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Abstract

Time series data are widely used to explore causal relationships, typically in a regression

framework with lagged dependent variables. Regression-based causality tests rely on an

array of functional form and distributional assumptions for valid causal inference. This

paper develops a semi-parametric test for causality in models linking a binary treatment or

policy variable with unobserved potential outcomes. The procedure is semiparametric in

the sense that we model the process determining treatment — the policy propensity score

— but leave the model for outcomes unspecified. This general approach is motivated by

the notion that we typically have better prior information about the policy determination

process than about the macro-economy. A conceptual innovation is that we adapt the

cross-sectional potential outcomes framework to a time series setting. This leads to a

generalized definition of Sims (1980) causality. We also develop a test for full conditional

independence, in contrast with the usual focus on mean independence. Our approach is

illustrated using data from the Romer and Romer (1989) study of the relationship between

the Federal reserve’s monetary policy and output.

Keywords: Potential outcomes, conditional independence, Khmaladze transform, em-

pirical Rosenblatt transform



1 Introduction

The possibility of a causal connection between monetary policy and real economic variables

is one of the most important and widely studied questions in macroeconomics. Most of the

evidence on this question comes from regression-based statistical tests. That is, researchers

regress an outcome variable such as industrial production on measures of monetary policy,

while controlling for lagged outcomes and contemporaneous and lagged covariates, with

the statistical significance of policy variables providing the test results of interest. Two of

the most influential empirical studies in this spirit are by Sims (1972, 1980), who discusses

conceptual as well as empirical problems in the money-income nexus.

The foundation of regression-based causality tests is a simple conditional independence

assumption. The core null hypothesis is that conditional on lagged outcomes and an

appropriate set of control variables, the absence of a causal relationship should be manifest

in a statistically insignificant connection between policy variables and contemporaneous and

future outcomes. In the language of cross-sectional program evaluation, policy variables are

assumed to be "as good as randomly assigned" after appropriate regression conditioning,

so that conditional effects have a causal interpretation. While this is obviously a strong

assumption, it seems like a natural place to begin empirical work, at least in the absence

of a true randomized trial or a compelling exclusion restriction. The analogy between a

time series causal inquiry and a cross-sectional selection-on-observables argument is even

stronger when the policy variable can be coded as a binary treatment. For example, we

can consider the causal effect of exposure to a discrete monetary shock, with the latter

viewed as a binary treatment. This is the essence of the approach taken in Romer and

Romer’s (1989) seminal analysis of the federal reserve’s open market committee decisions,

an application that we use here to illustrate theoretical ideas.

While providing a flexible tool for the analysis of causal relationships, an important

drawback of regression-based conditional independence tests is that they typically require

an array of auxiliary assumptions that are hard to assess and interpret, especially in a time
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series context. In addition to the linearity implicit in any regression test, researchers must

choose conditioning variables, lag lengths, and impose assumptions that imply some sort of

stationarity. The principal contribution of this paper is to develop an alternative approach

to time series causality testing that shifts the focus away from modelling the relatively

mysterious process determining outcomes towards a model of the process determining policy

decisions. That is, we develop tests for causality that rely on a model for the conditional

probability of treatment, which we call the "policy propensity score", leaving the model

for outcomes unspecified. This approach seems especially appealing for the sort of time

series applications we have in mind. In many of these cases there is some agreement —

and even some evidence — as to what the conditioning variables used by policy makers

are. Moreover, the binary nature of some policy variables provides a natural guide as

to the choice of functional form. A second contribution of our paper is the outline of a

potential-outcomes framework for causal research using time series data. In particular,

we show that a generalized Sims-type definition of dynamic causality provides a coherent

conceptual basis for time series causal inference.

We use the time series causal framework to develop new distribution-free Kolmogorov-

Smirnov (KS) and von Mises (VM) statistics that test for full conditional independence in

time series models. The tests developed here are distribution-free in the sense that critical

values do not depend on the sample for a given model design. Testing for full independence

is also an innovation since most previous work on time series causality testing is concerned

solely with mean independence. Finally, the tests developed here are semiparametric

in the sense that a parametric model is used for the policy propensity score, but other

features of the data-generating process are left unspecified. Our approach is related to

earlier work on semiparametric estimation of average causal effects by Robins, Mark, and

Newey (1992), who focus on sequential randomized trials. Also related is the Linton and

Gozalo (1999) study of non-parametric causality tests in a cross-sectional context. Linton

and Gozalo consider KS- and VM-type statistics, as we do, but the limiting distributions
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of their test statistics are not asymptotically distribution-free. These distributions are

also difficult to bootstrap in a time series context. More recently, Su and White (2003)

have proposed a nonparametric conditional independence test for time series data based on

orthogonality conditions obtained from an empirical likelihood specification. The Su and

White procedure converges at a less-than-standard rate due to the need for nonparametric

density estimation.

The main advantage of using the propensity score in our context lies in the fact that

this reduces the problem of testing for conditional distributional independence to a problem

of testing for a martingale difference sequence property of a certain function of the data.

This problem is relatively easy to handle and has been analyzed by, among others, Bierens

(1982, 1990), Bierens and Ploberger (1997), Chen and Fan (1999), Stute, Thies and Zhu

(1998) and Koul and Stute (1999). Earlier contributions propose a variety of schemes to

find critical values for the limiting distribution of the resulting test statistics but most

of the existing procedures involve nuisance parameters. In light of this difficulty, Bierens

and Ploberger (1997) propose asymptotic bounds, Chen and Fan (1999) use a bootstrap

and Koul and Stute (1999) apply the Khmaladze transform to produce a statistic with

a distribution-free limit.1 Our work extends Koul and Stute (1999) by allowing for more

general forms of dependence, including mixing and conditional heteroskedasticity. These

extensions are important in our application because even under the null hypothesis of

no causal relationship, the observed time series are not Markovian and do not have a

martingale difference structure. Most importantly, direct application of the Khmaladze

(1988,1993) method in a multivariate context appears to work poorly in practice. We

therefore use a Rosenblatt (1952) transformation of the data in addition to the Khmaladze

transformation. This combination of methods seems to perform well, at least for the low-

dimensional multivariate systems explored here.

1The univariate version of the Khmaladze transform was first used in econometrics by Bai (2002) and

Koenker and Xiao (2002) .
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The paper is organized as follows. The next section outlines our conceptual framework

and provides a heuristic derivation of our semiparametric test statistics. Strategies for

constructing feasible versions of these statistics are discussed in Section 3 and Section 4

discusses the construction of feasible critical values. Although in principal straightforward,

in practice, the distribution theory is complicated by the need to account for estimation

of the propensity score.2 We briefly explore finite-sample properties of the new statistics

in a Monte Carlo study discussed in Section 5. The empirical behavior of alternative

causality concepts and test statistics is illustrated through a re-analysis of the Romer and

Romer (1989, 1994) data in Section 6. The last section of the paper concludes and suggests

directions for further theoretical work.

2 Notation and Framework

Causal effects are defined here using the Rubin (1974) notion of potential outcomes. The

potential outcomes concept originated in experimental studies where the investigator has

control over the assignment of treatments, but is now widely used in observational studies.

See, e.g. Rosenbaum and Rubin (1983), who introduced the propensity score as a tool for

causal inference in the potential-outcomes framework.

Our basic definition of causality relies on distinguishing the outcomes that would be

realized with and without treatment, denoted by Y1t and Y0t. The observed outcome in

period t can then be written Yt = Y1tDt + (1−Dt)Y0t, where Dt is treatment status.

In the absence of any serial correlation or covariates, the causal effect of a treatment or

policy action is unambiguously defined as Y1t− Y0t. It is clear that this effect can never be

measured in practice. Researchers therefore focus on either the average effect E(Y1t−Y0t),

or the effect in treated periods, E(Y1t−Y0t|Dt = 1).We refer to both of these as the average

causal effect of policy action Dt, since under our identifying assumptions they are the same.

2Recent studies of the consequences of using an estimated propensity score for cross-sectional causal

inference include Heckman, Ichimura and Todd (1998) Hahn (1999) and Hirano, Imbens, and Ridder (2003).
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In a dynamic setting, the definition of causal effects is complicated by the fact that

potential outcomes are determined not just by current policy actions but also by past

actions and covariates. To capture dynamics, we assume the economy can be described by

the vector stochastic process χt (ω) = (Yt (ω) , Xt (ω) ,Dt (ω)) , defined on the probability

space (Ω,F ,P), where Yt (ω) is a vector of outcome variables, Dt (ω) is a vector of policy

variables, and Xt (ω) is a vector of other exogenous and (lagged) endogenous variables that

are not part of the null hypothesis of no causal effect of Dt (ω) . The elements of the sample

space, ω, can be thought of as indexing parallel universes, while the random variables

defined on the sample space pick out the time series determined by realizations of ω. We

assume that Dt takes values in the set Dt. The observed sample χt is a realization of χt (ω) .

Let X̄t = (Xt, ...,Xt−k, ...) denote the covariate path, with similar definitions for Ȳt and D̄t.

This framework leads to a definition of counterfactual outcomes based on the notion

that past policy actions have the potential to change any future outcome variable, for each

realization of the outcome ω :

Definition 1 Assume that there exists a measurable map ξt+j such that

Yt+j (ω) = ξt+j(ω,Dt(ω)) for all t, j > 0 and almost all ω.

Potential outcomes are defined as

Y d
t+j (ω) = ξt+j (ω, d) for all d ∈ Dt.

The sharp null hypothesis of no causal effects for potential outcomes is Y d0
t+j (ω) =

Y d
t+j (ω) , j > 0 for all possible realizations d, d0 ∈ Dt. This coincides with the hypothesis

of no causal effects in the simple situation studied by Rubin (1974), where we would write

Y0t = Y1t.3

3In a study of sequential randomized trials, Robins, Greenland and Hu (1999) define potential outcome

Y
(0)
t as the outcome that would be observed in the absence of any current and past interventions, i.e. when

Dt = Dt−1 = ... = 0. They denote by Y
(1)
t the set of values that could have potentially been observed if

for all i ≥ 0, Dt−i = 1. This approach seems too restrictive to fit the macroeconomic policy experiments

we have in mind.
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Our approach to causal testing allows the map ξt+j to be unspecified. On the other

hand, it is common practice in econometrics to model χt as a function of its own lags and

possibly exogenous variables or innovations in variables, and so it is worth thinking about

what potential outcomes would be in this case. Given such a functional relationship, the

map ξt+j can be constructed in an obvious way; a simple but common example is given

below:

Example 1 Suppose that Yt(ω) =
P∞

k=0 ψkDt−k (ω), using notation that makes the depen-

dence of the policy variables on the sample space explicit. This model could be one equation

from a structural VAR. In this simple example, the map ξt+j is given by

ξt+j (ω, d) =
P∞

k=0,k 6=j ψkDt+j−k (ω) + ψjd.

Equivalently, Y d
t+j (ω) = Yt+j (ω) + ψj (d−Dt(ω)). The sharp null hypothesis of no causal

effect holds if and only if ψj = 0 for all j. This is the familiar restriction that the impulse

response function be identically equal to zero.

In practice, of course, we obtain only one realization each period, and therefore cannot

directly test the non-causality null. Our tests therefore rely on the identification condi-

tion below, referred to in the cross-section treatment effects literature as "ignorability" or

"selection-on-observables." This condition allows us to establish a link between potential

outcomes and the distribution of observed random variables. As part of this setup, we

assume that the information used by policy makers at time t, denoted Ft, is contained in

the public record or otherwise available to researchers. Formally, the relevant information

is assumed to be described by Ft = σ (zt) where zt = Πt(X̄t, Ȳt, D̄t−1) is a sequence of finite

dimensional functions Πt :
Ndim(χt)

i=1 R∞ → Rk2 of the entire observable history of the joint

process. For the purposes of empirical work, the mapping Πt is assumed to be known.

Condition 1 Selection on observables:

Y d
t+j (ω)⊥Dt (ω) |Ft for all j > 0 and for all d ∈ Dt.
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Note that implicit in this assumption is the notion that even after conditioning on

observables, there is stochastic variation in policy decisions. This variation is taken to

be due to idiosyncratic factors such as those detailed for monetary policy by Romer and

Romer (2004). These factors include the variation over time in operating procedures used

to convert information into decisions, changes in policy-makers’ beliefs about the workings

of the economy, decision-makers’ tastes and goals, political factors, the temporary pursuit

of objectives other than changes in the outcomes of interest (e.g., monetary policy that

targets exchange rates instead of inflation or unemployment), and finally harder-to-quantify

factors such as the mood and character of decision-makers. A key element of Condition 1

is that, conditional on observables, this idiosyncratic variation is taken to be independent

of potential future outcomes.

Substituting using Y d0
t+j (ω) = Y d

t+j (ω), the key testable conditional independence as-

sumption can now be written in terms of observable distributions as:

Yt+1, ..., Yt+j, ... ⊥ Dt|Ft. (1)

In other words, conditional on observed covariates and lagged outcomes, there should

be no relationship between treatment and outcomes Of course, Condition 1 is a strong

restriction. But this condition is imposed in the rational expectations models outlined by

Lucas (1972) and Sims (1980). In particular, when there are no informational asymmetries

between the public and monetary authorities these models also imply that Equation 1

holds. The following example describes another assignment mechanism that satisfies this

condition:

Example 2 Suppose policies depend on observed variables Ft through the functionD(Ft, t),

as well as an unobserved (to the econometrician) variable, εt. Policies are determined by

Dt = f(D(Ft, t), εt), where f is a general mapping. For example, Shapiro (1994) postulates

Dt = 1 {z0tθ + εt > 0} where εt is iid Gaussian. In this case D(Ft, t) = z0tθ, f(a, b) =

1 {a+ b > 0} and Dt = {0, 1} . If εt is independent of Y d
t+j (ω) , Condition 1 is satisfied. This

means we can view εt as essentially randomly assigned, with no direct effect on outcomes.
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Tests based on condition (1) can be seen as testing a generalized version of Sims causal-

ity. A natural question is how this relates to the Granger causality tests widely used in

empirical work. Note that if Xt can be subsumed into the vector Yt, Sims non-causality

simplifies to Yt+1, ..., Yt+k, ... ⊥ Dt|Ȳt, D̄t−1. Chamberlain (1982) and Florens and Mouchart

(1982, 1985) show that under plausible regularity conditions this is equivalent to generalized

Granger non-causality, i.e.,

Yt+1 ⊥ Dt, D̄t−1|Ȳt. (2)

In the more general case, however, where Dt potentially causes Xt+1, so X̄t can not be

subsumed into Ȳt, (1) does not imply

Yt+1 ⊥ Dt, D̄t−1|X̄t, Ȳt. (3)

This result was shown for the case of linear processes by Dufour and Tessier (1993) but

seems to have received little attention in the literature.4 We summarize the non-equivalence

of Sims and Granger causality in the following theorem:

Theorem 1 Let χt be a stochastic process defined on a probability space (Ω,F ,P) as before,

assuming also that conditional probability measures P (Yt+1, Dt|Ft) are well defined ∀t except

possibly on a set of measure zero. Then (1) does not imply (3) and (3) does not imply (1).

The intuition for the Granger/Sims distinction is that while Sims causality looks forward

only at outcomes, the Granger causality relation is defined by conditioning on potentially

endogenous responses to policy shocks and other disturbances. To prove the nonequivalence

theorem, it is enough to give a counterexample. We do this for linear Gaussian processes

since discrete variables can be defined as functions of underlying linear indices.

4Many authors have studied the relationship between Granger and Sims-type conditional independence

restrictions. See, for example, Dufour and Renault (1998) who consider a multi-step forward version of

Granger causality testing, and Robins, Greenland, and Hu (1999) who state something like theorem 1

without proof. Robins, Greenland and Hu also present restrictions on the joint process of wt under which

(1) implies (3) but these assumptions are unrealistic for applications in macroeconomics.
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Example 3 Assume that the vector χt = (yt, xt, Dt) takes values in R3 and that χt has a

representation in terms of an overidentified structural VAR where yt = bxt−1+ cDt−1+ εyt,

xt = fDt+ εxt and Dt = εDt where εt = (εyt, εxt, εDt) is such that εt˜N (0, I3) and I3 is the

3×3 identity matrix. The impulse response function of yt is yt = εyt+bεxt−1+(c+ bf) εDt−1.

