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1. Introduction

Sorted type spaces are ubiquitous in economics. In many circumstances, behavioral
types are naturally sorted according to an ingrained characteristic (such as productivity,
taste for public goods, political ideology, etc.). Sorted behavioral type structures have
important applications, such as performing comparative statics or empirical analysis
of type distributions. For example, Chiappori et al. [2019] identifies the distribution of
individual risk attitudes from aggregate data and Barseghyan et al. [2019] show how
the heterogeneity in consideration sets and risk aversion can be identified.

The random utility model (RUM) is often utilized to study stochastic data in un-
derstanding underlying heterogeneity in the population as it has heterogeneous prefer-
ence types naturally embedded into the model. RUM requires that each type behaves
in accordance with the utility maximization paradigm. However, this assumption could
be violated especially when the behavioral types are due to loss aversion, preference
for commitment, level of attentiveness, strength of willpower, or social preferences of
decision makers. Since people systematically violate the requirements of utility maxi-
mization,1 one may not want to force the model to allow only for rational types. In-
stead, in this paper we introduce a model that allows individual choice types to exhibit
choice patterns outside of rational preference maximization framework. Our model has
a collection of choice types, rather than utility functions, endowed with a probability
distribution. We call this model the random choice model.2 Our framework can be in-
terpreted as both the choices of a single individual in different situations (intrapersonal)
and the choices of different individuals in the same environment (interpersonal).

1There is an abundance of evidence across several fields, including law, economics, psychology, and
marketing that individual behavior is not in accord with this assumption, e.g. see Huber et al. [1982],
Ratneshwar et al. [1987], Tversky and Simonson [1993], Kelman et al. [1996], Prelec et al. [1997],
Echenique et al. [2011], Trueblood et al. [2013].
2In an independently developed paper, Dardanoni et al. [2020a] works with a model of randomization
over choice functions. Their focus is mostly on the identification of preferences and cognitive distri-
butions in specific models of choice by assuming an observable mixture of choice functions. Instead,
our focus is on the representation of stochastic choice by a random choice model. Hence, our works
are complementary.
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In order to apprehend the idea of sorted types, we focus on collections of choice
functions that can be sorted. For this purpose, we use a reference ordering on the
alternative set, and types that act more aligned with this ordering are indexed higher
in the collection. We call this structure progressive with respect to a reference order-
ing.3 One advantage of this approach is that we eliminate the need to commit to a
particular functional form to order types. For example, consider a situation where the
alternatives can be ranked by a social norm.4 If the heterogeneity is due to how closely
the decision makers follow the social norm, then the social norm corresponds to the
reference ordering in our model and ordered types gradually become more motivated
by the social norm.5 In other words, if a low indexed type chose according to the
norm then a higher indexed one should follow the norm too. The random choice model
where the collection of choice types is progressive is called Progressive Random Choice
(PRC).

Examples of PRC are abundant. For example, consider a decision maker who uses
a collection of satisficing models in the sense of Simon [1955] and chooses the first
alternative in a fixed list that provides a minimum level of satisfaction.6 The choice
functions that she randomly employs are represented by different satisficing threshold
levels. Then as the minimum level of satisfaction increases, the choices become more
inline with the underlying preferences. Another example of progressiveness can be gen-
erated within the limited attention framework (see Lleras et al. [2017] and Masatlioglu
et al. [2012]). If the decision maker has limited attention in each choice used in a PRC,
then progressiveness ordering is interpreted as the decision maker becoming gradually
more attentive. A third example could be built within a social norm model (see Dil-
lenberger and Sadowski [2012]) where each choice function corresponds to a different
type of agent who is affected by the norm at a different level characterized by their

3In the first part of the paper, the reference ordering is taken exogenously. We later endogenize it in
Section 4.
4This example is formalized in Example 1.
5The reference ordering may also correspond to the decision maker’s preferences, temptation ranking,
or measure of salience (see examples in the main text).
6When there is no alternative above the threshold, the decision maker searches the entire set and
chooses the best one.
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shame parameters. Ordering the types according to the shame parameters imposes
a progressive structure to the choice functions collection. The first two examples are
capturing intrapersonal randomization of a decision maker and the reference ordering
corresponds to her preferences. On the other hand, the third example captures an
interpersonal heterogeneity and the reference ordering is the social norm.

The heterogeneous choice types may not be observable in general and they need
to be derived from the stochastic choice data. However, in some exceptions such as
controlled experiments, the researcher can observe the choice functions of each subject
and study the choice types. Manzini and Mariotti [2006] provides a unique opportunity
to test the progressive structure. They collected two data sets generated by 102 subjects
and document choice types generating the stochastic choices. In the first data set,
only three choice functions are used most frequently by the subjects (any other choice
behavior is performed by only one or two subjects.) In the second data set, four-choice
functions are used frequently. Both of these collections have the progressive structure.
Moreover, half of the subjects do not exhibit utility maximizing behavior, which implies
that RUM is not a right model for those individuals.

Our progressive structure is a generalization of a well-known concept called the
single crossing property. Indeed, it is equivalent to the single crossing property if each
choice function in the collection is generated by a preference/utility maximization. The
single crossing property plays important roles in economics: see Mirrlees [1971], Roberts
[1977], Grandmont [1978], Rothstein [1990], Milgrom and Shannon [1994], Gans and
Smart [1996]. It has been recently applied to RUM by Apesteguia et al. [2017]. Again,
in the RUM framework, Apesteguia and Ballester [2020] builds on Apesteguia et al.
[2017] by applying the single crossing idea locally and only on alternatives that exist
in the same choice problem.

Our first result is about identification of type distribution. We ask under which
conditions it is possible to recover the type distribution from stochastic data. We show
with the minimal restriction on the distribution of choice types (progressiveness), one
can uniquely identify the PRC representation –both the collection of choice functions
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and the probability weight assigned to each choice function in the collection. This
result also shows the richness of the PRC representation because any stochastic choice
has a PRC representation. We also provide a notion of comparative statics which allow
us to rank any two PRCs within our framework.

The main purpose of our model is to model heterogeneity in the choice data
through sorted types. Since the PRC model fully serves this purpose and uniquely
identifies the types, it can be used to model any particular class of choice types or
behavioral traits of interest. Specifically, our framework enables us to study phenomena
that are outside of the utility maximization paradigm. To illustrate this, we focus on
choice types that are likely to make mistakes on larger choice sets. We then provide
the complete set of behavioral implications of these types and identify these types from
the observable stochastic choice data.

One of the most studied behavioral phenomena is so-called choice overload which
is defined as decision makers being worse off by the complexity of choice problems.
Here, we consider a special type of choice overload where complexity is measured by
the number of alternatives (see e.g. Iyengar and Lepper [2000], Chernev [2003], Iyengar
et al. [2004], and Caplin et al. [2009]). Such choice overload is inevitable given the trend
of abundance of options offered to consumers.7

Chernev et al. [2015] argue that choice overload might have negative welfare conse-
quences, hence, having less options can lead to an increase in consumer welfare: “less-is-
more”. This concept of bounded rationality captures situations where a decision maker
is more likely to choose suboptimally on larger alternative sets than smaller ones. Note
that the idea of less-is-more potentially allows extreme mistakes: a decision maker may
pick the worst alternative on the larger sets even though she chooses optimally in bi-
nary comparisons. Our less-is-more property rules out such extreme mistakes. Despite
this additional restriction, our property is still rich enough to accommodate models
such as shortlisting (Manzini and Mariotti [2007]), rationalization (Cherepanov et al.

7For example, colgate.com offers fifty-three different kinds of toothpaste, and the typical supermarket
in the United States carries 40,000 to 50,000 items nowadays, where as this number was 7,000 items
as late as the 1990s.
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[2013]), preferred personal equilibrium (Kőszegi and Rabin [2006]), limited attention
(Lleras et al. [2017]) and categorization (Manzini and Mariotti [2012]). Moreover, the
less-is-more property is satisfied by the types observed in the choice data of Manzini
and Mariotti [2006] eliciting the time preferences of subjects on four payment schedules
covering three periods.8

We focus on a subclass of PRC models satisfying the less-is-more property: L-PRC.
Our first result guarantees identification for L-PRC. Next we turn to testability: does
L-PRC generate testable restrictions on stochastic data? The answer is that two simple
axioms, U-regularity and Weak-regularity, summarize all the testable implications of
L-PRC. U-regularity requires the stochastic choice to assign higher probability to the
upper contour set of an alternative on a smaller choice set than a larger one. Weak-
regularity on the other hand is a weaker version of the standard regularity condition.
While regularity requires the choice probabilities to be monotonic for any subset, the
Weak-regularity demands such monotonicity to hold at least for some subset.

