MEAN SQUARED ERROR REDUCTION FOR GMM
ESTIMATORS OF LINEAR TIME SERIES MODELS

By Guibo M. KUERSTEINER*

March 15, 2002

Abstract

In this paper we analyze Generalized Method of Moments (GMM) estimators for time
series models as advocated by Hansen and Singleton. It is well known that these estimators
achieve efficiency bounds if the number of lagged observations in the instrument set goes to
infinity.

A new version of the GMM estimator based on kernel weighted moment conditions is
proposed. Higher order asymptotic expansions are used to obtain optimal rates of expansions
for the number of instruments to minimize the asymptotic Mean Squared Error (MSE) of the
estimator.

Estimates of optimal bandwidth parameters are then used to construct a fully feasible
GMM estimator where the number of lagged instruments are endogenously determined by
the data.

Expressions for the asymptotic bias of kernel weighted GMM estimators are obtained. It
is shown that standard GMM procedures have larger asymptotic biases than kernel weighted
GMM. A bias correction for the estimator is proposed. It is shown that the bias corrected
version achieves a faster rate of convergence of the higher order terms of the MSE than the
uncorrected estimator.

An alternative to direct bias correction are k-class estimators introduced by Nagar. This
approach is adapted to the time series case. The time series k-class estimator also corrects
for the largest order bias and achieves an accelerated rate of convergence for the higher order
asymptotic terms.
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1. Introduction

IN RECENT YEARS GMM ESTIMATORS have become one of the main tools in estimating economic
models based on first order conditions for optimal behavior of economic agents. Hansen (1982)
established the asymptotic properties of a large class of GMM estimators. It was subsequently
shown by Chamberlain (1987), Hansen (1985) and Newey (1988) that GMM estimators based on
conditional moment restrictions can be constructed to achieve semiparametric efficiency bounds.

In independent sampling situations feasible versions of such estimators were implemented
by Newey (1990)7. In a time series context examples of such estimators are Hayashi and
Sims (1983), Stoica, Soderstrom and Friedlander (1985), Hansen and Singleton (1991,1996) and
Hansen, Heaton and Ogaki (1996). To this date no analysis of the allowed expansion rate for
the number of instruments has been provided in the context of time series models. In this paper
a data dependent selection rule for the number of instruments is obtained and a fully feasible
version of GMM estimators for linear time series models is proposed. The number of lagged
instruments is chosen in a way similar to a bandwidth selection procedure for nonparametric
density estimation.

While for some time series estimators the number of instruments needed to achieve the
efficiency lower bound is small this is not the case in general. Calculations based on asymptotic
covariance matrices in Hansen and Singleton (1991) indicate that the number of instruments
needed to achieve the lower bounds can be large in some cases. In particular the calculations
in Stoica, Soderstrom and Friedlander (1985) for the Autoregressive-Moving-Average (ARMA)
model of order (1,1) indicate that when the moving average coefficient is close to the unit circle
the asymptotic efficiency of the parameter estimates approaches the bound slowly with the
number of instruments increasing.

This indicates that estimators which allow the number of instruments to grow rapidly with
the sample size are empirically important and can lead to overall faster rates of convergence
of the higher order terms contributing to the MSE of the estimator. A feasible version of an
estimator where the number of instruments grows at the same rate as the sample was recently
developed in Kuersteiner (1997,1999a) for a special problem. In general however much slower
expansion rates for the instrument set are required. This fact was shown by Newey (1990)? and
Donald and Newey (1997) in a cross section context.

Here a GMM procedure based on kernel weighted moment conditions is proposed. The

analysis of the higher order asymptotic terms reveals that bias terms dominate the asymptotic



MSE. The idea behind using the kernel weighted version of the GMM estimator is to dampen
the importance of these bias terms and thus allow a larger number of instruments to be included.

While the automatic choice of bandwidth parameters has a relatively long tradition in the
nonparametric literature for density estimation, its equivalent in the semiparametric literature
is relatively recent.

Linton (1995) analyses the optimal choice of bandwidth parameters based on minimizing the
asymptotic MSE of the estimator. He applies this technique to nonparametric kernel estimates of
the partially linear regression model. Xiao and Phillips (1996) apply similar ideas to determine
the optimal bandwidth in the estimation of the residual spectral density in a Whittle likelihood
based regression set up. More recently Linton (1997) extended his procedure to the determination
of the optimal bandwidth choice in a efficient semiparametric instrumental variables estimator.
While his approach is based on kernel estimates of the optimal instruments, Donald and Newey
(1997) use similar arguments to determine the optimal number of base functions in polynomial
approximations to the optimal instrument. The idea behind these estimators is to analyze higher
order asymptotic expansions of the estimators around their true parameter values. While the
first order asymptotic terms typically do not depend on the estimation of infinite dimensional
nuisance parameters as shown in Andrews (1994) and Newey (1994) this is not the case for higher
order terms of the expansions.

For fully parametric models the higher order terms of the approximation around the limiting
normal distribution go to zero with the rate Op(n~1) where n is the sample size. For semi-
parametric models the rate of convergence typically depends on the way the infinite dimensional
nuisance parameters are estimated. Donald and Newey (1997) show that the optimal rate of con-
vergence of the approximate MSE is O(Tf?fﬁ) for Limited Information Maximum :Likelihood
(LIML) estimators and O(Tf?si—s%) for Two Stage Least Squares (2SLS) where s is the degree
of differentiability of the nonlinear mean function and d is the dimension of the regressor space.
These results conform with the results of Xiao and Phillips (1996) who find an asymptotic rate of
convergence of the MSE of O(rf%) where s is the degree of differentiability of the innovation
spectral density.

In this paper we will obtain expansions similar to the ones of Donald and Newey (1997) for
the case of GMM estimators for models with lagged dependent right hand side variables. This set
up is important for the analysis of intertemporal optimization models which are characterized
by first order conditions of maximization. One particular area of application is asset pricing

models.



Expressions for the asymptotic MSE are obtained. It turns out that the rate of convergence
of the higher order terms in the mean squared error is O(n_%) which corresponds to the 2SLS
case of Donald and Newey (1997). Minimizing the asymptotic approximation to the MSE with
respect to the number of lagged instruments leads to a feasible GMM estimator for time series
models. Full implementation of the procedure requires the specification of estimators for the
constants in the expression for the optimal bandwidth parameter. It is established that a plug-in
estimator for the optimal bandwidth leads to a GMM estimator that is fully feasible and achieves
the same asymptotic distribution as the infeasible optimal estimator. Moreover, it is shown that
the asymptotic bias is lower if suitable kernel weights are applied to the moment conditions. A
semiparametric correction of the asymptotic bias term is proposed. The bias corrected version
of the GMM estimator achieves a faster optimal rate of convergence of the higher order terms.
In this sense the MSE of the bias corrected GMM estimator is an order of magnitude smaller
than the MSE of the uncorrected GMM estimator.

The paper is organized as follows. Section 2 presents the time series models and introduces
notation. Section 3 introduces the kernel weighted GMM estimator, contains the analysis of
higher order asymptotic MSE terms and derives the optimal number of instruments. Section 4
discusses implementation of the procedure, in particular consistent estimation of the constants
in the optimal bandwidth formula. Section 5 analyzes the asymptotic bias of the kernel weighted
GMM estimator and introduces the bias corrected GMM estimator. The proofs are collected in

Appendix A and additional Lemmas are given in Appendix B.

2. Linear Time Series Models

We consider the linear time series framework of Hansen and Singleton (1996). Let y; € RP be a
strictly stationary stochastic process with Ey? < co. We define the information set of the observer
as the o-filed F; generated by current and lagged values of y; such that F; = o(ys, ye—1,-..)-

Assume that there exists an infinite moving average representation
(2.1) Y = p+ C(L)uy

where i € RP and u; is a strictly stationary and conditionally homoskedastic martingale difference

sequence. It is assumed that economic theory provides restrictions of the form

(2.2) A(L, ﬁ)yt =&+



where ¢, = ®(L)uy and ®(L) = g+ P1L + ... + D, 1 L™ 1 is a 1 x p vector of lag polynomials
of order m — 1 with m > 0 such that ¢; is strictly stationary with Fe; = 0 and follows a Moving-
Average (MA) process of order m-1. We denote its autocovariance function by 75 = Eeer—; with
75 = 0 for [j| > m. The coefficients 75 can be expressed in terms of ®; as 75 = Z?l_ol P;XP;_;
where ®; = 0 for 7 < 0.

The economic model (2.2) implies moment restrictions of the form
(2.3) E(etymyi—j;) = 0 for all j > 0.

These moment restrictions are the basis for the formulation of GMM estimators exploiting or-
thogonality between €;,, and elements of the random variables generating F;. Alternatively, the
moment restrictions (2.3) are often implied by economic theory and then lead to the formulation
of a structural model of the form (2.2). A classical example is Asset Pricing models. One of the
main advantages of using moment conditions (2.3) as a basis for estimating the parameters is
that no additional restrictions need to be imposed on the C(L) polynomial.

The parameter vector of interest is 8. To simplify the exposition we assume that the 1 x p
vector A(L, 3) contains finite order lag polynomials of known functional form up to the unknown
parameter vector 3. Here, it is assumed that 8 € R%. In particular assume A(L,3) = 6o(3) —
61(B)L — ... — 6,(B)L". Identification of the structural parameters [ follows from the following

Assumption.

Assumption A. The map 6(8) = (60(0),...0-(8)) : © +— = is a homeomorphism where
= {{eRT xRP }fo —&z— ... =27 #£0,|2] <1, € RP} . Without loss of generality it
is assumed that 6(3) : 2 —— = and that 6;(3) is the i-th coordinate projection, i.e. [, =

(11

vec 6;(3) € RP. A normalization restriction 3, ; = 1 is imposed where 3 ; is the first element of

Bo-

The spectral density matrix of y; is proportional to ’C’ (ei)‘)’2 where the norm of a complex
matrix A is defined as ]A|2 = tr AA* with A* the complex conjugate transpose of A. The following

more formal restrictions are imposed on u; and C'(L).

Assumption B. Letu; € RP be strictly stationary and ergodic, with E (ut|Fi—1) = 0, E (uguy| Fi—1) =
Y, where ¥ is a positive definite symmetric matrix of nonrandom constants. Let u: be the i-th

element of uy and cumy, ., (t1,...,tx—1) the k-th order cross cumulant of uiﬂrtl, e uik defined in



(B.1) in the Appendix. Assume that

o0 o0
Z Z lcumy, g, (1, ..., tk—1)| < oo for k < 8.

t1=—00 t_1=—00

The fact that u; is a martingale difference sequence arises naturally in rational expectations
models. In our context it is needed together with the conditional homoskedasticity assumption
to guarantee that the optimal GMM weight matrix is of a sufficiently simple form. This allows
to construct estimates of the bias terms converging fast enough to increase the optimal rate of
convergence to the asymptotic limit distribution of a bias corrected GMM estimator.

The conditional homoskedasticity condition E(usu;|Fi—1) = Eugu; is restrictive as it rules
out time changing variances. Relaxing this restriction results in more complicated GMM weight
matrices of the type analyzed in Kuersteiner (1997, 1999b). In principle the higher order moment
restriction implied by conditional homoskedasticity could be used in addition to the conditions
(2.3). The resulting estimator is however nonlinear and will not be considered here.

The summability assumption for the cumulants limits the temporal dependence of the innova-
tion process. Andrews (1991) shows for k = 4 that the summability condition on the cumulants
is implied by a strong mixing assumption for u;. The cumulant summability condition used here
is similar but slightly stronger than the second part of Condition A in Andrews (1991). What is
needed both in Andrews (1991) and here are restrictions on the eighth-moment dependence of

the underlying process u;.

Assumption C (s). Let u; satisfy Assumption (B) and let y, = [y + > re o Cruy—i, where Cy,
are real matrices of dimension p x p such that Y, |k|* ||Ck|| < oo for some s > 1+ ¢ and some
6> 0.

Note that s = oo if y; follows a vector ARMA process. The following definitions will be
used throughout the paper and are given next. Let y; satisfy Assumption (C(s)). Partition
Yy = (ytl,ytz/)/ where y} is the first element of 3. Then define z; = (y#,y;_1, ...,yé_r)/. Let
ty = Eys and p, = Ex;. Define wi; = (Teym — 1) (Ye—iv1 — uy)/, 7Y = Fuwg,;, IV = Ew;i
and let ay; = wy; — TY. Next define wy; ; = (ye—i — ptyy) (-5 — My)/ with Ewy,; ; =T% . Let
et = ®(L)uy and define v ; = ep1m(ye—iv1 — ). Also define Feyrs =152, and Eepymys = ;..
For a,b € {"2”,”y”,”e” } we define the following second order spectral densities

o0

1 ab _—i\j
fa(N) = o= > TV,

j=—o0



The shorter notation f, is used for f,,. A forth order spectrum of particular interest is

fa(A) = 5= 352 G vil% e ~J which can be represented as fo(\) = 27 f-(A) fy ().

j=—00

Assumption D. There exists an € > 0 such that the spectral density f:(\) > € uniformly in
A€ [—m, .

Remark 1. Assumption (D) is an invertibility condition for the innovation process ;. It guaran-
tees that 1/ f-(\) has the same smoothness properties as f-(\). In particular the Fourier expansion

of f71(X) has coefficients (; = [ f=*(X)e"™dX such that > e oo il |¢;] for all s < oo.

Infeasible efficient GMM estimation for § is based on exploiting all the implications of the
moment restriction (2.3). In our context this is equivalent to choosing [M] lagged observations
as instruments where [M] denotes the largest integer smaller than M € R. We therefore define
instrument vectors ze pr = (Y4, Y15 - yg_[ M] +1)" and let the number of instruments go to infinity.
We define an infeasible estimator of § as a reference point to which we compare feasible versions
of the estimator.

For this purpose let 15, be an [M] x 1 vector of ones, Qy = St ma1 Vi (1) with
(1) = Ezmz_yp Py = B(@iem — )z — 1y ® ) and Dy = Py Q) Par. Also
denote the i, j-th p x p block of Qps(l) by w; ;(l).The infeasible estimator of § is based on a

v D—1pr O-1 I
nonrandom matrix D); Py, and is given by

_ 41
By = DM1P]/\/IQMlE Z(?/tl — ) (2e01 — Lan) @ payy)
t

In order to characterize the limit of Djys and P]’M[Q]TK[1 as M — oo we introduce the sequence
space [? of square summable sequences = {z;};°, with elements z; € RP such that z € [?
if Y, [|@i|| < oco. We define the operator © component-wise by its image for all z € [? by
b; = limy,— oo ZT w; jTj where w; j = ?iilmﬂ Fyy Yo i is the 4, 5 th block of Qp7. The operator
Q has a well defined and bounded inverse if it is selfadjoint, bounded and noncompact. These
conditions are satisfied for covariance matrices under Assumptions (B) and (C). The Closed
Graph theorem then implies boundedness of Q71, i.e. Q™! € 2 for all = € I?. Denote by Vg j
the k, j-th element of Q~!. From Whittle (1951) it is well known that 95 ; = |7 fot(N)eru=k gy
such that ¥y ; = ¥,;_j. In the same way let P € ®§l:1 12 be an element of the d dimensional
product of sequence spaces [? in the sense that each column of P is an element of [2. It then
follows that the limiting operator P’Q~! maps 12 sequences into [? sequences. Details of these

arguments can be found in Kuersteiner (1999b).



Let D = limys Py Qy Py = P'Q7'P and do = limyy PpyQy/ o= D2 (2e0r — L) © p)er almost
surely. It can be shown that D~dy &> N (0, D~1) as n — oo under the assumptions made about
y;. It is also true that \/n (ZﬂM — ﬂ) —D ', 2 0as n, M — oo. The last statement is no longer
true, at least without specifying the rate at which M goes to infinity, once we replace 3, 5, by
a feasible estimator.

A feasible version of 3, s is obtained by replacing DMlPJ/MQXj by an estimated counterpart
Dy P4} The notation Bn v is used for such a feasible estimator. We call an estimator fully
feasible if M is a function of the data alone. A fully feasible estimator is denoted by Bn ¥

From the results in Hansen (1985) it follows that estimators for which M goes to infinity are
achieving the GMM efficiency lower bound as long as there are no additional restrictions placed
on the lag polynomial C'(L).

