P;; on the diagonal. Now, note that, by Cauchy—
Schwartz, |u'PPe| < Vu'uV ¢/ PP’ Pe. Because u/u = Op(n),and e 'PP’Pe < max ( ) g'Pe =
0 (n—lz) O, (K), we obtain

B ol 1)
LT/T%PE < —m\/ ¢/ PP’ Pe = \/7\/7\/ K) =0y <n3/2> :0p<
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To conclude, we can write
1 K
_ ;= — -, 14
\/ﬁ;él h+W5+W6+op<n> (14)
where
_ 1 Yall
W5 = —ﬁu C g = Op —
_ 1 D
W6 = %’U] PPe = Op .
We now expand (1 ,Px) ( > 61@> using (11) and (14):

() ()

1 K
= <1EW3 W4+H2W3>( h+W5+W6)+Op<n>

B

e

1 K
= —h+Ws—=h+ W, —h w2 h We — =W3W,
+ 3 + i 3H2 + W5 + Wg HWg 5+0p<n>
K
= T1T3T5T7+T8+T9+T10+Op<z> (15)
where
1 VK
Tg = W5 = ——U/C/E = Op (—) s
vn Vn
1 = VK
Tg = WGZWU/PPEZOP <T>,
1 11 ,, (VK
Tm = —HW3W5 WgH\/ﬁ CE_OP(TL)'
L 'p
We now expand % <4;%P;) (% > (5%). We begin with expansion of %ZZ 6o;. As in

(13), we can show that

1 2 1 1 — 1 _
— 2522- =-H—~=fu——u'C'u— —uPPu+ —u'PPPu
n < n n n n

Because
— Py K
‘u/PPPu| < max <1——Pu) ' Pu — O, (E) ,

5 /ot D2 / Pi \? K
|u/PPu| < Vuu\ W PP Pu< Op(n)\/max<1_Pii> 'U/PU:Op( E)’
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we may write

1 K
= 6o =—H—Ws—Wr+o, <—> (16)
n < n
where
1 VK
Wr==u/'C'u= 0, <—> .
n n

Combining (11) and (16), we obtain

H (1 1 1 1 K
%{E’P{E (E Z(SQ@) = <1 *EW3* EW4+ﬁW3> (*H*Wg*W7)+0p <E>

1 1 K
= H+W3+W4EW32W3+EW32W7+OP<X)

K
= —H+W4—W7+Op <E>

which, combined with (10), yields

H %l'/PE 1 1 7 K
1Py ( 1Py 52521' = E ZTJ (—H+W4—W7)+Op E

n

7
1 1 K
]:

! K
= fZTj—T5+T11+Op <E> (17)

j=1
where

1 VK
Tll = *W7Eh == Op (T) .

2
We now examine % <%5P$> (ﬁ ZZ 51i62i). Later in Section B.2.1, it is shown that

1 1
v 2wt =0n (7

Therefore, we should have

2
1 H 1 K
— g 01i02i | =T} — 1
H (%x’Px) (n\/ﬁ - ! 2) 12+Op<n) (18)

N———
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2 [ Lo'pe
Now, we examine % ( H ) <‘fw - ) (n—l2 > 6%2) Later in Section B.2.3, it is shown that

Ly'py z' P
n n

1 1
ﬁzégz =0p (5)

Therefore, we have

2 1 .
1( H mrPe) (1 ) K
H (%x’P:c) ( %x’P:c ) <ﬁ Zém = Tia+op n (19)

S R R 1
T14 = ﬁhﬁ ;621 - Op <E>
Combining (3), (10), (15), (17), (18), and (19), we obtain
z’Pe n-—1 ' Pe +61; ' Pe
H _ _
v <:E’P:E n ZZ: (:E’Px + 62; :E’P:E> * Rn)

K
= T1+T3+T7T8T9T10+T11+T12T14+0p< ) (20)

n

B Approximate MSE Calculation

In computing the (approximate) mean squared error, we keep terms up to O (%) From (20),

we can see that the MSE of the jackknife estimator approximately equal to

E[T{] + E [T3] + E [T§] + E [T}]
+2F [Tng] +2F [T1T7] —2F [TITg] —2F [Tng] —2F [TlTl()] +2F [TITH]
+2F [Th'Tio) — 2E [T1T14) — 2F [T3T5) (21)

