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Abstract

In this paper we analyze Generalized Method of Moments (GMM) estimators for time

series models as advocated by Hansen and Singleton. It is well known that these estimators

achieve efficiency bounds if the number of lagged observations in the instrument set goes to

infinity.

A new version of the GMM estimator based on kernel weighted moment conditions is

proposed. Higher order asymptotic expansions are used to obtain optimal rates of expansions

for the number of instruments to minimize the asymptotic Mean Squared Error (MSE) of the

estimator.

Estimates of optimal bandwidth parameters are then used to construct a fully feasible

GMM estimator where the number of lagged instruments are endogenously determined by

the data.

Expressions for the asymptotic bias of kernel weighted GMM estimators are obtained. It

is shown that standard GMM procedures have larger asymptotic biases than kernel weighted

GMM. A bias correction for the estimator is proposed. It is shown that the bias corrected

version achieves a faster rate of convergence of the higher order terms of the MSE than the

uncorrected estimator.

An alternative to direct bias correction are k-class estimators introduced by Nagar. This

approach is adapted to the time series case. The time series k-class estimator also corrects

for the largest order bias and achieves an accelerated rate of convergence for the higher order

asymptotic terms.
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1. Introduction

In recent years GMM estimators have become one of the main tools in estimating economic

models based on first order conditions for optimal behavior of economic agents. Hansen (1982)

established the asymptotic properties of a large class of GMM estimators. It was subsequently

shown by Chamberlain (1987), Hansen (1985) and Newey (1988) that GMM estimators based on

conditional moment restrictions can be constructed to achieve semiparametric efficiency bounds.

In independent sampling situations feasible versions of such estimators were implemented

by Newey (1990)?. In a time series context examples of such estimators are Hayashi and

Sims (1983), Stoica, Soderstrom and Friedlander (1985), Hansen and Singleton (1991,1996) and

Hansen, Heaton and Ogaki (1996). To this date no analysis of the allowed expansion rate for

the number of instruments has been provided in the context of time series models. In this paper

a data dependent selection rule for the number of instruments is obtained and a fully feasible

version of GMM estimators for linear time series models is proposed. The number of lagged

instruments is chosen in a way similar to a bandwidth selection procedure for nonparametric

density estimation.

While for some time series estimators the number of instruments needed to achieve the

efficiency lower bound is small this is not the case in general. Calculations based on asymptotic

covariance matrices in Hansen and Singleton (1991) indicate that the number of instruments

needed to achieve the lower bounds can be large in some cases. In particular the calculations

in Stoica, Soderstrom and Friedlander (1985) for the Autoregressive-Moving-Average (ARMA)

model of order (1,1) indicate that when the moving average coefficient is close to the unit circle

the asymptotic efficiency of the parameter estimates approaches the bound slowly with the

number of instruments increasing.

This indicates that estimators which allow the number of instruments to grow rapidly with

the sample size are empirically important and can lead to overall faster rates of convergence

of the higher order terms contributing to the MSE of the estimator. A feasible version of an

estimator where the number of instruments grows at the same rate as the sample was recently

developed in Kuersteiner (1997,1999a) for a special problem. In general however much slower

expansion rates for the instrument set are required. This fact was shown by Newey (1990)? and

Donald and Newey (1997) in a cross section context.

Here a GMM procedure based on kernel weighted moment conditions is proposed. The

analysis of the higher order asymptotic terms reveals that bias terms dominate the asymptotic
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MSE. The idea behind using the kernel weighted version of the GMM estimator is to dampen

the importance of these bias terms and thus allow a larger number of instruments to be included.

While the automatic choice of bandwidth parameters has a relatively long tradition in the

nonparametric literature for density estimation, its equivalent in the semiparametric literature

is relatively recent.

Linton (1995) analyses the optimal choice of bandwidth parameters based on minimizing the

asymptotic MSE of the estimator. He applies this technique to nonparametric kernel estimates of

the partially linear regression model. Xiao and Phillips (1996) apply similar ideas to determine

the optimal bandwidth in the estimation of the residual spectral density in a Whittle likelihood

based regression set up. More recently Linton (1997) extended his procedure to the determination

of the optimal bandwidth choice in a efficient semiparametric instrumental variables estimator.

While his approach is based on kernel estimates of the optimal instruments, Donald and Newey

(1997) use similar arguments to determine the optimal number of base functions in polynomial

approximations to the optimal instrument. The idea behind these estimators is to analyze higher

order asymptotic expansions of the estimators around their true parameter values. While the

first order asymptotic terms typically do not depend on the estimation of infinite dimensional

nuisance parameters as shown in Andrews (1994) and Newey (1994) this is not the case for higher

order terms of the expansions.

For fully parametric models the higher order terms of the approximation around the limiting

normal distribution go to zero with the rate Op(n−1) where n is the sample size. For semi-

parametric models the rate of convergence typically depends on the way the infinite dimensional

nuisance parameters are estimated. Donald and Newey (1997) show that the optimal rate of con-

vergence of the approximate MSE is O(n−
2s

2s+d ) for Limited Information Maximum :Likelihood

(LIML) estimators and O(n−
2s

2s+2d ) for Two Stage Least Squares (2SLS) where s is the degree

of differentiability of the nonlinear mean function and d is the dimension of the regressor space.

These results conform with the results of Xiao and Phillips (1996) who find an asymptotic rate of

convergence of the MSE of O(n−
2s

2s+1 ) where s is the degree of differentiability of the innovation

spectral density.

In this paper we will obtain expansions similar to the ones of Donald and Newey (1997) for

the case of GMM estimators for models with lagged dependent right hand side variables. This set

up is important for the analysis of intertemporal optimization models which are characterized

by first order conditions of maximization. One particular area of application is asset pricing

models.
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Expressions for the asymptotic MSE are obtained. It turns out that the rate of convergence

of the higher order terms in the mean squared error is O(n−
2s

2s+2 ) which corresponds to the 2SLS

case of Donald and Newey (1997). Minimizing the asymptotic approximation to the MSE with

respect to the number of lagged instruments leads to a feasible GMM estimator for time series

models. Full implementation of the procedure requires the specification of estimators for the

constants in the expression for the optimal bandwidth parameter. It is established that a plug-in

estimator for the optimal bandwidth leads to a GMM estimator that is fully feasible and achieves

the same asymptotic distribution as the infeasible optimal estimator. Moreover, it is shown that

the asymptotic bias is lower if suitable kernel weights are applied to the moment conditions. A

semiparametric correction of the asymptotic bias term is proposed. The bias corrected version

of the GMM estimator achieves a faster optimal rate of convergence of the higher order terms.

In this sense the MSE of the bias corrected GMM estimator is an order of magnitude smaller

than the MSE of the uncorrected GMM estimator.

The paper is organized as follows. Section 2 presents the time series models and introduces

notation. Section 3 introduces the kernel weighted GMM estimator, contains the analysis of

higher order asymptotic MSE terms and derives the optimal number of instruments. Section 4

discusses implementation of the procedure, in particular consistent estimation of the constants

in the optimal bandwidth formula. Section 5 analyzes the asymptotic bias of the kernel weighted

GMM estimator and introduces the bias corrected GMM estimator. The proofs are collected in

Appendix A and additional Lemmas are given in Appendix B.

2. Linear Time Series Models

We consider the linear time series framework of Hansen and Singleton (1996). Let yt ∈ Rp be a
strictly stationary stochastic process with Ey2t <∞.We define the information set of the observer
as the σ-filed Ft generated by current and lagged values of yt such that Ft = σ(yt, yt−1, ...).

Assume that there exists an infinite moving average representation

yt = µ+C(L)ut(2.1)

where µ ∈ Rp and ut is a strictly stationary and conditionally homoskedastic martingale difference
sequence. It is assumed that economic theory provides restrictions of the form

∆(L,β)yt = εt + α0(2.2)
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where εt = Φ(L)ut and Φ(L) = Φ0 +Φ1L+ ...+Φm−1Lm−1 is a 1× p vector of lag polynomials
of order m−1 with m > 0 such that εt is strictly stationary with Eεt = 0 and follows a Moving-

Average (MA) process of order m-1. We denote its autocovariance function by γεj = Eεtεt−j with

γεj = 0 for |j| ≥ m. The coefficients γεj can be expressed in terms of Φi as γεj =
Pm−1
i=0 ΦiΣΦ

0
i−j

where Φi = 0 for i < 0.

The economic model (2.2) implies moment restrictions of the form

E(εt+myt−j) = 0 for all j ≥ 0.(2.3)

These moment restrictions are the basis for the formulation of GMM estimators exploiting or-

thogonality between εt+m and elements of the random variables generating Ft. Alternatively, the
moment restrictions (2.3) are often implied by economic theory and then lead to the formulation

of a structural model of the form (2.2). A classical example is Asset Pricing models. One of the

main advantages of using moment conditions (2.3) as a basis for estimating the parameters is

that no additional restrictions need to be imposed on the C(L) polynomial.

The parameter vector of interest is β. To simplify the exposition we assume that the 1 × p
vector ∆(L,β) contains finite order lag polynomials of known functional form up to the unknown

parameter vector β. Here, it is assumed that β ∈ Rd. In particular assume ∆(L,β) = δ0(β) −
δ1(β)L− ...− δr(β)Lr. Identification of the structural parameters β follows from the following

Assumption.

Assumption A. The map δ(β) = (δ0(β), ...δr(β)) : Θ 7−→ Ξ is a homeomorphism where

Ξ =
©
ξ ∈ Rr+1 ×Rp ¯̄ξ0 − ξ1z − ...− ξrzr 6= 0, |z| ≤ 1, ξj ∈ Rpª . Without loss of generality it

is assumed that δ(β) : Ξ 7−→ Ξ and that δi(β) is the i-th coordinate projection, i.e. βi =

vec δi(β) ∈ Rp. A normalization restriction β0,1 = 1 is imposed where β0,1 is the first element of
β0.

The spectral density matrix of yt is proportional to
¯̄
C(eiλ)

¯̄2
where the norm of a complex

matrix A is defined as |A|2 = trAA∗ with A∗ the complex conjugate transpose of A. The following
more formal restrictions are imposed on ut and C(L).

Assumption B. Let ut ∈ Rp be strictly stationary and ergodic, withE (ut|Ft−1) = 0, E (utu0t|Ft−1) =
Σ where Σ is a positive definite symmetric matrix of nonrandom constants. Let uit be the i-th

element of ut and cumi1,...,ik(t1, ..., tk−1) the k-th order cross cumulant of u
i1
t+t1 , ..., u

ik
t defined in
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(B.1) in the Appendix. Assume that

∞X
t1=−∞

· · ·
∞X

tk−1=−∞
|cumi1,...,ik(t1, ..., tk−1)| <∞ for k ≤ 8.

The fact that ut is a martingale difference sequence arises naturally in rational expectations

models. In our context it is needed together with the conditional homoskedasticity assumption

to guarantee that the optimal GMM weight matrix is of a sufficiently simple form. This allows

to construct estimates of the bias terms converging fast enough to increase the optimal rate of

convergence to the asymptotic limit distribution of a bias corrected GMM estimator.

The conditional homoskedasticity condition E(utu0t|Ft−1) = Eutu
0
t is restrictive as it rules

out time changing variances. Relaxing this restriction results in more complicated GMM weight

matrices of the type analyzed in Kuersteiner (1997, 1999b). In principle the higher order moment

restriction implied by conditional homoskedasticity could be used in addition to the conditions

(2.3). The resulting estimator is however nonlinear and will not be considered here.

The summability assumption for the cumulants limits the temporal dependence of the innova-

tion process. Andrews (1991) shows for k = 4 that the summability condition on the cumulants

is implied by a strong mixing assumption for ut. The cumulant summability condition used here

is similar but slightly stronger than the second part of Condition A in Andrews (1991). What is

needed both in Andrews (1991) and here are restrictions on the eighth-moment dependence of

the underlying process ut.

Assumption C (s). Let ut satisfy Assumption (B) and let yt = µy +
P∞
k=0Ckut−k where Ck

are real matrices of dimension p× p such that Pk |k|s kCkk < ∞ for some s > 1 + δ and some

δ > 0.

Note that s = ∞ if yt follows a vector ARMA process. The following definitions will be

used throughout the paper and are given next. Let yt satisfy Assumption (C(s)). Partition

yt =
¡
y1t , y

20
t

¢0 where y1t is the first element of yt. Then define xt = ¡
y20t , y0t−1, ..., y0t−r

¢0
. Let

µy = Eyt and µx = Ext. Define wt,i = (xt+m − µx)
¡
yt−i+1 − µy

¢0
, Γxyi = Ewt,i, Γ

yx
−i = Ew

0
t,i

and let w̌t,i = wt,i − Γxyi . Next define wyt,j−i =
¡
yt−i − µy

¢ ¡
yt−j − µy

¢0 with Ewyt,j−i = Γyyj−i. Let
εt = Φ(L)ut and define vt,i = εt+m(yt−i+1−µy). Also define Eεtxs = Γεxt−s and Eεt+mys = Γεyt−s.
For a, b ∈ {”x”, ”y”, ”ε”} we define the following second order spectral densities

fab(λ) =
1

2π

∞X
j=−∞

Γabj e
−iλj.
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The shorter notation fa is used for faa. A forth order spectrum of particular interest is

fΩ(λ) =
1
2π

P∞
j=−∞

Pm−1
l=−m+1 γ

ε
lΓ
yy
j−le

−iλj which can be represented as fΩ(λ) = 2πfε(λ)fy(λ).

Assumption D. There exists an ² > 0 such that the spectral density fε(λ) > ² uniformly in

λ ∈ [−π,π] .

Remark 1. Assumption (D) is an invertibility condition for the innovation process εt. It guaran-

tees that 1/fε(λ) has the same smoothness properties as fε(λ). In particular the Fourier expansion

of f−1ε (λ) has coefficients ζj =
R
f−1ε (λ)eiλjdλ such that

P∞
j=−∞ |j|s

¯̄
ζj
¯̄
for all s <∞.

Infeasible efficient GMM estimation for β is based on exploiting all the implications of the

moment restriction (2.3). In our context this is equivalent to choosing [M ] lagged observations

as instruments where [M ] denotes the largest integer smaller than M ∈ R. We therefore define
instrument vectors zt,M = (y0t, y0t−1, ..., y0t−[M]+1)

0 and let the number of instruments go to infinity.

We define an infeasible estimator of β as a reference point to which we compare feasible versions

of the estimator.

For this purpose let 1[M ] be an [M ] × 1 vector of ones, ΩM =
Pm−1
l=−m+1 γ

ε
lΩM(l) with

ΩM(l) = Ezt,Mz
0
t−l,M , P

0
M = E(xt+m − µx)(zt,M − 1[M ] ⊗ µy)0 and DM = P 0MΩ

−1
M PM . Also

denote the i, j-th p × p block of ΩM(l) by ωi,j(l).The infeasible estimator of β is based on a
nonrandom matrix D−1M P

0
MΩ

−1
M and is given by

βn,M = D−1M P
0
MΩ

−1
M

1

n

X
t

(y1t − µ1y)(zt,M − 1[M ] ⊗ µy)

In order to characterize the limit of DM and P 0MΩ
−1
M as M →∞ we introduce the sequence

space l2 of square summable sequences x = {xi}∞i=1 with elements xi ∈ Rp such that x ∈ l2
if
P
i kxik < ∞. We define the operator Ω component-wise by its image for all x ∈ l2 by

bi = limm→∞
Pm
j ωi,jxj where ωi,j =

Pm−1
l=−m+1 Γ

yy
j−i+lγ

ε
l is the i, j th block of ΩM . The operator

Ω has a well defined and bounded inverse if it is selfadjoint, bounded and noncompact. These

conditions are satisfied for covariance matrices under Assumptions (B) and (C). The Closed

Graph theorem then implies boundedness of Ω−1, i.e. xΩ−1 ∈ l2 for all x ∈ l2. Denote by ϑk,j
the k, j-th element of Ω−1. FromWhittle (1951) it is well known that ϑk,j =

R π
−π f

−1
Ω (λ)eiλ(j−k)dλ

such that ϑk,j ≡ ϑj−k. In the same way let P ∈ Nd
j=1 l

2 be an element of the d dimensional

product of sequence spaces l2 in the sense that each column of P is an element of l2. It then

follows that the limiting operator P 0Ω−1 maps l2 sequences into l2 sequences. Details of these

arguments can be found in Kuersteiner (1999b).
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Let D = limM P
0
MΩ

−1
M PM = P 0Ω−1P and d0 = limM P 0MΩ

−1
M

1√
n

P
(zt,M −1[M]⊗µ)εt almost

surely. It can be shown that D−1d0
p→ N(0,D−1) as n→∞ under the assumptions made about

yt. It is also true that
√
n
³
β̂M − β

´
−D−1dn p→ 0 as n,M →∞. The last statement is no longer

true, at least without specifying the rate at which M goes to infinity, once we replace βn,M by

a feasible estimator.

A feasible version of βn,M is obtained by replacing D−1M P
0
MΩ

−1
M by an estimated counterpart

D̂−1M P̂
0
M Ω̂

−1
M . The notation β̂n,M is used for such a feasible estimator. We call an estimator fully

feasible if M is a function of the data alone. A fully feasible estimator is denoted by β̂n,M̂ .

From the results in Hansen (1985) it follows that estimators for which M goes to infinity are

achieving the GMM efficiency lower bound as long as there are no additional restrictions placed

on the lag polynomial C(L).

Once the infeasible estimator has been replaced by a feasible version where D−1M P
0
MΩ

−1
M is

estimated from the data the choice of the number of included instruments becomes a more

delicate matter. It is well known that introducing additional instruments often comes at the cost

of substantial biases for the resulting parameter estimates β̂n,M .

A fully feasible procedure therefore requires a data dependent selection rule for the parameter

M in a finite sample. We derive such a selection rule in the next section. A fully data dependent

procedure is developed in Section (4).

3. Kernel Weighted GMM

The criterion used to determine the optimal bandwidth M∗ is to minimize the Mean Squared

Error (MSE) of terms in a Taylor Series expansion of β̂n,M that depend onM and are of highest

order in probability. Choosing an optimal value for M∗ is based on exploiting the trade off

between adding more instruments resulting in higher efficiency and the finite sample biases

introduced by additional instruments.

In this paper a generalized class of GMM estimators based on kernel weighted moment restric-

tions is introduced. Under the assumptions of this paper the conditioning set Ft is generated by
lagged observations yt, yt−1,... leading to an infinite set of unconditional moment restrictions of

the form Eεt+myt−j = 0. A conventional GMM estimator is based on using the first M of these

moment restrictions. More generally one can consider non-random weights k(j/M) ∈ [−1, 1]
such that

k(j/M)Eεt+myt−j−1 = 0.
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The truncated kernel is k(j/M) = {|j/M | ≤ 1} where we use {.} to denote the indicator function.
The general kernel weighted approach therefore covers the standard GMM procedure as a special

case when the truncated kernel is used. One reason for allowing more general kernel functions

is discussed in Section 5. It turns out that kernel weighting reduces the asymptotic bias of the

GMM estimator.

Optimal nuisance parameter selection based on minimizing asymptotic mean squared errors

has been used in similar contexts by Xiao and Phillips (1998) and Donald and Newey (1997).

The main new technical difficulty handled in this paper is to allow for lagged dependent right

hand side variables. The MSE calculations presented here are therefore unconditional rather

than conditional.

We first specify the formal requirements the kernel weight function k(.) has to satisfy.

Assumption E. The kernel function k(.) satisfies k : R 7→ [−1, 1] , k(0) = 1, k(x) = k(−x)∀x ∈
R, k(x) = 0 for |x| > 1, k(.) is continuous at 0 and at all but a finite number of points.

Assumption F. The kernel function k(.) satisfies Assumption (E) and for q ∈ (0,∞) there
exists a constant kq such that kq = limx→0(1− k(x))/ |x|q . Assume that there exists a largest q
such that kq ∈ (0,∞) .

Assumption (E) corresponds to the assumptions made in Andrews (1991) except that we

also require k(x) = 0 for |x| > 1. This assumption ensures that only a finite number of moment
conditions, controlled by the bandwidth parameter, are used in estimation. The assumption could

be relaxed at the cost of having to introduce additional bandwidth parameters for estimation of

the optimal weight matrix. This seems unattractive from a practical point of view and is not

pursued here.

Assumption (E) rules out certain parametric kernel functions such as the Quadratic Spectral

kernel but is satisfied by a number of well known kernels such as the Truncated, Bartlett, Parzen

and Tukey-Hanning kernels. Assumption (F) rules out the Truncated kernel. For the Parzen

and Tukey-Hanning kernels q = 2 and for the Bartlett kernel q = 1.

We define the matrix

kM = diag(k(1/M), ..., k(1))0

having kernel weight k(j/M) in the j-th diagonal element and zeros otherwise. An instrument

selection matrix SM(t) = diag({t ≥ 1} , ....{t ≥ [M ]}) is introduced to exclude instruments for
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which there is no data in the sample. The vector of available instruments is denoted by z̄t,M =

SM(t)(zt,M − 1[M ] ⊗ ȳ). The empirical analogue to the moment condition is then

gn,M(β) =
1

n

n−mX
t=max(r−m+1,1)

(∆(L,β)(yt+m − ȳ))z̄0t,MKM

with ȳ = n−1
Pn
t=1 yt, KM = (kM ⊗ Ip) and Ip the p-dimensional identity matrix. The 1 × n

vector z̄0t,nKM is the vector of kernel weighted instruments. Note that for the truncated kernel

kM = 1[M ] such that

KM = I[M ]p.