Once the infeasible estimator has been replaced by a feasible version where D]T/}P]’V[QX/} is
estimated from the data the choice of the number of included instruments becomes a more
delicate matter. It is well known that introducing additional instruments often comes at the cost
of substantial biases for the resulting parameter estimates an M-

A fully feasible procedure therefore requires a data dependent selection rule for the parameter
M in a finite sample. We derive such a selection rule in the next section. A fully data dependent

procedure is developed in Section (4).

3. Kernel Weighted GMM

The criterion used to determine the optimal bandwidth AM* is to minimize the Mean Squared
Error (MSE) of terms in a Taylor Series expansion of Bn a that depend on M and are of highest
order in probability. Choosing an optimal value for M™* is based on exploiting the trade off
between adding more instruments resulting in higher efficiency and the finite sample biases
introduced by additional instruments.

In this paper a generalized class of GMM estimators based on kernel weighted moment restric-
tions is introduced. Under the assumptions of this paper the conditioning set F; is generated by
lagged observations 3, ys—1,... leading to an infinite set of unconditional moment restrictions of
the form Fetymy:—; = 0. A conventional GMM estimator is based on using the first M of these
moment restrictions. More generally one can consider non-random weights k(j/M) € [—1,1]

such that

k(j/M)Eeitmyi—j—1 = 0.



The truncated kernel is k(j /M) = {|j/M| < 1} where we use {.} to denote the indicator function.
The general kernel weighted approach therefore covers the standard GMM procedure as a special
case when the truncated kernel is used. One reason for allowing more general kernel functions
is discussed in Section 5. It turns out that kernel weighting reduces the asymptotic bias of the
GMM estimator.

Optimal nuisance parameter selection based on minimizing asymptotic mean squared errors
has been used in similar contexts by Xiao and Phillips (1998) and Donald and Newey (1997).
The main new technical difficulty handled in this paper is to allow for lagged dependent right
hand side variables. The MSE calculations presented here are therefore unconditional rather
than conditional.

We first specify the formal requirements the kernel weight function %(.) has to satisfy.

Assumption E. The kernel function k(.) satisfies k : R +— [—1,1], k(0) = 1, k(z) = k(—x)Vx €

R, k(z) =0 for |z| > 1, k(.) is continuous at 0 and at all but a finite number of points.

Assumption F. The kernel function k(.) satisfies Assumption (E) and for q € (0,00) there
exists a constant kq such that kq = lim,_,0(1 — k(z))/ |x|?. Assume that there exists a largest g

such that kq € (0,00).

Assumption (E) corresponds to the assumptions made in Andrews (1991) except that we
also require k(x) = 0 for |x| > 1. This assumption ensures that only a finite number of moment
conditions, controlled by the bandwidth parameter, are used in estimation. The assumption could
be relaxed at the cost of having to introduce additional bandwidth parameters for estimation of
the optimal weight matrix. This seems unattractive from a practical point of view and is not
pursued here.

Assumption (E) rules out certain parametric kernel functions such as the Quadratic Spectral
kernel but is satisfied by a number of well known kernels such as the Truncated, Bartlett, Parzen
and Tukey-Hanning kernels. Assumption (F) rules out the Truncated kernel. For the Parzen
and Tukey-Hanning kernels ¢ = 2 and for the Bartlett kernel ¢ = 1.

We define the matrix

kar = diag(k(1/M), ..., k(1))

having kernel weight k(j/M) in the j-th diagonal element and zeros otherwise. An instrument

selection matrix Sys(t) = diag({t > 1},...{t > [M]}) is introduced to exclude instruments for



which there is no data in the sample. The vector of available instruments is denoted by z; s =
Sn(t)(ze,m — 1) @ §). The empirical analogue to the moment condition is then

1 n—m

9, (B) = —~ Yo (ALB)Yerm — §)ZuEy

t=max(r—m+1,1)

with § = n= 2> v, Knr = (ky ® I,) and I, the p-dimensional identity matrix. The 1 x n
vector Z; , Kjs is the vector of kernel weighted instruments. Note that for the truncated kernel

kar = 1pp such that

Given the definition of the instrument vector z; s one has to estimate an M dimensional
covariance matrix Q. We define QM( =1 Z?lﬁlgxnltfj 1 Ze M7, iy We denote the [, k-th
A~ + k _\/ . .
block of Qur(j) by @ik(j) = L Z?E&Ziﬁg 141) (Y4—1 — Y) (Yt—j—k — ¥) . The optimal weight
matrix is then given by

(3.1) Qur = | mi:

=—m+1

where 4°(j) = 2 S0 it k—ma1 Etét—j and & = A(L, BH’M)(yHm—gj) for some consistent first stage
estimator ﬁn, - The I, k-th block of Q. is defined correspondingly as O = Z;n:ilm Vo).
Note that €2,, is symmetric but not necessarily positive definite. This is unimportant as long as
the estimator fin, a 1s known in closed form which is the case for linear models.

We now define the feasible GMM estimator for a given M such that M > d/p. Under
Assumption (A) the structural parameters 3 are identified and Bn ar has a closed form expression.
Let Zy be the matrix of stacked instruments Zar = [Zmax(1,r—mt1),M> -+ Zn—m,m) and X =

[Tmax(m-+1,r41) = Ty ooy Tpy — 7]’ the matrix of regressors. Also, Y is the stacked vector of the first

demeaned element in y;. Then define the d x p [M] matrix
(3.2) Py =n"'X"Zy

with elements me =1y (14 1—m)(Zt4m — ) (Ye—j — ¥)". The estimator B, ; can now be

written as
A R A L\ T Z Y
(3.3) Bom = (PMKMQX/}KMPM> Pl Ky, 1KM—
where Py Ky} Ky P = S0 D¥k(i/M); jk(j/M)EY" and 9y [Q;ﬂ s the i, j-th
7]

block of Q]T/} We are considering sequences M, for which M, < My,+; and M, — oo such

10



that M, /\/n — 0. For notational convenience we usually write M = M, It then follows from
Lemmas (B.9-B.28) that “IjM—D“ = 0,(M/n'/?) = 0,(1) and HJM—dOH = O,(M/n'/?)
where Day = Py Kyt Kag Par and dar = Phy a0y} Ko 22,

Representation (3.3) makes the effects of using kernel weighted moments transparent. In
essence using the kernel weight matrix Kj; introduces an inefficiency by using K MQ]Q[IK M
instead of the optimal QX; as weight matrix. As Corollary (3.2) below shows, this inefficiency
however is not related to the first order asymptotic properties of the estimator in the sense that
Bn’ v is first order asymptotically equivalent to D~'dg as long as M,n — oo and M/ nl/2 = 0.

The bandwidth parameter M is chosen such that the MSE of a weighted sum of the elements
of 3, ps is minimized. We approximate the MSE by first expanding 3, 5; around B ar and then
obtaining the MSE for the terms in the expansion that are largest in probability and depend
both on M and n. For this purpose a second order Taylor approximation of f);j around D!

leads to

Vi(Bpy — B) = DI — (Dy — D)D™' + (Dyy — D)D 1Dy — D)YDdas + 0,(M//n).

The expansion is valid as long as M/y/n — 0. We decompose the expansion into Dy —D =
Hy+...4+ Hy and d, = do+dy + ... + dg where H; and d; are defined in Equations (A.2) through
(A.24) in Appendix A such that

9 4 9
VB —B8) =D di— DY "N " H;D'dj + 0,(M//n).
=0

i=1 j=0
We now denote by /i (by,ar — (3) all the terms D~'d; and D' H; D~1d; which are O,(M//n) or
terms that are O, (M ~2%). The remaining terms Ry, pr = v/n(/3,, 3 —bn,1) are of order op(M/\/n).
The size of the mean squared error of the estimator is given in the next lemma. Define the

approximate mean squared error of Bn, A as
(M, 0, k() = nl' EDY2(by, as — B)(bpas — 8)' DY?0 —1

where the normalization D/2 is used to standardize the asymptotic variance. The vector £ € R¢
is a vector of weights given to the elements in 3. It is usually assumed that ¢'¢ = 1 although that

is not crucial to the results.

Lemma 3.1. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies As-
sumptions (E) and (F). Then for any { € R% with ¢'¢ = 1 the MSE is p,,(M, {, k(.)) = O(M?/n)+

11



O(M~24). The optimal rate of expansion for the set of instruments is M = O(n'/+20)_ If the
truncated kernel k(x) = {|z| < 1} is used then ¢, (M, (,k(.)) = O(M?/n) + o(M~—29).

This result is similar to the result for the 2SLS estimator obtained in Donald and Newey
(1997). The source of the O(M~29) variance terms is however different in our context. This is
due to the fact that we are weighting the moment restrictions with a weight function k(z) which
introduces an additional variance term of order M ~24. Intuitively, the kernel function distorts the
optimal weight matrix resulting in an increased variance of higher order terms in the expansion.
As will be shown, this increased variance is traded off against a reduction in the bias.

The second part of the Lemma shows that using the truncated kernel, i.e. using a standard
GMM procedure with a certain number of instruments results in variance terms of lower order
than the ones found in Donald and Newey (1997).

The reason why the variance terms are of lower order in the truncated case lies in the sta-
tionarity assumption made in the time series context. Since the correlation between instruments
and regressors has to decay at a faster than polynomial rate as instruments with longer and
longer lags are used, the importance of omitting these far distant instruments is of lower than
polynomial order.

The optimal rate of expansion n'/(2t29 for the bandwidth parameter is slower than the
optimal rate encountered in other contexts of automated bandwidth selection, in particular
for density estimation. The reason for the slower rate of convergence lies in the presence of
asymptotic bias terms of order O(M/+/n) which dominate the usually present variance terms of
order O(M /n).

An immediate corollary resulting from Lemma (3.1) is that the feasible estimator has the

same asymptotic distribution as the optimal infeasible estimator as long as M//n — 0.

Corollary 3.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies
Assumptions (E) and (F). If n,M — oo and M/\/n — 0 as n — oo then \/ﬁ(ﬁan —B) -
D_ld() = Op(l).

The corollary shows that the number of instruments included for estimation can grow at
most at rate o(/n) in order to achieve the same asymptotic distribution as the infeasible op-
timal estimator D~'dy. The optimal rate of expansion for M is much slower than o(y/n). The
corollary also shows that the distortion introduced by using kernel weights thus effectively using
an inefficient weight matrix are of second order and do not affect the first order asymptotic

properties of Bn s under the stated conditions.

12



The next proposition gives an expression for the asymptotic MSE using the largest in prob-

ability terms depending on M and n.

Proposition 3.3. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies
Assumptions (E) and (F). If n, M — oo and M?972/n — k with 0 < k < oo then for any ¢ € R?
with 0'¢ =1
o0 2

limn/M?p,(M,{,k(.)) = A (/ k’2(l‘)d$> +k‘§5<q)/l-€
with the constants A = A;D~Y200' D~Y2 A and B@W = 1/20'D~1/2(BY — B p-159")D-1/2¢
where A1, BYJ) and BgJ) are defined as
(3.4) A= @ [ (vee fah)™) (vee (£ (N)) © fealN))

-7
o0

(3.5) B = % <Fiy19k,j 7T + 1Y ’k’|q19k7jryii‘> 7
k=1,j=1

(3.6) BY = N (k[T T T
k=1,j=1

0o
T2 T3l s sl Vi a7, + B
G1yeenja=1

The Mean Squared error displays a trade off between higher efficiency due to more included
instruments represented by M _2‘1qu(‘1) and distortions introduced by estimating more unknown
parameters manifesting itself in n='M?A [ k?(z)dz. It turns out that the leading contributor
to the latter term is the bias from <ffy — ny> k(i/M)V; jk(j2/M )v j which would have zero
expectation if T were uncorrelated with vy ;.

Proposition (3.3) thus gives an analytical explanation of the empirical fact observed when
applying GMM procedures in the time series context. Typically, inclusion of a small number of
lagged instruments leads to significant changes in the parameter estimates. These changes are
in fact due to the presence of the Bias term Mn~Y/2D~' A [ k?(z)dx.

The properties of the more standard, non-smoothed GMM estimator can be obtained as a
corollary to Proposition (3.3). In fact, in this case k(x) = {|z| < 1} such that [ k?(z)dz =2 and
kq = 0.

Corollary 3.4. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(z) = {|z| < 1}.
If n, M — oo and M%*2 /n — k with 0 < k < co then for any ¢ € R? with (¢ = 1

lim n/M?*p, (M, 0, k() = 4.A.
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In other words inclusion of more lags carries no first order benefits of polynomial order and
the MSE behaves asymptotically like n~'M?2. For the remaining discussion we therefore exclude
the truncated kernel.

We use Proposition (3.3) to determine the optimal number of lagged instruments in the
sense of minimizing the approximate (asymptotic) MSE of Bn, m- From well known arguments

we deduce that the optimal lag length choice, M*, is given by

M* = pl/(2a+2) k2B e |
A (f 'I“’(l')zdm)2

Using M* directly does not result in a feasible procedure because the constants A and B are
unknown. In the next section estimators for the constants A and B? are discussed.

For technical reasons one needs to guarantee that M* does not coincide with [M *] or in other
words does not fall on points of discontinuity of [.] . We therefore specify M* for any 1 > ey > 0
as M* = [M*] + max(M* — [M*] ,epn) or equivalently as

M* if M* — [M*] > ey
[M*] +en  if M* — [M*] <en

M* =

This definition guarantees that M* — [M*] > eps. Since €7 can be chosen arbitrarily small the

definition of M™ does not affect the optimal MSE.

4. Fully Feasible GMM

In this section we derive the missing results that are needed to obtain a fully feasible procedure.
In particular one needs to replace the unknown optimal bandwidth parameter M™ by an estimate
M*. Moreover, it needs to be shown that using the estimate M* instead of the optimal value
M* in forming Bn a does not introduce additional distortions.

In order to have a fully feasible procedure we need a consistent first stage estimator. We
define a feasible first stage GMM estimator Bn o with M > d/p as the solution to minimizing
3(8)3(8) with

n

(4.1) g(B)=n"" Z (AL, B)(Yt+m — ¥))Zt,m-
t=M+1
The instrument Z,pr = (y; — U, Y1 — U, ...,yl’F[MHl — ) is a [M]p dimensional vector of

lagged observations where [M] indicates the highest lag. As long as M is fixed and finite
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9g(0)/00 & Pyr. Classical results show that fin o 1s consistent and asymptotically normal
with /7(Bar — 8) % N(O, (P Par) ™" Pyt Par (PhyPar) ™). Typically, one chooses a small
number of instruments for the first stage estimate. The consistent first stage estimate Bn A Dow
can be used to obtain consistent estimates of the residuals £; which in turn are needed both to

construct the optimal weight matrix Q3 and the constants Ay, B@ and Bgn. Estimation of Q}}

was dealt with in the previous chapter and we turn to the estimation of the coefficients A;, ng)
and B§Q). The following analysis shows that estimation of A; can be done nuisance parameter
free in the sense that consistent estimates of A1 do not depend on additional unknown parame-
ters. Unfortunately the same is not true for ng) and BgJ) in which case we have to rely on either
an approximating parametric model for C(L) or additional bandwidth parameters. In this paper
we choose the former approach.

We first consider the simpler estimation problem for the constant 4. For this purpose note

that fo(\) =27 f-(\)fy(A) such that

PN f ) = 2m) " £ (.

While f-1()\) could be estimated nonparametrically from the autocovariances of the estimated
innovations &; this would not be taking full account of the structure of the model. A better
procedure is to exploit the fact that e, has a MA(q) representation under the maintained model
assumptions.

To express the constant A we use the same definitions as before. From

(vec fq ' (V) (vee fy(\)') = tr f () £y (V) = (2m) " pft (V)

it follows that (vec fq'(\)) [vec fy(A) @ fex(N)'] = (27) ' pfo Y (A) fex(N)'. The spectral density
fey(A) can be expressed in terms of the coeflicients of the underlying DGP. Consistent estimation
of foy(A) is difficult because even though the parameters C; could be inferred from the approx-
imate model for C(L) it is not possible to estimate ®; without estimating the errors u; which
in turn requires full specification of the structural model. Nonparametric density estimation on
the other hand entails a bandwidth selection problem similar to the one encountered for the
estimation of §.