Combining (21) with (22), (23), (24), (25), (26), (27), (28), (29), (30), (33), (44), and (45) in

the next two subsections, it can be shown that the approximate MSE up to O, () is given by
K 1
olH + -~ (0202 +02.)+ 0O <E> :

which proves Theorem 1.
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B.1 Approximate MSE Calculation: Intermediate Results That Only Re-

quire Symmetry

From Donald and Newey (2001), we can see that

E[T}] = o2H (22)
4 1

E[T3] = —(oh0+207) +o <5> (23)

E[Ts] = 0 (24)
4 1

ELT) = - (0202 +202,) +o0 <5> (25)
K K

E[T?] = — (0202 — sup Py 2
7% ] n(aa + a2 )—i—o(nsup ) (26)
Also, by symmetry, we have
E[Ty] = 0 (27)
E[ITy] = . (28)

It remains to compute E [T%], E [T1Tw), E [T1T1], E [T1Ths), E [T1T14), and E [T5T5]. We will
take care of I [TfQ], E [T\Ti2], and E [T1T14] in the next section.
Note that

E[T\Two) = E [TsTy| = E [zf w1l yereds ] 2 B fe /O]

n HVi

Using equation (18) of Donald and Newey (2001), we obtain

E[uf'fe-u'C'e] = i 2e2f2C; —i—ZZE [uiciuje; f7C;]
i=1

1=1 j#i

+ZZE [uies fifiCi;) + ZZE [uicjujei fi f;Ci]
i=1 j;éi

i=1 j#i
= 2ZZMJC' +02. 3 Y FifiC
i=1 j#i i=1 j#i
= o0Lolf'C'f+ ol f'Cf

Therefore, we have

2 o2d2f'C'f + o2 f'C
E[TlTlo] = E[Tng] N fn € !

2 2 2 2 1 2,9 9 1
= n—H<0“05H+J“5H+O<E>>:n(UO +au€)+o ) (29)

where the second equality is based on equation (20) of Donald and Newey (2001).
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Now, note that
1
E [TlTll] = _TZ2_HE [’U/CU . €/ff/€]

and

E [s/ff/s-u’Cu] = Z U252fz 1 +ZZE

=1 =1 j#i
+ZZE[&€J‘U¢%’ ifiCij] +ZZE[Ei8jua‘ui ifiCiil
i=1 ji i=1 jti
= 0o J'Cf+oLfCf

Because Cf = Pf — P(I — P)f = PZn — P(I — P) Z7 = Z7 = f, we obtain
o2
E[NTy] = —2%. (30)

B.2 Approximate MSE Calculation: Intermediate Results Based On Nor-
mality

Note that

Subs = adei+ (1— Py) "2 (Mu)? (Me),
— (1= Py) taie; (Mu)? — (1 — Py) ' a? (Mu); (Me),
= fPei+ 3ffuiei + 3fiule; + ule;
+(1—Py)~ (Mu) (Me), — (1 = Py)~ flsl(Mu)
— (1= Pi) " wigs (Mu)} — (1= Py) ™" f7 (Mu), (Me),
—2(1 = Py) ™" foui (Mu); (Me); — (1= Pyg) ™" uf (Mu), (Me), (31)
and
B = (52— (1= P (M)
= fr6fful 4 ut+ (1 - Py) 2 (Mu)]

A fPu — 27 (1= Pu) ™" (Mu)] + 4fiu
—Afu; (1 — Py) "t (Mu)? —2(1 — Py) " u? (Mu)? (32)
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B.2.1 FE T3]

We first compute E [T7] noting that
H2E[TY] < %ZfﬁE[ }+—229f2 [uzsz }
+i—229f’2E[ }+—QZE[u61 ’]

10
n? 2
10 _

o 30 (1= P) 2 J2E [} (Mu)]]

7

(1= Pa) ™ B [(Mu)f (Me)?]