Given the definition of the instrument vector z̄t,M one has to estimate an M dimensional

covariance matrix Ω−1. We define Ω̂M(j) = 1
n

Pmin(n,n+j)
t=max(1+j,1) z̄t,M z̄

0
t−j,M . We denote the l, k-th

block of Ω̂M(j) by ω̂l,k(j) = 1
n

Pmin(n,n+j−k)
t=max(1+j+k,1+l)(yt−l − ȳ) (yt−j−k − ȳ)

0
. The optimal weight

matrix is then given by

Ω̂M =
m−1X

j=−m+1
γ̂ε(j)Ω̂M(j)(3.1)

where γ̂ε(j) = 1
n

Pn−m
t=r+k−m+1 ε̂tε̂t−j and ε̂t = ∆(L, β̃n,M)(yt+m−ȳ) for some consistent first stage

estimator β̃n,M .The l, k-th block of Ω̂M is defined correspondingly as ω̂l,k =
Pm−1
j=−m+1 γ̂

ε(j)ω̂l,k(j).

Note that Ω̂n is symmetric but not necessarily positive definite. This is unimportant as long as

the estimator β̂n,M is known in closed form which is the case for linear models.

We now define the feasible GMM estimator for a given M such that M ≥ d/p. Under

Assumption (A) the structural parameters β are identified and β̂n,M has a closed form expression.

Let Zk be the matrix of stacked instruments ZM = [z̄max(1,r−m+1),M , ..., z̄n−m,M ]0 and X =

[xmax(m+1,r+1)− x̄, ..., xn − x̄]0 the matrix of regressors. Also, Y is the stacked vector of the first
demeaned element in yt. Then define the d× p [M ] matrix

P̂ 0M = n−1X 0ZM(3.2)

with elements Γ̂xyj = 1
n

Pn−m
t=max(j+1,r+1−m)(xt+m− x̄)(yt−j − ȳ)0. The estimator βn,M can now be

written as

β̂n,M =
³
P̂ 0MKM Ω̂

−1
M KM P̂M

´−1
P̂ 0MKM Ω̂

−1
M KM

Z
0
MY

n
(3.3)

where P̂ 0MKM Ω̂
−1
M KM P̂ =

Pn
i,j=1 Γ̂

xy
i k(i/M)ϑ̂i,jk(j/M)Γ̂

yx
−j and ϑ̂i,j =

h
Ω̂−1M

i
i,j
is the i, j-th

block of Ω̂−1M . We are considering sequences Mn for which Mn ≤ Mn+1 and Mn → ∞ such
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that Mn/
√
n → 0. For notational convenience we usually write M = Mn. It then follows from

Lemmas (B.9-B.28) that
°°°D̂M −D

°°° = Op(M/n1/2) = op(1) and
°°°d̂M − d0

°°° = Op(M/n1/2)

where D̂M = P̂ 0MKM Ω̂
−1
M KM P̂M and d̂M = P̂ 0MKM Ω̂

−1
M KM

Z
0
nε√
n
.

Representation (3.3) makes the effects of using kernel weighted moments transparent. In

essence using the kernel weight matrix KM introduces an inefficiency by using KM Ω̂
−1
M KM

instead of the optimal Ω̂−1M as weight matrix. As Corollary (3.2) below shows, this inefficiency

however is not related to the first order asymptotic properties of the estimator in the sense that

β̂n,M is first order asymptotically equivalent to D−1d0 as long as M,n→∞ and M/n1/2 → 0.

The bandwidth parameterM is chosen such that the MSE of a weighted sum of the elements

of βn,M is minimized. We approximate the MSE by first expanding βn,M around β̂M and then

obtaining the MSE for the terms in the expansion that are largest in probability and depend

both on M and n. For this purpose a second order Taylor approximation of D̂−1M around D−1

leads to

√
n(βn,M − β) = D−1[I − (D̂M −D)D−1 + (D̂M −D)D−1(D̂M −D)D−1]d̂M + op(M/

√
n).

The expansion is valid as long as M/
√
n → 0. We decompose the expansion into D̂M − D =

H1+ ...+H4 and d̂n = d0+ d1+ ...+ d9 where Hi and di are defined in Equations (A.2) through

(A.24) in Appendix A such that

√
n(βn,M − β) = D−1

9X
i=0

di −D−1
4X
i=1

9X
j=0

HiD
−1dj + op(M/

√
n).

We now denote by
√
n (bn,M − β) all the terms D−1di and D−1HiD−1dj which are Op(M/

√
n) or

terms that are Op(M−2q). The remaining terms Rn,M =
√
n(βn,M−bn,M) are of order op(M/

√
n).

The size of the mean squared error of the estimator is given in the next lemma. Define the

approximate mean squared error of β̂n,M as

ϕn(M, `, k(.)) = n`
0ED1/2(bn,M − β)(bn,M − β)0D1/20`− 1

where the normalization D1/2 is used to standardize the asymptotic variance. The vector ` ∈ Rd
is a vector of weights given to the elements in β. It is usually assumed that `0` = 1 although that

is not crucial to the results.

Lemma 3.1. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies As-

sumptions (E) and (F). Then for any ` ∈ Rd with `0` = 1 the MSE is ϕn(M, `, k(.)) = O(M2/n)+

11



O(M−2q). The optimal rate of expansion for the set of instruments is M = O(n1/(2+2q)). If the

truncated kernel k(x) = {|x| ≤ 1} is used then ϕn(M, `, k(.)) = O(M2/n) + o(M−2q).

This result is similar to the result for the 2SLS estimator obtained in Donald and Newey

(1997). The source of the O(M−2q) variance terms is however different in our context. This is

due to the fact that we are weighting the moment restrictions with a weight function k(x) which

introduces an additional variance term of orderM−2q. Intuitively, the kernel function distorts the

optimal weight matrix resulting in an increased variance of higher order terms in the expansion.

As will be shown, this increased variance is traded off against a reduction in the bias.

The second part of the Lemma shows that using the truncated kernel, i.e. using a standard

GMM procedure with a certain number of instruments results in variance terms of lower order

than the ones found in Donald and Newey (1997).

The reason why the variance terms are of lower order in the truncated case lies in the sta-

tionarity assumption made in the time series context. Since the correlation between instruments

and regressors has to decay at a faster than polynomial rate as instruments with longer and

longer lags are used, the importance of omitting these far distant instruments is of lower than

polynomial order.

The optimal rate of expansion n1/(2+2q) for the bandwidth parameter is slower than the

optimal rate encountered in other contexts of automated bandwidth selection, in particular

for density estimation. The reason for the slower rate of convergence lies in the presence of

asymptotic bias terms of order O(M/
√
n) which dominate the usually present variance terms of

order O(M/n).

An immediate corollary resulting from Lemma (3.1) is that the feasible estimator has the

same asymptotic distribution as the optimal infeasible estimator as long as M/
√
n→ 0.

Corollary 3.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies

Assumptions (E) and (F). If n,M → ∞ and M/
√
n → 0 as n → ∞ then

√
n
³
β̂n,M − β

´
−

D−1d0 = op(1).

The corollary shows that the number of instruments included for estimation can grow at

most at rate o(
√
n) in order to achieve the same asymptotic distribution as the infeasible op-

timal estimator D−1d0. The optimal rate of expansion for M is much slower than o(
√
n). The

corollary also shows that the distortion introduced by using kernel weights thus effectively using

an inefficient weight matrix are of second order and do not affect the first order asymptotic

properties of β̂n,M under the stated conditions.

12



The next proposition gives an expression for the asymptotic MSE using the largest in prob-

ability terms depending on M and n.

Proposition 3.3. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies

Assumptions (E) and (F). If n,M →∞ and M2q+2/n→ κ with 0 < κ <∞ then for any ` ∈ Rd
with `0` = 1

lim
n
n/M2ϕn(M, `, k(.)) = A

µZ ∞

−∞
k2(x)dx

¶2
+k2qB(q)/κ

with the constants A = A1D−1/2``0D−1/2A01 and B(q) = 1/2`0D−1/2(B(q)2 −B(q)1 D−1B(q)
0

1 )D−1/2`

where A1,B(q)1 and B(q)2 are defined as

A1 = (2π)2
Z π

−π

¡
vec fΩ(λ)

−1¢0 ¡vec ¡fyy(λ)0¢⊗ fεx(λ)0¢ dλ,(3.4)

B(q)1 =
∞X

k=1,j=1

³
Γxyk ϑk,j |j|q Γyx−j + Γxyk |k|q ϑk,jΓyx−j

´
,(3.5)

B(q)2 =
∞X

k=1,j=1

|k|q |j|q Γxyk ϑk,jΓyx−j(3.6)

+
∞X

j1,...,j4=1

Γxyj1 ϑj1,j2 |j2|ωj2,j3 |j3|q ϑj3,j4Γ
yx
−j4 + B

(2q)
1 .

The Mean Squared error displays a trade off between higher efficiency due to more included

instruments represented byM−2qkqB(q) and distortions introduced by estimating more unknown
parameters manifesting itself in n−1M2A R k2(x)dx. It turns out that the leading contributor
to the latter term is the bias from

³
Γ̂xyi − Γxyi

´
k(i/M)ϑi,jk(j2/M)vt,j which would have zero

expectation if Γ̂xyi were uncorrelated with vt,j.

Proposition (3.3) thus gives an analytical explanation of the empirical fact observed when

applying GMM procedures in the time series context. Typically, inclusion of a small number of

lagged instruments leads to significant changes in the parameter estimates. These changes are

in fact due to the presence of the Bias term Mn−1/2D−1A R k2(x)dx.
The properties of the more standard, non-smoothed GMM estimator can be obtained as a

corollary to Proposition (3.3). In fact, in this case k(x) = {|x| ≤ 1} such that R k2(x)dx = 2 and
kq = 0.

Corollary 3.4. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(x) = {|x| ≤ 1}.
If n,M →∞ and M2q+2/n→ κ with 0 < κ <∞ then for any ` ∈ Rd with `0` = 1

lim
n
n/M2ϕn(M, `, k(.)) = 4A.

13



In other words inclusion of more lags carries no first order benefits of polynomial order and

the MSE behaves asymptotically like n−1M2. For the remaining discussion we therefore exclude

the truncated kernel.

We use Proposition (3.3) to determine the optimal number of lagged instruments in the

sense of minimizing the approximate (asymptotic) MSE of β̂n,M . From well known arguments

we deduce that the optimal lag length choice, M̄∗, is given by

M̄∗ = n1/(2q+2)
Ã

qk2qB(q)
A ¡R k(x)2dx¢2

! 1
2+2q

.

Using M̄∗ directly does not result in a feasible procedure because the constants A and B(q) are
unknown. In the next section estimators for the constants A and B(q) are discussed.

For technical reasons one needs to guarantee that M̄∗ does not coincide with
£
M̄∗¤ or in other

words does not fall on points of discontinuity of [.] .We therefore specifyM∗ for any 1À εM > 0

as M∗ =
£
M̄∗¤+max(M̄∗ − £M̄∗¤ , εM) or equivalently as

M∗ =

 M̄∗ if M̄∗ − £M̄∗¤ ≥ εM£
M̄∗¤+ εM if M̄∗ − £M̄∗¤ < εM

This definition guarantees that M∗ − [M∗] ≥ εM . Since εM can be chosen arbitrarily small the

definition of M∗ does not affect the optimal MSE.

4. Fully Feasible GMM

In this section we derive the missing results that are needed to obtain a fully feasible procedure.

In particular one needs to replace the unknown optimal bandwidth parameterM∗ by an estimate

M̂∗. Moreover, it needs to be shown that using the estimate M̂∗ instead of the optimal value

M∗ in forming β̂n,M does not introduce additional distortions.

In order to have a fully feasible procedure we need a consistent first stage estimator. We

define a feasible first stage GMM estimator β̃n,M with M ≥ d/p as the solution to minimizing
ḡ(β)0ḡ(β) with

ḡ(β) = n−1
nX

t=M+1

(∆(L,β)(yt+m − ȳ))z̃t,M .(4.1)

The instrument z̃t,M = (y0t − ȳ, y0t−1 − ȳ, ..., y0t−[M ]+1 − ȳ)0 is a [M ] p dimensional vector of
lagged observations where [M ] indicates the highest lag. As long as M is fixed and finite

14



∂ḡ(θ)/∂θ
p→ PM . Classical results show that β̃n,M is consistent and asymptotically normal

with
√
n(β̃n,M − β) d→ N(0, (P 0MPM)

−1 P 0MΩ
−1
M PM (P

0
MPM)

−1). Typically, one chooses a small

number of instruments for the first stage estimate. The consistent first stage estimate β̃n,M now

can be used to obtain consistent estimates of the residuals εt which in turn are needed both to

construct the optimal weight matrix Ω̂−1M and the constants A1,B(q)1 and B(q)2 . Estimation of Ω̂−1M
was dealt with in the previous chapter and we turn to the estimation of the coefficients A1,B(q)1
and B(q)2 . The following analysis shows that estimation of A1 can be done nuisance parameter
free in the sense that consistent estimates of A1 do not depend on additional unknown parame-
ters. Unfortunately the same is not true for B(q)1 and B(q)2 in which case we have to rely on either

an approximating parametric model for C(L) or additional bandwidth parameters. In this paper

we choose the former approach.

We first consider the simpler estimation problem for the constant A1. For this purpose note
that fΩ(λ) = 2πfε(λ)fy(λ) such that

fyy(λ)f
−1
Ω (λ) = (2π)−1 f−1ε (λ).

While f−1ε (λ) could be estimated nonparametrically from the autocovariances of the estimated

innovations ε̂t this would not be taking full account of the structure of the model. A better

procedure is to exploit the fact that εt has a MA(q) representation under the maintained model

assumptions.

To express the constant A we use the same definitions as before. From

(vec f−1Ω (λ))0
¡
vec fy(λ)

0¢ = tr f−1Ω (λ)0fy(λ)0 = (2π)−1 pf−1ε (λ)

it follows that (vec f−1Ω (λ))0 [vec fy(λ)0 ⊗ fεx(λ)0] = (2π)−1 pf−1ε (λ)fεx(λ)0. The spectral density

fεy(λ) can be expressed in terms of the coefficients of the underlying DGP. Consistent estimation

of fεy(λ) is difficult because even though the parameters Ci could be inferred from the approx-

imate model for C(L) it is not possible to estimate Φi without estimating the errors ut which

in turn requires full specification of the structural model. Nonparametric density estimation on

the other hand entails a bandwidth selection problem similar to the one encountered for the

estimation of β.

Fortunately, we are not directly interested in fεy(λ) but rather in (2π)
−1 R fεx(λ)0f−1ε (λ)dλ

which is

(2π)−2
∞X

k=−∞
ζkΓ

εx0
k = (2π)−2

∞X
k=−∞

£
ζkΓ

εy
k−mE

0, ζkΓ
εy
k+1−m, ..., ζkΓ

εy
k+r−m

¤
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where E is a (p− 1) × p matrix defined as E = (0, Ip−1) . Denoting the consistent MA(q)

parameters by θ̃j the coefficients ζj can be obtained from ζ̂k = (2π)
2 σ−2

P∞
j=0 e

0
1B

je1e
0
1B

j+ke1

where e1 is the first unit vector in Rm and

B =


θ̃1 θ̃2 · · · θ̃q

1 0 0
. . .

...

0 1 0

 .

Consistent estimates of the MA(q) representation of εt can be obtained by using consistent

estimates of the parameter β to obtain estimated ε̂t. An MA(q) model is then estimated for ε̂t.

This can be done by using a nonlinear least squares or pseudo maximum likelihood procedure as

described in chapter 8 of Brockwell and Davis (1991). This procedure is outlined in the proof of

Lemma (4.1). The matrices Γεyk can be replaced by simple sample averages based on estimated

residuals

Γ̂εyk = n−1
min(n−m,n−k)X
t=min(k+1,1)

ε̂t+myt−k.

Using these estimates one then estimates bA by
bA1 = p

4π2

"
nX

k=−n+1
ζ̂kΓ̂

εy
k−mE

0, ...,
nX

k=−n+1
ζ̂kΓ̂

εy
k+r−m

#
(4.2)

and

bA = bA1D̂−1/2``0D̂−1/2 bA01(4.3)

The intuition why quantities of the form
P
k ζ̂kΓ̂

εy
k−m are consistent comes from the fact

that ζk satisfies summability restrictions by Assumption (D) and can be estimated uniformly

consistently. It thus acts like a kernel smoothing operation on the estimated covariance terms

Γ̂εyk .

Unfortunately, the parameters B(q)1 ,B(q)2 and D are harder to estimate. One possible estima-

tion strategy is nonparametric kernel density estimation of all the spectral densities involved.

An alternative to estimating Γ̂yyj is Andrews’ (1991) approach of fitting a, possibly misspec-

ified, parametric model C̃(L) to C(L) and using the parametric dependence of B(q)2 on C(L) to

obtain a feasible M̂∗. Analogue to the results in Andrews the misspecification in C(L) does not
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affect the asymptotic distribution of βn,M̂∗ but it results in suboptimal higher order asymptotic

properties.

For simplicity we choose a Vector Autoregessive (VAR) model of order τ as approximating

process for C(L) such that

yt = A1yt−1 + ...+Aκyt−τ + vt.(4.4)

The choice of τ is guided mainly by practical considerations. If the number of variables p in the

system is large then τ should be chosen small, i.e. close to one. Alternatively, in the simulations

reported in Section (6) consistent model selection criteria are used to select an optimal τ .

In order to calculate the impulse response coefficients associated with (4.4) define the matrices

A =


A1 A2 · · · Aκ

I 0 · · · 0
. . .

...

I 0

 and E1 =


I

0
...

0


with dimensions τp× τp and τp× p. The j-th impulse coefficient of the approximating model is
given by C̃j = E01AjE1. For any ² > 0 there exists a T² <∞ such that

°°°E01(PT²
j A

j − (I −A)−1)E1
°°° <

². The autocovariance function Γyyj is then approximated by Γ̃yyj =
PT²
l=0 C̃lΣ̃C̃l+j where Σ̃ is the

covariance matrix of the residuals in the approximating model. Likewise we obtain approxima-

tions to the optimal weight matrix Ω̃ =
Pm
j=−m+1 γ

ε(j)Ω̃(j) where Ω̃(j) has typical k, l-th block

Γ̃yy(l− k− j). In accordance with earlier definitions we denote the k, l-th block of Ω̃ by ω̃k,l and
the k, l-th block of Ω̃−1 by ϑ̃k,j . We define B̃(q)1 , B̃(q)2 by and D̃ substituting Γ̃xyk for Γxyk and ϑ̃k,j

for ϑk,j in definitions (3.5) and (3.6) and by letting D̃ =
P∞
k=1,j=1 Γ̃

xy
k ϑ̃k,jΓ̃

yx
−j .

Substituting estimates b̃Cj for C̃j in B̃(q)1 , B̃(q)2 and D̃ leads to an estimates b̃B(q)1 , b̃B(q)2 and b̃D.
While bA is positive by construction the same is not true for b̃B(q) when based directly on its
definition in Proposition (3.3). In practice we therefore use an alternative version of b̃B(q). We
use the approximate autocovariance matrices Γ̃yyj to form the matrices P̃ 0T1 =

h
Γ̃xy1 , ..., Γ̃

xy
T1

i
and

Ω̃T1 =
Pm
j=−m+1 γ

ε(j)Ω̃T1(j) where Ω̃T1(j) has typical k, l-th block Γ̃
yy(l− k− j).We then form

the matrix J = [diag(1, 2, ..., T1)⊗ I2] and compute the matrix b̃(q)T1 = P̃ 0T1JqΩ̃−1T1 + P̃ 0T1Ω̃−1T1 Jq −
B(q)1 D−1P̃T1Ω̃−1T1 . The parameter B̃

(q)
T1
is obtained from

B̃(q)T1 = b̃
(q)
T1
Ω̃T1 b̃

(q)0
T1
.(4.5)

It can be shown that as T1 →∞ the approximate B̃(q)T1 tends to B̃(q). An estimate
b̃B(q)T1 of B̃(q)T1 based

on estimated coefficients b̃Cj then is √n-consistent for B̃(q)T1 as long as the coefficient estimates
17



are
√
n-consistent for C̃j and can be made arbitrarily close to

b̃B(q) by choosing T² and T1 large
enough.

In the same way we define D̃T1 = P̃ 0T1Ω̃
−1
T1
P̃T1 with a corresponding estimate

b̃D based on

estimated coefficients b̃Cj.
We assume that b̃B(q)T1 is estimated such that it is √n-consistent for B̃(q)T1 .

