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Abstract

One important goal of this study is to develop a methodology of in-
ference for a widely used Cliff-Ord type spatial model containing spatial
lags in the dependent variable, exogenous variables, and the disturbance
terms, while allowing for unknown heteroskedasticity in the innovations.
We first generalize the generalized moments (GM) estimator suggested in
Kelejian and Prucha (1998,1999) for the spatial autoregressive parameter
in the disturbance process. We prove the consistency of our estimator;
unlike in our earlier paper we also determine its asymptotic distribution,
and discuss issues of efficiency. We then define instrumental variable (IV)
estimators for the regression parameters of the model and give results
concerning the joint asymptotic distribution of those estimators and the
GM estimator under reasonable conditions. Much of the theory is kept
general to cover a wide range of settings. We note the estimation theory
developed by Kelejian and Prucha (1998, 1999) for GM and IV estima-
tors and by Lee (2004) for the quasi-maximum likelihood estimator under
the assumption of homoskedastic innovations does not carry over to the
case of heteroskedastic innovations. The paper also provides a critical
discussion of the usual specification of the parameter space.

Key Words: Spatial dependence, heteroskedasticity, Cliff-Ord model,
two-stage least squares, generalized moments estimation, asymptotics

JEL Classification: C21, C31

∗Corresponding Author: Ingmar R. Prucha, Tel.: 301-405-3499, Email:
prucha@econ.umd.edu.

1



1 Introduction1

In recent years the economics literature has seen an increasing number of the-
oretical and applied econometric studies involving spatial issues.2 While this
increase in interest in spatial models in economics is relatively recent, spatial
models have a long history in the regional science and geography literature.3

One of the most widely referenced model of spatial interactions is one that was
put forth by Cliff and Ord (1973, 1981). This model is a variant of the model
considered by Whittle (1954). In its simplest (and original) form the model
only considers spatial spillovers in the dependent variable, and specifies the en-
dogenous variable corresponding to a cross sectional unit in terms of a weighted
average of endogenous variables corresponding to other cross sectional units,
plus a disturbance term. This model is typically referred to as a spatial autore-
gressive model, the weighted average is typically referred to as a spatial lag, the
corresponding parameter as the autoregressive parameter, and the matrix con-
taining the weights as the spatial weights matrix. A generalized version of this
model also allows for the dependent variable to depend on a set of exogenous
variables and spatial lags thereof. A further generalization allows for the dis-
turbances to be generated by a spatial autoregressive process. Consistent with
the terminology developed by Anselin and Florax (1995) we refer to the com-
bined model as a spatial autoregressive model with autoregressive disturbances
of order (1, 1), for short SARAR(1, 1). We note that this model is fairly general
in that it allows for spatial spillovers in the endogenous variables, exogenous
variables and disturbances.
Somewhat surprisingly, even though the SARAR(1, 1) model has been a

modeling tool for many years, until recently there has been a lack of formal
results concerning estimation methods for this model. One method that has
been employed to estimate this model is the (quasi) maximum likelihood (ML)

1Our thanks for very helpful discussions and suggestions are owed to Irani Arraiz, Badi
Baltagi, Peter Egger, David Drukker, Benedikt Pötscher, and Paulo Rodrigues, and to seminar
participants at Pennsylvania State University, Singapore Management University, ADRES
Conference on Networks of Innovations and Spatial Analysis of Knowledge Diffusion in Saint-
Etienne, Texas A&M University, SUNY Albany, University of Innsbruck, Syracuse University
and Kansas University. Also, we gratefully acknowledge financial support from the National
Science Foundation through grant SES-0001780 and the National Institute of Health through
the SBIR grant 1 R43 AG027622.

2 Some recent applications of spatial models are, e.g., Audretsch and Feldmann (1996),
Baltagi, Egger and Pfaffermayr (2005), Bell and Bockstael (2000), Besley and Case (1995),
Betrand, Luttmer and Mullainathan (2000), Case (1991), Case, Hines, and Rosen (1993),
Cohen and Morrison Paul (2004), Hanushek et al. (2003), Holtz-Eakin (1994), Sacrerdote
(2001), Shroder (1995), Topa (2001). Contributions to the theoretical econometric literature
include, e.g., Baltagi and Li (2001a,b, 1999), Baltagi, Song, Jung and Koh (2005), Baltagi,
Song and Koh (2003), Bao and Ullah (2003), Conley (1999), Das, Kelejian and Prucha (2003),
Driscol and Kraay (1998), Kapoor, Kelejian and Prucha (2004), Kelejian and Prucha (2005,
2004, 2002, 2001, 1999, 1998), Korniotis (2005), Lee (2005, 2004, 2003, 2002), Pinkse and
Slade (1998), Pinkse, Slade, and Brett (2002), Yang (2005).

3 See, e.g., Anselin (1988), Bennett and Hordijk (1986), Cliff and Ord (1973, 1981), and
Cressie (1993) and the references cited therein.
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procedure, where the likelihood function corresponds to the normal distribu-
tion. Formal results concerning the asymptotic properties of the ML estimator
have been established only recently in an important contribution by Lee (2004).
Given that the likelihood function involves the determinant of a matrix whose
dimensions depend on the sample size and an unknown parameter, there can be
significant difficulties in the practical computation of this estimator especially if
the sample size is large, as it might be if the spatial units relate to counties, single
family houses, etc. In part because of this Kelejian and Prucha (1999) intro-
duced a generalized moments (GM) estimator for the autoregressive parameter
of the disturbance process that is simple to compute and remains computation-
ally feasible even for large sample sizes. In Kelejian and Prucha (1998) we used
that GM estimator to introduce a generalized spatial two stage least squares
estimator (GS2SLS) for the regression parameters of the spatial SARAR(1, 1)
model that is again simple to compute, and demonstrated its consistency and
asymptotic normality.4

All of the above estimators for the SARAR(1, 1) model were introduced and
their asymptotic properties were derived under the assumption that the innova-
tions in the disturbance process are homoskedastic. The lack of an estimation
theory that allows for heteroskedasticity, and the lack of corresponding joint
hypothesis tests for the presence of spatial dependencies in the endogenous
variables, exogenous variables and/or disturbances, is a serious shortcoming.
Spatial units are often heterogeneous in important characteristics, e.g., size,
and hence the homoskedasticity assumption may not hold in many situations
(conditionally and unconditionally). It is readily seen that if the innovations are
heteroskedastic, the ML estimator considered in Lee (2004) is inconsistent, and
the asymptotic distribution given in Kelejian and Prucha (1998) for the GS2SLS
estimator is not appropriate. One important goal of this study is therefore to
develop a methodology of inference for the SARAR(1, 1) model that allows for
heteroskedastic innovations. In developing this theory we will adopt a modular
approach such that much of the theory not only applies to the SARAR(1, 1)
model, but can also be utilized in different settings in future research.
In more detail, in this paper we introduce a new class of GM estimators for

the autoregressive parameter of a spatially autoregressive disturbance process
that allows for heteroskedastic innovations. Our GM estimators are again com-
putationally simple even in large samples. We determine their consistency; un-
like in our earlier paper we also determine, under reasonably general conditions,
their asymptotic distribution. Loosely speaking, in deriving those results we
essentially only maintain that the disturbances are n1/2-consistently estimated
(where n is the sample size) and that the estimator of the model parameters
employed in estimating the disturbances is asymptotically linear in the innova-

4The formulation of the GS2SLS estimator is based on an approximation of the ideal
instruments. Recently Lee (2003) and Kelejian, Prucha, and Yuzefovich (2004) extended the
analysis to include the use of ideal instruments. Das, Kelejian and Prucha (2003) analyzed the
small sample properties of the GS2SLS (as well as those of other estimators). They find that
in many situations the loss of efficiency due to the approximation of the ideal instruments is
minor.
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tions. As a result the methodology developed in this paper covers a wide range of
(linear and nonlinear) models and estimators, in addition to the SARAR(1, 1)
model and estimators specific for that model. We furthermore derive results
concerning the joint distribution of the GM estimators and estimators of the
regression parameters to facilitate joint tests. While the results are presented
for the case of two step estimation procedures where the spatial autoregressive
parameter and the regression parameters are estimated in separate steps, the
analysis can be readily adapted to one step procedures where all parameters are
estimated in a single (but numerically more involved) step.
The general theory is then applied to develop inference methodology for the

SARAR(1, 1) model. In particular, we use the GM estimator in constructing
a GS2SLS estimator for the regression parameters of the SARAR(1, 1) model
and demonstrate the consistency and asymptotic normality of this estimator.
We also provide results concerning the joint distribution of the GM estimator
and the GS2SLS estimator, which permits, among other things, testing the joint
hypothesis of the absence of spatial spillovers stemming from the endogenous
variables, exogenous variables or disturbances.
Another concern with the existing literature on Cliff-Ord type models, in-

cluding in the above cited literature on the SARAR(1, 1) models, is the specifi-
cation of the parameter space for spatial autoregressive parameters. In virtually
all of the literature it is assumed that the parameter space for autoregressive
parameters is the interval (−1, 1), or a subset thereof. One may conjecture that
this traditional specification of the parameter space received its motivation from
the time series literature. However, as discussed in detail below, choosing the
interval (−1, 1) as the parameter space for the autoregressive parameter of a
spatial model is not natural in the sense that the spatial autoregressive para-
meter always appears in those models in product form with the spatial weights
matrix. Hence equivalent model formulations are obtained by applying an (arbi-
trary) scale factor to the autoregressive parameter and its inverse to the weights
matrix. Of course, applying a scale factor to the autoregressive parameter leads
to a corresponding re-scaling of its parameter space. In this paper we therefore
allow for a more general specification of the parameter space. Even if a scale
factor is used that results in the parameter space being the interval (−1, 1), this
scale factor and correspondingly the autoregressive parameter will then typically
depend on the sample size. In contrast to the existing literature we thus allow
for the parameters to depend on the sample size. Our discussion of the parame-
ter space and possible normalizations of the spatial weights matrix also points
out potential pitfalls with the frequently used approach of row-normalizing the
spatial weights matrix.
The paper is organized as follows: The generalized SARAR(1, 1) model is

specified and interpreted in Section 2. This section also contains a discussion of
the parameter space of the autoregressive parameter. In Section 3 we define and
establish the large sample properties of our suggested GM estimators for the au-
toregressive parameter of a spatially autoregressive disturbance process. In this
section we also provide results concerning the joint large sample distribution of
the GM estimators and a wide class of estimator of the regression parameters.
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We also develop HAC type estimators for the large sample variance-covariance
matrix of the suggested estimators. Section 4 contains results relating to the
suggested instrumental variable estimators of the regression parameters of the
SARAR(1, 1) model and their joint large sample distribution with GM esti-
mators. Concluding remarks are given in the Section 5. Technical details are
relegated to the appendices.
It proves helpful to introduce the following notation: Let An with n ∈ N be

some matrix; we then denote the (i, j)-th element of An as aij,n. Similarly, if vn
is a vector, then vi,n denotes the i-th element of vn. An analogous convention
is adopted for matrices and vectors that do not depend on the index n, in
which case the index n is suppressed on the elements. If An is a square matrix,
then A−1n denotes the inverse of An. If An is singular, then A−1n should be
interpreted as the generalized inverse of An. At times it will also be helpful to
denote the generalized inverse more explicitly as A+

n . With ai.,n and a.i,n we
denote the i-th row and column of An, respectively, and with ai.n and a

.i
n those

of A−1n . If An is a square symmetric nonnegative matrix, then A
1/2
n denotes

the unique symmetric and nonnegative square root of An. If An is nonsingular,
then A−1/2n denotes (A−1n )1/2. Further, we say the row and column sums of
the (sequence of) matrices An are bounded uniformly in absolute value if there
exists a constant cA <∞ (that does not dependent of n) such that

max
1≤i≤n

nX
j=1

|aij,n| ≤ cA and max
1≤j≤n

nX
i=1

|aij,n| ≤ cA for all n ∈ N

holds. As a point of interest, we note that the above condition is identical to
the condition that the sequences of the maximum column sum matrix norms
and maximum row sum matrix norms of An are bounded; cp. Horn and
Johnson (1985, pp.294-5). For definiteness, let A be some vector or matrix,
then kAk = [Tr(A0A)]1/2. We note that this norm is submultiplicative, i.e.,
kABk ≤ kAk kBk.

2 Model
In this section we specify the generalized SARAR(1, 1) model and discuss the
underlying assumptions.

2.1 Specification

Suppose a cross section of n spatial units is observed, and the interactions
between those spatial units can be described by the following model:

yn = Xnβn + λnWnyn + un (1)

= Znδn + un

and
un = ρnMnun + εn, (2)
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with Zn = [Xn,Wny] and δn =
£
β0n, λn

¤0
. Here yn denotes the n × 1 vec-

tor of observations of the dependent variable, Xn denotes the n × k matrix of
non-stochastic (exogenous) regressors, Wn and Mn are n × n non-stochastic
matrices, un denotes the n× 1 vector of regression disturbances, εn is an n× 1
vector of innovations, λn and ρn are unknown scalar parameters, and βn is a
k × 1 vector of unknown parameters. The matrices Wn and Mn are typically
referred to as spatial weights matrices, and λn and ρn are typically called spa-
tial autoregressive parameters. The analysis allows for Wn = Mn, which will
frequently be the case in applications. All quantities are allowed to depend on
the sample size.
The vectors yn =Wnyn and un =Mnun are typically referred to as spatial

lags of yn and un, respectively. We note that all quantities are allowed to depend
on the sample size and so some of the exogenous regressors may be spatial lags of
exogenous variables. Thus the model is fairly general in that it allows for spatial
spillovers in the endogenous variables, exogenous variables and disturbances.
The spatial weights matrices and the autoregressive parameters are assumed

to satisfy the following assumption.

Assumption 1 (a) All diagonal elements of Wn and Mn are zero. (b) λn ∈
(−aλn, aλn), ρn ∈ (−aρn, aρn) with 0 < aλn, a

λ
n ≤ aλ <∞ and 0 < aρn, a

ρ
n ≤ aρ <∞.

(c) The matrices In−λWn and In−ρMn are nonsingular for all λ ∈ (−aλn, aλn),
and ρ ∈ (−aρn, aρn).

Assumption 1(a) is clearly a normalization rule. Assumption 1(b) concerning
the parameter space of λn and ρn will be discussed in the next subsection.
Assumption 1(c) ensures that yn and un are uniquely defined by (1) and (2) as

yn = (In − λnWn)
−1
Xnβn + (In − λnWn)

−1
un, (3)

un = (In − ρnMn)
−1 εn.

As remarked in the Introduction, spatial units are often heterogeneous in im-
portant characteristics, e.g., size. For that reason it is important to develop an
estimation theory that allows for the innovations to be heteroskedastic. There-
fore, we maintain the following set of assumptions with respect to the innova-
tions.

Assumption 2 The innovations {εi,n : 1 ≤ i ≤ n, n ≥ 1} satisfy Eεi,n = 0,
E(ε2i,n) = σ2i,n with 0 < aσ ≤ σ2i,n ≤ aσ <∞, and sup1≤i≤n,n≥1E |εi,n|

4+η <∞
for some η > 0. Furthermore, for each n ≥ 1 the random variables ε1,n, . . . , εn,n
are totally independent.

The above assumption also allows for the innovations to depend on the sam-
ple size n, i.e., to form triangular arrays. We note that even if the innovations do
not depend on n, the elements of yn and un would still depend on n in light of
(3) since the elements of the inverse matrices involved would generally depend
on n. We maintain the following assumption concerning the spatial weights
matrices.
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Assumption 3 The row and column sums of the matrices Wn, Mn, (In −
λnWn)

−1 and (In − ρnMn)
−1 are bounded uniformly in absolute value.

