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Abstract

The paper discusses generalized method of moments (GMM) estimation

methods for spatial models. Much of the discussion is on GMM estimation of

Cliff-Ord type models where spatial interactions are modeled in terms of spa-

tial lags. The paper also discusses recent developments on GMM estimation

from data processes which are spatially -mixing.



1 Introduction1

Spatial econometric models have a long history. Paelink and Klaassen (1979)

may arguably be viewed as the first comprehensive volume covering spatial

econometrics. Anselin (2010) provides a recent review of the development of

the field of spatial econometrics over the last thirty years. Important texts

include Anselin (1988), Arbia (2006), Cliff and Ord (1973, 1981), Cressie

(1993), Haining (2003), LeSage and Pace (2009).

Spatial models provide a formal expression of Tobler (1970)’s first law

of geography stating that “Everything is related to everything else, but near

things are more related to each other”. An important aspect of spatial econo-

metrics is the focus on the explicit modeling and empirical estimation of

pathways of spatial interactions. That is, an important aspect is the focus

on exploring the structure of spatial interactions, and not just on account-

ing for cross-sectional correlation in the computation of standard errors for

parameter estimators.

Much of the spatial econometrics literature has focused on cross sectional

data or panel data where the time dimension is small. A reason is that in

situations where the time dimension, say  , is large relative to the cross-

sectional dimension, say , we can often simply employ classical methods for

the estimation of simultaneous time series models to estimate general forms

of spatial interactions. If the time dimension  is one or small, estimation

will only be possible if we impose some parsimonious structure on the form

of spatial interactions.

The development of a formal theory of estimation of spatial models has

lagged behind corresponding developments for inference from time series

data. A formal theory of inference requires the use of limit theorems, such

as laws of large numbers and central limit theorems. In a time series setting

there is a natural ordering of the data which can be exploited in deriving

such limit theorems. In a spatial setting there is no natural ordering of the

data, which made the development of such limit theorems more challenging.

Arguably the most widely used class of spatial models are variants of the

ones considered in Cliff and Ord (1973,1981). In these models spatial interac-

tions are modeled in terms of spatial lags, i.e., in terms of weighted averages of

observations from neighboring units, where the weights are typically modeled

1I would like to thank James LeSage and Pablo Salinas Macario for their helpful

comments on this paper.
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as inversely related to some measure of distance. Historically, Cliff-Ord-type

models have been estimated by maximum likelihood (ML) methods. (See

Pace chapter Maximum likelihood estimation, as well as Mills and Parent

chapter on Bayesian MCMC estimation). However, one of the difficulties

with ML is that the likelihood depends on the determinant of an ×  ma-

trix, which limits its application to small and medium sample sizes due to

the computational burden (unless the problem is sparse, etc.). Another issue

was the lack of formal results concerning its asymptotic properties. In light

of this, Kelejian and Prucha (1998,1999) suggested a generalized method of

moments (GMM) estimator for a spatial autoreressive model with autore-

gressive disturbances, and established basic asymptotic properties for the

estimator.2 Conley (1999) considered GMM estimation within the context of

-mixing spatial processes and developed an asymptotic theory within this

context.

Since those early contributions there has been a growing literature on

GMM estimation for spatially dependent data. The aim of this paper is to

provide some guidance through that literature, and to provide some insights

into the subtle differences in asymptotic results. Basic reasons for these

differences can be found in the moment conditions employed by respective

GMM estimators, and whether or not an estimator is a one-step or a two-step

estimator.

Owing to space limitations the literature cited in this paper is incomplete,

and not all contributions and extensions of interest are covered. Also, the

focus of this paper is solely on GMM estimation. It does not cover maximum

likelihood estimation or testing procedures (apart fromWald tests that can be

constructed in the usual way based on results for the asymptotic distribution

of GMM estimators). Also, the paper does not cover inference for processes

where cross-sectional dependence is implied by common factors.

Finally, while spatial models have a long history in geography and re-

gional science, space is not limited to geographic space. Spatial models may

more generally be viewed as a class of cross-sectional interaction models,

with applications ranging from growth convergence among regions to social

interactions between agents.

Section 2 of the paper contains a brief and intuitive primer on GMM

2Lee (2004) gives, to the best of our knowledge, first formal results for the maximum

likelihood estimator of a spatial autoregressive model. The maintained assumptions are

similar to those introduced in Kelejian and Prucha (1998,1999).
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estimation to provide some background. Readers familiar with GMM esti-

mation may wish to skip this section. Section 3 considers GMM estimation

of models with spatial lags, and Section 4 considers GMM estimation for a

general class of spatially mixing processes.

