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Several approaches to the formulation and estimation of dynamic factor demand systems under 
non-static expectations on the exogenous variables in the firm’s decision process have been 
suggested. Among those approaches there are trade-offs in terms of statistical and computational 
efficiency, the generality with which the technology and the expectation formation process can be 
specified, and in terms of informational requirements. This paper analyzes the trade-offs among 
three alternative approaches in terms of their statistical and computational efficiency within the 
context of a Monte Carlo experiment. 

1. introduction 

In the face of adjustment costs the rational firm’s optimal input decisions 
are intertemporally related. The firm’s temporary equilibrium position at each 
point in time is described by a set of dynamic factor demand equations. 
Several approaches to the formulation and estimation of dynamic factor 
demand systems under non-static expectations on the exogenous variables in 

the firm’s decision process have been suggested. In this paper, we compare 
three of these approaches. 

The first, developed by Hansen and Sargent (1980,198l) and Epstein and 
Yatchew (1985), assumes that the firm sets inputs according to a stochastic 
closed-loop feedback control policy. It is based on an explicit analytic solution 
of the firm’s intertemporal optimization problem and is restricted to linear- 
quadratic technologies. The approach assumes an infinite planning horizon 
and requires a full specification of the expectational model. Expectations on 
the exogenous variables in the firm’s decision process are based on an 
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autoregressive model. Hansen and Sargent (1981) and Epstein and Yatchew 
(1985) suggest different methods for estimating the technology and expecta- 
tions parameters. Both yield the same parameter estimates. The estimation 
method suggested by Epstein and Yatchew (1985) hinges on a reparameteri- 
zation of the production function and is less general since it allows only for 
first-order changes of factor inputs in the representation of adjustment costs. 
It is, however, computationally simpler and comparatively more accessible. 
Nevertheless, the corresponding estimating equations can be quite complex, 
especially for more than two quasi-fixed factors. For an empirical application 
of the method by Epstein and Yatchew, see, e.g., Mohnen, Nadiri and Prucha 
(1985) and Nadiri and Prucha (1985). 

The second approach is due to Kennan (1979), Hansen (1982) Hansen and 
Singleton (1982) and has been implemented in Pindyck and Rotemberg 
(1983a,b).’ It also assumes that inputs are set according to a stochastic 
closed-loop feedback control policy. Expectations are assumed to be rational. 
The model’s parameters are estimated from the set of Euler equations corre- 
sponding to the initial planning period only. This is accomplished by replacing 
all expectations on future variables by their observed values in those future 
periods and applying an instrumental variable estimation technique. Since the 
approach does not require an explicit solution of the Euler equations, it allows 
for considerable flexibility in the choice of the functional form of the produc- 
tion function. Also, an explicit specification of the process that generates the 
variables exogenous in the firm’s decision process or specific assumptions 
concerning the planning horizon are not required. Furthermore, the approach 
is easy to implement. However, it is generally not fully efficient, since it 
ignores information from the remaining Euler equations and, in case of an 
infinite planning horizon, from the transversality condition. 

The third approach, suggested by Prucha and Nadiri (1984), considers a 
firm with a finite but shifting planning horizon. Contrary to the first two 
approaches, where the firm is assumed to set its inputs according to a 
stochastic closed-loop feedback control policy, this approach assumes that 
input decisions are based on a certainty equivalence feedback control policy. 
We note that for linear-quadratic technologies the certainty equivalence feed- 
back and closed-loop feedback control policy (based on a certain planning 
horizon) yield exactly the same input decisions; for general technologies input 
decisions corresponding to the former policy may be viewed as first-order 
approximations to those corresponding to the latter poli~y.~ This approach 
also utilizes the full solution to the firm’s intertemporal (finite horizon) 

‘For a discussion of this approach in the case where some of the exogenous variables in the 
decision process are unobserved, see Garber and King (1983). 