Given (3), Assumption 2 implies that Eun = 0, and that the VC matrix of
un is given by

Eunu
0
n = (In − ρnMn)

−1Σn (In − ρnMn)
−1

where Σn = diag(σ2i,n). This specification allows for fairly general patterns of
autocorrelation and heteroskedasticity of the disturbances. It is readily seen
that the row and column sums of products of matrices, whose row and column
sums are bounded uniformly in absolute value, are again uniformly bounded in
absolute value; see, e.g., Kelejian and Prucha (2004), Remark A.1. Because of
this, Assumptions 2 and 3 imply that the row and column sums of the variance-
covariance (VC) matrix of un (and similarly those of yn) are uniformly bounded
in absolute value, thus limiting the degree of correlation between, respectively,
the elements of un (and of yn). That is, making an analogy to the time se-
ries literature, these assumptions ensure that the disturbance process and the
process for the dependent variable exhibit a “fading” memory.5

2.2 Parameter Space for an Autoregressive Parameter

Assumption 1(b) defines the parameter space for the autoregressive parameters.
In discussing this assumption we focus onWn and λn. (An analogous discussion
applies to Mn and ρn.) In the existing literature relating to Cliff-Ord models
the parameter space for the autoregressive parameter is typically taken to be
the interval (−1, 1) and the autoregressive parameter is assumed not to depend
on the sample size. However, in applications it is typically found that for un-
normalized spatial weights matrices, In − λWn is singular for some values of
λ ∈ (−1, 1). To avoid this situation, many applied researchers normalize each
row of their spatial weights matrices in such a way that In−λWn is non-singular
for all λ ∈ (−1, 1). We now discuss the implications of various normalizations
of the spatial weight matrix.
Suppose cn denotes a scalar normalization factor. Clearly, this normalization

factor may depend on the sample size. For example, some of our results below
relate to the case in which cn corresponds to the maximal row or column sum
of the absolute values of the elements ofWn. Given such a normalizing factor,
an equivalent specification of model (1) for yn is obtained if λnWn is replaced
by λ∗nW

∗
n where λ∗n = cnλn and W∗

n = Wn/cn. It is important to observe
that even if λn and its corresponding parameter space do not depend on n, λ∗n
and its implied parameter space will depend on the sample size as a result of
the normalization of the spatial weights matrix.6 It is for this reason that we
allow in Assumption 1 for the elements of the spatial weights matrices, and the

5Of course, the extent of correlation is limited in virtually all large sample analysis; see,
e.g., Amemiya (1985), ch. 3,4, and Pötscher and Prucha (1997), ch. 5,6.

6The parameter space for λ∗n is given by (−cnaλn, cnaλn).
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autoregressive parameters and the corresponding parameter spaces to depend on
n. Of course, Assumption 1 also covers the case where the true data generating
process corresponds to a model where autoregressive parameters do not depend
on n.
Assumption 1 defines the parameter space for λn as an interval around zero

such that In − λWn is nonsingular for values λ in that interval. The following
trivial lemma gives bounds for that interval.

Lemma 1 Let τn denote the spectral radius ofWn; i.e.,

τn = max{|ν1,n| , . . . , |νn,n|}

where ν1,n, . . . , νn,n denote the eigenvalues ofWn. Then In − λWn is nonsin-
gular for all values of λ in the interval (−1/τn, 1/τn).7

Clearly, if we select (−1/τn, 1/τn) as the parameter space for λn, then all
eigenvalues of λnWn are less than one in absolute value. Thus if we interpret
(1) as an equilibrium relationship, then this choice of the parameter space rules
out unstable Nash equilibria. Of course, we obtain an equivalent specification of
the model if instead of working withWn we work with the normalized weights
matrixW∗

n =Wn/τn and select the interval (−1, 1) as the parameter space for
λ∗n = λnτn. Assumption 1 is sufficiently general to cover both cases.
For large sample sizes the computation of the eigenvalues on Wn is diffi-

cult. The following lemma gives boundaries, which are simple to compute, for
a (sub)set of values of λ for which In − λWn is nonsingular.

Lemma 2 Let

τ∗n = min{ max
1≤i≤n

nX
j=1

|wij,n| , max
1≤j≤n

nX
i=1

|wij,n|}.

Then τn ≤ τ∗n and consequently In − λWn is nonsingular for all values of λ in
the interval (−1/τ∗n, 1/τ∗n).

The above lemma suggests (−1/τ∗n, 1/τ∗n) as an alternative (although some-
what more restrictive) specification of the parameter space. Of course, we
obtain an equivalent model specification if we normalize the spatial weights ma-
trix by τ∗n and if we choose (−1, 1) as the parameter space for the autoregressive
parameter. Since the spectral radius is bound by any matrix norm, other norms
in place of the maximum absolute row and column sum norms can be used, but
τ∗n is especially easy to compute.
Rather than to normalizeWn by τn or τ∗n, in much of the empirical literature

the spatial weights matrices are normalized such that each row sums to unity.

7 In some of the spatial literature the following closely related claim can be found: In−λWn

is nonsingular for all values of λ in the interval (1/νn,min,1/νn,max), where νn,min and νn,max
denote the smallest and largest eigenvalue of Wn, respectively. This claim is correct for the
case in which all eigenvalues ofWn are real and νn,min < 0 and νn,max > 0. Since, e.g., the
eigenvalues ofWn need not be real, this claim does not hold in general.
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The motivation for this normalization is that ifWn is row-normalized then In−
λWn is nonsingular for all values of λ in the interval (−1, 1); this can be readily
confirmed via Lemma 2. However, this normalization is quite different than
those described above in that in row-normalizing a matrix one does not use a
single normalization factor, but rather a different factor for the elements of each
row. Therefore, in general, there exists no corresponding re-scaling factor for the
autoregressive parameter that would lead to a specification that is equivalent to
that corresponding to the un-normalized weights matrix. Consequently, unless
theoretical issues suggest a row-normalized weights matrix, this approach will
in general lead to a misspecified model.
The above discussion provides the motivation for our specification that the

autoregressive parameters may depend on n. Furthermore, since some of the
regressors may be spatial lags, we allow all of the model parameters to depend
on the sample size.

3 GM Estimator for the Autoregressive Para-
meter ρn

In the following we introduce a class of GM estimators for ρn that can be easily
computed, and prove their consistency and asymptotic normality under a set of
general assumptions. We note that the discussion in this section only maintains
model (2) for the disturbances un, but not necessarily (1) for yn. Thus the re-
sults will also be useful in other settings such as cases where yn is determined by
a nonlinear model; see, e.g. Kelejian and Prucha (2001, p. 228). The estimators
put forth below generalize the GM estimator for ρn introduced in Kelejian and
Prucha (1999). In contrast to that earlier paper we now allow for heteroskedas-
tic innovations εi,n, and optimal weighting of the moment conditions. We also
do not confine the parameter space for ρn to be the interval (−1, 1), and allow
ρn to depend on n. In our earlier paper we only demonstrated the consistency
of the estimator. In the following we also derive the asymptotic distribution of
the considered estimators.

3.1 Definition of the GM Estimator for ρn
In the following let eun denote some predictor of un. Furthermore, for notational
convenience let un = Mnun and un = Mnun = M2

nun, and correspondingly,eun = Mneun, and eun = M2
neun. Similarly, let εn = Mnεn. It is readily seen

that under Assumptions 1 and 2 we have the following moment conditions:

n−1Eε0nεn = n−1Tr
©
Mn

£
diagni=1(Eε

2
i,n)
¤
M0

n

ª
, (4)

n−1Eε0nεn = 0.

It proves convenient to rewrite these conditions as

n−1E

∙
ε0nA1,nεn
ε0nA2,nεn

¸
= 0 (5)
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with
A1,n =M

0
nMn − diagni=1(m

0
.i,nm.i,n), A2,n =Mn.

Under Assumptions 1 and 3 it is readily seen that the diagonal elements of
A1,n and A2,n are zero and that the row and column sums of A1,n and A2,n

are bounded uniformly in absolute value; see, e.g., Remark A.1 in Kelejian and
Prucha (2004).
Our GM estimators for ρn are based on these moments. Specifically, note

that in light of (2) εn = (In − ρnMn)un = un − ρnun and so εn = un − ρnun.
Substituting these expressions into (4) or (5) yields the following two equation
system:

γn − Γnαn = 0 (6)

whereαn = [ρn, ρ
2
n]
0 and the elements of Γn =

£
γrs,n

¤
r,s=1,2

and γn =
£
γ1,n, γ2,n

¤0
are given by

γ11,n = 2n−1E
n
u
0
nun − Tr [Mn [diag

n
i=1(ui,nui,n)]M

0
n]
o

(7)

= 2n−1Eu0nM
0
nA1,nun,

γ12,n = −n−1E
n
u
0
nun + Tr

£
Mn

£
diagni=1(u

2
i,n)
¤
M0

n

¤o
= −n−1Eu0nM0

nA1,nMnun,

γ21,n = n−1E(u0nun + u
0
nun)

= n−1Eu0nM
0
n(A2,n +A

0
2,n)un,

γ22,n = −n−1Eu0nun
= −n−1Eu0nM0

nA2,nMnun,

γ1,n = n−1E
©
u0nun − Tr

£
Mn

£
diagni=1(u

2
i,n)
¤
M0

n

¤ª
= n−1Eu0nA1,nun,

γ2,n = n−1Eu0nun

= n−1Eu0nA2,nun.

Now let eΓn = £eγrs,n¤r,s=1,2 and eγn = £eγ1,n, eγ2,n¤0 denote corresponding es-
timators for the elements of Γn and γn, which are obtained from the above
expressions for the elements of Γn and γn by suppressing the expectations op-
erator, and replacing the disturbances un, un, and un by their predictors eun,eun, and eun, respectively. Then, the empirical analog of the relationship in (6)
is

eγn − eΓnαn = υn, (8)

where υn can be viewed as a vector of regression residuals. Our GM estimators
of ρn, say eρn, are now defined as weighted nonlinear least squares estimators
based on (8). That is, let eΥn be a 2 × 2 symmetric positive semidefinite (mo-
ments) weighting matrix; then eρn is defined as
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eρn = eρn(eΥn) = argmin
ρ∈[−aρ,aρ]

(∙eγn − eΓn ∙ ρ
ρ2

¸¸0 eΥn ∙eγn − eΓn ∙ ρ
ρ2

¸¸)
. (9)

We note that the objective function for eρn remains well defined even for values
of ρn for which In− ρnMn is singular, which allows us to take the optimization
space for eρn to be any compact interval that contains the true parameter space.
For computational efficiency it is best to use the formulae for the elements of eΓn
and eγn corresponding to the first expression on the r.h.s. of (7) and to computeeun and eun recursively as eun =Mneun and eun =Mn

eun. In this fashion one can
avoid the computation ofM2

n, i.e., the computation of the product of two n×n
matrices.
We now relate the above estimator for the autoregressive parameter to the

GM estimator introduced in Kelejian and Prucha (1999). Under homoskedastic-
ity, σ2 = σ2i,n and so E[n

−1ε0nεn] = σ2, E[n−1ε0nεn] = σ2n−1Tr {MnM
0
n}, and

E[n−1ε0nεn] = 0. These three moment conditions underlie the GM estimator
suggested in Kelejian and Prucha (1999). Substituting the first of these moment
conditions into the second yields

E[
1

n
ε0nεn] = E[n−1ε0nεn]n

−1Tr {MnM
0
n} , (10)

E[
1

n
ε0nεn] = 0,

which is clearly a special case of (4) under homoskedasticity. It is not difficult
to see that the GM estimator suggested in our previous paper can be viewed as
being based on the two moment conditions in (10) with eΥn = diag(υn, 1) and

υn = 1/
h
1 +

£
n−1Tr {MnM

0
n}
¤2i
. 8

3.2 Consistency of the GM Estimator for ρn
To establish consistency of eρn we postulate the following additional assumptions.
Assumption 4 : Let eui,n denote the i-th element of eun. We then assume that

eui,n − ui,n = di.,n∆n

where di.,n and ∆n are 1×p and p×1 dimensional random vectors. Let dij,n be
the j-th element of di.,n. Then, we assume that for some δ > 0 E |dij,n|2+δ ≤
cd <∞ where cd does not depend on n, and that n1/2 k∆nk = Op(1).

8 If we rewrite the moment conditions in (10) in the form corresponding to (5), then A1,n =
M0

nMn − n−1Tr (MnM0
n) In and A2,n =Mn.
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Assumption 5 (a)The smallest eigenvalue of Γ
0

nΓn is uniformly bounded away
from zero.9 (b) eΥn−Υn = op(1), where Υn are 2× 2 non-stochastic symmetric
positive definite matrices. (c) The largest eigenvalues of Υn are bounded uni-
formly from above, and the smallest eigenvalues of Υn are uniformly bounded
away from zero.

Assumption 4 implies n−1
Pn

i=1 kdi.,nk
2+δ = Op(1), which was maintained

in Kelejian and Prucha (1999), and so is slightly stronger than their assumption.
Assumption 4 should be satisfied for typical linear spatial models where eui is
based on n1/2-consistent estimators of regression coefficients, di.,n denotes the
i-th row of the regressor matrix, and ∆n denotes the difference between the
parameter estimator and the true parameter values. In the next section we will
actually demonstrate that Assumption 4 holds for the estimated residuals of
model (1) based on an instrumental variable procedure. Assumption 4 should
also be satisfied for typical non-linear models provided the response function is
differentiable in the parameters, and the derivatives are (uniformly over the pa-
rameter space) bounded by some random variable with bounded 2+δ moments;
compare Kelejian and Prucha (1999).
Assumption 5 ensures that the smallest eigenvalue of Γ0nΥnΓn is uniformly

bounded away from zero and will be sufficient to permit us to demonstrate
that ρn is identifiably unique w.r.t. the nonstochastic analogue of the objective
function of the GM estimator. This analogue is given by the function in curly
brackets on the r.h.s. of (9) with eγn, eΓn and eΥn replaced by γn, Γn and Υn.
Under homoskedasticity and eΥn = Υn specified as at the end of the previous
subsection this assumption is in essence equivalent to Assumption 5 in Kelejian
and Prucha (1999).
Clearly Assumption 5 requires Γn to be nonsingular, or equivalently that

[tr (M0
nA1,nMnSu,n) , tr (M

0
nA2,nMnSu,n)]

0 is linearly independent of£
tr
¡
M0

n(A1,n +A
0
1,n)Su,n

¢
, tr
¡
M0

n(A2,n +A
0
2,n)Su,n

¢¤0
, which is readily seen

by observing thatEu0nM
0
nAi,nMnun = tr (M0

nAi,nMnSu,n) and n−1Eu0nM
0
n(Ai,n+

A0
i,n)un = tr

¡
M0

n(Ai,n +A
0
i,n)Su,n

¢
where Su,n = (In − ρnMn)

−1
Σn (In − ρnMn)

−1.
It is not difficult to see that this linear independence condition is an analogue
to identification conditions postulated in Lee (2007), Assumption 5(b), relating
to quadratic forms under homoskedasticity.
We note that while Assumption 5 should be satisfied in many settings, it does

not cover situations where all elements of the spatial weights matrix converge
to zero uniformly as n → ∞ - see Lee (2004) - since in this case the elements
of Γn would tend to zero. On the other hand, Assumption 5 does not generally

9That is, λmin(Γ
0
nΓn) ≥ λγ > 0 where λγ does not depend on n. More specif-

ically, in general Γn depends on Mn, ρn, σ21,n, . . . σ
2
n,n. Denoting this dependence as

Γn = Γn(Mn, ρn, σ
2
1,n, . . . σ

2
n,n) the assumption should be understood as to postulate that

inf
n
λmin Γn(Mn, ρn, σ

2
1,n, . . . σ

2
n,n)

0Γn(Mn, ρn, σ
2
1,n, . . . σ

2
n,n) > 0.

In this sense the assumption allows for λγ to depend on the sequence of spatial weights
matrices Mn, and on the true values of the autoregressive parameters ρn and variances.
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rule out settings whereMn is row normalized, there is an increasing number of
nonzero elements in each row, and the row sums of the absolute values of the
non-normalized elements are uniformly bounded.
The vector of derivatives (multiplied by minus one) of the moment conditions

(6) w.r.t. ρn is given by Jn = Γn[1, 2ρn]
0. As expected, the limiting distribution

of the GM estimator eρn will be seen to depend on the inverse of J0nΥnJn.
Assumption 5 also ensure that J0nΥnJn is nonsingular.
Because of the equivalence of matrix norms it follows from Assumption 5

that the elements of Υn and Υ−1n are O(1).
We can now give our basic consistency result for eρn.

Theorem 1 Let eρn = eρn(eΥn) denote the GM estimator defined by (9). Then,
provided the optimization space contains the parameter space, and given As-
sumptions 1-5, eρn − ρn

p→ 0 as n→∞.

Clearly the conditions of the theorem regarding eΥn and Υn are satisfied foreΥn = Υn = I2. In this case the estimator reduces to the nonlinear least squares
estimator based on (8). This estimator can, e.g., be used to obtain initial
consistent estimates of the autoregressive parameter. Choices of eΥn that lead
to an efficient GM estimator for ρn (but require some consistent initial estimate
of ρn) will be discussed below in conjunction with the asymptotic normality
result.