+;—2 ~ (1= P) P B ued (Mu)]|
FS (1= P B [(Mw)? (1]

+% 24(1 —Py) ? f2E [ (Mu)? (Me): ]
10

n? £
1

(1= Pa) B [uf (Muw)? (Me)?]

Under the assumption that 13, f§ = O (1), the first four terms are all O (1). Below, we
characterize orders of the rest of the terms.
We now compute % S, (1-Py) ™ E [(Mu) (Me); ] We write

Oue
€ = —5 Ui + v,
UU

where v; is independent of u;. Because
(1-Py) ™ E [(Mu) (M)’ ]

- (1-Py) <‘;—u4 105 Var ((Mu),)* + 15 Var ((Mu),)? Var ((Mv)i))

2 2
— (1-Py) <105”—f (1= Py)' ol +15(1 = Py)° of, (1 = Py) <02 - 2—2))

= 150205 + 9002 0%,

we have
10 —4 6 2 10 2 _6 2 4 1
2> (1-P)'E [(Mu)i (Ms)i] =55 (15020} +-900%.0%) =0 ().
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We now compute 23 >, (1 — Pi) 2 f2E [822 (Mu)ﬂ Because

(1-P)PE[2(Mw] = (1-P)2E [(Mu)} ((Pe)? + (Me)?)]
= (1—Py) %-3Var((Mu),)* - Var ((Pe),)
+(1— Py)~2 <Z—34 15 Var ((Mu),)* + 3 Var ((Mu),)? Var ((Mv)i)>
= 3P0l0y +15(1— Py)oior +3(1— Py) (020y — 02.02)

= 3020l 4+12(1 — Py) o202,

we have
10 _ 10 1
iz 2 (1-Pi) 2 f7E [5? (Mu)ﬂ < (30207 + 1207%.07) 2 E =0 <E>

We now compute % S (1—Py)?E [u?s? (Mu)ﬂ Because

Elu? ()] = B[ ((Pw)? + (Mu)?) ((Pe)? + (Me)? )]
= E|Mu)!] B[(Pu)? (P2)?] + E |(Mw)| E |(Pe)?]
+E |(Mu)f (Me)}| E |(Pu)}| + B [(Mu)] (Me)?]
= 3(1—Pa)’ Pioy (0502 +207,)
+15 (1 — Py)® PyioSo?
+ (1= P)* P (120707, + 30203, o,
+ (1= Py)* (150205 + 900%.0%) |
it easily follows that
10

TLZ.
i

1-Pi)°E [u?e? (Mu)?] =0 <1> :

n
We now compute % (1= Py) " fAE [(Mu)f (Ms)f] Because
B |(Mu)? (Me)?] = (1= P)? (0302 4 20%,) |

it easily follows that

10

n? £
T

(= po) 2 gt [t e =0 (7).

n
10 b2 2 P 2 2
We now compute 73>, 4(1 — P;) " fiE {ul (Mu); (Ms)l} Because

B [u? (Mu)? (Me)}] = B [((Mw)? + (Pu)?) (Mu)} (Me)?]
= (1-Py)? (1203503 + 30?0?) + Py (1 — Py)?o? (030? + 2035) ,
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it easily follows that
10 _
3 2 A= Pa) R 2B [uf (M) (Me)]]

40
= (2t 4aol) 13 Y0 R 4 (ot 20) 13 3 R0 R
7

1
B O <_> .
n
We finally compute % (1= Py)?E [ (Mu) (Me); } Because

E[ (Mu)? (Me)3 }
- E[((Mu) +2 (Mu)? (Pu)? + (Pu)? )(Mu) (Ms)]
_— [(Mu) (Me)? ] 4 2F [(Pu)l E [(Mu)i (Mg)z.}
+E [(Pu)i}E[(Mu) (Ms)]
= (1— Py)* (150208 + 9002.0%) + 2P;; (1 — Py)® 02 (120202 + 30207
+3P%(1 - Py)* ol (0202 +202,),

it easily follows that

10
n2

(1-P)%E [u;* (Mu)? (Mg)f] 0 <%> .

i

To summarize, we have

E[ThH] =0 <1> : (33)

n

B.2.2 E[T1Ty)

We now compute E [11T12]. We compute the expectation of the product of each term on the
right side of (31) with f’e.

