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Abstract

Pfanzagl and Wefelmeyer (1978) show that bias corrected ML estimators are higher order efficient.
Their procedure however is computationally complicated because it requires integrating complicated
functions over the distribution of the MLE estimator. The purpose of this paper is to show that
these integrals can be replaced by sample averages without affecting the higher-order variance. We
focus on bootstrap and jackknife based bias correction as a way to implement bias corrections in a
nonparametric way. We find that our bootstrap and jackknife bias corrected ML estimators have the
same higher order variance as the efficient estimator of Pfanzagl and Wefelmeyer. Bias corrected ML
estimators are therefore higher order efficient even if the bias function is estimated from the data

rather than computed analytically.
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1 Introduction

Optimality properties of otherwise asymptotically efficient estimators are often distorted by small sample
biases. Pfanzagl and Wefelmeyer show that bias corrected maximum likelihood (ML) estimators are higher
order asymptotically efficient. Their bias correction involves analytical computation of often complicated
integrals involving the true data density. From an applied point of view this procedure is therefore
unattractive if not often infeasible. As a result the statistical and econometric literature has seen a variety
of alternative bias correction techniques that achieve unbiasedness up to stochastic orders of n~! in iid
settings, where n is the sample size.

Andrews (1993) considers median unbiased estimation of an autoregressive model with normal errors.
His procedure is based on the inversion of the quantile function that is in principle known or can be
numerically evaluated. Since this procedure depends on complicated functions of the underlying density
generalizations are not straight forward.

Taylor series expansions of the estimator can be used to obtain approximate formulae for the bias.
These formulas then need to be estimated, often by means of nonparametric techniques requiring the
choice of further nuisance parameters such as bandwidth selections.

In the context of simultaneous equations models Nagar (1959) proposed a similar correction based on
higher order expansions of the two stage least squares estimator.

A more generally applicable, and less parametric procedure is the Jackknife procedure and more general
resampling algorithms. The Jackknife bias estimator goes back to Quenouille (1949). Bootstrap bias
estimation was discussed by Parr (1983), Shao (1988a,b) and Horowitz (1998) in the context of nonlinear
transformations of OLS estimators of linear models and nonlinear functions of the mean. Bootstrap bias
correction is also mentioned in Hall (1992).

We extend the literature on the bootstrap and jackknife bias corrected estimator in two directions.
First, we analyze genuinely nonlinear estimators rather than nonlinear transformations of linear estimators
as in Shao. This requires a careful treatment of the potential nonexistence of moments of the actual
estimator. We address this problem by introducing truncating parameters that become less restrictive as
the sample expands. Secondly, the literature on bootstrap bias corrected estimators has been focused on
analyzing bias properties without investigating the effects of bias correction on the higher order variance.
We are instead working with third rather than second order expansions of the bias corrected estimators.
This allows us to analyze the effect bias correction has on the higher order variance of the estimator.

We are carrying out our analysis in a likelihood framework. This allows us to analyze higher order
efficiency properties of bias corrected estimators. We show that the bias correction, even though based
on sample averages, does not increase the higher order variance of the estimator compared to the bias

corrected estimators of Pfanzagl and Wefelmeyer (1978) and thus leads to a higher order efficient procedure.



2 Higher Order Comparison of Bootstrap and Jackknife Bias
Corrected MLE

In this section, we first consider a simple parametric model, and derive higher order expansions of the
maximum likelihood estimator (MLE). We then derive higher order expansions of the bootstrap and
jackknife bias corrected MLE, and argue that they are higher order equivalent. We argue that such bias
corrected estimators should have the same higher order variance as the bias corrected MLE developed by

Pfanzagl and Wefelmeyer (1978), which was shown to be third order optimal.

2.1 Higher Order Expansion of MLE

Consider a standard parametric model Z; ~ f (z,0), which satisfies sufficient smoothness conditions. For

simplicity, it is assumed that dim (6g) = 1. We consider properties of the MLE 0 where

- . n |
0= maxn Zlogf (Z;,0).

i=1

We later impose conditions that guarantee that the MLE can be understood as a solution to

n_ dlog f (Ziﬁ) R
0=n"! ZT = n_IZK (ZZ-,O) .

i=1 i=1
This condition is certainly satisfied for parametric models that have analytical solutions for 5, at least
with probability tending to one if the true parameter is in the interior of a compact parameter space.
More generally, this condition could also be satisfied, at least up to an error that vanishes at a sufficiently
fast rate if the model does not posses an analytical solution but the maximum of the log likelihood lies
within the interior of the parameter space with probability tending to one. We are abstracting from
these technical details to keep the exposition of our main results as clear as possible. It is convenient to

understand 0 = 0 (\/%T)’ where 6 (e) denotes the solution to the estimating equation

0:/£(',0)dFe(z).

Here,
_ 1
FGEF—FGAEF-FG\/E(F—F), ce |0, ——
NG

and F and F denote the underlying cumulative distribution function and the empirical distribution func-
tion F (z) = n~! St 1{Z; < z}.

We obtain bootstrapped estimates 9 by sampling Z7, ..., Z) identically and independently from the
empirical distribution F. We denote the distribution of Z¥, ..., 24} by F*(z) = nt S 1{Zr <z}



Using previous notation it therefore follows that 0 =0 (\/iﬁ) is the solution to

0:/£(~,9)d}7} (2),
where

Ot . 1
FGEF—FGAEF—FG\/E(F*—F), ce 0, —]|.
vn

Here, A is the bootstrap empirical process A= NG (ﬁ* - ﬁ) We are imposing the following technical

conditions to guarantee the validity of our stochastic expansions.

Condition 1 (i) The function log f (-,0,a) is continuous in @ € Y; (ii) The parameter space Y is a

compact, separable metric space, 0y € int (1), (iii) There exists a function M (z) such that

‘6"‘ log f (2,0)

<M < <
207 ‘_ (2) 0<m<7

and E [M (Zi)Q} < oo for some QQ > 16; (iv) Letting G (0) = E|logf(Z;,0)], we have G (6y) —
SUP{g:|9—g,|>ny G (0) > 0 for each n > 0.

Condition 2 Let ¢ (F,0) = [((., F (2) be a functional of F indeved by 0 € Y, and let ¢' (F,0) =
[ 2D G (7). For all h € D[—oo,oo] with k]| < 1 and lim.—,_oo b (2) = lims—so b (2) = 0 and all

€ [0,1//n] fized, there exist 5(6) ,/9\* () € Y such that ¢ (F + eh,g(e)) =0 and ¢ (ﬁ + eh,/é* (6)) =0
except for some F with probability zero. Also, assume &' (F + eh,@(e)) £ 0 and ¢’ (ﬁ + eh,/é* (6)) #£0

except for some F with probability zero.
Condition 3 For each 6 € T and for m <7 let 0™ log f (2,0) /00" be a F-measurable function of z.

Condition 4 Let § be the class of functions 0™ log f (2,0) /00™ indexed by 8 € Y with envelope M (2).
The envelope function M (z) satisfies Pollard’s entropy condition

1 1/2
/ sup ,|log N (5 (/M%Q) , 5, Lg(Q))ds < 00, (1)
0 QeP

where P is the class of probability measures on R that concentrate on a finite set and N is the cover

number defined in van der Vaart and Wellner (1996, p.90).

Condition 1 is a standard condition guaranteeing identification of the model and imposing sufficient
smoothness conditions as well as existence of higher moments to allow for a higher order stochastic
expansion of the estimator. Condition 2 formalizes the fact that the first order conditions are satisfied
exactly at the maximum for observations that are generated from distributions that are contained within

a /n neighborhood of the true data density. This latter requirement is important for bootstrap based



samples that are not derived directly from the original data density. Condition 3 together with separability
of the parameter space guarantees measurability of suprema of our empirical processes. As is well known
from the probability literature, measurability conditions could be relaxed somewhat at the expense of
more refined convergence arguments. We are abstracting from such refinements for the purpose of this
paper.

The idea behind using the bootstrap is roughly speaking that under certain regularity conditions it
can be shown that & — 0 has the same properties as 0 — 0y and can therefore be used to obtain bias
approximations and other corrections to the small sample distribution.

From Gine and Zinn (1990, Theorem 2.4) and Conditions 1,2,3 and 4 it follows that, almost surely,
nl/? (F* - F) — T weakly in [*° (F). We use the result on the convergence of the empirical processes to
obtain an expansion of the estimators fand 0.

Let £(-,0) = Olog f (-,0)/ 00, (° (-,0) = 9*log f (-,0)/ 06%, £%° (-,0) = &> log f (-,0)/ 06°, etc. Define

= —FE[(°(Z;,00)],Q1(0) = E [(%(Z;,0)] and Q, (0 ) = E [(%%9(Z;,0)] . It is convenient to express the
resulting expansion in terms of U and V-statistics. We define U; (0) = ¢(Z;,0), V; (0) = °(Z;,0) —

E[(2;,6)], W = (" (Z;) ~ E [t (Z)] and let U (6) = n™"/2 1, U; (6), V (6) = n™ "2 L, Vi (6),
and W (0) = 1P ().

Proposition 1 Assume that dim (6) = 1. Under Condition 1, there exists some € € [0, %} such that 0

satisfies the expansion

Vi (B=00) = 07(0)+ 50 O+ G0 O @)
+i%9““ (0) + 1;0 . 0 (0) + %n;ﬁ ceceee (@) (3)
where
6°(0) =Z7'U (o), (4)
6 (0) = Z73Q (B0) U (60)> + 22U (60) V (60) (5)
and
0 (0) = Z7Qy(00) U (Bo) +3Z75Q1 (00)° U (6)® +9Z*Q1 (0) U (60)* V (60) (6)

+3Z73U (00)° W (60) + 623U (o) V (60)> .

Moreover, 6° (0) = Op(1), 0 (0) = Op(1), 0°“ (0) = Op(1) and max_ [

e[o.%] 0 () = Op(1).

<
Proof. See Appendix A4. =
Using expansion (2), we define the approximate estimator § = 6y + n=1/26°(0) + In=10° (0) +

%n’?’/ 20°“ (0). We can now define the expected value of this approximate estimate as

Ee['é}:9+@+%



€€ 1
E[0°] = o B[] +

1

=E [ee] .

