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A GENERALIZED MOMENTS ESTIMATOR FOR THE 

AUTOREGRESSIVE PARAMETER IN A SPATIAL MODEL* 


Unicersity of Mafyland, U. S.A. 

This paper is concerned with the estimation of the autoregressive parameter 
in a widely considered spatial autocorrelation model. The typical estimator for 
this parameter considered in the literature is the (quasi) maximum likelihood 
estimator corresponding to a normal density. However, as discussed in this 
paper, the (quasi) maximum likelihood estimator may not be computationally 
feasible in many cases involving moderate- or large-sized samples. In this paper 
we suggest a generalized moments estimator that is computationally simple 
irrespective of the sample size. We provide results concerning the large and 
small sample properties of this estimator. 

1. INTRODUCTION 

There exists a large body of literature that considers autocorrelation of the 
disturbances across cross-sectional units for panel data, that is, data that are 
observed both across cross-sectional units and over time. However, the estimation of 
models that permit for autocorrelation of the disturbances across cross-sectional 
units for cases in which the data are only observed in one time period has, until 
recently, only received relatively little attention in the theoretical econometrics 
literature. For example, in most econometric textbooks there is no discussion 
relating to spatial models when only a single cross section of data is a ~ a i l a b l e . ~  This 
is unfortunate because issues relating to geographic proximity, transportation, 
spillover effects, etc., suggest that such models are important. Indeed, in recent years 
there have been a number of theoretical and applied econometric studies involving 
spatial issues, which include contributions by Case (1991), Conley (1996), Delong and 
Summers (19911, Dubin (1988), Kelejian and Robinson (1993), Moulton (1990), 
Quah (1992) and Topa (1996).~ 

"Manuscript received February 1995; revised December 1997. 
'We  would like to thank Michael Binder, Benedikt Potscher, You-Qiang Wang, an anonymous 

referee, and the editors for helpful comments and Dennis Robinson for providing some of the 
weighting matrices. 

Of course, if panel data are available one can consider, for example, a seemingly unrelated 
regression model, or an error component model to permit for cross sectional correlation, and 
estimate the cross-sectional correlations via the time dimension of the panel if the time dimension is 
sufficiently large. 

There is an extensive literature relating to spatial models in the regional science and geography 
literature; see, for example, Anselin (19881, Bennett and Hordijk (19861, Cliff and Ord (1973, 19811, 
and Cressie (1993) and the references cited therein. For critical comments, see Kelejian and 
Robinson (1995). 
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One of the most widely referenced models of spatial autocorrelation is one that 
was put forth by Cliff and Ord (1973, 1981). This model is a variant of the model 
considered by Whittle (1954) and is sometimes referred to as a spatial a~itoregressiue 
(SAR) model (see, for example Anselin 1988). In the SAR model, the disturbance 
term corresponding to a cross-sectional unit is, as discussed in more detail below, 
modeled as a weighted average of disturbances corresponding to other cross-sec- 
tional units, plus an innovation. This weighted average involves a scalar parameter, 
say p, and a set of weights that describe the spatial interactions. The innovations are 
typically assumed to be i.i.d. N(0, g 2 ) .  In a regression framework, the parameters of 
interest would then be p, CT and the vector of regression coefficients. Typically, the 
spatial weights do not involve unknown parameters." 

Regression models containing spatially correlated disturbance terms based on the 
SAR model are typically estimated by the (quasi) maximum likelihood (ML) estima- 
tor, where the likelihood function corresponds to the normal distribution. We use 
the term (quasi) M L  estimator rather than the term M L  estimator to cover 
specifications where the actual distribution is permitted to differ from the normal 
distribution, as is the case in our analysis below. Given appropriate conditions, these 
(quasi) ML estimators should be consistent and asymptotically normally distributed. 
However, to the best of our knowledge, formal results establishing these properties 
under a specific set of low-level assumptions do not seem to be available for the 
SAR model considered here. We note, however, that Mardia and Marshall (1984) 
give a general result concerning the consistency and asymptotic normality of the ML 
estimator for regression models with general disturbance covariances, provided that 
the disturbances are normally distributed. Clearly, their theorem will cover many 
Gaussian spatial processes. However, in a formal sense their theorem is not 
applicable to the typical SAR model, even in the case where the disturbances are 
normally distributed. The reason for this is that Mardia and Marshall assume that 
the elements of the disturbance covariance matrix do not depend on the sample size. 
As will be seen below, this assumption is not satisfied for the typical SAR model.5 

A practical difficulty with the (quasi) ML method in SAR models is that the 
estimation of p entails significant computational complexities. As our discussion will 
make clear, these complexities can be overwhelming if the spatial weights are not 
symmetric, which is typically the case in practice, even if the sample size is only 
moderate, or if the sample size is large, which is also the case in various applications 

b e e ,  for example, Anselin (1988, 1990) and the references cited therein. For an empirical study 
involving a parameterized weighting matrix, see Dubin (1988). 

Of course, the general literature on (quasi) ML estimation contains various sets of sufficient 
conditions under which (quasi) ML estimators are consistent and asymptotically normally dis- 
tributed; see, for example, Gallant and White (19881, Heijmans and Magnus (1986, 19871, and 
Potscher and Prucha (1991a, 1991b) for recent contributions in the econometrics literature as well as 
for other references. One approach to formally establish the asymptotic properties of the (quasi) ML 
estimators under a specific set of low-level assumptions for the SAR model considered here would 
be to formally establish that those assumptions are covered by one of the sets of sufficient conditions 
given in the general literature on (quasi) ML estimation. We note, however, that such a demonstra- 
tion may be involved. Also, if N cross sections are observed not only for one but for T periods, 
spatial autocorrelation can be modeled in a general fashion via a seemingly unrelated regression 
model, and standard large sample theo~y can be applied to the case in which N is fixed and T +a. 
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(e.g., there are more than 3000 counties in the United States). These practical 
difficulties are troublesome since, as Cliff and Ord (1981, p. 153) suggest, thus far 
the only available alternative to the (quasi) ML estimator of p in the SAR model is 
a moments estimator, which was suggested by Ord (1975). This estimator, however, is 
generally not seriously considered because of its inefficiency (see, for example, Ord 
1975, p. 122).~ 

The purpose of this paper is twofold. First, on a theoretical level, we suggest an 
estimator for the parameter p in the SAR model based on a "generalized" moments 
approach. This estimator is, relative to the (quasi) ML estimator, computationally 
simple. We then provide a formal proof for the consistency of the estimator under 
an explicit set of conditions. We note that these conditions do not involve the 
assumption of normality. Second, we give Monte Carlo results relating to, among 
other things, the small sample distribution of our suggested estimator and the 
(quasi) ML estimator. These results suggest that under a variety of distributions, 
including the normal distribution, our estimator of p is "virtually as efficient" as the 
(quasi) ML estimator, defined as the maximizer of the likelihood function corre-
sponding to the normal distribution. 