E[(f'e) (fle))] = flot (34)
E[(f'e) (3ffuei)] = 0 (35)
E[(f'¢) Bfuiei)] = 3fF (ou02 +20%) (36)
E[(f'e) (uje))] = 0 (37)
Now note that
E[Mu(fu)] = o2Mf=0, E[Mu(fe)]=0uMf=0,
E[Me (f'u)] = ouwMf=0, E[Me(fe)]=0Mf=0,
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which implies independence. Therefore, we have
E [(f’g) (1= Py) "2 (Mw)? (Me), ] =0 (38)

Lemma 3 Suppose that A, B,C are zero mean normal random variables. Also suppose that A
and B are independent of each other. Then E [A?BC| = Cov (B,C) Var (A).

Proof. Write

Cov (4,C) Cov (B,C)
Var (A) * Var (B)

C = B+wv

where v is independent of A and B. Conclusion easily follows. m

Using Lemma 3, we obtain

E[(f'g) ( (1= Pa) " fies (M)’ )] = —(1—Py) " Cov (f'e, fie;) Var (Mu),)
= —(1—-Py) " floZ(1 - Py)oy,
= —flolo? (39)

Symmetry implies
B[(1e) (- (1= Ba) e (w?) | = 0 (40)
and
B [(7') - (~ (1= Pa)~ 2 (Mu), (Me),)] =0 (41)

Lemma 4 Suppose that A, B,C, D are zero mean normal random variables. Also suppose that
(A, B) and C are independent of each other. Then E[ABCD] = Cov (A, B) Cov (C, D)

Proof. Write D = §; A+ £,B + £3C + v, where &s denote regression coeflicients. Note that
&3 = Cov (C, D)/ Var (C) by independence. We then have

ABCD = £,A?BC + £,AB?C + £3ABC? + ABCw

from which the conclusion follows. m

Using Lemma 4, we obtain

B[(re) - (-2~ Py fiu (Mu), (Me),)]

= —2(1- Py) " Cov ((Mu),, (Me),) Cov (f'e, fiu:)

= —2(1=Py) (1= Py) oue f20ue

= 202 f? (42)
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Finally, using symmetry again, we obtain

E[(fe) - (- (1= Py~ u? (Mu), (Me), )| =0 (43)
Combining (34) - (43), we obtain

E[(f'e) - (61:62)] = filo2 + 27 (0502 +20%.)

from which we obtain

11 102 (1 252 4 902
E[NT) = e ZE [(f'e) - (b1:62:)] = E% <E Zf;) + Q%U#—i_%- (44)

B.2.3 LY 8
We compute [n—lz Sy (551] and characterize its order of magnitude. From (32), we can obtain
E[83,] = f + 4f202 + AP0y,

and hence, it follows that
1 « 11 4Ho? K
N2l =2 = 4 o =),

B.2.4 E[T1Ty]

E

We compute the expectation of the product of each term on the right hand side of (32) with
(f'¢)?, noting independence between (M u); and f’e. We have

B (1) - 1t] = £ folf} = nHo2 },

E[(re)-os2] = 682 ((1'02) 0 +2(fioue)?)

= 6nHo?02f? + 1202, 4

E[(f2)° ul] = 12f20%0% +3f folol
= 3nHolok +12f202 02

ue~w u?

e uwr

E [( '5)2 (1—-Py)7? (Mu)ﬂ = (f'fo?) - 30y = 3nHo20?
B[(fe)*- (4ffu)] =0,
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B[(fe)*- (=202 (1= Pa) ™" (Mu)? )| = —2f2f folo% = —2nH f2o207,
B((fe)* (4f3)] =0,

E :( ‘e)? (*4fiuz' (1—Py)™ (MU)?” =0,

E ( ’5)2 : (—2 (1—Py) ' u? (Mu)f)} = —4f%0% 02 —4(1 — Py)nHo?0l —2nHo?0l.