Assumption G. For all T1 ≥ 1 fixed, √n(b̃B(q)T1 − B̃(q)T1 ) = Op(1).
It is then established in the following lemma that the estimates for B(q)/A formed by b̃B(q)/ bA

where b̃B(q) is the estimated version of (4.5) are well enough behaved to be used in a plug in
procedure.

Lemma 4.1. Let bA be defined in (4.3) and b̃B(q)T1 be based on (4.5) and satisfy (G) for all fixed
T1 ≥ 1. Then

√
n( bA − A) =Op(1) and √n(b̃B(q)T1 / bA − B̃(q)T1 /A) =Op(1) where B̃(q)T1 is defined in

(4.5).

Ultimately, one is interested in the properties of a fully automated estimator βn,M̂∗ where the

data determined optimal bandwidth M̂∗ is plugged into the kernel function. In order to analyze

this estimator we need an additional Lipschitz condition for the class of permitted kernels.

Assumption H. The kernel k(.) satisfies |k(x)− k(y)| ≤ C |x− y| ∀x, y ∈ R for some C <∞.

Assumption (H) corresponds to the assumptions made in Andrews (1991). Using the previous

results we are now in a position to state one of the main results of this paper which establishes

that an automated bandwidth selection procedure can be used to pick the number of instruments

based on sample information alone. Following Andrews (1991) we define the truncated mean

squared error as

ϕn,h(M, `, k(.), bn,M) = Emin
n
n2/M2`0D1/2(bn,M − β)(bn,M − β)0D1/20`, h

o
− 1

and state the following theorem.

Theorem 4.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies

Assumptions (E), (F) and (H). If b̃B(q)T1 satisfies (G) and M̂∗ =
µ
nqkq

b̃B(q)T1 / bA ¡R k(x)2dx¢2¶ 1
2+2q

then n/
√
M(β̂n,M̂∗ − β̂n,M∗) = op(1) and

lim
h→∞

lim
n→∞

³
ϕn,h(M̃

∗, `, k(.), bn,M̂∗)− ϕn,h(M̃∗, `, k(.), bn,M̃∗)
´
= 0
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where M̃∗ =
³
nqkqB̃(q)T1 /A

¡R
k(x)2dx

¢2´ 1
2+2q for T1 ≥ 1 fixed.

Theorem (4.2) shows that using the feasible bandwidth estimator M̂∗ results in estimates

β̂n,M∗ that have asymptotic mean squared errors that are equivalent to asymptotic mean squared

errors of estimators where a nonrandom pseudo-optimal bandwidth sequence M̃ is used. An

immediate consequence of the Theorem is also that β̂n,M̂∗ is first order asymptotically equivalent

to the infeasible estimator D−1d0.

5. Bias Reduction and Bias Correction

In this section we analyze the asymptotic bias of β̂n,M as a function of the sample size n and the

bandwidth parameter M. An approximation to the bias is obtained by again considering terms

that are largest in probability and depend on n and M.

Theorem 5.1. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies

Assumptions (E). If M →∞ and M/n1/2 → 0 then

lim
n→∞n/ME(bn,M − β) = D−1A01

Z
k2(x)dx.

A simple consequence of this result is that for many standard kernels the asymptotic bias

of the kernel weighted GMM estimator is lower than the bias for the standard GMM estimator

based on the truncated kernel.

Corollary 5.2. Suppose Assumptions (A), (B) and (C(s)) hold with s ≥ q and k(.) satisfies

Assumptions (E). If n,M →∞, M/n1/2 → 0 and
R
k2(x)dx ≤ 2 then

lim
n→∞ kn/ME(bn,M − β)k ≤ lim

n→∞
°°n/ME(bTn,M − β)°°

where βTn,M is the GMM estimator based on the truncated kernel.

In practice any one of the following well known kernels could be used: the Bartlett kB(x) =

(1− |x|) {|x| ≤ 1}, the Parzen kP (x) = (1− 6x2+6 |x|3){|x| ≤ 1/2}+2(1− |x|3){1/2 ≤ |x| ≤ 1}
and the Tukey-Hanning kT (x) = (1+ cos(πx))/2{|x| ≤ 1}.

The asymptotic bias for different kernel weighted GMM estimators depends on the constantR
k(x)2dx. These values were published in Andrews (1991) and are 2/3 for the Bartlett, .539285

for the Parzen and 3/4 for the Tukey-Hanning. It thus follows that using any of these standard

kernels reduces the asymptotic bias of the estimator.
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Another important issue is whether the bias term can be corrected for. The benefits of

such a correction are analyzed first. It turns out that correcting for the bias term increases the

optimal rate of expansion for the bandwidth parameter and consequently accelerates the speed

of convergence to the asymptotic normal limit distribution.

Using the result in Theorem (5.1) the following bias corrected estimator is proposed

β̂
∗
n,M = β̂n,M −

³
P̂ 0MKM Ω̂

−1
M KM P̂M

´−1 M
n
bA01 Z k2(x)dx.(5.1)

The bias term A1 can be estimated by the methods described in the previous section. The
quality of the estimator A1 determines the impact of the correction on the convergence rate of
the corrected estimator. If bA1−A1 is only op(1) then the convergence rate of β∗n,M is essentially

the same as the one for β̂n,M . If bA1 −A1 = Op(n−η) for η ∈ (0, 1/2] then the convergence rate
of the estimator is improved. The mean squared error of the bias corrected estimator is defined

as

ϕ∗n(M, `, k(.)) = nD
1/2`0E(b∗n,M − β)(b∗n,M − β)0`D1/2 − 1

and we obtain the following result.

Theorem 5.3. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies

Assumptions (E) and (F). If bA1 −A1 = Op(n−1/2) then for any ` ∈ Rd with `0` = 1 the MSE is
ϕ∗n(M, `, k(.)) = O(M/n) +O(M−2q). The optimal rate of expansion for the set of instruments

is M = O(n1/(1+2q)).

It follows from Theorem (5.3) that for M → ∞ and M2q+1/n → κ the rate of convergence
of the higher order terms in the estimator is now n−2q/(1+2q) as opposed to the previous rate of

n−2q/(2q+2). Bias correction in other words improves the MSE by an order of magnitude. The

result critically depends on the ability to estimate A1 with a parametric rate of convergence.
An alternative to direct recentering of the estimator by subtracting an asymptotically correct

estimator of the bias is to compensate β̂n,M in a way that eliminates higher order bias terms.

The classical case of such a procedure is Nagar’s (1959) k-class estimator.

In our context a k-class estimator can be defined as follows. Let k=M/n
R
k2(x)dx and define

the n-dimensional matrix An(Φ) with typical element k, j given by [An(Φ)]k,j = ζk−j . The k-class

estimator is then

βkn,M =
h
P̂ 0MKM Ω̂

−1
M KM P̂

0 − n−1kX 0An(Φ̂)X
i−1

n−1
³
P̂ 0MKM Ω̂

−1
M KMZ

0
n − kX 0An(Φ̂)

´
Y
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This formulation takes the serial correlation in εt into account. It can be readily seen that βkn,M
is equivalent to the kernel weighted GMM estimator for k = 0. An analogy to the formulation
in Nagar (1959) and βkn,M can be drawn by defining Qn = ZnKM Ω̂−1n KMZ 0n, Tn = An(Φ̂)−Qn
and W = n−1X 0Tn. Then the k-class estimator can be written as

βNn,M =
h
X 0An(Φ̂)X − (1+ k)n−1X 0TnX

i−1 ³
X 0An(Φ̂)− (1+ k)W

´
Y.

The two versions βkn,M and βNn,M differ by terms that are of order Op(M/n).

The next theorem establishes that the k-class estimator achieves the same rate of convergence

for the higher order terms as the bias corrected estimator.

Theorem 5.4. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies

Assumptions (E) and (F). Let

ϕan(M, `, k(.)) = nD
1/2`0E(ban,M − β)(ban,M − β)0`D1/2 − 1

for a ∈ {k,N} where ban,M = βan,M − Ran,M and Ran,M = op(M/n). Then for any ` ∈ Rd with
`0` = 1 the MSE is ϕ∗n(M, `, k(.)) = O(M/n) +O(M−2q). The optimal rate of expansion for the

set of instruments is M = O(n1/(1+2q)).

6. Monte Carlo Simulations

A small Monte Carlo experiment is conducted in order to assess the relevance of the asymptotic

approximations derived in the previous sections. We are using the following kernel functions in

addition to a standard GMM estimator with a finite number ofM instruments. The kernels used

are the Bartlett kB(x), the Parzen kP (x) and the Tukey-Hanning kT (x) which were all defined

in Section 5.For the simulations we consider the following data generating process

y1t = βy2t + ut − θut−1(6.1)

y2t = φy2t−1 + vt.

with β0 = 1 and [ut, vt]
0 ∼ N(0,Σ) where Σ has elements σ21 = σ22 = 1 and σ12. The parameter

σ12 is one of the determinants of the small sample bias of both Ordinary Least Squares (OLS)

and GMM estimators and is set to .5. The parameter φ controls the quality of lagged instruments

and is chosen in {.1, .2, .3, .6} . The parameter θ finally is set to {−.9,−.6,−.3, 0, .3, .6, .9} .
The optimal M∗ can be computed using the constants published in Andrews (1991). We

have k1 = 1 for the Bartlett, k2 = 6 for the Parzen and k2 = π2/4 for the Tukey-Hanning
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kernel. Moreover,
R
k(x)2dx is 2/3 for the Bartlett, .539285 for the Parzen and 3/4 for the

Tukey-Hanning. This leads to

M∗ =


1.22474

¡
nB(q)/A¢1/3 Bartlett

2.50582
¡
nB(q)/A¢1/6 Parzen

1.66942
¡
nB(q)/A¢1/6 Tukey-Hanning

.

We generate samples of size n = 128 from Model (6.1). Starting values are y0 = 0 and

ε0 = 0. In each sample the first 1,000 observations are discarded to eliminate dependence on

initial conditions.

Standard GMM estimators are obtained from applying Formula (3.3) with KM = IM . In

order to obtain an estimate for ΩM we first construct an inefficient but consistent estimate β̃n,1
based on (3.3) setting KM = IM and ΩM = IM . We then construct residuals ε̃t = y1t − β̃n,My2t
and estimate Ω̂M as described in (3.1). Kernel weighted GMM estimators (KGMM) are based

on the same inefficient initial estimate such that the estimate for Ω̂M is identical to the weight

matrix used for the standard GMM estimators. In the second stage we again apply (3.3) with

Ω̂M and the appropriate matrix KM corresponding to the respective kernel function.

The estimated optimal bandwidth M̂∗ is computed according to the procedure laid out in

Section (4). For each simulation replication we obtain a consistent first stage estimate β̃n,1 to

generate residuals ε̃t.We estimate θ by fitting an MA(1) model to ε̃t using the GAUSS procedure

arima.src. We then estimate the sample autocovariances Γεyj for j = 0, ..., n/2 where n is the

sample size and form an estimate of A1 based on Formula (4.2). Next we use the BIC (see

Reinsel, 1995, p. 92) criterion to determine the optimal specification of the approximating VAR

for yt = [y1t, y2t]
0 allowing for a maximum of 10 lags. Based on the optimal lag length specification

we compute the impulse coefficients of the VAR and estimate B̃(q)T1 and
b̃DT1 for T² = T1 = 100.

Experiments with larger values for T² and T1 indicate that the results are not sensitive to the

choice of these parameters.

In Tables 1-4 we compare the performance of feasible kernel weighted GMM with Bartlett

(kB), Parzen (kP ) and Tukey-Hanning (kT ) kernels to an infeasible optimal GMM estimator. The

infeasible optimal GMM estimator is obtained by estimating β by standard GMM for M fixed

at M = 1, 2, 3, 4, 5, 10, 15, 20. We then calculate the empirical mean squared error of parameter

estimates based on 1,000 Monte Carlo replications and chose the specification that leads to the

lowest MSE statistic. A table entry ”IV 10” for example means that GMMwith instruments up to

lag 10 achieved the lowest MSE in the simulations. We compare this estimator to feasible kernel

weighted GMM based on M̂∗. Keeping in mind that the infeasible GMM estimators performance
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is unattainable in practice the results for the feasible procedures are very encouraging. For cases

with weak identification, ie. when φ is close to zero, the KGMM based on the Bartlett kernel

actually outperforms the infeasible procedure both in terms of median bias and mean squared

error. For values of φ = .3 and .6 the performance is still quite good although not quite as good

as the infeasible procedure. Kernel based estimators tend to have problems with the existence

of second moments, particularly with the Parzen and Tukey-Hanning kernels. This explains the

sometimes inflated MSE values compared to the MAE statistics.

In Tables 5-8 we analyze the optimality of M̂∗. For this purpose we compare the Mean Ab-

solute Error (MAE) of GMM and KGMM based on a fixed number of instruments M to the

feasible procedure. The tables reveal that choosing a suboptimal number of instruments can

have large effects on the MAE, with increases of 50% and more relative to the best possible

performance in some cases. The tables also show that, keepingM fixed, using a kernel weighting

scheme for the moment conditions can reduce the MAE. This is particularly true when φ is small

and generally when M is large. The latter effect is related to the bias reduction property of

kernel weighting which becomes important for large values of M. Most importantly, the feasible

procedure successfully minimizes the MAE for values of φ close to zero and performs reason-

ably well for values of φ > .3. This is partly due to the fact that KGMM is less sensitive to

severe overidentification than standard GMM. Kernel weighting is therefore a very useful tool

for developing feasible procedures with reasonable finite sample properties.

In Tables 9 and 10 we focus on the median bias properties of GMM, KGMM with Bartlett

kernel as well as bias corrected KGMM. The bias reduction property of the kernel weights estab-

lished in Corollary (5.2) is extremely robust across the entire parameter space. The magnitude

of the bias reduction relative to standard GMM can reach up to 50% of the original bias when

φ = .3. Experiments with implementations of the bias corrected estimator (5.1) indicate fairly

good performance as far as bias reduction is concerned but have lead to severely inflated MAE

and MSE statistics. For this reason we report results for an alternative version of (5.1) defined

as

β̂
∗∗
n,M = β̂n,M − b̃D−1T1 Mn bA01 Z k2(x)dx

where b̃DT1 is computed based on an approximating VAR as described before. The performance
of this bias corrected estimator is mixed. When the instruments are weak, ie. if φ is small then

the effect of the bias correction on the bias is small, especially for |θ| large. In Table 9 the
best result is achieved for θ = 0 and M = 1 where the bias is essentially eliminated. Generally
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speaking the bias correction is quite sensitive to the choice of M and does not perform well for

large values of M. When φ is set to .3 the bias correction works better giving an additional bias

reduction of up to 50% over the kernel weighted procedure. Again, the performance of β̂
∗∗
n,M

deteriorates for M > 5. As with any bias corrected procedure one worries about the impact of

the bias correction on the variability of the estimator. Tables 11 and 12 compare the MAE of

β̂
∗∗
n,M to GMM and KGMM. For values of M ≤ 5 the MAE of β̂∗∗n,M is generally in line with the

two other procedures. In some cases (φ = .3, |θ| = .3, M = 4) it even outperforms the other

procedures in terms of MAE. On the other hand for M > 5 the MAE starts to increase quite

significantly such that a combination of bias correction and severe overidentification can not be

recommended based on the simulation results.

7. Conclusions

We have analyzed the higher order asymptotic properties of GMM estimators for time series

models. This extends the literature on optimal bandwidth choice in semiparametric procedures

to the case of dependent processes. Using expressions for the asymptotic Mean Squared Error

a selection rule for the optimal number of lagged instruments is derived. It is shown that

plugging an estimated version of the optimal rule into the estimator leads to a fully feasible

GMM procedure.

A new version of the GMM estimator for linear time series models was proposed where the

moment conditions are weighted by a kernel function. The asymptotic expansions suggest that

the dominating terms of the MSE are bias terms stemming from estimated correlations between

instruments and regressors. Kernel weighting of the moment restrictions reduces the importance

of these bias terms. It is shown that correcting the estimator for the highest order bias term leads

to an overall increase in the optimal rate at which higher order terms vanish asymptotically. In

this sense the proposed procedure reduces the asymptotic MSE of the estimator by an order of

magnitude.

Massachusetts Institute of Technology, Dept. of Economics, 50 Memorial Drive E52-251B,

Cambridge, MA 02142, USA. Email: gkuerste@mit.edu. Web: http://web.mit.edu/gkuerste/www/.
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A. Proofs

Proof of Lemma (3.1). Recall D̂M = n−2X 0ZMKM Ω̂−1M KMZ
0
MX. First we will split the error

D̂M −D into four different parts as

D̂k −D = H1 +H2 +H3 +H4

where H1 = P 0MKMΩ
−1
M KMPM −P 0Ω−1P, H2 = P̂ 0MKMΩ−1M KM P̂M −P 0MKMΩ−1M KMPM , H3 =

−P̂ 0
MKMΩ

−1
M (Ω̂M −ΩM)Ω−1M KM P̂M and H4 is defined in (A.14). The terms H3 and H4 contain

a Taylor series expansion of Ω̂−1M around Ω−1M given by

Ω̂−1M = Ω−1M −Ω−1M (Ω̂M −ΩM)Ω−1M +B + op(
°°°Ω̂M −ΩM

°°°2)(A.1)

where B has typical element k, l given by vec(Ω̂M −ΩM)0 ∂2ϑkl
∂ vecΩ∂ vecΩ0 vec(Ω̂M −ΩM). In Lemmas

(B.9) to (B.11) it is shown that H1 = H11 +H12 +H13 +H14 is

H11 ≡ P 0MΩ
−1
M PM − P 0Ω−1P = o(M−2s)(A.2)

H12 ≡ P 0M(I −KM)Ω−1M (I −KM)PM = O(M−2q)(A.3)

H13 ≡ −P 0MΩ−1M (I −KM)PM = O(M−q)(A.4)

H14 ≡ −P 0M(I −KM)Ω−1M PM = O(M−q)(A.5)

where ≡ means ’equal by definition’. In Lemmas (B.12) to (B.15) the term H2 = H211+H212+

H221 +H222 is analyzed to be

H211 ≡ −
³
P̂M − P̌M

´0
KMΩ

−1
M KM(P̂M − P̌M) = Op(M/n)(A.6)

H212 ≡ P̂ 0MKMΩ
−1
M KM(P̂M − P̌M) + (P̂M − P̌M)0KMΩ−1M KM P̂M = Op(n

−1/2)(A.7)

H221 ≡ − ¡P̌M − PM
¢0
KMΩ

−1
M K

0
M

¡
P̌M − PM

¢
= Op(M/n)(A.8)

H222 ≡ P̌ 0MKMΩ
−1
M KM(P̌M − PM) + (P̌M − PM)0KMΩ−1M KM P̌M = Op(M/n

1/2).(A.9)

where P̂M is defined in (3.2) and P̌ 0M =
h
Γ̌xy1 , ..., Γ̌

xy
[M ]

i
where Γ̌xyj = n−1

Pn
t=max(j+1,r−m)+1wt,j .

Lemmas (B.16) and (B.17) show that H3 = H31 +H32 +H33 +H34 is

H31 ≡ (P̂M − PM)0KMΩ−1M (Ω̂M −ΩM)Ω−1M KM(P̂M − PM) = op(M/n)(A.10)

H32 ≡ −P̂ 0MKMΩ−1M (Ω̂M −ΩM)Ω−1M KM(P̂M − PM) = op(M/n)(A.11)

H33 ≡ −(P̂M − PM)0KMΩ−1M (Ω̂M −ΩM)Ω−1M KM P̂M = op(M/n)(A.12)

H34 ≡ −P 0MKMΩ−1M (Ω̂M −ΩM)Ω−1M KMPM = Op(n
−1/2)(A.13)
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and H4 which is a remainder term defined as

H4 ≡ P̂ 0MKM(Ω̂−1M −Ω−1M +Ω−1M (Ω̂M −ΩM)Ω−1M )KM P̂M = op(M/n)(A.14)

where the last equality follows from Lemma (B.18).

Next we turn to the analysis of d̂M = P̂ 0MKM Ω̂
−1
M n

−1/2Pn−m
t=1 εt+mz̄t,nKM which is decom-

posed as d̂k =
P9
j dj . Define VM =

h
n−1/2

P
t v
0
t,1, ..., n

−1/2P
t v
0
t,[M ]

i0
with V ≡ V∞ such that it

follows from Lemmas (B.19) to (B.28) that

d0 ≡ P 0Ω−1V = Op(1)(A.15)

d1 ≡ P 0MΩ
−1
M VM − P 0Ω−1V = op(M−s)(A.16)

d2 ≡ P 0M(I −KM)Ω−1M (I −KM)VM = Op(M
−2q)(A.17)

d3 ≡ −P 0M(I −KM)Ω−1M VM − P 0MΩ−1M (I −KM)VM = Op(M
−q)(A.18)

d4 ≡
³
P̂M − P̌M

´0
KMΩ

−1
M KMVM = Op(M/n)(A.19)

d5 ≡ ¡
P̌M − PM

¢0
KMΩ

−1
M KMVM = Op(M/n

1/2)(A.20)

d6 ≡
³
P̂M − PM

´0
KMΩ

−1
M (ΩM − Ω̂M)Ω−1M KMVM = Op(M/n)(A.21)

d7 ≡ P 0MKMΩ
−1
M (ΩM − Ω̂M)Ω−1M KMVM = Op(n

−1/2)(A.22)

d8 ≡ P̂ 0MKMBKMVM + op (M/n) = Op(M/n)(A.23)

d9 ≡ n−1/2
P
t
εtP̂

0
MKM Ω̂

−1
M KM

£
1[M ] ⊗ (ȳ − µy)

¤
= Op(M/n

3/2).(A.24)

We consider the terms in the expansionD−1
P9
i=0 di−D−1

P4
i=1

P9
j=0HiD

−1dj of the estimator

which depend onM and n and are largest in probability. From the results in Equations (A.2) to

(A.24) it follows that the largest such terms are H12, H13,H14,H222, d0, d2, d3 and d5. Of those

terms we examine cross products of the form Edid0j , Edid
0
0D

−1Hi and EHiD−1d0d00D−1Hj . The

largest terms vanishing at rate M−q as M →∞ are Ed0d03 = −M−qkqB(q)1 + o(M−q) as shown

in Lemma (B.31) and −Ed0d00D−1(H13 +H14) =M−qkqB(q)1 + o(M−q) by Lemmas (B.19) and

(B.34). The two terms cancel because they are of opposite sign.