IfE P} exists, then Fjy [5] will be approximately equal to F [/0\] at least up to order 1/n except possibly
for some pathological cases. Therefore, we can understand @ as the higher order bias of 0. Likewise, we

have

~
~

E +

)

N =
Sl

where

1 €€ 1 €EEE NE
v:ZVar(O )+3E[9 0°]

Therefore, we can understand % + £ as the higher order variance of 0. Finally, we can define the higher

order MSE as

e [af-m)] <35+

b(0)?

In order to approximate the bias of the bootstrapped estimate 0" we need a similar higher order expansion

as in the case of the ML estimator. Here, however, the reference point around which we develop our
approximation is the empirical distribution F rather than the original distribution F. The convergence of

F to F then guarantees that bootstrapped statistics are close to the original statistics.

We replace Z, Q1 and Qs with T=—n"! S Ee(Zi,/G\), @1 =n 'Y, Eee(Zi,/H\) and @2 =n 1Y, geee(zi”é)

and define bootstrapped U and V-statistics as U (0) = € (Z7,0), Vi* (0) = (9 (Z;,0) —n=1 >0 0 (Z;,0),

Wi =099 (ZF)—n=t 30 099 (Z;,0) and let U* (0) =n~1/23°0 U (0), V*(0) =n~ Y237V (0) and

W* (0) =n~1/23"" | W (0) we obtain for the following result for the bootstraped estimate 0.

Proposition 2 Assume that dim (6) = 1. Under Conditions 1,2,3 and 4 3¢ € [O,n_l/z] such that 0

satisfies the expansion

SRR e 1 1 ~
ﬁ(a 79) = T +5720 O +5-07 0
1 1 NEEEE 1 1 NEEEEE

24—nﬁ0 (0) ng (6) a.s

where 07 (0) = Z-1U* (@) 0 (0) =130, (@) U (@)2 o720 (@) v (5) ete. Moreover, 8 (0) =

0,(1), 87 (0) = 0,(1), 8 (0) = O,(1), 8" (0) = O,(1) and max, g, -1z 0 (€)= Op(1) where all
orders of probability hold PNa.s., where PN is defined in Proposition 6 in the Appendiz.

2.2 Bootstrap Bias Correction

Bootstrap Bias estimation and Bias correction was analyzed in the context of linear models by Shao

(1988a,b). Let E* be the expectation operator with respect to F. The idea behind the Bootstrap bias



correction is to estimate E P} — 0o, if it exists, by E* P*} — 9. Since in our case we can not guarantee
existence of E [@} we show instead that E* PT is close to b(6). This in turn will allow us to construct
the bias corrected estimate 20 — E* [/9\*} .

Since 0 is a potentially highly nonlinear function of the underlying density we introduce a truncated
version of the bootstrap bias estimator. A similar form of truncation was suggested by Shao (1988b).
However, Shao required that the truncation point was bounded in probability as the sample size grows.
We allow for growing truncation points in order to guarantee the asymptotically higher order unbiasedness
of our procedure.

We introduce the statistic C' (Z), where C (Z) = Op(1) and Z = {Zy, ..., Z, }. The truncated bootstrap

bias estimate is then defined as
b= E* {hn (5* —5)}
where

—n*C(Z) ifz< —n*C(2)
hn (2) = r if |z] <n*C(2) (7)
n*C(Z) ifx>n*C(Z)

Possible choices for C'(Z) are estimates such as the standard deviation of 0. We first establish that
E* [hn (5* - 5)} estimates the higher order bias b () consistently.

Proposition 3 Assume that dim (0) = 1. Also assume Conditions 1,2,3 and 4 hold. Let hy, be defined in

7 with o € (0,335). Then

b* = b(ZO) + o0, (nfl) .

Proof. See Appendix A4. =

Note that the restrictions imposed on a depend on the smoothness of the underlying model and could
be relaxed at the cost of additional restrictions on the densities f(z,d). While this result establishes that
we can consistently estimate the higher order bias it is not sufficient to guarantee good higher order

properties of the bias corrected estimator. For this reason we establish the next result.
Proposition 4 Assume that dim (§) = 1. Let h,, be defined as in 7. Then
7 * * _ 1 1 1 €€
N (9 B [hn (9 - 9)} - 90) = U0+~ <29 0) b(00)>

1 €EE ]' 1
Lo 2m o (2),

+ 6n 2n

where B is defined in (44) in the Appendiz.



Proof. See Appendix A4. m

Because
B2 )] <o,

we can see that the bootstrap successfully removes bias. It therefore follows that
n * * 7 2 ~ ~ 1 e
E [(\/H(HE I (9 79) 790)) } NVar(\/ﬁ(Hfﬁo)) - 5-E[BY.

2.3 Jackknife Bias Correction

An alternative to the bootstrap is a jackknife bias corrected estimator. We develop the higher order
theory for such an estimator in this section and compare its higher order properties to the properties of
the bootstrap bias corrected procedure. Let % denote the MLE based on delete-i sample. The jackknife

bias corrected estimator is given by

~ n—1 "o
GanG—T;O(i)

The following proposition establishes the higher order properties of the Jackknife bias corrected ML

estimator.

Proposition 5 Assume that dim (0) = 1. Also assume Condition 1 holds. Then the jackknife bias

corrected ML estimator has a higher order expansion as in

V(0 —0y) — 96+%(%9“(0)_b(90)>

11 ... 11 1
“rgﬁe 2nJ+OP <n>

where J is defined in (52) in the Appendiz.

Proof. See Appendix A4. =

It follows at once that
J=B, (8)

which means that the Jackknife and Bootstrap bias corrected versions of the ML estimator are higher
order equivalent. They do not only have the same higher order variance but agree more generally in
terms of their higher order distribution at least as far as the stochastic approximation allows to make such

comparisons.



3 Higher Order Efficiency

In this section we obtain the higher order asymptotic properties of the bias corrected estimator of Pfanzagl
and Wefelmeyer (1978). Since that estimator was shown to be higher order efficient we will conclude that
our bias corrected estimator is higher order efficient if it has the same higher order variance as the Pfanzagl
and Wefelmeyer estimator.

In general, when dim (6) > 1, we still have an expansion similar to Proposition 2:

Vi (0-00) =0 (0) + ;}9“() é%aeef(wo (n\/_)

The asymptotic bias of MLE is then equal to

1) _ [ 0]

n 2n

Suppose! that there is some vector of functions m (z, ) and another vector of functions 7 (m) with

Q)ET(/m(z79)f(z,9)dz>.

This leads to a bias corrected estimator

. (5)

n

)
Il

Implementation of the Pfanzagl and Wefelmeyer procedure is potentially complicated if the integral
J'm(z,0) f(2,0)dz is difficult to compute. An alternative is therefore to replace the integral by sam-

ple averages. For

=T (n_l Zm (Zi, 9)) ,
i
an alternative bias correction is then

=0 0)

n

>)
—
5

We can show that 6, and 6, have the same mean squared error up to order O (n_l) by analyzing their

higher order variance. Let

7 (0) = E[m (Zi,0)] = /m(z,&)f(zﬂo)dz )
with j-th element 72, (0) and write @ = (0y), T, = O7 (M) /OM/, M = F [M} S/ Mf (2,00) dz
and A = E [m(Z;,00) £ (Z;,00)'].

!When dim (6) 1, we have seen that b(9) = #E@ [€99] + I_12E9 [¢¢6].  Therefore, we have b(0) =
0 6

7 ([ m(2,0) f (2,0)dz), where 7 (t1,t2,t3) = #tg + t%tg, t, = fZ(z,O)zf(z,O) dz, to = [£99(2,0) f (2,0)dz, t3 =
1 1
[€(z,0) 19 (2,0) f (,0) dz, and m (z,0) = (e (2,0)%,099 (2,0) ,£(z,0) £° (z,e))'.



Theorem 1 Assume Conditions 1,8 and 4 hold. Let h,, be defined in 7 with o € (O, ﬂ). Then,

30
Vi (0.-00) = o)+ % (%9 (0) - b(%)) e (ée (0) - Cn) top(n ),
Vi (@a - 90) = 0°(0) + % (%9 (0) — b(00)> + % <é9 (0) — An> +o, (n7Y)

where A, = Tm (M (I_lU (90)) +n1/2 > (m(zi,600) — m)); Crn=7Tm (M+A) (I_lU (90))7 and
E [Cn0°(0)] = E [A4,0°(0)'] = 7y (M + A) T

Proof. See Appendix A4. m
This result implies that the four bias corrected estimators all have the same higher order variance

term. Assume for simplicity that dim () = 1. Because

N (@C - 90) = 0% (0) + % (%9 (0) —b (90)> + % <é9 (0) — Cn> +o, (n71),

we can define the approximate MSE of \/n (@L - 90) to be the mean square of the RHS ignoring the
op (n_l). It is easy to see that the approximate MSE of \/n (50 — 90) is equal to

<%9“ 0)—b (90)>2

— Var (6° (0)) + %Var <%9 (0)) + % Cov <%9 (0),6° (0)) _ % Cov (C, 6° (0))

B[ 0] + %E +E [% (%9 (0) — c) 0 (0)]

Likewise, we can see that the approximate MSE of v/n (@a - 90) is equal to

Var (6° (0)) + %Var (%9 (o>> + % Cov <ée (0),6° (0)) _ % Cov (An, 0° (0))

Theorem 1 indicates that Cov (Cy,0° (0)) = Cov (4,,0°(0)), and therefore, the approximate MSEs are
identical.

In order to understand the intuition behind this result, it is useful to understand b (@) as an efficient
estimator of b(fg). This is because  is an efficient estimator of fy. Assume thaty/n (b (@) - b(Go)) is
asymptotically a nonsingular linear combination of \/n (@ - 00), i.e.,/n (b (5) —b (90)) =Tn Y23 W (Zi,00)+
0, (1) for some nonsingular Y. Here, ¢ (Z;,00) = I~ (Z;,0y) denotes the efficient influence function. Sup-
pose that by, is any other regular? estimator of b () such that v/n (b, — b (0o)) =n~Y2 3" | 0(Zi,00) +
op (1) for some o (Z;,00) such that E[o(Z;,0y)] = 0. Asymptotic covariance between /n @f 00) and

vn (bn —b (@)) is then equal to

Cov (Q (ZZ, 90) - Td) (ZZ,Q()) ,d) (ZZ,Q())) =T Cov (T_lg(Zi,Ho) - 1/} (ZZ, 90) ,1/} (ZZ, 90)) .