Fortunately, we are not directly interested in fe, () but rather in (27) 7" [ fer(A) fZH(A)dA

which is
o0

@m0 G =02m) 7 Y [T B Gl o Gl

k=—00 k=—o00
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where E is a (p—1) x p matrix defined as E = (0,,-1). Denoting the consistent MA(q)
parameters by ; the coefficients ¢; can be obtained from ¢, = (27)* 02 Yol g€iBlerel Bitke,
where e is the first unit vector in R™ and

0, 0y - 0,
1 0 0
B=
| 0 1 0 |

Consistent estimates of the MA(q) representation of ¢; can be obtained by using consistent
estimates of the parameter § to obtain estimated &. An MA(q) model is then estimated for &;.
This can be done by using a nonlinear least squares or pseudo maximum likelihood procedure as
described in chapter 8 of Brockwell and Davis (1991). This procedure is outlined in the proof of
Lemma (4.1). The matrices Fiy can be replaced by simple sample averages based on estimated
residuals

min(n—m,n—k)

nE —1 ~
IV =n E Et+mYt—k-
t=min(k+1,1)

Using these estimates one then estimates A by

~ p n ~ A~ n A~ A
(4.2) A= S GV LE L Y G,
k=—n+1 k=—n+1
and
(4.3) A=A, D V20 D121,

Y

k_m are consistent comes from the fact

The intuition why quantities of the form >, (ol
that (;, satisfies summability restrictions by Assumption (D) and can be estimated uniformly
consistently. It thus acts like a kernel smoothing operation on the estimated covariance terms
e
Y.

Unfortunately, the parameters ng), Béq) and D are harder to estimate. One possible estima-
tion strategy is nonparametric kernel density estimation of all the spectral densities involved.

An alternative to estimating fgy is Andrews’ (1991) approach of fitting a, possibly misspec-
ified, parametric model C(L) to C(L) and using the parametric dependence of Béq) on C(L) to

obtain a feasible M*. Analogue to the results in Andrews the misspecification in C(L) does not
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affect the asymptotic distribution of 8 . but it results in suboptimal higher order asymptotic
properties.
For simplicity we choose a Vector Autoregessive (VAR) model of order 7 as approximating

process for C'(L) such that
(44) ye = A1y 1+ .. + Aplp_r + vp.

The choice of 7 is guided mainly by practical considerations. If the number of variables p in the
system is large then 7 should be chosen small, i.e. close to one. Alternatively, in the simulations
reported in Section (6) consistent model selection criteria are used to select an optimal 7.

In order to calculate the impulse response coefficients associated with (4.4) define the matrices

A Ay - Ay 1
I 0 --- 0 0
i r 0 | | 0 ]

with dimensions 7p X 7p and 7p x p. The j-th impulse coefficient of the approximating model is
given by C; = E; AJEy. For any € > 0 there exists a T, < oo such that HE{(ZZ’E A —(1T-A)YHYE H <
€. The autocovariance function szy is then approximated by fz]/y = ZZT;O C’liélﬂ- where ¥ is the
covariance matrix of the residuals in the approximating model. Likewise we obtain approxima-
tions to the optimal weight matrix Q = D 1Y (7)(5) where Q(j) has typical k, I-th block
T%(l — k — j). In accordance with earlier definitions we denote the &, I-th block of Q by @y, ; and
the k, I-th block of Q! by 1~9;€] We define BYI), Béq) by and D substituting f‘iy for I';Y and 1~9;€7j

for ¥, ; in definitions (3.5) and (3.6) and by letting D = D he1 1 fiy{?kjf?f;

= - - - - ~(@) =(9) =
Substituting estimates C; for C; in Bg(I), BgJ) and D leads to an estimates B; ,B, and D.

While A is positive by construction the same is not true for lt;’(q when based directly on its
definition in Proposition (3.3). In practice we therefore use an alternative version of E(Q). We
use the approximate autocovariance matrices fgy to form the matrices ]5}1 = [ffy, s f?ﬂ and
Qpy =370 177 ()S2r (j) where Qr, (j) has typical k, I-th block I'Y¥(I —k — j). We then form
the matrix J = [diag(1,2,...,71) ® I3] and compute the matrix INJ(ql) = ]5}1 J qul + ]5}1 Qil Jq —
B§Q)D_1]5Tl flil. The parameter B%) is obtained from

(4.5) BY = 00 0m b

1

- ~ ~(@)
It can be shown that as 77 — oo the approximate Bf(lfll) tends to B@. An estimate B, of B%) based

on estimated coefficients C’j then is y/n-consistent for l’;’g,?l) as long as the coefficient estimates
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- ~(q
are \/n-consistent for C; and can be made arbitrarily close to B by choosing T, and T large
enough.
In the same way we define DT1 = ]3:}1 Q;llpTl with a corresponding estimate D based on

estimated coefficients C~’j.

=) -
We assume that By, is estimated such that it is \/n-consistent for B%).
=)
Assumption G. For all Ty > 1 fixed, \/n(By, — B%)) = Op(1).

VPN
It is then established in the following lemma that the estimates for B /A formed by B /A

~(q
where B is the estimated version of (4.5) are well enough behaved to be used in a plug in

procedure.

~ ~(a)
Lemma 4.1. Let A be defined in (4.3) and Br, be based on (4.5) and satisfy (G) for all fixed
~ =@~ ~
Ty > 1. Then /(A — A) =0,(1) and v/n(By, /A — By JA) =0,(1) where By is defined in
(4.5).
Ultimately, one is interested in the properties of a fully automated estimator 3, ;. where the

data determined optimal bandwidth M* is plugged into the kernel function. In order to analyze

this estimator we need an additional Lipschitz condition for the class of permitted kernels.
Assumption H. The kernel k(.) satisfies |k(z) — k(y)| < C'|z — y| Vz,y € R for some C < co.

Assumption (H) corresponds to the assumptions made in Andrews (1991). Using the previous
results we are now in a position to state one of the main results of this paper which establishes
that an automated bandwidth selection procedure can be used to pick the number of instruments
based on sample information alone. Following Andrews (1991) we define the truncated mean

squared error as
(M, €, k(.), by, 1) = Emin {n2 JM20' D2 (b pr — B)(bpar — B) DY, h} —1
and state the following theorem.

Theorem 4.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies
2429

~(q) - ~(a)
Assumptions (E), (F) and (H). If By, satisfies (G) and N* = (nqqus’{fl JA(S k:(:r)2d:r)2>
then n/VM(B,, y- — Bpar) = 0p(1) and

lim T (0, (V7,6 K(), b, 1) = @nn (V7 6 R(), b, 7)) = 0

h—o00 N—00
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1
where M* = (nqkql’;’%)//l (f k(x)Zdw)z) 2 for Ty > 1 fixed.

Theorem (4.2) shows that using the feasible bandwidth estimator M* results in estimates
Bn, ar+ that have asymptotic mean squared errors that are equivalent to asymptotic mean squared
errors of estimators where a nonrandom pseudo-optimal bandwidth sequence M is used. An
immediate consequence of the Theorem is also that fin i+ is first order asymptotically equivalent

to the infeasible estimator D~1d,.

5. Bias Reduction and Bias Correction

In this section we analyze the asymptotic bias of fin, a as a function of the sample size n and the
bandwidth parameter M. An approximation to the bias is obtained by again considering terms

that are largest in probability and depend on n and M.

Theorem 5.1. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies
Assumptions (E). If M — oo and M/n'/? — 0 then

im0 /ME(byar — B) = D7tA] / k2 (z)dz.

A simple consequence of this result is that for many standard kernels the asymptotic bias
of the kernel weighted GMM estimator is lower than the bias for the standard GMM estimator

based on the truncated kernel.

Corollary 5.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies
Assumptions (E). If n, M — oo, M/n'/? — 0 and [ k*(z)dz < 2 then

Tim |ln/ME(byar — B)|| < lim_[|n/ME(b;, v — B)|
where ﬂ;f, v is the GMM estimator based on the truncated kernel.

In practice any one of the following well known kernels could be used: the Bartlett kp(x) =
(1 —|z|) {|z| < 1}, the Parzen kp(x) = (1 — 622 + 6 |=|*){|z| < 1/2} +2(1 — |z*){1/2 < |z| < 1}
and the Tukey-Hanning kr(z) = (1 + cos(mz))/2{|z| < 1}.

The asymptotic bias for different kernel weighted GMM estimators depends on the constant
[ k(x)?dz. These values were published in Andrews (1991) and are 2/3 for the Bartlett, .539285
for the Parzen and 3/4 for the Tukey-Hanning. It thus follows that using any of these standard

kernels reduces the asymptotic bias of the estimator.
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Another important issue is whether the bias term can be corrected for. The benefits of
such a correction are analyzed first. It turns out that correcting for the bias term increases the
optimal rate of expansion for the bandwidth parameter and consequently accelerates the speed
of convergence to the asymptotic normal limit distribution.

Using the result in Theorem (5.1) the following bias corrected estimator is proposed

(5.1) Bt = Buas = (Phekunl KPar) A [ @)

The bias term A; can be estimated by the methods described in the previous section. The
quality of the estimator .4; determines the impact of the correction on the convergence rate of
the corrected estimator. If A; — A; is only 0,(1) then the convergence rate of 3;, 5, is essentially
the same as the one for Bn,M‘ If Ay — A = Op(n~") for n € (0,1/2] then the convergence rate
of the estimator is improved. The mean squared error of the bias corrected estimator is defined

as
on(M, L.k (.) = nDV2CEW], o — B)(Uy g — §)'¢DY? — 1
and we obtain the following result.

Theorem 5.3. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies
Assumptions (E) and (F). If A — A = O,(n~'/?) then for any ¢ € R? with ¢'¢ = 1 the MSE is
(M, 0,k(.)) = O(M/n) + O(M~29). The optimal rate of expansion for the set of instruments
is M = O(n!/(1+29)),

It follows from Theorem (5.3) that for M — oo and M?29t1/n — ¢ the rate of convergence
of the higher order terms in the estimator is now n~20/(14249) 55 opposed to the previous rate of
n~24/(24+2)  Bias correction in other words improves the MSE by an order of magnitude. The
result critically depends on the ability to estimate .4; with a parametric rate of convergence.

An alternative to direct recentering of the estimator by subtracting an asymptotically correct
estimator of the bias is to compensate fin u in a way that eliminates higher order bias terms.
The classical case of such a procedure is Nagar’s (1959) k-class estimator.

In our context a k-class estimator can be defined as follows. Let k=M /n [ k*(x)dx and define
the n-dimensional matrix A,(®) with typical element k, j given by [A,(®)], ; = (4—;. The k-class

estimator is then

k= | Py Ky Ky P — n’lkX’An(ﬁ))X} n~! (PMKMQQKMZ; - ]kX/An(ci))> Y
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This formulation takes the serial correlation in ¢; into account. It can be readily seen that ﬁﬂ;i’ M
is equivalent to the kernel weighted GMM estimator for k = 0. An analogy to the formulation
in Nagar (1959) and 3% ), can be drawn by defining Qn = Z, Ky ' Kni Z)y, T, = An(®) — Qn

and W = n~1X'T,,. Then the k-class estimator can be written as
) -1 .
N = | X AL@)X - (1+ k)n*IX/TnX} <X’An(<1>) —(1+ ]k)W) Y.

The two versions ﬁﬂ;i’ M and ﬁﬁ} u differ by terms that are of order O,(M/n).
The next theorem establishes that the k-class estimator achieves the same rate of convergence

for the higher order terms as the bias corrected estimator.

Theorem 5.4. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(.) satisfies
Assumptions (E) and (F). Let

Go(M, €, k() = nDY2 B2 1y — B)(bE 5 — B)DY? — 1

n, M

for a € {k,N} where b}, \, = 0y — Ry oy and R,y = 0p(M/n). Then for any { € R with
0'0 =1 the MSE is @ (M, 0, k(.)) = O(M/n) + O(M~29). The optimal rate of expansion for the

set of instruments is M = O(n!/(1+29)),

6. Monte Carlo Simulations

A small Monte Carlo experiment is conducted in order to assess the relevance of the asymptotic
approximations derived in the previous sections. We are using the following kernel functions in
addition to a standard GMM estimator with a finite number of M instruments. The kernels used
are the Bartlett kp(x), the Parzen kp(z) and the Tukey-Hanning kr(x) which were all defined

in Section 5.For the simulations we consider the following data generating process

(6.1) yie = Py +ur — Oupq

Yoo = PYar—1 + vt

with B, = 1 and [ug, v¢]' ~ N(0,3) where ¥ has elements 0? = 02 = 1 and 012. The parameter
012 is one of the determinants of the small sample bias of both Ordinary Least Squares (OLS)
and GMM estimators and is set to .5. The parameter ¢ controls the quality of lagged instruments
and is chosen in {.1,.2,.3,.6} . The parameter 6 finally is set to {—.9,—.6,—.3,0,.3,.6,.9} .

The optimal M* can be computed using the constants published in Andrews (1991). We
have ki = 1 for the Bartlett, ks = 6 for the Parzen and ky = 72 /4 for the Tukey-Hanning
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kernel. Moreover, [k(z)?dr is 2/3 for the Bartlett, .539285 for the Parzen and 3/4 for the

Tukey-Hanning. This leads to

122474 (nB@/A)'® Bartlett
M* = ¢ 250582 (nB@/A)

1.66942 (nB@/.A)"®  Tukey-Hanning

1/6
/ Parzen

We generate samples of size n = 128 from Model (6.1). Starting values are yo = 0 and
go = 0. In each sample the first 1,000 observations are discarded to eliminate dependence on
initial conditions.

Standard GMM estimators are obtained from applying Formula (3.3) with Ky = Ips. In

order to obtain an estimate for {2y we first construct an inefficient but consistent estimate 3,

based on (3.3) setting K = Ins and Qpy = Ips. We then construct residuals & = yp4 — ﬁanygt
and estimate Qy as described in (3.1). Kernel weighted GMM estimators (KGMM) are based
on the same inefficient initial estimate such that the estimate for M 1s identical to the weight
matrix used for the standard GMM estimators. In the second stage we again apply (3.3) with
QO » and the appropriate matrix Kjs corresponding to the respective kernel function.

The estimated optimal bandwidth M* is computed according to the procedure laid out in
Section (4). For each simulation replication we obtain a consistent first stage estimate Bn,l to
generate residuals &;. We estimate 6 by fitting an MA(1) model to &; using the GAUSS procedure
arima.src. We then estimate the sample autocovariances F;y for j =0,...,n/2 where n is the
sample size and form an estimate of A; based on Formula (4.2). Next we use the BIC (see
Reinsel, 1995, p. 92) criterion to determine the optimal specification of the approximating VAR
for y; = [y14, y2:]' allowing for a maximum of 10 lags. Based on the optimal lag length specification
we compute the impulse coefficients of the VAR and estimate B%) and BTI for T, = T7 = 100.
Experiments with larger values for T, and T} indicate that the results are not sensitive to the
choice of these parameters.

In Tables 1-4 we compare the performance of feasible kernel weighted GMM with Bartlett
(kp), Parzen (kp) and Tukey-Hanning (k7) kernels to an infeasible optimal GMM estimator. The
infeasible optimal GMM estimator is obtained by estimating 3 by standard GMM for M fixed
at M =1,2,3,4,5,10,15,20. We then calculate the empirical mean squared error of parameter
estimates based on 1,000 Monte Carlo replications and chose the specification that leads to the
lowest MSE statistic. A table entry "IV 10” for example means that GMM with instruments up to
lag 10 achieved the lowest MSE in the simulations. We compare this estimator to feasible kernel

weighted GMM based on M*. Keeping in mind that the infeasible GMM estimators performance
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is unattainable in practice the results for the feasible procedures are very encouraging. For cases
with weak identification, ie. when ¢ is close to zero, the KGMM based on the Bartlett kernel
actually outperforms the infeasible procedure both in terms of median bias and mean squared
error. For values of ¢ = .3 and .6 the performance is still quite good although not quite as good
as the infeasible procedure. Kernel based estimators tend to have problems with the existence
of second moments, particularly with the Parzen and Tukey-Hanning kernels. This explains the
sometimes inflated MSE values compared to the MAE statistics.

In Tables 5-8 we analyze the optimality of M*. For this purpose we compare the Mean Ab-
solute Error (MAE) of GMM and KGMM based on a fixed number of instruments M to the
feasible procedure. The tables reveal that choosing a suboptimal number of instruments can
have large effects on the MAE, with increases of 50% and more relative to the best possible
performance in some cases. The tables also show that, keeping M fixed, using a kernel weighting
scheme for the moment conditions can reduce the MAE. This is particularly true when ¢ is small
and generally when M is large. The latter effect is related to the bias reduction property of
kernel weighting which becomes important for large values of M. Most importantly, the feasible
procedure successfully minimizes the MAE for values of ¢ close to zero and performs reason-
ably well for values of ¢ > .3. This is partly due to the fact that KGMM is less sensitive to
severe overidentification than standard GMM. Kernel weighting is therefore a very useful tool
for developing feasible procedures with reasonable finite sample properties.