Terms of orderM−2q includeEd0d02 =M−2qk2qB(q)0 +o(M−2q) by Lemma (B.30) and−Ed0d00D−1H 0
12 =

−M−2qk2qB(q)0 + o(M−2q) by Lemma (B.29). Since Ed0d02 and −Ed0d00D−1H 0
12 are of opposite

sign these terms cancel. We are left with E(d3− (H13+H14)D−1d0)(d3− (H13+H14)D−1d0)0 =
O(M−2q) by Lemmas (B.11), (B.19), (B.31) and (B.35).

Terms that grow with M and are highest in order are H222D−1d0 and d5. It follows by

Lemma (B.33) that the cross product term EH222D
−1d0d05 is of lower order. We are left
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with EH222D−1d0d00D−1H 0
222 = O(n−1) by Lemma (B.32) and Ed5d05 = O(M2/n) by Lemma

(B.36).

Proof of Proposition (3.3) From the proof of Lemma (3.1) we only need to consider the

terms An = Ed5d05 and Bn = E(d3− (H13+H14)D−1d0)(d3− (H13+H14)D−1d0)0. Since for all
n ≥ 1 we have An ≥ 0 and Bn ≥ 0 it follows that lim infnAn ≥ 0 and lim infnBn ≥ 0 such that
A and B(q) are nonnegative.

From Lemma (B.36) it follows that

E`0D−1/2d5d05D
−1/2` =M2/n

µZ
k2(x)dx

¶2
A1D−1/2``0D−1/2A01 + o(M2/n).

From Lemma (B.31) it follows thatMqEd0d3 = −kqB(q)1 +o(1) and from Lemma (B.19) it follows

that Ed0d00 = D + o(1) such that

M2qE(H13 +H14)D
−1d0d00D

−1(H13 +H14)0 = k2qB(q)1 D−1B(q)01 + o(1).

This implies that

E(H13 +H14)D
−1d0d03 −E(H13 +H14)D−1d0d00D−1(H13 +H14)0 = o(M−2q)

or in other words Bn = Ed3d03−E(H13+H14)D−1d0d00D−1(H13+H14)+o(M−2q). Here Ed3d03 =

M−2qB(q)2 + o(M−2q) as shown in Lemma (B.35) where B(q)2 is defined in (3.6).

Proof of Lemma (4.1) The only difficulty here is to show that
P
ζ̂j+mΓ̂

εy
j−k is

√
n-

consistent. Let β̃ be a
√
n-consistent first stage estimate. The estimated residuals ε̂t = (yt −

ȳ)− β̃0(xt− x̄) are used to estimate ζ̂j. Let g(λ, θ) =
¯̄
θ(eiλ)

¯̄2 with θ(z) = 1−θ1z− ...θm−1zm−1.
Define the parameter space Θ1 ⊂ Rm−1 such that θ = (θ1, ..., θm−1) ∈ Θ1 if θ(z) 6= 0 for |z| ≤ 1.
By Assumption (D) ∃ Θ2 ⊂ intΘ1,Θ2 compact such that θ0 ∈ Θ2.

The periodogram of ε̂t is Îεn(λ) = n−1
P
t,s ε̂tε̂se

iλ(t−s). The maximum likelihood estimator

for θ is asymptotically equivalent to

θ̃ = argmin
θ
Λε̂n(θ)(A.25)

with Λε̂n(θ) = n
−1P

j Î
ε
n(λj)/g(λj, θ) for λj = 2πj/n, j = −n+ 1, ..., 0, ..., n− 1. Define Iεn(λ) =

n−1
P
t,s εtεse

iλ(t−s), Iεxn (λ) = n−1
P
t,s εt(xs − µx)eiλ(t−s), Ixαn (λ) = n−1(α̂0 − α0)

P
t,s(xt −

µx)e
iλ(t−s), Iεαn (λ) = n−1(α̂0 − α0)

P
t,s εte

iλ(t−s) and Iαn (λ) = n−1(α̂0 − α0)2
P
t,s e

iλ(t−s) for
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α̂0 − α0 = ȳ − µy − β̃
0
(x̄− µx). It follows that

Îεn(λ) = Iεn(λ) + (β̃ − β)0Ixn (λ) (β̃ − β) + Iαn (λ)
+2
³
β̃ − β

´0
Iεxn (λ) + 2I

εα
n (λ) + 2(α̂0 − α0)(β̃ − β)0Iαxn (λ).

Note that Iαn (λj) = Ixαn (λj) = Iεαn (λj) = 0 for j 6= 0 and Iαn (λj) = n(α̂0 − α0)2, Iεαn (λj) =
(α̂0 − α0)

P
t εt for j = 0. We now have

Λε̂n(θ) = Λ
ε
n(θ) + 2(β̃ − β)0Λεxn (θ) + (β̃ − β)0Λxn(θ)(β̃ − β)

+

"
2(α̂0 − α0)n−1

X
t

(εt + (xt − µx)) + (α̂0 − α0)2
#
/g(0, θ).

From standard arguments (see Brockwell and Davis 1991, ch 10) it follows that Λabn (θ)
a.s.→ Λab(θ)

with Λab(θ) = 2π
R
fab(λ)/g(λ, θ)dλ and ∂kΛabn (θ)/∂θ

a.s.→ ∂kΛab(θ)/∂θ for k < ∞ such that

Λε̂n(θ) → 2π
R
fεε(λ)/g(λ, θ)dλ uniformly in θ ∈ Θ2. Consistency of θ̃ follows from standard

arguments.

To establish
√
n-consistency note that

√
n∂Λεn(θ0)/∂θ = Op(1), n−1/2

P
t εt = Op(1) and

n−1/2
P
t (xt − µx) = Op(1). Therefore

√
n∂Λε̂n(θ)/∂θ =

√
n∂Λεn(θ)/∂θ +

√
n2(β̃ − β)0∂Λεx(θ)/∂θ + op (1) .(A.26)

We also define ∂Λε(θ)/∂θ = 2π
R
fε(λ)∂g

−1(λ, θ)/∂θdλ such that°°°°°∂Λε(θ̃)∂θ

°°°°° ≤
°°°°°∂Λε(θ̃)∂θ

− ∂Λ
ε̂
n(θ̃)

∂θ

°°°°°+
°°°°°∂Λε̂n(θ̃)∂θ

− ∂Λ
ε̂
n(θ0)

∂θ

°°°°°+
°°°°∂Λε̂n(θ0)∂θ

°°°°(A.27)

where
°°∂Λε̂n(θ0)/∂θ°° = Op(n−1/2) by (A.26). Definition (A.25) for θ̃ implies that°°°°°∂Λε̂n(θ̃)∂θ

− ∂Λ
ε̂
n(θ0)

∂θ

°°°°° ≤ 2
°°°°∂Λε̂n(θ0)∂θ

°°°° = Op(n−1/2).
Finally

∂Λε̂n(θ̃)

∂θ
− ∂Λ

ε(θ̃)

∂θ
= ∂Λεn(θ̃)/∂θ −

Z
2πfε(λ)∂g

−1(λ, θ̃)/∂θdλ

+(β̃ − β)0(∂(Λεx(θ0) +Λεx(θ0))/∂θ + op(1)
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where the second term is Op(n−1/2) since (β̃− β) = Op(n−1/2). The first term can be written as

∂Λεn(θ̃)/∂θ −
Z
2πfε(λ)∂g

−1(λ, θ̃)/∂θdλ

= n−1
X
j

[Iεn(λj)− 2πfε(λj)] ∂g−1(λj , θ̃)/∂θ

+ n−1
X
j

2πfε(λj)∂g
−1(λj, θ̃)/∂θ −

Z
2πfε(λ)∂g

−1(λ, θ̃)/∂θdλ

where the second term is O(n−1). Now define ξj(θ) = (2π)−1
R
∂g−1(λ, θ)/∂θeiλjdλ such that

∂g−1(λ, θ)/∂θ =
P
j ξj(θ)e

−iλj and

n−1
X
j

[Iεn(λj)− 2πfε(λj)] ∂g−1(λj , θ̃)/∂θ

= n−2
X
j

nX
t,s=1

∞X
l=−∞

(εtεs −Eεtεs) ξl(θ̃)eiλj(t−s−l)

= n−1
nX

l=−n

n−|min(l,0)|X
t=max(l,1)

(εtεt−l −Eεtεt−l) ξl(θ̃)

≤
Ã

nX
l=−n

|l|−2
³
n−1

X
t
(εtεt−l −Eεtεt−l)

´2!1/2Ã nX
l=−n

|l|2l ξl(θ̃)2
!1/2

+ n−1
X
t

¡
ε2t −Eε2t

¢
where the second equality follows from n−1

P
j e
iλj(t−s) = 0 for t 6= s and the inequality follows

from the Cauchy-Schwarz inequality. Then note that n−1
P
t

¡
ε2t −Eε2t

¢
= Op(n

−1/2),

E
nX

l=−n
|l|−2

³
n−1

X
t
(εtεt−l −Eεtεt−l)

´2
=

nX
l=−n

|l|−2 n−2
X

t

h
Eε2t ε

2
t−l − (Eεtεt−l)2

i
= O(n−1),

and
Pn
l=−n |l|2 cl(θ)2 is uniformly converging for θ with |θ − θ0| < δ for some δ > 0 such that θ(z)

has no zeros on or inside the unit circle. Consistency of θ̃ then implies
Pn
l=−n |l|2 cl(θ̃)2 = Op(1).

These results establish that
°°°∂Λε̂n(θ̃)∂θ − ∂Λε(θ̃)

∂θ

°°° = Op(n
−1/2). From (A.27) it then follows that°°°∂Λε(θ̃)∂θ

°°° = Op(n−1/2) such that by a continuity argument √n(θ̃ − θ) = Op(1).
We next show that

Pn−1
j=−n+1 ζ̃j+mΓ̂

εy
j−k −

Pn−1
j=−n+1 ζj+mΓ

εy
j−k = Op(n

−1/2). Write

n−1X
j=−n+1

ζ̃j+mΓ̂
xy
j−k −

X
j

ζj+mΓ
xy
j−k =

n−1X
j=−n+1

ζ̃j+m

³
Γ̂xyj−k − Γxyj−k

´
−

n−1X
j=−n+1

³
ζ̃j+m − ζj+m

´
Γxyj−k.
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First consider

n1/2
n−1X

j=−n+1

°°°ζ̃j − ζj°°°°°°Γxyj−k°°° ≤ n1/2 sup
j

°°°ζ̃j − ζj°°° n−1X
j=−n+1

°°°Γxyj−k°°°
where P (supj

°°°ζ̃j − ζj°°° > Cn−1/2) goes to zero for some C large enough by the previous result.
For any δ such that |θ − θ0| < δ implies θ(z) has no zeros on or inside the unit circle consider

P
³
n1/2

Xn−1
j=−n+1

¯̄̄
ζ̃j

¯̄̄ °°°Γ̂xyj−k − Γxyj−k°°° > η´ ≤ P

Ã
n1/2 sup

|θ−θ0|<δ

Xn−1
j=−n+1 |ζk (θ)|

°°°Γ̂xyj−k − Γxyj−k°°° > η
!

+P
³¯̄̄
θ̃ − θ0

¯̄̄
≥ δ

´
We use the triangular inequality

°°°Γ̂xyj−k − Γxyj−k°°° ≤ °°°Γ̂xyj−k − Γ̌xyj−k°°°+°°°Γ̌xyj−k − Γ̌xyj−k°°° such that
n1/2 sup

|θ−θ0|<δ

Xn−1
j=−n+1

¯̄
ζj (θ)

¯̄ °°°Γ̂xyj−k − Γ̌xyj−k°°° = Op(1)
by Equation (B.2) and the fact that sup|θ−θ0|<δ

Pn−1
j=−n+1

¯̄
ζj (θ)

¯̄
= O(1). In the same way it

follows from Equation (B.3) that

n1/2 sup
|θ−θ0|<δ

Xn−1
j=−n+1

¯̄
ζj (θ)

¯̄
E
°°°Γ̌xyj−k − Γxyj−k°°° = O(1).

This establishes that bA1 −A1 = Op(n−1/2).
Proof of Theorem (4.2) We first show that n/

√
M∗(β̂n,M̂∗ − β̂n,M∗) = op(1). The decom-

position
√
n
³
β̂n,M̂∗ − β̂n,M∗

´
= D̂−1M∗

³
D̂M∗ − D̂M̂∗

´
D̂−1
M̂∗ d̂M̂∗ − D̂−1M∗(d̂M̂∗− d̂M∗) is used. Note

that D̂M∗ = Op(1) and dM∗ = Op(1). The following calculations also establish D̂M̂∗ = Op(1)

and dM̂∗ = Op(1). It is therefore enough to show that
p
n/M∗(D̂M∗ − D̂M̂∗) = op(1) andp

n/M∗(d̂M̂∗−d̂M∗) = op(1). Define k̃M = diag(k(1/M), ..., k((n−m)/M))0 and K̃M = (k̃M⊗Ip)
and let P̂ 0n−m = n−1X 0Zn−m and

Ω∗M =

 ΩM 0

0 In−[M]−m

 ,Ω∗−1M =

 Ω−1M 0

0 In−[M ]−m


with Ω̂∗M and Ω̂∗−1M defined in the same way replacing ΩM and Ω−1M by Ω̂M and Ω̂−1M . Using these

definitions we can rewrite d̂M = n−1/2P̂ 0n−mK̃M Ω̂
∗−1
M K̃MZ

0
n−mε. First considerp

n/M∗(d̂M̂∗ − d̂M∗) =
p
n/M∗(P̂ 0n−mK̃M̂∗Ω̂

∗−1
M̂∗ K̃M̂∗

Z
0
n−mε√
n

− P̂ 0n−mK̃M∗Ω̂∗−1M∗ K̃M∗
Z
0
n−mε√
n
)

=
p
n/M∗(P̂ 0n−m

h
∆M̂∗Ω̂

∗−1
M̂∗ ∆M̂∗ + K̃M∗Ω̂∗−1

M̂∗∆M̂∗ +∆M̂∗Ω̂
∗−1
M̂∗ K̃M∗

+K̃M∗
³
Ω̂∗−1
M̂∗ − Ω̂∗−1M∗

´
K̃M∗

i Z 0
n−mε√
n
)
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with∆M̂∗ = K̃M̂∗−K̃M∗ . FromAssumption (H) it follows for c = A/B(q) that
¯̄̄
k(j/M̂∗)− k(j/M∗)

¯̄̄
≤

C1n
−1/(2q+2) |j| ¯̄ĉ1/(2q+2) − c1/(2q+2)¯̄ for some constant C1. Denote the k, j-th element of Ω∗−1M∗

by ϑ∗j1,j2 . Then

p
n/M∗P̂ 0n−m∆M̂∗Ω̂

∗−1
M̂∗ K̃M∗

Z
0
n−mε√
n

= n
2q+1
4q+4

C2√
n

nX
t=1

n−mX
j1,j2=1

Γ̂xyj1

h
k(j1/M̂

∗)− k(j1/M∗)
i
ϑ̂
∗
j1,j2k(j2/M)vt,j2

= n
2q+1
4q+4C2

£
d∆4 + d

∆
5 + d

∆
6 + d

∆
7 + d

∆
8 + d

∆
9 + d

∆
¤

where d∆ = 1√
n

Pn
t=1

Pn−m
j1,j2=1

Γxyj1

h
k(j1/M̂

∗)− k(j1/M∗)
i
ϑ∗j1,j2k(j2/M

∗)vt,j2 ,

d∆4 =
1√
n

nX
t=1

n−mX
j1,j2=1

³
Γ̂xyj1 − Γ̌

xy
j1

´ h
k(j1/M̂

∗)− k(j1/M∗)
i
ϑ∗j1,j2k(j2/M

∗)vt,j2

and similarly for d∆5 , ..., d
∆
9 corresponding to Definitions (A.20-A.24) for d5, ..., d9 where we re-

place KM by ∆̃M̂∗ and Ω̂M by Ω̂∗M in the same way as in d∆4 . We consider the largest term

d∆5

°°°n2q+14q+4 d∆5

°°° ≤ C1n− 3
4q+4

¯̄̄
ĉ1/(2q+2) − c1/(2q+2)

¯̄̄ nX
t=1

n−mX
j1,j2=1

|j1|
°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2k(j2/M∗)vt,j2

°°° .
By the same arguments as in the proof of Lemma (B.24) it follows that

n−mX
j1,j2=1

|j1|
°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2k(j2/M∗)

Xn

t=1
vt,j2

°°° = Op(M∗) = Op(n1/(2q+2))(A.28)

where we have used that
P
j1
|j1|

°°ϑ∗j1,j2°° <∞ uniformly in j2 since ϑ∗j1,j2 has the same summa-

bility properties as ϑj1,j2 . Also note that k(j2/M
∗) = 0 for |j2| > M∗. The bound (A.28) implies

that n
2q+1
4q+4 d∆5 = Op(n

−(2q+3)/(4q+4)) as long as
¯̄
ĉ1/(2q+2) − c1/(2q+2)¯̄ = Op(n−1/2) which follows

from Lemma (4.1). Using similar arguments based on the proofs of Lemmas (B.23,B.25-B.28)

it can be shown that the remaining terms d∆4 , d
∆
6 ..., d

∆
9 are of smaller order. For d

∆ note thatPn
j1,j2=1

|j1|
°°°Γxyj1 ϑ∗j1,j2°°° = O(1) such that

nX
j1,j2=1

|k(j2/M∗)| |j1|
°°°Γxyj1 ϑ∗j1,j2°°°µE °°°Xn

t=1
vt,j2/

√
n
°°°2¶1/2 = O(1)

and thus n
2q+1
4q+4 d∆ = Op(n

−(2q+3)/(4q+4)) as long as
¯̄
ĉ1/(2q+2) − c1/(2q+2)¯̄ = Op(n−1/2).
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For
p
n/M∗P̂ 0n−m∆M̂∗Ω̂

∗−1
M̂∗ ∆M̂∗

Z
0
n−mε√
n

= n
2q+1
4q+4C2

£
d∆∆4 + ...+ d∆∆9 + d∆∆

¤
we define

d∆∆ =
1√
n

nX
t=1

n−mX
j1,j2=0

Γxyj1

h
k(j1/M̂

∗)− k(j1/M∗)
i
ϑ∗j1,j2

h
k(j2/M̂

∗)− k(j2/M∗)
i
vt,j2

and similarly for the other terms. From
Pn−m
j1,j2=1

µ
|j1| |j2|

°°°Γxyj1 ϑ∗j1,j2°°°2E kPn
t=1 vt,j2/

√
nk2

¶1/2
=

O(1) it follows that n
2q+1
4q+4d∆∆ = Op(n

−(2q+7)/(4q+4)) using the fact that
¯̄
ĉ1/(2q+2) − c1/(2q+2)¯̄ =

Op(n
−1/2) by Lemma (4.1). For n

2q+1
4q+4 d∆∆5 note that

°°d∆∆5 °° ≤ max([M̂∗],[M∗])X
j1,j2=1

|j1| |j2|
°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2Xn

t=1
vt,j2

°°°
such that for any finite ² > 0 and some C

P
¡
M∗−2 °°d∆∆5 °° > C¢

≤ P

M∗−1
dM∗+²eX
j1,j2=0

|j1| |j2|
°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2Xn

t=1
vt,j2

°°° > C
+ P (M̂∗ > M∗ + ²).

where dM∗ + ²e denotes the smallest integer larger than M∗+ ². Using the Markov inequality it

follows that

M∗−2
dM∗+²eX
j1,j2=0

|j1| |j2|
µ
E
°°°Γ̌xyj1 − Γxyj1 °°°2¶1/2 °°ϑ∗j1,j2°°µE °°°Xn

t=1
vt,j2/

√
n
°°°2¶1/2 = O(n−1/2)

by similar arguments as in the proof of Lemma (B.24). Therefore n
2q+1
4q+4 d∆∆5 = Op(n

−(4q+5)/(4q+4)).