2 A Primer on GMM Estimation

2.1 Model Specification and Moment Conditions

Suppose the data are generated from a model

(  0) =   = 1      (1)

where  denotes the dependent variable corresponding to unit ,  is a

vector of explanatory variables,  is a disturbance term, 0 is the  × 1
unknown parameter vector, and () is a known function. The above for-

mulation is fairly general and contains typical Cliff-Ord (1973,1981) spatial

models - possibly after some transformation to remove correlation in the dis-

turbance term - as a special case. Additionally assume the availability of a

1 ×  vector of instruments  and let  be the vector of all observable

variables, including instruments, pertaining to the -th unit. For simplicity

of presentation we assume in the following that the disturbances are i.i.d.

(0 2) and that the instruments are non-stochastic, while noting that both

assumptions can be relaxed.

We also note that in allowing for the variables to depend on the sample

size we accommodate spatial lags. As an example, the explanatory variables

could be of the form  = [  ] where  is some exogenous explana-

tory variable, and  =
P

  and  =
P

  are spatial lags

(where the  denote spatial weights with  = 0). However, to simplify

notation for this primer we will suppress the index  in the following.

Now suppose that we have a  × 1 vector of sample moments

q() = q(1      ) =

⎡⎢⎣ 1(1      )
...

(1      )

⎤⎥⎦ (2)

with  ≥ , and suppose that

q(1      ) = 0 if and only if  = 0. (3)
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The basic idea underlying the GMM methodology is to estimate 0 by, say,e such that q(1     e) is “close to zero” in the sense that a quadratic
form of the sample moment vector is close to zero. More specifically, let Υ

be some × positive semi-definite weighting matrix, then the corresponding
GMM estimator is defined as

e = argmin

{q(1      )

0Υq(1      )}  (4)

A special case arises if the number of moments equals the number of unknown

parameters, i.e., if  = . In this case e can typically be found as a solution
to the moment condition, i.e., q(1     e) = 0. Of course, in this case
the weighting matrix Υ becomes irrelevant.

The classical GMM literature exploits “linear” moment conditions of the

form



(
−1

X
=1

0

)
= 0 (5)

which clearly holds since 0 = 0 = 0 under the maintained assump-
tions. The spatial literature frequently also considers “quadratic” moment

conditions. Let  = () be some  ×  matrix with () = 0, and

assume for ease of exposition that  is non-stochastic. Then the quadratic

moment conditions considered in the spatial literature are of the form



(
−1

X
=1

X
=1



)
= 0 (6)

which clearly holds under maintained assumptions.3

Depending on the functional form of (), the number of moment condi-

tions, the number of parameters, etc., the computation of the GMMestimatore defined by (4) may be numerically challenging. Now let 0 = [00 00]0 and
suppose the sample moment vector in (2) can be decomposed into

q(1      ) =

∙
q(1       )

q(1       )

¸
(7)

3Let  = [1     ]
0, then the above moment condition can be rewritten as


£
−10

¤
= 

£
−1

0¤ = −12() = 0, since under the maintained as-

sumptions 0 = 2.
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such that

q(1       0) = 0 if and only if  = 0 (8)

q(1      0 ) = 0 if and only if  = 0 (9)

and that some easily computable initial estimator, say ̆, for 0 is available.

In this case we may consider the following GMM estimator for 0 correspond-

ing to some weighting matrix Υ
 :

b = argmin


n
q(1       ̆)

0Υ
 q


(1       ̆)

o
 (10)

Of course, untilizing b we may further consider the following GMM estima-

tor for 0 corresponding to some weight matrix Υ

 :b = argmin



©
q(1     b )0Υ

 q

(1     b )ª  (11)

GMM estimators like e in (4) are often referred to as one-step estimators.
Estimators like b and b in (10) an (11) above, where the sample moments
depend on some initial estimator, are often referred to as two-step estimators.

Given the moment conditions are valid, we would expect the most effi-

cient one-step estimator to be more efficient than the most efficient two-step

estimators. However, as usual, there are trade-offs. One trade-off is in terms

of computation. As remarked previously, for small sample sizes ML is avail-

able as an alternative to GMM. For large sample sizes, statistical efficiency

may be less important than computational efficiency and feasibility, and thus

the use of two-step GMM estimators may be attractive. Also, Monte Carlo

studies suggest that in many situations the loss of efficiency may be relatively

small. Another trade-off is that the misspecification of one moment condition

will typically result in inconsistent estimates of all model parameters.

In the following we provide some basic results for the limiting distribution

of one-step and two-step GMM estimators as background for our discussion

of specific GMM estimators for respective spatial models.