2See, e.g., Bickle, Klaassen, Ritov, and Wellner (1993, p. 21).

10



Because Cov (T_lg(Zi,Qo) —¥(Z;,00) ,¢ (Zi,0p)) = 0 by the intuition underlying Hausman-test, we

obtain the conclusion that the asymptotic covariance is zero. In other words, we have
Cov (0(Zi,00) ,¢ (Zs,00)) = Cov (Yop (Zi, 0o) , v (Zi, 00)) (10)
Now, note that we have the expansions

vi - @ — 0o | =07 (0)+ % (%e (0) - b(90)> o (ée (0) — T2 Zw (zz-,e())) +0, (n—%)

and

ﬁ(@—%—%) = 6°(0) +

sl-

(37 0-000) 43 (7 0 -2 Yozm) <0, (12

Because 0 (0) = n=1/23"" 1 (Z;,00), equation (10) implies that covariances of the “adjustment terms”
of order n~! with 6° (0) are equal to each other. It therefore follows that the approximate MSE of the bias
corrected MLE is invariant to the method of bias correction. Theorem 1 turns out to be just a special
case.

Given the preceding discussion, it is perhaps not surprising that the Bootstrap and Jackknife bias

corrected Maximum Likelihood estimators have the same approximate MSE as @c:

Theorem 2 Assume that dim (6) = 1. Assume Conditions 1,3 and 4 hold. Let hy be defined in 7 with

a € (O, %). Then,

%E [BO° (0)] = ;E [36° (0)] = 7 (M + A) L.

Proof. See Appendix A4. m

Remark 1 Theorems 1 and 2 are irrelevant when relevant loss function is not approximate MSE. On
the other hand, equation (8) indicates that the higher order equivalence of Bootstrap and Jackknife goes
beyond the MSE comparison.

4 Conclusions

We have shown that nonparametric bootstrap and jackknife procedures can be used to remove bias terms
of stochastic order n~! from a ML estimator. The bootstrap bias corrected ML estimator achieves the
same higher order variance as the efficient estimators of Pfanzagl and Wefelmeyer (1978). This indicates
that there is no need to derive the analytic bias formula. Estimated versions of the bias corrections do

not increase the higher order variance and are therefore higher order efficient in a mean squared sense.

11



A Proofs

A.1 Some Preliminary Lemmas

Lemma 1 Assume that W; are iid with E[W;] =0 and E [W?*] < co. Then,
B (1, W)™| = Clkjn® + o(n)

for some constant C(k).

Proof. By adopting an argument in the proof of Lemma 5.1 in Lahiri (1992), we have
2k J

B[S 0% = £ Sl o) S E [T W] (1)
where for each fixed j € {1,...,2k}, Y  extends over all j-tuples of positive integers (as, ..., «j) such that
aj + ...+ a; = 2k and ), extends over all ordered j-tuples (i1, ...,4;) of integers such that 1 < i; < n.
Also, C(ay, ..., ) stands for a bounded constant. Note, that if j > k then at least one of the indices
a; = 1. By independence and the fact that EW; = 0 it follows that F ngl Wi+ = 0 whenever j > k.
This shows that E (>, Wi)% = C(k)n* + o(n"*) for some constant C(k). m

Lemma 2 Suppose that {§;,i=1,2,...} is a sequence of zero mean i.i.d. random variables. We also

assume that E Uﬁﬁw} < 0o. We then have

1 n

for every n > 0.

>n| =0 (n"%)

Proof. Using Lemma 1, we obtain

g
=1

where C' > 0 is a constant. Therefore, we have

1 n
;;si

16

E < Cn® 4 o(n®),

8
s Cn

n16y16

nSPrl )=0(1).

>17] <O(n
[

Lemma 3 Suppose that, for each i, {&;(¢),i=1,2,...} is a sequence of zero mean i.i.d. random
variables indexed by some parameter ¢ € . We also assume that sup,eq |€; (&)] < B; for some sequence

of random variables B; that is i.i.d. Finally, we assume that E [\Bi|16] < 00. We then have

|

> nf—z—v] -0 (n—1+16v>

% 3 ¢ (6,)
=1

12



for every v such that v < 1—16. Forv < 4% we have

{

Here, ¢,, is an arbitrary sequence in P.

> n%_vl =o(n™h).

—= 306 (0

Proof. By Markov’s inequality, we have

1 n G, B n 1_7271}

Pr [?ég \/ﬁ;fi(@ > niz ] = Pr sup ;ﬁi(%) >n ]
E [supsea (S & (0] suppes B[(S1y & (o))"
= 5 —16v,16 - n % 160,16 ’

where the last equality is based on dominated convergence. By Lemma 1, we have

n 16
E (Z@» <¢)> < Cnf,
i=1
where C' > 0 is a constant. Therefore, we have

Cn®
< -0 ( 74/3+16v) .
= 28/3-160516 "

Lemma 4 Let G (0) = L3S0 log f(Z;,0). Suppose that Condition 1 hold. We then have for all m > 0
that

Pr :sgp‘@(G) — G(@)‘ > 17- =0 (n*%)

Proof. Note that

Pr :sgp‘@(G) - G(@)‘ > 17- =Pr {sgpﬁ‘@(@) —G(Q)‘ > 77”1_12_1]]

where v = 71—52. Then the result follows by Lemma 3. m

Lemma 5 Under Condition 1, we have

Pr[ max |0 (e) — O] >17] :o(n—%)

Ogegﬁ

for every n > 0.

Proof. Let n be given, and let € = G (6o) — supyg.jg_g,|>n3 G (0) > 0. Letting g (2,0) = log f (2,0),

we have

/ 9(2,0)dF, (2) = (1 - ey/i)) G (0) + /G (6)

13



\/g<z,9>dﬂ (2) -

Here, the last inequality is based on the fact that 0 < e < —=

/g

Therefore, for every 0 < e < —=

{

max
|6—00|>n

max  sup
0<e< ﬁ 0

We also have

meax/g(zﬂ) dF. (z) > /g(zﬂo) dF, (2)

by definition. It follows that

max
[0—00|>n

for every 0 < e < \/_

/9(279) dF, (z) < meax/g(zﬂ) dF, (z) — 3€

G(0)] <

We therefore obtain that Pr [max0<€< L |6 (e

ﬂ

wlt?

)

(2,0) dFe (z) — G(G)‘ > 77] =0 (n_

5

T

/g (2,0)dF.(z) < max G(0)+ =

[0—060]>n

2
< G(eo) — ge’;‘

< /g(z,&o)dFe () — %5.

1

(1— ev/n) ]é(a) 70(9)‘ < ‘é(e) —G(G)’.

=. By Lemma 4, we have

with probability equal to 1 — o ( _L??), we have

—0o| > 17} :o(n*%). n

Lemma 6 Assume that Condition 1 holds. Suppose that K (z;0 (€)) is equal to
9™ log f (26 (¢))

oo™

for some m < 6. Then, for any n > 0, we have

Pr
Also,

Pr

for some constant C > 0 and for every v such that v < 116

max

0<e<

max

0<e<

1

/K

/Kze )dF. (2) — B K (Z;60)]| >

dA‘ > COniz— “1 =0 (n_1+16“)

Proof. Note that we may write

[ K 56(0)dF. ()~ BIK (Zis60)

/Kz9 ) dF. ( /Kzeo)dF()

/K29 ) dFe ( /Kz@o)dF /Kz@odF

/

0K (2;60")

00

(0 (¢) — o) dF. (2) + e\/ﬁ/K (2:600)d (F - F) (2)

14

If v < 45 then the above order is o (

/Kz9 )dF (2)

1)'



where 0" is between 6y and 6 (¢). Therefore, we have

‘/K(z;ﬁ (€))dF. (z) — E[K (Z;;60)]

i=1

where M () is defined in Condition 1. Using Lemma 5, we can bound

max
1
Oses 77

/ K (20 (€))dF, (=) - E K (Z:; 60)]

in absolute value by some 1 > 0 with probability 1 — o (n*§)

Using Condition 1 and Lemmas 3, we can also show that | [ K (;6 (€)) dA| can be bounded by Cnis—v

1

for some constant C' > 0 and v such that v < % with probability 1 — o (n‘1+16“). Similarly, if v < 3,

then the statement holds with probability o(n~!). m

Lemma 7 Suppose that Condition 1 holds. Then, we have

Pr| max [0°(e)| > Ont=—v| = o (n=1+16v)
Ogegﬁ ]
.
Pr| max [0 (¢)] >C(n11_2*“) = o (n1H10Y)
Ogegﬁ
o]
Pr max weeeeee (6)| > C (nll_z—v) = 0 (n—1+161}>
Ogegﬁ

for some constant C > 0 and for every v such that v < %6. Ifv < ﬁ then the above orders are o (n_l).