3.3 Asymptotic Distribution of the GM Estimator for ρn
Let Dn = [d01.,n, . . . ,d

0
n.,n]

0 where di.,n is defined in Assumption 4 so thateun − un = Dn∆n. To establish the asymptotic normality of eρn we need some
additional assumptions.

Assumption 6 For any n×n real matrix An whose row and column sums are
bounded uniformly in absolute value

n−1D0
nAnun − n−1ED0

nAnun = op(1).

A sufficient condition for Assumption 6 is, e.g., that the columns of Dn are
of the form πn+Πnεn, where the elements of πn are bounded in absolute value
and the row and column sums of Πn are uniformly bounded in absolute value;
see Lemma C.2. This will indeed be the case in many applications. In the next
section we will verify that this assumption holds for the model given by (1) and
(2), and where Dn equals the (negative of the) design matrix Zn.

Assumption 7 Let ∆n be as defined in Assumption 4. Then

n1/2∆n = n−1/2T0nεn + op(1),

where Tn is a n× p dimensional real nonstochastic matrix whose elements are
uniformly bounded in absolute value.
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As remarked above, typically ∆n denotes the difference between the para-
meter estimator and the true parameter values. Assumption 7 will be satisfied
by many estimators. In the next section we verify that this assumption indeed
holds for the considered instrumental variable estimators for the parameters of
model (1).
It may be helpful to provide some insight concerning the variance of the

limiting distribution of the GM estimator n1/2(eρn − ρn) given below. To that
effect we note that an inspection of the derivation of this limiting distribution in
Appendix C shows that it depends on the limiting distribution of the (properly
normalized) vector of quadratic forms

vn = n−1/2
∙

1
2ε
0
n(A1,n +A

0
1,n)εn + a

0
1,nεn

1
2ε
0
n(A2,n +A

0
2,n)εn + a

0
2,nεn

¸
(11)

where for r = 1, 2 the n × n matrices Ar,n are defined in (5), and where the
n× 1 vectors ar,n are defined as

ar,n = Tnαr,n (12)

with

αr,n = n−1E
£
D0
n (In − ρnM

0
n) (Ar,n +A

0
r,n) (In − ρnMn)un

¤
.

From (11) and (12) we see that, in general, the limiting distribution of n1/2(eρn−
ρn) will depend on the limiting distribution of n

1/2∆n via the matrix Tn, unless
αr,n = 0. Clearly, ifDn is not stochastic, then αr,n = 0. Within the the context
of model (1) and with Dn equal to the (negative of the) design matrix Zn this
would be the case if the model does not contain a spatial lag of the endogenous
variable.
Observing further that the diagonal elements of the matrices Ar,n are zero

it follows from Lemma A.1 that the VC matrix of the vector of quadratic forms
in (11) is given by Ψn = (ψrs,n) where for r, s = 1, 2

ψrs,n = (2n)
−1tr

£¡
Ar,n +A

0
r,n

¢
Σn

¡
As,n +A

0
s,n

¢
Σn

¤
+n−1a0r,nΣnas,n. (13)

We now have the following result concerning the asymptotic distribution ofeρn. We note that the theorem does not assume convergence of the matrices
involved.

Theorem 2 (Asymptotic normality) Let eρn be the weighted nonlinear least
squares estimators defined by (9). Then, provided the optimization space con-
tains the parameter space, given Assumptions 1-7, and given that λmin(Ψn) ≥
c∗Ψ > 0, we have

n1/2(eρn − ρn) = (J
0
nΥnJn)

−1J0nΥnΨ
1/2
n ξn + op(1) (14)

where

Jn = Γn

∙
1
2ρn

¸
, (15)

ξn = Ψ−1/2n vn
d→ N(0, I2)
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Furthermore n1/2(eρn − ρn) = Op(1) and

Ωρn(Υn) = (J
0
nΥnJn)

−1J0nΥnΨnΥnJn(J
0
nΥnJn)

−1 ≥ const > 0. (16)

The above theorem implies that the difference between the cumulative dis-
tribution function of n1/2(eρn − ρn) and that of N

£
0,Ωρn

¤
converges pointwise

to zero, which justifies the use of the latter distribution as an approximation of
the former.10

Remark 1. Clearly Ωρn(Ψ
−1
n ) = (J0nΨ

−1
n Jn)

−1 and Ωρn(Υn) −Ωρn(Ψ
−1
n ) is

positive semi-definite. Thus choosing eΥn as a consistent estimator forΨ−1n leads
to the efficient GM estimator. Such a consistent estimator will be developed
in the next subsection. As discussed in the proof of the above theorem, the
elements ofΨn are uniformly bounded in absolute value and hence λmax (Ψn) ≤
c∗∗Ψ for some c∗∗Ψ < ∞. Since by assumption also 0 < c∗Ψ ≤ λmin(Ψn) it follows
that the conditions on the eigenvalues of Υn postulated in Assumption 5 are
automatically satisfied by Ψ−1n We note that Ψn is, in general, only identical to
the VC matrix of the moment vector in (5) if ar,n = 0. The terms involving ar,n
reflect the fact that the GM estimator is based on estimators of the disturbances
un and not on the true disturbances. As noted above, Jn equals the vector of
derivatives (multiplied by minus one) of the moment conditions (6) w.r.t. ρn,
and thus Ωρn(Υn) has the usual structure, except that here Ψn is not identical
to the VC matrix of the moment vector.

Remark 2. From (11), (12), (14) and (15) we see that n1/2(eρn − ρn) depends
linearly on a vector of linear quadratic forms in the innovations εn plus a term
of order op(1). This result is helpful in establishing the joint distribution ofeρn with that of estimators of some of the other model parameters of interest.
In particular, it may be of interest to derive the joint limiting distribution of
n1/2∆n and n1/2(eρn − ρn). By Assumption 7, n

1/2∆n is asymptotically linear
in εn and hence the joint limiting distribution can be readily derived using the
CLT for linear quadratic forms given in Appendix A. We will illustrate this
below within the context of IV estimators for model (1).

We next introduce a consistent estimator for Ωρn . For this purpose let

eJn = eΓn ∙ 1
2eρn

¸
(17)

where eΓn is defined above by (7) and the discussion after that equation. We
next define a HAC type estimator for Ψn whose elements are defined by (13).
For this purpose let eΣn = diagi=1,...,n(eε2i,n)
10This follows from Corollary F4 in Pötscher and Prucha (1997). Compare also the discus-

sion on pp. 86-87 in that reference.
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with eεn = (In − eρnMn) eun. We furthermore need to specify an estimator for
ar,n = Tnαr,n. The matrix Tn introduced in Assumption 7 will in many
applications be of the form

Tn = FnPn with Fn = Hn or Fn = (In − ρnM
0
n)
−1
Hn, (18)

where Hn is a real nonstochastic n× p∗ matrix of instruments, and Pn is a real
nonstochastic p∗ × p matrix, with p as in Assumption 7. In the next section we
will consider instrumental variable estimators for the parameters of model (1)
and (2). In that section we will see that if∆n corresponds to these instrumental
variable estimators, then the matrix Tn will indeed have the above structure,
and where Pn can be estimated consistently by some estimator ePn. We now
define our estimator for Tn as11eTn = eFnePn with eFn =Hn or eFn = (In − eρnM0

n)
+
Hn. (19)

In light of (12) it now seems natural to estimate ar,n by

ear,n = eTneαr,n. (20)

with

eαr,n = n−1
£
D0
n (In − eρnM0

n) (Ar,n +A
0
r,n) (In − eρnMn) eun¤ .

Given the above we now introduce the following HAC type estimator eΨn =
(eψrs,n) where for r, s = 1, 2
eψrs,n = (2n)−1tr h¡Ar,n +A

0
r,n

¢ eΣn

¡
As,n +A

0
s,n

¢ eΣn

i
+n−1ea0r,n eΣneas,n. (21)

Furthermore, based on eΨn we define the following estimator for Ωρn :eΩρn = (
eJ0neΥneJn)+eJ0neΥn eΨn

eΥneJn(eJ0neΥneJn)+. (22)

The next theorem establishes the consistency of eΨn and eΩρn .

Theorem 3 : (VC matrix estimation) Suppose all of the assumptions of Theo-
rem 2, apart from Assumption 5, hold and that additionally all of the fourth mo-
ments of the elements of Dn are uniformly bounded. Suppose furthermore that
(a) that the elements of the nonstochastic matrices Hn are uniformly bounded
in absolute value,(b) supn |ρn| < 1 and the row and column sums of Mn are
bounded uniformly in absolute value by, respectively, one and some finite con-
stant (possibly after a renormalization of the weights matrix and parameter space
as discussed in Section 2.2), and (c) ePn −Pn = op(1) with Pn = O(1). Then

eΨn −Ψn = op(1), eΨ−1n −Ψ−1n = op(1).

11The reason for using the generalized inverse is that ρn defined by (9) is not forced to lie
in the parameter space, and thus In − ρnMn may be singular (where the probability of this
event goes to zero as the sample size increases).
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If furthermore Assumption 5 holds, then also

eΩρn −Ωρn = op(1).

The hypothesis of zero spatial correlation in the disturbances, i.e., H0 : ρn =

0, can now be tested in terms of N
h
0, eΩρn

i
.

Remark 3. We note that the above theorem also holds if eρn is replaced by
any other estimator eeρn with n1/2(eeρn−ρn) = Op(1). In case Fn =Hn condition
(b) can be dropped. The consistency result for eΨ−1n verifies that this estimator
for Ψ−1n can indeed be used in the formulation of an efficient GM estimator, as
discussed after Theorem 2.

Remark 4. The modules underlying the derivation of Theorems 2 and 3 can
be readily extended to cover a wider class of estimators. A crucial underlying
ingredient is the CLT for vectors of linear quadratic forms given in Appendix
A, which was used to establish the limiting distribution of the vector of linear
quadratic forms (11); that CLT is based on Kelejian and Prucha (2001). We
emphasize that while in (5) we consider two moment conditions, all of the above
results generalize trivially to the case where the GM estimator for ρn corresponds
to m moment conditions

n−1E[Eε0nA1,nεn, . . . , ε
0
nAm,nεn]

0 = 0, (23)

where the diagonal elements of Ar,n are zero and the row and column sums
of Ar,n are bounded uniformly in absolute value. The focus of this paper is
on two-step estimation procedures, which is motivated by their computational
simplicity, generality of the first step (where residuals may come from nonlinear
models) and, since at least under homoskedasticity, Monte Carlo experiments
suggest that very little efficiency is lost, see, e.g., Das, Kelejian and Prucha
(2003). Given instruments Hn, one-step GMM estimators for all parameters,
i.e., ρn, λn, βn, of the SARAR(1, 1) model could be defined by augmenting those
moment conditions (23) by the conditions

n−1EH0
nεn = n−1E[h0.1,nεn, . . . ,h

0
.p∗,nεn]

0 = 0. (24)

with
εn = (In − ρnMn)(yn −Xnβn − λnWnyn).

The limiting distribution of the stacked moment vector follows immediately
from the CLT for vectors of linear quadratic forms. Theorem 3 establishes
consistent estimation of the VC matrix of the vector of (normalized) linear
quadratic forms (11). Estimation of the VC matrix of the vector of (normalized)
linear quadratic forms corresponding to the stacked moment conditions (23)
and (24), is analogous. In fact, in this case estimation simplifies in that the
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components of the vector are either quadratic or linear, and the elements of the
linear terms hr,n are observed.12

3.4 Joint Asymptotic Distribution of GM Estimator for
ρn and Estimators of Other Model Parameters

In the following we discuss how the above results can be extended to obtain the
joint asymptotic distribution of the GM estimator for ρn and of other estimators
that are asymptotically linear in the innovations εn, i.e., that are of the form
considered in Assumption 7. As remarked above, the IV estimators for the
regression parameters of model (1) and (2) considered in the next section will
be of this form. Based on the joint distribution it will then be possible to test
joint hypothesis concerning ρn and other model parameters.
In the following we will give results concerning the joint asymptotic distrib-

ution of eρn − ρn and ∆n as considered in Assumptions 4 and 7 in conjunction
with the estimation of the disturbances un. Clearly, in general it will be of
interest to have available results not only concerning the joint asymptotic dis-
tribution of eρn−ρn and∆n, but also concerning other estimators, say,∆∗n that
are of the general form considered in Assumption 7. To avoid having to intro-
duce further notation we give our result in terms of eρn − ρn and ∆n, but then
comment on what changes would be needed in the formulae to accommodate
other estimators ∆∗n in place of ∆n. The discussion assumes that Tn = FnPn

and eTn = eFnePn as defined in the previous subsection.
In light of the above discussion we expect that the joint limiting distribu-

tion of n1/2(eρn − ρn) and n1/2∆n will depend on the limiting distribution of£
n−1/2F0nεn,v

0
n

¤0
. Observing again that the diagonal elements of the matrices

Ar,n are zero it follows from Lemma A.1 that the VC matrix of this vector of
linear and linear quadratic form is given by

Ψ◦,n =

∙
Ψ∆∆,n Ψ∆ρ,n
Ψ0∆ρ,n Ψn

¸
(25)

with Ψ∆∆,n = n−1F0nΣnFn, Ψ∆ρ,n = n−1F0nΣn [a1,n,a2,n] and where Ψn is
defined by (13). We shall also employ the following estimator for Ψ◦,n:

eΨ◦,n = " eΨ∆∆,n eΨ∆ρ,neΨ0∆ρ,n eΨn

#
(26)

12Several months after completing this paper we became aware of a paper by Lin and
Lee (2005) that considers an SAR(1) model with unknown heteroskedasticity. That paper
is complementary to this one, with a focus and extensive discussion of one-step estimation
procedures for that model among other things. That paper does not discuss specification
issues regarding the parameter space of the autoregressive parameters, which are considered
in this paper.
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with eΨ∆∆,n = n−1eF0n eΣn
eFn, eΨ∆ρ,n = n−1eF0n eΣn [ea1,n,ea2,n] and where eΨn is

defined by (21).

We now have the following result concerning the joint limiting distribution
of n1/2(eρn − ρn) and n1/2∆n.

Theorem 4 Suppose all of the assumptions of Theorem 3 hold, and λmin(Ψ◦,n) ≥
c∗Ψ◦ > 0. Then∙

n1/2∆n

n1/2(eρn − ρn)

¸
=

∙
P0n 0
0 (J0nΥnJn)

−1J0nΥn

¸
Ψ
1/2
◦,nξ◦,n + op(1),(27)

ξ◦,n = Ψ
−1/2
◦,n

h
n−1/2F0nεn,v

0
n

i0 d→ N(0, Ip∗+2).

Furthermore let

Ω◦,n =

∙
P0n 0
0 (J0nΥnJn)

−1J0nΥn

¸
Ψ◦,n

∙
Pn 0
0 ΥnJn(J

0
nΥnJn)

−1

¸
,(28)

eΩ◦,n =

" eP0n 0

0 (eJ0neΥneJn)+eJ0neΥn
# eΨ◦,n " ePn 0

0 eΥneJn(eJ0neΥneJn)+
#
(29)

then eΨ◦,n−Ψ◦,n = op(1), eΩ◦,n−Ω◦,n = op(1), and Ψ◦,n = O(1), Ω◦,n = O(1).

The above theorem implies that the difference between the joint cumulative
distribution function of n1/2 [∆0

n, (eρn − ρn)]
0 and that of N [0,Ω◦,n] converges

pointwise to zero, which justifies the use of the latter distribution as an ap-
proximation of the former. The theorem also states that eΩ◦,n is a consistent
estimator for Ω◦,n.

Remark 5. The above result generalizes readily to cases where we are in-
terested in the joint distribution between eρn − ρn and some other estimator,
say, ∆∗n, where n

1/2∆∗n = n−1/2T∗0n εn + op(1), T∗n = F
∗
nP
∗
n and eTn = eF∗neP∗n,

assuming that analogous assumptions are maintained for this estimator. In par-
ticular, the results remain valid, but with Ψ∆∆,n = n−1F∗0nΣnF

∗
n, Ψ∆ρ,n =

n−1F∗0nΣn [a1,n,a2,n], eΨ∆∆,n = n−1eF∗0n eΣn
eF∗n, eΨ∆ρ,n = n−1eF∗0n eΣn [ea1,n,ea2,n],

and Pn, ePn replaced by P∗n, eP∗n.
4 Instrumental Variable Estimator for δn
As remarked, the consistency and asymptotic normality results developed in an
important paper by Lee (2004) for the quasi-ML estimator for the SARAR(1,1)
model defined by (1) and (2) under the assumption of homoskedastic innovations
do not carry over to the case where the innovations are heteroskedastic. In
fact, under heteroskedasticity the limiting objective function of the quasi-ML
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estimator would generally not be maximized at the true parameter values, and
therefore the quasi-ML estimator would be inconsistent. Also, the asymptotic
normality results developed by Kelejian and Prucha (1998), Kelejian, Prucha
and Yuzefovich (2004) and Lee (2003) for instrumental variable (IV) estimators
of the SARAR(1,1) model do not carry over to the case where the innovations are
heteroskedastic. In the following we provide results concerning the asymptotic
distribution of IV estimators allowing the innovations to be heteroskedastic.
More specifically, we will show that the considered IV estimators satisfy certain
conditions such that their asymptotic distribution can be readily obtained via
Theorem 4. We also allow for a more general definition of the parameter space
of the spatial autoregressive parameters to avoid certain pitfalls discussed in
Section 2.