2.2 One-Step GMM Estimation

The usual approach to deriving the limiting distribution of GMM estimators

is to manipulate the score of the objective function by expanding the sample

5



moment vector around the true parameter, using a Taylor expansion. Ap-

plying this approach to (4), and assuming that typical regularity conditions

hold, yields

12(b − 0) = −[G0ΥG]−1G0Υ
£
12q(0)

¤
+ (1) (12)

with G =  lim→∞ q(0) and Υ =  lim→∞Υ. Now suppose for a

moment that it can be shown that

12q(0)
→ (0Ψ) (13)

where Ψ is some positive definite matrix. Then

12(b − 0)
→  [0Φ] (14)

with

Φ = [G0ΥG]−1G0ΥΨΥG[G0ΥG]−1

From this it is seen that if we choose Υ = bΨ−1
 where Ψ =  lim→∞ bΨ,

the variance-covariance simplifies to

Φ = [G0Ψ−1G]−1

Since [G0ΥG]−1G0ΥΨΥG[G0ΥG]−1− [G0Ψ−1G]−1is positive semidefinte it
follows that using for the weighting matrix Υ a consistent estimator of the

inverse of the limiting variance-covariance matrix Ψ of the sample moment

vector yields the efficient GMM estimator.

As remarked above, for spatial estimators the sample moment vector

will typically be composed of linear and quadratic moment conditions of

the form given in (4) and (5). Thus in order to establish (13) we need a

central limit theorem (CLT) for linear quadratic forms. Kelejian and Prucha

(2001) introduced such a theorem for a single linear quadratic form under

assumptions useful for spatial models. The generalization to vectors of linear

quadratic forms is given in Kelejian and Prucha (2010). To provide some

insight into the expressions for the asymptotic variance-covariance matrix

Ψ associated with the sample moment vector underlying the spatial GMM

estimators below we next give a version of that CLT.
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Theorem 1 For  = 1     let  = ()=1 be a  ×  nonsto-

chastic symmetric real matrix with sup1≤≤≥1
P

=1 || ∞, and let  =
(1     )

0 be a ×1 nonstochastic real vector with sup −1
P

=1 ||1 
∞ for some 1  2. Let  = (1     )

0 be a ×1 random vector with the 
distributed totally independent with  = 0, 

2
 = 2 and sup1≤≤≥1 ||2 

∞ for some 2  4. Consider the  × 1 vector of linear quadratic forms
 = [1      ]

0 with

 = 0+ 0 =
X
=1

X
=1

 +

X
=1



Let  =  = [1     
]0 and Σ = [

]=1 denote the mean

and VC matrix of , respectively, then


=

X
=1


2
 


= 2

X
=1

X
=1


2

2
 +

X
=1


2


+

X
=1



h

(4)
 − 34

i
+

X
=1

( + )
(3)
 

with 
(3)
 = 3 and 

(4)
 = 4 . Furthermore, given that 

−1min(Σ) ≥ 

for some   0, then

Σ
−12


( − )
→ (0 )

and thus

−12( − ) ∼ (0 −1Σ)

Remark: Note that the mean 
of  is zero if  = 0; if the  are

homoskedastic, i.e., 2 = 2, then () =
P

=1  = 0 suffices for the

mean to be zero. Next note that the first two terms in the expression for

the covariance 
between  and  can be written more compactly as

2(ΣΣ) + 0Σ with Σ = (2 ). Also note that if  =  = 0,

then the last two terms drop out from the expression for covariance. Observe

further that under normality the last two terms are always equal to zero.
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2.3 Two-Step GMM Estimation

The derivation of the limiting distribution two-step of GMM estimators is a

bit more delicate. The usual approach to deriving the limiting distribution of

two-step GMM estimators is to manipulate the score of the objective function

by expanding the sample moment vector around the true parameter, using a

Taylor expansion. Consider in particular the two-step GMM estimators for

0 defined in (10). Applying this approach, and assuming typical regularity

conditions, yields

12(b − 0) (15)

= −[(G)0ΥG]−1(G)0Υ
h
12q(0 0) +G

12(̆ − 0)
i
+ (1)

where G =  lim→∞ q(0 0), G
 =  lim→∞ q(0 0), and

Υ =  lim→∞Υ
 . From (15 we see that in general the limiting distribu-

tion of b will depend on the limiting distribution of ̆, unless G = 0, in

which case we refer to ̆ as a nuisance parameter. It turns out that if 0
denotes the spatial autoregressive parameters in the disturbance process and

0 the vector of regression parameters, then for typical estimators G
 6= 0.