2See, e.g., Simon (1956), Theil (1957) and Malinvaud (1969) on the principle of certainty and 
first-order certainty equivalence. 
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optimization problem. For parameter estimation, Prucha and Nadiri suggest 
an algorithm that numerically solves the firm’s optimization problem at each 
iteration step, therefore avoiding the need for an explicit analytic solution. As 
a consequence, considerable flexibility is allowed in both the choice of func- 
tional form of the technology and the expectation formation process. 

Computationally, the third approach is more involved. Suppose a firm must 
determine the optimal levels of G quasi-fixed factors over a planning horizon 
that is T + 1 periods long. To evaluate the statistical objective function 
corresponding to a particular set of (trial) parameter values, the estimation 
algorithm must solve a system of (T + 1) X G first-order conditions for each 
data point in the sample. Depending on the sample size and the values of T 

and G this can involve a non-trivial computational cost. Consequently, to keep 
the computational burden comparatively low, Prucha and Nadiri suggest a 
method to evaluate the gradient of the statistical objective function from 

analytic expressions without requiring knowledge of an explicit analytic solu- 
tion to the firm’s optimizing problem. 

In cases where the planning horizon is infinite, the finite horizon model may 
serve as an approximation to the infinite horizon model. Prucha and Nadiri 
offer results suggesting that their finite horizon specification (characterized by 
a particular endogenous determination of the stocks of the quasi-fixed factors 
at the end of the planning horizon) can approximate the infinite horizon model 
quite closely even for moderate sizes of the planning horizon. Since such a 
feature is important for computational efficiency a further exploration of this 
issue seems of interest.3 

The above discussion implies that among the three approaches, there are 
trade-offs in terms of statistical and computational efficiency,, the generality 
with which the technology and the expectation formation process can be 
specified and in terms of informational requirements. This paper analyzes in 
particular the trade-offs among the three approaches in terms of their statis- 
tical and computational efficiency within the context of a Monte Carlo 
experiment. 

We consider a linear-quadratic model with an infinite planning horizon in 
which expectations on the variables exogenous in the firm’s decision process 
are formed rationally from an autoregressive model. Under this scenario, an 
explicit analytic solution exists and all three approaches are (at least in an 

‘The approach of Prucha and Nadiri (1984) is in some respects related to the estimation method 
suggested by Fair and Taylor (1983) for dynamic non-linear rational expectations models. The 
method of Fair and Taylor is also based on ‘subiterations’ at each primary iteration step. 
However, in terms of the actual design of the estimation algorithm, the two approaches differ 
substantially. Consequently, there may be substantial differences in terms of computational cost 
between the two approaches. A comparison in terms of computational efficiency is beyond the 
scope of the present paper. Chow (1980,198l) has proposed another approach based on the 
dynamic programming solution. For non-linear systems Chow suggests to approximate that 
system by a linearized version. 
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approximative sense) applicable. Consequently, under this scenario we can 
compare the statistical and computational efficiency of all three approaches 
with each other. With respect to the third approach we will also investigate 
how well the finite horizon model approximates the infinite horizon model for 
different lengths of the planning horizon. In the following we will refer to the 
first, second and third approach as, respectively, approach I, II and III. 

The paper is organized as follows: Section 2 defines the firm’s objective 
function for the finite and infinite horizon model and discusses the corre- 
sponding optimal control solutions. The empirical factor demand equations 
corresponding to the three approaches are given in section 3. In section 4 we 
discuss the parameter and data design of the Monte Carlo experiment and 
present the actual Monte Carlo results. Concluding remarks and suggestions 
for future research are offered in section 5. 

2. Technology and optimal control solution 

The three approaches considered in this paper allow for the estimation of 
dynamic factor demand models with two or more non-separable quasi-fixed 
factors. Since additional estimation problems arise in this case relative to the 
case of one or several separable quasi-fixed factors, we explore the former, 
more general case.4 Furthermore, we adopt a cost minimization framework to 
be consistent with much of the recent empirical literature on dynamic factor 
demand models. Recent empirical applications of dynamic factor demand 
models include papers of Bemdt, Morrison and Watkins (1981), Denny, Fuss 
and Waverman (1981), Mohnen, Nadiri and Prucha (1985) Morrison and 
Berndt (1981) Nadiri and Prucha (1984,1985), and Pindyck and Rotemberg 
(1983a, b). 