Proof. From (30), we have

== |[ £ o <z>r [reain]

Using Lemma 6, we can bound the denominator by some C' > 0, and the numerator by some Cniz—v
with probability 1 — o (n*1*16”), from which the first conclusion follows. As for the second conclusion,

we note from (31) that we have

0= E. [( (Zi,€)] (6°(6))* + E. [(° (Zs, )] 6° (€) + 2 < / 0 (2,¢)dA (z)) 6 (¢)

The second conclusion follows by using Lemmas 6 along with the first conclusion. The rest of the Lemmas
can be established similarly. Note that if v < 4%3 then we can apply the specialized result of Lemma 6 in

the same way as before. m

15



Lemma 8 Suppose that Condition 1 holds. Let mj (0) .be as defined in 9. Then

VI(Z=T) = =V (80) = Q1 (00) T7'U (00) + 0, (1),
Vi (1 () = Q1 (60)) = W (60) + Q2 (00) T7U (B0) + 0 (1),
N (ml (@) _ (90)) = 2B[U; (60) Vi (00)] Z~"U (60) + 0, (1) ,

N (mg (@) — T (90)) - (E [w (90)2} + (B[ (2:,60)]) + E [U; (60) Wi (90)]) 71U (6)
Proof. Let my (0) = [¢° (2,0) f (2,00) dz. Note that

T-17 = ' 0(2,0) + B[ (2,00)]
i=1

! i (€0 (Zi,00) =770 (60)) + 0, (1772 = (770 (8) =70 (60)) ,

where the last equality is based on the usual stochastic equicontinuity. Also note that dmyg (6)/ 90 =
[ €% (2,0) f (2,00) dz by dominated convergence. We therefore obtain

o~

Va(I-1) = —nV? S (0 (Z,00) — E [¢9(Z:,00)]) — E [0 (Z:,00)] v/ (0~ 00) +0, (1)

=1

= =V (60) — Q1 (60)T'U (60) + 0, (1),

Likewise, we obtain

N (@1 (5) —9 (90)) = V2 (090(Z,,00) — B [°°(Z:,00)]) + E [ (Z:,00)] v (5 R

=1

= W(@o) + Qs (90)1_1[](90) +0p (1) ,

Vn (m1 (5) —m (90)) 2F [((Zi,00) ° (Zi,00)] V/n (5 - 90) +0p (1)

= 2E[Ui (00) Vi (60)] Z7'U (60) + 0p (1),
Vi (s (8) =7 (00) = (

-

E [ (Z,00)°] + E [€(Z:,60) € (Z:,00)]) v (8- 60) + 0, (1)
B Vi (00)°] + (E [ (2:.00)])" + E[U: (60) Wi (60)] ) Z7'U (00)

A.2 Lemmas for Bootstrapped Statistics

Proposition 6 Assume that Conditions 1,2,3 and 4 hold. Let § be the class of measurable functions
defined in Condition 4. Let ~ denote weak convergence. Let (2, F, P) be a probability space such that
Zi o (N, 7N, PN) — (Q,F, P) are coordinate projections. Then, for f € F , /n (ﬁ— F) f ~ Tf where

16
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T is a tight Brownian bridge with variance covariance function F (t A s) — F (s) F (t). Let BLy be the set
of all function h : 1%° (F) + [0, 1] such that |[h(z1) — h(22)| < |21 — 22|l for every z1and zo where I°° (F)
is the set of uniformly bounded real functions on § and ||.|| 5 s the uniform norm for maps from § to R.

Then supycpr, ‘E*h [\/ﬁ (ﬁ* - }A?') f] — FEh [Tf]‘ — 0, PN-a.s.

Proof. We first show that for f € §, v/n (ﬁ — F) f ~ Tf or in other words that § is a Donsker class.
Define §s = {f = g: f.g €SB [If —gl*] <8}, Soo = {f—9: g€ F} and §% = {f*: f €T} In
light of van der Vaart and Wellner (1996, Theorem 2.5.2), it is enough to show that §s and §2, are F
measurable classes for every 6 > 0 and £ [M (2)2} < 00. The second requirement is satisfied by Condition
1. Since Fs C Foo the first condition holds if for f € F2, and any vector a € R™ and any n the function
$(Z1, s Zn) = SUDg, gy ’27 a; (¢9(Z;,6,) 7g(k)(Zi792))2’ is measurable. Let Y, be an increasing
sequence of countable subsets of T whose limit is dense in Y. Then

n 2
$k(Z1, . Zn) = su a; (£™(Z;,01) — (™(Z;,0
W2 Z) = e |3 (69(Zi,01) = £9(Z:,0))

is measurable by Condition 3. By continuity of ¢(*)(Z;,6) in 6 it follows that liminfy, si(Z1, ..., Z,) =
s(Z1, ..., Zy) such that measurability of s follows from Royden (1988, Theorem 20, p.68). Conditional
weak convergence of A follows from Gine and Zinn (1990, Theorem 2.4). Note that by measurability of

vn (ﬁ' — F) f and Gine and Zinn (1990, p861) the convergence of sup,c gy, |E*h [\/ﬁ (ﬁ* — ﬁ) f} — Eh [Tf]’

isa.s. &

Lemma 9 Assume that Condition 1 is satisfied. Suppose that, for eachi, & (¢) =7 (ZF,¢)—L Y0 | 7(Zi, 8),
1 ={1,2,...} is a sequence of bootstrapped transformations of random variables indexed by some parame-
ter ¢ € @ with E* [£] (¢)] = 0. We also assume that supyeq |7 (Zi, ¢)| < By for some sequence of random

variables B; that is i.4.d. Finally, we assume that E {\Bi\lﬁ} < o0o. We then have

P*

% S € (6,)
=1

for every v such that v < %. Moreover,

%sz;g;k (d)n) > nllz—vl =0, (n_z_??) .

Here, ¢,, is an arbitrary sequence in ® and P* is the conditional probability measure of Z; given Z;.

P*

Proof. Note that Y1 &(¢) = Soi ) (Npi — 1) 7(Z;,¢) where Ny, ..., Ny, is multinomially dis-
tributed with parameters (n,1/n,...,1/n) = (k, p1, ..., pn) and independent of Z; such that Pr (N, {N,; =n;}) =
n!/ (IT;n!) [I,n~™ where > "'n; = n, n; > 0. Let Ky,r,...,, be the mixed higher order cumulant of

Npt, ..., Ny of order r =ry +... 4+ 1, for r; > 0, r; integer. Mixed higher order cumulants can be obtained

17



from Guldberg’s (1935) recurrence relation Ky, py. r,+1...r,, = @O0 (Kryro..ry..r, ) /Oa; Where a; = p;/p1. Let
b be the number of non zero indices r;. The arguments in Wishart (1949) imply that for p; = n~! we have
Kiyrg...r, < cn~?T1 for some constant c. For notational convenience we will represent cumulants with zero
indices as lower order cumulants of the variables with non-zero indices, i.e. write £ ... = Kriry. o,

where r; = 0.

Consider
1 n 1
P lsup |—="¢l (¢)| >n= | = P {sup|Y & ()| >nE"
| 75306 0) ] %éz
% n * 16]
_ E {Sup¢eq> (i1 &i (9)
— 7’L3 161),'7
« n * 16
Supyeq F [(Zt 165 (9) |
= 28 _ 160 ’
ns 716

where the last equality uses the fact that Supyeq does not involve Nyi, ..., Ny, By adopting an argument
in the proof of Lemma 5.1 in Lahiri (1992), we have
ok .

B (S 6 0 = £ D010 [T (o) B I (N, = 1) (12)
where for each fixed j € {1,...,2k}, > extends over all j-tuples of positive integers (o, ..., ;) such
that a; + ... + o = 2k and ), extends over all ordered j-tuples (i1,...,4;) of integers such that 1 <
i; < n. Also, C(Oq, aj) stands for a bounded constant. Next we consider the mixed central moments
pla,...,a;) = E*[[2_; (Np;, —1)® . From Shiryaev (1989, Theorem 6, p.290) we obtain a relationship
between cumulants and mixed moments. Let o = (o, ...7ozj)/,r(p) = (T&p), ...7r§»p)) , |r(p)’ = Tgp)—‘r...—i-T;»p)

and r®1 = p{ il §p )1 such that
1 a! 1
,u(al, ceey Oéj) = Z am H Hrgp)rép)_mr;z))
r 4. 4r(@=q p=1

where ) 1), L ,.a—, indicates the sum over all ordered sets of nonnegative integral vectors r®), !r(p)| >
0,whose sum is a. Since the order of 12 depends both on the number of nonzero terms in >, and the size

of pu(au, ..., ) for each j, we analyze the term

ZHT thad) H( nzbfl)as

I t=1 s=1

for each j. Note that ‘H 1 7(Zi,, )

is bounded almost surely and therefore does not affect the analysis.
Also, Y, is a sum over n/ terms and thus is O(nj ) if all these terms are nonzero. The crucial factor in
determining the overall order is therefore E* []/_, (N,;, —1)**. We start with j = 1. Then oy = 2k,
g = 1..2k and r® are scalars. Consequently, R, = C1 where ¢; is some constant and S(n,1) <

2>, \T(Zit,qﬁ)\% for some other constant cy. If j < k then for ¢ = 1...2¢, 7(?) are vectors with possibly

18



“ for j < k. If j > k then

only one element different from zero. Again, S(n,j) < c2 ), {:1 I7(Zi,, ®)

a contains at least 2(j — k) elements o; = 1. Now assume that for some p, rgp ) = 1 and r](.p ) = 0 for

i # j- Then Kp) = E (Nyp;, —1) = 0 and thus []]_, Kooy ) = 0. On the other hand if rgp) =1

and T§p) # 0 for at least one j # i then £ ) » o < cin~ L. Since there must exists p’ corresponding
Prpfe)

to the other «; = 1 such that either rg,p) = 1 and rg»p) =0 for i # j or rg,p) = 1 and rg»p) #0

for at least one j # 4/, it follows that ngl K o), )

S(n,j) < ean 200 S T1_, 17(Zi,, ¢)

J
E|S(mj) <3 E (H I7(Zi,, 9)|°
I t=1

for j < k and

J
E|S(n,j)l € con V"M ¥R (H 17(Zi, ¢)

1 t=1

o = csn~ 207k “at most. It now follows that
J

“* for all j > k. Then,

) < e’ E|1(Z;,, )

as) < e T E1(Z,, )P < con®E|7(Zi,, 0)

for j > k. Together these results imply that
EB|E" (S, & ()] < CRn* B (2, )

where C(k) is a constant that depends on k. By the Markov inequality it follows that E* (37", & (g{)))mC =
O, (n*). We conclude that

&,
p _ﬁ;@wn)

The second result follows immediately from

% Z €L (d)n)

i=1

> T 28
n3716v7716

8
> nf—z—v] < Op(n ) _ Op (n—%-i-lﬁv) ]

]

- p*

)

>

r 1 n
P* - ; 1/2 < ( —
n ;gt (d)n) > nn ] — OP n

by the previous result.
Lemma 10 Under Condition 1, we have

P* | max

Ogegﬁ

0 (¢) —5‘ > 77] =0, (n_%) .