4.1 Instruments

It is evident from (3) that in generalWnyn will be correlated with the distur-
bances un, which motivates the use of IV estimation procedures. We maintain
the following assumptions w.r.t. the n×k regressor matrices Xn, and the n×p∗
instrument matrices Hn.

Assumption 8 : The regressor matrices Xn have full column rank (for n large
enough). Furthermore, the elements of the matrices Xn are uniformly bounded
in absolute value.

Assumption 9 : The instrument matrices Hn have full column rank p∗ ≥ k+1
(for all n large enough). Furthermore, the elements of the matrices Hn are
uniformly bounded in absolute value. Additionally Hn is assumed to, at least,
contain the linearly independent columns of (Xn,MnXn).

Assumption 10 : The instruments Hn satisfy furthermore:

(a) QHH = limn→∞ n−1H0
nHn is finite, and nonsingular.

(b) QHZ = p limn→∞ n−1H0
nZn and QHMZ = p limn→∞ n−1H0

nMnZn are fi-
nite and have full column rank. Furthermore, let QHZ∗(ρn) = QHZ −
ρnQHMZ, then the smallest eigenvalue of Q0

HZ∗(ρn)Q
−1
HHQHZ∗(ρn) is

bounded away from zero uniformly in n.

(c) QHΣH = limn→∞ n−1H0
nΣnHn is finite and nonsingular.

The above assumptions are similar to those maintained in Kelejian and
Prucha (1998, 2004), and Lee (2003), and so a discussion which is quite similar
to those given in those papers also applies here. Regarding the specification of
the instruments Hn observe first that

E(Wnyn) =Wn (In − λnWn)
−1
Xnβn =

∞X
i=0

λinW
i+1
n Xnβn (30)
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provided that the characteristic roots of λnWn are less than one in absolute
value; compare Lemma 1 and 2 concerning the choice of the parameter space for
λn. The instrument matrices Hn will be used to instrument Zn = (Xn,Wnyn)
and MnZn = (MnXn,MnWnyn) in terms of their predicted values from a
least squares regression on Hn, i.e., bZn = PHn

Zn and \MnZn = PHn
MnZn

with PHn = Hn(H
0
nHn)

−1H0
n. Towards approximating the ideal instruments

E(Zn) = (Xn,WnE(yn)) and E(MnZn) = (MnXn,MnWnE(yn)) it seems
reasonable, in light of (30), to takeHn to be a subset of the linearly independent
columns of

(Xn,WnXn,W
2
nXn, . . . ,W

q
nXn,MnXn,MnWnXn, , . . . ,MnW

q
nXn) (31)

where q is a pre-selected finite constant.13 We note that if Hn is selected as in
(31) it follows from Assumptions 3 and 8 that its elements will be bounded in
absolute value as postulated in Assumption 9. Assumption 9 ensures that Xn

and MnXn are instrumented by themselves. Finally we note that the assump-
tion that Hn has full column rank could be relaxed at the expense of working
with generalized inverses.

4.2 Definition, Consistency and Asymptotic Normality

Towards estimating the model (1) and (2) we propose a three step procedure.
In the first step the model is estimated by two stage least squares (2SLS) using
the instruments Hn. In the second step the autoregressive parameter, ρn, is
estimated using the generalized moments estimation approach from Section 3
based on the 2SLS residuals obtained via the first step. In the third step, the
regression model in (1) is re-estimated by 2SLS after transforming the model via
a Cochrane-Orcutt-type transformation to account for the spatial correlation.
More specifically, the first step 2SLS estimator is defined as:eδn = (bZ0nZn)−1bZ0nyn, (32)

where bZn = PHnZn = (Xn, \Wnyn) and \Wnyn = PHnWnyn. In the second
step we estimate ρn by the GM procedure defined by (9) based on the 2SLS
residuals eun = yn − Zneδn. We denote the GM estimator again as eρn.
The next lemma shows that various assumptions maintained in Section 3

w.r.t. the estimator of the regression parameters and estimated residuals are
automatically satisfied by the 2SLS estimator eδn and the corresponding residu-
als.

Lemma 3 : Suppose Assumptions 1-3 and 8-10 hold, and supn kβnk < ∞.
Let Dn = −Zn, then the fourth moments of the elements of Dn are uniformly

13 In Kelejian, Prucha, and Yuzefovich (2004), who considered the case of homoskedastic
innovations, the instruments were determined more generally by taking q as a function of the
sample size n, i.e., qn, such that qn →∞ as n→∞. Their Monte Carlo results suggest that
q = 2 may be sufficient for many applications.
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bounded, Assumption 6 holds, and:
(a) n1/2(eδn − δn) = n−1/2T0nεn + op(1) with Tn = FnPn and where

Pn = Q−1HHQHZ[Q
0
HZQ

−1
HHQHZ]

−1,

Fn = (In − ρnM
0
n)
−1
Hn.

(b) n−1/2T0nεn = Op(1).
(c) Pn = Op(1) and ePn −Pn = op(1) forePn = (n−1H0

nHn)
−1(n−1H0

nZn)×
[(n−1Z0nHn)(n

−1H0
nHn)

−1(n−1H0
nZn)]

−1,

The condition supn kβnk < ∞ is trivially satisfied if βn = β. Of course,
parts (a) and (b) together imply that eδn is n1/2-consistent for δn.
Clearly eun = un + Dn∆n with Dn = −Zn and ∆n = eδn − δn. Lemma

3 shows that in essence under Assumptions 1-3 and 8-10 the 2SLS residuals
automatically satisfy the conditions postulated in Assumptions 4, 6 and 7 with
Dn = −Zn, ∆n = eδn−δn and Tn as specified in the lemma. Consequently the
results concerning consistency and asymptotic normality of the GM estimator
for ρn in Theorems 1 and 2 apply in particular to the GM estimator eρn based
on 2SLS residuals. Lemma 3 also establishes that the fourth moments of the
elements of Dn = −Zn are uniformly bounded. The lemma also gives explicit
expression for Pn and ePn and verifies the conditions postulated w.r.t. to those
matrices in Theorems 3 and 4. Hence the results of those two theorems also
cover the GM estimator eρn and the 2SLS estimator eδn. In particular, Theorem 4
gives the joint limiting distribution of n1/2(eρn−ρn) and n1/2∆n = n1/2(eδn−δn)
where Dn = −Zn, the matrices Pn, Fn, ePn are as in Lemma 3, and eFn =
(In − eρnM0

n)
+
Hn.14

We now turn to the third step. Applying a Cochrane-Orcutt-type transfor-
mation to (1) yields

yn∗(ρn) = Zn∗(ρn)δn + εn, (33)

where yn∗(ρn) = yn − ρnMnyn and Zn∗(ρn) = Zn − ρnMnZn. Our estimatorbδn for δn in this third step is now defined as the 2SLS procedure applied to the
transformed model (33) after replacing ρn by eρn. That is,bδn = [bZn∗(eρn)0Zn∗(eρn)]−1bZn∗(eρn)0yn∗(eρn) (34)

where bZn∗(eρn) = PHnZn∗(eρn). To express the dependence of bδn on eρn we also
write bδn = bδn(eρn).
14An alternative estimation approach is to use a HAC procedure to estimate the variance

covariance matrix of the 2SLS estimator. Such an approach was considered in Pinske, Slade,
and Brett (2002) and Kelejian and Prucha (2005). While such an approach is more robust,
it does not yield a simple testing strategy for a joint test of spatial dependencies in the
endogenous, exogenous and disturbances.
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The next lemma shows again that various assumptions maintained in Section
3 w.r.t. the estimator of the regression parameters and estimated residuals
are automatically satisfied by the generalized spatial 2SLS estimator bδn and
corresponding residuals.

Lemma 4 : Suppose the assumptions of Lemma 3, and let bδn(bρn) be as defined
by (34), where bρn is any n1/2-consistent estimator for ρn (such as the GM
estimator eρn based on 2SLS residuals). Then
(a) n1/2[bδn(bρn)− δn] = n−1/2T∗0n εn + op(1) with T∗n = F

∗
nP
∗
n and where

P∗n = Q−1HHQHZ∗(ρn)[Q
0
HZ∗(ρn)Q

−1
HHQHZ∗(ρn)]

−1

F∗n = Hn.

(b) n−1/2T∗0n εn = Op(1).
(c)P∗n = Op(1) and eP∗n −P∗n = op(1) foreP∗n = (n−1H0

nHn)
−1(n−1H0

nZn∗(bρn))×£
(n−1Z0n∗(bρn)Hn)(n

−1H0
nHn)

−1(n−1H0
nZn∗(bρn))¤−1 .

Frequently we will be interested in the joint distribution of the generalized
spatial 2SLS estimator bδn(ρ̂n) and the GM estimator eρn. In light of Lemma
3 and 4 the limiting distribution of n1/2

h
(bδn − δn)0, (eρn − ρn)

i0
now follows

immediately from Theorem 4 and Remark 5 after that theorem, with ∆∗n =bδn − δn. The asymptotic variance covariance matrix and its corresponding
estimator are given by (28) and (29) with modifications as described in Remark
5 andDn = −Zn. The expressions for the matrices Pn, Fn, ePn are as in Lemma
3, and eFn = (In − eρnM0

n)
+Hn. The expressions for the matrices P∗n, F

∗
n, eP∗n

are as in Lemma 4, and eF∗n = Hn. The joint distribution can then be used to
test in particular the joint hypothesis H0 : λn = ρn = 0 in the usual manner.
Finally, consider the estimated residuals corresponding to bδn, i.e., eu∗n =

yn − Znbδn = un + Dn∆
∗
n. Clearly, in light of Lemma 4 we could use those

residuals to define a corresponding GM estimator based on those residuals, and
a discussion analogous to that after Lemma 3 would also apply applies here. Of
course, further iterative procedures are possible, and their asymptotic properties
would again be covered by the asymptotic theory developed above.

Remark 6. The estimation theory of Section 3 was developed under a set of
fairly general assumptions. The results given in this section are illustrative as
to how Assumptions 4, 6, 7 can be implied for the 2SLS and GS2SLS estimator
of the SARAR(1,1) model from the more primitive Assumptions 8 - 10. The
assumption that Xn is nonstochastic rules out the presence of endogenous re-
gressors (apart from the spatial lagWnyn). Now suppose that Xn =

£
Xn,Yn

¤
and correspondingly Dn = −Zn = −

£
Xn,Yn,Wnyn

¤
, where Xn satisfies As-

sumptions 8-10, with Xn replaced by Xn (including in the formulation of the
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instruments), and where Yn is a matrix of endogenous variables. Then given
the fourth moments of the elements of Dn are uniformly bounded, and As-
sumption 6 holds, parts (a),(b) and (c) of Lemmata 3 and 4 still hold but withbZn = PHnZn =

£
Xn,PHnYn,PHnWnyn

¤
and

bZn∗(eρn) = PHnZn∗(eρn)
=

£
(In − eρnMn)Xn,PHn (In − eρnM0

n)Yn,PHn (In − eρnMn)Wnyn)
¤
.

In specifying a full system of equations analogous to Kelejian and Prucha (2004)
one could furthermore develop more primitive conditions that ensure the mo-
ment condition for the elements of Dn as well as Assumption 6.

5 Some Monte Carlo Results

In order to obtain some insights relating to the small sample properties of our
suggested estimators, as well as the quasi-maximum likelihood estimator, we
undertook a limited Monte Carlo study. Our study is limited in that we only
considered one set of parameter values. On the other hand, we consider four
different sample sizes, as well as a case in which the innovations are heteroskedas-
tic, and one in which they are homoskedastic. Although our results are quite
suggestive, clearly a more extensive Monte Carlo study is of interest.15

Our Monte Carlo study relates to the model in (1) and (2) withM =W.16

We also took X = [x1,x2] to be an n × 2 matrix of observations on two ex-
ogenous variables. The four values of the sample size, n, we considered are
250, 500, 1000, and 2000. In all the simulations, the values of x1 and x2 are
based on data described in Kelejian and Robinson (1992) which relate to income
per capita and the percent of rental housing in 1980 in 760 counties in the US
mid-western states. The 760 observations on the income and rental variables
were normalized to have zero mean and unit variance. We repeated the sample
of 760 observations to generate samples of larger sizes. For sample sizes n = 250
and 500 we used the first 250 or 500 observations. In formulating the W ma-
trix we took guidance from the specification considered in Kelejian and Prucha
(1999). They considered a weights matrix, to which they referred to as “5 ahead
and 5 behind”. The reason for their designation is that the non-zero elements
in the i-th row ofW are in positions i + 1, . . . , i + 5, i + 3, and i − 1, ..., i − 5,
for i = 6, ..., n− 5. Thus, in these rows the i-th element of u is directly related
to the five elements of u directly after it and to the five directly before. The
matrix W is defined in a circular world so that, e.g., in the first row the non-
zero elements are in positions 2, ..., 6 (i.e., five ahead) and n, ..., n− 5, (i.e., five
15We note that such a study is currently being conducted by Irani Arraiz, David Drukker

and the authors, but given its dimensions such a study is outside of the scope of the present
paper.
16For ease of notation, in this section we do not indicate the possible dependence of various

quantities on the sample size.
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behind). The positioning of the non-zero elements in rows 2, ..., 6, n, ..., n−5 are
determined analogously. Our specification follows Kelejian and Prucha (1999),
but modifies the weights matrix such that the middle third of the units only
have two neighbors, one immediately ahead and one immediately behind, and
so the number of neighbors di varies in our specification. The matrix was row
normalized in that in each row the nonzero elements were set equal to 1/di.
In all of our experiments the true model parameter values were: λ = 0.3,

β0 = (1, 1) and ρ = −0.8. Let ξi denote independent draws from the standard
normal distribution. In the homoskedastic case the innovations were generated
as εi = σξi with σ2 = 2, and in the heteroskedastic case as εi = σiξi with
σ2i = di/4, which yields an average variance of approximately 2. In all cases the
dependent vector y was generated in term of the reduced form (3). For each
Monte Carlo experiment we performed 2000 Monte Carlo iterations.
Our Monte Carlo results are given in Table 1. They relate to the general-

ized spatial 2SLS estimator bδ(eρ) defined in (34) based on the instrument matrix
H = [X,WX,W2X] and with eρ the efficient GM estimator based on 2SLS

residuals. We denote the estimator as bδGS = (bβ0GS , bλGS)0. Furthermore, we
also report on the efficient GM estimator for ρ based on generalized spatial
2SLS residuals, and denote the estimator as bρGS . We also compute an estimate
of the asymptotic variance covariance matrix of (bδ0GS ,bρGS)0 based on (29) using
the results collected in Lemma 4, and compute rejection rates based on corre-
sponding t-test statistics or the respective hypotheses that the parameters are
equal to the true values. The test are performed at a nominal 5 percent signifi-
cance, using the normal limiting distribution as an approximation for the critical
values. For comparison we also report on the quasi-normal ML estimator for δ
and ρ, which we denote as bδML = (bβ0ML,

bλML)
0 and bρML. The rejection rates

are computed based on t-test statistics, using (as would frequently be the case)
the inverse of the negative Hessian of the log-likelihood function as the estimator
for the asymptotic variance covariance matrix of the quasi ML estimator.
In Table 1 we report on the Monte Carlo estimates of the mean and standard

deviations of bρGS , bλGS , bβ1,GS , bβ2,GS and bρML,
bλML, bβ1,ML,

bβ2,ML. Focusing on
the heteroskedastic case we see that the generalized spatial 2SLS/GM estimators
shows very little bias even in small samples. In contrast, the ML estimators are
significantly biased. For example, for n = 1000 the ML estimates for ρ and λ are
-.584 and .210, while the true values are -.8 and .3, respectively. The biases do
not decline with the sample size. To further explore the cause of the biases we
first note that we expect the ML estimator to converge to the maximizers of the
expected log-likelihood function. Hence we have also computed the maximizers
of the expected log-likelihood function, which are reported in the column “Max”
in Table 1. It turns out that under heteroskedasticity, for the experiment at
hand, those maximizers are different from the true parameter values, and that
indeed the ML estimators seem to converge to those maximizers. The rejection
rates of the tests corresponding to the generalized spatial 2SLS/GM estimators
are reasonably close to the nominal value of 0.05. For example, for n = 1000, the
rejection rates range from 0.046 to 0.054. This suggests that the derived large
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sample distribution and the developed estimators of the asymptotic variance
covariance matrix are indeed useful towards approximating the small sample
distribution. The rejection rates for the ML estimators range, as is expected
due to the serious biases, from 0.176 to 1.000.
Under homoskedasticity the expected log-likelihood function is maximized at

the true paramter values, and both the generalized spatial 2SLS/GM estimators
and ML estimators show very little bias. We also note that the loss of efficiency
of the generalized spatial 2SLS/GM estimators relative to the ML estimators
seems generally modest.
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Table 1: Monte Carlo Estimates