In the context of a regression model, we also demonstrate that, under typical 
assumptions, p is a nuisance parameter in the sense that the feasible generalized 
least squares (feasible GLS) estimator based on a consistent estimator of p is 
asymptotically equivalent to the GLS estimator. Therefore, the importance of our 
results concerning the estimation of p also relate to the computational simplicity of 
feasible GLS estimators. As a by-product, we also establish the limiting distribution 
of those estimators. We note that this requires the use of a central limit theorem for 
triangular arrays. 

Recently, in an interesting dissertation, Conley (1996) has considered a class of 
generalized method of moments estimators within a spatial setting. Rather than to 
assume a specific model for the generation of the data, he maintains that the data 
are stationary and spatially mixing. Clearly, avoiding specific modeling assumptions 
is appealing with regard to issues of potential misspecification. On the other hand, 
Conley's stationarity assumption may be restrictive in many applied settings. Also, 
this assumption is in general not satisfied by the class of spatial ARMA processes as 
defined, for example, in Anselin and Florax (1995), including the SAR model 
considered here, because of the nature of the spatial weighting matrices used in 
modeling those processes.7 Additionally, the derivation of asymptotic results for 
M-estimators, and in particular, generalized method of moments estimators, typically 
involves a demonstration that the objective function of the estimator converges 
uniformly over the parameter space to its asymptotic counterpart. Provided that the 
functions forming the objective function are "first moment continuous," that a 

6Also, this estimator is specified as the solution of a single quadratic equation and hence, in 
general, is not well defined unless a further selection mechanism between the two possible roots is 
specified. 

7 ~ sa further technical detail, let ( 2 , ) denote the data generating process, and let 8 denote the 
vector of unknown parameters. Then Conley considers mornents of the form Eg(z , , 0 )= 0, i = 

1,.. . ,N,where g is some vector valued function. In contrast, the moments utilized in this paper are 
of the form Eg,,,(z ,,...,z,, 0 ) = 0 , i =  1,...,N.  
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"local" law of large numbers holds, and given compactness of the parameter space, 
the desired uniform convergence follows immediately from Wald's (1949) approxi- 
mation technique (see, for example, Pijtscher and Prucha 1989, pp. 680-681). Conley 
maintains "first moment continuity" as an assumption toward establishing uniform 
convergence. However, in particular applications, a verification of this high-level 
assumption may be "involved." In this paper we deduce the needed uniform 
convergence from a set of lower-level assumptions. We note further that Conley's 
dissertation also provides a treatment of covariance matrix estimators in a spatial 
setting. 

The SAR model is specified and interpreted in Section 2. This section also 
contains a discussion relating to (quasi) maximum likelihood estimation. Our estima- 
tor and a variation of it are defined and discussed in Section 3. Results showing that 
p is a nuisance parameter in a regression framework are given in Section 4. The 
Monte Carlo study is described and results relating to our suggested estimators, as 
well as to the (quasi) maximum likelihood estimator, are given in Section 5. Section 6 
contains suggestions for further work. All proofs are relegated to the Appendix. 

2. THE SPATIAL AUTOREGRESSIVE MODEL 


In the SAR model an N x 1 disturbance vector u is generated as follows: 


(1) u = p M u + ~  

where M is an N x N matrix of known constants, p is a scalar parameter, which is 
typically referred to as the spatial autoregressive parameter, and E is an N x 1vector 
of innovations. For reasons that will become evident, M is often referred to as a 
spatial weighting matrix. For reasons of generality, we permit the elements of M and 
E to depend on N, that is, to form triangular arrays. However, for simplicity of 
notation, we do not indicate this possible dependence on N explicitly in the 
following. 

It proves helpful to introduce the following notational conventions: In general, we 
denote the ith element of a vector v as u, and the (i, j)th element of a matrix A as 
a,,. Correspondingly, we denote the ith row and jth column of A as a,, and a.,. 
Given this notation, the typical assumptions of the SAR model are as followss: 

ASSUMPTION1. The innovations E,, .. . , E ,  are independently and identically dis- 
tributed (for all N )  with zero mean and variance c ~ 2 ,  where 0 < c T 2  < b with b < x. 

Additionally, the innovations are assumed to possess finite fourth moments. 

ASSUMPTION (a) All diagonal elements of M are zero. (b) < 1. (c) The matiix 2. I 
I- pM is nonsingular for all p < 1. 

Given these assumptions, it follows from Eq. (1) that u = ( I  - PM)-'E. Thus 
E(u) = 0 and E(uLL') = a (  p), where 

Generalizations and variations on these assumptions have been considered (see, for example, 
Anselin 1988 and Cliff and Ord 1973, 1981). 
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We note that, in general, the elements of ( I  - pM)-l will depend on the sample size 
N. As a consequence, in general, the elements of LL also will depend on N and thus 
form a triangular array, even if the elements of E do not depend on N. It also 
follows that, in general, the elements of a ( p ) will depend on N.' 

The specification in Eq. (1) implies that 11, = PC; m,,u, + E, ,  i = 1, .. . ,N. In a 
cross-sectional setting, the nonzero weights m,, are often specified to be those which 
correspond to units which relate to the ith unit in a meaningful way. Such units are 
often said to be neighbors of unit i. As one example, if the cross-sectional units are 
geographic regions, one might take m,, + 0 if the ith and jth regions are contiguous 
and m,, = 0 othelwise. In this setting, each disturbance consists of a weighted sum of 
disturbances in related regions and a term that is i.i.d. over the regions. Clearly, 
Assumption 2(a) is a normalization of the model, Assumption 2(b) is a stability 
condition for certain specifications of M, and Assumption 2(c) ensures that the 
disturbance vector LL is uniquely defined in terms of the innovation vector E." One 
implication of a model such as Eq. (1) is that, unlike for most time series models, m,, 
need not be zero for j > i. Thus one distinguishing feature of a spatial model is that 
the ith disturbance term may be directly related to both "future" and "past" 
disturbances. Also, in a spatial model there is typically no natural order for 
arranging the sample. 