Proof. For any n > 0, there exists some ¢ > 0 such that |6 — 0| > n/2 implies |G (6) — G (6o)| > 6.
Let G* (0) = [ g(z,0)dF* (2) and G? (0) = [ g (2,0) dF, (z). Then,

P*| max |0 (¢) —5‘ >n| < P*| max G(g*(e)) -G (5)‘ > 51 .
0<e<—= 0<e< A=
Because

G(F70)-6() = (@(©0)-¢(0))+ (6 0)-6 )(5* «))



and

we obtain

s 65 0) - 6(0)

n

< sup‘G* (0) = G (0)] + sup |G (0) - G 0)]

< EEE‘G* 0) — @(9)‘ +32§‘é(9) - G(G)‘
(025 0) -6 O]+ s [0:0) -0 )]+ 69~ )
< sup ]é ) — @(9)‘ +32¥‘é(9) - G(G)‘

+ma |6 (779) =6z (7)) + | () - @ (7)) + |e (7) - & (7)

NG

G
< 222‘@* () _@(9)‘ _~_221€1¥‘@(9) —G(&)‘ +O§r£12>iﬁ G (5* (6)) —-Gr (@)‘

By Lemma 9, we have

P |G @)~ G @) > 2] <0, (%)

~

Conditional on data, supgey ‘G 0 -G (0)‘ > ¢ is a non-stochastic event. Therefore, we can write

P {sup’@(ﬁ) 70(9)‘ > 5} —1 {sup‘@(@) —G(é))’ > 5},

0eY oY

where 1{-} denotes an indicator function. For every o > 0, we have

gg‘@(e))fa(e)\ >

[=2) IS

Pr {p* [gg‘é(e))a(e)\ > g} >an?] — Pr [1{ }>0}

- Pr[zgg‘@(&)—G(G)‘>g} (1)

where the last equality is implied by Lemma 4. It therefore follows that
6

P {22@‘@(9) - G(@)‘ > 6] = 0p (n_%) .

20
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Finally,

o (G (00) =G ()] < max |G2(079) -G (B)| + max [62(9) -6 (0)

=  max |supG* () —sup@ (9)‘ + max
0<e<—=| 0 0 0<e< =

v v

< max |supG*(0) —supG (9)‘ + |G (@) -G (5)‘
0<e<—=1| 0 0

< max sup G* (0) — @(9)‘ +sup |G*(0) — @ (9)‘
0<e<—= \/_ 0

< max sup|G”(6) fé(a)‘ +sup |G*(0) fé(e)(
0<e<= g 0

< sup‘G* 76(9)’+sup’@*(0)f@(0)’

0 0

— 2sup (é (0) — 6(9)(
0
Here, the first equality is based on the definitions of 9 (e) and ?. Because

P [sw|er @ -G 0] > o] o, ()

we can conclude that
e 7 0) -6 (7) -

The conclusion follows by combining (13) - (17). m

P* | max =0p (n*%) . (17)

1
_Ogegﬁ

Lemma 11 Assume that Condition 1 is satisfied. Let K (-;0 (€)) be defined as in Lemma 6. Then, for

any n > 0, we have

P max | [ K (0" ©) B (2) - B 1K G0 >n]=op(n‘2_33)-
0<e<
Also,
* H-v| — -3 —1+16v
P 0<1’I€13X /K dA‘>Cn2 ] op(max(n 3.n ))

1
for some constant C'> 0 and for every v such that v < 75

Proof. In the same way as in the proof of Lemma 6
/KzﬁedF /KzGOdF()

- /%(9 ()—90)dFe(Z)-i-e\/ﬁ/K(z;Qo)d(ﬁ*—ﬁ)(z)
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where 6" is between 6y and 0 (¢). Therefore, we have

<

‘/Kzﬁ ) dF. ( /KzaodF()

7 (00| (%ZM(&H%ZM(ZZ‘))
=1 i=1
; %;M<Z:>—%2M<Z

where M (-) is defined in Condition 1. Let M = 13" | M (Z;) and M* = 23" | M (Z}). Then, for any

7 and some ¢

~k

P*[@(e)—

90‘1\7[>17} gP*{

v (€) 700‘ >77/c} +P*[|M - E[M(Z)]| > ] =op (n*%)

argument as in 15 Moreover,

o~k

P*[ 9" (e)

0 (e)—90‘|M*—M’>n} SP*[

by Lemmas 9 and 10. It thus follows that for any n > 0,

<‘/Kz9 ) dF. ( /Kzao)dF()>n>op(n %)

Finally note that P* (‘fK (2;00) dﬁ(z) — FK (z; 90)‘ >

N——

= 1 with probability

wltd

P (’ [ K (it0) dF ()~ B 1K (z:60) )

> n) =o(n~

ol

by Lemma 2. Thus, by the same argument as in 15 P* (UK (2:00) dF (z) — EK (z; 90)‘ > 17) =0, (n_ ) .

For the second result fix 6 > 0 arbitrary. Then

P* | max /K dA‘ >CnV| < P*| sup /K dA‘ > COnpt=v
OsesTm |0-9|<s
+P* max 0 (¢) -9 > 5]
Ogegﬁ
where
P* | sup /K dA‘ > Cnizv| = Op (n_1+16“)
|9 0]<s

follows directly from Lemma 9 and

0 (¢) —5‘ > 6] =0p (n_%)

follows from Lemma 10. m

P*| max
0<e< L

N

22



Lemma 12 Suppose that Condition 1 holds. Then, we have

~€ a1 23 —
P* maxl 0 (6)‘ > (COniz ™V = 0p (maxn 3.n 1+16v)
0<e<—L
Sesom 1
« ~c€ 1 _y 2 23 —1+16v
P*| max |0 (e)] >C(nT = op(maxn~3,n
0<e<—L
= =Vn i
" ~ceecee 1 o 6 —23 14160
P*| max |0 (6)‘ >C(n12 ) = 0p (maxn 3.n )
0<e< =

for some constant C > 0 and for every v such that v < %6.

Proof. Let M, = [ (% (z,¢) dF, (z) such that

0 (e) = —Mgl/z(-,e) dA
and for any 6 > 0 some C > 0 and for every v such that v < 1—16

/E(-,e) dA

_2m
= 0p (maxn 3n 1HG“)

~E

P {9 (6)‘ > C’n%_“} < P {sup

€

> 50#‘“} + P [Sup M~ B[ (z.60)]] 2 8

by Lemma 11. The rest of the Lemma can be established similarly. m

Lemma 13 Let X =T (ZL*,/Q\) be some transformation of Z;, where T possibly depends on the sample
{Z;};_, through 0. Then
o | 1NNy 1w
m ] -k 5 x
where X; =T (Zi,g).
Proof. Note that
i

n
EF (X =1 -21 X;
Jj=

which in turn implies

E <‘/%_L Z1X:<> B ‘/%_L i=1 (TIL Z Xj) :TIL '71Xj.

7 j=1 Fi
u

Lemma 14 Let X}, = 7y (ZL*,@) for k =1,2 be some transformation of Z;, where Tj, possibly depends
on the sample {Z;};_, through 6. Then

(3 5 i) (s 5 ) |

= % S Xy i Xo + ( = > X1,i> (
i=1 n i=1

where Xy, ; = Tk(ziﬁ).

-

S
s
-
=
<



Proof. This is because
n

E*[X{,X5,] =5 2 X1, X0,
j=1

which in turn implies that

ol ()
= %ZE* [X11X22]+
i=1

= . (% } Xl:jX2J> +r (% > XLJ) (% > Xz,j)
1 Jj=1 74! j=1 Jj=1

n(n—1 n
X1 X9+ nln-1) ( )
1 n =1

3=
NgE

<
Il

3=
™
>

1
n

J

1 n n — 1 1 n
= w X XKyt —— | 77 L Xy
7j=1 j=1

The conclusion follows easily from this result. m

Lemma 15 Let X, = 7% (Zj,@) for k =1,2 be some transformation of Z}, where Ty, possibly depends
on the sample {Z;}"_, through 6. Then

| —
—
™
Lo
N
—
3 |H
-
s
N
—
n
M=
&3

Proof. Note that

n

= Z X1 1X2¢X3¢

+ Z X12X22X31’+ Z X12X22’X31+ Z Xlz’XQZXSz

74! 174! 174!
+ > X{XS XS
i Ei i
Therefore, we have
n * * * * n 1 n
ZlE [(X1:X5:X35:] = X EZIXLJ’XZJ’XSJ
i= j=
n
= L XXXy
]:
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S E LX) = X B X B[

n n
= 2 (% > XLsz,j) (% > Xsu‘)
i j=1 j=1

> B X1 X5uX5] = : (i Xsu‘XLj) (i Xz,j)

i/ noo\y=t j=1
-1 n n
> ET (X170 X5,X5,] = i > X Xsj | (22 Xl,j)
i1 n j=1 j=1
and
o / E* [Xik,ngﬂlXék?i”] == ) Z E* [X]it] .Ew< I:Xékﬂ,] .Ew< I:X;:ai”]
1AV £ £ P4 £i i

n n n
= > (l > Xm‘) (i > Xza‘) (i > X&a‘)
£ Fi #£ j=1 j=1 j=1

n2 —3n+2 n n n
— | X X | | X Xeg | | X Xay
j=1 j=1 j=1
from which we obtain

n n — 1 n n
= XL]‘XQJXSJ' + XL]’XQJ Z X37j
=1 n j=1 J=1

J J

n — 1 n n n — 1 n n
+ > Xa X | | X2 Xoy | + > Xo X | | D0 Xy
n j=1 j=1 n j=1 j=1

n?—3n+2 (& n n
| X2 X | [ 22 Xoj | | 22 Xs -
n j=1 j=1 j=1

Lemma 16 Let Uy (0) = ((Z;,0), Vi (0) = (0(Z7,0) — (9(-,0) = °(Zr,0) —n~ >0 9(Z:,0),
Wi (0) = (99(ZF) — 099 (-,0) = 99(Z;) — n= 30 099(Z;,0) and let U*(9) = n~Y230"  UF(6),
VE(0) =n~ V230 Vi (0) and W (6) = n~ V23001 Wi (6). Then (a)

(@) = o
= @) = o
@) = o
(b)
el 0)] = 2L e(20)

B [ue (0) v+ (8)] = %;é (2.0) ¢ (2.0)

I
3=



(c)
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Proof. For part (a) it follows from Lemma 13 that
E* [U (5)} Y (Ziﬁ) — 0,
i=1

where the last inequality follows from the definition of 0. The remaining results can be established in the

same way. For part (b) we note that it follows from Lemma 14 that

o @)] = 85 e(ma) s (w5 ()
- %ie(zi,é)Q,
i=1

where the last equality is based on >, ¢ (Zi,/é) = 0. For the second part we use
B (v (B)ve (9)] = L ¢(2.0) <£9 (2.0) - (% S0 (Z@)))
i=1 i=1
(5 (35 () (:5e0)

= iyt (Ziﬁ) ¢ (Zi,é) .