The remaining terms are of smaller order by the same arguments as before.

Finally, for
p
n/M∗P̂ 0n−mK̃M∗

³
Ω̂∗−1
M̂∗ − Ω̂∗−1M∗

´
K̃M∗

Z
0
n−mε√
n

we expand Ω̂∗−1
M̂∗ around Ω̂

∗−1
M∗ and

Ω̂∗−1M∗ around Ω∗−1M∗ as in (A.1) leading to

Ω̂∗−1
M̂∗ = Ω̂

∗−1
M∗ − Ω̂∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω̂
∗−1
M∗ + op(

°°°Ω̂∗
M̂∗ − Ω̂∗M∗

°°°)(A.29)

and

Ω̂∗−1M∗ = Ω
∗−1
M∗ −Ω∗−1M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ + op(

°°°Ω∗M∗ − Ω̂∗M∗
°°°)(A.30)
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Using the fact that P (M̂∗ > M∗+²) tends to zero we can show that
°°°Ω̂∗

M̂∗ − Ω̂∗M∗

°°° = Op(M∗/n1/2) =

Op(n
−q
2q+2 ) while

°°°Ω∗M∗ − Ω̂∗M∗

°°° = Op(n−q/(2q+2)) by Lemma (B.8). Combining (A.29) and (A.30)
then leads to

Ω̂∗−1
M̂∗ − Ω̂∗−1M∗ = −OM∗(Ω̂∗M∗ − Ω̂∗

M̂∗)OM∗ + op(
°°°Ω∗M∗ − Ω̂∗M∗

°°°)
with OM∗ = Ω∗−1M∗ −Ω∗−1M∗ (Ω∗M∗ − Ω̂∗M∗)Ω

∗−1
M∗ . We then consider

d10 ≡
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n

(A.31)

d11 ≡
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n

(A.32)

+
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ K̃M∗

Z
0
n−mε√
n

d12 ≡
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)(A.33)

×Ω∗−1M∗ (Ω
∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ K̃M∗

Z
0
n−mε√
n
.

By Lemma (B.37) it follows that d10 = op(1), Lemma (B.38) establishes d11 = op(1) and Lemma

(B.39) shows d12 = op(1). It now follows that

p
n/M∗P̂ 0n−mK̃M∗

³
Ω̂∗−1
M̂∗ − Ω̂∗−1M∗

´
K̃M∗

Z
0
n−mε√
n

= d10 + d11 + d12 + op(1)

by the Taylor expansion theorem.

Next considerp
n/M∗(D̂M̂∗ − D̂M∗) =

p
n/M∗(P̂ 0n−m

h
∆M̂∗Ω̂

∗−1
M̂∗ ∆M̂∗ + K̃M∗Ω̂∗−1

M̂∗ ∆M̂∗ +∆M̂∗Ω̂
∗−1
M̂∗ K̃M∗

+K̃M∗
³
Ω̂∗−1
M̂∗ − Ω̂∗−1M∗

´
K̃M∗

i
P̂ ).

First, we analyze P̂ 0n−m∆M̂∗Ω̂
∗−1
M̂∗K

0
M∗P̂n−m = H∆

2 + H
∆
3 + H

∆ where H∆
2 = H∆

211 + H
∆
212 +

H∆
221 + H

∆
222, H

∆
3 = H∆

31 + H
∆
32 + H

∆
33 + H

∆
34 and the definitions follow from the definitions

in (A.6)-(A.13) with the appropriate substitutions for Ω̂∗−1
M̂∗ and ∆M̂∗ . Furthermore let H∆ =Pn

i=0

Pn
j=0 Γ

xy
i (k(i/M̂

∗)− k(i/M∗))ϑ∗i,jk(j/M∗)Γyx−j . Then

p
n/M∗ °°H∆

°° ≤ n
2q+1
4q+4C1n

−1/(2q+2)
¯̄̄
ĉ1/(2q+2) − c1/(2q+2)

¯̄̄ n−mX
j1,j2=1

|j1|
°°°Γxyj1 ϑ∗j1,j2k(j2/M∗)Γyx−j2

°°°
= n−3/(4q+4)C1

√
n
¯̄̄
ĉ1/(2q+2) − c1/(2q+2)

¯̄̄
O(1) = Op(n

−3/(4q+4)).
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Now consider H∆
222

p
n/M∗ °°H∆

222

°° ≤ n−3/(4q+4)C1√n ¯̄̄ĉ1/(2q+2) − c1/(2q+2) ¯̄̄ n−mX
j1,j2=1

|j1|
°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2k(j2/M∗)Γ̌yx−j2

°°°
and by the proof of Lemma (B.15) it follows thatE

Pn−m
j1,j2=1

|j1|
°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2k(j2/M∗)Γ̌yx−j2

°°° =
O(n−1/2M∗) such that

p
n/M∗ °°H∆

222

°° = op(n−3/(4q+4)). Using the results of Lemma (B.17) we
can show in the same way that

p
n/M∗ °°H∆

34

°° = op(1). All the remaining terms are of lower

order by Lemmas (B.12-B.16).

Next, we turn to P̂ 0n−m∆M̂∗Ω̂
∗−1
M̂∗ ∆M̂∗P̂n−m = H∆∆

2 +H∆∆
3 +H∆∆ where H∆∆

2 ,H∆∆
3 ,H∆∆

are defined in the obvious way. It follows immediately that

p
n/M∗ °°H∆∆

°° ≤ n−(2q+5)/(4q+4)C1n
¯̄̄
ĉ1/(2q+2) − c1/(2q+2)

¯̄̄2 n−mX
j1,j2=1

|j1| |j2|
°°°Γxyj1 ϑ∗j1,j2Γyx−j2°°°

= Op(n
−(2q+5)/(4q+4)).

ForH∆∆
222 we note thatE

Pn−m
j1,j2=1

|j1| |j2|
°°°Γxyj1 ϑ∗j1,j2Γyx−j2°°° = O(1) such that againpn/M∗ °°H∆∆

222

°° =
op(1). The same type of arguments also establish

p
n/M∗ °°H∆∆

34

°° = op(1). All the other terms
are of lower order.

Finally, we turn to
p
n/M∗P̂ 0n−mK̃M∗

³
Ω̂∗−1
M̂∗ − Ω̂∗−1M∗

´
K̃M∗P̂n−m for which we consider

H5 ≡
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗P̂n−m(A.34)

H6 ≡
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗P̂n−m(A.35)

+
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ K̃M∗P̂n−m

H7 ≡
p
n/M∗P̂ 0n−mK̃M∗Ω∗−1M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)(A.36)

×Ω∗−1M∗ (Ω
∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ K̃M∗P̂n−m.

Lemmas (B.40-B.42) establish that H5,H6, H7 = op(1).

Next we show that

lim
h→∞

lim
n→∞

h
ϕn,h(M̃

∗, `, k(.), bn,M̂∗)− ϕn,h(M̃∗, `, k(.), bn,M̃∗)
i
= 0.

This result was shown by Andrews (1991), Theorem 3(c) and follows immediately from n
p
1/M∗(β̂n,M̂∗−

β̂n,M∗) = op(1).

Proof of Proposition (5.1) We consider Edi and EHiDdj. First, Edi = 0 for i ≤ 3. The
terms d4, d6, ..., d9 are of lower order by Lemmas (B.23,B.25-B.28). The terms EHiD−1dj are all
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of lower order. The largest order term is therefore Ed5. By the proof of Lemma (B.36) it follows

that Ed5 =M/
√
nA1

R
k2(x)dx+ o(M/

√
n).

Proof of Theorem (5.3) We consider the expansion of
√
n
¡
β∗n,M − β¢as before. The

analysis of the MSE of
√
n
¡
β∗n,M − β¢ is then the same as the analysis for √n ¡βn,M − β¢ where

we replace d5 by

d̄5 = d5 − M√
n
A01
Z
k2(x)dx

and the additional term d13 =M/
√
n( bA1−A1)0 R k2(x)dx needs to be considered. First note that

Ed5− M√
n
D−1A01

R
k2(x)dx = o(1). Then Ed̄5d̄05 = E(d5−Ed5)(d5−Ed5)0+o(1). From the proof

of Lemma (B.36) it follows that Ed̄5d̄05 = O(M/n). Also E`0H222D−1d0d̄05D−1/2` = o(M/n) by

Lemma (B.33) and d13 = Op(M/n) together with Lemma (B.32) shows that all remaining terms

are at most of order M/n.

Proof of Theorem (5.4): First note that

βNn,M =
h
(1+ k)P̂ 0MKM Ω̂−1M KM P̂M − n−1kX 0An(Φ̂)X

i−1
n−1

³
(1+ k)P̂ 0MKM Ω̂−1M KMZ

0
n − kX 0An(Φ̂)

´
Y

with n−1/2kP̂ 0MKM Ω̂
−1
M KMZ

0
nε = Op(M/n) and kP̂ 0MKM Ω̂

−1
M KM P̂M = Op(M/n). It therefore

follows that βNn,M − βkn,M = Op(M/n). Next note that

n−1/2kEX 0An(Φ)ε =M/n3/2
nX
t=1

nX
s=1

ζt−sΓ
εx
t−s + o(M/n

1/2) =M/n1/2
Z
k(x)2dxA01 + o(M/n1/2)

by the Toeplitz lemma. The term o(M/n1/2) stands for replacing xt − x̄ by xt − µx in X and

allows the sums not to be exactly from t = 1, .., n. The details of these calculations are omitted.

The variance covariance matrix of n−1/2kX 0An(Φ)ε is given by

Var(n−1/2kX 0An(Φ)ε) = n−1k2
nX

t1,t2=1

nX
s1,s2=1

ζt1−s1ζt2−s2
£
Γxεt1−s2Γ

εx
t2−s1 + γ

ε
t1−t2Γ

xx
s1−s2

¤
+ o(M2/n)
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and setting u = t1 − s2 and v = t2 − s1 leads to

M2

n3

nX
t1,t2=1

nX
s1,s2=1

ζt1−s1ζt2−s2
£
Γxεt1−s2Γ

εx
t2−s1 + γ

ε
t1−t2Γ

xx
s1−s2

¤
=
M2

n3

n−1X
u,v=−n+1

min(n,n+v)X
t2=max(v+1,1)

min(n,n−u)X
s2=max(−u+1,1)

ζu+t2−s2ζt2−s2
£
Γxεu Γ

εx
v + γ

ε
u+s2−t2Γ

xx
v+s2−t2

¤
= O(M2/n2)

which shows that n−1/2kX 0An(Φ)ε−M/n1/2
R
k(x)2dxA01 = Op(M/n) such that

d14 = n
−1/2kX 0An(Φ̂)ε−M/n1/2

Z
k(x)2dxA01 = Op(M/n).

This follows from n−1/2kX 0
³
An(Φ̂)−An(Φ)

´
ε = op(M/n). In the same way it can be shown

that n−1kX 0An(Φ)X = Op(M/n). The result now follows from adding the term

−d14 −M/n1/2
Z
k(x)2dxA01

to the expansion of d̂n.
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B. Lemmas

B.1. General Results

We first recall a few well established results on higher order cross cumulants to introduce notation.

A reference for this material is Brillinger (1981).

Definition B.1. Let ut ∈ Rp be a strictly stationary vector process with elements uit such that
Euit = 0 and E

¡
uit
¢k
<∞. Let ξ = (ξ1, ..., ξk) ∈ Rk and u = (ui1t1 , ..., uiktk) then φi1,...ik,t1,...,tk(ξ) =

Eeiξ
0u is the joint moment generating function with corresponding cumulant generating function

lnφi1,...ii,t1,...,tk(ξ). The joint k-th order cumulant function is

cum∗i1,...,ik(t1, ..., tk) =
∂v1+...+vk

∂ξv11 · · · ∂ξvkk
|ξ=0 lnφi1,...ik,t1,...,tk(ξ)

where vi are nonnegative integers v1 + ...+ vk = k. Alternatively the notation cum∗(ui1t1, ..., u
ik
tk
)

is used where more convenient. By stationarity it is enough to define cumi1,...,ik(t1, ..., tk−1) =

cum∗i1,...,ik(t1, ..., tk−1, 0)

Definition B.2. Let ut satisfy Assumption (B). Then the k-th order cross cumulant spectrum

of ui1t , ..., u
ik
t is defined as

fi1,...ik(λ1, ...,λk−1) = (2π)
−k+1

∞X
t1=−∞

· · ·
∞X

tk−1=−∞
cumi1,...,ik(t1, ..., tk−1) exp

−i
k−1X
j=i

λj


for ∞ < λj <∞.

Lemma B.3. Assume yt satisfies Assumption (C). Let cik be the i-th row vector of Ck such

that yit = µiy +
P∞
k=0 c

i
kut−k. Define the 1 × p vector polynomial ci(L) =

P∞
j=0 c

i
kL

k with j-th

element ci,j(L) =
P∞
k=0 c

i,j
k L

k. The cross cumulant spectrum of (yi1t , ..., y
ik
t ) is given by

fyi1 ,...,yik (λ1, ...,λk−1) = (2π)
−k+1

pX
j1=1

· · ·
pX

jk=1

ci1,j1(eiλ1) · · · cik ,jk(e−i
Pk−1
j=i λj )fi1,...ik(λ1, ...,λk−1),

the cross cumulant is

cum∗(yi1t1 , ..., y
ik
tk
) = cum∗(yi1t1−tk , ..., y

ik−1
tk−1−tk , y

ik
0 )

=

pX
j1=1,..,jk=1

∞X
l1=0,...,lk=0

ci1,j1l1
ci2,j2l2

· · · cik,jklk
cumi1,...,ik(l1 + t1 − tk, ..., lk + tk−1 − tk)
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and satisfies
P∞
t1=−∞ · · ·

P∞
tk−1=−∞

¯̄̄
cum∗(yi1t1−tk , ..., y

ik−1
tk−1−tk , y

ik
0 )
¯̄̄
<∞.

Proof. The first part follows directly from Brillinger (1981, Theorem 2.8.1). The cumulant

cum∗(yi1t1 , ..., y
ik
tk
) is obtained from

cum∗(yi1t1 , ..., y
ik
tk
) =

Z
· · ·
Z
fyi1 ,...,yik (λ1, ...,λk−1)e

−iPk−1
j λjtjdλ1...dλk−1.

For the summability of the cumulant note that
∞X

t1=−∞
· · ·

∞X
tk−1=−∞

|cumi1,...,ik(l1 + t1 − tk, ..., lk + tk−1 − tk)| <∞

uniformly in l1, ...lk by Assumption (B). The result then follows from the absolute summability

of ci1,j1lj
for j = 1, ..., n.

Definition B.4. The p2 × p2 commutation matrix Kpp =
Pp
i,j=1 eie

0
j ⊗ eje0i where ⊗ is the

Kronecker product and ei is the i-th unit p-vector; see Magnus and Neudecker (1979).

Using these definitions we prove some results for higher moments involving matrices.

Lemma B.5. Let W,X,Y,Z be random vectors with elements wi, xi, yi, zi such that Ewi =

... = Ezi = 0 and E |xi|4 < ∞, ..., E |zi|4 < ∞. Let A and B be fixed coefficient matrices of

dimensions such that the matrix product W 0AXY 0BZ is a well defined scalar. Then

EW 0AXY 0BZ =
¡
vecA0

¢0
E(X ⊗W )E(Z 0 ⊗ Y 0) vecB0 + tr(EAXZ0)(EB0YW 0)

+ tr(EAXY 0)(EBZW 0) +K4
where K4 =

P
...
P

j1,...,j4

aj1,j2bj3,j4 cum
∗(wj1, xj2 , yj3, zj4).

Proof. The scalar expressionW 0AXY 0BZ can be written equivalently as (vecA)0 (X⊗W )(Z 0⊗
Y 0) vecB = trAXZ 0B0YW 0 = trAXY 0BZW 0. The result then follows from E(w,x, y, z) =

E(wx)E(yz) +E(xy)E(wz) +E(xz)E(wy) + cum(w,x, y, z).

Lemma B.6. Let X,Y be random vectors, W,Z random matrices with all elements having

zero mean and A,B fixed coefficient matrices such that the matrix product WAXY 0BZ is well

defined. Then

E trWAXY 0BZ =
¡
vecB0

¢0
E(Y ⊗ Z)E(X 0 ⊗W 0) vecA+ tr(EAXY 0)(EBZW 0)

+ tr(B0 ⊗ I)E(Y 0 ⊗W )(I ⊗A)E vec(X) vec(Z 0)0 +K4
where K4 =

P
k

P
...
P

j1,...,j4

aj1,j2bj3,j4 cum
∗(wj1,k, xj2 , yj3, zj4,k).
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Proof. Note that trWAXY 0BZ = tr(B0⊗ I)(Y 0⊗W )(I ⊗A) vec(X) vec(Z 0)0 and use the same
reasoning as before.

Lemma B.7. If vt,i = εt+m(yt−i−µy) and wt,i = (xt+m − µx)
¡
yt−i − µy

¢0 and ` ∈ Rpr+p−1 is a
vector of constants such that `0` = 1 then

i) E(vt,i ⊗ w̌0s,j`) = ((vec(Γyys−t+i−j)⊗
¡
Γεxt−s

¢0
) +Kpp(Γ

εy
t−s+j ⊗ Γyxt−i−s) +K14)(I ⊗ `) where K14 is

a p2 × (pr + p− 1) matrix with typical element (a, b) equal to£K14¤a,b = cum∗(εt+m, y[(a−1)/p]+1t−i , yamod p−1s−j , xbs+m),

and Kpp is defined in (B.4).

ii) E(vt,i`0ws,j) = (`0Γεxt−s)Γ
yy
t−s+j−i + Γ

εy
t−s+j(`

0Γxys−t+i) + K24 where K24 is a p × p matrix with
typical element (a, b) £K24¤a,b = cum∗(εt+m, ybt−i, yas−j, `0xs+m),
iii) E(vt,iv0s,j) = γ

ε
t−sΓ

yy
t−i+j−s +K34 where K34 is a p× p matrix with typical element (a, b)

£K34¤a,b =
 0 i, j ≥ 0
cum∗(εt+m, εs+m, yat−i, y

b
s−j) otherwise

,

iv) E(wt,iw0s,j) = Γ
xy
i Γ

yx
−j + γ

yy
t−i+j−sΓ

xx
t−s + Γ

xy
t−i−sΓ

yx
t−s+j +K44 where K44 is a p × p matrix with

typical element (a, b) £K44(t, s, i, j)¤a,b =X
l

cum∗(xas+m, x
b
t+m, y

l
t−i, y

l
s−j),

v)E(vt,ivec(w0s,j)0) =
¡
Γεxt−s

¢0 ⊗ Γyyt−i+j−s + Γyxt−i−s ⊗ (Γεyt−s+j) + K54(t, s, i, j) where K54 is a p × p
matrix with typical element (a, b)£K54(t, s, i, j)¤a,b = cum∗(εt+m, yat−i, ybmod p+1s−j , x

[b/r]+1
s+m ).

Proof. These results are easily shown by applying E(wxyz) = EwxEyz+EwyExz+EwzExy+

cum to each element of the respective randommatrix or vector and expressing the result in matrix

notation.
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Lemma B.8. Let Ω̂M be defined in (3.1) and
√
n(β̃n − β0) = Op(1). Let M → ∞ such that

M/n1/2 → 0. Then
°°°Ω̂M −ΩM

°°° = Op(M/n1/2)
Proof. Note that°°°Ω̂M −ΩM

°°° ≤
m−1X

l=−m+1
|γεl |

°°°Ω̂M(l)−ΩM(l)°°°
+

m−1X
l=−m+1

|γ̂εl − γεl |
³°°°Ω̂M(l)−ΩM(l)°°°+ kΩM(l)k´

where |γ̂εl − γεl | = Op(n−1/2) uniformly in l for a consistent first stage estimate β̃n. For Ω̂M(l)

we use °°°Ω̂M(l)−ΩM(l)°°°2 = MX
i,j=1

kω̂i,j(l)− ωi,j(l)k2

Define r1 = max(i+ 1, j + l + 1), r2 = min(n, n+ j) and

ω̌i,j(l) = n
−1

r2X
t=r1

wyt,j+l−i = n
−1

r2X
t=r1

w̌yt,j+l−i +
n− r1 + r2

n
Γyyj+l−i

with w̌yt,j+l−i = w
y
t,j+l−i − Γyyj+l−i such that ω̂i,j(l)− ω̌i,j(l) = Op(n−1/2) uniformly in i, j, l. For

M/n1/2 → 0 it thus follows that
°°°Ω̂M(l)−ΩM(l)°°°2 = PM

i,j=1 kω̌i,j(l)− ωi,j(l)k2 + Op(M2/n).