In many cases the estimator ̆ will be asymptotically linear in the sense that

12(̆ − 0) = −12T0u + (1) (16)

where T is a nonstochastic ×  matrix, where  is the dimension of 0,

and where u = (1     )
0. Now define

q∗(0 0) = q

(0 0) + −1GT0u (17)

then (15) can be rewritten as

12(b−0) = −[(G)0ΥG]−1(G)0Υ
£
12q∗(0 0)

¤
+ (1) (18)

Now suppose that

12q∗(0 0)
→ (0Ψ

∗ ) (19)

where Ψ
∗ is some positive definite matrix. Then

12(b − 0)
→  [0Φ

∗ ] (20)

with

Φ
∗ = [(G

)0ΥG]−1(G)0ΥΨ
∗ Υ

G[(G)0ΥG]−1
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From this it is seen that if we chooseΥ
 =

³eΨ
∗
´−1

whereΨ
∗ =  lim→∞ eΨ

∗,

then variance-covariance simplifies to

Φ
∗ = [(G

)0(Ψ
∗ )

−1G]−1

Therefore using for the weighting matrix Υ
 a consistent estimator for the

inverse of the limiting variance-covariance matrix Ψ
∗ yields the efficient two-

step GMM estimator.

Suppose (13) holds and

Ψ =

∙
Ψ Ψ

Ψ Ψ

¸


then the limiting distribution of the sample moment vector q(0 0) evalu-

ated at the true parameter values is given by

12q(0 0)
→ (0Ψ) (21)

It is important to note that in light of (17) in general Ψ
∗ 6= Ψ, unless

G = 0, and that in general Ψ
∗ will depend on T, which in turn will

depend on the employed estimator ̆. In other words, unless G
 = 0, for

a two-step GMM estimator we cannot simply use the variance-covariance

matrix Ψ of the sample moment vector q(0 0), rather we need to work

with the variance-covariance matrix Ψ
∗ .

We next illustrate the difference between Ψ = (
) and Ψ


∗ = (


∗)

for the important special case where the moment conditions are quadratic

and  is i.i.d. (0 
2). For simplicity assume that

q(0 0) = −1
∙ P

=1

P

=1 1P

=1

P

=1 1

¸


Now, for  = 1 2 let  denote the ( )-th element of G
T0, then by (17)

q∗(0 0) = −1
∙ P

=1

P

=1 1 +
P

=1 1P

=1

P

=1 2 +
P

=1 2

¸


It then follows from Theorem 1 that


 = 2

4
P

=1

P

=1 
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but


∗ = 2

4
P

=1

P

=1  + 2
P

=1 

We emphasize that the  and  in the last sum on the r.h.s. for the

expression for 
∗ depend on what estimator ̆ is employed in the sample

moment vector q( ̆) used to form the objective function for the two-

step GMM estimator b defined in (10). It is for this reason that in the
literature on two-step GMM estimation users are often advised to follow

a specific sequence of steps, to ensure the proper estimation of respective

variance-covariance matrices.
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3 GMM Estimation of Models with Spatial

Lags

As remarked in the Introduction, arguably the most widely used class of spa-

tial models are variants of the ones considered in Cliff and Ord (1973,1981),

which build on the fundamental contribution of Whittle (1954). In these

models, spatial interactions are modeled in terms of spatial lags. In particu-

lar, consider the following Cliff-Ord-type model relating a cross section of 

spatial units:

y = Xβ0 + 0Wy + u (22)

= Zδ0 + u

u = 0Mu + ε

where Z = [XWy], and δ0 = [β
0
0 0]

0
. Here y = (1     )

0 is
the × 1 vector of the dependent variable, X = () is the × matrix

of the non-stochastic exogenous regressors, W = () and M = ()

are ×  observed non-stochastic weights matrices, u = (1     )
0 is

the  × 1 vector of regression disturbances, and ε = (1     )
0 is an

× 1 vector of innovations. The vectors y = (1     )0 =Wy and

u = (1     )
0 =Mu represent spatial lags, the scalars 0 and 0

denote the corresponding true parameters, typically referred to as spatial-

autoregressive parameters, and β0 is a  × 1 true parameter vector. In
analogy to the time series literature, the above model is often referred to as a

spatial autoregressive autoregressive (1,1) model, for short an (1 1)

model.

In the above formulation, all data vectors and matrices, as well as all

parameters are allowed to depend on the sample size , i.e., to form triangular

arrays. To see why this is necessary consider, e.g., the -th elements of the

spatial lag y =Wy, which is given by

 =

X
=1



From this it is obvious that even if the weights  do not depend on ,

the weighted average  and thus  will depend on . In allowing for the

elements of X to depend on  we allow implicitly for some of the regressors

to be spatial lags, e.g., the regressor matrix could be of the form X =

11



[x1Wx1   ]. In allowing for the elements of the spatial weights matrices

to depend on  we allow implicitly for normalized spatial weights matrices, as

is frequently the case in applications. In allowing also for the parameters to

depend on  allows us to assume a common parameter space for all sample

sizes; see Kelejian and Prucha (2010) for a more detailed discussion. For

simplicity of notation we will, for the most part, drop again subscripts  in

the following.