Assuming for the moment that LL is observable and normally distributed, the log 
likelihood for the model in Eq. (1) is, using evident notation, given by 

As remarked earlier, the normality of LL is not one of our maintained assumptions, 
and hence we refer to the maximizers of Eq. (3) as (quasi) ML estimators. In the 
following we denote these (quasi) ML estimators for p and a as jg,,,lL and 
respectively. As is evident from Eq. (3), the computation of the (quasi) ML estima-
tors involves the repeated evaluation of the determinant of the N x N matrix 
I- pM. To minimize the computational burden, Ord (1975) suggested that the 
troublesome term in Eq. (3) be expressed as I n  I- pMll = CPL, ln(I1 - phi) ,  where 
A, denotes the ith eigenvalue of M. The advantage of this approach is that (since M 
is a known matrix) the eigenvalues of M only have to be computed once at the 
outset of the numerical optimization procedure employed in finding the (quasi) ML 
estimates and not repeatedly at each of the necessary numerical iterations. However, 
this still leaves the researcher with the task of finding the eigenvalues of the N x N 
matrix M. Unless M has a particular structure, this task is typically "challenging," 
especially if N is large-recall, for example, that there are over 3000 counties in the 

As remarked in the Introduction, this violates one of the assumptions maintained by Mardia and 
Marshall's (1984) theorem regrading the consistency and asymptotic normality of ML estimators for 
Gaussian processes. 

lo Kelejian and Robinson (1995) give results that suggest that Assumption 2(c) is satisfied for 
many specifications of M considered in the literature. 
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United States. In fact, in many cases it will be practically impossible to compute 
those eigenvalues accurately based on computing technology typically available to 
empirical researchers. As an illustration, in some of the Monte Carlo experiments 
reported below we use "idealized" symmetric M matrices in which each spatial unit 
has the same number of neighbors, say J. Clearly, for those matrices, all eigenvalues 
are real. However, when we employed a standard subroutine for computing the 
eigenvalues of a general matrix from the IMSL program library the routine reported 
eigenvalues with imaginary parts that differed substantially from zero even for the 
moderate sample size N = 400, when the number of neighbors J was 6 or larger." 
In fact, some of the reported imaginary parts differed from zero by more than .5 in 
absolute value. Only when we employed a subroutine that utilized the symmetric 
nature of those M matrices were we able to compute the eigenvalues accurately. 
Since, in practice, spatial weighting matrices are typically not symmetric, this 
suggests that an accurate computation of the (quasi) ML estimator may not be 
feasible in many cases even for moderate sample sizes.'' Given these computational 
problems, it is clearly important to have an alternative to the (quasi) ML estimator, 
which 
is computationally feasible for general weighting matrices M ,  and large sample 
sizes N. 

3. DEFINITION AND CONSISTENCY OF A GENERALIZED MOMENTS 

ESTIMATOR OF p 

Suppose u defined in Eq. (1) represents the disturbance vector in a model, and 
based on that model, ii is a predictor of u. For not?tional convenience, let E = M u  
and =MMLI,and correspondingly, 5 =Mii, and E =MMii. Similarly, let E = M E  
and note that under Assumptions 1 and 2: 

Our generalized moments estimator for p is based on these three moments. 
Specifically, noting from Eq. (1) that E = LL - pi2 and so 2 = Z - p Z ,  consider the 
following three-equation system implied by Eqs. (1) and (4): 

11 The IMSL subroutine employed was DEVLGR, which itself is based on subroutines from the 
EISPACK program libray. It seems that other packages such as MATLAB also employ routines 
from EISPACK. 

12 We also experimented with MATLAB 4.2 for Windows, using a PC with a Pentium 133-MHz 
processor and 32 MB of memory, to calculate the eigenvalues for our "idealized" M matrices. In 
those experiments we encountered "out of memory" errors for M matrices with iV2  2000 and 
J = 10, even when using a routine for sparse symmetric matrices. In terms of computational time, it 
took, for example, 22 minutes to compute the eigenvalues in the case IV = 1500 and .I = 10, again 
using a routine for sparse symmetric matrices. The subsequent computation of the (quasi) ML 
estimator based on those eigenvalues and using TSP 4.2 only took seconds. The computation of our 
generalized moments estimator, which does not require the computation of eigenvalues, also took 
only seconds. 
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where 

Now consider the following analogue to Eq. ( 5 )  in terms of sample moments based 
on 6: 

where 

and where the 3 x 1 vector v,( p, r 2 )can be viewed as a vector of residuals. We 
now define our generalized moments estimator for p and r 2 as the nonlinear least 
squares estimator, say filvL,,, and corresponding to Eq. (6). More specifi- 
cally, 

where a 2 1. 

REMARK Note that Eq. (7)implies that / fi,,,N/ 5 a with a r 1. Since I pl < 1,1. 
if the bound a is sufficiently large, lj,,,,lv is essentially the unconstrained nonlinear 
least squares estimator of p. The existence and measurability of fi1,,,,, and , 
is ensured by, for example, Lemma 2 in Jennrich (1969). 

In the following, let P( p)  = ( I  - ,OM)-'. We now specify three additional as-
sumptions. 

ASSUMPTION3. ( a )  The sums C ~ ~ l l m , j l  C ~ l ~ m i , l  bounded by, say, and are 
c,  < x for all 1I i, j IN, N 2 1. ( b )  The sums CpL ,lpi,( p)l arzd C F  ,lpll(p)l are 
bounded by, say, c, < m for all 1 5 i, j IN ,  N 2 1, 1 pi< 1, where c, may depend on p. 
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ASSUMPTION Let 6 ,  denote the zth element of ii, where agazn we suppress the 4. 
dependence of ii and its elements on N for notatzonal conuenience. We then assume 
that there exist (finite dimenszonal) random vectors dl, and A, such that (ii, - u,(5 

Ild,,II llA,ll = 0,(1) for some 6 > 0 and N ' / ~ ~ ~ A , I I= Op(l).13wzth ~ - ~ ~ ~ , 1 d , , 1 1 ~ + '  

ASSUMPTION The smallest eigenvalue of is bounded away from zero, that 5. TLT, 
is, A,,,(Th T,) r A,  > 0, where A ,  may depend on p and u 2. 

REMARK2. (a) In practice, spatial models are often formulated in such a way 
that each cross-sectional unit has a limited number of "neighbors" regardless of the 
sample size (see, for example, Case 1991 and Kelejian and Robinson 1995). In such 
cases, the weighting matrix M is sparse for large N, and so Assumption 3(a) would 
be satisfied. As a point of information, we note that in many of these cases the 
elements of M are taken to be nonnegative and row normalized in that Cjmij = 1.In 
still other cases, the weighting matrix does not contain zeros, but its elements are 
assumed to decline rapidly in certain directions because they are defined in terms of 
variables such as distance (see for example, Dubin 1988 and De Long and Summers 
1991). Again, under further reasonable (but idealized) conditions, Assumption 3(a) 
would be expected to hold. 

(b) Recall from Eq. (2) that i2 = u 2 p p ' .  Assumption 3(b) then implies that 
N- CE C F ,  1 w,, is bounded, thus limiting the degree of correlation.14 In a time 
series context this condition ensures that the process possesses a fading memory. We 
also note that Assumption 3(b) is closely related to Condition A5 in Mandy and 
Martins-Filho (1994) in their study of large sample properties of feasible GLS 
estimators. 