Now

kω̌i,j(l)− ωi,j(l)k2 ≤
°°°n−1Xr2

t=r1
w̌yt,j+l−i

°°°2 +µ2M
n

¶2 °°°Γyyj+l−i°°°2
+ 4

M

n

°°°Γyyj+l−i°°°°°°n−1Xr2

t=r1
w̌yt,j+l−i

°°°
where

E
°°°n−1Xr2

t=r1
w̌yt,j+l−i

°°°2 ≤ n−2Xr2

t=r1
E tr(wt,j+l−i − Γyyj+l−i)(ws,j+l−i − Γyyj+l−i)0

= n−2
Xr2

t=r1

h
γyyt−i+j+sγ

yy
t−s + γ

yy
t−i+sγ

yy
t−s+j +K44

i
= O(n−1)

uniformly in i and j. Moreover E
°°°n−1Pr2

t=r1
w̌yt,j+l−i

°°°2 is summable in one of the indices, say j.
Thus

PM
i,j=1

°°°n−1Pr2
t=r1

w̌yt,j+l−i
°°°2 = Op(M/n1/2)while ¡2Mn ¢2PM

i,j=1

°°°Γyyj+l−i°°°2 = O(M3/n2) =

o(M/n) and M
n

PM
i,j=1

°°°Γyyj+l−i°°°°°°n−1Pr2
t=r1

w̌yt,j+l−i
°°° = Op(M

2/n3/2) = op(M/n). The result

then follows from the Markov inequality,

E
m−1X

l=−m+1

°°°Ω̂M(l)−ΩM(l)°°° ≤ m−1X
l=−m+1

µ
E
°°°Ω̂M(l)−ΩM(l)°°°2¶1/2

and the fact that kΩM(l)k = O(M).
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B.2. Results for Lemma 3.1

Lemma B.9. Let H11 be defined as in (A.2). Then H11 = o(M−2s) where s is defined in

Assumption (C).

Proof. Assumption (C) implies that
P
j |j|s kΓyyk < ∞. We let H11 = H111 + H112 with

H111 = P
0 ¡Ω∗−1M −Ω−1¢P andH112 = P 0MΩ−1M PM−PΩ∗−1M P where Ω∗M is an infinite dimensional

matrix defined by

Ω∗M =

 ΩM 0

0 I∞

 .(B.1)

and I∞ stands for the infinite dimensional identity matrix (see Kuersteiner 1999b, Lemma 4.2

for details). Let ϑMi,j be the i, j-th p× p block of Ω∗−1M

kH111k =
°°P 0Ω−1 (Ω−Ω∗M)Ω∗−1M P

°°
≤ P

j3>M

P
j1j4

°°°Γxyj1 ϑj1,j2°°° kωj3,j3 − Ik°°°ϑMj3,j4Γyx−j4°°°
+2
P
j3>M

P
j1,j2,j4

°°°Γxyj1 ϑj1,j2°°° kωj2,j3k°°°ϑMj3,j4Γyx−j4°°°
≤ M−2sP

j3>M

P
j1j4

|j3|2s
°°°Γxyj1 ϑj1,j3°°° kωj3,j3 − Ik°°°ϑMj3,j4Γyx−j4°°°

+M−2s2
P
j3>M

P
j1,j2,j4

|j3|2s
°°°Γxyj1 ϑj1,j2°°° kωj2,j3k°°°ϑMj3,j4Γyx−j4°°°

which tends to zero as M → ∞ such that kH111k = o(M−2s). The last line follows from the

fact that
P
j1,j3

|j3|s
°°°Γxyj1 ϑj1,j3°°° <∞ which can be shown by arguments similar to the proof of

Lemma 5.2 in Kuersteiner (1999b). Note that

H112 = −
∞X

j1=[M]+1

Γxyj1 Γ
yx
−j1

and use the inequality

kH112k ≤
 ∞X
j=[M ]+1

°°°Γxyj °°°
2 ≤M−2s

 ∞X
j=[M ]+1

|j|s
°°°Γxyj °°°

2 = o(M−2s)

leading to kH11k = o(M−2s).

Lemma B.10. Let H12 be defined in (A.3). Then H12 = O(M−2q).
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Proof. We write H12 =M−2qP[M ]
j1,j2=1

Γxyj1 |j1|q
1−k(j1/M)
|j1/M |q ϑMj1,j2

1−k(j2/M)
|j2/M |q |j2|q Γyx−j2. By the Dom-

inated Convergence Theorem

[M ]X
j1,j2=1

Γxyj1 |j1|q
1− k(j1/M)
|j1/M |q ϑMj1,j2

1− k(j2/M)
|j2/M |q |j2|q Γyx−j2

→ k2q

∞X
j1,j2=1

Γxyj1 |j1|q ϑj1,j2 |j2|q Γ
yx
−j2 ≡ k2qB

(q)
0 as M →∞

where we have used Assumption (F) such that H12 =M−2qk2qB(q)0 + o(M−2q) = O(M−2q).

Lemma B.11. Let H13and H14 be defined in (A.4) and (A.5). Then H13 +H14 = O(M−q).

Proof. Follows from Lemma (B.34).

Lemma B.12. Let H211 be defined in (A.6). Then H211 = Op(M/n).

Proof. We write H211 =
P[M ]
j1,j2=1

³
Γ̂xyj1 − Γ̌

xy
j1

´
k(j1/M)ϑ

M
j1,j2k(j2/M)

³
Γ̂xyj2 − Γ̌

xy
j2

´0
where Γ̌xyj =

n−1
Pn−m
t=j+1wt,j . First note that

kH211k ≤
[M ]X

j1,j2=1

°°°Γ̂xyj1 − Γ̌xyj1 °°°°°ϑMj1,j2°°°°°Γ̂xyj2 − Γ̌xyj2 °°° .
One obtains

°°°Γ̂xyj − Γ̌xyj
°°° ≤ kx̄− µxk°°°n−1Xn−m

t=j+1
(yt − ȳ)

°°°+ °°ȳ − µy°°°°°n−1Xn−m
t=j+1

(xt − x̄)
°°°+ °°¡ȳ − µy¢ (x̄− µx)°°

withE
°°¡ȳ − µy¢ (x̄− µx)°°2 = O(n−2). Further, °°°n−1Pn−m

t=j+1(yt − ȳ)
°°° ≤ kȳk+n−1Pn

t=1 kytk =
Op(1) leading to °°°Γ̂xyj − Γ̌xyj

°°° = Op(n−1/2)(B.2)

uniformly in j such that H211 is bounded in expectation by n−1c1
P[M ]
j1,j2=1

°°ϑMj1,j2°° = O(M/n)
for some constant c1.

Lemma B.13. Let H212 be defined in (A.7). Then H212 = Op(n−1/2).
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Proof. From (A.7) H212 can be written as

H212 = −
[M ]X

j1,j2=1

³
Γ̂xyj1 − Γ̌

xy
j1

´
k(j1/M)ϑ

M
j1,j2k(j2/M)Γ̌

yx
−j2 −

[M ]X
j1,j2=1

Γ̌xyj1 k(j1/M)ϑ
M
j1,j2k(j2/M)

³
Γ̂xyj2 − Γ̌

xy
j2

´0
.

First note that

kH212k ≤
[M ]X

j1,j2=1

°°°Γ̂xyj1 − Γ̌xyj1 °°°°°ϑMj1,j2°°°°°Γ̌xyj2 °°°+ °°°Γ̌xyj1 °°°°°ϑMj1,j2°°°°°Γ̂xyj2 − Γ̌xyj2 °°° .
Now using Lemma (B.7iv)

E
°°°Γ̌xyj °°°2 = n−2

Xn−m
t,s=j+1

trE(xt+m − µx)(yt−j − µy)
0
(ys−j − µy)(xs+m − µx)

0

= n−2
Xn−m

t,s=j+1
tr(Γxyj Γ

yx
−j + Γ

xx
s−tγ

yy
s−t + Γ

xy
t−s+jΓ

yx
t−s−j +K44)

=
°°°Γxyj °°°2 +O(n−1)

where γyys−t = E(yt−j − µy)0(ys−j − µy) and K44 is a matrix containing fourth order cumulants
of xt+m and yt−j defined in Lemma (B.7iv). This together with the arguments in the proof

of the previous lemma shows that E kH212k ≤ n−1/22
P[M]
j1,j2=0

°°ϑMj1,j2°°°°°Γyxj2 °°°2 + O(M/n3/2) =
O(Mn−3/2 + n−1/2) = O(n−1/2).

Lemma B.14. Let H221 be defined in (A.8). Then H221 = Op(M/n).

Proof. From the definition H221 =
P[M]
j1,j2=1

³
Γ̌xyj1 − Γ

xy
j1

´
k(j1/M)ϑ

M
j1,j2k(j2/M)

³
Γ̌yxj2 − Γ

yx
j2

´0
.

Using Lemma (B.7iv) we consider

E
°°°Γ̌xyj − Γxyj

°°°2 ≤
°°°n−1Xn−m

t=j+1
w̌t,j

°°°2 + (j + 1+m)2
n2

°°°Γxyj °°°2
+
j + 1+m

n

°°°Γxyj °°°°°°n−1Xn−m
t=j+1

w̌t,j

°°°
where j+1+mn

°°°Γxyj °°° = O(n−1) uniformly in j and
E
°°°n−1Xn−m

t=j+1
w̌t,j

°°°2 = n−2Xn−m
t=j+1

tr(Γxxs−tγ
yy
s−t + Γ

xy
t−s+jΓ

yx
t−s−j +K44) = O(n−1)(B.3)

uniformly in j. Then

E

°°°°X[M]

j1,j2=1

³
Γ̌xyj1 − Γ

xy
j1

´
ϑMj1,j2

³
Γ̌yx−j2 − Γ

yx
−j2
´0
|k(j1/M)| |k(j2/M)|

°°°°
≤
X[M ]

j1,j2=1

µ
E
°°°Γ̌xyj1 − Γxyj1 °°°2¶1/2µE °°°Γ̌yx−j2 − Γyx−j2°°°2¶1/2 °°ϑMj1,j2°°

≤ Cn−1
X[M ]

j1,j2=1
kϑj1,j2k = O(M/n).
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where C is some constant.

Lemma B.15. Let H222 be defined in (A.9). Then H222 = Op(M/n1/2).

Proof. Using (A.9) we write

H222 = −
X[M]

j1,j2=1
Γ̌xyj1 k(

j1
M
)ϑMj1,j2k(

j2
M
)
³
Γ̌yx−j2 − Γ

yx
−j2
´0

−
X[M]

j1,j2=1

³
Γ̌xyj1 − Γ

xy
j1

´
k(
j1
M
)ϑMj1,j2k(

j2
M
)Γ̌yx−j2 .

We use the same arguments as in the proof of the previous lemma to obtain the following bound

E

°°°°X[M]

j1,j2=1
Γ̌xyj1 ϑj1,j2

³
Γ̌yx−j2 − Γ

yx
−j2
´0
k(
j1
M
)k(

j2
M
)

°°°° ≤ Cn−1/2
[M ]X

j1,j2=1

µ
E
°°°Γ̌xyj2 °°°2¶1/2 kϑj1,j2k ¯̄̄k( j2M )¯̄̄

= O(M/n1/2)

where C is a constant such that
µ
E
°°°Γ̌xyj1 − Γxyj1 °°°2¶1/2 < Cn−1/2 uniformly in j1 and E °°°Γ̌xyj2 °°°2 =

O(1) uniformly in j2. The result then follows from Markov’s inequality.

Lemma B.16. Let H31 be as defined in (A.10), H32 as defined in (A.11) and H33 as defined in

(A.12). Then H31 = op(M/n), H32 = op(M/n) and H33 = op(M/n).

Proof. We use the fact that
°°°Γ̂xyj − Γxyj

°°° = Op(n−1/2) uniformly in j as shown in the proof
of Lemmas (B.12) and (B.14) as well as the fact that the blocks of ΩM − Ω̂M are uniformly

Op(n
−1/2) and summable over one index as shown in Lemma (B.17). Then

kH32k ≤
X[M]

j1,...,j4=1

°°°Γ̂xyj1 − Γxyj1 °°° |k(j1/M)| °°ϑMj1,j2°° kωj2,j3 − ω̂j2,j3k°°ϑMj3,j4°° |k(j4/M)| °°°Γ̂yx−j4 − Γxy−j4°°°)
+
X[M ]

j2,..,j4=1

°°aMj2 °° kωj2,j3 − ω̂j2,j3k°°ϑMj3,j4°° |k(j4/M)|°°°Γ̂yx−j4 − Γxy−j4°°° .
where aMi =

P[M ]
j=0 Γ

xy
j k(j/M)ϑ

M
ji . The term in the first line is bounded byX[M]

j1=1

°°°Γ̂xyj1 − Γxyj1 °°°X[M ]

j1,...,j4=1

°°ϑMj1,j2°° kωj2,j3 − ω̂j2,j3k°°ϑMj3,j4°°°°°Γ̂yx−j4 − Γxy−j4°°°
where

P[M ]
j1=1

°°°Γ̂xyj1 − Γxyj1 °°° = Op(M/n1/2) by the arguments in the proof of Lemmas (B.12) and
(B.14) and

E
X[M ]

j1,...,j4=1

°°ϑMj1,j2°° kωj2,j3 − ω̂j2,j3k°°ϑMj3,j4°°°°°Γ̂yx−j4 − Γxy−j4°°°
≤ E

X[M ]

j1,...,j4=1

°°ϑMj1,j2°°³E kωj2,j3 − ω̂j2,j3k2´1/2 °°ϑMj3,j4°°µE °°°Γ̂yx−j4 − Γxy−j4°°°2¶1/2 = O(M/n).
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The term on the second line isX[M ]

j2,..,j4=1

°°aMj2 °° kωj2,j3 − ω̂j2,j3k°°ϑMj3,j4°° |k(j4/M)| °°°Γ̂yx−j4 − Γxy−j4°°° = Op(n−1)
such that the result follows. The arguments for H31 and H33 are identical.

Lemma B.17. Let H34 be defined in (A.13). Then H34 = Op(n−1/2).

Proof. First note that H34 can be written as
P[M ]
j1,j2=1

aMj1 (ωj1,j2 − ω̂j1,j2)a
0M
j2

with aMi =P[M ]
j=0 Γ

xy
j k(j/M)ϑ

M
ji . Note that

°°aMi °° ≤P∞
j=1

°°ΓjϑMji °° such that °°aMi °° is summable ∀M. Then
kH34k ≤

[M ]X
j1,j2=1

°°aMj1 °°°°aMj2 °° kωj1,j2 − ω̂j1,j2k
Furthermore

kωj1,j2 − ω̂j1,j2k ≤
Xm−1

l=−m+1 |γ
ε
l − γ̂εl | (kωj1,j2(l)− ω̂j1,j2(l)k+ kωj1,j2(l)k)

+
Xm−1

l=−m+1 |γ
ε
l | kωj1,j2(l)− ω̂j1,j2(l)k

such that by Lemma (B.8) E kωj1,j2(l)− ω̂j1,j2(l)k = O(n−1/2) where the bound holds uniformly
in j1, j2 and l. The result then follows immediately after standard probability manipulations and

an application of the Markov inequality.

Lemma B.18. Let H4 be as defined in (A.14). Then H4 = op(M/n)

Proof. We use the matrix valued Taylor expansion Ω̂−1M = Ω−1M −Ω−1M (Ω̂M −ΩM)Ω−1M +B+R

where R = op(kBk2) and B can be expressed as B = Ω−1M (ΩM − Ω̂M)Ω−1M (ΩM − Ω̂M)Ω−1M to

write H4 = H41 +H42 where

H41 = P̂ 0MKMBKM P̂M

H42 = P̂ 0MKMRKM P̂M .

Further decompose H41 = H411 +H412 +H413 +H414 where

H411 ≡ −
³
P̂M − P̌M

´0
KMBKM(P̂M − P̌M)

H412 ≡ P̂ 0MKMBKM(P̂M − P̌M) + (P̂M − P̌M)0KMBKM P̂M
H413 ≡ − ¡P̌M − PM

¢0
KMBK

0
M

¡
P̌M − PM

¢
H414 ≡ P̌ 0MKMBKM(P̌M − PM) + (P̌M − PM)0KMBKM P̌M
H415 = P 0MKMBKMPM .
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It follows immediately that H411 = op(H412) such that we consider

°°°P̂ 0MKMBKM(P̂M − P̌M)
°°° ≤ [M ]X

j1,...,j4

âj1 k(ω̂j1,j2 − ωj1,j2)k kϑj2,j3k k(ω̂j3,j4 − ωj3,j4)k b̂0j4

where âj =
P[M ]
k=1

°°°Γ̂xyk °°°°°ϑMk,j°° and b̂j = P[M ]
k=1

°°°Γ̂yx−k − Γ̌xy−k°°°°°ϑMk,j°° . From the proof of Lemma

(B.12) it follows that b̂j = Op(n−1/2) uniformly in j. Also

°°°Γ̂xyk °°° ≤ n−1 nX
t=1

°°xty0t−k°°+ kx̄k kȳk+ kx̄kn−1 nX
t=1

kyt−kk+ kȳkn−1
nX
t=1

kxtk

where the bound is uniformly Op(1) in k implying that âj = Op(1) uniformly in j. Since

[M ]X
j1,...,j4

³
E k(ω̂j1,j2 − ωj1,j2)k2

´1/2 kϑj2,j3k³E k(ω̂j3,j4 − ωj3,j4)k2´1/2 = O(M/n)
by the proof of Lemma (B.8) it follows that H412 = Op(M/n3/2) = op(M/n).

Since H413 = op(H414) we consider now

°°P̌ 0MKMBKM(P̌M − PM)
°° ≤ sup

j
ǎj

[M ]X
k

b̌0k
[M ]X

j1,...,j4

k(ω̂j1,j2 − ωj1,j2)k kϑj2,j3k k(ω̂j3,j4 − ωj3,j4)k

where ǎj =
P[M]
k=1

°°Γ̌xyk °°°°ϑMk,j°° with supj ǎj = Op(1) by the same arguments as before and b̌0j =P[M ]
k=1

°°Γ̌xy−k − Γyx−k°°°°ϑMk,j°° such that P[M ]
k b̌0k = Op(M/n

1/2) since E
°°Γ̌xy−k − Γyx−k°°2 = O(n−1)

uniformly in k as shown in the proof of Lemma (B.14). It follows that H414 = Op(M2/n3/2) =

op(M/n) as long as M/n1/2 → 0.

Finally

kH415k ≤
[M ]X

j1,...,j4

aj1 k(ω̂j1,j2 − ωj1,j2)k kϑj2,j3k k(ω̂j3,j4 − ωj3,j4)k a0j4

with aj =
P[M]
k=1

°°Γxyk °°°°ϑMk,j°° such that aj is absolutely summable. This implies that H415 =
Op(n

−1).

ForH42 we can use the fact that R = op
³
kBk2

´
by the matrix version of the Taylor expansion

result (Gawronski, 1977). By the same arguments as for H41 it then follows that H42 = op(M/n).
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Lemma B.19. Let d0 = 1√
n

Pn
t=1

P∞
j1,j2=0

Γxyj1 ϑj1,j2vt,j2 . Then limnEd0d
0
0 = D.

Proof. Note that Ed0 = 0 and using Lemma (B.7iii)

Ed0d
0
0 =

1

n

Xn

t,s=1

X∞
j1,...,j4=1

Γxyj1 ϑj1,j2γ
ε
t−sΓ

yy
t−s−j2+j3ϑj3,j4Γ

yx
−j4

=
Xm−1

l=−m+1
n− |l|
n

X∞
j1,...,j4=1

Γxyj1 ϑj1,j2γ
ε
lΓ
yy
l+j3−j2ϑj3,j4Γ

yx
−j4

→ P 0Ω−1P as n→∞.

where the second line follows from the fact that γεl = 0 for l ≥ m.

Lemma B.20. Let d1 be defined in (A.16). Then Ed1d01 = o(M−2s).

Proof. We write d1 = d11+d12 where d11 = P 0
¡
Ω∗−1M −Ω−1¢V and d12 = P 0MΩ−1M VM−P 0Ω∗−1M V

where Ω∗M is defined in (B.1). Then by the same arguments as in the proof of Lemma (B.9) we

can bound

kd11k ≤
X

j3≥[M ]
X

j1,j4

°°°Γxyj1 ϑj1,j3°°° kωj3,j3 − Ik°°ϑMj3,j4°°°°°n−1/2Xn

t=1
vt,j4

°°°
+
X

j3≥[M ]
X

j1,j2,j4

°°°Γxyj1 ϑj1,j2°°° kωj2,j3k°°ϑMj3,j4°°°°°n−1/2Xn

t=1
vt,j4

°°°
where

°°n−1/2Pn
t=1 vt,j4

°° = Op(1) uniformly in j4 by Lemma (B.7iii) such that kd11k = op(M−2s)

by the same arguments as in the proof of Lemma (B.9). For d12 consider

E kd12k2 = n−1
Xn

t,s=1

X
j2,j4>[M ]

Γxyj2 Evt,j2vs,j4Γ
yx
−j4

=
X

j2,j4>[M ]
Γxyj2 ωj2,j4Γ

yx
−j4 +O(n

−1) = o(M−2s).

where the last equality follows from summability properties of Γxyj .

Lemma B.21. Let d2 be defined in (A.17). Then Ed2d02 = O(M−4q).