In Tables 9 and 10 we focus on the median bias properties of GMM, KGMM with Bartlett
kernel as well as bias corrected KGMM. The bias reduction property of the kernel weights estab-
lished in Corollary (5.2) is extremely robust across the entire parameter space. The magnitude
of the bias reduction relative to standard GMM can reach up to 50% of the original bias when
¢ = .3. Experiments with implementations of the bias corrected estimator (5.1) indicate fairly
good performance as far as bias reduction is concerned but have lead to severely inflated MAE
and MSE statistics. For this reason we report results for an alternative version of (5.1) defined

as
A%k ~ = -1 M iy 2
Bnm = By — Dy ;All /k (z)dz
where DTl is computed based on an approximating VAR as described before. The performance
of this bias corrected estimator is mixed. When the instruments are weak, ie. if ¢ is small then

the effect of the bias correction on the bias is small, especially for |f| large. In Table 9 the

best result is achieved for # = 0 and M = 1 where the bias is essentially eliminated. Generally
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speaking the bias correction is quite sensitive to the choice of M and does not perform well for
large values of M. When ¢ is set to .3 the bias correction works better giving an additional bias
reduction of up to 50% over the kernel weighted procedure. Again, the performance of BZ*M
deteriorates for M > 5. As with any bias corrected procedure one worries about the impact of
the bias correction on the variability of the estimator. Tables 11 and 12 compare the MAE of
BZ*M to GMM and KGMM. For values of M <5 the MAE of BZ*M is generally in line with the
two other procedures. In some cases (¢ = .3, |0] = .3, M = 4) it even outperforms the other
procedures in terms of MAE. On the other hand for M > 5 the MAE starts to increase quite
significantly such that a combination of bias correction and severe overidentification can not be

recommended based on the simulation results.

7. Conclusions

We have analyzed the higher order asymptotic properties of GMM estimators for time series
models. This extends the literature on optimal bandwidth choice in semiparametric procedures
to the case of dependent processes. Using expressions for the asymptotic Mean Squared Error
a selection rule for the optimal number of lagged instruments is derived. It is shown that
plugging an estimated version of the optimal rule into the estimator leads to a fully feasible
GMM procedure.

A new version of the GMM estimator for linear time series models was proposed where the
moment conditions are weighted by a kernel function. The asymptotic expansions suggest that
the dominating terms of the MSE are bias terms stemming from estimated correlations between
instruments and regressors. Kernel weighting of the moment restrictions reduces the importance
of these bias terms. It is shown that correcting the estimator for the highest order bias term leads
to an overall increase in the optimal rate at which higher order terms vanish asymptotically. In
this sense the proposed procedure reduces the asymptotic MSE of the estimator by an order of
magnitude.

Massachusetts Institute of Technology, Dept. of Economics, 50 Memorial Drive E52-251B,
Cambridge, MA 02142, USA. Email: gkuerste@mit.edu. Web: hitp://web.mit.edu/gkuerste/www/.
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A. Proofs

Proof of Lemma (3.1). Recall Dy = n_QX’ZMKMQX/[lKMZMX. First we will split the error

Dy — D into four different parts as
ﬁk—D=H1+H2+H3+H4

where Hy = Py, Ky Q) Kar Py — P'Q P, Hy = Pl Ky} Ko Par — Py K Q) Kar P, Hy =
—p&KMQX; (QM — QM)QX}KMIE’M and Hy is defined in (A.14). The terms H3 and Hy contain

a Taylor series expansion of QX; around QX; given by

. . . 2
(A.1) a7} = a3} —Q;;(QM—QM)Q;;+B+o,,(HQM—QMH )
where B has typical element k, [ given by vec(Q M=) % vec(Q M — Q). In Lemmas
(B.9) to (B.11) it is shown that Hy = Hy1 + Hyio + Hyz + Hig is

(A.2) Hy = PyQy}Pu—PQ'P=oM%)
(A.3) Hiy = Py(I—Ka)Qy (I — Ky)Pu = O(M %)
(A.4) Hiz = —PyQy (I - Ky)Py = O(M™9)
(A.5) Hy = —Py(I — Kn)Qy Py = O(M™9)

where = means ’equal by definition’. In Lemmas (B.12) to (B.15) the term Hy = Ho11 + Ha12 +
Hs91 + Hogo 18 analyzed to be

(A6) Hoy = — (P — PM)' KarQ i Kar(Par — Par) = Op(M/n)

(A7) Hyo = Py KuQ; Ka(Par — Par) + (Par — Par) KneQyft Kni Par = Op(n™Y2)
(A8) Hy1 = — (Py— Pu) KnQaf Ky (P — Par) = Op(M/n)

(A9) Hyo = Py KuQtKa(Par — Par) + (Par — Par) KneQf Kg Par = Op(M/n/?).

where Py is defined in (3.2) and P}, = [ffy, - fﬁﬁ,ﬂ where 7Y = n= Y0 1)1 Wej

Lemmas (B.16) and (B.17) show that Hs = Hsy + Hsa + Hss + Hsy is

(A10)  Hsz1 = (Py— Pu)' KuQt (Qar — Q)0 Kar(Py — Par) = 0p(M/n)
(A11)  Hiy = —PyEKu Qo — Qn)Qyf Kar(Pyr — Par) = 0p(M/n)
(A12)  Hzz = —(Pu— Pu)EKuQyf Qs — Qur)Qyf Kar Py = 0,(M/n)
(A13)  Hay = —PyKuQyt (o — Q)0 K Py = Op(n™Y?)
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and H4 which is a remainder term defined as
(A.14) Hy = PyKa(Qy) — Q0f + Q0f Qs — Q)0 Kar Py = 0p(M/n)

where the last equality follows from Lemma (B.18).

Next we turn to the analysis of dy; = pj’wK MQ]T/}nfl/ 2y " etemZtn K which is decom-
posed as dj, = Z? d;. Define Vs = [n*1/2 S U s VY, ”2,[MJ/ with V' = V, such that it
follows from Lemmas (B.19) to (B.28) that

(A.15) d = P'Q W =0,01)

(A.16) di = PyuQy Vi — P'Q W =o,(M™%)

(A.17) dy = Py(I = Kun)Qy (I = Kar)Var = Op(M29)

(A.18) ds = —Py(I— Kun)Q Vs — Payf (I — Kap)Vag = Op(M ™)
(A.19) o= (Pu- PM)' KarQ - K Var = 0,(M/n)

(A.20) ds = (P — Pu) Ky KarVar = Op(M/n*/?)

(A.21) ds = (Par— Par) Kni (Qar — Qan) KaaVar = Op(M /)
(A.22) dr = Py KuQt(Qu — )0 KaVar = Op(n~Y?)

(A.23) ds = Pl KyBKyVa+ o0, (M/n) = O,(M/n)

(A.24) dg = n'/? S e Ky Kor [ @ (71— )] = Op(M/n?/?).

We consider the terms in the expansion D! Z?:o d;—D7! 2?21 Z?:o H;D~1d; of the estimator
which depend on M and n and are largest in probability. From the results in Equations (A.2) to
(A.24) it follows that the largest such terms are Hia, Hi3, Hi4, H222, do, d2,d3 and ds. Of those
terms we examine cross products of the form Edidg, Ed;dyD™'H; and EH; D~ 'dydyD~1H;. The
largest terms vanishing at rate M~7 as M — oo are Edod; = —M _qqugq) + o(M™9) as shown
in Lemma (B.31) and —Edody D~ (Hy3 + H14) = M‘qk:quq) + o(M~9) by Lemmas (B.19) and
(B.34). The two terms cancel because they are of opposite sign.

Terms of order M ~24 include Edydly = MfzquB(()q)—I—o(M*zq) by Lemma (B.30) and — Edody D~ Hj, =
—MfzquB(()q) + o(M~27) by Lemma (B.29). Since Edody and —FEdodyD~'H{, are of opposite
sign these terms cancel. We are left with E(d3 — (Hi3 + H14) D~ dg)(d3 — (Hi3 + H14) D~ 'dp) =
O(M~29) by Lemmas (B.11), (B.19), (B.31) and (B.35).

Terms that grow with M and are highest in order are HgoD 'dg and ds. It follows by
Lemma (B.33) that the cross product term EHQQQDildodg is of lower order. We are left
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with EHage D tdydy D~ H}py = O(n™!) by Lemma (B.32) and Edsdi = O(M?/n) by Lemma
(B.36). W

Proof of Proposition (3.3) From the proof of Lemma (3.1) we only need to consider the
terms A, = Edsds and B, = E(d3 — (H13 + H14) D Ydo)(ds — (H13 + H14) D~ 1dp)’. Since for all
n > 1 we have 4,, > 0 and B,, > 0 it follows that liminf,, A4,, > 0 and liminf,, B,, > 0 such that
A and B are nonnegative.

From Lemma (B.36) it follows that
2
EOD™YV2dsdi D720 = M? /n ( / k:2(:r)d:r> A D7YV200 DTV AL 4 o(M? /).

From Lemma (B.31) it follows that M?Edods = —kaB\? +0(1) and from Lemma (B.19) it follows
that Edod{, = D + o(1) such that

M E(Hy3 + Hia) D dody D™ (Hiz + Hia) = k2B DB + o(1).
This implies that
E(H13 + H14)D71d0dé — E(ng + H14)D71d0d6D71(H13 + H14)/ = O(M72q)

or in other words B,, = Edsdy — E(H13+ H14) D dodyD~ (Hy3+ H14) +0(M ~29). Here Edsd}y =
M—24B 4 o(M~249) as shown in Lemma (B.35) where B{? is defined in (3.6). W

Proof of Lemma (4.1) The only difficulty here is to show that Z&] +mf§?ik is \/n-
consistent. Let § be a y/n-consistent first stage estimate. The estimated residuals & = (y; —
) — B (z,— ) are used to estimate éj. Let g(\,0) = ]9(6”‘)]2 with 0(2) =1—012— .0, 12™ %
Define the parameter space ©; C R™~1 such that 6 = (01, ...,0,—1) € O1 if 6(2) # 0 for |2| < 1.
By Assumption (D) 3 ©9 C int ©1, 02 compact such that 6y € Os.

The periodogram of &; is ffL(A) =n! ZLS 21256M=8)  The maximum likelihood estimator

for € is asymptotically equivalent to
(A.25) 0 = arg min AS(6)

with A% (0) = n~1 32 I5(X)/g(X,0) for Aj = 2mj/n, j = —n+1,...,0,....,n — 1. Define I5(\) =
nil Zt,s Stgsei)\(t *) st( ) 71 Zts 6t($8 - Mm)ei)\(tis% Irgia(A) = nfl(@o - Oé[)) Zt,s(xt o
f,) NS T (N) = n Gy — o) Zts giet=5) and I¢(\) = n~ (a9 — ap)? Zt’s eMt=3) for
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Qo — Qg =1 — Hy — B,(i — p). It follows that

L) = L+ @E=0I; N (B~ 8)+ 17N
+2 (5= B) T (N) + 2150 + 260 — a0) (3 — BV I (V).

Note that If,f()\j) = Iﬁa()\j) = Iza()\j) = 0 for j 75 0 and Ig()\j) = n(@o — a0)2, Ifba(Aj) =
(&o — avg) Y, &¢ for j = 0. We now have

AS(0) = A5 (0) +2(B — B)'A;F(0) + (B — B)AL(0)(5 — B)
2(60 — ao)n™" Y (er + (w1 — 1)) + (60 — a0)?| /9(0,0).

t

_l’_

From standard arguments (see Brockwell and Davis 1991, ch 10) it follows that A2®(9) “% A% (6)
with A%(0) = 27 [ fap(N)/g(\, 0)d\ and 0FA2(9)/00 “3 0FA®(9)/90 for k < oo such that
A () — 27 f fee(N)/g(\, 0)d\ uniformly in § € ©,. Consistency of @ follows from standard
arguments.

To establish /n-consistency note that /ndAZ(0)/00 = Op(1), n~/23, & = Op(1) and
n=12 3, (x4 — py) = Op(1). Therefore

(A.26) VNOAE (0)/00 = ndAE(0)/060 + /n2(3 — B)' OAT(0)/060 + o, (1).
We also define OA®(0)/00 = 27 [ f-(N)Dg~ (A, 0)/00d such that

OAL(6) A% (60)

(A.27) % o0

H OAE (6)
00

A= (0) -
20 | =

OA(0)  OAL(0) N
a0 a0

where ||0A(6o) /06| = O,(n~'/?) by (A.26). Definition (A.25) for § implies that

ONE(B)  OA%(D)
a0 a0

OA5(0) _ 9A5 (o)

B OA;, (00)
a0 a0

| = Op(n=12).

<2

Finally

— OAZ(B)/00 — / 2 £.(\)dg~L(\, §) /00dA
+(B = B) (O(A="(0o) + A" (00)) /00 + 0p(1)
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where the second term is O, (n~1/2) since (3 — §) = Op(n~"?). The first term can be written as

OAS (8)/00 — / 27 - (A\)dg (A, B)/90dA
=n~t Y () = 27 L (3)] 997 (%, 6) /00

LS 2 ()01 (N, 0)/00 — / 27 f.(\)Ag~L(\, §) /90

where the second term is O(n™!). Now define &;(0) = (2m)~! [9g~*(X,0)/00e dX such that
991X, 0)/00 = > &;(0)e=™ and

n” Z 15 () = 27 f=(A;)] 89~ (N5, 0) /06

_ —22 Z Z £is — E6t6s)§l( ) X (t—s—1)

j t,s=ll=—oc0

n  n—|min(l,0)|

= n! Z Z (cter—1 — Beigrg) §(0)

l=—n t=max(l,1)

n 1/2 n 1/2
( Z |72 (n_l Zt (etep—y — Estet_l)>2) ( Z R 51@)2) +nt Z (5? - Ee?)

IN

I=—m

where the second equality follows from n=! " j eXi(t=35) = () for ¢ # s and the inequality follows
from the Cauchy-Schwarz inequality. Then note that n='Y", (e7 — Ee?) = Op(n=1/2),

E Z 1|72 <n*1 Zt (erep—) — By ) Z 1|72 *22 {Estat 1= Eatst,l)ﬂ =0,

l=—n l=—n

and 37 |1)* ¢(0)? is uniformly converging for 6 with |0 — 6| < & for some § > 0 such that 6(z)
has no zeros on or inside the unit circle. Consistency of 0 then implies S |I|* ¢;(8)? = O,(1).
These results establish that HaAE A0 %(,(H)H = Op(n~'/?). From (A.27) it then follows that
OA® P N
HJ—EH = O0,(n~"/2) such that by a continuity argument \/n(6 — ) = Op(1).
We next show that 0-1 ) Cj+mf§7ik D) CiamI 5y, = Op(n=1/2). Write

n—1
Z Cieml§ Z<a+m ok = Z Ca+m( - fyk> > (Cﬁm*é‘ﬁm)Fﬁk-
j=—n+1 j=—n+1 j=—n+1
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First consider

j—k

5 s
j=—n+1

n—1
o LR DY et
J j=—n+1

where P(sup; Hz i =G H > Cn~Y 2) goes to zero for some C large enough by the previous result.