In the first part of the paper, the reference ordering defining the progressive struc-
ture is assumed to be given. In some applications, the reference ordering is conceivably
observable to the researcher (for example a social norm of a society) or the researcher
may be the one designing the menu of options in a controlled experiment so that an
objective ordering (such as first order domination, riskiness of the options, or the time
schedule of payment) is imposed. However, in some other contexts, especially when the
ordering corresponds to the underlying preferences, it is crucial to derive it from the
stochastic choice. This would improve the applicability of the model. We show that
one can uniquely identify the reference ordering of an L-PRC model under a mild re-
striction. We also show that endogenous L-PRC offers distinct predictions from several
well-known stochastic choice models.9

8We considered only the choice types appeared at least 3% of the data set.
9The models provided by Manzini and Mariotti [2014], Brady and Rehbeck [2016], and Cattaneo et al.
[2019] are distinct from L-PRC. We also show that while SCRUM (Apesteguia et al. [2017]) is a special
case of L-PRC, the intersection of RUM and L-PRC is a strict superset of SCRUM.
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The L-PRC model and its characterization illustrate the link between a behavioral
trait (namely, less-is-more) and the stochastic choice data generated by types with
different levels of that behavioral motive. Our algorithm constructs the collection of
choice types in a PRC uniquely, hence, a researcher who wants to study a certain
sorted behavioral types can use our algorithm to identify the types and then see the
implications of the behavioral property of interest on the stochastic choice. We present
how to do this for a particular type of behavioral trait capturing choice overload but a
similar idea can be carried out for other type of behavioral traits under consideration.

Our theoretical contribution complements Apesteguia and Ballester [2020] and
Dardanoni et al. [2020a] which utilize models of randomization over choice functions
for empirical applications to identify heterogeneity in the data. Dardanoni et al. [2020a]
prove usefulness of random choice model in identification of preferences and cognitive
distributions in specific models of choice. As in Apesteguia et al. [2017], Apesteguia
and Ballester [2020] work with preference types, but they apply progressive structure
only locally and allow for limited data. Our paper is also related to the recent lit-
erature which combines decision theory and econometric analysis. The most closely
related papers in this literature are Abaluck and Adams [2017], Barseghyan, Cough-
lin, Molinari, and Teitelbaum [2018], and Dardanoni, Manzini, Mariotti, and Tyson
[2020b]. In a general setup, Abaluck and Adams [2017] show that, by exploiting asym-
metries in cross-partial derivatives, consideration set probabilities and utility can be
separately identified from observed choices when there is rich exogenous variation in
observed covariates. Barseghyan et al. [2018] provide partial identification results when
exogenous variation in observed covariates is more restricted. Lastly, similar to previ-
ous papers, Dardanoni et al. [2020b] study choices from a fixed menu of alternatives.
They consider aggregate choice where individuals might differ both in terms of their
consideration capacities and preferences.

The rest of the paper is organized as follows. Section 2 introduces the random
choice model and the progressiveness notion. It also presents the first representation
result for the PRC model. Section 3 provides the necessary and sufficient conditions
for existence of a PRC model with the less-is-more structure. Section 4 states our
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identification result for deriving the unique underlying reference ordering of an L-PRC
model. Section 5 provides comparative statics between any two models within our
framework. Section 6 summarizes how L-PRC relates to other well-known stochastic
choice models. Section 7 concludes.

2. Model

Let X denote a finite set of alternatives and � be a linear order on X where
% is the weak order derived from � in the usual sense.10 �-best denotes the best
alternative of a set with respect to relation %. A stochastic choice function is a mapping
π : X × 2X \ ∅ → [0, 1] such that for any S ⊆ X, (i) π(x|S) > 0 only if x ∈ S; (ii)∑
x∈S

π(x|S) = 1. π(x|S) is interpreted as the probability of choosing x from alternative
set S. π(T |S) is the sum of all choice probabilities in T , i.e. π(T |S) = ∑

x∈T
π(x|S). A

choice function on X is a mapping c : 2X \ ∅ → X such that c(S) ∈ S for any S ⊆ X.
C is the set of all choice functions on X.

In a random choice model, an individual stochastically engages with a choice
function, c, from the collection of all choice functions, C. Let µ be a probability
distribution on C. µ(c) represents the probability of c being realized as the choice
function. Given a set of available alternatives S, the probability of an alternative x
being chosen is determined by the sum of probabilities of choice functions which select
x. Therefore, µ constitutes a stochastic choice function πµ such that

πµ(x|S) =
∑

c(S)=x
µ(c)

We say that a stochastic choice function π has a random choice representation if
there exists µ such that π = πµ. Let the support of µ be denoted by {c ∈ C | µ(c) > 0}.
If the support of µ consists of only distinct choice functions generated by some linear
order, then πµ becomes the well-known RUM. Hence RUM is a special case of the
random choice model. Any stochastic choice function can be represented within random
10While we assume an exogenous reference ordering, �, here, in Section 4 we will provide conditions
for deriving � endogenously.
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choice framework. That is, for every π, there exists µ such that π = πµ. However, the
representation is not unique in general.11

We impose a structure on the support of the probability distribution. Our condi-
tion, called progressiveness, is inspired by single-crossing preferences, which play im-
portant roles in economics (see e.g. Mirrlees [1971], Roberts [1977], Grandmont [1978],
Rothstein [1990], Milgrom and Shannon [1994], Gans and Smart [1996].) Recently, this
property was used by Apesteguia et al. [2017] in the context of a random utility model.
We say a collection of distinct choice functions C ⊆ C is progressive with respect to �
if C can be sorted {c1, c2, . . . , cT} such that ct(S) % cs(S) for all S and for any t ≥ s.12

Progressiveness imposes an ordered structure on the collection of choices such that a
higher indexed choice function cannot choose an alternative that is dominated by the
choice of a lower indexed choice function on the same choice set. In other words, ct is
more aligned with � than cs when t > s. Note that any subset of a progressive set is
also progressive. We now define progressive random choice formally.

Definition 1. π has a progressive random choice representation with respect to �,
(PRC�), if there exists µ on C such that the support of µ is progressive with respect
to � and π = πµ.

We view our novel progressive structure as a strength of the model because it
provides a meaningful interpretation for the support of random choice. Recall that the
support of RUM consists of several independent utilities and there is no immediate
comparison between them. In contrast, PRC orders the choice functions with respect
to a reference choice function implied by � and these functions gradually become more
aligned with the reference. The use of each choice function can be interpreted as lapses
into bounded rationality and the more distant the used choice function is from the
11Consider a stochastic choice function generated by {c1, c2} with µ(c1) = µ(c2) = 0.5 where
c1(x, y, z) = x, c1(x, y) = x, c1(x, z) = x, c1(y, z) = y, and c2(x, y, z) = y, c2(x, y) = y, c2(x, z) = z,
and c2(y, z) = y. The same stochastic choice can be generated by {c′1, c′2} with µ′(c′1) = µ′(c′2) = 0.5
where c′1(x, y, z) = y, c′1(x, y) = x, c′1(x, z) = z, c′1(y, z) = y and c′2(x, y, z) = x, c′2(x, y) = y, c′2(x, z) =
x, and c′2(y, z) = y as well.
12The betweenness property defined by Albayrak and Aleskerov [2000], Horan and Sprumont [2016]
in a different context is a closely related concept.
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reference, the more severe the lapse is. The examples below illustrate on archetypical
models how progressiveness can be interpreted as the random choices becoming less and
less boundedly rational in the paradigm of that specific model. They also demonstrate
the fact that PRC allows a substantial degree of heterogeneity of choice behavior. In
each example, the choice types are sorted according to one behavioral trait. As our
examples will clarify, the reference ordering may correspond to the decision maker’s
preferences as well as her social norm, measure of salience, and temptation ranking,
see e.g. Examples 1, 2, and 4.