The spatial model (22) represents a system of  simultaneous equations.

The reduced form of the model is given by

y = (I− 0W)−1Xβ0 + (I− 0W)−1(I− 0M)
−1u (23)

If u ∼ (0 2I), then clearly u ∼ (μΩ) with

μ = (I− 0W)−1Xβ0

Ω = 2(I− 0W)−1(I− 0M)
−1(I− 0M

0)−1(I− 0W
0)−1

From this we see that while it is easy to write down the log-likelihood func-

tion for model (22), the computation of the ML estimator is challenging or

non-feasible for larger sample sizes . The reason is that it requires the com-

putation of the determinant of the  ×  matrices I − 0W and I − 0M,

which is taxing for large  unless the spatial weights matrices have structure

that can be exploited.

Our discussions will also utilize the following spatial Cochrane-Orcutt

transformation of (22):

y∗(0) = Z∗(0)δ0 + ε (24)

where y∗(0) = y− 0My and Z∗(0) = Z− 0MZ. The transformed model

is readily obtained by pre-multiplying (22) by I− 0M.

3.1 GMM Estimation of Spatial Autoregressive Para-

meter

Motived by the potential numerical problems in computing the ML estima-

tor for larger sample sizes, Kelejian and Prucha (1998,1999) introduced an

alternative GMM estimation approach which remains feasible even for large

sample sizes and full spatial weights matrices.4 (See Pace chapter Maxi-

mum likelihood estimation). Another motivation was that at the time there

4Recall, e.g., that there are more that 33,000 zip codes in the U.S.
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were no formal results available regarding the consistency and asymptotic

normality of the ML estimator for the above model.

The GMM estimation approach put forward in Kelejian and Prucha

(1998,1999) employs the following simple quadratic moment conditions, based

on the assumption that the  are i.i.d. (0 
2):

−1ε0ε = 2 −1ε0ε = 2−1(M0M) −1ε0ε = 0

with ε =Mε. Substituting out 2 yields the following two quadratic moment

conditions

−1ε0A1ε = 0 −1ε0A2ε = 0 (25)

with5

A1 =M
0M− −1(M0M)I A2 =M (26)

We note that for the weights matrices in (26) we have (A) = 0 for  = 1 2,

but (A1) 6= 0. Kelejian and Prucha (2010) relax the assumption that the
innovations are homoskedastic and allow for heteroskedasticity of unknown

form. More specifically, they consider the case where the  are i.d. (0 
2
 )

with 2 unknown.
6 For this case they consider the following modified version

of the above moment conditions where

A1 =M
0M− −1(M0M) A2 =M (27)

Note that in this specification (A) = 0 for  = 1 2. Given this, the

moment conditions in (25) continue to hold since ε0Aε =
P

=1 
2
 = 0.

From this we see that, in general, moment conditions that employ weights

matrices with  = 0 and not just (A) =
P

=1  = 0 are robust

against heteroskedasticity.

Of course, the above setup can be generalized to the case where we have

 quadratic moment conditions ( = 1     ):

−1ε0Aε = 0 (28)

5To obtain the estimator of Kelejian and Prucha (1998,1999) the matrix A1 has to

be scaled by  = 1
h
1 +

£
−1(M0M)

¤2i
. Of course, the scaling factor only comes into

play if the moment conditions are not optimally weighted, as was the case in the early

literature.
6Lin and Lee (2010) also allow for heteroskedastic innovations for model (22) with

0 = 0.
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In light of (22) those moment conditions can be written equivalently as ( =

1     ):

−1u0(I− 0M
0)A(I− 0M)u = 0 (29)

Now let δ̌ be some initial estimator for δ0 and let ǔ = y− Zδ̌. Then we can
formulate the following corresponding sample moment vector:

q( δ̌) = −1

⎡⎢⎣ ǔ0(I− M0)A1(I− M)ǔ
...

ǔ0(I− M0)A(I− M)ǔ

⎤⎥⎦  (30)

Furthermore, as in (10), the class of corresponding two-step GMM estimators

is then given by

b = argmin


©
q( δ̌)

0Υ
 q


( δ̌)

ª
 (31)

where Υ
 is a weighting matrix. As discussed in Section 2.3, the efficient

choice for Υ
 will generally depend on the estimator δ̌ employed in the

estimation of the disturbances.