For any 6 such that |0 — 0y| < 6 implies 0(z) has no zeros on or inside the unit circle consider

Pl ) < e (0 e S el

10—60|<6
nyk —F]ka such that

e (’9—90] > 5)
i k—F?ka |

’FLI /2 sup E ’
j—*Tlri’l

[0—00|<é

5215 ]

T =0
by Equation (B.2) and the fact that supjg_g |<s Z?;inﬂ ]Cj (9)] = O(1). In the same way it
follows from Equation (B.3) that

1/2
n |6 S;II‘L@ Z]*—n-‘rl ’(J (0)’ E )

I, =T || = o).
This establishes that A; — A; = Op(n~12). B

Proof of Theorem (4.2) We first show that n/\/W(BnM* — anM*) = 0p(1). The decom-
position y/n <Bn,M* — fin,M*> = f);j* <15M* — DM*) ﬁ;zl* CZM* - ﬁ;j* (CZM* —dyy+) is used. Note
that Dy« = Op(1) and dp+ = Op(1). The following calculations also establish Dy = Op(1)
and dy;. = Op(1). It is therefore enough to show that \/W(DM* - lﬁM*) = 0p(1) and
Vn/M*(d . —dar+) = 0p(1). Define kyy = diag(k(1/M), ..., k((n—m)/M)) and Ky = (kny®1,)
and let P, =n"1X'Z,_,, and

Q 0 Q) 0
o= = | M
0 In—[M}—m 0 In—[M]—m

with Q}k\/f and Q}‘M_l defined in the same way replacing s and Q]T/[l by Qs and Q]T/[l Using these

/ /

definitions we can rewrite ciM = n_l/zp,{b_mf(MQ”j\Zl K Mz;l_mg, First consider
S/ M*(d 5 Z R . .7
* = P B S 2* 1 K *—1 —
n/ (dM* dar+) vn/M*( ! \/ﬁ — Pﬁ_mKM*QM* K+ ”\’/g

= /n/M*(P_ [A YA+ R A+ A 0 Ry

9

)

Ry (0 032) Rar Z@—gff)
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with Ay = K. — K+ From Assumption (H) it follows for ¢ = A/B@ that ‘k(j JM*) — k(5 /M*)| <

Cyn~1/(2a+2) || |/ (Ra+2) — 1/ (24+2)| for some constant C1. Denote the k, j-th element of Q.

by 19j1 jo- Then
~ A1 Z;L_m€ - T
VAT Pl 3 0 R 22— B G5 ST 0 [/ — K0 V] 0, G M s

t 1 j1,52=1

= nECy [dP +d8 + dd + df + 2+ b+ d?)

where d* = f Dot Z;LI JZL 1 Ffly [ (Jl/M*) - k(Jl/M*)} ﬁ;l,ij(jé/M*)vta]é?

Z S (B = 1) [RG/NE) = K /M| 55, G M s
t 1j1a]2 1
and similarly for d2,...,d5 corresponding to Definitions (A.20-A.24) for ds, ..., dy where we re-
place Kp; by A v+ and Y, by Q}‘V[ in the same way as in d4A. We consider the largest term
ds'

2q+1
n4q+4d5 H <Cin Tt

|

By the same arguments as in the proof of Lemma (B.24) it follows that

D S S [ A PRV T

t=1 j1,j2=1

= 0,(M") = Oy(n!/2412)

(A.28) be il || (52 = T52) 05, Gia /M) D0

Ji,j2=1

where we have used that Zjl |71 Hﬁjl o H < oo uniformly in ja since 7, ;, has the same summa-
bility properties as 9;, j,. Also note that k(jo/M*) = 0 for |ja| > M*. The bound (A.28) implies
that nir 5 = Op(n~(2at3)/Uaet) a5 long as [él/(2a+2) — /(42| = O, (n~1/2) which follows
from Lemma (4.1). Using similar arguments based on the proofs of Lemmas (B.23,B.25-B.28)
it can be shown that the remaining terms d*,d5...,d5" are of smaller order. For d® note that

Z]l Ja=1 |71l ) xyﬁ* = O(1) such that

Ji,J2

J1 V1,32

S [kGo/M) 11| (E |32 v/ v )1/2 o)

Ji,J2=1

and thus nir d2 = Op(n~=(2a+3)/(4a+4)) as long as |e/(2a+2) — V/2a+2)| = O, (n~1/2).
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A A ! 2¢+1
or 4 /n/M*P[L,mAM*QE*lAM* Z"\;ﬁms — piati Oy [d2 + ...+ d5® + dB2] we define

i S T [ /T) — RG] 9, [ 507) = i/ M)

t 1 j1,j2=0

N\ 172
CEISi wa/ VAl ) =
O(1) it follows that s gAs = Op(n~(2a+7)/(4a+4)) ysing the fact that |él/(2a+2) — ¢1/(2a+2)] =

O,(n~"/?) by Lemma (4.1). For niska d2® note that

:ry,ﬁ*

and similarly for the other terms. From 3 7" (]jﬂ |72 ’ V% s

max([M*],[M*])

lag2 < > il || (5 - T50) 5, D v

J1,J2=1

such that for any finite € > 0 and some C

P (M2 2] > €)
[M*+e]

*— . . = * n
< PN Gl | (T3 - T5) 5 S v

J1,92=0

>C | +P(M* > M* +e).

where [M* + €] denotes the smallest integer larger than M* + €. Using the Markov inequality it
follows that

*—2 Ryl C s T ay||? 12 —1/2
ey yjly|]2|(E rev e > o ( > 1vt,p/\fH> O(n~1/2)

J1,j2=0

2g+1
by similar arguments as in the proof of Lemma (B.24). Therefore picts deB = Op(n~Aa+5)/(dat+4)),
The remaining terms are of smaller order by the same arguments as before.
Finally, for \/n/ M* A/ f{M* (Q*_l — Q}‘Q}) K Z\/— we expand Q around QM* and

Q’]‘V[* around Q%! as in (A.1) leading to

(A.29) O L= Ont - O Qe — Q)0 + o HQ o
and
(A.30) it = - (e — ) o, HQ o)
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Using the fact that P(M* > M*+¢) tends to zero we can show that HQL* — Q|| = Op(M* /n1/?) =
O, (n77) while HQM — Q.|| = 0,(n/24+2)) by Lemma (B.8). Combining (A.29) and (A.30)
then leads to

QL Onl = O (g — OO+ o,,(H% o

)

with Oppe = Q4 — Q31 (Q%,. — Q%,.)Q%. We then consider

> % *—1 7 A* A% *—1 1o Zn—mg
(A3Ldio = /n/M*By_p K Q0 (e — Q)0 K NG

7

> % *— * Ak *x—1 /A% Ak *x—1 17 n—m¢&
(A32)[dn = Vn/M*P'r/LmeM*QM*l( M* — M*)QM*l( M**QM*)QM’}KM* Vn

3

A . . . - 7,
/M B Ko (e — Q5 ) (e — Qg ) Ky =2

Vn
(A33M1s = N0/ P Ko O (Ve — Q3 )57 Qe — )
Z;L_ma
Tn
By Lemma (B.37) it follows that di9 = op(1), Lemma (B.38) establishes d11 = 0,(1) and Lemma
(B.39) shows di2 = 0p(1). It now follows that

<N — U K

!
Z €

Vn/M*P._ K- (Q*M7*1 — Q*M_*1> K- \/ﬁm = dio + di1 + di2 + 0p(1)

by the Taylor expansion theorem.

Next consider

\/TL/M*(DM* — DM*) = \/n/M*(P,rllfm [AM*Q;};}AM* +KM*QE*1AM* + AM*QE}KM*
R () - ) Kare| P).
First, we analyze Pﬁ_mAM*Q;‘\;;}K}WPn,m = H + HY + HA where HY = HS, + HSo +
HS, + HSo, HY = HS + HS + HL + HS, and the definitions follow from the definitions
in (A.6)-(A.13) with the appropriate substitutions for QE} and Ay,.. Furthermore let H® =
S ST TR (/M%) — k(i M*)d h(j/M*)TY" . Then
fal B |HA|| < niei Oy /a2 |1/ o) Cl/<2q+2>} i
J1,j2=1

n—3/at ) ’@1/<2q+2> _ Cl/<2q+2>’ 0(1) = O, (n~3/at+9).

T2YY* - f(jo/ M)V

Ji1 7 J1.J2 —J2

il
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; A
Now consider Hjs,

TN | i) < =8/ 00500 /0032 — /| S 4y (05 < T52) 0, b )T,

J1,j2=1

and by the proof of Lemma (B.15) it follows that £ %", |j1] H (fiy — Fff’) 95 i (jg/]\f")f‘zf;2
O(n=Y/2M*) such that /n/M* | HSs|| = op(n —3/(4a+4)) Using the results of Lemma (B.17) we
can show in the same way that \/n/M*||H&| = op(1). All the remaining terms are of lower
order by Lemmas (B.12-B.16).

Next, we turn to Pﬁ_mAM*QE}AM*Pn,m = H{A + HSA + HA® where HYA HYA HAA

are defined in the obvious way. It follows immediately that

/n/M* HHAAH < n~@ad)/Uat) oy }61/(2q+2) _ Cl/(2q+2)}2 niél il Lol ’

J1,J2=1

xy * y:r
J1 19]1,]2 —Jj2

= ()p(n*(2q+5)/ (4q+4))'

For Hyy3 wenote that £ Y77 ™ 1] |z ’ L35 TV |1 = O(1) such that again /n/M* || H5 || =
0p(1). The same type of arguments also establish /n/M HH3 AH = 0p(1). All the other terms
are of lower order.

Finally, we turn to y/n/M *Pé,mf( M <Q};*1 — Q}k\/;*l) K+ Py for which we consider

(A34)Hs = +/n/M*P._ KM*Q}‘\;}(QM*—Q*A ) K P

(A35)He = /n/M*P)_ Ky (Qnpe — Qap )0 Qi — Qo ) Kiage P
H/n/MBy, Ky (e — Q)0 }( e — ) K By
(A.36) H; = \/n/M*PLmKM*Q}‘\;}(QM* Oar ) (e — Q)

*—1 A -1
XQM* ( M* - 7\4*)97\4* KM*Pnfm.

Lemmas (B.40-B.42) establish that Hs, Hs, H7 = 0p(1).
Next we show that

lim T [, (M, k() b, 1) = Pun (V7 £ R, )| = 0.

h—o00 N—00

This result was shown by Andrews (1991), Theorem 3(c) and follows immediately from n/1/M* (Bn e
Brpr-) = 0p(1). B

Proof of Proposition (5.1) We consider Ed; and EH;Dd;. First, Ed; = 0 for ¢« < 3. The

terms dg, dg, ..., dg are of lower order by Lemmas (B.23,B.25-B.28). The terms EHinldj are all
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of lower order. The largest order term is therefore Eds. By the proof of Lemma (B.36) it follows
that Eds = M/v/nAy [ k?*(z)dz + o(M/y/n). R

Proof of Theorem (5.3) We consider the expansion of \/n (ﬂ;‘; v — B)as before. The
analysis of the MSE of \/n (8}, )y — 8) is then the same as the analysis for /n (8,, ys — 3) where
we replace ds by

ds = ds — %A’l/k%)dx

and the additional term di3 = M/\/n(A; — A1) [ k%(2)dz needs to be considered. First note that
Eds— %D‘lA’l [ k*(z)dz = o(1). Then Edsd = E(ds — Eds)(ds — Eds)' +o(1). From the proof
of Lemma (B.36) it follows that Edsdy = O(M/n). Also Ef'Hayge D 'dodsD~'/2¢ = o(M/n) by
Lemma (B.33) and di3 = Op(M/n) together with Lemma (B.32) shows that all remaining terms
are at most of order M/n. W

Proof of Theorem (5.4): First note that

. X . . 1 . . , .
N = (LK) Py KOy Koy By — n’lkX’An(QD)X} n~! ((1 + k) P Ky K 2, — kX/An(cb)) Y

with n=Y2k P, Ky K Zne = Op(M/n) and kPj, KOy ) KarPar = O,(M/n). Tt therefore
follows that ﬂng - B";M = Op(M/n). Next note that

nVPkEX! Ap(®)e = M /2> "N "¢, T5" 4+ o(M/n'/?) = M/n'/? / k(x)2da A, + o(M/n'/?)
t=1 s=1

by the Toeplitz lemma. The term o(M/n'/2) stands for replacing z; — & by x; — p, in X and

allows the sums not to be exactly from ¢t = 1, .., n. The details of these calculations are omitted.

The variance covariance matrix of n~1/2kX’A,,(®)e is given by

n

n
Va‘r(n_l/2kX/An(¢)6) = n_lkz Z Z Ct1781<t2732 [Ffla—szrfzx—sl + Vfl—tzrgf—sz] + O(M2/n)

t1,t2=1 s1,52=1
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and setting u = t; — sg and v = t5 — s; leads to

M2 & -
§ § xe ex € TT
ng Ctlfsl (tgfsg [Ftl—szrtz—sl + 7t1—t2F81—82:|
t1,t2=1s1,52=1

min(n,n+v) min(n,n—u)

M2 n—1
- F Z Z Z <u-ﬁ-tz—Sz <152—82 [Fﬁ&riw + 7151-&-82—152 Ff)f‘SZ_t2:|

u,v=—n+1ty=max(v+1,1) ss=max(—u+1,1)
= O(M?/n?)
which shows that n='/2k X" A,,(®)e — M/n'/? [ k(z)%dz. A} = O,(M/n) such that

dis = 02X A (&) — M/n/2 / k(2)2de A, = O,(M/n).

This follows from n~1/2kX’ <An(<i>) — An(CI))> € = op(M/n). In the same way it can be shown
that n kX’ A, (®)X = O,(M/n). The result now follows from adding the term

dys — M/} / k() 2dw A,

to the expansion of d,. |
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B. Lemmas

B.1. General Results

We first recall a few well established results on higher order cross cumulants to introduce notation.

A reference for this material is Brillinger (1981).

Definition B.1. Let u; € RP be a strictly stationary vector process with elements u} such that
Fu;=0and E (ui) < oo. Let £ = (&4, ...,&) € R* and u = (uﬁ, ,ui’;) then ¢; ;. 4 4 &) =
FEei€'v is the joint moment generating function with corresponding cumulant generating function
e, it 4. (§). The joint k-th order cumulant function is

. 8’L)1+...+’Uk
cum;, (1,5 tk) = DT D le=o &y, it 1, (6)
1 K

where v; are nonnegative integers v1 + ... + vy = k. Alternatively the notation cum*(uii, ey u;’;)
is used where more convenient. By stationarity it is enough to define cum;, _;, (t1,...,t5—1) =

Cum;‘h...,ik (t17 (] tk*l? O)

Definition B.2. Let u; satisfy Assumption (B). Then the k-th order cross cumulant spectrum

of ugt, ..., u;* is defined as

o) [e's) k—1
fi17~~-ik (/\1, ey )\kfl) = (27T)7k+1 Z e Z cumy, . g, (tl, ey tkfl) exp{ —t Z /\j
j=t

t1=—00 tp_1=—00

for oo < \; < oo.

Lemma B.3. Assume y; satisfies Assumption (C). Let ci be the i-th row vector of Cy, such
that yi = pi, + Y32 chur—- Define the 1 x p vector polynomial ¢'(L) = Y 22 ¢, L* with j-th

element ¢/ (L) = 7%, ci’j L¥. The cross cumulant spectrum of (y™*, ..., y/*) is given by

P P . . . k-1
gt Oy s Npm) = (2m) TFFEN TS 7 (@) o k(e = M) (M A,

n=l gr=1

the cross cumulant is

Py ik */ 1 Tk—1 i
cum (ytl,...,ytk) cum (ytl—tkv"-?ytk,l—tkvyo)

P oo
_ E : E : 1,51 12,52 osJk
= C. g TN CUMyy gy (ll +t1 —tp, .yl H 1 — tk)

1 2
J1=1,..,jk=111=0,...,lx=0
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. o) o0 x( 11 i1 ik
and satisfies ) ;> -+ Ztk,lz—oo ’cum (Yir b5 Yty 110 Yo' )| < 00

Proof. The first part follows directly from Brillinger (1981, Theorem 2.8.1). The cumulant

cum*(y;!, ..., y;*) is obtained from

v o —i SRt
cum (ytl Yoy ytk) = <. fyil,...,yik (/\1, ceey )\k,1)€ J AN AN 1.

For the summability of the cumulant note that

o o
Z Z |cumi17_”7ik(l1+t1 e T e —tk)| < o0

t1=—00 tp_1=—00
uniformly in [y, ...l by Assumption (B). The result then follows from the absolute summability

1,J1
L

of ¢ forj=1,...,n. A

Definition B.4. The p? x p? commutation matrix K,, = szzl ei€; ® eje; where ® is the

Kronecker product and e; is the i-th unit p-vector; see Magnus and Neudecker (1979).
Using these definitions we prove some results for higher moments involving matrices.