Estimator Heteroskedasticity Homoskedasticity
True Max Mean Std.Dev. Rejct.Rate Max Mean Std.Dev. Rejct.Rate

n=250
ρGS -0.8 -.795 .0968 .041 -.788 .0660 .070
λGS 0.3 .297 .0781 .053 .288 .0816 .073
β1,GS 1.0 .999 .1039 .062 1.006 .0999 .071
β2,GS 1.0 .999 .1046 .069 1.004 .0998 .067
ρML -0.8 -0.585 -.578 .0715 .859 -0.8 -.789 .0518 .046
λML 0.3 0.211 .203 .0670 .294 0.3 .290 .0602 .048
β1,ML 1.0 1.067 1.069 .0961 .144 1.0 1.006 .0902 .050

β2,ML 1.0 1.040 1.041 .1026 .098 1.0 1.003 .0959 .058
n=500

ρGS -0.8 -.795 .0557 .046 -.795 .0406 .055
λGS 0.3 .299 .0504 .057 .296 .0506 .051
β1,GS 1.0 .998 .0713 .061 1.001 .0724 .060

β2,GS 1.0 1.001 .0641 .044 1.004 .0666 .049
ρML -0.8 -.590 -.586 .0495 .999 -0.8 -.795 0352 .058
λML 0.3 .218 .216 .0425 .458 0.3 .296 .0414 .049
β1,ML 1.0 1.073 1.072 .0647 .177 1.0 1.001 .0662 .052
β2,ML 1.0 1.040 1.042 .0618 .092 1.0 1.004 .0643 .049

n=1000
ρGS -0.8 -.798 .0377 .047 -.798 .0275 .049
λGS 0.3 .299 .0361 .048 .298 .0365 .050
β1,GS 1.0 1.001 .0509 .054 1.001 .0501 .054
β2,GS 1.0 .999 .0472 .046 1.000 .0470 .043
ρML -0.8 -.586 -.584 .0346 1.000 -0.8 -.798 .0239 .056
λML 0.3 .212 .210 0304 .819 0.3 .297 .0297 .050
β1,ML 1.0 1.071 1.073 .0465 .348 1.0 1.002 .0457 .053
β2,ML 1.0 1.050 1.050 .0449 .176 1.0 1.001 .0448 .037

n=2000
ρGS -0.8 -.799 .0267 .055 -.798 .0195 .052
λGS 0.3 .299 .0254 .053 .299 .0258 .056
β1,GS 1.0 1.000 .0351 .048 1.001 .0354 .053
β2,GS 1.0 .999 .0324 .043 1.000 .0325 .044
ρML -0.8 -.587 -.585 .0247 1.000 -0.8 -.798 .0171 .050
λML 0.3 .214 .213 .0217 .980 0.3 .298 .0215 .055
β1,ML 1.0 1.076 1.076 .0320 .651 1.0 1.002 .0324 .050
β2,ML 1.0 1.047 1.046 .0306 .295 1.0 1.000 .0311 .047
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6 Summary and Suggestions for Further Research
In this paper we introduce a new class of GM estimators for the autoregressive
parameter of a spatially autoregressive disturbance process allowing for inno-
vations with unknown heteroskedasticity. The estimation theory for the GM
estimators is developed in a modular fashion under a fairly general set of as-
sumptions, and should cover many (linear and nonlinear) models. The general
theory is then utilized to establish the consistency and asymptotic normality
of IV estimators for the regression parameters for an important class of spa-
tial models, frequently referred to as SARAR(1, 1) models. The paper provides
results concerning the joint asymptotic distribution of the GM estimator for
the autoregressive parameter of the disturbance process and IV estimators for
the model regression parameters. Among other things, the results allow for a
joint test that the autoregressive parameters corresponding to the spatial lags of
the dependent variable and disturbance term are both zero We also provide a
discussion of the specification of the parameter space for SARAR(1, 1) models.
We demonstrate that a computationally simple re-scaling of the weights matrix
leads to an equivalent model containing a (re-scaled) autoregressive parameter
which has a user-friendly parameter space. Unfortunately, previous studies in
the literature have often re-scaled their weights matrix in such a way that the
“before and after” scaled models are not equivalent.
One suggestion for further research is to extend the results to panel data. A

further suggestion for future research would be a comprehensive Monte Carlo
study which focuses on the small sample properties of the considered estima-
tors. Such a study may also consider comparisons with the quasi-ML estimator
(specified under homoskedasticity).
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A Appendix: CLT for Vectors of Linear Quadratic
Forms

In the following we state, for the convenience of the reader, a central limit
theorem (CLT) for vectors of linear quadratic forms with heteroskedastic inno-
vations. This CLT is based on a CLT given in Kelejian and Prucha (2001) for
the scalar case. We first state a lemma that collects useful results on the mean
and VC matrix between (and as a special case the variance of) linear quadratic
forms.

Lemma A.1 : Let ζ = (ζ1, . . . , ζn)
0 be a random vector with zero mean and

positive definite variance covariance matrix Ξ, let A= (aij) and B= (bij) be
n×n nonstochastic symmetric matrices, and let a and b be n× 1 nonstochastic
vectors. Consider the decomposition Ξ = SS0, let A∗ = (aij,∗) = S0AS and
B∗ = (bij,∗) = S

0BS, and let a∗ = S0a and let b∗ = S0b. Furthermore let η =
(η1, . . . , ηn)

0 = S−1ζ. Then assuming that the elements of η are independently
distributed with zero mean, unit variance, and finite third and fourth moments
E(η3i ) = μ

(3)
ηi and E(η

4
i ) = μ

(4)
ηi we have

E(ζ0Aζ + a0ζ) = tr(A∗) = tr(AΞ),

cov(ζ0Aζ + a0ζ, ζ0Bζ + b0ζ) = 2tr(AΞBΞ) + a0Ξb

+
nX
i=1

aii,∗bii,∗
h
μ(4)ηi
− 3
i
+

nX
i=1

(ai,∗bii,∗ + bi,∗aii,∗)μ
(3)
ηi
.

Remark A.1. The above expression for the covariance exploits the indepen-
dence of the elements of η. A convenient way to obtain these expressions is to
re-write the linear quadratic form as a sum of martingale differences as, e.g., in
Kelejian and Prucha (2001, Appendix A). If the diagonal elements of A∗ and
B∗ are zero the last two terms drop out from the expression for the covariance,
and so one need only assume the existence of second moments. The last two
terms also drop out from the expression for the covariance in the case where
ζ — or equivalently η — is normally distributed, since in this case μ(3)ηi = 0 and

μ
(4)
ηi = 3. Of course, the variance of a linear quadratic form is obtained as the
special case where A = B and a = b. Obviously, in case A and B are not
symmetric the above formulae apply with A and B replaced by (A+A0)/2 and
(B+B0)/2.

Consider the linear quadratic forms (r = 1, . . . ,m)

Qr,n = ξ0nAr,nξn + a
0
r,nξn

where ξn = (ξ1,n, . . . , ξn,n)
0 is an n× 1 random vector, Ar,n = (aij,r,n)i,j=1,...,n

is an n× n nonstochastic real matrix, and ar,n = (a1,r,n, . . . , an,r,n)
0 is an n× 1

nonstochastic real vector. We maintain the following assumptions:
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Assumption A.1 The real valued random variables of the array {ξi,n : 1 ≤ i ≤
n, n ≥ 1} satisfy Eξi,n = 0. Furthermore, for each n ≥ 1 the random variables
ξ1,n, . . . , ξn,n are totally independent.

Assumption A.2 For r = 1, . . . ,m the elements of the array of real numbers
{aij,r,n : 1 ≤ i, j ≤ n, n ≥ 1} satisfy aij,r,n = aji,r,n and sup1≤j≤n,n≥1

Pn
i=1 |aij,r,n| <

∞. The elements of the array of real numbers {ai,r,n : 1 ≤ i ≤ n, n ≥ 1} satisfy
supn n

−1Pn
i=1 |ai,r,n|

2+η1 <∞ for some η1 > 0.

Assumption A.3 For r = 1, . . . ,m one of the following two conditions holds:

(a) sup1≤i≤n,n≥1E
¯̄
ξi,n

¯̄2+η2 <∞ for some η2 > 0 and aii,r,n = 0.

(b) sup1≤i≤n,n≥1E
¯̄
ξi,n

¯̄4+η2 <∞ for some η2 > 0 (but possibly aii,r,n 6= 0).

Let μQr,n
and σQrs,n denote the mean of Qr,n and the covariance between

Qr,n and Qs,n, respectively, for r, s = 1, . . . ,m. Then it follows immediately
from Lemma A.1 that under Assumptions A.1 and A.3

μQr,n
=

nX
i=1

aii,r,nσ
2
i,n,

σQrs,n = 2
nX
i=1

nX
j=1

aij,r,naij,s,nσ
2
i,nσ

2
j,n +

nX
i=1

ai,r,nai,s,nσ
2
i,n

+
nX
i=1

aii,r,naii,s,n

h
μ
(4)
i,n − 3σ4i,n

i
+

nX
i=1

(ai,r,naii,s,n + ai,s,naii,r,n)μ
(3)
i,n

where σ2i,n = Eξ2i,n, μ
(3)
i,n = Eξ3i,n and μ

(4)
i,n = Eξ4i,n. In case Assumption A.3(a)

holds, the mean of Qr,n is zero and the last two terms drop out from the
expression for the variance.
In the following we give a CLT for the m×1 vector of linear quadratic forms

Vn =
£
Q1,n , . . . , Qm,n

¤0
.

Let μVn = EVn = [μQ1,n
, . . . , μQm,n

]0 and ΣVn = [σQrs,n ]r,s=1,..,m denote the
mean and VC matrix of Vn, respectively. We then have the following theorem.

Theorem A.1 Suppose Assumptions A.1-A.3 hold and n−1λmin(ΣVn) ≥ c for

some c > 0. Let ΣVn =
³
Σ
1/2
Vn

´³
Σ
1/2
Vn

´0
, then

Σ
−1/2
Vn

(Vn − μVn)
d→ N(0, Im).
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Remark A.2. Since the diagonal elements of a positive definite matrix are
greater than or equal to the smallest eigenvalue of that matrix it follows that
n−1λmin(ΣVn) ≥ c implies that n−1σQn,ii ≥ c. Therefore this assumption
automatically implies the assumption maintained in Theorem 1 of Kelejian and
Prucha (2001) w.r.t. the variance of a linear quadratic form for each of the linear
quadratic forms Qr,n. Of course, the theorem remains valid, if all assumptions
are assumed to hold for n > n0 where n0 is finite.

Proof of Theorem A.1 : Let α be some arbitrary m×1 vector with kαk = 1,
let

πn = (π1,n, . . . , πm,n) = n1/2α0Σ
−1/2
Vn

,

and define

Qn = n1/2α0Σ
−1/2
Vn

Vn =
mX
r=1

πr,nξ
0
nAr,nξn +

mX
r=1

πr,na
0
r,nξn = ξ0nCnξn + d

0
nξn,

where Cn =
Pm

r=1 πr,nAr,n and dn =
Pm

r=1 πr,nar,n. Observe that

μQn
= EQn = n1/2α0Σ

−1/2
Vn

μVn =
mX
r=1

πr,nμQr,n
,

σ2Qn
= var(Qn) = nα0Σ

−1/2
Vn
ΣVnΣ

−1/20
Vn

α = n.

To prove the theorem, using the Cramer Wold device, it suffices to show that

α0Σ
−1/2
Vn

(Vn − μV,n) =
Qn − μQn

σQn

d→ N(0, 1). (A.1)

To show that (A.1) holds we verify that ξn and Cn and dn satisfy the conditions
of Theorem 1 in Kelejian and Prucha (2001). Assumptions A.1 and A.3 are
identical to Assumptions 1 and 3 in Kelejian and Prucha (2001). Furthermore,
n−1σ2Qn

= 1. Thus it suffices to verify that Assumption 2 in Kelejian and
Prucha (2001) holds for the elements of Cn and dn.
Clearly λmax(nΣ

−1
Vn
) = 1/λmin(n

−1ΣVn) ≤ 1/c. By Proposition 43 in Dhrymes
(1978, p. 470) the matrices nΣ−1Vn = nΣ

−1/20
Vn

Σ
−1/2
Vn

and nΣ−1/2Vn
Σ
−1/20
Vn

have the

same characteristic roots. Thus kπnk2 = α0(nΣ
−1/2
Vn
Σ
−1/20
Vn

)α ≤ λmax(nΣ
−1/2
Vn
Σ
−1/20
Vn

) kαk2 =
λmax(nΣ

−1
Vn
) ≤ 1/c <∞, and hence |πr,n| ≤ cπ where cπ = 1/

√
c.

Observe that

|cij,n| =
mX
r=1

|πr,n| |aij,r,n| ≤ cπ

mX
r=1

|aij,r,n|

and hence

sup
1≤j≤n,n≥1

nX
i=1

|cij,n| ≤ cπ

mX
r=1

sup
1≤j≤n,n≥1

nX
i=1

|aij,r,n| <∞
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in light of Assumption A.2. This shows that the elements of Cn satisfy Assump-
tion 2 in Kelejian and Prucha (2001).
Next observe that

|di,n|2+η1 ≤
"

mX
r=1

|πr,n| |ai,r,n|
#2+η1

≤ c2+η1π

"
mX
r=1

|ai,r,n|
#2+η1

≤ c2+η1π m2+η1

mX
r=1

|ai,r,n|2+η1

and hence

sup
n

n−1
nX
i=1

|di,n|2+η1 ≤ c2+η1π m2+η1

mX
r=1

sup
n

n−1
nX
i=1

|ai,r,n|2+η1 <∞

in light of Assumption A.2. Therefore the elements of dn satisfy Assumption 2
in Kelejian and Prucha (2001). ¥

B Appendix: Proofs for Section 2
Proof of Lemma 1: Clearly In − λWn is non-singular for λ = 0. For λ 6= 0
we have det(In − λWn) = (−λ)n det(Wn − λ−1In). Consequently In − λWn

is non-singular for values of λ−1 /∈ {ν1,n, . . . , νn,n}. In particular, In − λWn

is non-singular for
¯̄
λ−1

¯̄
> τn. Rewriting this last inequality as |λ| < τ−1n

completes the proof.

Proof of Lemma 2 : As an immediate consequence of Geršgorin’s The-
orem — see, e.g., Horn and Johnson (1985), pp. 344-346 — we have τn =
max{|ν1,n| , . . . , |νn,n|} ≤ τ∗n. The claim now follows from Lemma 1.

C Appendix: Proofs for Section 3

Remark C.1. Suppose the row and column sums of the np × np matrices
An = (aij,n) are bounded uniformly in absolute value by some finite constants
cA, then

Pnp
i=1 |aij,n|

q ≤ cqA for q > 1 This result is trivially seen to hold sincePnp
i=1 |aij,n|

q
= cq−1A

Pnp
i=1 |aij,n| |aij,n/cA|

q−1 ≤ cq−1A

Pnp
i=1 |aij,n| ≤ cqA.

We shall make use of the following lemma.

Lemma C.1 : Suppose the row and column sums of the real nonstochastic n×n
matrices An are uniformly bounded in absolute value. Let un be defined by (2)
and let eun denote a predictor for un. Suppose Assumptions 1 - 4 hold then:
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(a) n−1E |u0nAnun| = O(1), var(n−1u0nAnun) = o(1) and

n−1eu0nAneun − n−1Eu0nAnun = op(1).