REMARK3. Assumption 4 should be satisfied for most cases in which ii is based 
on N1/2-consistent estimators of the regression coefficients. For example, using 
evident notation, consider the nonlinear regression model y, =f(x,, P )  + u,. Let 6, 
denote the nonlinear least squares estimator, and let iii =yi -f(xi, 6,). Assuming 
that f is continuously differentiable and applying the mean value theorem, it is 
readily seen that i i ,  - u ,  5 lldi,ll llANl with dl,= suppldf(x,,P>/dPI and A N  = fiN 
- p. Under typical assumptions maintained for the nonlinear regression model, di, 
and A, will satisfy the conditions postulated in Assumption 3 (see, for example, 
Potscher and Prucha 1986). 

REMARK4. It will become evident that Assumption 5 is an identifiability con- 
dition. 

'' For definiteness, let A be some vector or matrix; then IIAI [ T ~ ( A ' A ) ] ' / ~ .= We note that this 
norm is submultiplicative, that is, I A B < A 1  IlBlI. We also define A as the vector or matrix of 
absolute values. 

14 Observe that  N-lC;:  c ~ ~ I w , , 5 c ~ N - ~ c ; ~  C ~ N _ ~ I P , ~ I  v ' N - ~~ ~ y = ~  p l k  = 
h'C k = lC ~ ~ l l ~ , k l C ~ ~ l l ~ l k l< m.< U'C; 
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Our basic result is Theorem 1,whose proof is given in the Appendix. 


THEOREM1. Let $,LS, ,,,
 and & A s , ,  be the nonlinear least squares estimators 
defined by Eq. (7).Then, given Assumptions 1 to 5 ,  

An obvious variation on fi,,,, in Theorem 1 is based on an overparameteriza- 
tion of Eq. (6). Specifically, let (p = p 2 ,  cu = ( p ,  cp, u2),and let GoLs,, = 

,) 2" N,uoLS,( f ioLS, N ,  be the ordinary least squares estimator of cu based on Eq. 
(6).Then, it is evident from the proof of Theorem 1 that, under the same conditions, 

P 

A 2

(fioLs,N,GoLs.N,uo~s,N) ( P , ~ P , u ~ )+ as N - + m .  

4. AN APPLICATION TO THE GENERALIZED LEAST SQUARES MODEL 

As discussed, the vector u defined in Eq. (1)  often will represent the vector of 
disturbances of some econometric model. In such cases, p often will be a nuisance 
parameter in the sense that the asymptotic distribution of some estimator of the 
model parameters of interest will be the same if p is known or if p is replaced by a 
consistent estimator. In many of these cases it will be possible to estimate the 
disturbances consistently in a first step. The force of Theorem 1 is that based 
on those estimated disturbances, a simple and consistent estimator of p is available. 

In the following we illustrate this point within the context of a linear regression 
model with spatially autoregressive disturbances. In particular, consider the follow- 
ing model: 

where y is the N X 1 vector of observations on the dependent variable, X is the 
N X K matrix of observations on the explanatory variables, P is the K x 1vector of 
unknown model parameters, and u is the vector of disturbances assumed to be 
generated by Eq. (1).As discussed in Section 2, in general, the elements of u and 
hence those of y will depend on N. For reasons of generality, we also permit the 
elements of X to depend on N, but again, we do not indicate this possible 
dependence on N explicitly. We maintain the following typical assumptions for 
the regressor matrix X and the variance covariance matrix a ( 6 )of the disturbance 
vector u. 

6. 
by c,, 0 < c, < m.Also, X hasfid1 column mnk, and the matrix Q, = lim,, ,N -  ' X ' X  
is finite - and nonsingular. Furthermore, the matrices Q,( p )  = lim,, ,N ' X ' N  p )  ' X  
and Q,( p )  = lim,, ,N - ' X t a (  p)X are finite andyonsingular for all I p i <  1. 

ASSUMPTION The elements of X are nonstochastic and bounded in absolute value 

The true GLS estimator for P is defined as 6; = [XrCL( p)'X1-'X1CL( p)-'y, 
and the feasible GLS estimator for P corresponding to some estimator of p ,  say 5,, 
is defined as fiiG[XtCL(6,)- ' X I -  'XICL( C N ) - l y  (where A- ' denotes the= 



518 	 KELEJIAN AND PRUCHA 

Moore-Penrose generalized inverse of a matrix A, if that matrix is singular). The 
following theorem first establishes the asymptotic distribution of fi; and then shows 
that fiLG has the same asymptotic distribution as fi; if 6, is a consistent estimator 
for p. All proofs are relegated to the Appendix. 

THEOREM2. Given that Assumptions 1 to 3 and 6 hold: 

(a) 	The true GLS estimator pz is a consistent estimator for P ,  and 

(b) Let 6, be a consistent estimator for p. Then the true GLS estimator pg and 
the feasible GLS estimator fiLGhave the same asymptotic distribution. 

(c) 	Suppose further that 6; is a consistent estimator for u2. Then 
6;[N1X'Cl( 6N)-1X]-1 is a consistent estimator for u 'Q,(- p ) ' .  

As remarked in the Introduction, for the spatial model considered here, a rigorous 
proof of the asymptotic distribution of the GLS estimator fi; requires the use of a 
central limit theorem for triangular arrays (even if the elements of M and X do not 
depend on N).  Such a central limit theorem is given in the Appendix. 

Theorem 2 assumes the existence of a consistent estimator of p and u2. We 
demonstrate in the Appendix that under Assumptions 1 to 3 and 5 and 6 the 
ordinary least squares (OLS) estimator fi, = is N 1/2-consistent. Given [X ' X I ~ ' X ' ~  
this, the corresponding residuals ci, =yi -xi. fiN satisfy Assumption 4 with d i N= lxi.l 
and A,= fi, - p. Thus, via the suggested generalized moments estimator and 
Theorem 1,these residuals can be used to obtain consistent estimators of p and u2. 
According to Theorem 2, these estimators can then be used in formulating a feasible 
GLS estimator (and an estimator for its asymptotic variance covariance matrix) with 
the feasible and true GLS estimator being asymptotically equivalent. 