Lemma B.5. Let W, X,Y, Z be random vectors with elements w;,x;,y;, z; such that Fw; =
.. = Ez = 0 and E|z;|* < 0,...,E|z[* < co. Let A and B be fixed coefficient matrices of
dimensions such that the matrix product W/ AXY'BZ is a well defined scalar. Then

EW'AXY'BZ = (vecA) BE(X®@W)E(Z' @ Y')vec B' + tr(EAXZ')(EB'YW')
+tr(BEAXY"(EBZW') + K4

where Kq = 3. 3 2a51,52bjs js cum™ (wjy s Tja, Yjs 254 )-

J1s--504
Proof. The scalar expression W/AXY’BZ can be written equivalently as (vec A) (X @ W)(Z'®
Y'vecB = tr AXZ'B'YW’' = tr AXY'BZW’. The result then follows from E(w,z,y,z) =

E(wz)E(yz) + E(xy)E(wz) + E(zz)E(wy) + cum(w, z,y, z). R

Lemma B.6. Let X,Y be random vectors, W, Z random matrices with all elements having
zero mean and A, B fixed coefficient matrices such that the matrix product WAXY'BZ is well
defined. Then
EtrWAXY'BZ = (vec B')/ E(Y @ Z)E(X' @ W')vec A+ tr(EAXY')(EBZW')
+tr(B'@ NE(Y' @ W)(I @ A)Evec(X) vec(Z") + K4

where Ky = Zk;z Zaj1,j2bj3,j4 cum™ (Wi k, Tja s Yja» Zjak)-
J1s5-e504
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Proof. Note that tr WAXY'BZ = tr(B'®@I)(Y' @ W)(I ® A) vec(X) vec(Z') and use the same

reasoning as before. B

Lemma B.7. If vi; = et1m(yt—i — py) and wi; = (Tppm — fy) (yt_i - My)/ and ¢ € RPTHP-1 jg g
vector of constants such that ¢’/ =1 then
i) E(Ut,i ® w;,jg) = ((Vec(rglit+i7j) ® (Fffs)/) + KPP(Fﬁerj ol ) + ’C}L)(I ® £) where ’Ci is

t—i—s
a p? x (pr +p — 1) matrix with typical element (a,b) equal to

_ * [(a=1)/p]+1 amodp—1 b
ab cum (€t+m7 Yei ) ysfj ’ $s+m)7

Lel

and K, is defined in (B.4).

ﬁ) E(vt,iﬁ’ws,j) = (é’l“%fs)l“yy

tostj—i T Y, (0T5Y, ) + Ki where K3 is a p x p matrix with

t—s+j
typical element (a,b)

[ICE] ab cum” (¢4m, yf—iv Ys—js Crgim),

i) B(veivg ;) = vi-sT1

tmitjs T K3 where K3 is a p x p matrix with typical element (a,b)

0 i,j>0
3 ) -_

[IC4] b - * a b . ’

curm (€t+m755+m7yt_i,ys_j) otherwise

iv) E(wgwy ;) = T3 + 47 ree + IV, IV

4 4 . . .
t—itj—s sk t—spj T K3 where Ky is a p X p matrix with

typical element (a,b)

4 .- * b [ l
[IC4(t7 S, Z?])] ab Z cuin (l‘g+m7 Litms Yt—io ysfj)7
l

v)E (v vec(wl o)) = (Fffs), QTP+ TP, + K3(t,s,i,7) where K3 is a p x p

EN t—i—s

matrix with typical element (a,b)

.o bmod p+1 b/r]+1
[Ici(twsvz’])]a’b:Cum*(5t+maygfi7ysin; P 711‘[9-‘(/‘:}7, )

Proof. These results are easily shown by applying E(wzyz) = EwrFEyz+ EwyExz+ FwzExy+
cum to each element of the respective random matrix or vector and expressing the result in matrix

notation. H
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Lemma B.8. Let Q) be defined in (3.1) and \/n(B,, — 8y) = Op(1). Let M — oo such that
M/n'/2 = 0. Then HQM QMH = 0,(M/n'/?)

Proof. Note that

o] < 5 bl -2
I=—m+1

s 135 = 31 (|| e — 20| + 120 01)
l=—m+1

where |55 — 75| = Op(n~/?) uniformly in [ for a consistent first stage estimate 3,,. For Qs (1)

we use
. 2
|3ty — 2| = 5~ 655() — g0
7.]_
Define r; = max(i + 1,5+ 1+ 1), ro = min(n,n + j) and
1 1 —T1+ T2
ENURTED T AERED SrTAN T
t=r1 t=r1
with @y, ;= wi =T, such that &;;(1) — w;;(1) = O,(n="2) uniformly in 4, j,1. For

2
M/n'/2 = 0 it thus follows that HQM (1) — z)H = M @) — wig (DI + Op(M2/n).

Now
2
5 1
o) =i, OIF < [ 57ty + (B )Hfﬁu
-1
+4_ HF]-‘rl i H Zt - ,J+l i
where

RN
EH t=r1 ’j+l g

2 T2
<n thrl Etr(wyjia-i — T8 ) (Ws g — T5, )
-2 T2 4 .
=n Z t—p {W?Ei—&-j-&-s’y?g s + ’71: Z+57t S+j + IC4} = O(’)’L )

uniformly in ¢ and j. Moreover E H -1 Sz " yj+l_i

2
Thus S0y [0t 72, w404 | = Op(M/n/2) while () 32
wmmmMzﬂthZH*an e
then follows from the Markov inequality,

P Y Jovn-ouo|z S (slouo o)
I=—m+1 I=—m+1

and the fact that [|[Q(0)]| =O(M). R

2
is summable in one of the indices, say j.

2

HFN |’ = o3 m2) =
= O,(M?/n*?) = 0,(M/n). The result

1]1
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B.2. Results for Lemma 3.1

Lemma B.9. Let Hy; be defined as in (A.2). Then Hyj3 = o(M~2%) where s is defined in
Assumption (C).

Proof. Assumption (C) implies that > . [j|” [T%|| < oo. We let Hi1 = Hii + Huz with
Hijp =P (Q}"Vfl — Qfl) Pand Hyj2 = PMQX/}PM—PQ}k\ZlP where (0}, is an infinite dimensional
matrix defined by

Qv 0

B.1 Q=
(B.1) M 0L

and I stands for the infinite dimensional identity matrix (see Kuersteiner 1999b, Lemma 4.2
for details). Let 19M be the i, j-th p x p block of £}, !

[Hin| = [[P'Q 1 (Q—Q5) QP
M
< joont L ||T5 s | Iosaa = 71 92,7,
M
2 Y gort Lo [T v | Neiaall |93, T25,
—2 2 M
< MY s 2 |33| T3 g || sz s = L1{[055.5, 75,
—2 - 12
M2t o 19817 T3 02 | Il 925,05,
which tends to zero as M — oo such that ||Hyi1]| = o(M~2%). The last line follows from the
fact that »°; . T5Y9, 4 || < 0o which can be shown by arguments similar to the proof of
Lemma 5.2 in Kuersteiner (1999b). Note that
M=o Y T
J1=[M]+1
and use the inequality
2 2
o0 o
LY ‘ij <>y — o(M~%)
J=[M]+1 J=[M]+1

leading to ||Hi1|| = o(M~2%). W

Lemma B.10. Let Hys be defined in (A.3). Then His = O(M~29).
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Proof. We write Hyjg = M 22 Z

inated Convergence Theorem

q 1=k(G1/M) gM  1=k(2/M) | . |q ¥z
Jt, ]2 L T30 1] 71 /JW 1,2 m/ﬁm 72| TZ;,. By the Dom-

[M] ) .
Z 14 ~1|q1*k’(]1/M)19M‘ 1*k‘(]2/M)’ ]ql—‘
et G /MT Iy [M 2
- kg Z Fiy 17117 Dy gy 2] FZiJ;Q = k’2B( 9 a5 M — 0o
j17j2:1

where we have used Assumption (F) such that Hiy = MfzquB(()q) +o(M™29) =0(M~27). 1
Lemma B.11. Let Hysand Hy4 be defined in (A.4) and (A.5). Then Hi3+ Hi4 = O(M™9).
Proof. Follows from Lemma (B.34). W

Lemma B.12. Let Hyi; be defined in (A.6). Then Ha11 = Op(M/n).

J1,52=1
_1 n—m .
n= Y iy wej. First note that

Proof. We write Haj1 = Z[-Ml _ (f‘iy — ffly) k(jr /M9 5 k(j2/ M) (f;’g’ — f‘ﬁ’) where f;cy =

pay o
Fjl

.717]2

[M]
| Ha11]] < Z ‘

J1,J2=1

One obtains

It

. _ _ 2 — _ n—m _ _ _ n
with B (5 = ,) (@ = p1z)||* = O(n~). Pusther, ||n~ S77 (e — )| < 1407 S0y el =
Op(1) leading to

(B.2) | = 0y(n"1/?)

PTY 7Y
I

uniformly in j such that Hai; is bounded in expectation by n~1c; Zﬂ a1 Hﬁjmzﬂ = O(M/n)

for some constant c;.

Lemma B.13. Let Ho1o be defined in (A.7). Then Hajo = Op(n_1/2).
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Proof. From (A.7) Hjj5 can be written as

[M]
Hop == 3 (B8 = F20) k(i /M)9I k(o /M)T S GO Lk (F52 -
J1,j2=1 J1,j2=1

First note that

[M]
|Haall < )

J1,J2=

ny ny

nTyY Ty
Fjl F]i

|

I‘xy f‘wy
J2

13l I3l

Now using Lemma (B.7iv)

2y 2
Ty

!

E

_ n—m ,
- ’ Zt s=j+1 trE($t+m o Mx)(yt_j o 'U’y) (ys—j - My)(‘rs-i-m - Mw)

_2 n—m
= Zts ]+1 xyryx 1—‘mct'-)/s t+Ft s+]F?tJms —J +IC4)

where v¥Y, = E(y—; — uy)'(ys,j — 1) and K} is a matrix containing fourth order cumulants

Ty
I

+ O(n™1)

of xi4m and y;—; defined in Lemma (B.7iv). This together with the arguments in the proof
of the previous lemma shows that E ||Has| < n=1/22 ngz -0 Hﬁ i+ 0o (M/n?/?) =
O(Mn_3/2 + n—1/2) — O( —1/2).

ol |

Lemma B.14. Let Hay; be defined in (A.8). Then Hao = O,(M/n).

Proof. From the definition Hao1 = Zg-?ﬁ-Fl (f;rly - me> k(jr/M)93! a2/ M) <f§’: - Fé’:) .

Using Lemma (B.7iv) we consider

- 2 _ n—m (j +1+ m) 2
Ty _ ey 1 v y
Bl -r; H N R e
+ 1+m ey -1
e 2 ol
where ZHLE™ ‘ || = O(n~!) uniformly in j and

n—m 2 _ n—m - - _
(B-3) EHn_lzt:ijt’jH - ZZt g+1 5Tl + 1Y S+JF?tJ 5— J+IC4) O(n™)

uniformly in j. Then

S (£ T ol (05, — 1, ks3] /)|

jla]2:1
12 YT yx 2
G

= 2]17.72 1 <E‘
<on S gl = O /).

Ji,J2=1

E

ny Fwy
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where C' is some constant. H

Lemma B.15. Let Hyyo be defined in (A.9). Then Hayy = Op(M/nl/Z).

Proof. Using (A.9) we write

!

— e ]1 M 72 - "

Hom = = Zh,jg 1 ]1yk )19]1 jzk( ) (Fy_p - Fyi]2>
[M] ]1 M ]2 T

a Z]Lh 1 < g FJl > k(g )19]1 jzk( )inh

We use the same arguments as in the proof of the previous lemma to obtain the following bound

g ' 1/2
% Ny x J1 J2 _
B 0 (15, 1) MG = on > (Ee7) ™ 1ot e
Ji,j2=1
= O(M/n'/?)
1/2

2
Yy _ 1TY
FJl Fjl

< Cn~'/2 uniformly in j; and E Hf;;y

O(1) uniformly in js. The result then follows from Markov’s inequality. ll

Lemma B.16. Let Hs; be as defined in (A.10), Hsy as defined in (A.11) and Hss as defined in
(A.12). Then H3z; = op(M/n), Hss = op(M/n) and Hsg = o,(M/n).

Proof. v — F;T"y

of Lemmas (B.12) and (B.14) as well as the fact that the blocks of Qy; — Qs are uniformly

= Op(n_l/ 2) uniformly in j as shown in the proof

O,(n~%/?) and summable over one index as shown in Lemma (B.17). Then

[M]
D DA

[M]
3l g = Gl 930, ka2 £, — T,

Ty 7Y
Fjl 1—‘j1

G MO, [ s = @il 1935 IRGia/DD] || £, = T2,

)

where aM = ZEA:(% TV k(j /M )93!. The term in the first line is bounded by
Z[M] ’
Jj1=1

Ty 7Y
Fjl Fjl

nTY _ ey
Fjl Fjl

[M]
3 sie 193 i = Gl 19 |25, =T,

= O,(M/n'/?) by the arguments in the proof of Lemmas (B.12) and

where Zjl 1
(B.14) and

EZJI ja=1 19512 | g2 s = @ 1|95, 54 HI‘%”L - T,

< Ezjl,,,m:l Hﬁ%jQH (E ijz,js - ‘:}Jé,jsH > Hﬁjg ]4H (E HF_M - Fi’%@

/
2>1 T O(M/n).
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The term on the second line is

[M] . . - ” _
> a3 | esatn = @il 9305, | 1 Gia/ 3] |[£25, =T | = Op(n™)

J25-Ja=1

such that the result follows. The arguments for Hs; and Hss are identical. W
Lemma B.17. Let Hzy be defined in (A.13). Then Hzy = O,(n~1/?).

Proof. First note that Hs4 can be written as Z%ﬁgﬂ a%(wjl,h - @jl,jz)a;é\/[ with aM =
ZEJ\:/‘% F;yk(j/M)ﬁ%. Note that |la|| <3752, |05 || such that ||a}|| is summable VM. Then
[M]

[Hsall < > Nad! || Nlagd | lwsge = @51l
Ji,J2=1

Furthermore

m—1

ijl,jz - djjth” < Zl:—m—i—l |’V‘lE - ’S/ﬂ (ijlaj2(l) - @jl,jz(l)n + ijl,jz(l)H)
m—1 R
+ Zl:—m—i—l |’Y?| ijl,jz (l) — Wy jo (Z)H

such that by Lemma (B.8) E ||wj, j,(1) — @, 4 ()] = O(n~'/?) where the bound holds uniformly
in j1, jo2 and [. The result then follows immediately after standard probability manipulations and

an application of the Markov inequality.
Lemma B.18. Let Hy be as defined in (A.14). Then Hy = o,(M/n)

Proof. We use the matrix valued Taylor expansion Q]Q[l =Qy — QX;(QM —Q\)Q +B+R
where R = 0,(||B||?) and B can be expressed as B = Qyf Qs — QM)QXj(QM — QM)Q]T/} to
write Hy = Hyy + Hyo where

Hy = PyKyBKyPy

Hyy = Py KyRKyPy.

Further decompose Hy; = Hy11 + Hy1o + Hyi3 + Hy14 where

R N/ . .
Hy1y — <PM — PM) Ky BEKy (P — Por)
Hyo = p]/WKMBKM(PM—PM)—F(PM—PM)/KMBKMPM

Hyus = —(Pu—Py) KuBK)y (Py — Py)
Hyy = PyKyuBEKy(Py — Pu) + (Py — Pu) Ky BKy Py
Hys = Py KyBKyPy.
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It follows immediately that Hsi1 = op(Ha12) such that we consider
A A ~ [M:I ~
HPMKMBKM(PM - PM)H < Y g 1@rgs = W) 10535 11 (@55 — wis i) 1B,

Jlse-sJa

N M] ||tz 7 M] || fyz e
where a; = chz}l ’ Y HﬁkMgH and b; = chz}l Y -T%

(B.12) it follows that l;j = Op(n~/?) uniformly in j. Also

|

where the bound is uniformly Op(1) in k implying that a; = Op(1) uniformly in j. Since

‘ Hﬁij H . From the proof of Lemma

~ay
Ly

n n n
<n DY el ]|+ 12IEE 1200 ekl + gl flall
t=1 t=1 t=1

[M] )
- /2 ) 1/2

> (E [(@51,52 — wjl,jg)HZ> 192, (E 1(@js,0 — sz,j4)||2> =O(M/n)
J1yeesja

by the proof of Lemma (B.8) it follows that Hyjs = O,(M/n/?) = 0,(M/n).