3.2 GMM Estimation of Regression Parameters

In order to motivate the GMM estimator for the regression parameters δ0 we

note that the best instruments for the r.h.s. variables of model (22) and (24)

are the conditional means. Since X and MX are non-stochastic (and their

own best instruments) we can focus on the spatial lagsWy andMWy. The

best instruments are givenWy andMWy with

y = (I− 0W)−1Xβ0 =
∞X
=1

0W
Xβ0 (32)

given that spectral radius of 0W is less than one. To avoid issues associated

with the computation of the inverse of the × matrix of I−0W, Kelejian

and Prucha (1998,1999) suggest the use of an approximation of the best

instruments. More specifically, in light of the last expression in (32) they

suggest using a set of instruments H which contains, say, X, MX, MWX,

. . . ,MWX, and to compute approximators of the best instruments from a

regression of the r.h.s. variables against H.
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For the untransformed model this is equivalent to considering the moment

condition −1H0u = 0. Of course, the corresponding GMM estimator is

just the two-stage least squares (2SLS) estimator. For the transformed model

(24) the moment condition would be

−12H0ε =0 (33)

Now let ̌ be some estimator for 0, then we can formulate the following

corresponding sample moment vector:

q(̌ δ) = −12H0 [y∗(̌)− Z∗(̌)δ]  (34)

Under homoskedasticity the variance-covariance matrix of the moment vector

q(0 δ0) = −12H0ε is given by 2−1H0H, which motivates the following
two-step GMM estimators for δ0:bδ = argmin



©
q(̌ δ)

0Υ
 q


(̌ δ)

ª
(35)

with Υ
 = [

−1H0H]−1. By observing that the quadratic form on the r.h.s.

of (35) is just [y∗(̌)− Z∗(̌)δ]0H(H0
H)

−1
H0 [y∗(̌)− Z∗(̌)δ], apart from

some scaling factors, we see that the estimator defined by (35) is just the

2SLS estimator applied to the transformed model (24) with 0 replaced by

̌, i.e.

bδ = [bZ∗(̌)0Z∗(̌)]−1bZ∗(̌)0y∗(̌) (36)

where bZ∗(̌) = H(H0H)−1H0Z∗(̌). This estimator has been called the feasi-
ble generalized spatial two-stage least squares (FGS2SLS) estimator.

3.3 Guide to Literature

The above sections discussed basic ideas concerning moment conditions that

can be exploited by GMM estimators for spatial Cliff-Ord-type models. Since

the late 1990s, a considerable body of literature has developed regarding

the GMM estimation of Cliff-Ord-type models. In the following we provide

references to some of that literature. Naturally, given space limitations,

the list of references is incomplete. Also, the list will focus on theoretical

contributions and will not cover corresponding empirical work.7

7For an incomplete list of empirical work see, e.g., Kelejian and Prucha (2010).
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By employing an approximation of the best instruments, the FGS2SLS

estimator of Kelejian and Prucha (1998,1999) has the advantage of remaining

computational feasible even for very large sample sizes since its formulation

does not involve the computation of the inverse of the × matrix I−0W.

However, as a result it is not fully efficient. Lee (2003) introduces a Best 2SLS

estimator. This estimator uses the first expression for y in (32) in forming

best instruments forWy. It is best in the sense that its asymptotic variance-

covariance matrix is smallest among the class of GMM estimators based on

linear moment conditions. Kelejian, Prucha, and Yuzefovich (2004) introduce

an alternative Best 2SLS estimator (with identical asymptotic properties).

For computational ease this estimator uses a series approximation for the

second expression for y in (32) when forming best instruments for Wy.

All of the above S2SLS estimators break down if β0 = 0, i.e., if there are no

exogenous variables in the model. This is not the case with the ML estimator.

As a consequence, one would expect the ML estimator, given it is computable,

to increasingly outperform the above S2SLS estimators as the variation in the

disturbances increases relative to the variation in the regressors. However,

Das, Kelejian and Prucha (2003) provide Monte Carlo results which suggest

that the loss of efficiency of 2SLS type estimators relative to ML estimation

is modest for a wide range of specifications.

The above papers establish consistency of the GMM estimator for 0, but

do not derive its limiting distribution. Drukker, Egger and Prucha (2011)

derive the joint limiting distribution for two-step GMM estimators for δ0 and

0.

Fingleton (2008) formulates moment conditions and GMM estimators for

the case where the disturbances process is an MA rather than an AR process.

Lee (2007) considers an SARAR(1,0) model, i.e., model (22) with 0 = 0.

He suggests augmenting the usual linear moment conditions by quadratic

moment conditions, and derives the best quadratic moment condition. This

best quadratic moment condition involves the inverse of I−0W. Lee shows

that the corresponding Best GMM estimator may have the same asymptotic

distribution as the ML estimator under normality. Also, the estimator does

not break down if there are no explanatory exogenous variables. Liu, Lee

and Bollinger (2010) and Lee and Liu (2010) extend the results to one-step

GMM estimators of an SARAR(1,1)and SARAR(p,q) model, respectively.