(b) n−1E
¯̄
d0.s,nAnun

¯̄
= O(1), s = 1, . . . , p, where d.s,n denotes the s-th col-

umn of Dn, and

n−1D0
nAneun − n−1ED0

nAnun = op(1).

(c) If furthermore Assumption 6 holds, then

n−1/2eu0nAneun = n−1/2u0nAnun +α0nn
1/2∆n + op(1)

with αn = n−1ED0
n(An + A

0
n)un. (Of course, in light of (b) we have

αn = O(1) and n−1D0
n(An +A

0
n)eun −αn = op(1).)

Proof. We first prove part (a) of the lemma. Let ϑn = n−1u0nAnun andeϑn = n−1eu0nAneun, then given (2) we have ϑn = n−1ε0nBnεn with

Bn = (1/2) (In − ρnM
0
n)
−1
(An +A

0
n) (In − ρnMn)

−1 .

By Assumption 3 the row and column sums of the matrices (In − ρnMn)
−1

are uniformly bounded in absolute value. Since this property is preserved un-
der matrix addition and multiplication - see, e.g., Remark A.1 in Kelejian and
Prucha (2004) - it follows that also the row and column sums of the matrices
Bn are uniformly bounded in absolute value. Let Σn = diag(σ21,n, . . . , σ

2
n,n),

then given Assumption 2 it follows further that also the row and column sums
of the matrices BnΣnBnΣn are uniformly bounded in absolute value. In the
following let K < ∞ be a common bound for the row and column sums of the
absolute elements of Bn, Σn and BnΣnBnΣn and of their respective elements.
Then

E |ϑn| = n−1
nX
i=1

nX
j=1

|bij,n|E |εi| |εj | ≤ n−1
nX
i=1

nX
j=1

|bij,n|σi,nσj,n ≤ K3,

var(ϑn) = n−22tr(BnΣnBnΣn) + n−2
nX
i=1

b2ii,n
£
Eε4i,n − 3σ4i,n

¤
≤ n−12K + n−1K2 sup

i

£
Eε4i,n − 3σ4i,n

¤
,

where we utilized Lemma A.1. Given that the fourth moments of the εi,n are
uniformly bounded in light of Assumption 2 this establishes the first two claims
of part (a) of the lemma.
We next proof the last claim of part (a) of the lemma. The above discussion

implies that ϑn −Eϑn = op(1). Hence it suffices to show that eϑn − ϑn = op(1).
By Assumption 4 we have eun − un = Dn∆n where Dn = [d01.,n, . . . ,d

0
n.,n]

0.
Utilizing this expression yieldseϑn − ϑn = φn + ψn
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with

φn = n−1∆0
nD

0
n (An +A

0
n)un = n−1∆0

nD
0
nCnεn,

ψn = n−1∆0
nD

0
nAnDn∆n,

and Cn = [c
0
1.,n, . . . , c

0
n.,n]

0 = (An +A
0
n) (In − ρnMn)

−1. The row and column
sums of the matrices Cn are again seen to be uniformly bounded in absolute
value. Let K <∞ denote a uniform bound for the row and column sums of the
absolute elements of the matrices An and Cn.
To prove the claim we now show that both φn and ψn are op(1). Using the

triangle and Hölder inequality we get

|φn| =

¯̄̄̄
¯n−1

nX
i=1

∆0
nd

0
i.,nci.,nεn

¯̄̄̄
¯ (C.1)

≤ n−1 k∆nk
nX
i=1

kdi.,nk
nX
j=1

|cij,n| |εj,n| ≤ n−1 k∆nk
nX
j=1

|εj,n|
nX
i=1

kdi.,nk |cij,n|

≤ n−1 k∆nk
nX
j=1

|εj,n|
Ã

nX
i=1

kdi.,nkp
!1/pÃ nX

i=1

|cij,n|q
!1/q

≤ Kn1/p−1/2
³
n1/2 k∆nk

´⎛⎝n−1
nX
j=1

|εj,n|

⎞⎠Ãn−1 nX
i=1

kdi.,nkp
!1/p

for p = 2+δ and 1/p+1/q = 1, and where δ > 0 is as in Assumption 4. The last
inequality utilizes the observation of Remark C.1. Since the εj,n are independent
with bounded second moments it follows that n−1

Pn
j=1 |εj,n| = Op(1). The

terms n1/2 k∆nk and n−1
Pn

i=1 kdi.,nk
p are Op(1) by Assumption 4. Since

n1/p−1/2 → 0 as n→∞ it follows that φn = op(1).
Again, using the triangle and Hölder inequality yields

|ψn| =

¯̄̄̄
¯̄n−1 nX

i=1

nX
j=1

∆0
nd

0
i.,naij,ndj.,n∆n

¯̄̄̄
¯̄ (C.2)

≤ n−1 k∆nk2
nX
i=1

kdi.,nk
nX
j=1

kdj.,nk |aij,n|

≤ n−1 k∆nk2
nX
i=1

kdi.,nk

⎛⎝ nX
j=1

kdj.,nkp
⎞⎠1/p⎛⎝ nX

j=1

|aij,n|q
⎞⎠1/q

≤ Kn1/p k∆nk2
Ã
n−1

nX
i=1

kdi.,nk
!⎛⎝n−1

nX
j=1

kdj.,nkp
⎞⎠1/p

≤ Kn1/p−1/2n−1/2(n1/2 k∆nk)2
Ã
n−1

nX
i=1

kdi.,nkp
!2/p

34



with p and q as before. By Assumption 4 both n−1
Pn

i=1 kdi.,nk
p and n1/2 k∆nk

are Op(1). Since n1/p−1/2 → 0 as n→∞ it follows that ψn = op(1). From the
last inequality we see also that n1/2ψn = op(1).
We next prove part (b) of the lemma. In the following let ϑ∗s,n denote the

s-th element of n−1D0
nAnun. In light of the discussion after Assumption 3

and given Assumption 4 there exists a constant K < ∞ such that Eu2i,n ≤ K

and E |djs,n|p ≤ K. W.o.l.o.g. assume that the row and column sums of the

matrices An are uniformly bounded by K. Utilizing the Cauchy-Schwarz and
Lyapunov inequalities we then have E |ui,n| |djs,n| ≤

£
Eu2i,n

¤1/2 £
Ed2js,n

¤1/2 ≤£
Eu2i,n

¤1/2
(E |djs,n|p)1/p ≤ K

1/2+1/p
with p as before, and hence

E
¯̄
ϑ∗s,n

¯̄
= n−1

nX
i=1

nX
j=1

|aij,n|E [|ui,n| |djs,n|] ≤ K
1/2+1/p

n−1
nX
i=1

nX
j=1

|aij,n| ≤ K
3/2+1/p

<∞,

which shows that indeed E
¯̄
n−1d0.s,nAnun

¯̄
= O(1). Of course, the argument

also shows that αn = n−1ED0
n(An +A

0
n)un = O(1). Next observe that

n−1D0
nAneun = n−1D0

nAnun + φ∗n

where φ∗n = n−1D0
nAnDn∆n. It now follows as a special case of our demon-

stration that φn = op(1) that also φ∗n = op(1), which completes the proof of
part (b).
We next prove part (c). In light of the proof of part (a) we have

n−1/2eu0nAneun = n−1/2u0nAnun + [n
−1u0n(An +A

0
n)Dn]n

1/2∆n + n1/2ψn

with n1/2ψn = op(1). In light of part (b) we have n−1u0n(An +A
0
n)Dn −α0n =

op(1). The claim follows since n1/2∆n = Op(1) by Assumption 4.

Remark C.2: For future reference it proves helpful to note that in light of
Remark A.1 in Kelejian and Prucha (2004) the constant K used in proving the
last claim of part (a) of the above lemma can be chosen as K = 2cP cA where cP
and cA denote a bound for the row and column sums of the absolute elements of
(In − ρnMn)

−1 and An. Furthermore it proves helpful to observe that in light
of (C.1) and (C.2) ¯̄̄eϑn − ϑn

¯̄̄
≤ 2cP cAςn

where ςn = op(1) does not depend on An.

Proof of Theorem 1: The existence and measurability of eρn is assured by,
e.g., Lemma 3.4 in Pötscher and Prucha (1997). The objective function of the
weighted nonlinear least squares estimator and its corresponding non-stochastic
counterpart are given by, respectively,
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Rn(ω, ρ) =
heΓn(ρ, ρ2)0 − eγni0 eΥn heΓn(ρ, ρ2)0 − eγni

Rn(ρ) =
£
Γn(ρ, ρ

2)0 − γn
¤0
Υn
£
Γn(ρ, ρ

2)0 − γn
¤
.

To prove the consistency of eρn we show that the conditions of, e.g., Lemma 3.1
in Pötscher and Prucha (1997) are satisfied for the problem at hand. We first
show that ρn is an identifiably unique sequence of minimizers of Rn. Observe
that Rn(ρ) ≥ 0 and that Rn(ρn) = 0. From (6) we have γn = Γn[ρn, ρ

2
n]
0.

Utilizing Assumption 5 we then get

Rn(ρ)−Rn(ρn) = Rn(ρ)

=
£
ρ− ρn, ρ

2 − ρ2n
¤
Γ0nΥnΓn

£
ρ− ρn, ρ

2 − ρ2n
¤0

≥ λmin(Υn)λmin(Γ
0
nΓn)

£
ρ− ρn, ρ

2 − ρ2n
¤ £
ρ− ρn, ρ

2 − ρ2n
¤0

≥ λ∗ [ρ− ρn]
2

for some λ∗ > 0. Hence for every ε > 0 and n we have:

inf
{ρ∈[−aρ,aρ]:kρ−ρnk≥ε}

[Rn(ρ)−Rn(ρn)]

≥ inf
{ρ∈[−aρ,aρ]:kρ−ρnk≥ε}

λ2∗ [ρ− ρn]
2
= λ∗ε

2 > 0,

which proves that ρn is identifiably unique. Next let Φn = [Γn,−γn] andeΦn = [eΓn,−eγn], then¯̄
Rn(ω, ρ)−Rn(ρ)

¯̄
=

¯̄̄£
ρ, ρ2, 1

¤ heΦ0neΥn eΦn −Φ0nΥnΦn

i £
ρ, ρ2, 1

¤0 ¯̄̄
≤

°°°eΦ0neΥn eΦn −Φ0nΥnΦn

°°°°°ρ, ρ2, 1°°2
≤

°°°eΦ0neΥn eΦn −Φ0nΥnΦn

°°° [1 + (aρ)2 + (aρ)4].
As is readily seen from the respective second expressions on the r.h.s. of (7), the
elements ofΦn and eΦn are all of the form n−1Eu0nAnun and n−1eu0nAneun where
the row and column sums ofAn are bounded uniformly in absolute value. It now
follows immediately from Lemma C.1 that eΦn−Φn

p→ 0, and that the elements
of eΦn and Φn are, respectively, Op(1) and O(1). The analogous properties are
seen to hold for the elements of eΥn and Υn in light of Assumption 5. Given
this it follows from the above inequality that Rn(ω, ρ)−Rn(ρ) converges to zero
uniformly over the optimization space [−aρ, aρ], i.e.,

sup
ρ∈[−aρ,aρ]

¯̄
Rn(ω, ρ)−Rn(ρ)

¯̄
≤
°°°eΦ0neΥn eΦn −Φ0nΥnΦn

°°° [1 + (aρ)2 + (aρ)4] p→ 0
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as n → ∞. The consistency of eρn now follows directly from Lemma 3.1 in
Pötscher and Prucha (1997).

We make use of the following lemma.

Lemma C.2 : Let un be defined by (2) and let Dn = [d
0
1.,n, . . . ,d

0
n.,n]

0, where
di.,n is defined in Assumption 4. Suppose Assumptions 1 - 3 hold, and suppose
furthermore that the columns of Dn are of the form πn + Πnεn, where the
elements of πn are bounded in absolute value and the row and column sums of
Πn are uniformly bounded in absolute value. Then (a) Ed4ij,n ≤ const < ∞,
and thus the moment condition in Assumption 4 is automatically implied, and
(b) Assumption 6 is automatically implied.

Proof. Observe that for the fourth moment of the i-th element of πn +Πnεn
we have

E(πi,n +
nX
j=1

πij,nεj,n)
4 ≤ 24

⎡⎢⎣π4i +E

⎛⎝ nX
j=1

πij,nεj,n

⎞⎠4
⎤⎥⎦ ≤

24

⎡⎣π4i + nX
j=1

nX
k=1

nX
l=1

nX
m=1

|πij,n| |πik,n| |πil,n| |πim,n|E |εj,n| |εk,n| |εl.n| |εm,n|

⎤⎦ ≤ const <∞

since by assumption the elements of πn are bounded in absolute value and the
row and column sums of Πn are uniformly bounded in absolute value, and since
E |εj,n| |εk,n| |εl.n| |εm,n| is uniformly bounded in light of Assumption 2. This
proves claim (a).
Given the maintained assumptions of the lemma and utilizing (3) the ele-

ments of n−1D0
nAnun are seen to be of the form

χn = n−1b∗0n εn + n−1ε0nB
∗
nεn

where b∗0n = π0nAn (In − ρnMn)
−1 and B∗n = Π

0
nAn (In − ρnMn)

−1. Given
Remark A.1 in Kelejian and Prucha (2004) the elements of b∗n are seen to be
bounded and the rows and column sums of B∗n are seen to be uniformly bounded
in absolute value. By arguments analogous to those in the proof of Lemma C.1
it then readily seen that Eχn = O(1) and var(χn) = o(1). Claim (b) now
follows from Chebychev’s inequality.

Proof of Theorem 2: Define

qn(ρn,∆n) = eγn − eΓn ∙ ρn
ρ2n

¸
=

∙
n−1eu0nC1,neun
n−1eu0nC2,neun

¸
(C.3)

with Cr,n = (1/2) (In − ρnM
0
n) (Ar,n +A

0
r,n) (In − ρnMn), and where the ma-

trices Ar,n are defined by (5), r = 1, 2. The second equality in (C.3) is seen
to hold in light of the discussion surrounding equations (4)-(9). For later use
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we observe that the rows and column sums of Cr,n are uniformly bounded in
absolute value; see, e.g., Remark A.1 in Kelejian and Prucha (2004).
We have shown in Theorem 1 that the GM estimator eρn defined in (9) is

consistent. Apart on a set whose probability tends to zero the estimator satisfies
the following first order condition

qn(eρn,∆n)
0eΥn ∂qn(eρn,∆n)

∂ρ
= 0.

Substituting the mean value theorem expression

qn(eρn,∆n) = qn(ρn,∆n) +
∂qn(ρn,∆n)

∂ρ
(eρn − ρn)

into the first order condition yields

∂qn(eρn,∆n)

∂ρ0
eΥn ∂qn(ρn,∆n)

∂ρ
n1/2(eρn − ρn) = −

∂qn(eρn,∆n)

∂ρ0
eΥnn1/2qn(ρn,∆n)

(C.4)
where ρn is some between value. Observe that

∂qn(ρ,∆n)

∂ρ
= −eΓn ∙ 1

2ρ

¸
(C.5)

and consider the nonnegative scalars

eΞn =
∂qn(eρn,∆n)

∂ρ0
eΥn ∂qn(ρn,∆n)

∂ρ
=

∙
1
2eρn

¸0 eΓ0neΥneΓn ∙ 1
2ρn

¸
,(C.6)

Ξn =

∙
1
2ρn

¸0
Γ0nΥnΓn

∙
1
2ρn

¸
.

In proving Theorem 1 we have demonstrated that eΓn − Γn p→ 0 and that the
elements of eΓn and Γn are Op(1) and O(1), respectively. By Assumption 5 we
have eΥn − Υn = op(1) and also that the elements of eΥn and Υn are Op(1)
and O(1), respectively. Since eρn and ρn are consistent and bounded in absolute
value, clearly eΞn −Ξn p→ 0 (C.7)

as n→∞, and furthermore eΞn = Op(1) andΞn = O(1). In particular Ξn ≤ λ∗∗Ξ
where λ∗∗Ξ is some finite constant. In light of Assumption 5 we have Ξn ≥
λmin(Υn)λmin(Γ

0
nΓn)(1 + 4ρ

2
n) ≥ λ∗Ξ for some λ∗Ξ > 0. Hence 0 < Ξ−1n ≤

1/λ∗Ξ <∞, and thus we also have Ξ−1n = O(1). Let eΞ+n denote the generalized
inverse of eΞn. It then follows as a special case of Lemma F1 in Pötscher and
Prucha (1997) that eΞn is nonsingular eventually with probability tending to
one, that eΞ+n = Op(1), and that

eΞ+n −Ξ−1n p→ 0 (C.8)
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as n→∞.
Premultiplying (C.4) by eΞ+n and rearranging terms yields

n1/2(eρn−ρn) = h1− eΞ+n eΞnin1/2(eρn−ρn)− eΞ+n ∂qn(eρn,∆n)

∂ρ0
eΥnn1/2qn(ρn,∆n).