Sims non-causality holds if c + bf = 0 which occurs if c = 0 and either b = 0 or f = 0 or

if c = −bf. On the other hand, Granger non-causality requires that c = 0. We therefore

can have Sims non-causality but Granger causality when c 6= 0 and c = −bf. On the other

hand, we have Granger non-causality but Sims causality when c = 0 and both b and f are

non-zero

A scenario with Granger non-causality but Sims causality is of potential relevance in

the debate over money-output causality. Suppose yt is output, xt is inflation and Dt is a

proxy for monetary policy. Then this stylized model captures a direct effect of monetary

policy on inflation and an indirect effect on output through the effect of inflation on output.

In this case, Granger tests will fail to detect a causal link between monetary policy and

output while Sims tests will detect this relationship. One way to understand this difference

is through the impulse response function, which shows that Sims looks for an effect of

structural innovations in policy (i.e., εDt). In contrast, Granger non-causality is formulated

as a restriction on the relation between output and all lagged variables, including covariates

that themselves have responded to the policy shock of interest. Granger causality therefore

provides an incorrect answer to a question that Sims causality tests answer correctly: will

output change in response to a random manipulation if we randomly shock monetary

policy?

This example raises the question of how important time-varying, policy-sensitive co-

variates are in practice. In research on monetary policy, Shapiro (1994) and Leeper (1997)

argue that it is important to include inflation in the conditioning set when attempting to

isolate the causal effect of monetary policy innovations. This point is illustrated in Figure

1, which marks the Romer dates on the time series of inflation. In most cases, Romer
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Figure 1: The vertical lines indicate Romer Dates.

dates are followed by an inflationary peak. This acceleration in inflation is both a cause

of monetary policy and a response to earlier policy changes. Moreover, inflation may have

effects on real variables. Thus, the causal relationship between monetary policy and activ-

ity in the real sector may be more appropriately analyzed in a framework that incorporates

inflation and other nominal variables that respond to policy.

In the remainder of the paper, we assume the policy variable of interest is binary, al-

though our conceptual framework applies more generally. We focus here on binary pol-

icy decisions because we are interesting in exploiting parallels with the cross-sectional

treatment effects literature and because this leads naturally to a setup relying on the

propensity score.5 To develop this setup, we assume that models for the policy func-

5The recent empirical literature on the effects of monetary policy has focused on developing policy

models for the federal funds rate. See, e.g., Bernanke and Blinder (1992), Christiano, Eichenbaum, and

Evans (1996), and Romer and Romer (2004). In future work, we hope to develop an extension for mutli-

valued or continuous causal variables like the Federal funds rate. For a recent extension of cross-sectional

propensity-score methods to multi-valued treatments, see Hirano and Imbens (2004).
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tion can be written in the parametric form P (Dt = 1|zt) = p(zt, θ0) for some function

p(., .) and an unknown parameter vector, θ0. Under the null hypothesis it follows that

P (Dt = 1|zt, Yt+1, ..., Yt+j, ...) = P (Dt = 1|zt). A test of the null hypothesis can therefore

be obtained by augmenting the policy function p(zt, θ0) with future outcome variables.

This test has correct size though it will not have power against all alternatives. In the

Monte Carlo and empirical parts of the paper, we explore simple Sims-type tests based

on augmenting the policy function with future outcomes. But our main objective is to

develop a more flexible class of semiparametric causality (conditional independence) tests

that can be used to direct power in specific directions or to construct tests with power

against general alternatives. A major advantage of our approach is that we do not have

to attempt to identify and estimate a fully specified model of the entire macroeconomy or

even the money-output relation. This saves the need to impose identifying restrictions on

a complete structural VAR as in, e.g., Bernanke and Blinder (1992).

A natural substantive question at this point is what should go in the conditioning set

for the policy propensity score and how this should be modeled. In practice, Fed policy is

commonly modeled as being driven by a few observed variables like inflation and lagged

output growth. Examples include papers by the Romers and others inspired by their work.6

The fact that Dt is binary in our application also suggests Logit or similar models provide a

natural functional form. Amotivating example that seems especially relevant in this context

is Shapiro (1994), who develops a parsimonious Probit model of Fed decision-making as

a function of net present value measures of inflation and unemployment. Finally, we note

that while it is impossible to know for sure whether a given set of conditioning variables is

adequate, diagnostic tests such as those proposed by Rosenbaum and Rubin (1985) can help

decide when the model for the policy propensity score is an adequate representation of the

role of the chosen set of covariates. A key technical advantage of reliance on the relatively

6Stock and Watson (2002a, 2002b) propose the use of factor analysis to construct a low-dimensional

predictor of inflation rates from a large dimensional data set. This approach has been used in the analysis

of monetary policy by Bernanke and Boivin (2003) and Bernanke, Boivin and Eliasz (2004).
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tractable problem of modeling fed decision-making through the policy propensity score, is

that this allows us to derive a semi-parametric test statistic with a limiting distribution

that depends only on the marginal distribution of outcome and conditioning variables (as

opposed to the full joint distribution of the entire underlying process).

3 Semiparametric Causality Tests

We are interested in testing the conditional independence restriction yt⊥Dt|zt where yt

takes values in Rk1 and zt takes values in Rk2 with k1 + k2 = k finite. Typically, yt =

(Y 0
t+1, ..., Y

0
t+m)

0 but it is also possible to focus on particular future outcomes, say, yt = Y 0
t+m,

when causal effects are thought to be delayed by m periods. Assuming that Dt is binary,

the conditional independence hypothesis can be written

P (yt ≤ y,Dt = i|zt) = P (yt ≤ y|zt)P (Dt = i|zt) for i = {0, 1} . (4)

We use the short hand notation p(zt) = P (Dt = i|zt) and assume that p(zt) = p(zt, θ) is

known up to a parameter θ.

Linton and Gozalo (1999) develop a fully nonparametric test of (4). Their test statistic

is based on the empirical joint and marginal distributions of yt, Dt, zt. The resulting pro-

cedure is more flexible than ours but does not have a distribution-free limit distribution, a

fact that leads Linton and Gozalo to bootstrap. In our setting, application of the boot-

strap is complicated by the need to account for serial dependence and to impose the null

while resampling. The bootstrap is also complicated by the fact that even under the null

hypothesis the joint process of yt,Dt, zt is not Markovian and does not have a martingale

difference sequence property. More recently, Su and White (2003) propose a nonparametric

test based on estimates of conditional densities. Their procedure is asymptotically normal

but converges more slowly than a n−1/2 rate since their statistic involves non-parametric

density estimates.
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A convenient representation of the hypotheses we are interested in testing can be ob-

tained by noting that under the null,

P (yt ≤ y,Dt = 1|zt)− P (yt ≤ y|zt)p (zt) = E [1 (yt ≤ y) (Dt − p(zt)) |zt] = 0. (5)

This leads to a simple interpretation of test statistics based on this moment condition as

looking for a relation between policy innovations, Dt− p(zt), and the distribution of future

outcomes.

We now define Ut = (yt, zt) so that the null hypothesis of conditional independence

can be represented very generally in terms of moment conditions for functions of Ut. Let

φ(., .) : Rk × Rk → R be a function of Ut and some index v. Under the null we then have

E [φ(Ut, v)(Dt − p(zt))|zt] = 0. Examples are φ(Ut, v) = 1 {Ut ≤ v} or φ(Ut, v) = exp(iv
0Ut)

where i =
√
−1, as suggested by Bierens (1982) and Su and White (2003). A natural

choice for φ(Ut, v) is φ(Ut, v) = yjt1 {zt ≤ v} where yjt = yj11t ....y
jk
k1t
, which generates tests of

conditional moment independence.

Equation (5) shows that the hypothesis of conditional independence, whether formu-

lated directly or for conditional moments, is equivalent to a martingale difference sequence

(MDS) hypothesis for a certain empirical process. In particular, define the empirical process

Vn (v) = n−1/2
nX
t=1

m(yt,Dt, zt, θ0; v)

with

m(yt,Dt, zt, θ; v) = [Dt − p(zt, θ)]φ(Ut, v).

This is similar in spirit to the process analyzed by Koul and Stute (1999) except for the fact

that it depends on the parameter v ∈ Rk while Koul and Stute only consider the univariate

case.7

7Another important difference is that in our setup, the process 1 (yt ≤ y) (Dt − p(zt)) is not Markovian

even under the null hypothesis. This implies that the proofs of Koul and Stute do not apply directly for

our case.
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Under regularity conditions that include stationarity of the observed process we show in

Appendix A that Vn(v) converges weakly to a limiting Gaussian process V (v) on the space

of cadlag functions8 denoted by D [−∞,∞]k with covariance function Γ(v, τ), defined as

Γ(v, τ) = E [Vn(v)Vn(τ)
0]

where ν, τ ∈ Rk and we note that EVn (v) = 0. Using the fact that under the null

E [Dt|zt, yt] = E [Dt|zt] = p (zt) and partitioning u = (u1, u2) with u2 ∈ [−∞,∞]k2 we

define H(v ∧ τ) with

H(v) =

Z v

−∞

¡
p(u2)− p(u2)

2
¢
dFu (u) (6)

where Fu(u) is the cumulative marginal distribution function of Ut and ∧ denotes the

element by element minimum. The covariance function Γ(v, τ) can now be written as

Γ(v, τ) =
R
φ(u, v)φ(u, τ)dH (u) . Note that when φ(Ut, v) = 1 {Ut ≤ v} then Γ(v, τ) =

H(v ∧ τ). This is the case we consider in the empirical application. The statistic Vn(v) can

be used to test the null hypothesis of conditional independence by comparing the value

of KS = supv |Vn (v)| or VM =
R
(Vn (v))

2 dFu(v) with the limiting distribution of these

statistics under the null hypothesis.

Implementation of statistics based on Vn(v) requires the construction of appropriate

critical values. This problem is complicated by two factors affecting the limiting distribu-

tion of Vn(v). The first factor is the dependence of Vn(v) on φ (Ut, v) which induces data

dependent correlation in the process Vn(v). Hence, the nuisance parameter Γ(v, τ) appears

in the limiting distribution. This is handled in two ways: First, critical values for the

limiting distribution of Vn(v) are computed numerically conditional on the sample in a way

that accounts for the covariance structure Γ (v, τ) . We discuss this procedure at the end

of Section 4.1. An alternative to numerical critical values is to apply a transformation

proposed by Rosenblatt (1952) which transforms Vn(v) to a standard Gaussian process on

the k-dimensional unit cube. The advantage of the latter transformation is that asymptotic

8Cadlag functions are functions which are continuous from the right with left limits.
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critical values can be based on standardized tables that only depend on the dimension k

and the function φ, but not on the distribution of Ut and thus not on the sample. We

discuss how to construct these tables numerically in Section 5 and report critical values for

the special case when φ(., v) = 1 {. ≤ v} in Table 2.

The second factor that affects the limiting distribution of Vn(v) is the fact that the

unknown parameter θ needs to be estimated. We use the notation V̂n(v) to denote test

statistics that are based on an estimate θ̂ for θ. Estimation of θ affects the limiting distri-

bution of V̂n(v) and needs to be taken into account. In Section 4 we discuss a martingale

transform proposed by Khmaladze (1988, 1993) to remove the effect of variability in V̂n(v)

stemming from estimation of θ. The resulting corrected test statistic then has the same

limiting distribution as Vn(v), and thus, in a second step, critical values that are valid for

Vn(v) can be used to carry out tests based on the transformed version of V̂n(v).

4 Implementation

Critical values for the KS and VM statistics are obtained through a series of transformations

to correct for the fact that estimated parameters affect the relevant limiting distributions

and to account for the correlation between the elements in Ut that lead to the presence of

the nuisance parameter Γ (v, τ) in the limiting distribution.

As a first step, let V̂n(v) denote the empirical process of interest where p(zt, θ) is replaced

by p(zt, θ̂) and the estimator θ̂ is assumed to satisfy the following asymptotic linearity

property:

n1/2
³
θ̂ − θ0

´
= n−1/2

nX
t=1

l (Dt, zt, θ0) + op(1).

A more formal statement of this assumption is contained in Condition 7 in Appendix A. In

our context, l (Dt, zt, θ) is the score for the maximum likelihood estimator of the propensity

score model. To develop a structure that can be used to account for the variability in V̂n (v)

induced by the estimation of θ, define the function m̄(v, θ) = E [m(yt+k,Dt, zt, θ; v)] and
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let

ṁ(v, θ) = −∂m̄(v, θ)
∂θ

.

It therefore follows that V̂n (v) can be approximated by Vn (v)−ṁ(v, θ0)0n−1/2
Pn

t=1 l (Dt, zt, θ0).

The empirical process V̂n(v) converges to a limiting process V̂ (v) with covariance function

Γ̂(v, τ) = Γ (v, τ)− ṁ(v, θ0)
0L(θ0)ṁ(τ , θ0),

as shown in Appendix A. Next we turn to details of the transformations. Section 4.1

discusses a Khmaladze-type martingale transformation that corrects V̂ (v) for the effect

of estimation of θ. Section 4.2 then discusses the problem of obtaining asymptotically

distribution free limits for the resulting process. This problem is straightforward when v is

a scalar, but extensions to higher dimensions are somewhat more involved.

4.1 Khmaladze Transform

The object here is to define a linear operator TV̂ (v) with the property that the trans-

formed process, W (v) = T V̂ (v), is a mean zero Gaussian process with covariance function

Γ(v, τ).While V̂ (v) has a complicated data-dependent limiting distribution (because of the

estimated θ), the transformed process W (v) has the same distribution as V (v) and can be

handled more easily in statistical applications. Khmaladze (1981, 1988, 1993) introduced

the operator T in a series of papers exploring limiting distributions of empirical processes

with possibly parametric means.

When v ∈ R, the Khmaladze transform can be given some intuition. First, note that

V (v) has independent increments ∆V (v) = V (v + δ) − V (v) for any δ > 0. On the

other hand, because V̂ (v) depends on the limit of n−1/2
Pn

t=1 l (Dt, zt, θ0) this process does

not have independent increments. Defining Fv = σ
³
Ṽ (s), s ≤ v

´
, we can understand

the Khmaladze transform as being based on the insight that, because V̂ (v) is a Gaussian

process, ∆W (v) = ∆V̂ (v)−E
³
∆V̂ (v) |Fv

´
has independent increments. The Khmaladze

transform thus removes the conditional mean of the innovation ∆V̂ . When v ∈ Rk with
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k > 1 as in our application, this simple construction can not be trivially extended because

increments of V (v) in different directions of v are no longer independent. As explained in

Khmaladze (1988), careful specification of the conditioning set Fv is necessary to overcome

this problem.

Following Khmaladze (1993), let {Aλ} be a family of measurable subsets of [−∞,∞]k,

indexed by λ ∈ [−∞,∞] such that A−∞ = ∅, A∞ = [−∞,∞]k, λ ≤ λ0 =⇒ Aλ ⊂ Aλ0

and Aλ0\Aλ → ∅ as λ0 ↓ λ. Define the projection πλf(v) = 1 (v ∈ Aλ) f(v) and π⊥λ = 1−

πλ such that π⊥λ f(v) = 1 (v /∈ Aλ) f(v). We then define the inner product hf(.), g (.)i :=R
f(u)g(u)0dH (u) and the matrix

Cλ =

π⊥λ l̄(., θ), π

⊥
λ l̄(., θ)

®
=

Z
π⊥λ l̄(u, θ)π

⊥
λ l̄(u, θ)

0dH(u).