Example 1. (Ashamed to be Selfish) Consider a decision maker facing a trade-off
between choosing her best allocation and minimizing shame caused by not choosing the
best allocation according to a social norm (Dillenberger and Sadowski [2012]). Assume
each type differs only in terms of how much it is influenced by the social norm. Each
type cares more and more about the shame component, and hence, the collection of
choices is progressive with respect to the social norm. Formally, we assume that the
choice can be written as

cs(T ) = argmax
x∈T

{u(x)− (max
y∈T

ψ(y)− ψ(x))s}

where u is a utility function over allocations, ψ represents the norm, and s is the
shame parameter. The amount, (maxy∈A ψ(y) − ψ(x))s, is interpreted as the shame
from choosing x in comparison to the alternative that maximizes the norm. To provide
a numerical example, we assume there are three possible allocations: x, y and z. While
utilities are u(x) = 4, u(y) = 3 and u(z) = 1, the norm values are ψ(x) = 1, ψ(y) = 4
and ψ(z) = 6. We consider five different shame parameter values s = 0, 0.3, 0.6, 0.9,
and 1.2. Table 1 illustrates the corresponding collection of ordered types on {x, y, z}.

This collection is progressive with respect to z � y � x, which also represents the
social norm. The ordered types are becoming gradually more inline with the social norm.
While c5 is completely aligned with the social norm and represented by the reference
ordering, c2 cannot be represented by any preferences.
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c1 c2 c3 c4 c5
{x, y, z} x x y y z
{x, y} x y y y y
{x, z} x x x z z
{y, z} y y y y z

s 0 0.3 0.6 0.9 1.2

Table 1. Five choice function according to shame parameter.

Example 2. (Shortlisting) Let each choice type in the PRC be determined by first
eliminating dominated alternatives with respect to a binary relation to form a shortlist
and then by maximizing a preference ordering on the shortlist (Manzini and Mariotti
[2007]). Assume each type shares the same preferences. If the first stage binary relation
gets more incomplete, the shortlist gets gradually richer and the choice becomes more
aligned with the underlying order of alternatives. Hence, this collection of choices is
progressive with respect to the preference ordering.

The model of Tyson [2013] is another shortlisting model example with a different
interpretation. The first criterion is the decision maker’s preferences that are im-
perfectly perceived due to cognitive or information-processing constraints. The second
criterion is interpreted as a measure of salience—the property of standing out from the
rest. If the information processing gets gradually more costly, then the shortlists get
larger and hence the choice becomes more aligned with the salience order rather than a
preference order.

Example 3. (Preferred Personal Equilibrium) Let each choice type in the PRC be
determined by the preferred personal equilibrium concept introduced by Kőszegi and
Rabin [2006]. According to this model, each type is endowed with a consumption utility
as well as a gain-loss utility. As the individual becomes more loss averse, the set of
personal equilibrium enlarges. Hence, the preferred personal equilibrium becomes more
aligned with the consumption utility. This collection of choices is progressive with
respect to the consumption utility.
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Example 4. (Temptation) Consider a decision maker facing temptation with lim-
ited willpower (Masatlioglu et al. [2020]). The decision maker picks the alternative
that maximizes her commitment utility from the set of alternatives where she over-
comes temptation with her willpower. Each choice type in the PRC differs in terms of
willpower stock. As her willpower stock increases, she is able to overcome temptation
more successfully and able to choose an alternative more aligned with her commitment
preferences. Hence, this collection of choices also satisfies progressiveness with respect
to the commitment utility.13

Example 5. (Limited Attention) In this example, suppose that each choice type in
the PRC pays attention to a consideration set and chooses the most preferred alterna-
tive in the consideration set with respect to the decision maker’s underlying preferences
(Masatlioglu et al. [2012], Lleras et al. [2017]). If each type’s awareness extends grad-
ually, then her choices become closer to the rational choice implied by her preferences.
For this example, the progressiveness structure is equivalent to increased attentiveness.

Example 6. (Rationalization) Consider a decision maker providing a line of reasoning
(a rationale) to justify her choice behavior (Cherepanov et al. [2013]) for each choice
type in the PRC. A rationale can be intuitively understood as a story that states that
some options are better than others. The decision maker maximizes her preferences
among alternatives she can rationalize. Each choice type differs only in terms of the
set of rationales she uses for that choice. As the set of rationales gradually gets larger,
the corresponding collection of choices satisfies progressiveness with respect to her pref-
erences.

As mentioned above, progressiveness generalizes the single-crossing idea recently
studied by Apesteguia et al. [2017] within the RUM framework. A collection of prefer-
ences, {P1, ..., PT}, satisfies the single-crossing property with respect to � if for every
x � y and every s > t, xPty implies xPsy. As the next Lemma shows, if the choices
in the support of a random choice model are rational and generated by maximization
13A similar example of temptation can be created based on the convex self-control model of Noor and
Takeoka [2010].
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of preferences, then progressiveness is equivalent to the support of the corresponding
RUM satisfying the single crossing property.

Lemma 1. Let {c1, ..., cT} be a collection of choices where each ci is derived from
maximization of a complete and transitive ordering Pi. Then {P1, ..., PT} satisfies
the single-crossing property with respect to � if and only if {c1, ..., cT} satisfies the
progressiveness property with respect to �.

PRC imposes some compatibility among all the choice functions in a collection
because the choices in the support gradually become more and more aligned with the
rational choice induced by �. It also allows a substantial degree of heterogeneity of
choice behavior as we will see in Theorem 1. We will also show that the PRC structure
leads to uniquely defined weights on the collection of choices.

We now state our first result. Theorem 1 states that PRC is capable of explaining
all stochastic choices for a given preference ordering. In other words, PRC enjoys high
explanatory power.

Theorem 1. Let � be a reference ordering. Every stochastic choice π has a PRC�
representation. Moreover, the representation is unique.

The proof of Theorem 1 is constructive. The construction is based on the choice
probabilities of lower contour sets with respect to �. We calculate all cumulative
probabilities on lower contour sets derived from the stochastic choice. Next we define
an ordering function which sorts these cumulative probabilities from the lowest to the
highest, 0 < k1 < k2 < · · · < kT . Finally, we construct the collection of choices, C, step
by step. The first choice function assigns each alternative set its worst element with
respect to �.14 The probability mass of this first choice, c1, is the lowest cumulative
probability driven by the aforementioned ordering, k1. In the second step, for each
alternative set, we check if the cumulative probability of the lower contour set of the
chosen alternative of c1 equals to k1 or is strictly larger than k1. For the former case,
14This worst element needs to be chosen from among the ones which are chosen with positive proba-
bility.



14

we assign the second worst alternative as the choice by c2; for the latter case, we keep
c2 equal to c1. Note that such a construction assigns the same or better alternative
to each alternative set in c2 than c1. The probability assigned to c2 is k2 − k1. This
procedure continues and defines each ci based on ci−1 while respecting progressiveness
as the choices in each step gradually choose better alternatives on any given set.

Note that Theorem 1 is also a uniqueness result, and the construction of the
representation provides the exact weights for each choice function in the support.15

This is in sharp contrast to both the general random choice model and RUM, which
are well-known to admit multiple representations (see Fishburn [1998] for the RUM
and footnote 11 for the random choice model). Hence, one obvious strength of the
PRC is its uniqueness.

To appreciate the uniqueness result, note that, for example, with three alterna-
tives while there are six possible preference orderings, there are twenty four possible
choice functions. Even after fixing an exogenous reference order, one can generate a
large number of possible collections with the progressive structure with respect to this
reference ordering. Hence, the progressive structure by itself does not identify the right
collection of choices for the representation immediately. However, the uniqueness comes
from the fact that each collection can only have a maximum of six elements due to
the progressive structure. When the alternative set is larger than three elements, even
though the number of possible choice functions grow extensively, the maximum number
of choice functions in a progressive collection cannot surpass the information given by
the stochastic choice data. On the contrary, in RUM model, the maximum number
of preference orderings exceeds the number of choice data, which causes undesirable
non-uniqueness of RUM.