All of the above literature assumes that the basic innovations are ho-

moskedastic. Kelejian and Prucha (2010) consider two-step GMM estima-

tion of an SARAR(1,1) model under the assumption that the innovations
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are heteroskedastic of unknown form. Badinger and Egger (2011) extend the

approach the case of an SARAR(p,q) model. Lin and Lee (2010) consider

one-step GMM estimation of an SARAR(1,0) with unknown heteroskedas-

ticity, employing both linear and quadratic moment conditions.

Extensions of Cliff-Ord-type models to random and fixed effects panel

data have been an important focus of recent research. Considered estima-

tion methodologies have been GMM, quasi-ML and Bayesian Markov Chain

Monte Carlo methods.8 The literature on GMM estimation for panel data

includes Kapoor, Kelejian and Prucha (2007), Mutl and Pfaffermayr (2011),

and Yu, de Jong and Lee (2012). Liu and Lee (2010) discuss GMM esti-

mation (as well as other approaches) of a Cliff-Ord-type social interaction

model. (See Elhorst chapter on Panel data models).

Kelejian and Prucha (2007), and Drukker, Egger and Prucha (2011) dis-

cuss GMM estimation for Cliff-Ord-type single equation models with addi-

tional outside endogenous variables. Kelejian and Prucha (2004) consider a

Cliff-Ord-type simultaneous equation system and discuss both limited and

full information GMM estimators.

Pinkse, Slade and Brett (2002) consider a semiparameteric GMM ap-

proach, which allows for the spatial weights to be modeled as unknown func-

tions of some distance measure. We note that if we are willing to assume

that the weights can be expressed as, say, a finite polynomial in distance,

then the substituted model will be of the form of an SARAR(p,q) model.

3.4 Exemplary GMM Estimators

In the following we give an illustrative result for the limiting distribution of

GMM estimators for the SARAR(1,1) model (22). As remarked, for two-step

GMM estimation the limiting distribution of the GMM estimator for 0 will

depend on the estimator for δ0 used in constructing estimated residuals. Our

illustrative example will focus on the two-step GMM estimators considered

in Kelejian and Prucha (1998,1999), which can be viewed as a special case

of the GMM estimators considered in Sections 3.1 and 3.2, with  = 2

and A1 =  [M0M− −1(M0M)I] with  = 1
h
1 + [−1(M0M)]2

i
, and

8Quasi-ML and Bayesian MCMC methods are not covered by this review. For recent

papers employing those methods within the context of dynamic panel data models, see,

e.g., Yu, de Jong and Lee (2008) and Parent and LeSage (2012), respectively. There is

also an important literature on testing for spatial dependence in a panel context, which is

not part of this review. For a partial review of this literature see, e.g., Baltagi (2011).
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A2 =M. The discussion below assumes that the assumptions maintained in

that paper hold, including that the innovations  are i.i.d. (0 
2).

We next describe specific steps in computing the GMM estimators.

Step 1a: 2SLS Estimator

In the first step, estimate δ by 2SLS from the untransformed model (22),

using the instrument matrix H as discussed in Section 3.2. The 2SLS es-

timator, say eδ, is then given by eδ = (eZ0Z)−1eZ0y, where eZ = PHZ with

PH = H(H
0H)−1H0.

Step 1b: Initial GMM Estimator of  Based on 2SLS Residuals

Let eu = u(eδ) = y − Zeδ denote the 2SLS residuals. Consider the following
sample moments based on estimated 2SLS residuals:

q(
eδ) = −1

∙ eu0(I− M0)A1(I− M)eueu0(I− M0)A2(I− M)eu
¸
 (37)

The initial GMM estimator for  is then defined as

e = argmin


n
q(

eδ)0q(eδ)o 
Clearly e is a special case of the class of estimators considered in (31) with
Υ

 = I.

Step 2a: FGS2SLS Estimator

In the second step re-estimate δ by FGS2SLS, as discussed in Section 3.2. The

FGS2SLS estimator is defined as the 2SLS estimator of the Cochrane-Orcutt

transformed model (24) with the parameter 0 replaced by e computed in
Step 1b. The FGS2SLS estimator is given by bδ = [bZ∗(e)0Z∗(e)]−1bZ∗(e)0y∗(e)
where bZ∗(e) = PHZ∗(e).
Step 2b: Efficient GMM Estimator of  Based on FGS2SLS Resid-

uals

Let bu = y − Zbδ denote the FGS2SLS residuals, and let q(bδ) be defined
as in (37) with eu replaced by bu. By Drukker, Egger and Prucha (2011) the
corresponding efficient GMM estimator for 0 based on FGS2SLS residuals

is then given by

b = argmin


∙
q(

bδ)0 ³bΨ


´−1
q(

bδ)¸ 
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where bΨ
 = (b

)=12 is an estimator of the variance-covariance matrix of

the limiting distribution of the normalized sample moments 12q(
bδ) In

particular we have9

b

 = b4(2)−1 [(A +A
0
) (A +A

0
)]