We note that the process V (v) can be represented in terms of a Gaussian process b(v)

with covariance function H(v ∧ τ) as V (φ(., v)) = V (v) =
R
φ(u, v)db(u). Using the same

notation the transformed statistic W (v) is given by

TV̂ (v) :=W (v) = V̂ (v)−
Z 

φ (., v) , d
¡
πλl̄(., θ)

¢®
C−1λ V̂ (π⊥λ l̄(., θ)) (7)

where d
¡
πλl̄(., θ)

¢
is the total derivative of πλl̄(., θ) with respect to λ and

l̄(v, θ) =
1

(p(v2, θ)− p(v2, θ)
2)

∂p(v2, θ)

∂θ
.

We show in Appendix A that the process W (v) is zero mean Gaussian and has covariance

function Γ(v, τ).

The transform above differs from that in Khmaladze (1993) in that l̄(v, θ) is differ-

ent from the optimal score function that determines the estimator θ̂. The reason is that

here H(v) is not a conventional cumulative distribution function as in these papers. It

should also be emphasized that unlike Koul and Stute (1999), we make no conditional

homoskedasticity assumptions. 9

9Stute, Thies and Zhu (1998) analyze a test of conditional mean specification in an independent sample
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To construct the test statistic proposed in the theoretical discussion we must deal with

the fact that the transformation T is unknown and needs to be replaced by an estimator

Tn where

Ŵn(v) = TnVn (v) = V̂n (v)−
Z µZ

φ(u, v)d
¡
πλl̄(u, θ)

¢
dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(., θ̂)) (8)

with V̂n(π
⊥
λ l̄(., θ̂)) = n−1/2

Pn
s=1 π

⊥
λ l̄(Us, θ̂)

³
Ds − p(zs, θ̂)

´
and the empirical distribution

Ĥn(v) is defined in Appendix B.

The transformed test statistic depends on the choice of the sets Aλ. Here we focus on

sets Aλ = [−∞, λ]× [−∞,∞]k−1 , which turns out to be convenient in this context. Denote

the first element of yt by y1t. Then (8) can be expressed more explicitly as

Ŵn(v) = V̂n(v)−n−1/2
nX
t=1

"
φ {Ut, v}

∂p(zt, θ̂)

∂θ0
Ĉ−1y1t

n−1
nX

s=1

1 {y1s > y1t} l̄(Us, θ̂)
³
Ds − p(zs, θ̂)

´#
(9)

Critical values for Ŵn(v) can be computed numerically as follows: Draw U∗t randomly from

the empirical distribution F̂u(v). Let ε∗t be an iid(0,1) random variable independent of U
∗
t .

Then

W ∗
n(v) = n−1/2

nX
t=1

ε∗t1 {U∗t ≤ v} (10)

has the same limiting distribution as Ŵn(v) by standard arguments (see Van der Waart

and Wellner, 1996). Critical values for Ŵn (v) can therefore be computed by repeatedly

drawing from the distribution ofW ∗
n(v). In Section 5 we report Monte Carlo results based on

critical values obtained numerically from W ∗
n(v). These results show some size distortions.

We therefore turn in the next section to a further transformation that leads to a distribution

free limit for the test statistics.

allowing for heteroskedasticity by rescaling the equivalent of our m(yt,Dt, zt, θ0; v) by the conditional

variance. But their approach does not work for our problem because the relevant conditional variance

depends on the unknown parameter θ. Instead of correctingm(yt,Dt, zt, θ0; v) we adjust the transformation

T in the appropriate way.
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4.2 Rosenblatt Transform

The implementation strategy discussed above has improved operational characteristics

when the data are modified using a transformation proposed by Rosenblatt (1952). This

transformation produces a multivariate distribution that is i.i.d on the k-dimensional

unit cube, and therefore leads to a test that can be based on standardized tables such

as Table 2. Let Ut = [Ut1, ..., Utk] and define the transformation w = TR (v) compo-

nent wise by w1 = F1(v1) = P (Ut1 ≤ v1) , w2 = F2 (v2|v1) = P (Ut2 ≤ v2|U1t = v1),...,

wk = Fk (vk|vk−1, ..., v1) = P (Utk ≤ vk|Utk−1 = vk−1, ..., Ut1 = v1) . The inverse v = T−1R (w)

of this transformation is obtained recursively as v1 = F−11 (u1) ,

v2 = F−12
¡
w2|F−11 (w1)

¢
, ....

Rosenblatt (1952) shows the random vector wt = TR (Ut) has a joint marginal distribution

which is uniform and independent on [0, 1]k .

Using the Rosenblatt transformation we define

mw(wt,Dt, θ|v) =
£
Dt − p(

£
T−1R (wt)

¤
z
, θ)
¤
φ(wt, w)

where w = TR(v) and zt =
£
T−1R (wt)

¤
z
denotes the components of T−1R corresponding to zt.

The null hypothesis is now that E [Dtφ(wt, w)|zt] = E [φ(wt, w)|zt] p(zt, θ), or equiva-

lently,

E [mw(wt,Dt|v)|zt] = 0.

Also, the test statistic Vn(v) becomes the marked process

Vw,n(w) = n−1/2
Pn

t=1mw(wt,Dt, θ|w).

Rosenblatt (1952) notes that tests using TR are generally not invariant to the ordering

of the vector wt because TR is not invariant under such permutations. Of course, our test

statistic also depends on the choice of φ(., .). This sort of dependence on the details of

implementation is a common feature of consistent specification tests. From a practical

19



point of view it seems natural to fix φ(., .) using judgements about features of the data

where deviations from conditional independence are likely to be easiest to detect (e.g.,

moments). In contrast, the wt ordering is inherently arbitrary. As a strategy for dealing

with this arbitrariness, Justel, Pẽna and Zamar (1997) propose the use of tests di indexed by

all possible k! permutations of the elements of wt and consider summary statistics such as

maxi di. We investigate the performance of this strategy in the Monte Carlo and empirical

sections below.

We denote by Vw (v) the limit of Vw,n (v) and by V̂w (v) the limit of V̂w,n (v) which is

the process obtained by replacing θ with θ̂ in Vw,n (v) . Define the transform TwV̂w(w) as

before by10

TwV̂w (w) :=Ww(w) = V̂w (w)−
Z 

φ (., w) , dπλl̄w(., θ)
®
C−1λ V̂w(π

⊥
λ l̄w(., θ)). (11)

Finally, to convert Ww(w) to a process which is asymptotically distribution free we apply

a modified version of the final transformation proposed by Khmaladze (1988, p. 1512) to

the processW (v). In particular, using the notationWw(φ(., w)) =Ww(w) to emphasize the

dependence of W on φ, it follows from the previous discussion that

Bw(w) =Ww

¡
φ(., w)/(hw(.))

1/2
¢

is a Gaussian process with covariance function
R 1
0
· · ·
R 1
0
φ(u,w)φ(u,w0)du, where hw(.) =

p(
£
T−1R (wt)

¤
z
, θ)(1− p(

£
T−1R (wt)

¤
z
, θ)).

In practice, wt = TR(Ut) is unknown because TR depends on unknown conditional

distribution functions. In order to estimate TR we introduce the kernel function Kk(x)

where Kk(x) is a higher order kernel satisfying Conditions (9) of Section A.2. A sim-

ple way of constructing higher order kernels is given in Bierens (1987). Let Kk(x) =

(2π)−k/2
Pω

j=1 θj |σj|
−k exp

¡
−1/2x0x/σ2j

¢
with

Pω
j=1 θj = 1 and

Pω
j=1 θj |σj|

2c = 0 for

10For a more detailed derivation see Appendix B.
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c = 1, 2, ..., ω − 1. Let mn = O(n−1/(2+k)) be a bandwidth sequence and define

F̂1(x1) = n−1
nX
t=1

1 {Ut1 ≤ x1}

...

F̂k(xk|xk−1, ..., x1) =
n−1

Pn
t=1 1 {Utk ≤ xk}Kk−1((xk− − Utk−) /mn)

n−1
Pn

t=1Kk−1((xk− − Utk−) /mn)

where xk− = (xk−1, ..., x1)
0 and Utk− = (Utk−1, ..., Ut1)

0 . An estimate ŵt of wt is then

obtained from the recursions

ŵt1 = F̂1(Ut1)

...

ŵtk = F̂k(Utk|Utk−1, ..., Ut1).

We define Ŵw,n (w) = Tw,nV̂w,n (w) where Tw,n is the empirical version of the Khmaladze

transform applied to the vector wt. Let Ŵŵ,n (w) denote the process Ŵw,n(w) where wt has

been replaced with ŵt. For a detailed formulation of this statistic see Appendix B. An

estimate of hw(w) is defined as

ĥw(.) = p(., θ̂)
³
1− p(., θ̂)

´
.

The empirical version of the transformed statistic is

B̂ŵ,n (w) = Ŵŵ,n

³
φ(., w)/ĥw(.)

1/2
´

= n−1/2
nX
t=1

ĥw(zt)
−1/2

h
Dt − p(zt, θ̂)− Ân,t

i
φ (ŵt, w) (12)

where Ân,s = n−1
Pn

t=1 1 {ŵt1 > ŵs1}
³
Dt − p(zt, θ̂)

´
∂p(zs,θ̂)
∂θ0 Ĉ−1ŵ1s

l̄(zt, θ̂). Finally, Theorem

7 in Appendix A formally establishes that the process B̂ŵ,n (v) converges to a Gaussian

process with covariance function equal to the uniform distribution on [0, 1]k .

Note that the convergence rate of B̂ŵ,n (v) to a limiting random variable does not depend

on the dimension k or the bandwidth sequencem. Theorem 7 shows that B̂ŵ,n(w)⇒ Bw(w)
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onD
£
Υ[0,1]

¤
whereBw(w) is a standard Gaussian process andΥ[0,1] =

n
w ∈ [0, 1]k |w = πxw

o
.

It thus follows that transformed versions of the VM and KS statistics converge to function-

als of Bw(w). These results can be stated formally as

VMw =

Z
Υ[0,1]

³
B̂ŵ,n(w)

´2
dw⇒

Z
Υ[0,1]

(Bw(w))
2 dw (13)

and

KSw = sup
v∈Υ[0,1]

¯̄̄
B̂ŵ,n(w)

¯̄̄
⇒ sup

v∈Υ[0,1]
|Bw(w)| . (14)

Here VMw andKSw are the VM and KS statistics after both the Khmaladze and Rosenblatt

transforms have been applied to V̂n(v). In practice the integral in (13) and the supremum

in (14) can be computed over a discrete grid. The asymptotic representations (13) and

(14) make it possible to use asymptotic statistical tables. For the purposes of the Monte

Carlo below, we computed critical values for the VM statistic in the special case where

φ (., v) = 1 {. ≤ v} (These are reported in Table 2). These critical values depend only on

the dimension k and are thus distribution free.11 Table 2 is also used to construct critical

values in our empirical application in Section 6.

5 Monte Carlo Evidence

We evaluated the performance of our semiparametric tests using a simple data generating

process that nevertheless captures important features of the empirical applications we have

in mind. The process is

yt = βyt−1 + γDt + εt

Dt = 1 {yt−1 − α+ ηt > 0} ,

where εt and ηt are independent with εt ∼ N(0, 1) and ηt has a logistic distribution. The

parameter α was set equal to 3, so as to generate a probability of treatment of 5 percent.

11See Section 5 for a more detailed discussion of how Table 2 was constructed.
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This is about the proportion of treated periods in our empirical sample. The simulated

model has a standard lagged-dependent-variable structure that captures serial correlation

in the outcome. The policy assignment is also correlated with lagged outcomes.

The simulation used samples of 100 and 200 observations in 500 replications. The

reported results are rejection rates for the test statistics derived above and for a conventional

t-test for the significance of γ in a regression of yt on yt−1 and Dt. To construct the

semiparametric test statistics, we used a Logit model for the propensity score and the test

function φ(Ut, v) = 1 {(yt, yt−1) ≤ v}.

Table 1 reports results for several implementations of our semiparametric test. These

results are for the statistic VM =
R ³

V̂n (v)
´2

dFu(v) and differ only in the way in which

V̂n(.) is implemented and the method by which critical values were obtained. We choose a

bandwidth of m = 10n−1/(2+k).12

We begin with statistics and significance levels calculated using the numerical methods

to determine critical values, as described in Section 4.1. In particular, Column (1) in Table

1 reports results for the statistic Ŵn(v) defined by (9), with critical values obtained by

numerical simulation conditional on the sample as described by equation (10). The test

statistic reported here can therefore be written
R ³

Ŵn (v)
´2

dF̂u(v), where F̂u(v) is the

empirical distribution of Ut. This statistic relies on the Khmaladze transformation alone to

adjust inference for estimation of the propensity score.13

Test’s based on the asymptotic critical values reported in Table 2 and using the Rosen-

blatt transformation as in (12), were constructed as follows. Let di =
R h

B̂ŵ,n (w)
i2
dw

12Experimentation with different choices of m indicate that the tests are not very sensitive to this

parameter. Nevertheless, for much smaller values of m such as m = n−1/(2+k)/10 we found that the tests

were undersized.
13We also simulated test statistics that ignore estimation of θ. In other words, we used the process V̂n(v)

to construct test statistics but based inference on critical values for V (v). The resulting tests tend to be

markedly undersized and show a substantial power loss relative to tests that do account for estimation of

θ.
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be the statistic based on the i-th permutation of the elements in Ut before the Rosen-

blatt transform is applied to Ut. Column (2) in Table 1 reports results for the statistic

md ≡ maxi di where the maximum statistic is taken over all permutations of the elements

in Ut and uses critical values from Column (1) of Table 2.14 We use the notation mda to

denote results for the md statistic that are based on asymptotic critical values.

Column (3) of Table 1 was calculated using upper bounds for the asymptotic critical

values of the md statistic proposed by Justel, Peña and Zamar (1997). We use the notation

mdb to denote results for the md statistic that are based on upper bounds. Upper bounds

are based on P (md > cα) ≤
P

i P (di > cα) = k!α such that αmd = α/k! leads to a critical

value with P (md > cα/k!) ≤ α. When α = .05 is the desired significance level, we use the

critical value corresponding to d for k = 2 and 1− α = .975 in Table 2. Columns (4) and

(5) of Table 1 report corresponding results based on asymptotic critical values for d1 and

d2. Since in this case Ut = {yt, yt−1} these two tests are based on the two permutations of

Ut, {yt, yt−1} and {yt−1, yt} .

As predicted by the theoretical discussion, the results in Table 1 show the tests d1 and

d2 to have similar properties, with accurate size at all degrees of serial correlation in yt

that we investigated. When compared with a t-test, reported in Column (6), which in this

scenario is both asymptotically optimal and has good finite sample size properties, the tests

di fare quite well. It is especially encouraging to see that the semiparametric test statistics

have good power properties, though these naturally fall somewhat short of the power for

the parametric t-test.

14Note that the asymptotic critical values for di do not depend on the permutation chosen. For this

reason we only distinguish between the maximum statistic md and d in Table 2. Critical values do depend

on the dimension k of the vector Ut. Table 2 was obtained by randomly drawing U∗∗t from a Gaussian

distribution with a randomly drawn covariance matrix and then applying the Rosenblatt transform to

the generated random variables U∗∗t .Note that here the Rosenblatt transform TR is known because U∗∗t

is Gaussian. We thus compute d∗∗i = n−1
Pn

t=1 ε
∗
tT
−1
R (U∗∗t ) for the i-th permutation of U

∗∗
t where εt is

iid standard Gaussian. The sample size is set to n = 100 and 100, 000 replications of d∗∗i are used to

approximate the distributions of md and d.
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The semiparametric tests have most accurate size when the asymptotic critical values

for the statistic md are used, reported in Column (2). The resulting test is only slightly

oversized for most values of β. Power is also quite good in this case, and the mda test is

at least as powerful as the individual statistics, di, although the differences are very small.

This may be due in part to small size distortions of the mda test. The mdb test based on

upper bound critical values, reported in Column (3), is somewhat undersized for models

with larger values of β and consequently has less power. This version of the test therefore

leads to a conservative test of the null hypothesis.