5. A MONTE CARL0 MODEL STUDY 

It is of interest to analyze the small sample properties of the generalized moments 
estimators $,, and $OLS and compare them with those of the (quasi) maximum 
likelihood estimator $,, defined as the maximizer of the normal log likelihood 
function (3).15 For this purpose, we have conducted a two-part Monte Carlo study. 
The first part of the Monte Carlo study is based on "idealized" weighting matrices 
M that differ in size and in the number of neighbors. For these idealized weighting 
matrices, the number of neighbors per unit is taken to be the same in each of the 
respective matrices. For future reference, we note that, for a given sample size, the 
number of neighbors per unit can be viewed as a measure of the sparseness of that 
matrix. In using these idealized weighting matrices, we can readily explore the 
effects of sample size and number of neighbors on the small sample properties of 
our considered estimators. Of course, the use of idealized weighting matrices raises 

l5 We note that jQIwL(and &&,)denote the (joint) maximizers of the normal log likelihood 
function (3), even if the actual distribution is not normal. 
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the concern that results corresponding to those matrices may not be representative 
of results corresponding to "real world" matrices. The second part of the Monte 
Carlo study is hence based on real-world weighting matrices. 

For both parts of the Monte Carlo study we consider three distributions of E and 
seven selections of p. As discussed in more detail below, we consider a total of 36 
cases for each distribution of E. The results for each case are based on 500 Monte 
Carlo replications. To  summarize the results of the respective Monte Carlo experi- 
ments, we estimate response functions. It turns out that the estimated response 
functions based on idealized and real-world weighting matrices are not "signifi-
cantly" different.16 The estimates for the response functions reported below hence 
will be based on both sets of weighting matrices. These response functions also can 
be used to interpolate results for other cases. 

We now describe the design of the Monte Carlo experiments in more detail. Note 
first from Eq. (1) that a is a scale factor for u ,  as well as for 11 and E, in that their 
standard deviations are proportional to a.Because of this, the estimators for p 
defined earlier do not depend on a 2 .  Hence, without loss of generality, we took 
a2= 1in generating the data for all the experiments considered; however, in all the 
experiments, a was viewed as an unknown parameter concerning estimation. 

The first distribution for E explored in the experiments is the normal. More 
specifically, we assume that the ei are i.i.d. N(0,l). This case is viewed as a base case 
for the small sample comparisons, since in this case ljQlwL is actually the maximum 
likelihood estimator. The second distribution considered is a normalized version of 
the log normal. More specifically, we assume in this case that E, = [exp(t,) -
exp(.5)]/[exp(2) - where the ti are i.i.d. N(0,l). The normalization implies e ~ ~ ( l ) ] . ~ ,  
that the ei are i.i.d. (0,l). This distribution was considered because it is not 
symmetric. The third distribution considered is a normalized version of a mixture of 
normals in which one normally distributed random variable is contaminated by 
another that has a larger variance. More specifically, we assume here that ei = [Aiti 
+ (1 - ~,) [~] / (5 .95) .~ ,  =where the Ai are i.i.d. Bernoulli variables with Prob(Ai 1)= 

.95, the 5, are i.i.d. N(0, I), and the li are i.i.d. N(0,100). Also, the processes (A,), 
( t i )  and ( l i )  are assumed to be jointly independent. Again, the normalization implies 
that ei is i.i.d. (0,l). This case was considered because the implied distribution has 
thicker tails than the normal.17 In particular, for the specification considered 
E E ~ / ( E E / ) ~A 14.15. 

As mentioned, the first part of the Monte Carlo study is based on idealized 
weighting matrices M. For each of the three distributions of E we consider 15 cases 
that relate to seven selections of p, three selections of the weighting matrix M, and 
three selections of the sample size N. We note that the total number of combina- 
tions of these selections of p, M, and N would lead to 7 X 3 X 3 = 63 cases for each 
distribution of E. To keep the Monte Carlo study manageable, we consider only 15 
of those cases per distribution of E but summarize the results of the Monte Carlo 
experiments in terms of response functions. The three specifications of the weighting 

l6 For our "test of significance," we employed the Chow test in a classical fashion. While in this 
context this testing procedure is not a formal one, it should be illustrative. 

l7 We note that mixtures of normals are frequently used to model the effects of outliers. 
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matrices M differ in terms of sparseness and therefore in terms of the extent of 
implied autocorrelation concerning the disturbance terms u, defined by Eq. (1). In 
the first specification, which we henceforth refer to as "1 ahead and 1behind," M 
was selected such that each element of u is directly related to the one immediately 
after and immediately before it. In doing this, we specified a "circular" world so that, 
for example, u, is directly related to u, and to u,-, and, similarly, u, to u2 and u,. 
Furthermore, we specified M such that all nonzero elements of M are equal and 
that the respective rows sum to unity. That is, in this case, each row of M has two 
nonzero elements that are equal to i.Correspondingly, the next two specifications 
of M are "3 ahead and 3 behind" and "5 ahead and 5 behind," again in a circular 
world. The nonzero elements of M in these two cases are, respectively, taken as 
and &.I8Let J denote the average number of neighbors for each unit. We can then 
characterize the preceding matrices with J = 2, 6, 10, respectively. 

The second part of the Monte Carlo experiment is based on three real-world 
weighting matrices M. In particular, these matrices represent the spatial weighting 
matrices for 58, 100, and 254 counties in the states of California, North Carolina, 
and Texas. For these matrices, two counties are defined as neighbors if they are in 
the same state and if a 50-mile circle centered at the population center of one 
county includes the population center of the other county. Neighbors are indicated 
by nonzero elements in the M matrix. These nonzero elements are specified to be 
equal in each row and to sum to unity in each row. Again, we characterize these 
matrices by their average number of neighbors, that is, with J =  3.8, 10.9, 6.6, 
respectively. Given seven selections of p, the three real-world weighting matrices 
lead to 7 X 3 = 21 additional cases per distribution. 

Table 1gives results on two characteristics of the distributions of fiNLs, fi,,,, and 
fieML for each of the 15 + 21 = 36 cases (defined in terms of N, J, and p )  for each 
of the three disturbance distributions considered. These characteristics are closely 
related to the standard measures of bias and root mean squared error (RMSE) but, 
unlike these measures, are assured to exist. Our measure of bias is defined as the 
difference between the median and the true parameter value. Our measure corre- 
sponding to the RMSE is defined as [bias2+ (IQ/1.35)2]1/2, where I Q  is the 
interquantile range. That is, IQ  = c, - c,, where c, is the .75 quantile and c2  is the 
.25 quantile. If the distribution is normal, IQ/1.35 is (apart from rounding errors) 
equal to the standard deviation. In the following we will refer to our measures 
simply as bias and RMSE. The results in Table 1are Monte Carlo estimates of these 
measures based on quantiles computed from the empirical distributions correspond- 
ing 500 Monte Carlo replications. Before discussing response functions for the 
RMSEs, we note some points. 