+ b2−1ba0ba
+ −1(b(4) − 3b4)(A)

0(A)

+ −1b(3) [ba0(A) + ba0(A)] 

where ba = HbP∗bα andbP∗ = (−1H0H)−1(−1H0Z∗(e))×£
(−1Z0∗(e)H)(−1H0H)−1(−1H0Z∗(e))¤−1 bα = −−1Z0∗(e)(A +A

0
)bε

and b2, b(3) and b(4) are standard sample estimators of 2, (3) = 3 ,

(4) = 4 based on bε = (I− eM) bu.
The derivation of the limiting distribution of 12q(bδ) used the CLT for

linear quadratic forms given as Theorem 1 . Observe that bα is an estimator

for α = −−1Z0∗()(A +A
0
)ε. If the model does not contain a spatial

lag in y, i.e., if Z = X, then α = 0 and we can then take bα = 0.

Based on Drukker, Egger and Prucha (2011) we now have the following

result for the joint asymptotic distribution of the final stage estimators bδ andb: ∙ bδb
¸
∼ 

Ã∙
δ0
0

¸
 −1

" bΩ bΩbΩ0 bΩ

#!


9In the following (A) refers to the column vector containing the diagonal elements

of the matrix A.
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where

bΩ = bP∗0 bΨ bP∗
bΩ = bP∗0 bΨ

³bΨ
´−1 bJ ∙bJ0 ³bΨ

´−1 bJ¸−1 
bΩ =

∙bJ0 ³bΨ
´−1 bJ¸−1 

bΨ = b2−1H0HbΨ = b2−1H0 [ba1ba2] + b(3)−1H0 [(A1) (A2)] 

where bP∗, ba, bΨ are as defined above, and

bJ = −1
∙
2bu0M0A1bu −bu0M0A1Mbu
2bu0M0A2bu −bu0M0A2Mbu

¸ ∙
1

2b
¸


For interpretation, observe that bΩ = b2[bZ∗(b)0bZ∗(b)]−1, i.e., the above
expression for the estimator of variance-covariance matrix of the joint dis-

tribution of bδ and b delivers the usual estimator for the variance-covariance
matrix of the FGS2SLS estimator as a special case.

The above joint-asymptotic-normality result allows a joint Wald test for

the absence of spatial dependencies, i.e., a joint test of 0 : 0 = 0 0 = 0.

4 GMM Estimation of Models with Spatial

Mixing

Cliff-Ord-type models are linear simultaneous equation models where mixing

of the data process is achieved through the assumption that the basic in-

novations are independently distributed combined with assumptions on the

spatial weights matrices, such as that the row and column sums of their

absolute elements are bounded.

In the time series literature a widely used notion of dependence is -

mixing. This concept has been generalized to spatial processes (or random

fields). In an important paper Conley (1999) considered GMM estimators for

stationary -mixing spatial processes. Stationarity implies that the process

has constant mean and variance, and that the covariances only depend on
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distance (in a particular direction). Many economic processes are likely to

exhibit some form of non-stationarity - e.g., housing prices may increase very

much as we move towards the center of a city. Thus relaxing the stationarity

assumption seemed important.

One difficulty in developing a generalized theory of inference for spatial

processes was a paucity of limit theorems (laws of large numbers, uniform

laws of large numbers and central limit theorems) which are sufficiently gen-

eral. In light of this, Jenish and Prucha (2009) developed limit theorems

for non-stationary -mixing spatial processes, allowing also for the locations

of observations to form a non-regular grid. Still, since -mixing is not nec-

essarily preserved under infinite lag formations, a further expansion of the

theory to a class of spatial processes, which is closed under infinite lag forma-

tions, seemed desirable. To that effect Jenish and Prucha (2012) extended

the notion of near-epoch dependence from the time series literature to spatial

processes. They then developed limit theorems for possibly non-stationary

spatial processes which are near-epoch dependent on an -mixing process,

and gave results concerning the consistency and asymptotic normality of

GMM estimators for this generalized class of processes.

In a recent publication, Robinson and Thawornkaiwong (2012) consider a

partially linear regression model. They define a semiparametric instrumental

variable estimator and give results on its asymptotic properties, allowing for

spatial dependence in the regressors and disturbances.

5 Conclusion

Over the last two decades significant strides have been made towards devel-

oping a formal methodology of inference for spatial models, or more generally,

for cross sectional interaction models. GMM estimation has been an impor-

tant part of this literature. As usual, empirical work often confronts us with

more challenging realities than what can be handled by existing methodolo-

gies of inference, and much more work is needed.
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