In light of the above discussion the the first term on the r.h.s. is zero on ω-sets
of probability tending to one. This yields

n1/2(eρn − ρn) = −eΞ+n ∂qn(eρn,∆n)

∂ρ0
eΥnn1/2qn(ρn,∆n) + op(1). (C.9)

Observe that

eΞ+n ∂qn(eρn,∆n)

∂ρ0
eΥn −Ξ−1n ∙

1
2ρn

¸0
Γ0nΥn = op(1). (C.10)

In light of (C.3) and Lemma C.1 the elements of n1/2qn(ρn,∆n) can be
expressed as (r = 1, 2)

n−1/2eu0nCr,neun = n−1/2u0nCr,nun +α0r,nn
1/2∆n + op(1)

where
αr,n = 2n

−1ED0
nCr,nun.

Furthermore, the lemma implies that the elements ofαr,n are uniformly bounded
in absolute value. Utilizing un = (In − ρnMn)

−1
εn and Assumption 7 we have

n1/2qn(ρn,∆n) = n−1/2
∙

1
2ε
0
n(A1,n +A

0
1,n)εn + a

0
1,nεn

1
2ε
0
n(A2,n +A

0
2,n)εn + a

0
2,nεn

¸
+ op(1) (C.11)

where ar,n = Tnαr,n, r = 1, 2. Observe that the elements of ar,n are uniformly
bounded in absolute value. As discussed before Theorem 2 in the text, the VC
matrix of the vector of quadratic forms on the r.h.s. of (C.11) is given by Ψn

where the elements of that matrix are given in (13). Those elements can be
written more explicitly as

ψrs,n =
1

2n

nX
i=1

nX
j=1

(aij,r,n+aji,r,n)(aij,s,n+aji,s,n)σ
2
i,nσ

2
j,n+

1

n

nX
i=1

ai,r,nai,s,nσ
2
i,n

(C.12)
By assumption λmin(Ψn) ≥ const > 0. Since the matricesAr,n, the vectors ar,n,
and the innovations εn satisfy all of the remaining assumptions of the central
limit theorem for vectors of linear quadratic forms given above as Theorem A.1
it follows that

ξn = −Ψ−1/2n n−1/2
∙

1
2ε
0
n(A1,n +A

0
1,n)εn + a

0
1,nεn

1
2ε
0
n(A2,n +A

0
2,n)εn + a

0
2,nεn

¸
d→ N(0, I2). (C.13)

Since the row and column sums of the matrices Ar,n are uniformly bounded in
absolute value, and since the elements of ar,n and the variances are uniformly
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bounded by finite constants it is readily seen from (C.12) that the elements of
Ψn, and hence those of Ψ

1/2
n are uniformly bounded. It now follows from (C.9),

(C.10) and (C.13) that

n1/2(eρn − ρn) = Ξ
−1
n

∙
1
2ρn

¸0
Γ0nΥnΨ

1/2
n ξn + op(1). (C.14)

Observing that Ξn = J0nΥnJn, where Jn = Γn[1, 2ρn]
0, this establishes (14).

Since all of the nonstochastic terms on the r.h.s. of (C.14) are O(1) it follows
that n1/2(eρn − ρn) = Op(1). Next recall that 0 < λ∗Ξ ≤ Ξn ≤ λ∗∗Ξ <∞. Hence

Ξ−1n J0nΥnΨnΥnJnΞ
−1
n ≥ λmin (Ψn) [λmin (Υn)]

2
λmin(Γ

0
nΓn)(1+4ρ

2
n)/(λ

∗∗
Ξ )

2 ≥ const > 0.

This establishes the last claim of the theorem.

As part of proving Theorem 3 will be to show that eΨn−Ψn = op(1). Observe
that the elements can be written aseψrs,n = eψ∗rs,n + eψ∗∗rs,n, and ψrs,n = ψ∗rs,n + ψ∗∗rs,n (C.15)

witheψ∗rs,n = (2n)−1Pn
i=1

Pn
j=1 aij,neε2i,neε2j,n, ψ∗rs,n = (2n)

−1Pn
i=1

Pn
j=1 aij,nσ

2
i,nσ

2
j,n,eψ∗∗rs,n = n−1eα0r,neP0neF0n eΣn

eFnePneαs,n, ψ∗∗rs,n = n−1α0r,nP
0
nF

0
nΣnFnPnαs,n,

(C.16)
where aij,n = (aij,r,n + aji,r,n)(aij,s,n + aji,s,n).

The next two lemmata will be used to show that eψ∗rs,n − ψ∗rs,n = op(1).

Lemma C.3 : Suppose Assumptions 1 - 3 hold. Let Λn = n−1(σ2n)
0Anσ

2
n and

Λn = n−1(ε2n)
0Anε

2
n with σ

2
n = (σ

2
1,n, . . . , σ

2
n,n)

0 and ε2n = (ε
2
1,n, . . . , ε

2
n,n)

0, and
where the n × n matrices An are real nonstochastic and symmetric. Suppose
further that the diagonal elements of the matrices An are zero and that their row
and column sums are uniformly bounded in absolute value. Then EΛn = Λn =

O(1) and var(Λn) = o(1), and hence Λn−Λn
p→0 as n →∞, and Λn= Op(1).

Proof. Observe that

Λn = n−1
nX
i=1

nX
j=1

aij,nε
2
i,nε

2
j,n, (C.17)

Λn = n−1
nX
i=1

nX
j=1

aij,nσ
2
i,nσ

2
j,n.

Since aii,n = 0 and the innovations εi,n are assumed to be independent, clearly
EΛn = Λn. The claim that Λn = O(1) follows from the triangle inequal-
ity, observing that the variances σ2i,n are uniformly bounded and that fur-
thermore also the row and column sums of the matrices An are uniformly
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bounded in absolute value. Define ζn = ε2n − σ2n, then ζn ∼ (0,Ξn) where
Ξn = diagni=1

£
E(ε4i,n)− σ4i,n

¤
. Clearly

Λn = Λn + n−1ζ0nAnζn + 2n
−1(σ2n)

0Anζn.

It now follows from Lemma A.1 that

var(Λn) = 2n
−2tr [AnΞnAnΞn] + 4n

−2(σ2n)
0AnΞnA

0
nσ

2
n.

Given the maintained assumptions it follows, e.g., from Remark A.1 in Kele-
jian and Prucha (2004) that the row and column sums of AnΞnAnΞn and
AnΞnAn are uniformly bounded in absolute value. Given that the variances
σ2i,n are uniformly bounded it follows that var(Λn) = o(1). Hence by Cheby-
chev’s inequality Λn−Λn = op(1). The last claim is now obvious.

Lemma C.4 : Suppose Assumptions 1 - 4 hold. Let εn = (In − ρnMn)un, and
let eεn = (In − eρnMn) eun with eun = un +Dn∆n and Dn = [d

0
1.,n, . . . ,d

0
n.,n]

0,
and where eρn can be any estimator that satisfies n1/2(eρn− ρn) = Op(1). DefineeΛn = n−1(eε2n)0An(eε2n), Λn = n−1(ε2n)

0Anε
2
n with eε2n = (eε21,n, . . . ,eε2n,n)0, ε2n =

(ε21,n, . . . , ε
2
n,n)

0, and where the n × n matrices An are real nonstochastic and
symmetric. Suppose further that the diagonal elements of the matrices An are
zero and that their row and column sums are uniformly bounded in absolute
value, and that Ed4ij,n ≤ Kd < ∞. Then, eΛn−Λn p→0 as n → ∞, and eΛn=
Op(1).

Proof. Observe that

eΛn − Λn = n−1
nX
i=1

nX
j=1

aij,n

heε2i,neε2j,n − ε2i,nε
2
j,n

i
(C.18)

= ψ1n + ψ2n + ψ3n

with

ψ1n = n−1
nX
i=1

nX
j=1

aij,n

heε2i,n − ε2i,n

i
ε2j,n, (C.19)

ψ2n = n−1
nX
i=1

nX
j=1

aij,nε
2
i,n

heε2j,n − ε2j,n

i
,

ψ3n = n−1
nX
i=1

nX
j=1

aij,n

heε2i,n − ε2i,n

i heε2j,n − ε2j,n

i
.

Observe that

eεn = (In − eρnMn) eun = (In − eρnMn) (un +Dn∆n) (C.20)

= εn + (In − ρnMn)Dn∆n − (eρn − ρn)Mnun − (eρn − ρn)MnDn∆n

= εn + ηn
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with
ηn = Rn [∆

0
n, (ρn − eρn), (ρn − eρn)∆0

n]
0

where
Rn = [(In − ρnMn)Dn,Mn (In − ρnMn)

−1 εn,MnDn].

In light of Assumptions 3 and since the elements of Dn and εn have bounded
fourth moments it follows that the columns ofRn are all of the form πn+Πnξn,
where the elements of the n × 1 vector πn are uniformly bounded in absolute
value by some finite constant, where the row and column sums of the n × n
matrix Πn are uniformly bounded in absolute value by some finite constant,
and where the fourth moments of the elements of ξn are also bounded by some
finite constant. In light of this it is easily seen that the fourth moments of the
elements of Rn are bounded by some finite constant. Consequently¯̄

ηi,n
¯̄
≤ αnβi,n (C.21)

where αn = k[∆0
n, (ρn − eρn), (ρn − eρn)∆0

n]k and βi,n = kri.,nk with Eβ4i,n ≤ Kβ

where Kβ is some finite constant. Of course, w.o.l.g., we can select Kβ such
that Eβγi,n ≤ Kβ for γ ≤ 4. Observe furthermore that in light of the maintained
assumptions n1/2αn = Op(1). Given Assumption 2 we have: E |εi,n|γ ≤ Kε,
γ ≤ 4+η, for someKε <∞. By the assumptions of the lemma

Pn
l=1 |ail,n| < Ka

for some Ka < ∞. In the following let K = max{1,Ka,Kβ ,Kε}. In light of
Remark C.1 it then follows that

Pn
l=1 |ail,n|

γ
< Kγ and

Pn
l=1 |bil,n|

γ
< Kγ for

γ ≥ 1.
From (C.20) and (C.21) we have¯̄̄eε2i,n − ε2i,n

¯̄̄
=
¯̄
2ε2i,nηi,n + η2i,n

¯̄
≤ 2αnβi,nε2i,n + α2nβ

2
i,n. (C.22)

Applying the triangle inequality to the first equation of (C.19) and making use
of (C.22) yields

|ψ1n| ≤ 2αnn
−1

nX
i=1

βi,nε
2
i,n

nX
j=1

|aij,n| ε2j,n

+ α2nn
−1

nX
i=1

β2i,n

nX
j=1

|aij,n| ε2j,n ≤ δ∗1n + δ∗∗1n, (C.23)

δ∗1n = 2Kn1/r−1/2(n1/2αn)ζn

"
n−1

nX
i=1

βi,nε
2
i,n

#
,

δ∗∗1n = Kn1/r−1(n1/2αn)
2ζn

"
n−1

nX
i=1

β2i,n

#
.

where ζn =
h
n−1

Pn
j=1 |εj,n|

4+η
i1/r

with r = 2 + η/2. In obtaining the above

result we also utilized that by Hölder’s inequality
Pn

j=1 |aij,n| ε2j,n ≤ n1/rKζn.
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Since E |εj,n|4+η ≤ K we have ζn = Op(1). As remarked n1/2αn = Op(1). Since

Eβi,nε
2
i,n ≤

£
Eβ2i,n

¤1/2 £
Eε4i,n

¤1/2 ≤ K and Eβ2i,n ≤ K it follows further that
also the terms in square brackets in (C.23) are Op(1). Since n1/r−1/2 and n1/r−1

tend to zero as n tends to infinity we have δ∗1n = op(1) and δ∗∗1n = op(1) and
hence ψ1n = op(1). Because of symmetry it follows that also ψ2n = op(1).
Applying the triangle inequality to the last equation of (C.19) and making

use of (C.22) yields

|ψ3n| ≤ 4α2nn
−1

nX
i=1

βi,n |εi,n|
nX
j=1

|aij,n|βj,n |εj,n| (C.24)

+ 2α3nn
−1

nX
i=1

βi,n |εi,n|
nX
j=1

|aij,n|β2j,n + 2α3nn−1
nX
j=1

βj,n |εj,n|
nX
i=1

|aij,n|β2i,n

+ α4nn
−1

nX
i=1

β2i,n

nX
j=1

|aij,n|β2j,n ≤ δ∗3n + δ∗∗3n + δ∗∗∗3n

δ∗3n = 4Kn1/2−1(n1/2αn)
2ζn

"
n−1

nX
i=1

βi,n |εi,n|
#

δ∗∗3n = 4Kn−1(n1/2αn)
3ζn

"
n−1

nX
i=1

βi,n |εi,n|
#

δ∗∗∗3n = Kn−3/2(n1/2αn)
4ζn

"
n−1

nX
i=1

β2i,n

#

where ζn =
h
n−1

Pn
j=1 β

2
j,nε

2
j,n

i1/2
and ζn =

h
n−1

Pn
j=1 β

4
j,n

i1/2
. In obtaining

the above result we also utilized that by Hölder’s inequality
Pn

j=1 |aij,n|βj,n |εj,n| ≤
n1/2Kζn,

Pn
j=1 |aij,n|β

2
j,n ≤ n1/2Kζn and

Pn
i=1 |aij,n|β

2
i,,n ≤ n1/2Kζn. Since

Eβ2j,nε
2
j,n ≤

£
Eβ4j,nEε

4
j,n

¤1/2 ≤ K and Eβ4j,n ≤ K it follows that ζn = Op(1)

and ζn = Op(1). Since Eβi,n |εi,n| ≤
£
Eβ2i,n

¤1/2 £
Eε2i,n

¤1/2 ≤ K all terms terms
in square brackets in (C.24) are seen to be Op(1). Observing that n1/2αn =
Op(1) it follows that δ

∗
3n = op(1), δ

∗∗
3n = op(1), δ

∗∗∗
3n = op(1) and hence ψ3n =

op(1). This proves that eΛn−Λn p→0. The last claim follows trivially since by
Lemma C.3 Λn = Op(1).

The next two lemmata will be used to show that eψ∗∗rs,n−ψ∗∗rs,n = op(1), whereeψ∗∗rs,n and ψ∗∗rs,n are defined in (C.15) and (C.16).

Lemma C.5 : Suppose Assumptions 1 - 4 hold. Let εn = (In − ρnMn)un, and
let eεn = (In − eρnMn) eun with eun = un +Dn∆n and Dn = [d

0
1.,n, . . . ,d

0
n.,n]

0,
and where eρn can be any estimator that satisfies eρn − ρn = op(1). Let an and
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bn be n× 1 vectors whose elements are uniformly bounded in absolute value by
c <∞ and let Σn = diagi=1,...,n(σ

2
i ) and eΣn = diagi=1,...,n(eε2i,n). Then:

(a) n−1a0n eΣnbn − n−1a0nΣnbn = op(1) and n−1a0nΣnbn = O(1).

(b) There exist random variables ςn that do not depend on an and bn such that¯̄̄
n−1a0n eΣnbn − n−1a0nΣnbn

¯̄̄
≤ K(c)(1 + ςn)

with ςn = op(1) and where K(c) <∞ is a constant that depends monoton-
ically on c (as well as on some other bounds maintained in the assump-
tions).