For part (¢) we use Lemma 15 to obtain

# [ @] = w22 (1 £0() (w £0(9)




fons {U* (E)QW* (9)} - \%%éﬁlm (@)QWJ (9) + ”;1 ( >
At (50 0w ) (£
2
22 (0 500) (
and

e @)y )] - mEEwE (15
o™ 1 <%J§1 U, (5) Vi (§)> (ﬁjé

n?—3n+2 n n

such that the result follows. m

A.3 Lemmas for Jackknifed Statistics

Lemma 17 Let

1L .
W mY X W W;X

Then, we have
1 n
nW —v/nv/n =1 S Wiy =W
j=1
Proof. Note that

Sxoe

=1 ij

1 & 1
= Wiy = ——
n; @ n=1

It therefore follows that

n—1

—iXA_—Vn_lW
nyn —1 oUn

1 & Vn—1
aW —Viavn—1= 3" Wy =aW — Vavn — 1 —W =W
(Ut vn
[
Lemma 18 Let
w=(E>n) (), W= (AT
=|—= 1 — 2, | 5 i) = 1
\/6121 N v nili;ﬁj
Then,
n
W= Wi == > XuiXey

J=1
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Proof. We first prove that

lzj:W» _nz 2y, 1 i:X X
n O | n(n—1) & Ltz

1< 1 1
i o) DU(O I =D il fe DI Y [ e DBR.CY

=1 =1 i#j i#]
1 i nX1— X1, nXs;— Xy
S on = n—1 n—1

1 n3X1Xo — 202X Xo + Y0 X1, X0
n

(n—1)”
n? —2n— —
= oo oXet Milgzxuxzz
n—2
- (n—l)2 nn—lzZXlzsz

where X denotes the sample average of X 1,i- Therefore, we have

1 n n_2 1 n
— Wiy = w X1 Xo;
n; O | +n(n71); L2,

and
- n(n—2)
w-S"w, = (a2 )y Xa;
v - 3wy (n-"=2)
n R
= n71W—n71;X1,iX2,i
S ini iXZi *LiniXZi
n-l\= i n-lim 7T
1
= n—lZXMXQ’j
i#£]
[

Lemma 19 Let

W = <%§;X1¢> <%rZL1X22> ( _ ZXg’L)v
1

1
Wy = Il ZXl,z‘ \/— ZXz i Tt ZX:’,,z‘

i#j i#] i#j
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Then,

nW 1/ 7le(J)

_ n? +n2W
(n—=1)

n? 1 & n2
_m (VnX) <£ ;XQ,Z‘X:;,Z‘) - m nXs) ( ZXg X1 Z)

n? 1< ny/n 1
—71)2 (VnXs) <E ZXl,in,i + \/;)2 - ZXLin,iX?,,z‘
=1 -

(n— (n =1

Proof. Observe that

n

1 1 1 1
rp 3l s DIRIEY N by DBEEHY B Py D DESE

j=1 i#£j i#£] i#j
- l i nX1 X1 j 7172 — XQJ‘ 7173 — X37j
T n 4 n—1 n—1 n—1
j=1
n—3n*— — —
= (n— 1)3 142X3
1 " 1 T
+ 71 X271‘X37i + 72 X3,iX17i
(n—1)* ; (n—1)° ;
1 d 1 a
X3y X1 X0 ————= Y X1,X0,X3,
(n—1)° ; ”(n—l)S;
It therefore follows that
1 — n—3
_ZW(J') = 32\/E< nXl)( nX?)( nX3)
n (n—1)%
J=1
vn 1< NG 1
+———75 (VnX1) | =) X0 X3 |+ ——7% (VnX2) | = > X3:X1,
v (3 v (13
Jn 1 1 &
+——— (VnX3) X1, Xoi | ————=5 | = ) X1, X2,:X3;
(n_1)3/2 Z (n_1)3/2 n;

and therefore,
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n
— > W)
j=1

n? 1 <& n?
——3 1)2 (\/TZX1) (Z ZX2,1X371‘ - m nXg ZX?, ¢X1 i
n? ny/n 1
——1) nX3) ( ZX1 iX2 z) Vi 5 (E ZXLin,iXs,i)
n
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Lemma 20 Let

Then
n2 1 n
W= 2.V
j=1
- n(n2+3n—1)
(n—1)°
n3 1 « n3 1 &
— X X — X3 X4, X X — Xo i X,
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Proof. Observe that
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It therefore follows that
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7)4)(1)(3 Z X2 X4

X3 Z X1, X0, X4 —

i=1
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1
1
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1
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from which the conclusion follows. =
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Lemma 21 Let
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Proof. Observe that
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Therefore, we have
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from which the conclusion follows. m

A.4 Proofs of Main Results

Proof of Proposition 1. Consider the function G (¢,0) = [ (- (). Note that G(.,.) : RxT— R
and is continuously differentiable on R?. By Condition 2 there exists 9(6) € T such that G(¢,0(¢)) = 0 for
all € € [0,1/+/n]. Since G(¢,0)/0 # 0 almost surely by assumption it follows by the implicit function
theorem that there exists a continuously differentiable function 6(¢) : U — R such that G (¢,0(¢)) = 0
a.s. Since G(¢,0) is in fact m times continuously differentiable 6(¢) inherits this property. Measurability
of 6(e) follows from continuity of f(z,6) and separability of Y.
By Taylor’s theorem there exists some € € [0,1/4/n] such that 0 (n=12) = 6(0)+> = 11 k,nk/Q 0™ (0)+

6™ (). By Lemmas 5 and 6 it follows that MAXg<<p—1/2 0™ (¢) = O,(1) such that the remainder
0™ (&) = 0, (n="/?) for m < 6. To find the derivatives 0, let

mlnm/Q

term 'nm
h(z,€) =L(2,0(€)),
and rewrite the first order condition as

0= /h(z,e) dF. (z)

Differentiating repeatedly with respect to e, we obtain

0 = [P )4 /h( O dA (2) (18)
2 €
0 /d f;(; / (2) (19)
0 /d };EZ € / (2) (20)
z€) d3h (z,¢€)
- e /h '
5 €
0 /d f;(i / (2) (22)
6 € 5 €
O/df;(z /dhz (2) (23)
Note that
dh (e) c
de a =
di;legG) _ 699 (95)2 +£9066 (25)
di?e:g—e) = 0999 (6°)® 4 30999°0°c + (99°c (26)
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o _ 59909 (06)4 + 6@990 (96)2 0 4+ 3690 (966)2 + 4699069666 + é&aeeee (27)
5
d 6?“626) _ 690099 (96)5 + 1060090 (96)3 gee + 15600906 (966)2 (28)
+10£900 (06)2 geee + 106999660666 + 56909606666 + 69066666
6
d ;‘6((56) — £999999 (96)6 + 15609099 (96)4 0 + 4569999 (96)2 (955)2 (29)

+20£9999 (96)3 gecc + 15£999 (066)3 + 60£999069660666
+15£900 (96)2 geeee + 10£90 (9666)2 + 15£9996696666 + 669996966666

+€006666€6

Here, 60 denotes the derivative of § with respect to e. Combining (18) - (21) with (24) - (27), we obtain

0=E[(°(Z,€)] 0 (e) + /e (z,€)dA(2) (30)
0= E.[(%(Zi,e)] (6° (€))? + Ec [ (Zi,€)] 6 (e </€9 z,€)dA (2 ) (¢) (31)
0 = E [t (Z;,€)] (0°(€)) + 3E. [(?° (Zi, €)] 0° (€) 0°° (€) + Ec [£° (Zi €)] 6°° (e)
+3 </ 099 (z,€) dA (z)) (6°(e))> +3 < 0% (2,¢)dA (z)) 0% (¢) (32)
0 = E [0"(Z,e)] (6° ()" + 6B [(° (Zi,€)] (6° ()* 6 (€) + BE. [(* (Z;, )] (6 (e))?
FAE, [0% (Z;,€)] 0° (€) 0°“ (€) + Ee [ (Zi, €)] 0°°°° (€) + 4 (6 (¢))? ( / 099 (2 )
+126° (€) 0 (¢) ( / 9 (3, ) dA (z)) 46 () ( / 0 (2,6 dA (z)> (33)
0 = E[("(Z;,6)] (6°(€)° + 10E, [(% (Z;,€)] (6° (¢))° 0 (€) + 15E, [¢* (Zi,€)] 6° () (6 (€))°

+10E [£ (Zi,€)] (0 (€))* 0 () + 10E. [ (Zi,€)] 0° (€) 0 ()

+5E, [(%° (Z:,€)] 0° (€) 0°°° (€) + E. [€° (Zi, €)] 09 (€) + 5 (6 (e))* < / 09999 (5 ) dA (z))

+30 (8¢ (€))? 6°° (e (/emze >+15 (6% (e </€09ze )

+200° (€) 65 (¢) ( / 0% (z,€)dA (2 >+59““ ( / 0% (z,€)dA (2 ) (34)
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and

0 = Bl [(0 (7,,0] (0 (0)° + 5. [ (Z,,6)] (0 (©)" 0 (9
0% (Z;, 6)] (0°(€)% (6 (€))* + 20 [€° (Zi, )] (6° (€))” 6°* (¢)

1999 (Z,, )] (6 (€))° + 60E. [£% (2, )] 6° () 6 () 6 (¢)

(0 (Zi, )] (6°(€))* 6° (€) + 10E, [(" (Z;,€)] (6°“ (€))”

0 ( i’f)] 0 (€) 0°°“ (€) + 6B [(°° (Zi,€)] 6° (€) 0°°°° (e)

+E [ (Zi,€)] 09 () +6 (0 (e ( / 099% (2, €) z)

160 (6 (€))* 6° (e) ( / 09990 () dA (z)) +906° (6 ())? < / (999 (2 ¢) dA (z))

160 (6° (€))% 6° (e) < / 9% (2 ¢)dA (z)) + 606° () 6 (¢) < / 0 (2, ) dA (z)>

+300° () 0°° (e < / 099 (2,¢) dA (2 >+69““6 (e) < / 0 (z,€) dA (z)) (35)

Here, E. [] is defined such that

+45F,
+15F,
+15F,

+15E,

E.lg(Zi,e)] = / g (2 €)dF. (2)