Finally, the version of the test based on simulated critical values conditional on the

sample in Column (1) has size distortions somewhat larger than the distortion for the in-

dividual tests di based on asymptotic critical values in Columns (4) and (5) when β is low

to moderate, i.e. β ≤ .5. At the same time, with simulated critical values, power is some-

what lower, a feature which clearly makes this implementation less attractive. Moreover,

when β = .9 this version of the test displays fairly large size distortions, unlike the other

implementations of the test. Overall, the mda test using asymptotic critical values seems

to provide the best combination of accuracy and power. The mdb test using upper bound

critical values leads to a more conservative version of the test. We therefore used both test

statistics for the empirical work described in the next section. At least in our application

we found the differences to be minor with mda only leading to slightly more significant

results.

6 Causal Effects of Monetary Policy Shocks Revisited

In an influential study of the effects of monetary policy, Romer and Romer (1989) con-

structed a monetary policy shock variable derived using what they call the narrative ap-

proach, inspired by Friedman and Schwartz’ classic monetary history. The narrative ap-

proach uses Federal Open Market Committee minutes to construct a dummy variable, Dt,

to indicate episodes where the Fed took a marked anti-inflationary stance. Thus, Dt
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indicates periods that are now known as "Romer dates." The Romer dates mark Fed de-

cisions to change short term interest rates, discount rates, or reserve requirements. There

were six such dates in the original Romer sample, running from 1948-1987, with a 7th

date added when the sample was extended through 1991 in Romer and Romer (1994).

The link between Romer Dates and later economic activity provides a natural setting for

propensity-score based estimates of the effects of monetary policy.

The key identifying assumption in the Romer papers is that, conditional on lagged

outcomes, the Romer dates are as good as randomly assigned in the sense that regressions

of future output growth on (lagged) dummies for these dates have a causal interpretation.

A substantial literature has developed challenging this premise. Examples include Leeper

(1997), who argues the Romer dates are determined in part by the Fed’s (nonlinear) forecast

of future output and Shapiro (1994) who similarly argues that monetary policy is forward-

looking in a way that induces omitted variables bias in the Romers’ regressions. Both

of these critiques are consistent with the modeling strategy outlined here in that we focus

attention on models for the policy-determination process. Romer and Romer (1997) defend

the notion that, after appropriate conditioning, the dates can be seen as exogenous. Romer

and Romer (2004) provide new estimates of the dates of monetary shocks using a somewhat

more systematic version of the narrative approach. We focus on the original Romer dates

because they correspond to our binary-policy-variable setup, though in future work we

hope to address the more general policy evaluation problem.

Our re-analysis of the Romer data begins with Granger-style regressions of the growth

of industrial production (IP) on contemporaneous and lagged dummies for Romer dates

(”Romer dummies”), controlling for lags of IP growth. This is similar to the Romer’s

econometric approach, with two modifications. First, we aggregate monthly data to the

quarterly level since there is probably little additional information in the higher-frequency

series. Romer quarters are identified as quarters with a Romer month.15 This also serves to

15Quarterly series for all variables were constructed by averaging monthly series. Growth rates were

constructed as the first differences of the log of the quarterly averages. All quarterly series were desea-
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increase the proportion of the sample coded as a Romer date, making it easier to estimate

the policy propensity score. Second, the Romers assess the role of monetary policy variables

by looking at the impulse response function, while we focus on F-statistics for the Romer

dummies.

Controlling for 8 lags of output and no other covariates, a test for the joint significance

of the Romer dummies generates a p-value of about .01. This result, consistent with the

Romers’ original findings, can be seen in the first two columns of Table 3.16 We report both

robust F-statistics based on White standard errors as well as non-robust standard errors.

Significance levels using robust standard errors tend to be higher, especially in models with

additional covariates. Non-robust standard errors may be more reliable in these cases since

increased precision with robust standard errors is often an artifact of finite sample bias and

size distortion (Chesher and Jewitt, 1987).

Much of the debate over the Romer’s empirical approach focuses on whether it is enough

to control for lagged output when assessing the causal effect of Romer dates on output.

An especially important control variable in this context is inflation, since the Fed presum-

ably looks at this when making monetary policy decisions. On the other hand, inflation

clearly responds to monetary policy and may therefore not be an exogenous control. This

possibility was highlighted in the discussion of Granger-testing pitfalls in Example 3. To

explore the consequences of adding inflation controls, we fit a version of the Romer’s prin-

cipal estimating equation after adding eight lags of inflation to the list of covariates. These

results, reported in Columns 3 and 4 of Table 3, show that the addition of inflation controls

sonalized by recursive regressions on quarter dummies. The regressions are recursive in that coefficients

were estimated using only information available prior to each observation. This procedure allows us to

ignore the estimation error arising from this de-seasonalization. The series used in this section are listed in

the last table. The original monthly series were obtained from the Wharton/DRI Global Insight service.

Although standard and widely available, these series differ somewhat from the Romers’ original as they

have since been revised. We us the 1952-91 sample used by Shapiro (1994).
16The specification includes 12 lagged Romer dummies (3 years worth). This corresponds to the Romers’

original equation which included 3 years worth of lagged Romer dummies.
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reduces the significance level of the Romer dummies somewhat, though some effects are

still significant. Similarly, adding controls for lagged unemployment rates further reduces

the significance of the joint F test for the Romer dummies. These results appear in columns

5 and 6 of the table. The p-value for the joint significance of the Romer dummies becomes

.09 for the non-robust version of the F-statistic.

Finally, we explore Sims-type semiparametric tests of conditional independence in this

context using the transformed VM and KS statistics described above. For purposes of

comparison, results from a parametric analog of the semiparametric tests are also reported.

The semiparametric test results are for tests of conditional distributional independence

where φ(Ut, v) = 1 {Ut ≤ v} and the policy propensity score was estimated using Logit, as

for the Monte Carlos in the previous section. The semiparametric tests were implemented

using the same bandwidth as used for the simulations.17

The foundation of our semiparametric testing procedure is a parsimonious model for the

policy propensity score. Following Shapiro (1994), we used a parsimonious model based on

the notion, also discussed by Romer and Romer (2004), that the systematic component of

Fed policy decisions is driven by forecasts of inflation and unemployment. In particular, we

first fit a vector autoregressive model (VAR) to unemployment and inflation. We then used

predictions up to 100 periods ahead to construct a forecast of the ”present value” of future

inflation and unemployment in each period, similar to the present value forecasts used by

Shapiro. The idea is that the Fed sets monetary policy based on this measure, or other

summary forecasts that are highly correlated with this one. A detail here, however, is that

because Shapiro’s forecasting parameters were estimated on the entire sample, the resulting

present value measures are not part of the relevant information set of the Fed. To avoid

this conceptual ( if not practical) problem, we also used a true out-of-sample forecasting

procedure to construct the present value measures by estimating the VAR parameters on

17We have experimented with different choices of the bandwidth, but found that the results are not

sensitive to the choice of m.
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the sample prior to the forecast period only. The present value inflation and unemployment

forecasts are the main covariates in the model for the policy propensity score, though some

estimates also include lagged dependent variables.18

The semiparametric mdb tests were constructed for three specifications, with results

reported in columns 1-3 of Table 4. The first two specifications use full-sample and out-

of-sample forecasts. The third specification adds lagged dependent variables to the model

using out-of-sample forecasts. Results in different rows are for different lead lengths, e.g.,

causal effects on output growth one period ahead, two periods ahead, and so on. We look

at each lead one at a time because the number of permutations required for the Rosenblatt

transform grows rapidly with the dimensionality of a joint test. The upper bound method

was used to obtain critical values for the semiparametric tests.19

Results from the first specification offer some evidence of a money-output relation at

some lags. In particular, semiparametric tests reject non-causality at one, three to five,

seven and eight quarter leads. These results may be misleading because full sample estima-

tion of zt invalidates the semiparametric tests. Significance levels are reduced considerably

when out-of-sample forecasts are used to construct control variables, but there are still re-

jections at the third and eight quarter leads and a weakly significant result at the first lead.

Adding lagged output growth does not change these findings, which can be seen in column

18Lagged Romer dummies were also used as explanatory variables in the forecasting equations. The

discount rate was set at 2%. The forecasting equation has eight lags for inflation and unemployment and

16 lags for the Romer dummies. When constructing out-of-sample forecasts, lag length for all covariates

was reduced to four periods at the beginning of the sample.
19The p-values reported in the table were obtained by translating the p-values in Table 2 into p-values

for the upper bound test by multiplying α by k!. To achieve a 5% level of significance and with k = 3, this

implies a critical value corresponding to 1−α = .9916 needs to be used in Column (4) of Table 2. In Table

4 we report intervals for p-values. These are constructed translating the interval of critical values in which

the test statistic falls into corresponding significance values. For example if md = .4 then the interval of

critical values is [.33, .42] from Column (4) of Table 2 with corresponding α ∈ [.01, .025]. Because k! = 6
this translates into an effective α that is contained in [.06, .15].
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3. In Table 5 we report the same statistic but now judged against asymptotic critical values

from Column (3) of Table 2. The results are essentially the same except that the first lead

is now statistically significant. On balance, it seems fair to say that a forward-looking Sims

test provides weak support the Romers’ original conclusion, at least as far the correlation

between Romer dates and future output growth as concerned. Not surprisingly, however,

given the paucity of Romer dates that form the essence of the "natural experiment" that

lies behind this inquiry, the evidence for money-output causality can fairly be described as

"mixed."20

To gauge the extent to which our semiparametric test results have reduced power relative

to similar parametric tests, we added future output growth to the present value variables

(and possibly lagged output growth variables) already in the policy propensity score. The

significance level of future output variables in the policy propensity score provides a para-

metric Sims-type test of a particular version of the conditional independence hypothesis

that is at the heart of the semiparametric tests. In particular, we report significance levels

for the coefficient θ3 in the following choice equation of a Logit model for Fed action

Dt = 1 {θ0 + θ1u
pv
t + θ2π

pv
t + θ3Yt+j + εt > 0} .

where zt = [u
pv
t , πpvt ]

0 contains the present value measures for unemployment and inflation

discussed earlier. The variable Yt+j is the change in industrial production at lead j. Under

the null hypothesis, the parameter θ3 should be zero. The parametric version of this test

has the advantage that, subject to having correctly specific the policy propensity score,

the model is correct under the null hypothesis of non-causality. On the other hand, this

specification need not be correct under the alternative, even if the policy propensity score

is correctly specified, and may therefore have reduced power in some directions.

As it turns out, results from the parametric analog of our semiparametric tests are

20The Romer’s original findings showed statistical significance for Romer dummies at particular groups

of lags in Granger-style regressions. These effects were large enough to induce a clear shift in the impulse

response function, a relation analogous to the one checked by our forward-looking Sims tests.
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generally in line with the semiparametric results, especially for the out-of-sample forecast

case. This can be seen in columns 4-6 of Table (4). In particular, there is some evidence

of causality at the first and eighth lead, while two of the specifications also show something

at an intermediate lead, in this case the third. The fact that the semiparametric and

parametric models generate results with the same patterns of significance suggests power

considerations do not substantially handicap the semiparametric results.

7 Conclusions and Directions for Further Work

This paper develops a causal framework for time series data using the notion of potential

outcomes commonly used in cross-sectional evaluation research. This leads to a definition

of causality similar to the one proposed by Sims. For models with covariates, Sims causality

is not the same as Granger causality, and the distinction between these two concepts turns

out to be conceptually important. In particular, Granger causality may confuse system

dynamics with the causal effects of isolated policy actions. In contrast, Sims causality

hones in on isolated policy shocks relative to a well-defined counter-factual baseline.

A major part of our agenda is to develop a causality test that focuses on the pol-

icy assignment mechanism, which we call the policy propensity score. In particular, we

develop a new semiparametric test of conditional independence, valid under the selection-

on-observables null hypothesis that is at the heart of much of the empirical work on time

series causal effects. A major advantage of this approach is that it does not require re-

searchers to model the process determining the outcomes of interest. The resulting tests

have power against all alternatives but are necessarily joint tests of the null of no causality

and correct specification of the policy propensity score. Although we have not emphasized

this, it is also worth noting that the testing framework developed here is easily adapted to

construct tests for specific alternative hypotheses, such as mean-independence.

The development here is limited to binary treatments but it seems likely our approach

can be extended to multivalued treatments, perhaps along the lines explored in recent
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work by Hirano and Imbens (2004). Of course, it is an open question whether the technical

machinery used here, such as the Khmaladze transform, transfers to the more general

setting. This is a question we hope to address in future work. We also plan to explore

the question of whether tests for conditional mean and second-order moment independence

have advantages over omnibus tests.
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A Asymptotic Critical Values

This Appendix provides formal results on the distribution of the test statistics described above and forms

the basis for the construction of asymptotic critical values. The theorems and proofs use the additional

notation outlined below.

A.1 Additional Notation and Assumptions

We focus initially on the process Vn(v) and the associated transformation T. Results for Vw,n(w) and the

transformed process TwVw,n(w) then follow as a special case.

Let χt = [y0t, z
0
t,Dt]

0 be the vector of observations. Assume that {χt}∞t=1 is strictly stationary with
values in the measurable space

¡
Rk+1,Bk+1

¢
where Bk+1 is the Borel σ-field on Rk+1 and k is fixed with

2 ≤ k <∞. Let Al
1 = σ (χ1, ..., χl) be the sigma field generated by χ1, ..., χl. The sequence χt is β-mixing

or absolutely regular if

βm = sup
l≥1

E

"
sup

A∈A∞l+m

¯̄̄
Pr
³
A|Al

1

´
− P (A)

¯̄̄#
→ 0 as m→∞.

A sequence is called α-mixing if

αm = sup
l≥1

E

⎡⎣ sup
A∈Al

1,B∈A∞l+m
|Pr (A ∩B)− P (A)P (B)|

⎤⎦→ 0 as m→∞

and it is well known that αm ≤ βm.

Condition 2 Let χt be a stationary, absolutely regular process such that for some 2 < p <∞ the β-mixing

coefficient of χt satisfies m
p/(p−2) (logm)2(p−1)/(p−2) βm → 0.

Condition 3 Let Fu(u) be the marginal distribution of Ut. Assume that Fu (.) is absolutely continuous

with respect to Lebesgue measure on Rk and has a density fu(u)

Condition 4 The function φ(., .) belongs to a VC subgraph class of functions with envelope M(χt) such

that E |M(χt)|2+δ <∞ for some δ > 0.

We note that |m(yt,Dt, zt, θ0|v)| ≤ 2 for φ(., v) = 1 {. ≤ v} such that by Pollard (1984) Theorem II.25,

mv(Wt) = m(yt,Dt, zt, θ0|v) is a VC subgraph class of functions indexed by v with envelope 2.

Condition 5 Let H(v) be as defined in (6) . Assume that H(v) is absolutely continuous in v with respect

to Lebesgue measure and for all v, τ such that v ≤ τ with vi < τ i for at least one element vi of v it follows

that H(v) < H(τ). Let h(v) = ∂kH(v)/∂v1...∂vk and assume that h(v) > 0 for all v ∈ Rk.

Remark 1 A sufficient condition for Condition (5) is that 0 < p(zt, θ0) < 1 almost surely.
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A.2 Limiting Distributions

Let D [−∞,∞]k be the space of functions that are continuous from the right with left limits (Cadlag)

mapping [−∞,∞]k → R. We consider weak convergence on D [−∞,∞]k equipped with the sup norm.
Here [−∞,∞]k denotes the k-fold product space of the extended real line equipped with the metric q(v, τ) =³Pk

i=1 |Φ(vi)− Φ(τ i)|
2
´1/2

where Φ is a fixed, bounded and strictly increasing function. It follows that

[−∞,∞]k is totally bounded. The function space F =
n
m(., v)|v ∈ [−∞,∞]k

o
of functions m indexed by

v then is a subset of the space of all bounded functions on [−∞,∞]k denoted by l∞([−∞,∞]k).

Proposition 2 Assume that Conditions 2, 3 and 5 are satisfied. Let vi ∈ [−∞,∞]k for i = 1, ..., s be a
finite collection of points. Then, for all finite s, Vn (v1) , ...., Vn (vs) converges in distribution to a Gaussian

limit with mean zero and covariance function Γ(vi, vj). Moreover, Vn (v) converges in D [−∞,∞]k to a
Gaussian process V (v) with covariance kernel Γ(v, τ) with v, τ ∈ [−∞,∞]k and V (−∞) = 0, H(v) is

positive with H(v) increasing in v.