15The progressive structure is the main driver behind the uniqueness result. A weaker condition,
called non-reversing property, is introduced by Dardanoni et al. [2020a]. However, the non-reversing
property is not sufficient for a unique random choice representation.



15

3. Less is More

The random choice model allows us to address behavior that is inconsistent with
utility maximization because the choice functions in the randomization support do not
have to be in line with a preference maximization. Behavioral Economics literature
provides abundance of evidence outside of the utility maximization framework. One of
the most studied deviations from the rational model is the choice overload phenomenon,
i.e. welfare improving effect of having less options (see Schwartz [2005], Iyengar and
Lepper [2000], Chernev [2003], Iyengar et al. [2004], Caplin et al. [2009]). This phenom-
enon is called “less-is-more.” While the classical rational choice theory concludes that
the exuberance of choice has positive welfare implications, the idea of less-is-more is
based on the evidence that the decision makers may not benefit from having too much
choice in many situations. Due to their limited attention spans, cognitive capacities,
or reference dependent evaluations, they may under-perform and deviate from their
underlying preferences when they choose from very large set of options.

In this section we interpret the reference ordering of a PRC model as the common
underlying preferences. Then each choice type can be viewed as a type of bounded
rationality with a certain level of choice overload. Less options might be better for
these types since they may choose sub-optimally on larger alternative sets and act
more in line with the preferences on subsets. Then each choice type in the progressive
collection of choice functions represent how severely that type of decision maker is
affected from having too much choice.

As in the previous section, we first assume that the reference ordering is observable.
This assumption is reasonable in situations where there is a single common attribute
to rank all alternatives, such as the lowest price, shortest distance etc., or where alter-
natives are objectively ranked independent of personal (idiosyncratic) preferences such
as lotteries being ordered according to first-order stochastic dominance. Having said
that, in the next section, we will drop this assumption and show that one can identify
the underlying preferences from the observed choices.
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Definition 2. We say a collection of choice functions C satisfies less-is-more with
respect to � if for all t,
(i) for all T ⊂ S, ct(S) ∈ T ⇒ ct(T ) % ct(S),
(ii) for all x ∈ S and for all T ⊂ S such that x ∈ T and |T | 6= 1 ct(T ) 6= x⇒ ct(S) 6= x.

The first condition means that ct(T ) is more aligned with � than ct(S) when
T ⊂ S, because the choice from a larger set is dominated by the choice from a smaller
set. The second condition says if an alternative is never chosen in any subset, then
it cannot be chosen in the grand set. While the first condition requires the better
alternatives to be chosen on smaller sets, it does not rule out the worst alternative to
be chosen only in the larger set. The second condition restricts such extreme mistakes.
This definition allows bounded rationality without having extreme irrationality. Note
that if the choice functions in the support of randomization are rationalizable by a
preference ordering, then the less-is-more property trivially holds. This new concept
restricts each possible choice function to be either rational or boundedly rational in
the sense of less-is-more.16

Definition 3. π has a less-is-more PRC representation with respect to �, (L-PRC�),
if there exists µ such that the support of µ satisfies progressiveness and less-is-more
with respect to � and π = πµ.

All the models discussed in Examples 1 - 6 can be modified to accommodate the
less-is-more structure. For the shortlisting example, Example 2, where shortlists get
gradually longer, imagine that the initial shortlist orders the alternatives based on
a linear order that is completely opposite of �, say �̃. Such a shortlist would report
only the worst alternatives as undominated. Clearly, the choice implied by this shortlist
would satisfy “less-is-more” since on a smaller set only a weakly better alternative can
be shortlisted and chosen than on a larger set. When the shortlists in that example get
gradually longer, due to reverse ordering implied by �̃, each choice satisfies less-is-more.

16One should note that this observation makes SCRUM� a special case of L-PRC�.
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We should note that there are some well known examples that do not satisfy the
less-is-more structure. For example, if the attention correspondences of the model
described in Example 5 are attention filters (see Masatlioglu et al. [2012]), then the
choice functions that are used in the PRC would not satisfy the less-is-more property.
Due to the existence of such examples, this more demanding structure will improve the
prediction power of our model.

Next we state our axioms for the stochastic choice that will characterize L-PRC�.
These axioms are closely related to the well-known regularity axiom: For all x ∈ T ⊂
S ⊆ X,

π(x|S) ≤ π(x|T )

The regularity axiom states that the choice frequency of an alternative is higher on
smaller sets. Our first axiom requires the regularity condition to hold on upper counter
sets. Let U(x) = {y ∈ X | x % y} denotes the upper contour set of an alternative, x.

Axiom 1. (U-regularity) For all x ∈ T ⊂ S ⊆ X such that π(x|S) 6= 0

π(U(x)|S) ≤ π(U(x)|T )

Regularity and U-regularity coincide for the best alternative in any set. However,
U-regularity allows regularity violations. Specifically, if we apply U-regularity to the
second worst alternative, we can show that the worst alternative violates the regularity
condition weakly. To show this, let yS and zS be the second-worst and the worst
alternatives of S ⊆ X, respectively. Then, for T such that yS, zS ∈ T ⊂ S and
π(yS|S) 6= 0, U-regularity implies that,

π(U(yS)|S) ≤ π(U(yS)|T )
1− π(zS|S) ≤ 1− π(zS|T )

π(zS|S) ≥ π(zS|T )

Hence, the regularity might be violated for zS. By this argument, if the stochastic
choice is a strict RUM,17 then it violates U-regularity.

17We say π is a strict RUM if π(x|S) < π(x|T ) for all x ∈ T ⊂ S ⊆ X.
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In deterministic case, the regularity condition is equivalent to WARP. But U-
regularity is weaker than WARP. Note that if we have a deterministic choice which
satisfies WARP than it can be represented by a preference relation. In such a case,
U-regularity holds with respect to that preference relation. On the other hand, if a de-
terministic choice does not satisfy WARP, it may still satisfy U-regularity with respect
to a linear ordering. For example, consider the choices summarized by π(z|xyz) =
1, π(x|xy) = 1, π(y|yz) = 1, and π(x|xz) = 1. This choice behavior does not satisfy
WARP but it satisfies U-regularity with respect to x � y � z.

The axiom requires the better elements to be more likely to be chosen on smaller
sets. Therefore, we are interested in behavior such that the decision maker makes
more mistakes and chooses a dominated alternative with respect to the underlying
linear order more often on larger sets than smaller ones. Having said that, one might
want to limit the amount of mistakes. In the above example, the worst alternative is
chosen in the grand set with probability one. While this individual makes zero mistakes
in all smaller sets, she makes the mistake with extreme probability in the larger set.
The next axiom limits such examples. Hence, the deviations from RUM is minimal.

Axiom 2. (Weak-regularity) For all S ⊂ X with |S| > 2,

π(x|S) ≤ max{π(x|T ) | x ∈ T ⊂ S and |T | > 1}

This axiom is a weaker version of regularity. While the regularity requires that
π(x|S) is smaller than all π(x|T ) for all subsets of S, the weak-regularity only requires
it to be smaller than at least one of them.

We now state our characterization result for L-PRC�.

Theorem 2. Let � be a reference ordering. A stochastic choice π satisfies U-regularity
with respect to � and weak-regularity if and only if there exists a unique L-PRC�
representation of π.

Note that Theorem 2 not only provides the necessary and sufficient conditions
for L-PRC� representation but also concludes that the representation is unique. The
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algorithm generating the unique representation is the one provided in the proof of
Theorem 1. The proof provided in the Appendix shows that the random choice model
generated by this algorithm not only satisfies progressiveness (as shown by Theorem
1) but also satisfies less-is-more given U-regularity and weak-regularity.

Less-is-more property (ii) does not allow choice functions that presents difficult
choice type of behavior in the support of randomization. However, some well known
bounded rationality models such as limited attention allows for this behavior. Proof
of Theorem 2 shows that dropping weak-regularity axiom on the stochastic choice is
equivalent to dropping property (ii) from the less-is-more definition.

Remark 1. Let � be a reference ordering. A stochastic choice π satisfies U-regularity
with respect to � if and only if there exists unique µ such that the support of µ satisfies
progressiveness and property (i) of less-is-more with respect to � and π = πµ.