Since Hy13 = op(H14) we consider now

[(M] [M]
| PreK e BK s (P — Pa)|| < supg 0 Y 1(@550 = @jn o) 105,55 1 1 (@55 s — @i )
J ko Jyenda

where a; = Zg\ﬁl Hfin Hf}% | with sup; @; = Op(1) by the same arguments as before and 13; =
SRD (T4, = T2 [[9R5]] such that SR H, = O,(M/nY/?) since B[P, —T¥[* = O(n~Y)
uniformly in &k as shown in the proof of Lemma (B.14). It follows that Hyj4 = Op(Mz/n3/2) =
0p(M/n) as long as M/n'/? — 0.

Finally

[M]
1Has | < D @i 1@hgs = Wi ) | 105,55 1 1@ s — wjs o)l
1y

with a; = Zg\ﬁl }|Fiy“ Hf}% ‘ such that a; is absolutely summable. This implies that Hy5 =
Op(n1).

For Hys we can use the fact that R = o, (||B |]2> by the matrix version of the Taylor expansion
result (Gawronski, 1977). By the same arguments as for Hy; it then follows that Hys = op(M/n).
|
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Lemma B.19. Let do = —= 371" 327 1o IV 051 jaVt,jo- Then limy, Edodfy = D.

Proof. Note that Edy = 0 and using Lemma (B.7iii)

po_ 1 vy . yz
Edodﬂ - E :ts 1§ :]1’ ja=1 ]1 J1J2’7t SFt s— 32+3319]37J4F—]4

m—1 n — |l|
- Zl:7m+1 n Z]h L ja=1 j1 ]1:]2’)7 Fl+]3 ]219]3:]4F—]4

— PP asn — .
where the second line follows from the fact that 47 = 0 for [ > m. R
Lemma B.20. Let d; be defined in (A.16). Then Edyd} = o( M ~2%).

Proof. We write d; = di1+di2 where dyy = P' (5" — Q1) V and dip = Py, Q0 Vi — P/ 'V
where 0}, is defined in (B.1). Then by the same arguments as in the proof of Lemma (B.9) we

can bound

-1/2 n

ldnll < D> 50| lwssss = ORI [ D0 v
—1/2 n

+stz[M} Zmem sz 3 Hﬁj&““ Hn ! Zt:l Ut.ja

where Hn_1/2 > o1 V|| = Op(1) uniformly in j4 by Lemma (B.7iii) such that ||di1]| = o, (M ~25)

ey
79317]3

xyﬁ

J1 .717]2

by the same arguments as in the proof of Lemma (B.9). For di2 consider

2 -1 n Ty yT
FE|d = n IV Bug ovs 5,177
[z d i D o Lz Vi Vs 0l

N Z]é ja>[M] FJ2 w]27J4FZiﬂg4 +0(n~ ) O(M*ZS)‘

where the last equality follows from summability properties of F;Cy. |
Lemma B.21. Let dy be defined in (A.17). Then Edady = O(M—49).

Proof. Consider

M]  [M]

ity = Y S o KON L (1~ K(2)) Bl ) (1~ KE)9M, (1~ k(2

t,s= 1]17 »Ja=1

oy ek G KG)

/MJT I gy /M

S a0 K (G
l=—m+1 1 1T 1—j2+i3 lja/M|T 9334 |y /M|

|4al ! TS
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Using the fact that ‘ (- ‘ krf)

is uniformly

< C for some C' < oo and HZl——mH "7”'7}51“%”7’

n

J2+Js
bounded in j2 and j3 leads to

2
n
|Edaty]| < conr=ta 3 1l il 503,
J1,j2=0
where >3 o [71]7 |52/ ‘ ;”Iyﬁ%” = O(1) by arguments similar to the proof of Lemma 5.2. in

Kuersteiner (1999b). Thus Edady, = O(M~%9). B
Lemma B.22. Let d3 be defined in (A.18). Then d3 = Op(M~1).

Proof. Write d3 = d31 + d32 where

n  [M]
(B.4) Z > T = k(i /M) Y k(o /M)y,
t 1 j1,j2=1
and
n  [M]
(B.5) dzo = — Z Z F JI/M ]1j2 (1*k(j2/M))’Ut,j2
t 1 j1,j2=1
such that
[M]
Y k(j1 /M) _
Mquldglllgijl}r Ml 7’J1/M|q H\th Vs || = O(1)
1,J2=—

and the result follows from the Markov inequality. The same arguments apply to dsz. B
Lemma B.23. Let dy4 be defined in (A.19). Then ds = Op(M/n).

Proof. First note that I';Y — '} = BEER (% — ) (5 — )+ (Z — prp)n S e —9) +
nt > iit1 (vt — 2)(y — p,,)" such that ds can be analyzed by considering

do = (B p)G—p)n 2y > kG /M) kG M),

dip = (Z—pg)n! Z (ye — g)'n /2 thl Zjl et k(j1/M)19%j2k(j2/M)Ut,j2

t=j+1

3

and similarly for d43. Then

Idanll < 12 = poll[[7 = py || =2 D20 S0 kG /MO k(G2 M
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The third term in the previous display can be bounded in expectation by

J J J
_Zts 12]1, ja= 1 %32]{:(]\;) (Utj2U;j3) k(MS)ﬁng,]z;k(M‘l)
< Zﬂ Lja=1 H J1,12H ”w32733” H19J3,]4H + 0(1) = O(MZ)

and using || — p,| |7 — V“y“ = Op(n~1) shows that ds1 = O,(M/n). For dgs write

_ _ i _ n [M] . .
|daz] < |7 — pag || (HyH+n 1;”%!!) n 1/2Zt:12j1,j2:1 k(i /MO 5, k(jo/M)vr g,

where we use Hn_l Sy —9) H <||gll+n"t 3% lyell - Then the third term in the previous
display is bounded in expectation by

_ n [(M] . 1/2
w2y S kG /MO kGe/AD|| (E fol) T = O/ /)

such that dsp is Op(M/n). Finally ds3 can be analyzed in the same way as dso. B
Lemma B.24. Let ds be defined (A.20). Then ds = Op(M/+/n).

Proof. We consider

-1 TP (M | -1/2
Pl = (S () M B

1/2
+ Z[M] (E Hn—l/a Z:”:l Vi 2) .

J1,J2=1
where the second term is of lower order. Then

—2g s
EHn thlvm trE(nzst 1vtﬂv8i)

_ Zj;i \ll i tr [T¥] < 2m Sup ’tl" [Fyy} ’ sup hj}

)1/2

:ry M
J1 19]1 J2

jl—&-m‘ ’

and by Lemma (B.7iv) we have

) (152 - 37) i

-~ n—m /
Hﬁjl J2 H n~* tr Zt,s:l—i—jl b <wt7j1 - F;:1y> (wsi — Fiy)
o 0% D DA (VTN VIR A v o)

where n=2 tr D tbs=1 <Fs,t+j1 T, s+j1 R ICZ‘) = O(n~ ') uniformly in j; by the Toeplitz

Lemma. Summability of H19 over j1 shows that F ||ds|| = O(M/v/n). R

Mol
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Lemma B.25. Let dg be defined in (A.21). Then dg = Op(M/n).
Proof. For dg we define the terms

dg1 = (PM—PM) K Q3 Qs — )2 Ky Vi
d62 = (pM*PM) KMQ (QM QM)Q KMVM

such that dg = dg1 + dgo.
For dg; define

aj, = Z H( xy) 19%32 (wjz,js - ng,jg) 19%]4
J15,J3
- . -1
< Z 15 ()] Z ‘ Fjly - F;;y ij27j3(l) - wj27]3 | Hﬂ]l,ng Hﬁ]s,]z;” = Op(n

J15:J3

uniformly in j4 such that

[M]
ldex ]| <" aj,
Ja

For dgo we use the bound

Op(M/n).

—1/2 n
n E V¢ 4
t=1 t,J4

[de2| = Z 9 (D)

N _ n
} Js wj%]s H H Jl,]zu H 337J4H Hn 12 Zt:l Ut,ja

Jl
]17 7]4

where ’

NTY _ TTY —1 n—m - Ty
Fjl Fjl = Hn Z15=j1 W g, || + ’ 1—‘j1

%Y are of lower order. By the Markov inequality we consider

with @y j, = wyj, — T The terms involving

(B 6)

2 n 2
—1/2 Z
n Ut 5
H t=1 t,54

1/2
) (125200 = 1) 351 193

> (] s o

.]1’ 7]4
Note that
2 n 2
EH —12 Wy Hn_l/2z Vg
t= ]1 t:jl t=1 t’]4
_ o™ I .
(B.7) = trf [n § t s Wiy, Wy 5, @M E :31,32:1 Us1,4aVsa,ja | -
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+91,82 s +91,2 : Y o
Let Wy be the i1, io-th element of Wy such that a typical element of £ [wtl,jlwtml ® U31J4U32,j4}

: D 201,02 ~12,13 ) iq i5 : PN i
can be written as » 3 | B [wtbjlwt27j10817j40827j4} . Since w,;"! and v;7; have zero mean

E[vil,i2wi2,i3vi4 Ui5 } - E [Vil’hd}h’%} E |:,Ui4 Uis }+E [wilﬂévis }E [wi%isvizx }

Wiy 51 Wta 51 Vs1,ja Vs ja Wy 51 Wts 51 81,J4 7 82,]4 t1,J1 82,4 12,J1 781,74

+12,13 ) 15 <91,92 ) 14 x (292,93 5 =91,92 ) 0
+E [wtz,hvsz,jz;} K [wtl’jlvsl’j4:| + cum <wt2aj17v32:j47wtlzjl7vslaj4) ’

By Lemma (B.7) E [ﬁ)zi;iuﬁg;ﬂ is the 71,43 element of ’yi’f’,tzlﬂfitz + 0 T s T K4,
E {vi‘iﬂviﬁ,jzj is the 14, 75 element of ’yil,szlﬂﬁ_sz +K3 and E [wgﬁ vi;jJ is the 41, i5 element of
(6;211%11’;32)1—%?_82 s +F§f’_52 i (engig_tl +j4) + K2 where e;, is the iy unit vector. The largest
of these terms are n=! Y71 V-, Uiy, = O(1) and Y 1 Ve s Ta s, = O(1) while

all the higher order cumulant terms are of lower order by Assumption (B). This shows that (B.7)
is O(n™!) and (B.6) is O(M/n) which establishes that dgo = O,(M/n). B

Lemma B.26. Let d; be defined in (A.22). Then d7 = O,(n~1/?).

Proof. We bound d7 by

[M]
ol < SR8 Y T30, | 102 1@iaia 1) = wiaga O |27 v
l J1yeeja=1

Since E Hn*1/2 Sy ”tJ4H2 = 0(1) and E |05 (1) — wjpjs(D]|* = ¢jzn~" where ¢, is an abso-

lutely summable sequence such that E||d7|| = O(n~/?). H
Lemma B.27. Let dg be defined as in (A.23). Then dg = Op(M/n).

Proof. The matrix B can be expressed more explicitly as Q,; (Qar — Q M) (Qar — Q )
such that by the similar arguments as in the proof of Lemmas (B.18) and (B.25) it follows
that P}, Ky BEK Vi = Op(M/n). From the Taylor expansion result for matrix valued functions
(Gawronski, 1977) it then follows that the remainder term is o,(M/n). W

Lemma B.28. Let dy be defined in (A.24). Then dy = O,(M/n?/?).

Proof. For dg note that (§ — u,) = O, (n~1/2), ﬁ Y iy €t+m = Op(1). We define
do = n e (P = Par) Knr (@ar = Qan) Q5 K [1y @ (5= )]
doy = n~l/? Se (15 - PM> K BEa [ ® (7 — )] + 0p(M/n?)
dys = n~ /2 Zt:gtPMKMQX}(QM — Q) Kne [ @ (57— 1))

doyy = n V2 Py KyBEK)y 10 ® (7 — )] + op(n™1)
?

o1



such that dg = dg1 + dga + dg3 + dgs. By the same arguments as in the proof of Lemma (B.25)
it follows that doy = Op(M/n??) which implies that dgo = 0,(M/n?/?). Similarly it follows
that dos = Op(n~!) by similar arguments as in the proof of Lemma (B.26). Consequently,
dos = 0p(n™1). M

Lemma B.29. Let dy be defined in (A.15) and His as defined in (A.3). Then EdydyD ™ Hyy =
M2g2B5 + o(M~29)

Proof. The result follows immediately from Lemmas (B.10) and (B.19). W

Lemma B.30. Let dy be as defined in (A.15) and dy as defined in (A.17). Then Edody =
M~202B89) 4 o(M—29),

Proof. Directly evaluate

, 1 n oo [M] re x
Edyd, = —Zts T Bl ) (1 - k(G 5 )0, (1 k<M>>Fy_]4

Js Ja=1
_ —2q1.2 Ty q Y
- qk 2]1 Ja=1 Z]3 ja=1 Fjl 19]17]2(41]27]3 |~]3| 19]3 Ja ’34’ F7]4 + 0( )
—2q1.2 —2
= MRS T 05 Ll T, + o (M)

= M2E2BS 4 o(M—29).

where B(()q) is defined in the proof of Lemma (B.10) and we have used the Toeplitz Lemma for

the second equality and dominated convergence for the third equality. W

Lemma B.31. Let dy be as defined in (A.15) and ds as defined in (A.18). Then Edyds =
M~k B + o(M~9).

Proof. Directly evaluate

Edods = __Zts 1Zj1,12 123314 1 ;Cf/ﬁjl’]zE(vt’jzvg’j‘"’)
J Ja J x
x [(1 k( 3))19§‘§j4k( ) + k( 3))19%34(1k(M))} I,

= —M"%, Zjl ininat Lt Viriga@ia o 1731 Ogaga + Vg ga [l TZy, + oM7)

ST (0590500 7l T2, + T3 2] 9, 5 T, ) + o (M 7).
J1,.J2=1

The second equality uses Lemma (B.21) to replace k(Jﬁ) by 1. H
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Lemma B.32. Let Hogs be defined in (A.9). Then
EEIHQQQD_ldOdOD_lHQQQE = O(n_l).
Proof. By Lemma (B.14) we can replace Hago by

_ [M] n—m o . . €T —
(B.8) nty Zt:1+j1 W g, k(i /M)O} 5, k(ja /MDY + 0p(M/n1?).

J1,J2=1

Next define a; = > "2, T'7¥0; ;. Then, using only the dominant term in (B.8),

EHopo D" dodg D™ H)

Y

11,62,51,82,71,-+,J4

S

j y 1
k’(X_}[)E [wSth ng gy Uty sztz J3 JsD @y Wy, 14] +o(n™7)

=1

Using the same arguments as in the proof of Lemma (B.36) it follows that the leading term in

E’EIHQQQD_ldOd[)D_ 1 Hézzf depends on

- > -1 z z
.Ag - Zjljzzl Zh:—oo vec(a}zD a’jl)/ {(vecrz?iﬂ —J2 1—‘2 /> + KPP(F;:L?ijl F%sz) (I ® E)
where Ay is well defined due to the summability properties of a;. The result follows. B

Lemma B.33. Let Hoos be as defined in Lemma (A.9) and ds as defined in Lemma (A.20).
Then Eenggngldodgf = O(M/n)
I,z

Proof. We again replace Hage by n~* Zjl a1 2tet gy Wi k(1 /MDY . k(j2/M)TY", and con-

sider

oMy

Utz 3V 33,5a%sa,54

4
Bl Hypo D' dodit = n™3 Z ET] k(JHl)K Dy gy a5 D™ Yaj,v0, s

t1,62,81,82,1yo0da =1

where a; is defined in Lemma (B.32). The dominant term in this expectation is given by

M/n [ k(z)?dzAz0l’ Ay where A; is defined in Lemma (B.32) and A; is defined in (3.4). B
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B.3. Lemmas for Proposition 3.3

Lemma B.34. Let Hisand Hi4 be defined in (A.4) and (A.5). Then Hi3+Hy4 = —M‘qk’quth
o(M =) where B? = 573 (T30, 2l T, + T3 2] 05, T, )

Proof. Write Hy3 = —M~ qzjl e 1Fffk(jl/M)ﬁ%j2% |j2|7TY%, such that

M
MiHys = —kq 21112 1 ;?19]1]2 ’J2|qry +o(1)

=~k Zj1,j2=1 jl V1.2 "72|ng1;2 +o(1)
where in the second equality we use Assumption (F) about the kernel function. W

Lemma B.35. Let d3 be defined in (A.18). Then Edzds = k:gBéq) + o(M~29).