Proof. Consider

Ed2d
0
2 =

1

n

[M ]X
t,s=1

[M ]X
j1,..,j4=1

Γxyj1 (1− k(
j1
M
))ϑMj1,j2(1− k(

j2
M
))E(vt,j2v

0
s,j3)(1− k(

j3
M
))ϑMj3,j4(1− k(

j4
M
))Γyxj4

= M−4q
nX

j1,..,j4=1

|j1|q Γxyj1
(1− k( j1M ))
|j1/M |q ϑMj1,j2

(1− k( j2M ))
|j2/M |q |j2|q

×
Xm−1

l=−m+1
n−|l|
n γεlΓ

yy
l−j2+j3 |j3|

q (1− k( j3M ))
|j3/M |q ϑMj3,j4

(1− k( j2M ))
|j4/M |q |j4|q Γyxj4 .
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Using the fact that
¯̄̄
(1−k(x))
|x|q

¯̄̄
< C for some C <∞ and

°°°Pm−1
l=−m+1

n−|l|
n γεlΓ

yy
l−j2+j3

°°° is uniformly
bounded in j2 and j3 leads to

°°Ed2d02°° ≤ C1M−4q
 nX
j1,j2=0

|j1|q |j2|q
°°°Γxyj1 ϑMj1,j2°°°

2

where
Pn
j1,j2=1

|j1|q |j2|q
°°°Γxyj1 ϑMj1,j2°°° = O(1) by arguments similar to the proof of Lemma 5.2. in

Kuersteiner (1999b). Thus Ed2d02 = O(M−4q).

Lemma B.22. Let d3 be defined in (A.18). Then d3 = Op(M−q).

Proof. Write d3 = d31 + d32 where

d31 =
1√
n

nX
t=1

[M ]X
j1,j2=1

Γxyj1 (1− k(j1/M))ϑMj1,j2k(j2/M)vt,j2(B.4)

and

d32 =
1√
n

nX
t=1

[M ]X
j1,j2=1

Γxyj1 k(j1/M)ϑ
M
j1,j2 (1− k(j2/M)) vt,j2(B.5)

such that

M qE kd31k ≤
[M ]X

j1,j2=1

°°°Γxyj1 °°°°°ϑMj1,j2°° ¯̄̄̄1− k(j1/M)|j1/M |q
¯̄̄̄
E

°°°° 1√nXn

t=1
vt,j2

°°°° = O(1).
and the result follows from the Markov inequality. The same arguments apply to d32.

Lemma B.23. Let d4 be defined in (A.19). Then d4 = Op(M/n).

Proof. First note that Γ̂xyj1 − Γ̌
xy
j1
= n−m+j1

n (x̄− µx)(ȳ − µy)0 + (x̄− µx)n−1
Pn−m
t=j+1(yt − ȳ)0 +

n−1
Pn−m
t=j+1(xt − x̄)(ȳ − µy)0 such that d4 can be analyzed by considering

d41 = (x̄− µx)(ȳ − µy)0n−1/2
Xn

t=1

Xn

j1,j2=1
k(j1/M)ϑ

M
j1,j2k(j2/M)vt,j2 ,

d42 = (x̄− µx)n−1
n−mX
t=j+1

(yt − ȳ)0n−1/2
Xn

t=1

Xn

j1,j2=1
k(j1/M)ϑ

M
j1,j2k(j2/M)vt,j2

and similarly for d43. Then

kd41k ≤ kx̄− µxk
°°ȳ − µy°°°°°n−1/2Xn

t=1

Xn

j1,j2=1
k(j1/M)ϑ

M
j1,j2k(j2/M)vt,j2

°°°
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The third term in the previous display can be bounded in expectation by

1

n

Xn

t,s=1

X[M ]

j1,..,j4=1
k(
j1
M
)ϑMj1,j2k(

j2
M
)E
¡
vt,j2v

0
s,j3

¢
k(
j3
M
)ϑMj3,j4k(

j4
M
)

≤
X[M ]

j1,..,j4=1

°°ϑMj1,j2°° kωj2,j3k°°ϑMj3,j4°°+ o(1) = O(M2)

and using kx̄− µxk
°°ȳ − µy°° = Op(n−1) shows that d41 = Op(M/n). For d42 write

kd42k ≤ kx̄− µxk
Ã
kȳk+ n−1

nX
t=1

kytk
!°°°°n−1/2Xn

t=1

X[M ]

j1,j2=1
k(j1/M)ϑ

M
j1,j2k(j2/M)vt,j2

°°°°
where we use

°°°n−1Pn−m
t=j1+1

(yt − ȳ)
°°° ≤ kȳk+n−1Pn

t=1 kytk . Then the third term in the previous
display is bounded in expectation by

n−1/2
Xn

t=1

X[M ]

j1,j2=1

°°k(j1/M)ϑMj1,j2k(j2/M)°°³E kvt,j2k2´1/2 = O(M/√n)
such that d42 is Op(M/n). Finally d43 can be analyzed in the same way as d42.

Lemma B.24. Let d5 be defined (A.20). Then d5 = Op(M/
√
n).

Proof. We consider

E kd5k ≤
X[M]

j1,j2=1

µ
E
°°°n−1Xn−m

t=1+j1

³
wt,j1 − Γxyj1

´
k( j1M )ϑ

M
j1,j2k(

j2
M )
°°°2E °°°n−1/2Xn

t=1
vt,i

°°°2¶1/2
+
X[M ]

j1,j2=1

¯̄̄
j1+m
n

¯̄̄ °°°Γxyj1 ϑMj1,j2°°°2µE °°°n−1/2Xn

t=1
vt,i

°°°2¶1/2 .
where the second term is of lower order. Then

E
°°°n−1/2Xn

t=1
vt,i

°°°2 = trE(
1

n

Xn

s,t=1
vt,iv

0
s,i)

=
Xm−1

l=1−m
n−|l|
n γεl tr

£
Γyyl
¤ ≤ 2m sup

j

¯̄̄
tr
h
Γyyj

i¯̄̄
sup
j

¯̄
γεj
¯̄

and by Lemma (B.7iv) we have

E
°°°³Γ̌xyj1 − Γxyj1 ´ϑMj1,j2°°°2 ≤ °°ϑMj1,j2°°2 n−2 trXn−m

t,s=1+j1
E
³
wt,j1 − Γxyj1

´0
(ws,i − Γxyj1 )

=
°°ϑMj1,j2°°2 n−2 trXn−m

t,s=1+j1

³
Γs−t+j1Γ

0
t−s+j1 + γt−sΓ

xx0
t−s +K44

´
where n−2 tr

Pn
t,s=1

³
Γs−t+j1Γ

0
t−s+j1 + γt−sΓ

xx0
t−s +K44

´
= O(n−1) uniformly in j1 by the Toeplitz

Lemma. Summability of
°°ϑMj1,j2°°2 over j1 shows that E kd5k = O(M/√n).
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Lemma B.25. Let d6 be defined in (A.21). Then d6 = Op(M/n).

Proof. For d6 we define the terms

d61 =
³
P̂M − P̌M

´0
KMΩ

−1
M (ΩM − Ω̂M)Ω−1M KMVM

d62 =
¡
P̌M − PM

¢0
KMΩ

−1
M (ΩM − Ω̂M)Ω−1M KMVM

such that d6 = d61 + d62.

For d61 define

âj4 =
X
j1,..,j3

°°°³Γ̂xyj1 − Γ̌xyj1 ´ϑMj1,j2 (ω̂j2,j3 − ωj2,j3)ϑMj3,j4°°°
≤

X
l

|γ̂ε(l)|
X
j1,..,j3

°°°Γ̂xyj1 − Γ̌xyj1 °°° kω̂j2,j3(l)− ωj2,j3(l)k°°ϑMj1,j2°°°°ϑMj3,j4°° = Op(n−1)
uniformly in j4 such that

kd61k ≤
[M ]X
j4

aj4

°°°n−1/2Xn

t=1
vt,j4

°°° = Op(M/n).
For d62 we use the bound

kd62k =
X
l

|γ̂ε(l)|
[M ]X
j1,..,j4

°°°Γ̌xyj1 − Γxyj1 °°° kω̂j2,j3(l)− ωj2,j3(l)k°°ϑMj1,j2°°°°ϑMj3,j4°°°°°n−1/2Xn

t=1
vt,j4

°°°
where

°°°Γ̌xyj1 − Γxyj1 °°° ≤ °°°n−1Pn−m
t=j1

w̌t,j1

°°° + °°°Γxyj1 °°° with w̌t,j1 = wt,j1 − Γxyj1 . The terms involving
Γxyj1 are of lower order. By the Markov inequality we consider

[M]X
j1,..,j4

µ
E
°°°n−1Xn−m

t=j1
w̌t,j1

°°°2 °°°n−1/2Xn

t=1
vt,j4

°°°2¶1/2 ³E kω̂j2,j3(l)− ωj2,j3(l)k2´1/2 °°ϑMj1,j2°°°°ϑMj3,j4°° .
(B.6)

Note that

E
°°°n−1Xn−m

t=j1
w̌t,j1

°°°2 °°°n−1/2Xn

t=1
vt,j4

°°°2
= trE

h
n−2

Xn−m
t1,t2=j1

w̌t1,j1w̌
0
t2,j1 ⊗ n−1

Xn

s1,s2=1
vs1,j4v

0
s2,j4

i
.(B.7)
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Let w̌i1,i2t1,j1
be the i1, i2-th element of w̌

i1,i2
t1,j1

such that a typical element ofE
h
w̌t1,j1w̌

0
t2,j1

⊗ vs1,j4v0s2,j4
i

can be written as
Pp
i2=1

E
h
w̌i1,i2t1,j1

w̌i2,i3t2,j1
vi4s1,j4v

i5
s2,j4

i
. Since w̌ik ,ilt1,j1

and virt,j4 have zero mean

E
h
w̌i1,i2t1,j1

w̌i2,i3t2,j1
vi4s1,j4v

i5
s2,j4

i
= E

h
w̌i1,i2t1,j1

w̌i2,i3t2,j1

i
E
h
vi4s1,j4v

i5
s2,j4

i
+E

h
w̌i1,i2t1,j1

vi5s2,j4

i
E
h
w̌i2,i3t2,j1

vi4s1,j4

i
+E

h
w̌i2,i3t2,j1

vi5s2,j4

i
E
h
w̌i1,i2t1,j1

vi4s1,j4

i
+ cum∗

³
w̌i2,i3t2,j1

, vi5s2,j4 , w̌
i1,i2
t1,j1

, vi4s1,j4

´
.

By Lemma (B.7) E
h
w̌i1,i2t1,j1

w̌i2,i3t2,j1

i
is the i1, i3 element of γ

yy
t1−t2Γ

xx
t1−t2

+ Γxyt1−j1−t2Γ
yx
t1−t2+j1 + K44,

E
h
vi4s1,j4v

i5
s2,j4

i
is the i4, i5 element of γεs1−s2Γ

yy
s1−s2+K34 and E

h
w̌i1,i2t1,j1

vi5s2,j4

i
is the i1, i5 element of

(e0i2Γ
εx
t1−s2)Γ

yy
t1−s2+j1−j4+Γ

εy
t1−s2+j1(e

0
i2
Γxys2−t1+j4)+K24 where ei2 is the i2 unit vector. The largest

of these terms are n−1
Pn−m
t1,t2=j1

γyyt1−t2Γ
xx
t1−t2

= O(1) and n−1
Pn
s1,s2=1

γεs1−s2Γ
yy
s1−s2 = O(1) while

all the higher order cumulant terms are of lower order by Assumption (B). This shows that (B.7)

is O(n−1) and (B.6) is O(M/n) which establishes that d62 = Op(M/n).

Lemma B.26. Let d7 be defined in (A.22). Then d7 = Op(n−1/2).

Proof. We bound d7 by

kd7k ≤
X
l

|γ̂ε(l)|
[M ]X

j1,...,j4=1

°°°Γxyj1 ϑMj1,j2°°°°°ϑMj3,j4°° kω̂j2j3(l)− ωj2j3(l)k°°°n−1/2Xn

t=1
vt,j4

°°° .
Since E

°°n−1/2Pn
t=1 vt,j4

°°2 = O(1) and E kω̂j2j3(l)− ωj2j3(l)k2 = cj3n−1 where cj3 is an abso-
lutely summable sequence such that E kd7k = O(n−1/2).

Lemma B.27. Let d8 be defined as in (A.23). Then d8 = Op(M/n).

Proof. The matrix B can be expressed more explicitly as Ω−1M (ΩM − Ω̂M)Ω−1M (ΩM − Ω̂M)Ω−1M
such that by the similar arguments as in the proof of Lemmas (B.18) and (B.25) it follows

that P̂ 0MKMBKMVM = Op(M/n). From the Taylor expansion result for matrix valued functions

(Gawronski, 1977) it then follows that the remainder term is op(M/n).

Lemma B.28. Let d9 be defined in (A.24). Then d9 = Op(M/n3/2).

Proof. For d9 note that (ȳ − µy) = Op(n−1/2), 1√
n

Pn
t=1 εt+m = Op(1). We define

d91 = n−1/2
P
t
εt

³
P̂ − PM

´
KMΩ

−1
M (ΩM − Ω̂M)Ω−1M KM

£
1[M ] ⊗ (ȳ − µy)

¤
d92 = n−1/2

P
t
εt
³
P̂ − PM

´
KMBKM

£
1[M ] ⊗ (ȳ − µy)

¤
+ op(M/n

2)

d93 = n−1/2
P
t
εtPMKMΩ

−1
M (ΩM − Ω̂M)Ω−1M KM

£
1[M ] ⊗ (ȳ − µy)

¤
d94 = n−1/2

P
t
εtPMKMBKM

£
1[M ] ⊗ (ȳ − µy)

¤
+ op(n

−1)
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such that d9 = d91 + d92 + d93 + d94. By the same arguments as in the proof of Lemma (B.25)

it follows that d91 = Op(M/n3/2) which implies that d92 = op(M/n3/2). Similarly it follows

that d93 = Op(n
−1) by similar arguments as in the proof of Lemma (B.26). Consequently,

d94 = op(n
−1).

Lemma B.29. Let d0 be defined in (A.15) and H12 as defined in (A.3). Then Ed0d00D−1H12 =

M−2qk2qB(q)0 + o(M−2q)

Proof. The result follows immediately from Lemmas (B.10) and (B.19).

Lemma B.30. Let d0 be as defined in (A.15) and d2 as defined in (A.17). Then Ed0d2 =

M−2qk2qB(q)0 + o(M−2q).

Proof. Directly evaluate

Ed0d
0
2 =

1

n

Xn

t,s=1

X∞
j1,j2=1

X[M ]

j3,j4=1
Γxyj1 ϑj1,j2E(vt,j2v

0
s,j3)(1− k(

j3
M
))ϑMj3,j4(1− k(

j4
M
))Γyx−j4

= M−2qk2q
X∞

j1,j2=1

X[M ]

j3,j4=1
Γxyj1 ϑj1,j2ωj2,j3 |j3|q ϑMj3,j4 |j4|q Γ

xy
−j4 + o(n

−1)

= M−2qk2q
X∞

j1,j2=1
Γxyj1 |j1|q ϑj1,j2 |j2|q Γ

xy
−j2 + o(M

−2q)

= M−2qk2qB(q)0 + o(M−2q).

where B(q)0 is defined in the proof of Lemma (B.10) and we have used the Toeplitz Lemma for

the second equality and dominated convergence for the third equality.

Lemma B.31. Let d0 be as defined in (A.15) and d3 as defined in (A.18). Then Ed0d3 =

−M−qkqB(q)1 + o(M−q).

Proof. Directly evaluate

Ed0d
0
3 = −1

n

Xn

t,s=1

X∞
j1,j2=1

X[M ]

j3,j4=1
Γxyj1 ϑj1,j2E(vt,j2v

0
s,j3)

×
·
(1− k( j3

M
))ϑMj3,j4k(

j4
M
) + k(

j3
M
))ϑMj3,j4(1− k(

j4
M
))

¸
Γyx−j4

= −M−qkq
X∞

j1,j2,j3,j4=1
Γxyj1 ϑj1,j2ωj2,j3 [|j3|q ϑj3,j4 + ϑj3,j4 |j4|q]Γ

yx
−j4 + o(M

−q)

= −M−qkq
∞X

j1,j2=1

³
Γxyj1 ϑj1,j2 |j2|q Γ

yx
−j2 + Γ

xy
j1
|j1|q ϑj1,j2Γyx−j2

´
+ o(M−q).

The second equality uses Lemma (B.21) to replace k( j4M ) by 1.
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Lemma B.32. Let H222 be defined in (A.9). Then

E`0H222D−1d0d0D−1H222` = O(n−1).

Proof. By Lemma (B.14) we can replace H222 by

n−1
X[M]

j1,j2=1

Xn−m
t=1+j1

w̌t,j1k(j1/M)ϑ
M
j1,j2k(j2/M)Γ

yx
−j2 + op(M/n

−1/2).(B.8)

Next define aj =
P∞
i=1 Γ

xy
i ϑi,j . Then, using only the dominant term in (B.8),

EH222D
−1d0d0D−1H 0

222

= n−3
X

t1,t2,s1,s2,j1,...,j4

4Q
l=1

k( jlM )E
£
w̌s1,j1a

0
j1D

−1aj2vt1,j2v
0
t2,j3a

0
j3D

−1aj4w̌s2,j4
¤
+ o(n−1)

Using the same arguments as in the proof of Lemma (B.36) it follows that the leading term in

E`0H222D−1d0d0D−1H0
222` depends on

A2 =
X∞

j1j2=1

X∞
h=−∞ vec(a

0
j2D

−1aj1)
0
h³
vecΓyyh+j1−j2 ⊗ Γεx0h

´
+Kpp(Γ

εy
h+j1

⊗ Γyxh−j2)
i
(I ⊗ `)

where A2 is well defined due to the summability properties of aj. The result follows.

Lemma B.33. Let H222 be as defined in Lemma (A.9) and d5 as defined in Lemma (A.20).

Then E`0H222D−1d0d05` = O(M/n).

Proof. We again replace H222 by n−1
P[M ]
j1,j2=1

Pn−m
t=1+j1

w̌t,j1k(j1/M)ϑ
M
j1,j2k(j2/M)Γ

yx
−j2 and con-

sider

E`0H222D−1d0d05` = n
−3 X

t1,t2,s1,s2,j1,...,j4

E
4Q
l=1

k( jlM )`
0ω̄s1,j1a

0
j1D

−1aj2vt1,j2v
0
t2,j3ϑ

M
j3,j4ω̄

0
s2,j4`

where aj is defined in Lemma (B.32). The dominant term in this expectation is given by

M/n
R
k(x)2dxA2``0A1 where A2 is defined in Lemma (B.32) and A1 is defined in (3.4).
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B.3. Lemmas for Proposition 3.3

Lemma B.34. LetH13andH14 be defined in (A.4) and (A.5). ThenH13+H14 = −M−qkqB(q)1 +

o(M−q) where B(q)1 =
P∞
j1,j2=1

³
Γxyj1 ϑj1,j2 |j2|q Γ

yx
−j2 + Γ

xy
j1
|j1|q ϑj1,j2Γyx−j2

´
.

Proof. Write H13 = −M−qP[M ]
j1,j2=1

Γxyj1 k(j1/M)ϑ
M
j1,j2

(1−k(j2/M))
|j2/M |q |j2|q Γyx−j2 such that

M qH13 = −kq
X[M ]

j1,j2=1
Γxyj1 ϑ

M
j1,j2 |j2|q Γyx−j2 + o(1)

= −kq
X∞

j1,j2=1
Γxyj1 ϑj1,j2 |j2|q Γ

yx
−j2 + o(1)

where in the second equality we use Assumption (F) about the kernel function.

Lemma B.35. Let d3 be defined in (A.18). Then Ed3d3 = k2qB(q)2 + o(M−2q).

Proof. Let d31 and d32 be defined in Equations (B.4) and (B.5). Then

M2qEd31d
0
31 =

X[M ]

j1,j2,j3,j4=1
|j1|q |j4|q Γxyj1

1− k( j1M )
|j1/M |q ϑ

M
j1,j2ωj2,j3ϑ

M
j3,j4

1− k( j4M )
|j4/M |q Γ

yx
j4
+ o(1)

= k2q
X∞

j1,j4=1
|j1|q |j4|q Γxyj1 ϑj1,j4Γ

yx
j4
+ o(1)

and

M2qEd32d
0
32 =

X[M ]

j1,j2,j3,j4=1
Γxyj1 ϑ

M
j1,j2 |j2|q

1− k( j2M )
|j2/M |q ωj2,j3 |j3|

q 1− k( j3M )
|j3/M |q ϑ

M
j3,j4Γ

yx
j4
+ o(1)

=
X∞

j1,j2,j3,j4=1
Γxyj1 ϑj1,j2 |j2|q ωj2,j3 |j3|q ϑj3,j4Γ

yx
j4
+ o(1).

Finally we consider the cross-product

M2qEd32d
0
31 = k2q

X[M ]

j1,j2,j3,j4=1
Γxyj1 ϑ

M
j1,j2 |j2|q ωj2,j3ϑMj3,j4 |j4|q Γyxj4 + o(1)

= k2q
X∞

j1,j2=1
|j2|2q Γxyj1 ϑj1,j2Γ

yx
j2
+ o(1).