4. Endogenous L-PRC

Up to now, we have taken the reference ordering as given. In some applications, the
true reference ordering (such as a social norm) is observable to the researcher. However,
when the reference ordering corresponds to the underlying preference ordering, it might
not be exogenously given. In such cases, it must be inferred from choice. This section
explores how one can identify the reference ordering of a stochastic choice which has
some L-PRC representation. We first define an endogenous L-PRC representation: A
stochastic choice π has an endogenous L-PRC representation if there exist an ordering
� such that L-PRC� represents π.

Next we provide a sufficient condition for the revealed ordering between a pair of
alternatives.

Proposition 1. Assume that π has an endogenous L-PRC representation. If π(y|S) >
π(y|{x, y}) and x ∈ S, then x must be ranked above y for any reference ordering
representing π.
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To see this, assume for contradiction there exists an ordering � with y � x and
L-PRC� represents π. Since U-regularity must hold for �, for S such that x, y ∈ S we
have

π(U(y)|S) ≤ π(U(y)|{x, y}) = π(y|{x, y})

This yields π(y|S) ≤ π(y|{x, y}), which contradicts with the assumption of Proposition
1.

For unique identification of the reference ordering, next we assume strict stochastic
choice: for all x, S, S ′, p(x|S) 6= p(x|S ′) > 0.18

Theorem 3. If a strict stochastic choice π has an endogenous L-PRC representation,
then the reference ordering is uniquely identified.

The two preceding results, Proposition 1 and Theorem 3, were about revealing
reference ordering. They are not applicable, however, unless the observed choice data
has an endogenous L-PRC representation. Therefore, a question to ponder is: how can
we test whether a stochastic choice data has a L-PRC representation? Surprisingly, it
turns out that it can be characterized by using U-regularity and weak-regularity.

Note that U-regularity is defined for a specific reference ordering. In other words, it
is applied on the pair (π,�). When we do not know the underlying reference ordering,
we need to check whether U-regularity holds for some �. If it does hold, we can
represent the stochastic choice by endogenous L-PRC, otherwise the stochastic choice
is outside of L-PRC framework. Therefore, we can define the axiom over the choice
data only. In particular, we say that π satisfies U-regularity if there exist preferences
� such that (π,�) satisfies U-regularity.

Remark 2. [Characterization] A stochastic choice π has an endogenous L-PRC repre-
sentation if and only if π satisfies weak-regularity and there exist preferences � such
that (π,�) satisfies U-regularity.

18This assumption cannot be rejected by any finite data set. In addition, it is usually made for
estimation purposes.
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This remark immediately follows from Theorem 2 because if there exists an en-
dogenously defined � making π satisfy U-regularity, then we can apply Theorem 2 to
that �.

5. Comparative Statics

Next we discuss how the comparative statics exercise can be performed to order any
two PRCs. Note that this discussion requires only progressiveness on the random choice
model; hence, it automatically applies to L-PRC cases. To do this, first we introduce
an ordering relation between distributions of choices in Definition 4. Before defining
the order, we define, for all α ∈ (0, 1], µ−1

α := ci ∈ C such that µ(c1) + .. + µ(ci−1) <
α ≤ µ(c1) + ..+ µ(ci) for given C = {c1, ..., cT} and µ. Hence, µ−1

α identifies the choice
function in the collection at which the cumulative distribution weakly exceeds α.

Definition 4. Probability distribution µ defined on C is higher than probability dis-
tribution η defined on C ′ if ∀α ∈ (0, 1] and ∀S ⊂ X, µ−1

α (S) % η−1
α (S).

Definition 4 compares two probability distributions and identifies the one which is
more in line with the underlying preference, �, as the higher distribution. Note that
the compared distributions do not need to have the same support. This allows us to
order two PRCs, πµ and πη, with different choice collections as their supports or having
the same support with different weights on choices in the support. If it is the latter
case, then a distribution being higher simply means it first order stochastic dominates
the other distribution. Note that the comparison is based on �; hence, the compared
models should have the same underlying �.

We order two stochastic choices in the standard first order stochastic domination
sense, i.e. one dominates the other if it assigns higher probability of choice to all the
upper contour sets when choosing from a set. This is formally stated below.

Definition 5. Stochastic choice π first order stochastic dominates stochastic choice π′

if for any set S and any x ∈ S,

π(U(x)|S) ≥ π′(U(x)|S)
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Now we can state our result on comparative statics between any two PRCs.

Theorem 4. Let πµ and πη be two PRC�. πµ first order stochastic dominates πη if
and only if µ is higher than η.

Note that if the choices in the support of PRC are rational and represented by
a collection of preferences, our model becomes equivalent to SCRUM (as stated by
Lemma 1.) For such models Definition 4 is equivalent to Definition of "a SCRUM
being higher" in Apesteguia et al. [2017] (see page 667). Hence, their Proposition 2 is
a special case of our Theorem 4.

Also note that if two decision makers (or two populations) have PRCs with the
same underlying � and the same collection of choices in the support, the stochastic
choice of decision maker 1 first order stochastic dominates that of decision maker 2
if and only if the cumulative weighting function of the first decision maker first order
stochastic dominates that of the second decision maker. This means that the second
decision maker more often engages with choices that are less aligned with the choice
rationalized by �. In other words, she makes worse mistakes (in the sense of not being
aligned with �) more often.

As previously mentioned, two decision makers’ PRC� may have different supports.
For example, say two decision makers use limited attention models similar to Example
5. Assume that the first decision maker considers the worst element of a set in her first
choice function in the support, then considers the worst two elements in her second
choice function and so on. So this person’s consideration sets gradually extend and her
choice becomes more aligned with �. The second person’s support has a single choice
which relies on the full consideration set (she is not boundedly rational) and chooses
according to the underlying � (so her choice is degenerate, she is fully attentive and
her choice satisfies WARP). Then the stochastic choice of the more attentive person
(the second person) will first order stochastic dominate the stochastic choice of the less
attentive one (the first person).
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6. Related Literature

In this section, we compare our model with other well-known models of stochastic
choice from the literature. First, note that in terms of explanatory power, PRC includes
all the other models (see Theorem 1). Since the endogenous L-PRC model imposes
testable restrictions, we now compare this special subclass to other stochastic choice
models. As we mentioned before, SCRUM of Apesteguia et al. [2017] is a special case
of L-PRC. Moreover, L-PRC includes other RUM choices other than SCRUM.

Manzini and Mariotti [2014], Brady and Rehbeck [2016], and Cattaneo et al. [2019]
provide stochastic models where randomness comes from random consideration rather
than random preferences. While the first two provide parametric random attention
models, the last offers a non-parametric restriction on the random attention rule. The
first two models require the existence of a default option for their models. To provide an
accurate comparison, we consider versions of those without an outside/default option.19

The random attention model (RAM) of Cattaneo et al. [2019] covers the model of Brady
and Rehbeck [2016] (BR), which in turn contains the model of Manzini and Mariotti
[2014] (MM). Indeed, RAM includes RUM, BR, SCRUM and MM. However, RAM
and L-PRC are independent models because there are choice data represented by L-
PRC but not RAM and vice versa. For example, consider the following stochastic
choice with three alternatives, π: π(z|{x, y, z}) = π(y|{x, y, z}) = π(z|{y, z}) = 0.3,
and π(y|{x, y}) = π(z|{x, z}) = 0.2. π belongs to L-PRC but not RAM. Indeed, this
example is outside of any models discussed above. Moreover, it is routine to show that
L-PRC is independent of RAM, RUM, BR, and MM.

In the model of Gul, Natenzon, and Pesendorfer [2014] the decision maker first
randomly picks an attribute using the Luce rule given the weights of all attributes.
Then she picks an alternative using the Luce rule given the intensities of all alternatives
in that attribute. Gul, Natenzon, and Pesendorfer [2014] show that any attribute rule
is a random utility model. Hence, their model is distinct from L-PRC.