Proof. Let d3; and d32 be defined in Equations (B.4) and (B.5). Then

(M) — k(&) 1 — k()

2q / _ S g 1q M M ym
M= Bdady Zj17j27j37j4:1 711" 4] F U /M| 1931 szﬁ2’1319]3 J4 ja/ M| F +o(1)
= D A T T 4 o(1)
and
M k() 1— k(43)
2 " = xy M qiM q - "\MJ Yy
M qu32d32 - Z F]l 71,72 ’J ’ /M|q Wija,j3 ’]3’ ’j /M|‘1 19]3’]41—‘]4 + (1)

J1,32,J3,34=1

o zy yz
= Zjl Javjaja=1 % Djy o 132|? wja s |73]* 19]3,J4F +o(1).

Finally we consider the cross-product

2 2 M M
M Bl = Y T, 02, T o)
2 o0 2
- qu :j17j2 1132’ qrmyﬁjl nl“ﬁ’f o(1).
[ |

2
Lemma B.36. Let dj as defined in (A.20). Then E{'dsdsl = M?/n (ffooo k(z)2d$> A0l AL +
o(M?/n) where A; is defined in (3.4).

Proof. Using the arguments of the proof of Lemma (B.24) we only consider
_ ,n73/2 Z[M] anm W < Ji )ﬁM k’( )Zn Vs 5
o J1,j2=1 —~t=1+j tink g2 =1 1"

o4



where Wy j, = wyj, —I'j/. By Lemma (B.5) we have

[M] n-m 4
/
El'dsdiy 0 = —3 Z Z Z Hk: 4 { vec vy, ]2) E(vy, j, @ g, ;) (' @ £)E(ts,,j, @ vy, 4,) Vec 19J3 ia

t1,t2 j1,..,ja 81,82 I=1
. M .
+tr [19]1 JQE(Utl j2£/w82 j4)19j3,j4E(Ut2 j3£/w817j1 )]
M
+tr [19]1 J2E(Ut17j2vt27j3)19]3 ]4E( S1 j1€€/w32 Ja ]} + élng

where the matrix of eight order cumulant terms Kg contains elements of the form

* 11,82 +12,83 5 14
cum <wt1 g1> Wt g1 Vsa,ja vsl,jzl)

which are of lower order due to Assumption (B). The first term can be written as

k
! o -
n3 2: § : H k( 7\&4 vecﬁ%h) E(vt, jy ®w;‘1,j1)%/ E : E :E(w52,j4 ®U£2’j3)V6C19§\34’j4

12 t1,81 t= J3,Ja t2,52
where
— vy ex/ ey 1
E(vt17]2 ® wsl ]1) - (VeC Fsl t1—j1+72 ® ]‘—‘t1781> + Kpp(rtl —s1+J1 ® Ftl —381 j2) + IC4

by Lemma (B.7i) such that

-1
X A

1 . h _
S B @)= Y (110 [(veel L, @) + KpT3, @ TH )] +0( ™).
t1,s1 h=—n+1

Using arguments based on Parzen (1957) it can be shown that

! .
nM Z Z H E( *]\% VGC’&%]Q) E(Utl,h ®w;1’j1)

t1,51 1,42 ¢

s (2n)2 / k(2)2dz / (vee £ (V) (vee (fry(A)) ® fea(A)) dA as 1, M — oo,

which establishes the first part of (3.4). Next turn to

rﬁM j E(Utl,jé 5/71)32 \Ja )rﬁM E(Ut2,j3£/w31,j1 )

J1,J2 J3.Ja
M /ITET vy U xy 2
- 19]1 J2 (£ F151 S2Ft1 —82—ja+j4 + Ftl 82+]4£ s2—t1+j2 + ’C4)
M /T ET vy ey /T TY 2
o 19]3 ,Ja (E Ft2 81Ft2 s$1—J3+j1 th 81+11€ FSl ta+j3 + IC4)
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which follows from Lemma (B.7ii) where for a typical term in this product we have

h 1:
Z H k % 19%]26/ Z [( J_L)F F%i/ 32+J4} 19%[]4 Z(l B %)thﬁ-hg/ hzz/+J3

J1 7127337]4 h1 ha

and changing variables k2 = ha + j1, u1 = j1 — Jj2, u2 = j4 — j2 and us = j4 — j3 leads to

3 HH%WW’Z[( Babyrgergy,,, | 00 >0 - Enthyrrery

1, uzuz,j1 ! h1 )

ST lodl eSS - Bhrgr,,, | k) | o - Eahrer, ..,

U1,U2,U3,7J4 hi ko

IN

= O(M).

Similar arguments show that the second and third terms of Eldsdil are both O(M/n). B
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B.4. Lemmas for Theorem 4.2

Lemma B.37. Let dig be defined in (A.31). Then dip = op(1).

Proof. Write dijg = \/n/M*(d101 + di1o2 + d103) where

dioy = <Pn m—P m) Rar 5 (g — O, ) Ko Zi/ge
dioz = (Poom — Poom) K= Q5 (g Q* D Ky Zn-m

Jn
oy = PR S (Ve — Q05 Q57 Ky 22

N

Note that K M*Q}‘V}}(QM* — Q}F\}[*)Q*M?K M+ = 0 for [M *} [M*]. Therefore assume with-

out loss of generality that [M *} [M*] and let a;, = jl i H( ) .2

M i Hz? Y2300 v, || - Note that by (B.2) and the fact that

.71 ]2
J1=1
it follows that @;, = Op(n~'/2) uniformly in jo. Then,
m+1 5
vn/M*din| < +/n/M Z %1l (Zj —1,js=[11"] [ ||aj2b]4 +Zj2
l=—m+1

[M~] . -
+ ng,js:[M*] 19273,3 (l)Hajgbj4>

Then consider the largest term in the previous display

YOED

ja=1,js —M* H Wia,j3 )H&jzbjs

<VAEY

a1 jae || Wjs,j3 (1) - Wija,3 DO+ ||Wj2,j3 (Z)H) &jzl;js

and 5j3 =

]j3=1

H‘;}jzajzz (Z)dezl;js

< /M) = [Ar°] >ZFM*] IR (ERAOE RN GIE RGN

jo=1,j3=1

Note that

{M} = [M*] iff [M*] - M*+1> M* — M* > [M*] — M*

o7



with [M*] — M* < —ep by the definition of M*. Then

P<1—€M > N — M* > —€M> < P(‘[M*] - [M}

< mf“)

for any a > 0 and any n > 0. But since M* — M* = Op(n*Q/(zq“)) the first probability goes to
one. This shows that [M*] — [M *} converge at arbitrary fast rates such that /n/M*([M*] —

[M *}) = 0p(1). The reason for this result is that [.] is piecewise constant so that [A/*] and [M *}
have the same values as soon as M* and M* are within a certain distance.
By the same arguments as in the proof of Lemma (B.25) it follows that 232 s 73] Wiz s (D] g bj, =

Op(M* /n1/?) = Op(n2q+2). Next

[M~] 5

[M~] TN N . -
Z- —1 a1 ’]3’ ijz,js () — Wija,j3 ()l ajybjy < sup aj, Z ijz,js (1) — Wia,j3 Ol bjs
J2

j2=1,73 j2=1,j3=1

where G;, = Op(n~/?) uniformly in jo. We use the Markov and Cauchy-Schwarz inequalities and

consider

[M*] . A 1/2 /.o \1/2 . B
> el (Bl@ma) = winn @) (B ) = O /nt/2) = O~/ 0+2)

j2=1,33

where |j3] E ||y js (1) — wjp.js (D]|* < ¢jn~t for some summable sequence ¢j, by the proof of

Lemma (B.8) and
>1/2

(M
B, < 0 105 195 (2 L

= 0Q1).

L L e

It follows that \/n/M*||dio1]| = op(nﬁ),

For dy92 we use the same bounds as for dig1 where now a;, is redefined as

(M) )
an = 3 il || (T30 = T37) 05,

Ji1=1

Consider

(M~] A .o
Do 198 1952.35 (1) = w3y (D g5

[M*] B R 1/2 [M*] . R 1/2
(ZjQZI,j3=1 |73] ”wjzd's (1) wjzds ” ) <Zj2:1,j3:1 a?zbi)
(M~] . . 1/2 [M*] [M*] A —4q+1
@) < (X0 lillonn® ~ s ®F) 0 e Y = 0,005

j2=1,j3=1

o8



where the first inequality uses the Cauchy-Schwarz inequality and the second inequality follows
from éj, > 0,bj, > 0. By the proof of Lemma (B.8) it follows that Zp Liamt 1981 1@5.55 (1) = wjp s (D]1* =
Op(M*/n) and

B, < 3 il 15l 195 (2

J1,J5

. 2\ 1/2 .

0y =15/ i =13 > =0(n™)
uniformly in jp by the proof of Lemma (B.24). Thus, ZEJQ\/Z{ aj, = Op(M* /n'/?) while ZEJ;I:*% bjy =
O,(M*) as shown before. This establishes the last equality of (B.9) since M*5/2/n = O(n~(4a+1)/(4a+4)) =
o(1) as long as ¢ > 1/4. Since \/n/M*([M*] — [M *}) converges at arbitrarily fast rates it always

follows that /n/M*((M*] = [317]) 0Ly Ll 192,00(1) = @iz ia(D) b = 0p(1). Also note

that

|

EZ]Q 1,j ]3| [[wja s (D] é’jzl;jg = O(M*/n1/2).

This shows that /n/M*||d1p2|| = op(l).

Finally, consider dip3 where now aj, = Z =1 ] J1| ’ vy

i Uy g such that ij ]aj2| < 00. This

1/2
implies that (Z a2 b2 ) = Op(M*'/?). Consider

j2=1,j3=1 %j2"js
VETEZED S NN YU TED S

—6 R ~
v n/M* [M*} ([M*] - [M*}) sup ’j3’1+6 ijz,j:z | aj;bjs

j2aj3S[M*]’l

" 1-6 . , .
where /n/M* [ 37| ([M*)= [NI*]) = op(n~*/@0+2) while sup, s, <qurep 1 ol ™ 1o (0] ajobjs =
Op(1). Next,

1+6 7
i1 jae ’33’ * ||wj2,j3(l)Haj2bj3

IA

[M] e . _
Dt 1l 10y () = wiags Dl ajaby = Op(n ™)
such that \/ﬁ/M*Hdl(BH = Op(n_é/(2q+2)) = Op(l). |

Lemma B.38. Let dy; be defined in (A.32). Then di1 = op(1).

Proof. Write di1 = \/n/M*(d111 + di12 + d113) where

R . I . . . " el Z;L,ms
dlll = (Pnfm - Pnfm> KM*QM*I( M* — )Q 1( Q )QM*lKM* \/ﬁ

5 x—1 Ak *—1/A* Ak *—1 7o Z;L—m6
diz2 = (Pn—m_Pn m) KM*QM*( M* — M*)QM* (QM* _QM*)QM* K-

\/ﬁ
d113 - } ! KM*Q *1(9* *x T (27\4*) * *1( A}‘M* - 9 *Z\Af )Q* *1 M* n-—m .
n—m M M SZM Sl S_), N M B \/ﬁ
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For d111 deﬁne &]4 = Z]‘17”_7]‘3 <f;£1y ) 19;(1 j2 (wj2,j3 - ij’jS) 1‘9;?3,]'4 and
n-1/2 n
-y [95050m72 320 v
Jje=1
such that
m-+1 [M*]
\/_/M* ’d111|| < Vn/M Z ”7l| <Z [ *] ”"%4,]5 |aJ4bJ5 + ZM 1js= M* ” J4,J5( )H&jzlbjf)
l=—m+1
(M~ R . 3
- stzl,m:[M*] ”wj4’j5(l)||aj4bj5> '
Note that
m—1
dj4 S Z jl,jQH ||wJ27]3 (l) - wj2:j3(l)|| H19;37]4H
l=—m+1 J1ye-J3
with
2
. " —1
Z < F;rly - Fjly ) Hﬂjl J2H (E ijz,js(l) - wjz,j:%(l ) H19]3,J4H =0(n

]17"".]3
uniformly in js. It then follows by the arguments in the proof of Lemma (B.37) that

6g+1

(M~ o . N _
> ialll@ s (D) = wia s (D] agybjs = Op(M™/2/n/%) = Op(n™ 4a+1).

ja=1,j5=1

For

[M7] . e [ (7] . .
Vn/MF ZM:W*MM leoso ol b < /AT = (NS0T Ll s b

note that Z jal |wja sl Djs = Op(M*) and Zj _1 aj, = Op(M*/n) such that

Ja J5 1

iy

For dy12 replace a;, by

~ *
aj, = ) H( ) irde (Wizgs = Wiz.ja) Uy gy

Jis-J3

such that 3 dj, = Op(M*/n) leading to 2001 |ja lwjy ol @505 = Op(M** /) and \/n/MFdy1s =

0p(n~24/(23+2)) by the same arguments as before.

2q

” J47J5”a34 js = O (M*z/n) (n 2042 ),

Jja=1,js=

= Op(”_l)

60



For dy13 replace aj, by

= > |

J1yeeJ3

ZY 9% . * . ~1/2
F 19]1 J2 szJ:% w]QJs)ﬂj&jzx —Op(" )

where aj, is now summable over j4 such that

[M*] C A 2 -
Z, R ’]5’ ”wj4,j5 (1) — Wis,js Ol aj,bjs = Op(n 1)

ja=1,J5

and

* ~ [M] . - _
v/ M*([M*] - [M })Zj4=1,j5=1 5| lwja,gs | s bjs = Op(n 1/2)-
It follows that v/n/M*di13 = op(n~/%). W

Lemma B.39. Let di2 be defined in (A.33). Then diz = o,(1).

Proof. Let Of/p = Qj‘\j} Q3 — Q*M*)Q . Write dy2 = /n/M*(dy21 + di122 + d123) where

!
. 3 ;o . . ~ Lp_mE
A A n—m
dior = <Pn—m_Pn—m) KM*OM*( *M* _QF\Z*)OM*KM*
NG
Z/
. > A (A A A E n—m®
diz2 = (Pnm— Poom) Kn-Onp-(Qig- — Q) O Ko
N
Z/
y - A A A A T n—m€
d123 = Pn—mKM*OM*( }k\/f*iQ}k\;[*)OM*KM*
Vn
Define
a nTy * g *
a; = Z (Fjl >19]1 J2 (wj2’33 w”’js)ﬁj&j ‘
J1y--503
- . ";L'y_ * N . *
a; = Z (Fjl F )79]1 J2 (WD,Js w]2yj3)19j37j ‘
jl:""j3
S TY g% ANy *
aj = Z Fjl rﬁjh]é (w]2733 w”’]‘o’)ﬁjs’j ‘
J1y--503

where a; = Op(n~1),a; = Op(n~!) and >0 = O,(n~%/2) as shown in Lemma (B.38). Next
define

[(M*]
= oD s — wa 9 . n1/2
bj = Z Hﬁm (@j1.,52 = Wirgz) U G2,53 T E _y Vtgs

J1,J2J3=1

—1/2)

uniformly in j. By the proof of Lemma (B.38) it follows that di2 = 0,(1). W
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Lemma B.40. Let Hs be defined in (A.34). Then Hs = o,(1).
Proof. Let Hs = Hs; + Hso + Hss where

~ . e ~ ~ ~ ~
Hs = V%Mﬁ(ﬂkm—ﬂwm)Kwﬁmﬂﬁmp—ﬂ&ﬁﬂﬂﬂﬁwﬂwm
Hsy = /n/M* (Pocm — Poom) Kae- QU ( Qe — Q050U Kag B
Hss = /n/M*P_ Kyt (g — Q)50 Kars Pa

and define a; = 32, ||(057 = T59) 05, 5| oy = 5, || (T3 = T59) 03, | amd 0 = 32, || 5295, 4,
where Gj,d; = Op(n~"/2) uniformly in j and >-ja; = O(1). Also define b; = 3 ﬁ;’jlf‘?lx ‘ =

Op(1) uniformly in j. The result then follows by the same arguments as in the proof of Lemma
(B.37). m

Lemma B.41. Let Hg be defined in (A.35). Then Hg = 0,(1).

Proof. Arguing in the same way as in the proof of Lemma (B.40) the proof follows along the

same lines as the proof of Lemma (B.38). W
Lemma B.42. Let H; be defined in (A.35). Then H7 = o,(1).

Proof. Arguing in the same way as in the proof of Lemma (B.40) the proof follows along the

same lines as the proof of Lemma (B.39). W
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