The average absolute biases are generally similar for fi,, and $NLs but higher 
for fioLs for all three cases of considered distributions. The biases, while typically 
negative, are relatively small in absolute value. The RMSEs for fi,, and fiNLS are 
also generally very close in magnitude and considerably lower than those relating to 

l8 We emphasize that the estimators for p considered in this paper do not depend on the 
particular ordering of the data. Thus any it4 matrix obtained from a rearrangement of the data 
would yield the same results. 
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TABLE1~ 

BIASES AND RMSE O F  ESTIMATORS FOR 0, NORIvIAL ERROR DISTRIBUTION 

Bias 	 RMSE 

Column averages 
of absolute values 

This suggests that the generalized moments estimator fi,, and the (quasi) 
maximum likelihood estimator f i e ,  possess very similar small sample properties, 
under both normality and nonnormality. We conjecture that a reason for this is that 
fi,, and fi,, are both, in essence, defined in terms of second-order moments. 
Given the similarity of the small sample properties of /3,, and jNLS,a major 
advantage of the generalized moments estimator f iNLs  as compared with the (quasi) 
maximum likelihood estimator f i , , /3,, seems to be that remains readily com- 
putable even for large sample sizes N and general spatial weighting matrices M, as 
was discussed in some detail at the end of Section 2. We note, however, that the 
overparameterization underlying the definition of fi,,, is costly in terms of small 
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TABLE1~ 
BIASES AND RMSE OF ESTIMATORS FOR p, LOG-NORMAL ERROR DISTRIBUTION 

Bias RMSE 

Column averages 

of absolute values 


sample efficiency. For example, on average, the RMSE corresponding to fi,,, is 
more than twice as large as those of f iNLs and fiQlWL. For this reason, we will 
henceforth focus attention only on fi,, and fie,. 

Obsesvations concerning the response of the RMSEs to the sample size N, the 
average number of neighbors J of the weighting matrix M, and the value of p are 
not readily apparent from Table 1.For this reason, we describe the general results in 
the table via response functions. In doing this, we estimate separate response 
functions for fi,, and f i e ,  for each of the three distributions considered. These 
six functions have the same form but different parameters. These response functions 
describe the results in Table 1 and should be useful for inferring corresponding 
results for experiments that have "similar" sets of parameter values. 
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TABLE1 r  
BIASES AND RMSE OF ESTIMATORS FOR p, CONTAMINATED ERROR DISTRIBUTION 

Bias RMSE 

Column averages 
of absolute values ,0108 ,0082 ,0568 ,1168 ,1229 ,3561 

Let s = 1,.. . ,36 denote the sth case considered in Table 1 corresponding to a 
particular distribution. Using evident notation, we then specify the response func- 
tions for the RMSE of f i = fi,, or f i = fiJVL, for a particular distribution as follows: 

where a,,  . . . , a ,  are parameters to be estimated using the data from Table 1 on the 
corresponding 36 cases. We estimate a,,  . . . , 0, by least squares (taking logs on both 
sides). 
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A few points concerning the response function in Eq. (9) should be noted. First, 
rather than being empirically determined, the exponent of the sample size is taken 
as - $  because of evident large sample considerations. Second, the function in 
Eq. (9) is relatively simple but yet nonnegative and able to accommodate certain 
patterns that might be suggested from time series considerations. For example, for 
an AR(1) model (with autocorrelation coefficient p), the variance in the asymptotic 
distribution of the (quasi) maximum likelihood estimator for p is, under typical 
assumptions, proportional to 1- p2.19 It should be noted that this variance is 
symmetric about, and maximized at, zero; in addition, it approaches its minimum 
value as p approaches the "critical" points +1.  Although the spatial models 
considered in our Monte Carlo study are not identical to an AR(1) model, one might 
nevertheless expect the relationship between the RMSE and the parameter p to 
peak at some point and then decline as p approaches "critical" points at which 
I - pM is singular. For all the spatial weighting matrices considered in our experi- 
ments, the smallest positive critical point is 1.0; however, the largest negative critical 
point is equal to -1only fol the case in which J = 2; for all other cases considered, 
the largest negative critical point is less than - 1. In allowing for an interaction term 
between p and 1/J in Eq. (91, our response function permits n yriori that the 
RMSEs might peak at a value of p that varies with J .  There is also another avenue 
by which J might affect the RMSEs. Specifically, recall that u, = pE, + E,. The 
weighting matrices considered in the experiments are such that EL is a straight 
average of the disturbances that correspond to the "neighbors" of the ith region. 
Because of this, the variance of E, (relative to that of u,) should be inversely related 
to J ,  the average number of neighbors. Ceteris paribus, one might expect large values 
of J to be associated with large RMSEs because estimation efficiency is typically an 
increasing function of regressor variances. Finally, other forms of the response 
functions were considered but were dominated by the form in Eq. (9). 

The estimation results for the six response functions are given in Table A in the 
Appendix. Overall, the results in that table suggest that the response functions fit 
the data well. The R 2  values and the t-ratios are all quite high, suggesting both a 
tight fit and that each term considered is important. For all cases considered, the 
estimated value of a, is negative, and so each function peaks at a given value of p 
and then declines. The estimates of the coefficients are such that this "maximizing" 
value of p declines as J increases. For all cases considered, if J > 2 the value of p at 
which each function peaks is negative but greater than - .25. For all cases in which 
J = 2, this "maximizing" value of p is very close to zero, namely, between - .03 and 
.04. The estimated coefficients are also such that increases in J are, again in all 
cases, associated with increases in the RMSEs. These results are consistent with 
prior notions. Graphs of the estimated response functions for the case of a normal 
error distribution are given in Figures 1 and 2 for FQML and FNL,. Of course, in this 
case the (quasi) ML estimator FQML is the M L  estimator. The graphs for the case of 
a log-normal and contaminated error distribution are similar but are not given here 
to conserve space. 

"See, for example, Johnston (1984, p. 329). 
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The Monte Carlo results reported here correspond to the case in which the 
disturbances ui are observable. We also performed corresponding experiments 
involving estimated disturbances, but we do not report here the details of those 
experiments because of space limitations. Those experiments suggest that the 
statements based on Table 1 and Table A in the Appendix concerning the relative 
efficiency of the three estimators carry over qualitatively to cases in which p is 
estimated from estimated disturbances. 

The autocorrelation model considered in this paper is sometimes referred to as a 
spatial autoregressice model of order one in that only one "spatial lag" of the 
disturbance term, represented by pMu in Eq. (I), is being considered. Higher-order 
spatial models involving more than one spatial lag of the disturbance term (for 
example, using evident notation, plMlu + ... +ppMpu) as well as of the innovation 
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term (for example, E + pp+,M,,+, E + ... +pp+,Mp+,E )  also have been considered in 
the literature. It should be of interest to extend the generalized moments approach 
suggested in this paper to those models and to determine corresponding large 
sample properties. 