19See Horan [2018a] for an axiomatic characterization of the Manzini and Mariotti [2014] model when
there is no default option.
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Echenique and Saito [2019] consider a general Luce model (GLM) where the deci-
sion maker uses the Luce rule to choose from among alternatives in her (deterministic)
consideration set instead of the whole choice set.20 GLM reduces to the Luce rule when
all alternatives are chosen with positive probability in all menus. Hence, L-PRC and
GLM are distinct in terms of observed choices.

Echenique, Saito, and Tserenjigmid [2018] propose a model (PALM) which uses
violations of Luce’s IIA to reveal perception priority of alternatives. For an example
of stochastic choice data which can be explained by L-PRC but not PALM, consider
any data where the outside option is never chosen. When the outside option is never
chosen, PALM reduces to the Luce rule. However, L-PRC allows for violations of
Luce’s IIA in the absence of an outside option.

Fudenberg, Iijima, and Strzalecki [2015] consider a model of Additive Perturbed
Utility (APU) where agents randomize, as making deterministic choices can be costly.
In their model, choices satisfy regularity. Since L-PRC allows for violations of regular-
ity, they are distinct models.

Aguiar, Boccardi, and Dean [2016] consider a satisficing model where the decision
maker searches until she finds an alternative above a satisficing utility level. If there
is no alternative above the satisficing utility level, the decision maker picks the best
available alternative. They focus on two special cases of this model: (i) the Full Support
Satisficing Model, where in any menu each alternative has a positive probability of
being searched first, and (ii) the Fixed Distribution Satisficing Model. They show
that the second model is a subset of RUM. On the other hand, the first model has
no restrictions on observed choices if all alternatives are always chosen with positive
probability. Hence, L-PRC is distinct from these, too.

20See Ahumada and Ulku [2018] and Horan [2018b] for related models.
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7. Conclusion

We have introduced a novel PRC model which not only identifies uniquely the
random choices utilized but also has an intuitive progressive structure. As the exam-
ples we have provided throughout the article suggest, this model may prove useful in
economic contexts where one wishes to investigate interpersonal or intrapersonal varia-
tion in choice and the variation is based on a sorted behavioral trait such as willpower,
loss aversion, attention, or limited cognitive ability.

We see several directions in which the present work can be extended. The first ex-
tension we investigated in this paper imposes the less-is-more structure on the choices
of a PRC model, and introduces L-PRC. This model has stronger prediction power and
still applies to most of the examples we discussed. However, it leaves out some well-
studied bounded rationality models such as the limited attention model with attention
filter. Hence, one obvious avenue for exploration is to study other bounded rationality
structures on the choices in the collection and their behavioral implications. Addition-
ally, one might gradually impose more structure on L-PRC. Finally, several empirical
queries arise from the present work. It would certainly be useful to conduct tests
comparing the explanatory power of competing models that we reviewed in this paper.

The empirical validity of our axioms can be investigated. Our initial analysis of
the data sets provided by Manzini and Mariotti [2006] on time preferences, confirm
that progressive structure exists in these observed collection types, and moreover the
types in one of the data sets in that study satisfy the less-is-more property. One may
check the progressive structure on other rich data sets when types are observed in
contexts such as decision making under risk, time preferences, and portfolio allocation.
With such fine data, we can also observe the types of bounded rationality of the choice
types and question the implications of those types on the stochastic choice data.
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Appendix

Proof of Lemma 1. Assume that {P1, ..., PT} satisfies the single-crossing property
with respect to �. For contradiction, suppose the corresponding choice collection does
not satisfy the progressiveness property. Then there exist s, t ∈ {1, ..., T} such that
s > t and S ⊂ X where cs(S) ≺ ct(S). By definition of c, we have cs(S)Psct(S) and
ct(S)Ptcs(S). Note that since ct(S) � cs(S) by single crossing property we must have
ct(S)Ptcs(S)⇒ ct(S)Pscs(S), which is a contradiction.

For the other direction of the proof, assume that the collection of choices satisfies
the progressiveness property with respect to �. For contradiction, suppose the corre-
sponding set of preferences does not satisfy the single-crossing property. Then there
exists x, y ∈ X such that x � y, s, t ∈ {1, ..., T} with s > t and while xPty we have
yPsx. Then note that ct({x, y}) = x and cs({x, y}) = y. By progressiveness, we should
haves cs({x, y}) % ct({x, y}) or equivalently, y % x. This is a contradiction. �

Proof of Theorem 1. We assume that the stochastic choice function π is given and
will construct a collection of choice functions C satisfying the progressiveness conditions
and a probability distribution µ on it where the corresponding PRC with µ is equivalent
to π.

Define
K = {π(L(x) ∪ x|S) | S ⊆ X and x ∈ S}21

This defines a collection of all cumulative probabilities on lower contour sets derived
from the stochastic choice. K is a finite subset of [0, 1]. Next we sort the strictly positive
elements of K from the lowest to the highest, i.e., 0 < k1 < k2 < · · · < km = 1.22 Note
that since X is finite, m is finite.

Next we will construct the set of choice functions, C, recursively. Before that,
we define a minimizing operator minπ+(�, S), which selects the worst alternative in S
according to � with strictly positive choice probability. That is,

min
π+

(�, S) = {x ∈ S | π(x|S) > 0 and y � x whenever π(y|S) > 0 and y 6= x}

Step 1: Define
c1(S) = min

π+
(�, S) and µ(c1) = k1

Note that µ(c1) is positive and for any S, π(c1(S)|S) = π(L(c1(S)) ∪ c1(S)|S) ≥ k1 as
π(c1(S)|S) is an element of K and by definition k1 is the smallest of those probabilities.
Moreover, there exists a subset S such that π(L(c1(S)) ∪ c1(S)|S) = k1 since k1 ∈ K.

21We abuse the notation and write A ∪ x instead of A ∪ {x}.
22km is always equal to 1 since π(L(x) ∪ x|{x}) = 1.
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Step 2: Define the second choice as

c2(S) =
{
c1(S) if π(L(c1(S)) ∪ c1(S)|S) > k1
minπ+(�, S \ c1(S)) if π(L(c1(S)) ∪ c1(S)|S) = k1

and µ(c2) = k2 − k1

This is well-defined because by construction in first step: π(L(c1(S))∪ c1(S)|S) ≥
k1. Note that µ(c2) is strictly positive as k1 < k2, and by step 1, c1 is different from c2.
Observe that for any S, c2(S) % c1(S) by definition of c2 and hence, {c1, c2} satisfies
progressiveness with respect to �. Note that µ(c1)+µ(c2) = k2. Moreover, there exists
a subset S such that π(L(c2(S)) ∪ c2(S)|S) = k2 since k2 ∈ K.

Step i: Define the ith choice as

ci(S) =


ci−1(S) if π(L(ci−1(S)) ∪ ci−1(S)|S) > ki−1

minπ+(�, S \
i−1⋃
k=1

ci−k(S)) if π(L(ci−1(S)) ∪ ci−1(S)|S) = ki−1

and µ(ci) = ki − ki−1

This is well-defined because by construction in first i− 1 steps
π(L(ci−1(S)) ∪ ci−1(S)|S) =

∑
y-ci−1(S)

y∈S

π(y|S) ≥ ki−1

Note that by step i − 1, ci−1 6= ci, and by construction ci(S) % ci−1(S) % ci−2(S) %
... % c1(S) ∀S. Hence, {c1, c2, · · · , ci} consists of distinct elements and satisfies pro-
gressiveness with respect to �. Note that ∑i

t=1 µ(ct) = ki. This construction stops
when we reach mth step.

Define C = {c1, ..., cm} where each ci is defined in Step i above. Since C satisfies
progressiveness with respect to �, and ∑m

t=1 µ(ct) = k1 + ∑m
t=2(kt − kt−1) = km = 1,

(µ, C) constitutes a PRC, denoted by πµ. That is,
πµ(x|S) =

∑
x=ck(S)
ck∈C

µ(ck)

We need to show that the representation holds, i.e, πµ = π. Note that by con-
struction πµ(x|S) = 0 for any x ∈ S such that π(x|S) = 0.