Lemma B.36. Let d5 as defined in (A.20). Then E`0d5d05` =M2/n
³R∞
−∞ k(x)

2dx
´2A1``0A01+

o(M2/n) where A1 is defined in (3.4).

Proof. Using the arguments of the proof of Lemma (B.24) we only consider

d51 = n
−3/2X[M]

j1,j2=1

Xn−m
t=1+j1

w̌t,j1k(
j1
M )ϑ

M
j1,j2k(

j2
M )
Xn

t=1
vt,i
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where w̌t,j1 = wt,j1 − Γxyj1 . By Lemma (B.5) we have

E`0d51d051` =
1

n3

X
t1,t2

[M ]X
j1,..,j4

n−mX
s1,s2

4Y
l=1

k( jlM )
n¡
vecϑM 0j1,j2

¢0
E(vt1,j2 ⊗ w̌0s1,j1)(`0 ⊗ `)E(w̌s2,j4 ⊗ v0t2,j3) vecϑMj3,j4

+ tr
£
ϑMj1,j2E(vt1,j2`

0w̌s2,j4)ϑ
M
j3,j4E(vt2,j3`

0w̌s1,j1)
¤

+tr
£
ϑMj1,j2E(vt1,j2vt2,j3)ϑ

M
j3,j4E(w̌

0
s1,j1``

0w̌s2,j4)
¤ª
+ `0K8`

where the matrix of eight order cumulant terms K8 contains elements of the form

cum∗
³
w̌i1,i2t1,j1

, w̌i2,i3t2,j1
, vi5s2,j4 , v

i4
s1,j4

´
which are of lower order due to Assumption (B). The first term can be written as

1

n3

[M]X
j1,j2

X
t1,s1

4Q
l=1

k( jlM )
¡
vecϑM 0j1,j2

¢0
E(vt1,j2 ⊗ w̌0s1,j1)``0

kX
j3,j4

X
t2,s2

E(w̌s2,j4 ⊗ v0t2,j3) vecϑMj3,j4

where

E(vt1,j2 ⊗ w̌0s1,j1) =
³
vecΓyys1−t1−j1+j2 ⊗ Γεx0t1−s1

´
+Kpp(Γ

εy
t1−s1+j1 ⊗ Γ

yx
t1−s1−j2) +K14

by Lemma (B.7i) such that

1

n

X
t1,s1

E(vt1,j2 ⊗ w̌0s1,j1) =
n−1X

h=−n+1
(1− |h|

n
)
h³
vecΓyy−h−j1+j2 ⊗ Γεx0h

´
+Kpp(Γ

εy
h+j1

⊗ Γyxh−j2)
i
+O(n−1).

Using arguments based on Parzen (1957) it can be shown that

1

nM

X
t1,s1

[M ]X
j1,j2

2Q
l=1

k( jlM )
¡
vecϑM 0j1,j2

¢0
E(vt1,j2 ⊗ w̌0s1,j1)

→ (2π)2
Z
k(x)2dx

Z ¡
vec f−1Ω (λ)

¢0 ¡
vec

¡
fyy(λ)

0¢⊗ fεx(λ)0¢ dλ as n,M →∞.

which establishes the first part of (3.4). Next turn to

ϑMj1,j2E(vt1,j2`
0w̄s2,j4)ϑ

M
j3,j4E(vt2,j3`

0w̄s1,j1)

= ϑMj1,j2(`
0Γεxt1−s2Γ

yy
t1−s2−j2+j4 + Γ

εy
t1−s2+j4`

0Γxys2−t1+j2 +K24)
× ϑMj3,j4(`0Γεxt2−s1Γyyt2−s1−j3+j1 + Γ

εy
t2−s1+j1`

0Γxys1−t2+j3 +K24)
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which follows from Lemma (B.7ii) where for a typical term in this product we have

X
j1,j2,j3,j4

4Q
l=1

k( jlM )ϑ
M
j1,j2`

0X
h1

h
(1− |h1|

n )Γ
εx
h1Γ

yy
h1−j2+j4

i
ϑMj3,j4

X
h2

(1− |h2|
n )Γ

εy
h2+j1

`0Γxyh2+j3

and changing variables k2 = h2 + j1, u1 = j1 − j2, u2 = j4 − j2 and u3 = j4 − j3 leads to°°°°°°
X

u1,u2,u3,j4

4Q
l=1

k( jlM )ϑ
M
u1`

0X
h1

h
(1− |h1|

n )Γ
εx
h1Γ

yy
h1+u2

i
ϑMu3

X
k2

(1− |k2−j1|
n )Γεyk2`

0Γxyk2+u1−u2+u3

°°°°°°
≤

X
u1,u2,u3,j4

4Q
l=1

¯̄̄
k( jlM )

¯̄̄ °°ϑMu1°°
°°°°°°`0
X
h1

(1− |h1|
n )Γ

εx
h1Γ

yy
h1+u2

°°°°°°°°ϑMu3°°
°°°°°°
X
k2

(1− |k2−j1|
n )Γεyk2`

0Γxyk2+u1−u2+u3

°°°°°°
= O(M).

Similar arguments show that the second and third terms of E`d5d05` are both O(M/n).
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B.4. Lemmas for Theorem 4.2

Lemma B.37. Let d10 be defined in (A.31). Then d10 = op(1).

Proof. Write d10 =
p
n/M∗(d101 + d102 + d103) where

d101 =
³
P̂n−m − P̌n−m

´0
K̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n

d102 =
¡
P̌n−m − Pn−m

¢0
K̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n

d103 = P 0n−mK̃M∗Ω∗−1M∗ (Ω̂
∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n
.

Note that K̃M∗Ω∗−1M∗ (Ω̂∗M∗ − Ω̂∗
M̂∗)Ω

∗−1
M∗ K̃M∗ = 0 for

h
M̂∗
i
≥ [M∗]. Therefore assume with-

out loss of generality that
h
M̂∗
i
< [M∗] and let âj2 =

P[M∗]
j1=1

°°°³Γ̂xyj1 − Γ̌xyj1 ´ϑ∗j1,j2°°° and b̂j3 =P[M∗]
j4=1

°°ϑ∗j3,j4n−1/2Pn
t=1 vt,j4

°° . Note that by (B.2) and the fact that
âj2 ≤ sup

j1

°°°Γ̂xyj1 − Γ̌xyj1 °°° [M
∗]X

j1=1

°°ϑ∗j1,j2°°
it follows that âj2 = Op(n

−1/2) uniformly in j2. Then,

p
n/M∗kd101k ≤

p
n/M∗

m+1X
l=−m+1

|γ̂l|
µX[M∗]

j2=1,j3=[M̂∗]
kω̂j2,j3(l)kâj2 b̂j4 +

X[M∗]

j2=[M̂∗],j3=1
kω̂j2,j3(l)kâj2 b̂j3

+
X[M∗]

j2,j3=[M̂∗]
kω̂j2,j3(l)kâj2 b̂j4

¶
Then consider the largest term in the previous display

p
n/M∗

X[M∗]

j2=1,j3=[M̂∗]
kω̂j2,j3(l)k âj2 b̂j3

≤
p
n/M∗

X[M∗]

j2=1,j3=[M̂∗]
(kω̂j2,j3(l)− ωj2,j3(l)k+ kωj2,j3(l)k) âj2 b̂j3

≤
p
n/M∗([M∗]−

h
M̂∗
i
)
X[M∗]

j2=1,j3=1
|j3| (kω̂j2,j3(l)− ωj2,j3(l)k+ kωj2,j3(l)k) âj2 b̂j3 .

Note that h
M̂∗
i
= [M∗] iff [M∗]−M∗ + 1 > M̂∗ −M∗ ≥ [M∗]−M∗
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with [M∗]−M∗ ≤ −εM by the definition of M∗. Then

P
³
1− εM > M̂∗ −M∗ ≥ −εM

´
≤ P

³¯̄̄
[M∗]−

h
M̂∗

i¯̄̄
< ηn−α

´
for any α > 0 and any η > 0. But since M̂∗ −M∗ = Op(n−q/(2q+2)) the first probability goes to

one. This shows that [M∗] −
h
M̂∗

i
converge at arbitrary fast rates such that

p
n/M∗([M∗] −h

M̂∗
i
) = op(1). The reason for this result is that [.] is piecewise constant so that [M∗] and

h
M̂∗
i

have the same values as soon as M∗ and M̂∗ are within a certain distance.

By the same arguments as in the proof of Lemma (B.25) it follows that
P[M∗]
j2,j3

|j3| kωj2,j3(l)k âj2 b̂j3 =
Op(M

∗/n1/2) = Op(n
−q
2q+2 ). NextX[M∗]

j2=1,j3=1
|j3| kω̂j2,j3(l)− ωj2,j3(l)k âj2 b̂j3 ≤ sup

j2

âj2
X[M∗]

j2=1,j3=1
kω̂j2,j3(l)− ωj2,j3(l)k b̂j3

where âj2 = Op(n
−1/2) uniformly in j2.We use the Markov and Cauchy-Schwarz inequalities and

considerX[M∗]

j2=1,j3=1
|j3|

³
E kω̂j2,j3(l)− ωj2,j3(l)k2

´1/2 ³
Eb̂2j3

´1/2
= O(M∗/n1/2) = O(n−q/(2q+2))

where |j3|E kω̂j2,j3(l)− ωj2,j3(l)k2 ≤ cj3n
−1 for some summable sequence cj3 by the proof of

Lemma (B.8) and

Eb2j3 ≤
X[M∗]

j4,j5=1
|j3|2

°°ϑ∗j3,j4°°°°ϑ∗j3,j5°°µE °°°n−1/2Xn

t=1
vt,j4

°°°2E °°°n−1/2Xn

t=1
vt,j5

°°°2¶1/2
= O(1).

It follows that
p
n/M∗kd101k = op(n

−q
2q+2 ).

For d102 we use the same bounds as for d101 where now âj2 is redefined as

ǎj2 =

[M∗]X
j1=1

|j1|
°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2°°° .

Consider X[M∗]

j2=1,j3=1
|j3| kω̂j2,j3(l)− ωj2,j3(l)k ǎj2 b̂j3

≤
µX[M∗]

j2=1,j3=1
|j3| kω̂j2,j3(l)− ωj2,j3(l)k2

¶1/2µX[M∗]

j2=1,j3=1
ǎ2j2 b̂

2
j3

¶1/2
≤

µX[M∗]

j2=1,j3=1
|j3| kω̂j2,j3(l)− ωj2,j3(l)k2

¶1/2X[M∗]

j2=1
ǎj2
X[M∗]

j3=1
b̂j3 = Op(n

−4q+1
4q+4 )(B.9)
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where the first inequality uses the Cauchy-Schwarz inequality and the second inequality follows

from âj2 ≥ 0, b̂j3 ≥ 0.By the proof of Lemma (B.8) it follows that
P[M∗]
j2=1,j3=1

|j3| kω̂j2,j3(l)− ωj2,j3(l)k2 =
Op(M

∗/n) and

Eâ2j2 ≤
X
j1,j5

|j1| |j5|
°°ϑ∗j1,j2°°°°ϑ∗j5,j2°°µE °°°Γ̌xyj1 − Γxyj1 °°°2E °°°Γ̌xyj5 − Γxyj5 °°°2¶1/2 = O(n−1)

uniformly in j2 by the proof of Lemma (B.24). Thus,
P[M∗]
j2=1

âj2 = Op(M
∗/n1/2)while

P[M∗]
j3=1

b̂j3 =

Op(M
∗) as shown before. This establishes the last equality of (B.9) sinceM∗5/2/n = O(n−(4q+1)/(4q+4)) =

o(1) as long as q > 1/4. Since
p
n/M∗([M∗]−

h
M̂∗
i
) converges at arbitrarily fast rates it always

follows that
p
n/M∗([M∗]−

h
M̂∗

i
)
P[M∗]
j2=1,j3=1

|j3| kω̂j2,j3(l)− ωj2,j3(l)k ǎj2 b̂j3 = op(1). Also note
that

E
X[M∗]

j2=1,j3=1
|j3| kωj2,j3(l)k ǎj2 b̂j3 = O(M∗/n1/2).

This shows that
p
n/M∗kd102k = op(1).

Finally, consider d103 where now aj2 =
P[M∗]
j1=1

|j1|
°°°Γxyj1 ϑ∗j1,j2°°° such that Pj2

|aj2 | <∞. This
implies that

³P[M∗]
j2=1,j3=1

a2j2 b̂
2
j3

´1/2
= Op(M

∗1/2). Considerp
n/M∗

X[M∗]

j2=1,j3=[M̂∗]
kωj2,j3k aj2 b̂j3 ≤

p
n/M∗

X[M∗]

j2=1,j3=[M̂∗]
|j3|1+δ kωj2,j3(l)k aj2 b̂j3

≤
p
n/M∗

h
M̂∗
i−δ

([M∗]−
h
M̂∗
i
) sup
j2,j3≤[M∗],l

|j3|1+δ kωj2,j3k âj2 b̂j3

where
p
n/M∗

h
M̂∗
i−δ

([M∗]−
h
M̂∗
i
) = op(n

−δ/(2q+2)) while supj2,j3≤[M∗],l |j3|1+δ kωj2,j3(l)k aj2 b̂j3 =
Op(1). Next, X[M∗]

j2=1,j3=1
|j3| kω̂j2,j3(l)− ωj2,j3(l)k aj2 b̂j3 = Op(n−1/2)

such that
√
n/M∗kd103k = op(n−δ/(2q+2)) = op(1).

Lemma B.38. Let d11 be defined in (A.32). Then d11 = op(1).

Proof. Write d11 =
p
n/M∗(d111 + d112 + d113) where

d111 =
³
P̂n−m − P̌n−m

´0
K̃M∗Ω∗−1M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n

d112 =
¡
P̌n−m − Pn−m

¢0
K̃M∗Ω∗−1M∗ (Ω

∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n

d113 = P 0n−mK̃M∗Ω∗−1M∗ (Ω
∗
M∗ − Ω̂∗M∗)Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗

Z
0
n−mε√
n
.
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For d111 define âj4 =
P
j1,...,j3

°°°³Γ̂xyj1 − Γ̌xyj1 ´ϑ∗j1,j2 (ω̂j2,j3 − ωj2,j3)ϑ∗j3,j4°°° and
b̂j5 =

[M∗]X
j6=1

°°°ϑ∗j5,j6n−1/2Xn

t=1
vt,j6

°°°
such that

√
n/M∗kd111k ≤

p
n/M∗

m+1X
l=−m+1

|γ̂l|
µX[M∗]

j4,j5=[M̂∗]
kω̂j4,j5(l)kâj4 b̂j5 +

X[M∗]

j4=1,j5=[M̂∗]
kω̂j4,j5(l)kâj4 b̂j5

+
X[M∗]

j5=1,j4=[M̂∗]
kω̂j4,j5(l)kâj4 b̂j5

¶
.

Note that

âj4 ≤
m−1X

l=−m+1
|γ̂(l)|

X
j1,...,j3

°°°Γ̂xyj1 − Γ̌xyj1 °°°°°ϑ∗j1,j2°° kω̂j2,j3(l)− ωj2,j3(l)k°°ϑ∗j3,j4°°
with X

j1,...,j3

µ
E
°°°Γ̂xyj1 − Γ̌xyj1 °°°2¶1/2 °°ϑ∗j1,j2°°³E kω̂j2,j3(l)− ωj2,j3(l)k2´1/2 °°ϑ∗j3,j4°° = O(n−1)

uniformly in j4. It then follows by the arguments in the proof of Lemma (B.37) thatX[M∗]

j4=1,j5=1
|j4| kω̂j4,j5(l)− ωj4,j5(l)k âj4 b̂j5 = Op(M∗5/2/n3/2) = Op(n

− 6q+1
4q+4 ).

For

p
n/M∗

X[M∗]

j4=[M̂∗],j5=1
kωj2,j3k âj4 b̂j5 ≤

p
n/M∗([M∗]−

h
M̂∗

i
)
X[M∗]

j4=1,j5=1
|j4| kωj4,j5k âj4 b̂j5

note that
P[M∗]
j4,j5=1

|j4| kωj4,j5k b̂j5 = Op(M∗) and
P[M∗]
j4=1

âj4 = Op(M
∗/n) such that

p
n/M∗

X[M∗]

j4=1,j5=[M̂∗]
kωj4,j5k âj4 b̂j5 = Op(M∗2/n) = Op(n

− 2q
2q+2 ).

For d112 replace ǎj4 by

ǎj4 =
X
j1,...,j3

°°°³Γ̌xyj1 − Γxyj1 ´ϑ∗j1,j2 (ω̂j2,j3 − ωj2,j3)ϑ∗j3,j4°°° = Op(n−1)
such that

P
j4
ǎj4 = Op(M

∗/n) leading to
P[M∗]
j4,j5=1

|j4| kωj4,j5k ǎj4 b̂j5 = Op(M∗2/n) and
p
n/M∗d112 =

op(n
−2q/(2q+2)) by the same arguments as before.
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For d113 replace aj4 by

aj4 =
X
j1,...,j3

°°°Γxyj1 ϑ∗j1,j2 (ω̂j2,j3 − ωj2,j3)ϑ∗j3,j4°°° = Op(n−1/2)
where aj4 is now summable over j4 such thatX[M∗]

j4=1,j5=1
|j5| kω̂j4,j5(l)− ωj4,j5(l)k aj4 b̂j5 = Op(n−1)

and p
n/M∗([M∗]−

h
M̂∗
i
)
X[M∗]

j4=1,j5=1
|j5| kωj4,j5k aj4 b̂j5 = Op(n−1/2).

It follows that
√
n/M∗d113 = op(n−1/2).

Lemma B.39. Let d12 be defined in (A.33). Then d12 = op(1).

Proof. Let O∆M∗ = Ω∗−1M∗ (Ω∗M∗ − Ω̂∗M∗)Ω∗−1M∗ . Write d12 =
√
n/M∗(d121 + d122 + d123) where

d121 =
³
P̂n−m − P̌n−m

´0
K̃M∗O∆M∗(Ω̂∗M∗ − Ω̂∗

M̂∗)O∆M∗K̃M∗
Z
0
n−mε√
n

d122 =
¡
P̌n−m − Pn−m

¢0
K̃M∗O∆M∗(Ω̂∗M∗ − Ω̂∗

M̂∗)O∆M∗K̃M∗
Z
0
n−mε√
n

d123 = P 0n−mK̃M∗O∆M∗(Ω̂∗M∗ − Ω̂∗
M̂∗)O∆M∗K̃M∗

Z
0
n−mε√
n
.

Define

âj =
X
j1,...,j3

°°°³Γ̂xyj1 − Γ̌xyj1 ´ϑ∗j1,j2 (ω̂j2,j3 − ωj2,j3)ϑ∗j3,j°°°
ǎj =

X
j1,...,j3

°°°³Γ̂xyj1 − Γ̌xyj1 ´ϑ∗j1,j2 (ω̂j2,j3 − ωj2,j3)ϑ∗j3,j°°°
aj =

X
j1,...,j3

°°°Γxyj1 ϑ∗j1,j2 (ω̂j2,j3 − ωj2,j3)ϑ∗j3,j°°°
where âj = Op(n

−1), ǎj = Op(n
−1) and

P
j aj = Op(n

−1/2) as shown in Lemma (B.38). Next

define

b̂j =

[M∗]X
j1,j2j3=1

°°°ϑ∗j,j1 (ω̂j1,j2 − ωj1,j2)ϑ∗j2,j3n−1/2Xn

t=1
vt,j3

°°° =Op(n−1/2)
uniformly in j. By the proof of Lemma (B.38) it follows that d12 = op(1).
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Lemma B.40. Let H5 be defined in (A.34). Then H5 = op(1).

Proof. Let H5 = H51 +H52 +H53 where

H51 =
p
n/M∗

³
P̂n−m − P̌n−m

´0
K̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗P̂n−m

H52 =
p
n/M∗ ¡P̌n−m − Pn−m¢0 K̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗P̂n−m

H53 =
p
n/M∗P 0n−mK̃M∗Ω∗−1M∗ (Ω̂

∗
M∗ − Ω̂∗

M̂∗)Ω
∗−1
M∗ K̃M∗P̂n−m

and define âj =
P
j1

°°°³Γ̂xyj1 − Γ̌xyj1 ´ϑ∗j1,j°°° , ǎj =Pj1

°°°³Γ̂xyj1 − Γ̌xyj1 ´ϑ∗j1,j°°° and aj =Pj1

°°°Γxyj1 ϑ∗j1,j2°°°
where âj , ǎj = Op(n−1/2) uniformly in j and

P
j aj = O(1). Also define bj =

P
j1

°°°ϑ∗j,j1Γ̂yxj1 °°° =
Op(1) uniformly in j. The result then follows by the same arguments as in the proof of Lemma

(B.37).

Lemma B.41. Let H6 be defined in (A.35). Then H6 = op(1).

Proof. Arguing in the same way as in the proof of Lemma (B.40) the proof follows along the

same lines as the proof of Lemma (B.38).

Lemma B.42. Let H7 be defined in (A.35). Then H7 = op(1).

Proof. Arguing in the same way as in the proof of Lemma (B.40) the proof follows along the

same lines as the proof of Lemma (B.39).
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