APPENDIX 

In proving Theorem 1, we have to consider the following moments: 

a,,, =N-lti'ii =N ~ E ' ( C , , ~ , )E ,  C,,, =P'M'MP 

N - 1 - 1 -if,,,= E E =N- 'E ' (C, , , )E,  C7,hr=M ' M  

* 

The corresponding moments based on ii, % and in place of, respectively, u ,  ii and 
Z will be denoted by GI,,,, h = 1 , .  . . ,6 .  In the following we will suppress the 
subscript N for the matrices C,, ,and their elements, h = 1,.. . ,8. To prove 
Theorem 1,we need several lemmata. 

LEMMA1. UnderAssumption 3 the elements of the matrices C, defined in Eq. ( A . l )  
hace the following properties, h = 1 , .  . . ,8 :  5 c, C F 1 l ~ h , i j /I c for all N 2 1 
and 1 I i ,  j 5 N for some 0 < c < m. Furthermore, N-,C;: Cy=l(cll,i j  + c1,,j i ) 2  = o(1). 

PROOF. The first claim follows because by Assumption 3 the row and column 
sums of the absolute values of the elements of the matrices P and M are bounded, 
and this property is preserved under matrix m ~ l t i ~ l i c a t i o n . ~ ~Next, observe that the 
row and column sums of the absolute values of the elements of the matrices C, + C; 
and [C,  + C;,][C,+ C;,]are then bounded by 2c and 4c2, respectively. The second 
claim of the lemma now follows because N-,C;; C F  + ell,ji)2 =N - 2 T r { [ ~ 1 1  
+ C';,][C,+ C;,]}5 4 c 2 / ~ - + 0as N +  m. 

LEMMA2. Under Assumptions 1 to 3, the moments if1,,,have the following 
properties, h = 1, . . . ,8: E%,, = O(1) and var(iY1,,,) = o ( l ) ,  and hence 811,,-

P 
E8,,, ,+ 0 as N +m, and 8/,,,= Op(1). 

20 To see this, consider matrices A ,  = (a,!,,), BAT= ( b , , , , ) ,and D ,  = (d,,,.) =A,B,. Suppose 
N

~ F l l ~ a,,,, 5 c , ,  c ~ = , I Q,,,, Ic,, Cplllb,,,,I I cb ,  C I = l l b , l , NI cb.  Then Cplld , , ,Ar lI 
~ ~ ~ ~ ~ ~ = ~ a , ~ , ~ l I b ~ , , ~ l =C ~ = , l b k , , N I C ~ ~ l l a , k . N l ~ ~ ~ ~ bSimilarly, C y = , l d , , , , ~ c , ~ ~ .  
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PROOF. By Lemma 1, all elements c , , ~ ,are bounded in absolute value. Hence 
E-9,,,= a ' N - C?: c,, = O(1). Observe further that var(i?/,,,) = N-2[(p, -

a ,)CZ c;, ,i + a 4 C E y 1LCi+l ( ~ , r , r i+ ell,j l ) 2 ]  with p, =EE:, since cov(eiej,E,.E,) = 0 
unless i = r and j = s, or i = s and j = r. Clearly, a sufficient condition for var(l9i,,,) 
= o(1) is that N - * C E 1  C K 1 ( ~ i , . i i+ c~,,,,)'= o(1),which holds in light of Lemma 1. 
The last two claims follow from Chebychev's inequality and, for example, Corollary 
5.1.1.2 in Fuller (1976,p. 186),respectively. 

LEMMA3. Consider random cariables c,,,, w,,,, c',,,, and Gi , ,  and assume that 

where D L ,  D:v, rb, and 7;;: are, respectzcelj~,nonnegatlce random canables wzth 
N p l C E  l(D:hr)2= Op(l) ,  N-'C?= 1 ( ~ & ) 2= Op(l) ,  rAr= op( l ) ,  T[,  = o p ( l )  Suppose 
furthermore that Np1C:: c!, = 01,(1) and N-'c:= w; ,  = O p ( l ) .  Then 

P 
NplCF=lZl,GI , - N 1  C ~ ~ ~ C , , , W , , ~+ 0 as N + m .  

PROOF. Observe that 

The last inequality follows from Eq. (A.2) and Holder's inequality. Since T,& = op( l )  
and 7; = op(l ) ,the claim in the lemma follows by observing that all other terms are 
bounded in probability. 

P
LEMMA4. UnderAssumptions 1 to 4, - O,,,,+ 0 as N + for h = 1, . . . ,6. 

- PROOF. TOprove-the lemma, it suffices to show, in light of Lemma 3, that u , ,  E , ,  
-
u,,  and the iii, Gi,zi satisfy the properties maintained for e l , ,  and c'i,hr in that 
lemma. First, observe that by Lemma 2, N - ' C E l  u! = 0,(1), N M I C E  E: = 01,(1), 
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and N-'C:l, z:= O,,(l). Next, observe that by Assumption 4 we have liii - ujl I 
2 + S  -

Ild,lvll IIANll with N-lC~llld,,II -OP(1)for some S >  0 and N1/211ANll= OP(1). 
Since N-1CE,~~d,Nl125 [N-1CEllld,N112+S]2/(2+S)by Lyapunov's inequality, u ,  and 
ii, clearly satisfy the properties maintained for c j , ,  and Z i , ,  in Lemma 3. Next, 
observe that 

and that 

and 

Hence, using the triangle and Holder's inequalities with q = 2 + S and ( l / q )  + 
( l / p )= 1, 

-
with D ,  = c , , [ ~ l C y =,lldj,l/q]l/" BAT_=c ~ , [ N - ~ C ~ = ~ ~ ~ ~ ~ ~ I I ~ ] ~ / ~and T N  = 

N1/"(A,,(l. By Assumption 4, D, = OP(1),D ,  = OP(1)and 7, = op(l).Hence iii and 
6,as well as z,and Zi also satisfy the properties maintained for ci,, and Z i , ,  in 
Lemma 3,  and thus the claims of Lemma 4 follow from Lemma 3. 

PROOFOF THEOREM1. The existence and measurability of blv,,, ,and &;LS,Ar 

are ensured by, for example, Lemma 2 in Jennrich (1969).The objective function of 
the nonlinear least squares estimator and its corresponding nonstochastic counter-
part are given by, respectively, 
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where 8 = ( p, 9 ')'. To prove the consistency of ( blvLs,,,,, 3;Ls,,,), we show that the 
conditions of, for example, Lemma 3.1 in Potscher and Prucha (1991a) are satisfied 
for the problem at hand. We first show that 8 = ( p ,  a 2 ) '  is identifiably unique 
[where 8 = ( p, a') '  denotes the vector of true parameters]. Obseilre that because of 
Eq. ( 9 ,  

Hence for every E > 0 and any N, we have 

inf [ R N ( j )- R , x , ( ~ ) ]2 inf A , I I ~ - 8112= A , E ~ >  o 
( ~ : I I ~ - ~ I I > _ E )  (e:lle- el12E )  

which proves that 8 is identifiably unique. Next, let F,,= [G,\,, - g N ]  and @, = 

[I;,, - y,]; then for p E [ a ,a ]  and a 2E [O, bl .  