Let x ∈ S be an element with π(x|S) 6= 0. Let π(L(x)∪x|S) = ki and π(L(x)|S) =
kj. Since L(x) ⊂ L(x) ∪ x and π(x|S) 6= 0, ki is strictly greater than kj. Then by
construction, we have cj+1(S) = · · · = ci(S) = x. In addition, for all k ≤ j, x � ck(S)
and x ≺ ck(S) for all k ≥ i+ 1. Then we have
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πµ(x|S) =
i∑

t=j+1
µ(ct) =

i∑
t=j+1

(kt − kt−1) = ki − kj
= π(L(x) ∪ x)|S)− π(L(x)|S)
= π(x|S)

Hence, πµ and π are the same.

(Uniqueness): Let µ1 with support C1 = {c1
1, ...c

1
n1} and µ2 with support C2 =

{c2
1, ...c

2
n2} be two PRC representations of the same stochastic data described by π

such that C1 and C2 satisfy progressiveness. We want to show that C1 = C2 and
µ1 = µ2.

For contradiction, suppose µ1 6= µ2. Define the c.d.f. implied by µi as Mi(cit) =∑
s≤t

µi(cis) for i = 1, 2. Let M−1
i be the inverse choice defined from the c.d.f such that

M−1
i (α) = {cit|Mi(cit−1) < α ≤Mi(cit)}

for i = 1, 2. Since µ1 6= µ2, then there must be an α ∈ (0, 1) such that M−1
1 (α) 6=

M−1
2 (α). Let M−1

1 (α) = {c1
t} and M−1

2 (α) = {c2
s}. These two choice functions should

disagree on some sets, i.e. there must be S ⊂ X such that y = c1
t (S) and x = c2

s(S).
Without loss of generality assume x � y. By progressiveness, for any k ≤ t, c1

k(S) - y
and for any l ≥ s, c2

l (S) % x. Then πµ2(L(y) ∪ y|S) < α ≤ πµ1(L(y) ∪ y|S) which
is a contradiction because πµ1 = πµ2 as both represent the original stochastic choice
described by π. �

Proof of Theorem 2. (Necessity): Let (µ, C) represent π such that C satisfies less-
is-more condition. Let x ∈ T ⊆ S ⊆ X and π(x|S) 6= 0. First, we will show that for any
ci ∈ C, ci(T ) ≺ x⇒ ci(S) ≺ x. Assume not, there exists i such that ci(T ) ≺ x - ci(S).
If ci(S) ∈ T then the less-is-more property immediately yields a contradiction. Now
consider ci(S) /∈ T . Then, since π(x|S) 6= 0, there must be an index j ≤ i such
that cj(S) = x. Then cj(S) = x ∈ T ⊂ S. By the less-is-more property we have
cj(T ) % cj(S). Since j ≤ i, by the betweenness property, ci(T ) % cj(T ) % cj(S) = x
which contradicts with ci(T ) ≺ x. Therefore, we prove our claim, which gives the
following relations:

πµ(L(x)|T ) =
∑

ci(T )≺x
µ(ci) ≤

∑
ci(S)≺x

µ(ci) = πµ(L(x)|S)

Hence,
πµ(U(x)|T ) ≥ πµ(U(x)|S)

We will next show the necessity of the weak-regularity condition. For contradiction
assume there exists S and x ∈ S such that for every T ⊂ S, πµ(x|S) > πµ(x|T ). Since
x is chosen from S with positive probability, there must be some choice functions in C
that chooses x on S. Let ci be the choice function with the highest index and choosing
x, i.e., ci(S) = x and for any j > i cj(S) 6= x. By less-is-more property (ii), there
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must be T ′ ⊂ S such that ci(T ′) = x. Denote the strict upper contour set of x as
Ū(x) = {y | y � x}. Then by construction

πµ(Ū(x)|S) = µ(ci+1) + ...+ µ(cN) ≥ πµ(Ū(x)|T ′)
since i was the highest indexed choice function choosing x on S and C has progressive
structure. Then

πµ(U(x)|S) = πµ(x|S) + πµ(Ū(x)|S) > πµ(x|T ′) + πµ(Ū(x)|T ′) = πµ(U(x)|T ′)
This contradicts with U-regularity that we proved above. Hence, weak-regularity must
be satisfied by the stochastic choice.

(Sufficiency): We assume the stochastic choice function π satisfies U-regularity and
weak-regularity and will show that the construction of C given in the proof of Theorem
1 satisfies the less-is-more property.

Before we proceed, we note that U-regularity can be expressed by lower counter
sets. That is, for all x ∈ T ⊂ S,

π(U(x)|T ) ≥ π(U(x)|S)⇐⇒ π(L(x)|T ) ≤ π(L(x)|S)
where L(x) = {y ∈ X | x � y} (strict lower counter set).

We first show c1 satisfies the less-is-more property (i). Let c1(S) ∈ T ⊆ S. By
construction, π(c1(S)|S) 6= 0 and for all x ≺ c1(S) we have π(x|S) = 0. Hence,
π(L(c1(S))|S) = 0. By Axiom 1, π(L(c1(S))|T ) = 0. Hence, for all x ≺ c1(S) we have
π(x|T ) = 0. Since π(c1(T )|T ) 6= 0 by construction, we must have c1(T ) % c1(S).

Assume that all ct satisfy the less-is-more property (i) when t < i. We now show
that ci also satisfy it. Let ci(S) ∈ T ⊆ S. For contradiction, assume ci(S) � ci(T ).
We consider two possible changes that may happen from Step i− 1 to Step i.

Case 1) ci−1(S) = ci(S). By the progressiveness property, ci−1(T ) - ci(T ) ≺ ci(S) =
ci−1(S). Then transitivity implies ci−1(S) � ci−1(T ), which contradicts the fact that
ci−1 satisfies the less-is-more property (i).

Case 2) ci−1(S) 6= ci(S). Then the following relations hold
ki ≤ π(L(ci−1(T )) ∪ ci−1(T )|T )
≤ π(L(ci(T )) ∪ ci(T )|T ) since ci−1(T ) - ci(T )
≤ π(L(ci(S))|T ) since ci(S) � ci(T )
≤ π(L(ci(S))|S) since Axiom 1
= ki−1 since the choice on S changed in step i

This observation contradicts with ks being strictly increasing. Hence, we have
ci(T ) % ci(S). This shows the less-is-more condition (i) holds for ci.
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We now show ci satisfies the less-is-more property (ii). For a contradiction, let
S ⊂ X such that ci(S) = x and for all {x} 6= T ⊂ S, we have ci(T ) 6= x. By the less-is-
more property (i), it must yield ci(T ) � x. If x is the worst alternative in S according
to �, then π(x|S) ≥ µ(ci) +

i−1∑
t=1

µ(ct) > π(x|T ) since µ(ci) > 0. This contradicts to the
weak-regularity. If x is not the worst alternative in S, then there exists y ∈ S such that
x � y. Then ci({x, y}) must be x by the less-is-more property (i). This contradicts
with ci(T ) 6= x for every T ⊂ S. This shows the less-is-more condition (ii) for ci.

This completes the proof of sufficiency. �

Proof of Theorem 3. Before we proceed with the proof, we prove two lemmata.

Lemma 2. The reference ordering among x, y and z is xPyPz if one of the following
conditions holds:

(1) π(y|S) > π(y|{x, y}) and π(z|T ) > π(z|{y, z}) where x ∈ S and y ∈ T ,
(2) Among x, y and z, choices satisfy strict regularity except π(z|{x, y, z}) >

π(z|{y, z}).

Proof. The first part of Lemma 2 follows from the application of Proposition 1 (xPy
and yPz) and transitivity (xPyPz). Hence, two regularity violations could deliver
unique identification with three alternatives.

To prove the second part, assume π(z|{x, y, z}) > π(z|{y, z}), which implies yPz
by Proposition 1. We now argue that x must ranked above y, hence the reference
ordering is uniquely identified. Otherwise, there are two possible reference orderings:
y �1 z �1 x or y �2 x �2 z. Since the worst alternative with respect to each
ordering used for a representation has to weakly violate the regularity condition, we
must have either π(x|{x, y, z} ≥ π(x|{x, z}) since �1 represents or π(z|{x, y, z}) ≥
π(z|{x, z}) since �2 represents. Both cases imply a strict violation of regularity. Hence
xPy(Pz). �

Lemma 3. If xPy and xPz, then either π(y|{x, y, z}) > π(y|{y, z}) or π(z|{x, y, z}) >
π(z|{y, z}).