Proof. Let eτn = n−1a0n eΣnbn and τn = n−1a0nΣnbn. We furthermore define
τn = n−1a0nΣnbn where Σn = diagi=1,...,n(ε

2
i,n). Clearly

|eτn − τn| ≤ |τn − τn|+ |eτn − τn| . (C.25)

By the weak law of large numbers for i.d. random variables, observing that the
fourth moments of εi,n are uniformly bounded, we have

τn − τn = n−1
nX
i=1

ai,nbi,n
¡
ε2i,n − σ2i,n

¢
= op(1) (C.26)

and thus |τn − τn| = op(1). Next let

ζ1,n = n−1
nX
i=1

£¯̄
ε2i,n − σ2i,n

¯̄
−E

¯̄
ε2i,n − σ2i,n

¯̄¤
and c∗ be such that σ2i,n ≤ c∗, then using the triangle inequality several times,
it is readily seen

|τn − τn| ≤ c2ζ1,n + 2c
2c∗. (C.27)

Again by the weak law of large numbers for i.d. random variables we have
ζ1,n = op(1).
It proves convenient to rewrite eτn and τn as

eτn = n−1eε0nCneεn = n−1eu0nCneun − 2eρnn−1eu0nM0
nCneun + eρ2nn−1eu0nM0

nCnMneun,
τn = n−1ε0nCnεn = n−1u0nCnun − 2ρnn−1u0nM0

nCnun + ρ2nn
−1u0nM

0
nCnMnun,

where Cn = diagni=1(ai,nbi,n). Given the maintained assumptions the row and
column sums of the respective matrices forming the quadratic forms on the r.h.s.
of the above equations are uniformly bounded in absolute value by some con-
stants that depend monotonically on c as well as other bounds maintained in the
assumptions; compare again Remark A.1 in Kelejian and Prucha (2004). It now
follows from Remark C.2 after the proof of Lemma C.1, the triangle inequality
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and observing that eρn− ρn = op(1), that there exist random variables ς2,n that
do not depend on an and bn as well as a constant k(c) that depends monoton-
ically on c (as well as on some other bounds maintained in the assumptions)
such that

|eτn − τn| = k(c)ς2,n (C.28)

and ς2,n = op(1).
The first claim of part (a) of the lemma follows immediately form (C.25),

(C.26)and (C.28). The second claim is obvious observing that
¯̄
n−1a0nΣnbn

¯̄
≤

n−1
Pn

i=1 |ai,n| |bi,n|σ2i,n ≤ c2c∗ < ∞. Part (b) of the lemma follows form
(C.25), (C.27) and (C.28) with K(c) = c2 + 2c2c∗ + k(c) and ςn = ς1,n + ς2,n,
observing that ς1,n and ς2,n are nonnegative.

Lemma C.6 : Suppose Assumptions 1 - 4 hold. Furthermore assume that
supn |ρn| < 1, and the row sums and column sums of Mn are bounded uni-
formly in absolute value by, respectively, one and some finite constant. Let
εn = (In − ρnMn)un, and let eεn = (In − eρnMn) eun with eun = un + Dn∆n

and Dn = [d01.,n, . . . ,d
0
n.,n]

0, and where eρn can be any estimator that satisfieseρn − ρn = op(1). Let
Fn = eFn = Hn

or
Fn = (In − ρnMn)

−1
Hn and eFn = (In − eρnMn)

+
Hn,

where Hn is an n×p∗ matrix whose elements are uniformly bounded in absolute
value, let Σn = diagi=1,...,n(σ

2
i ) and eΣn = diagi=1,...,n(eε2i,n), then n−1eF0n eΣn

eFn−
n−1F0nΣnFn = op(1) and n−1F0nΣnFn = O(1).17

Proof. The proof will focus on the case where Fn = (In − ρnMn)
−1
Hn andeFn = (In − eρnMn)

+Hn in that it will be obvious that the arguments implicitly
also cover the case where Fn = eFn =Hn.
Clearly under the maintained assumptions there exists a ρ∗ with supn |ρn| <

ρ∗ < 1 and so the row sums and column sums of ρ∗Mn are bounded uniformly
in absolute value by, respectively, one and some finite constant.
Now let νn denote the difference in the (r, s)-th elements of n−1eF0n eΣn

eFn
and n−1F0nΣnFn. Then

νn =
7X
i=1

νi,n (C.29)

17We would like to thank Benedikt Pötscher for very helpful comments on parts of the proof
of this lemma.
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where

ν1,n = n−1(ef.r,n − f.r,n)0(eΣn −Σn)(ef.s,n − f.s,n) (C.30)

ν2,n = n−1(ef.r,n − f.r,n)0(eΣn −Σn)f.s,n

ν3,n = n−1f 0.r,n(eΣn −Σn)(ef.s,n − f.s,n)
ν4,n = n−1f 0.r,n(

eΣn −Σn)f.s,n

ν5,n = n−1(ef.r,n − f.r,n)0Σn(ef.s,n − f.s,n)
ν6,n = n−1(ef.r,n − f.r,n)0Σnf.s,n

ν7,n = n−1f 0.r,nΣn(ef.s,n − f.s,n)
and ef.s,n − f.s,n = h(In − eρnMn)

+ − (In − ρnMn)
−1
i
h.s,n.

In the following we will be confronted with terms of the form

κ(k,l)n = n−1ρl+k∗ h0.r,nM
0l
n
eΣnM

k
nh.s,n − n−1ρl+k∗ h0.r,nM

0l
nΣnM

k
nh.s,n. (C.31)

Under the maintained assumptions the row sums of ρk∗M
k
n are bounded uni-

formly in absolute value by one; this is readily seen by arguments like those
in Kelejian and Prucha (1999, p. 526). Let c < ∞ be a bound for the ab-
solute elements of Hn, then it follows that c is also a bound for the absolute
elements of ρk∗M

k
nh.s,n. Given this it follows immediately form Lemma C.5 that

κ(k,l)n = op(1) and that there exists a random variable ςn = op(1) and a constant
K(c) such that ¯̄̄

κ(k,l)n

¯̄̄
≤ K(c)(1 + ςn). (C.32)

In the following let c be such that also σ2i,n ≤ c.
In proving the lemma we will use the usual subsequence argument that

utilizes that a sequence of random vectors taking their values in Rk, 1 ≤ k ≤ ∞,
converges in probability iff for every subsequence there exists a subsequence such
that the random vectors converge almost surely; see, e.g., Gänsler and Stute
(1977), pp. 61-62 and p. 332. Also observe that convergence in probability
[almost sure convergence] of random vectors taking their values in Rk, 1 ≤
k ≤ ∞, is equivalent with convergence in probability [almost sure convergence]
for each of the coordinates of the random vector. Now let (nm) denote some
subsequence, then there exists a subsequence (n0m) such that for ω ∈ A, P (A) =
1, ¯̄̄eρn0m(ω)− ρn0m

¯̄̄
→ 0, ςn0m(ω)→ 0, (C.33)

κ(k,l)n0m
(ω)→ 0, , k, l = 1, . . . ,∞,

as nm0 →∞. Consequently there exists an index Nω such that for all n0m ≥ Nω:

ςn0m(ω) ≤ K(c) and
¯̄̄eρn0m(ω)¯̄̄ ≤ ρ∗∗, (C.34)

46



where ρ∗∗ = (supn |ρn|+ ρ∗)/2.

In the following assume that n0m ≥ Nω. Since
¯̄̄eρn0m(ω)¯̄̄ < ρ∗ the row sums ofeρn0m(ω)Mn0m are less than unity in absolute value. In light of Horn and Johnson

(1985), p. 301, it then follows that In0m − eρn0m(ω)Mn0m is invertible and that

³
In0m − eρn0m(ω)Mn0m

´+
−
³
In0m − ρn0mMn0m

´−1
=
∞X
l=1

heρln0m(ω)− ρln0m

i
Ml

n0m
.

Hence in light of the definition of ν1,n in (C.30) we have

ν1,n0m(ω) =
∞X
l=1

∞X
k=1

χ
(k,l)
n0m

(ω)

with

χ
(k,l)
n0m

(ω) =
h³eρln0m(ω)− ρln0m

´
/ρl∗

i h³eρkn0m(ω)− ρkn0m

´
/ρk∗

i
κ(k,l)n0m

(ω).

Clearly χ(k,l)n0m
(ω)→ 0 in light of (C.33) and (C.34). Furthermore, observing that¯̄̄eρln0m(ω)− ρln0m

¯̄̄
/ρl∗ ≤ 2(ρ∗∗/ρ∗)l and

¯̄̄
κ(k,l)n0m

(ω)
¯̄̄
≤ 2K(c) we have

¯̄̄
χ
(k,l)
n0m

(ω)
¯̄̄
≤

B(l,k) with B(l,k) = 8K(c)(ρ∗∗/ρ∗)
l+k. Since ρ∗∗/ρ∗ < 1 by construction clearlyP∞

l=1

P∞
k=1B

(l,k) < ∞. Hence it follows from dominated convergence that
ν1,n0m(ω)→ 0 as nm0 →∞. This completes the proof that ν1,n = op(1).
By analogous arguments we also see that νi,n = op(1) for i = 2, . . . , 7. Hence

νn = op(1) and thus n−1eF0n eΣn
eFn−n−1F0nΣnFn = op(1). That n−1F0nΣnFn =

O(1) follows from the properties maintained for the row and column sums of
(In − ρnMn)

−1 and the elements of Σn and Hn.

Proof of Theorem 3: We first demonstrate that eΨn − Ψn = op(1), utilizing
the expressions for the elements of eΨn and Ψn in (C.15) and (C.16). Observe
that under the maintained assumption the row and column sums of the absolute
elements of the matrices Ar,n and As,n are uniformly bounded, and thus clearly
are those of the matrices An = (aij,n) with aij,n = (aij,r,n + aji,r,n)(aij,s,n +

aji,s,n). It then follows directly from Lemmata C.3 and C.4 that eψ∗rs,n−ψ∗rs,n =
op(1), ψ

∗
rs,n = O(1) and eψ∗rs,n = Op(1).

Observing that the row and column sums of (In − ρnM
0
n) (Ar,n+A

0
r,n) (In − ρnMn)

are bounded uniformly in absolute value it follows from Lemma C.1 that eαr,n−
αr,n = op(1), αr,n = O(1) and hence eαr,n = Op(1). By assumption ePn −
Pn = op(1), Pn = O(1), and hence ePn = Op(1). Observe that by Lemma
C.6 we have n−1eF0n eΣn

eFn − n−1F0nΣnFn = op(1), n−1F0nΣnFn = O(1), and

hence n−1eF0n eΣn
eFn = Op(1). Thus eψ∗∗rs,n − ψ∗∗rs,n = op(1), ψ

∗∗
rs,n = O(1), andeψ∗∗rs,n = Op(1). Hence eΨn −Ψn = op(1), Ψn = O(1) and eΨn = Op(1).

By Assumption 5 we have eΥn−Υn = op(1), Υn = O(1) and thus eΥn = Op(1).
Let Ξn = J0nΥnJn and eΞn = eJ0neΥneJn, then, as demonstrated in the proof of
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Theorem 2, eJn = Op(1), Jn = O(1), eΞ+n = Op(1) and Ξ−1n = Op(1), and
furthermore eJn − Jn p→ 0 and eΞ+n − Ξ−1n p→ 0 as n → ∞. (There is a slight
difference in the definition of eΞn here and in the proof of Theorem 2, which
does not affect the claim.) Given the above results it is now obvious thateΩρn −Ωρn = op(1).

Proof of Theorem 4: We concentrate again on the caseFn = (In − ρnM
0
n)
−1
Hn.

The first line in (27) is seen to hold in light of Assumption 7 and Theorem 2.

We next verify that ξ◦,n
d→ N(0, Ip∗+2) utilizing the central limit theorem for

vectors of linear quadratic forms given above as Theorem A.1. By assumption
λmin(Ψ◦,n) ≥ c∗Ψ◦ > 0. In proving Theorem 2 we verified that the innovations
εn and the elements of ar,n and Ar,n appearing in vn all satisfy the conditions
of the central limit theorem. Since the row and column sums of (In − ρnM

0
n)
−1

and the elements of Hn are uniformly bounded in absolute value it follows that
the elements of Fn are also uniformly bounded in absolute value. Thus all
conditions of Theorem A.1 are satisfied, which verifies the claim.
In proving Theorems 2 and 3 we have shown that eΨn −Ψn = op(1), Ψn =

O(1) and thus eΨn = Op(1). By analogous argumentation it is readily seen
that the other sub-matrices of eΨ◦,n and Ψ◦,n have the same properties, and
thus eΨ◦,n −Ψ◦,n = op(1) and Ψ◦,n = O(1). By assumption ePn −Pn = op(1),
Pn = O(1) and thus ePn = Op(1), and furthermore eΥn−Υn = op(1), Υn = O(1)

and thus eΥn = Op(1). In proving Theorem 2 we have verified that eJn−Jn p→ 0,
Jn = O(1) and eJn = Op(1), and furthermore that (eJ0neΥneJn)+− (J0nΥnJn)−1 =
op(1), (eJ0neΥneJn)+ = Op(1) and (J0nΥnJn)

−1 = O(1). The claim that eΩ◦,n −
Ω◦,n(Υn) = op(1) and Ω◦,n = O(1) is now obvious.

D Appendix: Proofs for Section 4

Proof of Lemma 3: Utilizing (3) it follows from Assumptions 3, 8 and
supn kβnk < ∞ that all columns of Zn = [Xn,Wnyn] are of the form ϑn =
πn + Πnεn, where the elements of the n × 1 vector πn are bounded in ab-
solute value and the row and column sums of the n × n matrix Πn are uni-
formly bounded in absolute value by some finite constant; compare, e.g., Re-
mark A.1. in Kelejian and Prucha (2004). The claims that the fourth moments
of Dn = −Zn are uniformly bounded by a finite constant, and that Assumption
6 holds, now follows directly from Lemma C.2.
Clearly

n1/2(eδn − δn) = eP0nn−1/2F0nεn
where ePn is defined in the lemma and Fn = (In − ρnM

0
n)
−1
Hn. Given Assump-

tion 10 clearly ePn = Pn+op(1) and Pn = O(1), with Pn defined in the lemma.
Since by Assumption 3 the row and column sums of (In−ρnMn)

−1 are uniformly
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bounded in absolute value, and since by Assumption 9 the elements of Hn are
uniformly bounded in absolute value, it follows that the elements of Fn are uni-
formly bounded in absolute value. By Assumption 2, E(εn) = 0 and its diagonal
VC matrix, Σn, has uniformly bounded elements. Therefore, En−1/2F0nεn = 0
and the elements of V C(n−1/2F0nεn) = n−1F0nΣnFn are also uniformly bounded
in absolute value. Thus, by Chebyshev’s inequality n−1/2F0nεn = Op(1), and
consequently n1/2(eδn−δn) = P0nn−1/2F0nεn+op(1) and P0nn−1/2F0nεn = Op(1).
This completes the proof recalling that Tn = FnPn.

Proof of Lemma 4: Note from (1) and (2) that

yn∗(ρ̂n) = Zn∗(ρ̂n)δn + εn − (ρ̂n − ρn)Mnun

and hence

n1/2[bδn(ρ̂n)− δn]
=

h
n−1bZ0n∗(ρ̂n)Zn∗(ρ̂n)i−1 n−1/2bZ0n∗(ρ̂n) [εn − (ρ̂n − ρn)Mnun]

= eP∗0n hn−1/2F∗0n εn − (ρ̂n − ρn)n
−1/2F∗∗0n εn

i
,

where eP∗n is defined in the lemma, and with F∗n = Hn and F∗∗n = (In − ρnM
0
n)
−1
M0

nHn.
In light of Assumption 10, and since ρ̂n is n

1/2-consistent, it follows that

n−1bZ0n∗(ρ̂n)Zn∗(ρ̂n)−Q0
HZ∗(ρn)Q

−1
HHQHZ∗(ρn) = op(1).

Since by Assumption 10 we have Q0
HZ∗(ρn)Q

−1
HHQHZ∗(ρn) = O(1) and

[Q0
HZ∗(ρn)Q

−1
HHQHZ∗(ρn)]

−1 = O(1) it follows that

[n−1bZ0n∗(ρ̂n)Zn∗(ρ̂n)]−1 − [Q0
HZ∗(ρn)Q

−1
HHQHZ∗(ρn)]

−1 = op(1);

compare, e.g., Pötscher and Prucha (1997), Lemma F1. In light of this it follows
further that eP∗n−P∗n = op(1) and P∗n = O(1), with P∗n defined in the lemma. By
argumentation analogous to that in the proof of Lemma 3 it is readily seen that
n−1/2F∗0n εn = Op(1) and n−1/2F∗∗0n εn = Op(1). Consequently n1/2[bδn(ρ̂n) −
δn] = P

∗0
n n
−1/2F∗0n εn+ op(1) and P∗0n n

−1/2F∗0n εn = Op(1), observing again that
ρ̂n − ρn = op(1). This completes the proof recalling that T∗n = F

∗
nP
∗
n.
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