Proof of Proposition 2. As noted before, under H0, mv(χt) is a martingale difference sequence such

that E (mv(χt)|zt) = 0. Let λ = (λ1, ..., λs)
0 with kλk = 1. For finite dimensional convergence we apply

Corollary 3.1 of Hall and Heyde (1980) to Yt = λ1mv1(χt) + λ2mv2(χt) + ...+ λsmvs(χt). Then, clearly Yt

is also a martingale difference sequence. Consider Ynt = Yt/
√
n. Then, for all ε > 0,X

t

E
¡
Y 2nt1 {|Ynt| ≥ ε} |At−1

1

¢
≤
X
t

E
¡
Y 2nt1

©
2
P

i |λi| ≥
√
nε
ª
|At−1
1

¢
→ 0 a.s.

because EY 2+δnt is bounded for some δ > 0. Also,X
t

E
£
Y 2nt|At−1

1

¤
= n−1

nX
t=1

E
£
Y 2t |At−1

1

¤
= n−1

nX
t=1

E
h
p(zt, θ0) (1− p (zt, θ0)) (λ1φ (ut, v1) + λ2φ (ut, v2) + ...+ λsφ(ut, vs))

2 |At−1
1

i
p→
X
i,j

λiλjΓ(vi, vj)

where the last line is a consequence of Theorem 2.1 in Arcones and Yu (1994). By the Cramer-Wold theorem

this establishes finite dimensional convergence. The functional central limit theorem again follows from

Theorem 2.1 in Arcones and Yu (1994).

The next proposition establishes a linear approximation to the process V̂n (v) evaluated at the estimated

parameter value θ̂. The fact that l (Dt, zt, θ0) is a martingale difference sequence is critical to the develop-

ment of a distribution free test statistic. The next condition states that the propensity score p(zt, θ) is the

correct parametric model for the conditional expectation of Dt and lists a number of additional regularity

conditions.
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Condition 6 Let θ0 ∈ Θ where Θ ⊂ Rd is a compact set and d < ∞. Assume that E [Dt|zt] = p(zt|θ0)
and for all θ 6= θ0 it follows E [Dt|zt] 6= p(zt|θ). Assume that p(zt|θ) is differentiable a.s. for θ ∈
{θ ∈ Θ| kθ − θ0k ≤ δ} := Nδ(θ0) for some δ > 0. Let N(θ0) be a compact subset of the union of all

neighborhoods Nδ (θ0) where ∂p(zt|θ)/∂θ, ∂2p(zt|θ)/∂θi∂θj exists and assume that N(θ0) is not empty. Let
∂pi(zt|θ)/∂θ be the i-th element of the vector of partial derivatives ∂p(zt|θ)/∂θ and let l̄i(zt, θ) be the i-th
element of l̄ (zt, θ) . Assume that there exists a function B(x) and a constant α > 0 such that¯̄

∂pi(x|θ)/∂θ − ∂pi(x|θ0)/∂θ
¯̄
≤ B(x)

°°θ − θ0
°°α ,¯̄

∂2p(x|θ)/∂θi∂θj − ∂2p(x|θ)/∂θi∂θj
¯̄
≤ B(x)

°°θ − θ0
°°α and ¯̄∂l̄i(x|θ)/∂θ − ∂l̄i(x|θ0)/∂θ

¯̄
≤ B(x)

°°θ − θ0
°°α

for all i and θ, θ0 ∈ intN (θ0), E |B(zt)|2+δ <∞, E |∂pi(zt|θ0)/∂θ|4+δ <∞,

E
h
(p(zt, θ0) (1− p(zt, θ0)))

−(4+δ)
i
<∞

and

E
¯̄̄
(∂pi(zt|θ0)/∂θ)2 / (p(zt, θ0) (1− p(zt, θ0)))

¯̄̄ 4+δ
2

<∞

for all i and some δ > 0.

Remark 2 By Pakes and Pollard (1989, Lemma 2.13) the uniform Lipschitz condition for the derivatives

∂p(zt|θ)/∂θ guarantees that the functions ∂p(zt|θ)/∂θ indexed by θ form a Euclidian class for the envelope

B(zt)
³
2
√
d supN(θ0)

°°θ − θ0
°°´α + |∂pi(zt|θ0)/∂θ| .

Condition 7 Let

l (Dt, zt, θ) = Σ
−1
θ

(Dt − p(zt, θ)) ∂p (Dt|zt, θ) /∂θ
p (Dt|zt, θ) (1− p (Dt|zt, θ))

(15)

where

Σθ = E

∙
∂ log p (Dt|zt, θ) /∂θ∂ log p (Dt|zt, θ) /∂θ0

p (Dt|zt, θ) (1− p (Dt|zt, θ))

¸
. (16)

Assume that Σθ is positive definite for all θ in some neighborhood N ⊂ Θ such that θ0 ∈ intN and

0 < kΣθk < ∞ for all θ ∈ N. Let li (Dt, zt, θ) be the i-th element of l (Dt, zt, θ) . Assume that there

exists a function B(x1, x2) and a constant α > 0 such that
°°∂li (x1, x2, θ) /∂θj − ∂li

¡
x1, x2, θ

0¢ /∂θj°° ≤
B(x)

°°θ − θ0
°°α for all i and θ, θ0 ∈ intN , EB(zt) <∞ and E |l (Dt, zt, θ)| <∞ for all i.

Proposition 3 Assume that Conditions 2, 3,4, 5, 6 and 7 are satisfied. Then

sup
v∈[−∞,∞]k

°°°°°V̂n (v)− Vn (v) + ṁ(v, θ0)n
−1/2

nX
t=1

l (Dt, zt, θ0)

°°°°° = op(1) (17)

and if l (Dt, zt, θ0) is as defined in 15 and 16 then V̂n (v) converges weakly in D[ − ∞,∞]k equipped
with the sup norm to a limiting Gaussian process with mean zero and covariance function Γ̂(v, τ) =

Γ (v, τ)− ṁ(v, θ0)L(θ0)ṁ(τ , θ0)
0 where L(θ0) = Σ−1θ0 defined in 16.
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Proof of Proposition 3. Note that V̂n (v) − Vn (v) = n−1/2
Pn

t

h
p(zt, θ0)− p(zt, θ̂)

i
φ(Ut, v) such

that we can approximate

V̂n (v)− Vn (v) = n1/2
³
θ̂ − θ0

´0 1
n

nX
t

∙
∂p(zt, θn)

∂θ
− ∂p(zt, θ0)

∂θ

¸
φ(Ut, v)

+n1/2
³
θ̂ − θ0

´0 1
n

nX
t

∂p(zt, θ0)

∂θ
φ(Ut, v)

where kθn − θ0k ≤
°°°θ̂ − θ0

°°° by the mean value theorem. Let ṁ (θ, v) = E
h
∂p(zt,θ)

∂θ φ(Ut, v)
i
and ṁ(Ut, θ, v) =

∂p(zt,θ)
∂θ φ(Ut, v) − ṁ (θ, v) . From Pakes and Pollard (1989, Lemmas 2.13 and 2.14) and Condition (6)

it follows that ṁ(., θ, v) is a Euclidian class of functions indexed on N(θ0) × [−∞,∞]k with envelope
(B(zt)

³
2
√
d supN(θ0)

°°θ − θ0
°°´α + |∂pi(zt|θ0)/∂θ|)M(χt). Then°°°°° 1n

nX
t

∙
∂p(zt, θn)

∂θ
− ∂p(zt, θ0)

∂θ

¸
φ(Ut, v)

°°°°°
≤ sup

kθ−θ0k≤δ
sup
v

°°°°° 1n
nX
t

[ṁ(zt, θ, v)− ṁ(zt, θ0, v)]

°°°°°+ sup
kθ−θ0k≤δ

kṁ(θ, v)− ṁ(θ0, v)k+ op(1) = op(1)

since supkθ−θ0k≤δ supv
°° 1
n

Pn
t [ṁ(ztθ, v)− ṁ(zt, θ0, v)]

°° = op(1) by Lemma 2.1 of Arcones and Yu (1994).

This completes the proof of 17.

The second part of the result follows from the fact that the class of functions F = mv(.)+ṁ (θ, v) l(., ., θ0)

is a Euclidian class by Lemma 2.14 of Pakes and Pollard (1989). Since mv(Xt) + ṁ (θ, v) l(Dt, zt, θ0) is

a martingale difference sequence with respect to the filtration At−1
1 finite dimensional convergence to a

Gaussian random variable with zero mean and covariance function Γ̂(v, τ) follows from the martingale

CLT (Hall and Heyde, Corollary 3.1) and the fact that 0 < kΣθ0k <∞ by Condition 7. Convergence to a

weak limit in D [−∞,∞]k then follows again by Lemma 2.1 of Arcones and Yu (1994).
We now establish that the process T V̂ (v), defined in (7) is zero mean Gaussian with covariance function

Γ(v, τ). This establishes that the process T Ṽ (v) =W (v) can be transformed to a distribution free process

via Lemma 3.5 and Theorem 3.9 of Khmaladze (1993).

In order to define the transform T we choose a grid −∞ = λ0 < λ1 < ... < λN = ∞ on [−∞,∞] , let
∆πλi = πλi+1 − πλi and set

cN(V ) =
NX
i=1


φ (., v) ,∆πλi l̄(., θ)

®
C−1λi

V (π⊥λi l̄(ϑ, θ)). (18)

This construction is the same as in Khmaladze (1993) except that we work on [−∞,∞] rather than [0, 1] .
In Proposition (4) we show that cN(V ) converges as N → ∞ and maxi (Φ(λi+1)−Φ (λi)) → 0. Let the

limit of cN(V ) be denoted as c(V ) =
R 

φ (., v) , dπλl̄(., θ)
®
C−1λ V

¡
π⊥λ l̄(., θ)

¢
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Condition 8 Let {Aλ} be a family of measurable subsets of [−∞,∞]k, indexed by λ ∈ [−∞,∞] such that
A−∞ = ∅, A∞ = [−∞,∞]k, λ ≤ λ0 =⇒ Aλ ⊂ Aλ0 and Aλ0\Aλ → ∅ as λ0 ↓ λ. Assume that the sets
{Aλ} form a V-C class (polynomial class) of sets as defined in Pollard (1984, p.17). Define the projection

πλf(v) = 1 (v ∈ Aλ) f(v) and π⊥λ = 1− πλ such that π⊥λ f(v) = 1 (v /∈ Aλ) f(v). We then define the inner

product hf(.), g(.)i :=
R
f(u)g(u)0dH(u) and the matrix

Cλ =
D
π⊥λ l̄(., θ), π

⊥
λ l̄(., θ)

E
=

Z
π⊥λ l̄(u, θ)π

⊥
λ l̄(u, θ)

0dH(u).

Assume that hf(v), πλg(v)i is absolutely continuous in λ and Cλ is invertible for λ ∈ [−∞,∞).

Proposition 4 Assume condition 8 holds. Define Υx =
n
v ∈ [−∞,∞]k |v = πxv

o
for some x < ∞. Let

cN (v) be defined as in 18. Then cN (v) converges with probability 1 to c(v) for all v ∈ Υx. Let T V̂ (v) be

as defined in 7. Then T V̂ (v) is a Gaussian process with zero mean and covariance function Γ(v, τ) for all

v, τ ∈ Υx.

Proof of Proposition 4. The proof of this result follows closely Khmaladze (1993) with the necessary

adjustments pointed out. First, let V (v) be a Gaussian process on [−∞,∞]k with zero mean and covariance
function Γ(v, τ) and V (−∞) = 0. See Kallenberg (1997, p. 201) for the construction of such a process.

Then, V (π⊥λ l̄(., θ)) is a process with trajectories that are continuous in λ by essentially the same argument

as in Lemma 3.2 of Khmaladze. To see this fix α ∈ Rk such that α0V (π⊥λ l̄(., θ)) is a Wiener process on

[−∞,∞] with mean zero, α0V (π⊥∞l̄(., θ)) = 0 and variance α0Cλα with almost all trajectories continuous in

λ on [−∞,∞]. To show that cN (v)→ c(v) almost surely we adapt the proof of Lemma 3.3 of Khmaladze

(1993). As there, define ρ1(ξ) = |ξ1|+ ...+ |ξk| for any vector ξ = (ξ1, ..., ξk) ∈ Rk and ρ∞ (ξ) = maxi |ξi| .
Set ξ =


φ,∆πµl̄(., θ)

®
and η (µ, λ) = C−1µ V (π⊥µ l̄(., θ)) − C−1λ V (π⊥λ l̄(., θ)). By Condition 8 the matrix Cλ

is invertible on [−∞,∞) and C−1λ is continuous in λ. Then, since V (π⊥λ l̄(., θ)) is continuous in λ almost

surely, we have

sup
|Φ(λ)−Φ(µ)|<δ
λ,µ∈[−∞,x]

ρ∞ (η (µ, λ))→ 0

with probability 1 for any fixed x <∞. The remainder of the proof in Khmaladze (1993) then goes through

without change.

We first represent V̂ (v) in terms of V (v). Let V (l (., θ0)) =
R
l(u, θ0)db(u) as before for any function

l(v, θ) and b(v) a zero mean Gaussian process with covariance function H(v ∧ τ) and note that V̂ (v) =
V (φ(.,v))−ṁ(v, θ)Σ−1θ V (l̄(., θ0)). In order to establish a corresponding result to Lemma 3.4 of Khmaladze

(1993) we first show that V̂ (v) = V (φ(.,v))− ṁ(v, θ)Σ−1θ V (l̄(., θ0)) is a valid representation of the limiting

distribution of V̂n(v) which was derived in Proposition 3. Clearly, V̂ (v) is zero mean Gaussian and the
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covariance function is

EV (v)V (τ)− ṁ(v, θ0)Σ
−1
θ

Z
φ (u, τ) l̄(u, θ0)H(du)−

Z
φ (u, v) l̄(u, θ0)H(du)Σ

−1
θ ṁ(τ , θ0)

+ṁ(v, θ0)
0Σ−1θ

Z
l̄(u, θ0)l̄(u, θ0)

0H(du)Σ−1θ ṁ(τ , θ0).

Note that dH(u) =
¡
p(u2)− p(u2)

2
¢
dFu (u) such thatZ

φ (u, τ) l̄(u, θ0)dH(u) =

Z
φ (u, τ)

1

(p(u2)− p(u2)2)

∂p(u2, θ0)

∂θ
dH(u)

=

Z
φ (u, τ)

∂p(u2, θ0)

∂θ
dFu(u) = ṁ(τ , θ0)

and Z
l̄(u, θ0)l̄(u, θ0)

0dH(u)

=

Z
1

(p(u2)− p(u2)2)
2

∂p(u2, θ0)

∂θ

∂p(u2, θ0)

∂θ0
dH(u)

=

Z
1

(p(u2)− p(u2)2)
2

∂p(u2, θ0)

∂θ

∂p(u2, θ0)

∂θ0
dFu(u) = Σθ

such that EV̂ (v)V̂ (τ)0 = H(v ∧ τ)− ṁ(v, θ0)
0Σ−1θ ṁ(τ , θ0) as required.

We now verify that the transformation T has the required properties. Note that


φ(.,v), l̄(., θ)

®
=

Z
φ (u, v)

1

(p(u2)− p(u2)2)

∂p(u2, θ0)

∂θ
dH(u)

= ṁ(v, θ0)

such that V̂ (v) = V (φ (., v))−

φ (., τ) , l̄(., θ)

®
C−1−∞V (l̄(v, θ)).