Proof. Since π has an L-PRC representation and xPy and xPz are assumed, there are
two possible reference orderings between y and z: x �1 y �1 z or x �2 z �2 y. Since
the worst alternative with respect to each ordering used for a representation has to
weakly violate the regularity condition (Axiom 2), we must have either π(z|{x, y, z} ≥
π(z|{y, z}) or π(y|{x, y, z}) ≥ π(y|{y, z}). �

Next we will prove Theorem 3, i.e., the uniqueness of the reference ordering for an
L-PRC. For contradiction, assume that π has two L-PRC representations: L-PRC�1
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and L-PRC�2 . Then there exist two alternatives x and y such that x is ranked above
y in one representation (x �1 y) and y is ranked above x in another representation
(y �2 x). This implies that we cannot have xPy or yPx. Hence, for any alternative z,
we must have

(1) π(y|{x, y, z}) ≤ π(y|{x, y}) and π(x|{x, y, z}) ≤ π(x|{x, y})

This is true because otherwise Proposition 1 would imply xPy or yPx and that
would give a contradiction. Note also that the inequalities in Equation 1 are actually
strict because π is strict.

We analyze four cases depending on whether Ax := π(x|{x, y})− π(x|{x, z}) and
Ay := π(y|{x, y})− π(y|{y, z}) are positive or negative. For the first two cases where
AxAy > 0, we assume π(z|{x, z}) < π(z|{y, z}). This assumption is without loss of
generality since the same argument applies if the inequality is reversed. For the last
two cases where AxAy < 0, Ax < 0 < Ay and Ax > 0 > Ay are symmetric so the proofs
or these cases follow by symmetric arguments, hence, we will only illustrate it for the
case of Ax < 0 < Ay.

Case 1: Ax < 0 and Ay < 0.

By Equation (1) and Ax, Ay < 0, both x and y satisfy strict regularity in {x, y, z}.
Since π satisfies U-regularity, there exists at least one regularity violations. By Axiom
2, we must have π(z|{x, z}) < π(z|{x, y, z}) < π(z|{y, z}). Since the second part of
Lemma 2 is applicable, the revealed reference ordering is unique, a contradiction.

Case 2: Ax > 0 and Ay > 0.

Since we assumed above without loss of generality π(z|{x, z}) < π(z|{y, z}), Ax-
iom 2 implies π(z|{x, y, z}) < π(z|{y, z}).

Case 2(a): π(x|{x, z}) < π(x|{x, y, z})

If π(x|{x, z}) < π(x|{x, y, z}) then zPx. Moreover, this case also implies that
π(z|{x, z}) > π(y|{x, y, z}) + π(z|{x, y, z}). Hence, z satisfies strict regularity. This
gives us two possibilities: (i) π(y|{y, z}) < π(y|{x, y, z}), or (ii) π(y|{x, y, z}) <
π(y|{y, z}). From (i), we must have zPy. Since we also have zPx, either π(y|{x, y, z}) >
π(y|{x, y}) or π(x|{x, y, z}) > π(x|{x, y}) by Lemma 3 contradicting with Equation 1.
If (ii) holds, then both y and z satisfy strict regularity in {x, y, z}. By the second part
of Lemma 2, the revealed reference ordering is unique, a contradiction.

Case 2(b): π(x|{x, z}) > π(x|{x, y, z}).

Since Ax > 0, x satisfies the strict regularity in {x, y, z}. Therefore, either y or z
(or both) violates the strict regularity in {x, y, z}. If only y violates it, then we must
have π(y|{y, z}) < π(y|{x, y, z}) < π(y|{x, y}) by having Ay > 0 and weak-regularity.
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Again, by the second part of Lemma 2, the revealed reference ordering is unique, a
contradiction. Similarly, we get a contradiction if only z violates it. Hence, both y
and z must violate it. Then, by Equation 1, we have π(y|{y, z}) < π(y|{x, y, z}) and
by the assumption of π(z|{x, z} < π{z|{y, z}, we have π(z|{x, z}) < π(z|{x, y, z}). By
the first part of Lemma 2, the revealed reference ordering is unique, a contradiction.

Case 3: Ax < 0 < Ay. By Equation (1) and Ax < 0, x satisfies the strict regular-
ity in {x, y, z}. We consider two sub-cases: 3(a) π(z|{x, z}) < π(z|{y, z}), and 3(b)
π(z|{x, z}) > π(z|{y, z}).

Case 3(a): Assume π(z|{x, z}) < π(z|{y, z}). If π(y|{y, z}) > π(y|{x, y, z}), y also
satisfies the strict regularity in {x, y, z} by Equation (1). Since π satisfies U-regularity,
z must violate the regularity. By Axiom 2, we must have π(z|{x, z}) < π(z|{x, y, z}.
Since the second part of Lemma 2 is applicable, the revealed reference ordering is
unique, a contradiction.

If π(y|{y, z}) < π(y|{x, y, z}), then zPy. Given that, we have two possibilities: (i)
π(z|{x, z}) < π(z|{x, y, z}), or (ii) π(z|{x, y, z}) < π(z|{x, z}). From (i), we must have
xPz. By the first part of Lemma 2, the revealed reference ordering is unique, a con-
tradiction. If (ii) holds, then both x and z satisfy the strict regularity in {x, y, z}. By
the second part of Lemma 2, the revealed reference ordering is unique, a contradiction.

Case 3(b): Assume π(z|{x, z}) > π(z|{y, z}). Since x satisfies strict regularity
then either y or z must violate the strict regularity. We next show that both y
and z cannot violate the strict regularity at the same time. If y violates it, then
we must have π(y|{y, z}) < π(y|{x, y, z}). This implies π(z|{y, z}) > π(z|{x, y, z})
since π(x|{x, y, z}) > 0. Then z must satisfy it. Similarly, if z violates it, then we
must have π(z|{y, z}) < π(z|{x, y, z}). This implies π(y|{y, z}) > π(y|{x, y, z}) since
π(x|{x, y, z}) > 0, hence y must satisfy it. By Lemma 2, the revealed reference ordering
is unique, a contradiction.

Case 4: Ax > 0 > Ay. The proof of this case follows the same argument in the proof
of Case 3, hence it is omitted. �

Proof of Theorem 4. Let πµ and πη be two L-PRC� with supports C and C ′, respec-
tively.

First we show the sufficiency. Let µ be higher than η; and for contradiction
assume that πµ does not first order stochastically dominates πη, i.e. there exists a set
S = {x1, ..., xn} and for some 1 ≤ i ≤ n

πµ({ai, ai+1, ..., an}, S) < πη({ai, ai+1, ..., an}, S)
.
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Define α and β from the probability of choosing lower contour set of ai in S by
using πµ and πη, respectively, i.e. α = πµ(L(ai), S) and β = πη(L(ai), S); then α > β.

Since C and C ′ are ordered choice collections satisfying progressiveness, there exists
t and t′ such that µ(c1) + ... + µ(ct) = α and ct(S) ≺ ai; η(c′1) + ... + η(c′t′) = β and
c′t′(S) ≺ ai. Let c′k = η−1

α , then k > t′ since α > β. Note that by the assumption of µ
being higher than η, we must have µ−1

α (S) = ct(S) % c′k(S) = η−1
α (S). Then we have

ai � ct(S) % c′k(S) % ai. The last relation follows from the fact that t′ is the highest
index choice in C ′ which chooses an element from the lower contour set of ai and any
choice with higher index chooses an element weakly better than ai. This gives us the
contradiction that needed for the proof.

Next we show the necessity. Let πµ first order stochastic dominate πη but µ not
be higher than η. Then ∃S ⊂ X andα ∈ (0, 1] such that η−1

α (S) � µ−1
α (S). Define x

and y as x = η−1
α (S) and y = µ−1

α (S), then x � y. Then we have
πµ(L(y) ∪ {y}, S) ≥ α > πη(L(y) ∪ {y}, S)

Then we have
πµ(U(y), S) < πη(U(y), S)

which contradicts with the assumption that πµ first order stochastic dominates πη. �
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