Evaluating expressions (30) - (33) at e = 0, we obtain

o — %[4"] </£dA) - %/EdA, (36)

gee — El[ e@ ( [0%] (6%)% + 2 ( / E"dA) ) LE b[f[e;]} (6°)? H%M"} < / é"dA) o°
= ( / m) + = < / e‘%m) < / édA) (37)

S e ([ ) o[ )

- (B ) ] S
+% < / &m) ( / E""dA) < &m) ( / e%m) (38)

ceee E [49900] 4 E [690] €€
0 = g 09"+ e )
60
14 fE[‘E[Ee]] pepece +4_E1[£9} (96)3 (/£990dA>

+12— 1[ 40]969“ < / WdA) +4— El[ 40]9“6 ( / z%m) (39)

39

geee —

[4009]
“E[0]

(95)2 gee +3




eeeee Veeeee] €\5 E [59999] €\3 pee [ 009] € (peeN2
6 gy 010 g (0067 4+ 157 o (67
E [6999] €\2 peee E [699] €€ neee
HI0 g (07 0 4105060

s f?g;i]] pepeece +5_Elw)] (0 </ éeeeedA>
+3o%[m (02 0 ( / W%A) 15— 1[ 7 (" ( / WdA)
20— Ee]a e < / WdA) +5— El[ Ma““ < / WdA) (40)

Proof of Proposition 2. By the same arguments as in the proof of proposition 1 it follows that
~(k ~(m
there exists some & € [0,n71/?] such that \/n (9 — 0) = 9 )+ Zk L et ( )(0) + 49( )(E)
a.s., where 0 (0) is obtained from evaluating [ dhg%ﬁ)dFe (2) + fh z,€)dA (2) at € = 0. We obtain

P PYE
_ / (2,0)dF (2)8°(0) + / ¢(20) dA(2),

where [ (%(z, 9 dF( )y =ntY0 0 ZZ,G) and A( )= +/n (ﬁ* (2) — ﬁ(z)) Similar expressions can
be found for higher order derivatives of 9(6). These expressions depend on n=' Y7 | k) (Zi,g) and
fﬂ(k) (z,@) dA () for k =0,1,...,6. By Condition 1 and Lemma 5, it follows that n=! """ | k) (Zi,g) 2
E [f(k) (Zi,00)] by a uniform law of large numbers. By Proposition 6 the class § is Donsker. By the proof

of Theorem 2.4 in Gine and Zinn (1990) it follows that the following conditional stochastic equicontinuity

>77>0

property

n—00 [t—s|<6

Plas hfnhmsupP ( sup /(E(k) (z,t)ff(k)(z,s)) dA (2)
holds. Then

P <‘ / (N) (zﬁ) — ¢®) (z,ao)) dA (2)| > n)

/ (M (2,1) — €W (2, s)) dA (2)

< P* sup
|0—00| <6

> n/2> + P (’57 90‘ > n/z) (41)
or
/%k) 2 9) dA (2 /N 2,00) dA (2) + 0,(1) PNaus.

It now follows from Proposition 6 and Theorem 2.4 of Gine and Zinn (1990) that [ ¢*) (z,6) dA (2) ~
[ %) (2,00) dT (2) almost surely, where T (2) is a Brownian Bridge process. We finally have to analyze
the term /9\(7”) (€) which contains expressions of the form [ ¢()(z, 0 (¢))dF. (z) and [ o) (z 0 (e )) dA ().
For [ ¢ (z,@\*(e)) dA (2) we use the same inequality as in (41) together with Lemma 10 to show that

/ (9 (29°(0)) dA () = / (®) (2,00) dA (2) + 0p(1) PNas.
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Next consider

‘/ (0 (2,3 (€))dF. (2) — €% (2, 00)dF (2)

< el

/ () (2,57 (€))dA (2)

+ '/N) (2,00)d (F () - F (z))‘
N ' / (092,07 (0)) = €9z, 00)] dF (2)

where fﬁ(k)(zﬁ*(e))dﬁ (z) = O,(1) PNass. by Proposition 6 and sup |e| = O(n~1/2). The second term is

-

/ [N)(z, 9) — () (2, 90)} dF (2)

0p(1) by a law of large numbers. Finally,

< PpP* sup
|6—00|<6

>77>+P*< sup 5*(6)90’25>
0<e<1/ v/

where the first probability goes to zero because for any € > 0,36 > 0 such that

E sup
|6—60|<6

/ [(0(2,0) = (D) (2,00)| dF ()| = sup (BEO(Z;,0) = BOV(2;,00)) <&

|0—00|<6

and the second probability goes to zero by Lemma 10. It follows that [ £(F) (z,/é* ())dF. (z) B E(™)(z,6)

~(k
PNa.s. Together, these results imply that sup, 9( )(e) = 0,(1) PNas. for k < 6. This establishes the

validity of the expansion. m

Proof of Theorem 3. Let
o~k A~EE 1 1 NEEE 1 1 NEEEE

~c 11
= 71/2 _— —_ _
Ou =010 (0) + 507 (0) + =507 (0) + 9 (0).

Because |hy(z) — hp(y)] < 2n*C (Z) A ||z — y||, we have

o (77 -8) 1 (7)) greee <E>H> |

Fix € > 0 and 9—76 <o < % arbitrary. Taking expectations with respect to the measure F leads to

. —=75 Sup
961°/2 g<c<r/ym

< min (2710‘6’ (2)

“NEEEEE

0

1
sup

2 [ (0= 0)] = o (B)]| < 1 om0 ) P g s

(e)H > e/nH} .

NEEEEE

Use the fact that P* [W SUPg<c<1/ i ||0 (e)H > s/nz_‘s} = o, (n=76/60-(16/5)8) by setting —v =
1/60 + 6/5 in Lemma 12. Choose § € (7/96 + (5/16) o, 1/2) . It follows that

2 [ (77 = 0)] = 7 [ (82)]

IN

€/n2—5 +20, (n—76/60—(16/5)5+a) C(2)

0p(n"~2) = 0, (n~*/?)
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Next, we need to show that E* [hn (@:)] — B [52} =0, (n3/2) . Note that

B [h (5:)} B [@Z} < B [n“C(Z)—ﬁz 1{AZ > ”‘C(Z)H
< B || 1{o.] znec@)}] +noc(2) B 10| = nec(2)}]
ol
< opr |
(n*C(2))

NEE NEEE

(0), and d = %ﬁ““ (0). We have

1 1 1 1\ 1 1 1 1 4
<—a+—b+—c+ —2d> = a4+ b+t +—dt + -
3

4
a’b + —a’c
n

ab?

4 13ad3+ 1 =
(Vn) (Vn)

6 6 6
a?’d + —3a2b2 + —4a202 + —56L2d2
n n n

4 3
+—ac” +
n
4
7
(V)

4 4
+——7bc® + —7bd3 -

(\/— ) (vn)
—b2c2+ b2d2

+

4
3 3
gb'c+ —b%d

4 4
NG i
n n
12 12 12
a’be+ —ab’c + sab*d
T 75

6
+—702d2 +
n

+ 12 gab02 + 12 T abd® + inagd
(v/n) (vn) (v/n)

12 12 12 24
+— acd® + 7 —a%bd + 5 a’ed + —5ab0d
n ( n n

12 12
+—6bc2d - —bed® + b%cd.
n (vn) (vn)

Expectations of all terms of the from E* [aibjckdl] where 4, j,k,1 € {0,1,2,3,4} and i+ j+ k+1 =4 are
bounded in probability E* [a'bic*d'] = O,(1) such that E* [-5a*] = O,(n?) is the largest term. It follows
E* [hn (5:)] - E* [@Z} = 0, (n7273%) = 0, (n73/%). Because E* [ !

24n?
E* [0, = B [0aa] + 00(n™)

NEEEE

0 (O)} =0, (n7?), we

have

where

~x 1 e 11 e 1 1 ~ecee
Voo = 550 (0)+ 50 (0)+c—550 (0).

e ~ N\ e PR N\ 2
In order to evaluate E* [9 we use Proposition 2 by which § (0) = Z-1U* (9) 0 (0)=I739; (9) U* (9) +
2220 (9) v+ (9) and
0 = 76, (0)vr (0) +377°G, (9) v* (8) + 970, (3) U () v+ (d)

3T (a) we (8) + 620" () v* (5)2.

aa
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Note that 7 , @1 and @2 are constants with respect to E*. It thus follows that
B {56 (0)} — 71 [U (5)} ~0

2 , N2
by Lemma 16(a). We consider E* {U (9) ] =15 ¢ (ZZ-,Q) . By Proposition 6 and van der Waart

>5>0

and Wellner (1996, Theorem 1.5.7) it follows that

n

1$y (ziﬁ)2 — 15 0(Z:,00)°

lim supP sup
i=1 i=1

n— 00 |6—00|<6

such that by Lemma 5 it follows that
N\ 2 n
B {U (%) } = L5 0(Z,00) + 0p(1).
i=1

Similar results can be established for the other expressions of Lemma 16. It therefore follows that

€€

B {5 (0)}

T3, (00) L 3 €(Zi,00)° + 2121 32 0(Z;,00) (° (Zi.00) + 0y (1)
i=1 i=1
= T72Q;(0o) + 27 2E [tt°] + 0, (1)

= 20(0)).

It also follows that E* [5666 (O)} =0, (n‘l/ 2) by the same arguments. Therefore

B {’é:a} _ b(ZO) +o, (nfl),

which establishes the result. m
Proof of Proposition 4. First note that E* [hn (/9\* - 5)} =FE* [@;} + 0, (n3/2) by Theorem 3.
It follows that

o~

N (@ B [hn (@" - 5)} - 90) = Vn (9 B[] - 90) +vn (E 0:,] — E* [hn (5* fé)D
N (@ B[] - 90) +o,(nY).