In order to establish T V̂ (v) = V̂ (v) −
R 

φ (., v) , dπλl̄(., θ)
®
C−1λ V̂ (π⊥λ l̄(., θ)) has covariance function

Γ(v, τ) we first consider E (TV (v))2 where

E

µ
V (v)−

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

Z
π⊥λ l̄(ϑ, θ)db(u)

¶2
= Γ(v, v)− 2

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
+

Z Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

Z
π⊥λ l̄(u, θ)π

⊥
µ l̄(u, θ)

0dH(u)C−1µ


φ (., v) , dπµ l̄(., θ)

0®
= Γ(v, v)− 2

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
+

Z Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ Cλ∨µC

−1
µ


φ (., v) , dπµ l̄(., θ)

0® .
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Note that

φ (., v) , dπλl̄(., θ)

®
C−1λ Cλ∨µC−1µ


φ (., v) , dπµl̄(., θ)

0® is symmetric in λ and µ such thatZ Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ Cλ∨µC

−1
µ


φ (., v) , dπµl̄(., θ)

0®
= 2

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

Z ∞

λ


φ (., v) , dπµl̄(., θ)

0®
=

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
such that E

¡
V (v)−

R 
φ (., v) , dπλl̄(., θ)

®
C−1λ V (π⊥λ l̄(., θ))

¢2
= Γ (v, v) . By the same arguments it follows

that E [TV (v)TV (τ)] = Γ (v, τ) .

That the result then also holds for T V̂ (v) follows from Khmaladze (1993, Theorem 3.9).

Khmaladze (1993, Lemmas 3.2-3.4) shows that the argument need not be limited to all v such that

v ∈ Υx. As noted by Koul and Stute, however, once T is replaced by Tn convergence can only be shown on

the subset πxv of [−∞,∞]k for some finite x due to the instability of the estimated matrix Cλ as λ→∞.

The next step is to analyze the transform T when applied to the empirical processes Vn(v) and V̂n(v)

and in particular to show convergence to the limiting counterpart, T V̂ (v).

Proposition 5 Assume Conditions 2, 3, 4, 5, 6, 7 and 8 are satisfied. Fix x < ∞ arbitrary and define

Υx =
n
v ∈ [−∞,∞]k |v = πxv

o
. Then,

sup
v∈Υx

¯̄̄
T V̂n(v)− TVn(v)

¯̄̄
= op(1)

and TVn(v)⇒ TV (v) in D [Υx] where ⇒ denotes weak convergence.

Proof of Proposition 5. By Theorem 3 we have uniformly on [−∞,∞]k that V̂n (v) − Vn (v) =

ṁ(v, θ0)n
−1/2Pn

t=1 l (Dt, zt, θ0) + op(1). Thus consider the difference

T V̂n − TVn (19)

= −ṁ(v, θ0)n−1/2
nX
t=1

l (Dt, zt, θ0)

−
Z 

φ (., v) , dπλl̄(., θ0)
®
C−1λ

³
V̂n

³
π⊥λ l̄(., θ0)

´
− Vn

³
π⊥λ l̄(., θ0)

´´
+ op (1)
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where Ĥn and Hn are defined in Appendix B.1 for kθn − θ0k ≤
°°°θ̂ − θ0

°°° it follows by the mean value
theorem that

V̂n

³
π⊥λ l̄(., θ0)

´
− Vn

³
π⊥λ l̄(., θ0)

´
= n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)
³
p(zt, θ0)− p(zt, θ̂)

´
= n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)
µ
∂p(zt, θn)

∂θ
− ∂p(zt, θ0)

∂θ

¶³
θ̂ − θ0

´
+n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0)
∂p(zt, θ0)

∂θ

³
θ̂ − θ0

´
: = R1 (λ) +R2 (λ) .

Let ṁ (θ) = E
h
∂p(zt,θ)

∂θ

i
and ṁ(zt, θ) =

∂p(zt,θ)
∂θ − ṁ (θ) . First consider

sup
λ
kR1 (λ)k ≤ n1/2

°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄(zt, θ0)°°°°°°∂p(zt, θn)∂θ
− ∂p(zt, θ0)

∂θ

°°°°
≤ n1/2

°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄(zt, θ0)°° kṁ(zt, θn)− ṁ(zt, θ0)k

+n1/2
°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄(zt, θ0)°° kṁ (θn)− ṁ (θ0)k

≤ n1/2
°°°θ̂ − θ0

°°°Ãn−1 nX
t=1

°°l̄(zt, θ0)°°2!1/2Ãn−1 nX
t=1

kṁ(zt, θn)− ṁ(zt, θ0)k2
!1/2

where the third inequality follows from Hölder’s inequality. Since kθn − θ0k = op(1) it follows from the con-

tinuous mapping theorem that kṁ (θn)− ṁ (θ0)k = op(1). Together with the fact that E
°°l̄((yt, zt) , θ0)°° <

∞ and Lemma 2.1 of Arcones and Yu (1994) this implies that

n1/2
°°°θ̂ − θ0

°°°n−1 nX
t=1

°°l̄((yt, zt) , θ0)°° kṁ (θn)− ṁ (θ0)k = op(1).

By Condition 6 it follows that

kṁ(zt, θn)− ṁ(zt, θ0)k2 ≤ k |B(zt)|2 kθn − θ0k2α

for some α > 0 such that

n−1
nX
t=1

kṁ(zt, θn)− ṁ(zt, θ0)k2 ≤ k kθn − θ0k2α n−1
nX
t=1

|B(zt)|2 = op(1).
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This establishes supλ kR1 (λ)k = op(1) such that uniformly on Υx°°°°Z 
φ (., v) , dπλl̄(., θ0)

®
C−1λ R1 (λ)

°°°° ≤ sup
λ
kR1 (λ)k sup

λ:πλ∈Υx

kCλk−1
Z ¯̄

φ (., v) , dπλl̄(., θ0)
®¯̄
= op (1) .

Next consider R2 (λ)−
R
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n

1/2
³
θ̂ − θ0

´
. Note that

E

∙
1 {Ut /∈ Aλ} l̄(zt, θ0)

∂p(zt, θ0)

∂θ0

¸
=

Z
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)

and

sup
λ

°°°°1 {Ut /∈ Aλ} l̄(zt, θ0)
∂p(zt, θ0)

∂θ0

°°°°
≤

°°°°l̄(zt, θ0)∂p(zt, θ0)∂θ0

°°°°
=

°°°°∂p(zt, θ0)∂θ

∂p(zt, θ0)

∂θ0
1

p(zt, θ0) (1− p(zt, θ0))

°°°°
≤

°°°°°∂p(zt, θ0)∂θ

1

[p(zt, θ0) (1− p(zt, θ0))]
1/2

°°°°°
2

=
dX

i=1

µ
∂pi(zt, θ0)

∂θ

¶2 1

[p(zt, θ0) (1− p(zt, θ0))]

≤ d−(1−
2

2+δ )

Ã
dX
i=1

µ
∂pi(zt, θ0)

∂θ

¶4+δ 1

[p(zt, θ0) (1− p(zt, θ0))]
(4+δ)/2

!2/(4+δ)
with

E

"
dX

i=1

µ
∂pi(zt, θ0)

∂θ

¶4+δ 1

[p(zt, θ0) (1− p(zt, θ0))]
(4+δ)/2

#
<∞

by Condition 6. This shows that (1− 1 {(yt, zt) ∈ Aλ}) l̄(zt, θ0)∂p(zt,θ0)∂θ0
is a Euclidian class with integrable

envelope
°°°l̄(zt, θ0)∂p(zt,θ0)∂θ0

°°° such that by Lemma 2.1 of Arcones and Yu it follows that
sup
λ

°°°°R2 (λ)− Z π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n
−1/2

³
θ̂ − θ0

´°°°° = op(1).

It then follows that uniformly on ΥxZ 
φ (., v) , dπλl̄(., θ0)

®
C−1λ

∙
R2 (λ)−

Z
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n

−1/2
³
θ̂ − θ0

´¸
= op (1) .

Now note that
R
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0) = Cλ such thatZ 

φ (., v) , dπλl̄(., θ0)
®
C−1λ

Z
π⊥λ l̄(ϑ, θ0)ṁ(dϑ, θ0)n

−1/2
³
θ̂ − θ0

´
=

Z 
φ (., v) , dπλl̄(., θ0)

®
n−1/2

³
θ̂ − θ0

´
= ṁ(v, θ0)n

−1/2
³
θ̂ − θ0

´
.
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Substituting back in 19 then shows that supv∈Υx

¯̄̄
T V̂n (v)− TVn (v)

¯̄̄
= op(1).

For the second part of the proposition consider

TVn (v) = Vn (v)−
Z 

φ (., v) , dπλl̄(., θ0)
®
C−1λ n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ0) (Dt − p(zt, θ0)) .

Under H0 it follows that

E
£
1 {Ut /∈ Aλ} l̄(zt, θ0) (Dt − p(zt, θ0)) |zt

¤
= E [(Dt − p(zt, θ0)) |zt]E [1 {Ut /∈ Aλ} |zt] l̄(zt, θ0) = 0

such that Vn (v) is a martingale. The finite dimensional distributions can therefore be obtained from a

martingale difference CLT. Let

g(yt, zt, v) =

Z 
φ (., v) , dπλl̄(., θ0)

®
C−1λ 1 {Ut /∈ Aλ} l̄(zt, θ0)

such that TVn(v) = n−1/2
Pn

t=1 (φ (Ut, v)− g(yt, zt, v)) (Dt − p(zt, θ0)) . Then let

Y1t (v) = φ (Ut, v) (Dt − p(zt, θ0)) ,

Y2t (v) = g(yt, zt, v) (Dt − p(zt, θ0)) ,

Yt (v) = Y1t (v)− Y2t (v) and Ynt (v) = n−1/2Yt (v) . It follows that

EY 21t = Γ(v, v),

EY2t (v)
2 = E

Z Z ©
φ (., v) , dπλl̄(., θ0)

®
C−1λ

× E

∙
1 {Ut /∈ Aλ}1 {Ut /∈ Aµ}

∂ log pt (zt, θ0) /∂θ∂ log pt (zt, θ0) /∂θ
0

pt (zt, θ0) (1− pt (zt, θ0))

¸
C−1µ


φ (., v) , dπµl̄(., θ0)

0®¾
=

Z 
φ (., v) , dπλl̄(., θ0)

®
C−1λ Cµ∨λC

−1
µ


φ (., v) , dπµl̄(., θ0)

0®
= 2

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., v) , π⊥λ l̄(., θ)

E
,

and

EY1t (v)Y2t (v) =

Z 
φ (., v) , dπλl̄(., θ0)

®
C−1λ E [1 {Ut /∈ Aλ}φ (Ut, v) ∂ log pt (zt, θ0) /∂θ]

=

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (Ut, v) , π

⊥
λ l̄(., θ)

E
which shows that EYt (v)

2 = Γ(v, v). Also, EY1t (v)Y1t (τ) = Γ (v, τ) ,

EY2t (v)Y2t (τ) = 2

Z 
φ (., v) , dπλl̄(., θ)

®
C−1λ

D
φ (., τ) , π⊥λ l̄(., θ)

E
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and

EY1t (v)Y2t (τ) =

Z 
1 (. ≤ v) , dπλl̄(., θ)

®
C−1λ

D
1 (. ≤ τ) , π⊥λ l̄(., θ)

E
such that EYt (v)Yt (τ) = Γ (v, τ) . It also follows that EY 2t < ∞ such that the conditional Lindeberg

condition of the CLT is satisfied. We conclude that the finite dimensional distributions of TVn(v) converge

to a Gaussian limit with mean zero and covariance function Γ(v, τ). For weak convergence in the function

space note that

|g(yt, zt, v)| ≤
Z ¯̄

φ (., v) , dπλl̄(., θ0)
®
C−1λ l̄(zt, θ0)

¯̄
≤

Z °°φ (., v) , dπλl̄(., θ0)®C−1λ

°°°°l̄(zt, θ0)°°
where

R °°φ (., v) , dπλl̄(., θ0)®C−1λ

°° is uniformly bounded on Υx and
°°l̄(zt, θ0)°°2 =Pd

i=1

¯̄
l̄i(zt, θ0)

¯̄2 such
that by the Hölder inequality

°°l̄(zt, θ0)°°2+δ ≤ dδ/2
Pd

i=1

¯̄
l̄i(zt, θ0)

¯̄2+δ where¯̄
l̄i(zt, θ0)

¯̄
≤ |∂pi(zt, θ0)/∂θ|

¯̄
(p(zt, θ0) (1− p(zt, θ0)))

−1¯̄ .
By the Cauchy Schwartz inequality it then follows that

E
¯̄
l̄i(zt, θ0)

¯̄2+δ ≤ ³E |∂pi(zt, θ0)/∂θ|4+2δ´1/2 ³E ¯̄(p(zt, θ0) (1− p(zt, θ0)))
−1¯̄4+2δ´ <∞

which is bounded for some δ by Condition (6). This shows that g(yt, zt, v) is a Euclidian class of functions

and by Lemma 2.14 of Pakes and Pollard it follows that Yt(v) is a Euclidian class of functions. Lemma

2.1 of Arcones and Yu then can be used to establish weak convergence on D [Υx] .

Our main formal result is established next.

Theorem 6 Assume Conditions 2, 3, 4, 5,6, 7 and 8 are satisfied. Fix x < ∞ arbitrary and define

Υx =
n
v ∈ [−∞,∞]k |v = πxv

o
. Then,

sup
v∈Υx

¯̄̄
TnV̂n(v)− TVn(v)

¯̄̄
= op(1).

Proof of Theorem 6. We start by considering Ĉλ − Cλ. Let

Cλ (θ) = E

∙
1 {Ut /∈ Aλ} l̄(zt, θ)

∂p(zt, θ)

∂θ0

¸
such that Cλ = Cλ (θ0) and

Ĉλ − Cλ = n−1
nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ̂)
∂p(zt, θ̂)

∂θ0
− Cλ (θ0)

= n−1
nX
t=1

1 {Ut /∈ Aλ} l̄(zt, θ̂)
∂p(zt, θ̂)

∂θ0
− Cλ

³
θ̂
´
+Cλ

³
θ̂
´
− Cλ (θ0) .
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Note that Cλ (θ) =
R
(1− 1 (u ∈ Aλ)) l̄(u, θ)l̄(u, θ)

0H(du) such that for any λ, θ it follows that

°°Cλ0
¡
θ0
¢
−Cλ (θ)

°° ≤
°°°°Z (1 (u ∈ Aλ0)− 1 (u ∈ Aλ)) l̄(u, θ

0)l̄(u, θ0)0dH(u)

°°°°
+

°°°°Z 1 (u ∈ Aλ)
¡
l̄(u, θ0)l̄(u, θ0)0 − l̄(u, θ)l̄(u, θ)0

¢
dH(u)

°°°°
where |1 (u ∈ Aλ0)− 1 (u ∈ Aλ)| ≤ 1

³
u ∈ Amax(λ,λ0)\Amin(λ,λ0)

´
→ 0 as λ0 → λ by Condition 8. Continuity

of l̄(u, θ)l̄(u, θ)0 and integrability of the envelope function
°°l̄(u, θ0)°°2 then establish uniform continuity of

Cλ(θ) on Υx × N(θ0) by use of the dominated convergence theorem. By continuity of Cλ (θ) and the

continuous mapping theorem it now follows that
°°°Cλ

³
θ̂
´
− Cλ (θ0)

°°° = op(1) uniformly on Υx × N(θ0).

Let vn(θ, λ) = n−1
Pn

t=1 1 {Ut /∈ Aλ} l̄(zt, θ)∂p(zt,θ)∂θ0
− Cλ (θ) . We note that°°°°1 {Ut /∈ Aλ} l̄(zt, θ)

∂p(zt, θ)

∂θ0

°°°° ≤ 2°°l̄(zt, θ)l̄(zt, θ)0°° |p(zt, θ) (1− p(zt, θ))| ≤ 2
°°l̄(zt, θ)°°2

where l̄i(zt, θ) has the integrable Envelope B(zt)
³
2
√
d supN(θ0)

°°θ − θ0
°°´α + ¯̄l̄i(zt, θ0)¯̄ on N (θ0) by Con-

dition 6. By Condition 8 the functions 1 {(yt, zt) ∈ Aλ} form a Euclidian class. It now follows from Lemma
2.1 of Arcones and Yu (1994) that, because n1/2vn(θ, λ) converges weakly to a Gaussian limit, a tightness

condition must hold, i.e. for any ε, η > 0, ∃δ > 0 such that

lim sup
n

P

Ã
sup

λ,θ∈Υx×N(θ0)
sup

λ0,θ0:d((λ,θ),(λ0,θ0))<δ

¯̄
vn(θ

0, λ0)− vn(θ, λ)
¯̄
> ε

!
< η. (20)

Property 20 together with the boundedness of the space Υx × N(θ0) now implies by a conventional ap-

proximation argument, that

sup
λ,θ∈Υx×N(θ0)

|vn (θ, λ)| = op(1).