Therefore,

(f'e)? ;531 = n’Ho? <E ; ff) +6n°H20202 + 12n0%, <E ; f{*)

2772 2 2 2 2772 2 2772 2 2
+3n“Holo, +12nHoy, 0, +3n"HoZo, —2n"H 0oy,

E

—4nHo? 0% —4(n— K)nHo?ol —2n°Ho?ol,

and therefore, we have

1 2 =
ENTu] = 55E [(f/s) Z‘ng]
=1
11 1 1/6 6 1
= ﬁﬁag <ﬁ ;ff) + o <E0503 +4agai - EU?Ji) +o <ﬁ> . (45)

C Higher Order Bias and MSE of Fuller

The results in this section was derived using Donald and Newey’s (2001) adaptation of Rothen-

2 _

berg (1983). Under the normalization where 02 = 02 = 1 and 0., = p, we have the following

result. For F(1), the higher order mean bias and the higher order MSE are equal to
0

and

L-R LK 42 (1-R\* K (1- R\’
ng2 7T 2 R2 n? R?
Here, R? denotes the theoretical R? as defined in (5). For F(4), they are equal to

§1—R2
pn R2
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and

+p

nR?2 n2 R?

For Fuller(Optimal), they are equal to

2+ 51— R?

p

and

1— R 2—1—K<1—R2>2+K—6
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Table 6: Definitions of k-class estimators

k-class estimator %

LIML K=¢

F(1) =0 g

F(4) K=9-5'k

F(opt) w=o— S
Nagar p= 122 (1-52)
2SLS k=0

¢ is equal to the smallest eigenvalue of the matrix W/ PW (W MW) ™!, where W = [y, z].

Table 7: Concentration Parameters

R? n 52
0.01 100 1.01
0.1 100  11.11
0.3 100  42.86
0.01 500 5.05
0.1 500  55.56
0.3 500 214.29
0.01 1000 10.10
0.1 1000 111.11
0.3 1000 428.57

Table 8: Regression on Asymptotic MSE Formulae

Estimator | Constant Intercept Regression R?
JN2SLS 0.153 0.015 0.101
(0.061) (0.0061)
F(4) 0.056 0.065 0.244
(0.019) (0.016)
2SLS 0.091 0.00091  0.281
(0.020) (0.0002)
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Table 9: Regression on Asymptotic MSE Formulae

Estimator | C1 C2 Regression R?
JN2SLS 1.74  -.030 .665
(.168) (.006)
F(4) 807 -.173 957
(.023) (.009)
2SLS .384 .0003 407
(.064) (.0002)

Table 10: Regression of Log MSE

RHS Variables | JN2SLS F(4)  2SLS
logn -.955 -1.01  -.999
(.037) (.025) (.036)
log p? 570 .H68 961
(.108) (.074) (.106)
log K -.060 .098 .389
(.078) (.053) (.077)
log Ratio 1.10 930 .880
(.041) (.028) (.040)
Regression R? | .950 .969 .939
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Table 11: Median Bias Approximation for LIML Based on Weak Instrument Limit Distributions

Median Bias
n=100 n=>500 n=1000
K R? p=25 p=.9 p=25 p=.9 p=.25 p=.9
5 .01 0.323  0.538 0.061  0.057 0.008 -0.004
10 .01 0.398  0.667 0.094  0.090 0.018 -0.002
30 .01 0.496 0.919 0.226  0.261 0.067  0.018

5 .1 0.011 -0.012 -0.001 -0.001 0.001 -0.001
10 1 0.003 -0.047 -0.003 -0.002 -0.002  0.001
30 .1 0.320  0.967 -0.013 -0.030 -0.002 -0.008

5 .3 -0.004 -0.009 0.001  0.000 0.001  0.001
10 .3 -0.017  -0.025 -0.002  0.001 0.000 -0.001
30 .3 -0.169 -0.326 -0.005 -0.009 -0.002 -0.001
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