We have shown that

B {56 (0)} —0,

B {5“ (0)} = 71730, (5) 1 gjle (Zi,§)2 +2721 Z_z:jlﬁ (Ziﬁ) I (Zi,é)

T72Q, (00) + 2L 2E [((Z4,00) € (Z:,600)] + Bn + 0, (n—1/2)
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and

e 0] - 700.0) (5

.
Il
-

VB, = =37V (I-T) Qi (60)
+272n (01 (0) - 2(00))

+Z73Q, (6y) <L i [E(Zi,HO)Q -F {5(21790)2” +/n [ml (5) —my (%)D

\/ﬁ =1
4T 3/n (f - I) E[t(Z:,00) (° (Z;,0)]

1272 (\/ﬁ [mg (5) . (90)}

+vn [nl éz(zheo)z@ (Z;,00) — E [¢(Z;,00) £ (Zi,ﬂo)]D

It follows that

Using

where

B [0.] = 5o (T 00+ 2T [((Z:,00) € (Z:60)])

11 _

Lemma 8, we obtain

VB, =B+ 0, (1),

B = 377*Q1(60)>U(00) +Z Q2 (60) U (60) + 6Z*Q1 (60) E [U; (60) Vi (60)] U (60)

YT 3E (U, (80) Wi (00)] U (60) + 2I73E [W (Z, 90)2} U (6o)
+3Z73Q1 (00) V (00) +4Z3E[U; (00) Vi (00)] V (60)

+I72W (6))

2T 2/ @jle (Zi,00) 1° (Z:,00) — E [0(Z:,00) £ (Z:, 90)])

+I73Q, (0) n V2 <Z [e(zi, 6,)° — E [f (Zi,90)2”>

i=1
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Combining (42) and (43), we obtain
(0= [ (7" =9)] ~00)

7—5 (172Q1 (90) + 2I%F V (Z“ ao)fe (Z“ 90)])

11 1
"3t )

from which the conclusion follows. =

Proof of Proposition 5. Write 0° = 0° (0), etc, for notational simplicity. Because

~ 11 1 1
0 = € — _pE€ - €ee
0o+ 0° + 5 n@ 5 n\/_ﬁ
11 €€cee 1 1 €eceee ii €eeceee
+24 n2 + 120 nZ\/ﬁ 720 n3 (a )
we should have
) 1 1 ce 1 eee
by = ot T30 15 /— 0%)
+i 1 gecee 4+ 1 1 €eeee + L 1 geceeee (~ )
212D TR0 12 m1 @ TR0 (m_1p @ @
Therefore,

ﬁ(@—eo) - ﬁ(e——z%)—eo)
TL{ 1/ Z\/n— 9(3)—90)}
n 1< —
* n—lﬁj;m(emao)
€ 1 1 €€ €E€E € 1 1 1 1 €EE
= ”{9 +§f9 9 \/n,ln <<J>+2 Wi R (j))}
€ 1 1 €€ee
Z %)*2\/—(; —170)
+ i 1 eeeee+ geceee 1 6666+L 1 geceee
" 24 ny/n 120 w2f nfln n,1 m—1)vn-1 00) 120 (r — 1)2 ()
6666 L 1 €EEEEE
\/n_lnz<24 n—1) /n (J +12()(7171)29(1) )
1 1 EEEEEE _ 1 EEEEEE
+"{7_20n2\/59 © n—lnz720 EEnaV e (%’)}

\/n—lnzmo n—1) ,/—9(” ©
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or

€ 1 € 1 1 €€ €€ €EE n €EE
= | = Vave—1-3> 65, T =205 | T |0 - D0
Jj=1 Jj=1 j=1
1 1 n? 1< 11
_ 06666 _ _ aesee - 966666 _ 66666
Todinym | " n—1ln< (J))+120n2n (n—l \/ 1nZ G)
1 1 1 1 -
_ 9666666 o 66‘6666 ~ . 45

From Lemma 7, we have

1
Pr { ———0“ (&) > C} <Pr [ max  |0°°“““ (¢)| > Cn>%v| = o(1)
nz—6v 0<e< =
for every v such that v < ;5. In particular, we have
1 €EEEEEE
@ =0, (1) (46)

By Lemma 7 again, we obtain

—— - Zeeeeeee ~]) >C < Z Pr |: Ej;eee (fg(]))‘ > C:|
< Z Pr| max L pecceec (e)| >C
>~ pet OSGS\/lﬁ —761} (4)
= nPr ng;\(}_ o E;Gee (e)‘ >C
= o(1)

Here, the first equality is based on the fact that Z; are i.i.d., so that 6{5)° (€) are identically distributed

for j =1,... ,n. In particular, we have
n — \/_ Z eeeeee ~ =0, (1) (47)
Combining (46) and (47), we obtain

1 1 EEEEEE 1 €EEEEEE ~ l
%nﬁe © - 720 (n Ze —or <n> (48)

966666

Note that 0°“°“ is a sum of V-statistic of order 4 as considered in Lemma 20. Likewise, is a sum of

V-statistic of order 5 as considered in Lemma 21. Therefore, combining (39) and (40) with Lemmas 20
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and 21, we obtain

n2 1 n
ne= — ;Z 0 =01

=1

”(9 IO \/—17120)) (1)

from which we further obtain

1 1 €EE€E€E n2 1 - €EEEE — 1

24ny/n (nﬁ 7n—1n]210(j) ) - (E> (49
1 1 EEEEE _ 66666 1

202" (" =D ¢—1n2 ) (n) %0

Combining (4), (5), (6) with Lemmas 17, 18, 19, we obtain

€ 1 . € 1 1 €€ & €€ €€E 666
(na \/E\/nlgzle(j)) W (na Z (j)) ( 0 1/ )
]: =

— 9+ 57 {I3E [¢%%] (U(GO)2 -F [Ui (00)2}) 122 (U (00) V (00) — E[U; (60) Vi (90)})}51)

11, 11 1
+6£9 2nJ+0p <’I”L>

Combining (45) with (48), (50), (49), and (51), we obtain

Vi (i-0,) = ee+%_{st[eee] (U0~ 2 [U:(00)"] ) + 2 0 G0)V (90)—E[U1(90)Vz‘(90)])}

n

11 ... 11 1
+659 2nJ+Op <n)

I = (TPB[) 43T (")) U (80) + 6T E [(*] EIUVA]U (60)
+%E [EQQ]V(90)+%E[UZ-W] (90)+% (60)
Y B[ (00| U (60) + = B [UV]V(00)

FT R [ V2 (Z (2,00~ B [¢ <Zi,eo>2ﬂ)

i=1

where

+272p~1/? <é£ (Z:,00) (° (Z;,00) — E [€(Z;,00) (° (Zi, 90)]) (52)

Proof of Theorem 1. An expansion of b (5) gives

0 (fm (2,0) f (2,0) dz) . .
Tm ( 80/ , 90> U (90) + Op (TL )

T (M +A)T7U (60) + O, (n71) .

b (5) — b(6o)
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A similar expansion for b (@) gives
b (5) b)) = b (5) —5(60) + b (60) — b (6)

= (% > m ziﬁ) - % Zm(21790)>

1 —
+Tm (E Zm (Zi>00) - K [m (Ziv 90)]) + OP (TL 1)
= T'ranilU (00) +Tm (nil Zt (m (Zia 90) - m)) + OP (nil) :
Plugging these expansions into that for 0 gives

Vi (0—00) = i (0-60) - b ()

Jn
= I7'U (6o) + % (%9“(0) - b(90)>
= (éa“f(()) o (M4 M) T (90)) +0, (#)
and
i) = ali-a)- i)
= )+ = (5070 - b))
% <é9666(0) — T (MIlU(Go) +nY/2 Z (m (2i,60) m))) + Op (#)
Also,
E KMI‘lU(Go) 412 32 (m (zi,00) m)) (7' (90))/]
— MI'E[U@0)U(6)]T ' +E Kn”z 2 (m (=1, 60) m)) U(9o)’} -
= M+MNIT
n

Proof of Theorem 2. The asymptotic bias of the MLE is equal to

b(6o)
n
where
b(0) = 1 [6°] = LEQ (%] + iEe [e?]
2 QIg Ig

To show that $F [BO (0)] = 7., (M + A)Z~, it suffices to prove that E [BU (6)] = 27, (M + A). We
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first note that
E[BU (o)) = 6I7°Q1(0o) E [€(Zi,00)(° (Z:,00)] +2I73Q; (60)°
+4773 (E [6 (Zm 90) A (Zm 90)] )2 +717%E V (ZZ, 90) 0% (ZZ, 90)] + I_2Q2 (90)2
o712 {E [W (zi,eoﬂ + B [0(Z,00) 0 (Z;,00)] + E [e (Zi,00)2 ¢ (Zi,eo)} } :

where we have used F [ﬂ (Zi, 90)3} = —FE [(°(Z;,00)] — 3E [¢(Z;,00) £° (Zi,60)]. In order to provide an
alternative characterization of 27, (M + A), we note that
/
M = (2E [£(2,0) €7 (Z:,00)] , E [(°°° (2,0)] , E [59 (2,0)° + € (2,0) (9 (z,e)])

/
)

- (2E [£(2,0) € (Z:,60)] , Q5 (0), E [69 (2, 9)2} +E[0(20) 0 (2, 9)])

A= (B[] BI 00 0(0)] B[00 9)})/

_ (791 (0) = BE [€(Zi,00) £° (Z:,00)] , E [€(2,0) % (2,0)] , E [f (2,0)% (¢ (z,é))D

and

o 7E[£99(Zi,90)]+2E[£(Zi,90)€9(2i,90)] 1 1
" E [z (z,eo)zr’ 9B [z (2,90)2}27 E [z(z,eo)zr

(O +2E[((Z,00) 0 (Zi00)] 1 1Y
N 13 12727 12
where the last equality is based on
E [0%(Z;,00)] +2E [€(Z;,00) (° (Z;,6)]

2F [z (,z,eoﬂ2

b(0o) = —7 (E [4 (z,e)ﬂ E [0 (2,0)] ,E [0(2,0) £ (2, 9)])

It follows that

Q1 (0) +2E [€(Z;,00) €0 (Z:,00)]
IS

+% (Q2(0) + E [(2,0) (% (2,0)])

+% (B[ (200" + B [0(2,0) 7 (2,0)] + B [£(2,0)° ¢ (2,0)])

= 2773Q, (0)° +6T73Q, (6) E [((Zi,00) £ (Zi,00)] + 4T3 (E [£ (24, 00) €° (Z,60)])’

27 (M +A) 2

(Q1(0) + E [€(Zi,00) ° (Zi,60)])

+Z7205 (0) + I72E [€(2,0) (7 (2,0)]
+2272 (B [0 (2,0)°] + E[0(2,0) % (2,0)] + E [¢(2,0)* ¢ (2,0)] )
= E[BU (6o)]
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