It now follows that

P
³°°°Ĉλ − Cλ

³
θ̂
´°°° > ε

´
≤ P

Ã
sup

λ,θ∈Υx×N(θ0)
|vn (θ, λ)| > ε

!
+ P

³
θ̂ /∈ N(θ0)

´
p→ 0 (21)

such that supλ∈Υx

°°°Ĉλ − Cλ

°°° = op(1).

Then

TnV̂n(v)− TVn(v) = −ṁ(v, θ0)n−1/2
nX
t=1

l (Dt, zt, θ0) + op(1)

−
Z

d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(., θ̂))

+

Z 
φ (., v) , dπλl̄(., θ0)

®
C−1λ Vn(π

⊥
λ l̄(., θ0)).
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>From before we have Z
d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(., θ̂))

=

Z
d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶³
Ĉ−1λ − C−1λ

´
V̂n(π

⊥
λ l̄(., θ̂))

+

Z
d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶
C−1λ V̂n(π

⊥
λ l̄(., θ̂))

where °°°°Z d

µZ
φ (u, v)πλl̄(., θ̂)dĤn(u)

¶³
Ĉ−1λ − C−1λ

´
V̂n(π

⊥
λ l̄(., θ̂))

°°°°
≤ sup

λ∈[−∞,x]

°°°Ĉ−1λ − C−1λ

°°°Z °°°°dµZ φ (u, v)πλl̄(., θ̂)dĤn(u)

¶°°°°°°°V̂n(π⊥λ l̄(., θ̂))°°° = op(1)

by 21. Next we consider

V̂n(π
⊥
λ l̄(., θ̂)) = n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ̂)
³
Dt − p(zt, θ̂)

´
= n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ0) (Dt − p(zt, θ0))

+

"
n−1/2

nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θn)

∂θ0
(Dt − p(zt, θ0))

#³
θ̂ − θ0

´
−
"
n−1/2

nX
t=1

1 {Ut /∈ Aλ} l̄((yt, zt) , θ0)
∂p(zt, θn)

∂θ0

#³
θ̂ − θ0

´
−
³
θ̂ − θ0

´0 "
n−1/2

nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θn)

∂θ

∂p(zt, θn)

∂θ0

#³
θ̂ − θ0

´
≡ R1 (λ) +R2 (λ)

³
θ̂ − θ0

´
+R3 (λ)n

1/2
³
θ̂ − θ0

´
+ n1/2

³
θ̂ − θ0

´0
R4 (λ)

³
θ̂ − θ0

´
where kθn − θ0k ≤

°°°θ̂ − θ
°°° and we have used the mean value theorem. Note that R1 = R π⊥λ l̄(ϑ, θ0)dVn(u),

R2 (λ) = n−1/2
nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θ0)

∂θ0
(Dt − p(zt, θ0))

+n−1/2
nX
t=1

1 {Ut /∈ Aλ}
µ
∂l̄(Ut, θn)

∂θ0
− ∂l̄(Ut, θ0)

∂θ0

¶
(Dt − p(zt, θ0))

≡ R21 (λ) +R22 (λ, θn)

satisfies ER21 (λ) = 0 because

E

∙
1 {Ut /∈ Aλ}

∂l̄((yt, zt) , θ0)

∂θ0
(Dt − p(zt, θ0)) |zt

¸
= E

∙
1 {Ut /∈ Aλ}

∂l̄((yt, zt) , θ0)

∂θ0
|zt
¸
E [(Dt − p(zt, θ0)) |zt] = 0
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under H0 such that finite dimensional convergence follows by the martingale difference CLT and uniform

convergence follows from the fact that 1 {Ut /∈ Aλ} ∂l̄(Ut,θ0)
∂θ0

(Dt − p(zt, θ0)) is a Euclidian class of functions

by Condition 8. It thus follows that supλR21(λ) = Op(1) and R21(λ)
³
θ̂ − θ0

´
= op(1) uniformly in λ. For

the term R22 (λ, θn) we note that

E

∙
1 {Ut /∈ Aλ}

∂l̄(Ut, θ)

∂θ0
(Dt − p(zt, θ0)) |zt

¸
= 0

for any θ. By Lemma 2.1 of Arcones and Yu it thus follows that R22 (λ, θ) converges to a Gaussian limit

process uniformly in λ and θ. Consequently, a tightness condition implied by this result can be used to show

that lim supP
h
supθ:d(θ,θ0)≤δ |R22 (λ, θ)| > ε

i
< η for all ε, η > 0 and some δ > 0. Use root-n convergence

of θn to conclude from this that R22 (λ, θn) = op(1). The terms involving θn in the remainder terms R3

and R4 containing θn can be handled in similar form and we therefore only consider the leading terms

where θn is replaced by θ0. For R4 (λ) where

R4 (λ) = n−1
nX
t=1

1 {Ut /∈ Aλ}
∂l̄(Ut, θ0)

∂θ

∂p(zt, θ0)

∂θ0

we note that n1/2 (R4 (λ)−ER4 (λ)) satisfies the conditions of Lemma 2.1 of Arcones and Yu (1994)

such that it follows by similar arguments as before that supλR4 (λ) = Op(1). Then conclude that

n1/2
³
θ̂ − θ0

´0
R4 (λ)

³
θ̂ − θ0

´
= op(1) uniformly in λ.

For R3 (λ) note that

R3 (λ) = n−1
nX
t=1

1 {Ut /∈ Aλ} l̄(Ut, θ0)
∂p(zt, θ0)

∂θ0

uniformly converges to

ER3 (λ) = E

∙
1 {Ut /∈ Aλ} l̄(Ut, θ0)

∂p(zt, θ0)

∂θ0

¸
= Cλ.

We have thus established that

sup
λ

°°°V̂n(π⊥λ l̄(., θ̂))− Vn(π
⊥
λ l̄(., θ0))− Cλ

³
θ̂ − θ0

´°°° = op (1) .

Using this result we obtainZ
d

µZ
φ (u, v)πλl̄(u, θ̂)dĤn(u)

¶
C−1λ

³
V̂n(π

⊥
λ l̄(., θ̂))− Vn(π

⊥
λ l̄(., θ0))

´
=

Z
d

µZ
φ (u, v)πλl̄(u, θ̂)dĤn(u)

¶³
θ̂ − θ0

´
+ op(1).

The leading term is thenZ
d

µZ
φ (u, v)πλl̄(u, θ̂)dĤn(u)

¶
=

Z
d

µZ
φ (u, v)πλl̄(u, θ0)dHn(u)

¶
(22)

+

Z
d

µZ
φ (u, v)πλ

∂2p(zt, θn)

∂θ∂θ0
dF̂u(u)

¶³
θ̂ − θ0

´
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where F̂u(u) is defined in (24) in Appendix B.1 and°°°°Z d

Z
φ (u, v)πλ

∂2p(zt, θn)

∂θ∂θ0
dF̂u(u)

°°°° ≤ n−1
nX
t=1

°°°°1 {Ut ≤ v}1 {Ut ∈ Aλ}
∂2p(zt, θn)

∂θ∂θ0

°°°°
≤ n−1

nX
t=1

°°°°∂2p(zt, θ0)∂θ∂θ0

°°°°+ n−1
nX
t=1

°°°°∂2p(zt, θn)∂θ∂θ0
− ∂2p(zt, θ0)

∂θ∂θ0

°°°°
≤ n−1

nX
t=1

°°°°∂2p(zt, θ0)∂θ∂θ0

°°°°+ C kθn − θ0kα n−1
nX
t=1

B(zt) = Op(1)

where C is a finite constant, the third inequality uses Condition (6) and the last equality follows from a

standard law of large numbers for strong mixing sequences. The first term in 22 then isZ
d

µZ
φ (u, v)πλl̄(u, θ0)dHn(u)

¶
= n−1

nX
t=1

φ (Ut, v)1 {Ut ∈ Aλ}
∂p(zt, θ0)

∂θ

where E
h
φ (Ut, v)1 {Ut ∈ Aλ} ∂p(zt,θ0)

∂θ

i
= ṁ(v, θ0) for v ∈ Υx. It thus follows again by a law or large

numbers that
R
d
¡R

φ (u, v)πλl̄(u, θ0)dHn(u)
¢
= ṁ(v, θ0) + op (1) uniformly on Υx.

Finally we need to show thatZ µ
d

µZ
φ (u, v)πλl̄(u, θ0)dHn(u)

¶
−

φ (., v) , dπλl̄(., θ0)

®¶
C−1λ Vn(π

⊥
λ l̄(u, θ0)) = op(1). (23)

Let g(zt, λ, v) = φ (Ut, v)1 {Ut ∈ Aλ} ∂p(zt,θ0)
∂θ . We first note that uniformly in λ on [−∞, x] and v ∈ Υx,Z

φ (., v)πλl̄(., θ0)dHn(v)−

φ (., v) , πλl̄(., θ0)

®
= n−1

nX
t=1

g(zt, λ, v)−E (g(zt, λ, v))→ 0 a.s.

Weak convergence of C−1λ Vn(π
⊥
λ l̄(u, θ0)) uniformly in λ on [−∞, x] can be established by the same methods

as for TVn(v)⇒ TV (v) in the second part of the proof of Proposition 5. We can thus proceed in the same

way as Koul and Stute (1999, Lemma 4.2). Let Gn(λ, v) = n−1
Pn

t=1 g(zt, λ, v), G(λ, v) = E (g(zt, λ, v))

and let ζn(λ) = C−1λ Vn(π
⊥
λ l̄(u, θ0)). Then each component ζni(λ) of the vector ζn(λ) is asymptotically

tight by Prohorov’s Theorem. In other words there exists a compact set H such that ζni(λ) ∈ H with

probability no less than 1− η for any η > 0. Following the proof of Lemma 3.1 of Chang (1990) we choose

step functions a1, a2, ..., ak ∈ D [−∞, x] such that for any ζ ∈ H, sup |ai − ζ| < ε for some i, 1 ≤ i ≤ k. The

right hand side of 23 can now be written as
R x
−∞ ζn (λ)

0 (Gn(dλ)−G(dλ)) such that for any δ > 0

P

µ¯̄̄̄Z x

−∞
ζn (λ)

0 (Gn(dλ)−G(dλ))

¯̄̄̄
> η

¶
≤ P

Ã
sup

ζ∈H,v∈Υx

¯̄̄̄Z x

−∞
ζ (λ)0 (Gn(dλ, v)−G(dλ, v))

¯̄̄̄
> δ

!
+P (ζn /∈ H) .
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Since ζ ∈ H it follows that

sup
ζ∈H,v∈Υx

¯̄̄̄Z x

−∞
ζ (λ)0 (Gn(dλ, v)−G(dλ, v))

¯̄̄̄
≤ sup

ζ∈H
kζ (λ)k

µ
sup
v∈Υx

Z x

−∞
kG(dλ, v)k+ sup

v∈Υx

Z x

−∞
kGn(dλ, v)k

¶
where

R x
−∞ kG(dλ, v)k = kG(x, v)k and

R x
−∞ kGn(dλ, v)k = kGn(x, v)k . Since G(x, v) → 0 uniformly in v

as x→ −∞ and Gn(λ, v) converges uniformly to G(x, v) we can focus on a subset [xu, x] ⊂ [−∞, x] where

xu is such that

sup
ζ∈H,v∈Υx

¯̄̄̄Z xu

−∞
ζ (λ)0 (Gn(dλ, v)−G(dλ, v))

¯̄̄̄
< δ

with probability tending to one. Now, for any component i, there exists a strictly increasing, con-

tinuous mapping κ of [−∞, x] onto itself, depending on ζi such that sup−∞≤λ≤x |κ (λ)− λ| < ε and

sup−∞≤λ≤x |ζi (λ)− ai(κ(λ))| < ε. Then¯̄̄̄Z x

xu

ζi (λ) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄̄
≤

¯̄̄̄Z x

xu

(ζi (λ)− ai(κ(λ))) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄̄
+

¯̄̄̄Z x

xu

ai(κ(λ)) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄̄

which implies that for some N0 and all n > N0,
¯̄̄R x
−∞ ζi (λ) (Gni(dλ, v)−Gi(dλ, v))

¯̄̄
< 3ε uniformly on

H ×Υx by the arguments of Chang (1994, p.396) which establishes 23. This now implies that TnV̂n(v)−
TVn(v) = op(1).

Theorem 6 together with Propositions 5 and 4 implies that Ŵn(v)−Vn(v) = op(1) uniformly in v ∈ Υx.

This in turn means that the limiting distribution of Ŵn(v) is a zero mean Gaussian process with covariance

function H(v, τ). This distribution is not nuisance parameter free but can be computed conditional on the

sample relatively easily as pointed out in Section 4.

Section 4.2 introduced the distribution free statistic B̂w,n(w), defined as B̂w,n(w) = Ŵw,n

¡
φ(., w)/hw(.)

1/2
¢
.

By the arguments preceding Theorem 6, it follows that B̂w,n(w) =⇒ Bw(w) on Υ[0,1]. The only adjustments

necessary are a restriction of [−∞,∞]k to [0, 1]k. What remains to be shown is that

sup
v∈Υ[0,1]

¯̄̄
B̂ŵ,n(w)− B̂w,n(w)

¯̄̄
= op(1).

This is done in the next Theorem. We impose the following assumptions on the kernel function and density.

Condition 9 The density fu(u) is continuously differentiable to some integral order ω ≥ max(2, k) on

Rk with supx∈Rk |Dµh(x)| < ∞ for all |µ| ≤ ω where µ = (µ1, ..., µk) is a vector of non-negative inte-

gers, |µ| =
Pk

j=1 µj , and Dµf(x) = ∂|µ|h(x)/∂x
µ1
1 ....∂x

µk
k is the mixed partial derivative of order |µ| .

The kernel K(.) satisfies i)
R
K(x)dx = 1,

R
xµK(x)dx = 0 for all 1 ≤ |µ| ≤ ω − 1,

R
|xµK(x)| dx < ∞

for all µ with |µ| ≤ ω, K(x) → 0 as kxk → ∞ and supx∈ Rk (1 + kxk) |DeiK(x)| < ∞ for all i ≤ k
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and ei is the i-th elementary vector in Rk. ii) K(x) is absolutely integrable and has Fourier transform

Ψ(r) = (2π)k
R
exp(ir0x)K(x)dx that satisfies

R
|Ψ(r)| dr <∞ where i =

√
−1.

Theorem 7 Assume Conditions 2, 3, 4, 5,6, 7, 8 and 9 are satisfied. Fix x < 1 arbitrary and define

Υ[0,1] =
n
w ∈ [0, 1]k |w = πxw

o
. Then,

sup
w∈Υ[0,1]

¯̄̄
B̂ŵ,n(w)− B̂w,n(w)

¯̄̄
= op(1).

Proof of Theorem 7:. By Theorem 1 of Andrews (1995) it follows that

sup
x

¯̄̄
F̂k(xk|xk−1, ..., x1)− Fk(xk|xk−1, ..., x1)

¯̄̄
= Op(T

−1/2m−kn ) +Op(m
ω
n).