P
Since Lemmata 2 and 4 imply that FN - @ ,  -+ 0 and that the elements of FN and 
@, are, respectively, 0,(1) and 0(1), it follows that R,&) -R,&) converge to 
zero uniformly over the (extended) parameter space, that is, 

as N -+ m. The consistency of ( (iNLs,,\,,3iLs,,,,) now follows directly from Lemma 
3.1 in Potscher and Prucha (1991a). 

The proof of Theorem 2 requires a central limit theorem (CLT) for triangular 
arrays. The CLT below follows readily from a corollary to the Lindeberg-Feller CLT 
for triangular arrays using the Cramer-Wold device. That corolla~yis, for example, 
given in Billingsley (1979, p. 319, Problem 27.6).21 

21 More precisely, we use a slight generalization of that corollary where the assumption that the 
random variables of interest are constructed from a sequence of i.i.d. random variables is replaced 
by the assumption that they are constructed from a triangular array of identically distributed and 
(within each sample) independent random variables. 
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THEOREMA. Let {u,,, 15 i 5 N, N 2 1) be a triangular array of random variables 
that are identically distributed, and for each N (jointly) independent with Ev,, = 0 and 
E V ~ = U ' ,  O < u z < a .  Let { z i j , , v , l ~ i ~ N , N > l } ,  j = 1 ,  . . . ,K, betriangulararrays 
of real numbers that are bounded in absolute value, that is, c, = sup, sup,. ,,,lzij,, 
< =. Further, let {V, : n 2 1) and {Z, : n 2 1) with yv= ( u , ~ ) ~ =  and Z ,  ,, , ,  , , ,V = 

(zij, ,\,),= ,,,,, ,  denote corresponding sequences of N x 1 random vectors and ,, , , , ,  
N x K real matrices, respectively, and let lim,, ,N 'Z,\, Z, = Q be finite and positive 

D 
definite. Then N - ' / 2 ~ k ~ N  + N(0, u 'Q). 

PROOFOF THEOREM2. TO prove part (a) of the theorem, observe that N1l2[ b,$ 
- p ]  = 1 /2  Z ' E ,  where Z = (I-[ N - ~ z ~ z I - ~ N - pM)X. Note that, in general, the 

elements of Z will depend on the sample size N. However, for notational simplicity 
we will not denote this dependence explicitly in the following. Observe further that 
under the maintained assumptions the elements of Z are bounded in absolute value 
by (1 + c,,,)c, and that lirn,,, NP 'Z 'Z  = Q,( p) is finite and nonsingular. Recall 
that the innovations e l , .  . . ,E,~,are identicaly distributed and for each N (jointly) 
independent with Ev,N = 0 . .  . with mean zero and variance u 2. Hence it follows 

D 
from Theorem A that N - ' / 2 Z ' ~  -+ N[O, u2Q,( p)] and consequently N1l2[ 6): - p ]-D 
-+ N[O, u 2 Q , x ( p ) ' ] .  Of course, this also implies that 6,: is consistent. - P


We prove part (b) of the theorem by showing that N1/'[fi; - 6,cG] + 0 as 
N -+ a .  To prove this, it suffices to show that 

and 

and 

Under the maintained assumptions, the elements of N-'x'(M +M')X and 
N-'X'M'MX are bounded in absolute value by 2c;c, and c:c;, respectively (see 
footnote 20). Condition (A.3) then follows from (AS), since 6, is assumed to be 
consistent. 

Next, consider the terms N-'/~x'M'u, N-'/~x'Mu, and N- ' /~x 'M 'M~.  Clearly, 
the expected value of each element of these vectors is zero. The variance-covariance 
matrices of these vectors are given by, respectively, 
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with a,=M'PP'M,  a, =MPP'M', @, =M'MPP'M'M. Since the row and column 
sums of the absolute values of the matrices P and M are bounded, it follows that 
the row and column sums of the matrices as are also bounded by some finite 
constants, say, c, (s = 1,2,3); see footnote 20. Since the elements of X are bounded 
in absolute value by c,, it then follows that the elements of the variance covariance 
matrices N - ' X r a S X  are bounded in absolute value by c:c, < (s = 1,2,3). It then 
follows from, for example, Corollary 5.1.1.2 in Fuller (1976), that the elements of 
N-'/ 'XrM'u, N-'/'XIMu, and N-'/'X'M'MLL are 0,)(1). Condition (A.4) is now 
seen to hold from (A.6) because 5N is assumed to be consistent. 

Part (c) of the theorem follows immediately from (A.3) and Assumption 6 and the 
fact that c? is a consistent estimator for a '. 

Next, we prove that under Assumptions 1 to 3 and 5 and 6 the OLS estimator p,,, 
is N1/'-consistent, as was claimed in the discussion after Theorem 2. Observe that 
N'l2[ PN- P ]  = [N- 'X 'X] - 'N- ' /~Z 'E ,  with Z defined here as Z = (I- pM')-lX. 
Note again that, in general, the elements of Z will depend on the sample size N. By 
assumption lim,\,, ,N M I Z ' Z= lim,\,,,N- ' X I R (  p ) X  = a,(p) is finite and nonsin-
gular, and the innovations E,,. . . , E ,  are identically distributed, and for each N 
(jointly) independent with mean zero and variance a2.Hence it follows from-
Theorem A that  N-'/ 'z 'E 2 N[O, u ~ % ( ~ ) ] .Observing that  Q ,  = 

lim,,, N-'x'X is finite and nonsingular, it follows that N ' / ~ [p,\,- P ]  

NO,  Q;'Q,( p)Q,; ' I .  
The following table contains the estimation results for the response functions for 

jQ, and f iNL ,  discussed in Section 5. 

TABLEA 
THE RESPONSE FUNCTIONS FOR fiQ M L  AND f i V L S  

Parameter Estimates 

Estimator a^, (i2 6, 6 4  t 5  R 2 ... 

Normal Error Distribution 

PQAIL 1.11015 -2.77568 -0.98016 2.03430 - 1.14638 .91 
(16.88) (11.49) (9.46) (4.92) (11.53) 

AIL s 1.12976 -2.77091 - 1.04065 2.17021 -0.97829 .93 
(20.10) (13.42) (11.75) (6.14) (11.51) 

Log-Normal Error Distribution 

Contaminated Error Distribution 

*The R~ statistic is the square of the correlation coefficient between the RMSE and its 
response function prediction based on the values in Table 1. The numbers in parentheses 
are t-ratios (in absolute value). 
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