By Pakes and Pollard (1989, Lemma 2.15) it follows that the composition of a function from a Euclidian

class with envelopeM and a measurable map with envelopeM1 forms another Euclidian class with envelope

M ◦M1. Since Fk(xk|xk−1, ..., x1) is takes values in [0, 1] it clearly has an envelope M1. It follows that

Ŵw,n is a sample average over functions that belong to a Euclidian class plus remainder terms that vanish

by similar arguments as before. It thus follows by the same arguments as before that for all ε, δ > 0 there

exists an η > 0 such that

lim sup
n

P

⎛⎜⎜⎜⎝ sup
w,w0∈Υ[0,1],kw−w0k<η,

w1,w01∈[0,1]
k,kw1−w01k<η

¯̄̄
B̂w1,n(w)− B̂w01,n

(w0)
¯̄̄
> ε

⎞⎟⎟⎟⎠ < δ.

It then follows that B̂n(s)⇒ B(s).

This result allows us to conduct inference using critical values that do not depend on nuisance para-

meters. Although these critical values must be calculated numerically, they are invariant to the sample

distribution for a given design.
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B Implementation Details

B.1 Details for the Khmaladze Transform

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that the

transformation T is unknown and needs to be replaced by an estimator. In this section, we discuss the

details that lead to the formulation in (9). We also present results for general sets Aλ.We start by defining

the empirical distribution

F̂u(v) = n−1
nX
t=1

{Ut ≤ v} , (24)

and let

Hn(v) =

Z v

−∞

¡
p(u2, θ0)− p(u2, θ0)

2
¢
dF̂u (u)

= n−1
nX
t=1

¡
p(zt, θ0)− p(zt, θ0)

2
¢
1 {Ut ≤ v}

as well as

Ĥn(v) =

Z v

−∞

³
p(u2, θ̂)− p(u2, θ̂)

2
´
dF̂u (u)

= n−1
nX
t=1

³
p(zt, θ̂)− p(zt, θ̂)

2
´
1 {Ut ≤ v} .

We now use the sets Aλ and projections πλ as defined in Section 4.1. Let

Ĉλ =

Z
π⊥λ l̄(v, θ̂)π

⊥
λ l̄(v, θ̂)

0dĤn(v)

= n−1
nX
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)l̄(Ut, θ̂)
0
³
p(zt, θ̂)− p(zt, θ̂)

2
´

such that

TnV̂n (v) = V̂n (v)−
Z

d

µZ
φ(u, v)πλl̄(u, θ)dĤn(u)

¶
Ĉ−1λ V̂n(π

⊥
λ l̄(u, θ̂))

where Z
φ {u, v}πλl̄(., θ̂)dĤn(u) = n−1

nX
t=1

φ(Ut, v)1 {Ut ∈ Aλ}
∂p(zt, θ̂)

∂θ
.

Finally, write

V̂n(π
⊥
λ l̄(u, θ̂)) = n−1/2

nX
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)
³
Dt − p(zt, θ̂)

´
.
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We now specialize the choice of sets Aλ to Aλ = [−∞, λ]× [−∞,∞]k−1 . Denote the first element of yt
by y1t. Then

Ĉλ = n−1
nX
t=1

1 {y1t > λ} l̄(zt, θ̂)l̄(zt, θ̂)0
³
p(zt, θ̂)− p(zt, θ̂)

2
´
, (25)

V̂n(π
⊥
λ l̄(u, θ̂)) = n−1/2

nX
t=1

1 {y1t > λ} l̄(Ut, θ̂)
³
Dt − p(zt, θ̂)

´
(26)

and Z
φ(u, v)πλl̄(u, θ̂)dĤn(u) = n−1

nX
t=1

φ {Ut, v}1 {y1t ≤ λ} ∂p(zt, θ)
∂θ

(27)

Combining 25, 26 and 27 then leads to the formulation 9.

B.2 Details for the Rosenblatt Transform

As before implementation requires replacement of θ with an estimate. We therefore work with the process

V̂w,n (v) = n−1/2
Pn

t=1mw(wt,Dt, θ̂;w). Define

E [mw(wt,Dt, θ);w)] =

Z 1

0
· · ·
Z 1

0
φ(u,w)

¡
p
¡£
T−1R (u)

¤
z
, θ0
¢
− p(

£
T−1R (u)

¤
z
, θ)
¢
du

such that ṁ(w, θ) evaluated at the true parameter value θ0 is

ṁw(w, θ0) = E [∂p(zt, θ0)/∂θφ(Ut, w)]

=

Z
[0,1]k

∂p(
£
T−1R (u)

¤
z
, θ0)

∂θ
φ(u,w)du

It therefore follows that V̂w,n (v) can be approximated by Vw,n (v) − ṁw(w, θ0)
0n−1/2

Pn
t=1 l (Dt, zt, θ0).

This approximation converges to a limiting process V̂w (v) with covariance function

Γ̂w(w, τ) = Γw (w, τ)− ṁw(w, θ0)
0L(θ0)ṁw(τ , θ0)

where

Γw (w, τ) =

Z
[0,1]k

φ(u,w)φ(u, τ)
¡
p(
£
T−1R (u)

¤
z
)− p(

£
T−1R (u)

¤
z
)2
¢
du.

We represent V̂w in terms of Vw. Let Vw(lw (., θ0)) =
R
lw(w, θ0)bw(dv) where bw(v) is a Gaussian

process on [0, 1]k with covariance function Γw (v, τ) as before, for any function lw(w, θ). Also, define

l̄w(w, θ) =
∂p(
£
T−1R (w)

¤
z
, θ)

∂θ

¡
p(
£
T−1R (w)

¤
z
, θ)
¡
1− p(

£
T−1R (w)

¤
z
, θ)
¢¢−1

such that V̂w(w) = Vw(w)− ṁw(w, θ0)Vw
¡
l̄w(w, θ)

¢
as before.
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Let {Aw,λ} be a family of measurable subsets of [0, 1]k, indexed by λ ∈ [0, 1] such that Aw,0 = ∅,
Aw,1 = [0, 1]

k, λ ≤ λ0 =⇒ Aw,λ ⊂ Aw,λ0 and Aw,λ0\Aw,λ → ∅ as λ0 ↓ λ. We then define the inner product
hf(.), g(.)iw :=

R
[0,1]k f(w)g(w)

0dHw(w) where

Hw(w) =

Z
u≤w

¡
p(
£
T−1R (u)

¤
z
, θ)− p(

£
T−1R (u)

¤
z
, θ
¢2
)du

and the matrix

Cw,λ =
D
π⊥λ l̄w(., θ), π

⊥
λ l̄w(., θ)

E
w
=

Z
π⊥λ l̄w(w, θ)π

⊥
λ l̄w(w, θ)

0dHw(w).

and define the transform TwVw(w) as before by

TwV̂w (w) :=Ww(w) = V̂w (w)−
Z 

φ (., w) , dπλl̄w(., θ)
®
C−1λ V̂w(π

⊥
λ l̄w(., θ)).

Finally, to convertWw(w) to a process which is asymptotically distribution free we apply a modified version

of the final transformation proposed by Khmaladze (1988, p. 1512) to the process W (v). In particular,

using the notation Ww(φ(., w)) = Ww(w) to emphasize the dependence of W on φ, it follows from the

previous discussion that

Bw(w) =Ww

³
φ(., w)/(hw(.))

1/2
´

with hw(.) = p(
£
T−1R (.)

¤
z
, θ)
¡
1− p(

£
T−1R (.)

¤
z
, θ)
¢
and Bw(w) is a Gaussian process on [0, 1]

k with covari-

ance function
R 1
0 · · ·

R 1
0 φ(u,w)φ(u,w

0)du.

The empirical version of Ww(w), denoted by Ŵw,n(w) = T̂wV̂w,n(w), is obtained as before from

Ŵw,n(w) = n−1/2
nX
t=1

"
mw(wt,Dt, θ̂|w)− φ {wt, w}

∂p(zt, θ̂)

∂θ0
Ĉ−1wt1n

−1
nX

s=1

1 {ws1 > wt1} l̄(zs, θ̂)
³
Ds − p(zs, θ̂)

´#

where Ĉws1 = n−1
Pn

t=1 1 {wt1 > ws1} l̄(zt, θ̂)l̄(zt, θ̂)0
³
p(zt, θ̂)− p(zt, θ̂)

2
´
.
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Rejection Probabilities
VM-MC mda mdb d1 d2 t-test

γ β (1) (2) (3) (4) (5) (6)

A. Sample Size = 100

0 -0.5 0.096 0.070 0.036 0.070 0.042 0.072
0.5 -0.5 0.140 0.148 0.064 0.080 0.170 0.178
1 -0.5 0.394 0.468 0.292 0.226 0.496 0.574
2 -0.5 0.810 0.888 0.780 0.456 0.906 0.960

0 0 0.082 0.064 0.026 0.046 0.056 0.050
0.5 0 0.154 0.162 0.070 0.068 0.182 0.188
1 0 0.438 0.500 0.328 0.298 0.506 0.570
2 0 0.814 0.906 0.834 0.612 0.862 0.952

0 0.5 0.098 0.060 0.030 0.042 0.060 0.048
0.5 0.5 0.264 0.188 0.088 0.096 0.194 0.202
1 0.5 0.548 0.534 0.360 0.406 0.486 0.616
2 0.5 0.872 0.930 0.868 0.840 0.822 0.970

0 0.9 0.210 0.064 0.010 0.040 0.060 0.042
0.5 0.9 0.436 0.252 0.122 0.180 0.200 0.276
1 0.9 0.766 0.744 0.606 0.616 0.664 0.804
2 0.9 0.928 0.252 0.186 0.158 0.244 0.402

B. Sample Size = 200

0 -0.5 0.096 0.058 0.018 0.064 0.054 0.052
0 0 0.084 0.072 0.020 0.052 0.080 0.058
0 0.5 0.104 0.066 0.024 0.050 0.066 0.078
0 0.9 0.226 0.044 0.012 0.034 0.050 0.062

Table 1: Rejection Probabilities from a dynamic Logit Model
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k=2 k=3 k=4
md d md d md d

1-α (1) (2) (3) (4) (5) (6)
0.5 0.17555 0.13877 0.1224 0.079614 0.08127 0.045061
0.8 0.36124 0.29359 0.21503 0.14446 0.12871 0.073065
0.9 0.51805 0.43536 0.28873 0.20363 0.16503 0.097858
0.95 0.68209 0.58862 0.36511 0.26808 0.20114 0.12482
0.975 0.85668 0.7454 0.44198 0.33422 0.23826 0.15462
0.99 1.081 0.96801 0.5486 0.42748 0.28919 0.19535
0.995 1.2597 1.1296 0.62995 0.4994 0.32922 0.22667
0.999 1.6911 1.573 0.8238 0.68994 0.4225 0.30895
0.9995 1.9174 1.7816 0.91185 0.77078 0.46407 0.33938
0.9999 2.2286 2.1684 1.083 0.99037 0.53436 0.40949

Table 2: Critical Values based on 100,000 Simulation Replications
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Control variables (lagged)
output output output

inflation inflation
unemployment

estimate p-value estimate p-value estimate p-value
Lagged Romer Dummies (1) (2) (3) (4) (5) (6)
RD(-1) 0.0129 0.093 0.0125 0.057 0.0150 0.035

(0.0076) (0.0065) (0.0070)
RD(-2) -0.0218 0.037 -0.0210 0.022 -0.0176 0.063

(0.0104) (0.0091) (0.0094)
RD(-3) -0.0176 0.123 -0.0145 0.219 -0.0146 0.159

(0.0113) (0.0117) (0.0103)
RD(-4) -0.0089 0.292 -0.0043 0.644 -0.0020 0.801

(0.0084) (0.0093) (0.0079)
RD(-5) 0.0013 0.895 0.0042 0.724 -0.0001 0.99

(0.0101) (0.0119) (0.0109)
RD(-6) -0.0057 0.278 -0.0031 0.543 -0.0078 0.279

(0.0052) (0.0051) (0.0072)
RD(-7) -0.0182 0.105 -0.0142 0.214 -0.0118 0.216

(0.0112) (0.0114) (0.0095)
RD(-8) -0.0248 0.011 -0.0238 0.029 -0.0143 0.179

(0.0096) (0.0108) (0.0105)
RD(-9) -0.0122 0.386 -0.0157 0.235 -0.0122 0.371

(0.0140) (0.0131) (0.0136)
RD(-10) -0.0228 0.014 -0.0221 0.02 -0.0235 0.002

(0.0092) (0.0094) (0.0074)
RD(-11) -0.0107 0.199 -0.0075 0.336 -0.0060 0.383

(0.0083) (0.0078) (0.0068)
RD(-12) 0.0019 0.847 0.0035 0.743 0.0056 0.613

(0.0099) (0.0106) (0.0111)

R2 0.3888 0.4358 0.5243
F 2.42 2.05 1.63
(p-val) (0.0069) (0.0250) (0.0908)
F-robust 2.27 2.0900 1.99
(p-val) (0.0115) (0.0215) (0.0303)

Table 3: Granger Causality Tests using Quarterly Data. Models include 8 lags of the control variables indicated in
the column headings. Robust standard errors are reported in brakets. The F-statistic is for the joint significance
of the lagged Romer Dummies. The robust F-Statistic was computed using White standard errors. The sample
includes 160 quarters from 1952-91.
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Future Output mdb Logit
Variable (1) (2) (3) (4) (5) (6)
yn(1) [0.06, 0.15] [0.06, 0.15] [0.06, 0.15] 0.0241 0.0777 0.0604
yn(2) [0.15, 0.3] [0.6, 1] [0.3, 0.6] 0.1915 0.1344 0.2113
yn(3) [0.003, 0.006] [0.03, 0.06] [0.006, 0.03] 0.1774 0.0536 0.0494
yn(4) [0, 0.0006] [0.15, 0.3] [0.6, 1] 0.8805 0.4214 0.2928
yn(5) [0, 0.0006] [0.3, 0.6] [0.3, 0.6] 0.0525 0.1572 0.3009
yn(6) [0.06, 0.15] [0.6, 1] [0.6, 1] 0.8819 0.9706 0.7651
yn(7) [0.0006, 0.003] [0.3, 0.6] [0.6, 1] 0.3144 0.2382 0.2135
yn(8) [0, 0.0006] [0.0006, 0.003] [0.0006, 0.003] 0.0227 0.0129 0.0174

Forecasts full sample out-of-sample out-of-sample full sample out-of-sample out-of-sample
Lagged IP controls No No Yes No No Yes

Table 4: P-values for the md-statistic and parametric Logit. Square brakets indicate that actual p-value lies in the interval of values
reported in the table. p-values for the md-statistic are based on simulated critical values reported in Table 2 for the d-statistic and
are adjusted to provide a bound as described in the main text. In particular, we use critical values for d and k=3 from Table 2. The
corresponding significance levels are then 6α. We report a confidence level interval because the quantiles of the distribution need to be
computed numerically.
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Future Output mda
Variable (1) (2) (3)
yn(1) [0.025, 0.05] [0.025, 0.05] [0.025, 0.05]

yn(2) [0.1, 0.2] [0.2, 0.5] [0.2, 0.5]

yn(3) [0.001, 0.005] [0.01, 0.025] [0.01, 0.025]

yn(4) [0.0001, 0.0005] [0.05, 0.1] [0.2, 0.5]

yn(5) [0.0001, 0.0005] [0.1, 0.2] [0.1, 0.2]

yn(6) [0.025, 0.05] [0.2, 0.5] [0.2, 0.5]

yn(7) [0.001, 0.005] [0.1, 0.2] [0.2, 0.5]

yn(8) [0, 0.0006] [0.0005, 0.001] [0.0005, 0.001]

Forecasts full sample out-of-sample out-of-sample
Lagged IP controls No No Yes

Table 5: P-values for the md-statistic. Square brakets indicate that actual p-value lies in the interval of values
reported in the table. p-values for the md-statistic are based on simulated critical values reported in Table 2 for
the md-statistic. In particular, we use critical values for md and k=3 from Table 2. We report a confidence level
interval because the quantiles of the distribution need to be computed numerically.

Variable Definition
IPN Industrial Production, total Index not seasonally adjusted, revised 1990
output Growth Rate Industrial Production New : ∆ ln(IPN)
RD Original Romer Dummy
CPU Consumer Price Index, all urban consumers, not seasonally adjusted
inflation Inflation rate: ∆ln(CPUt)

Table 6: Data Source and Variable Definitions
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