Consider a firm that employs one variable factor and two quasi-fixed factors 
in producing a single output from a technology with adjustment costs. We 
assume that the firm’s production process is described by the following 
linear-quadratic factor requirement function: 

y = G( X,-t, AX,, y,) 

= a0 + ayy + &,r,’ + a’X,_, + b’X,_,Y, 

+ :x;_,Ax,_, + :Ax;BAx,. 

Here a = [(Y,, (Ye]‘, b = [a,,, (Y 2Y]‘, A = (ai,) is a 2 x 2 symmetric matrix and 

4For a linear-quadratic technology, the additional difficulty arises from the fact that under 
non-separability it is generally not possible to find explicit expressions for the accelerator 
coefficients in terms of the underlying technology parameters. All three approaches are, of course, 
also applicable under separability. 
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B = diag(&,,, ti,,) is a 2 x 2 diagonal matrix. With Y, we denote output, V, is 
the variable factor input and X, = [XI,, X,,]’ is the vector of end-of-period 

stocks of the quasi-fixed factors. The vector AX, = X, - X,-, represents the 
internal adjustment costs. Since there is only one variable factor, the factor 
requirement function (1) can also be viewed as a normalized restricted cost 
function. It is a special case of one of the two normalized restricted cost 
functions considered by Denny, Fuss and Waverman (1981). It is assumed to 
have standard properties, i.e., G, < 0, G,,., > 0, G, > 0. Furthermore, we 
assume that G( .) is convex in X,-i and AX,, implying (~ii > 0, (y22 > 0, 

alla22 - 42 > 0, cy,, > 0, ii,, > 0. 

The firm’s after tax cost in period t (normalized by the price of the variable 

factor) is defined as 

g( x,, x,-l, r,, Q,> = G(X,-144, Y,)(l - d 

+Q:(AX,+6G), (2) 

where Q, = [Q,,, Qt2]’ is the vector of (normalized) acquisition prices for the 
quasi-fixed factors, u is the tax rate and S = diag(S,, S,) is the diagonal matrix 
of depreciation rates. At each point in time t the firm minimizes the expected 
present value of future costs, 

c,= E, f dxt+,, L-1, K+,, Q,+,>(l + r)-‘, (3) 
7=0 

for given initial stocks X,-i. Here E, is the expected value operator condi- 
tional on information available at time t, r denotes the real discount rate. Y, 
and Q, are assumed to be known at time t. 

The closed-loop feedback control policy requires that the firm sets the input 
vector X, optimally in each period. In addition, the firm must devise a strategy 
for setting X,+i, Xr+2,. . . as functions of information it knows will become 
available in the future such that (3) is minimized. The optimal input sequence 
for the quasi-fixed factors must satisfy the following set of stochastic Euler 
equations: 5 

-BJ%+,Xl+r+1 +[A+(2+r)B]X,+,-(l+r)BX,+,_, 

= E1+,h,+7, r = O,.. ., cc, (4 

‘This and the subsequent results follow from standard optimal control theory; see, e.g., 
Kwakemaak and Sivan (1972). 
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with 

h f+T = -b+bY,+,+,+ [(1+~)Q,+,-<1-~>Q,+,+,l/<l-~>}. 

Unstable solutions are ruled out by the transversality conditions. The certainty 
equivalence analog to (3) is given by 

Ct* = f g@t+v X,+r--l,EfYf+,,E,Q,+,>(l + r)-‘. (5) 
r=o 

The certainty equivalence feedback control policy requires the firm to 
minimize (5) in each period t and to set the current quasi-fixed inputs 
according to the plan that minimizes (5). The process is repeated every period 
as new information becomes available. Since G( .) is linear-quadratic, the 
closed-loop feedback control policy and the certainty equivalence feedback 
control policy will yield identical input decisions. The input sequence that 
optimizes (5) conditional on information available in period t must satisfy the 
following set of non-stochastic Euler equations: 

-B&+,+1 + [A + (2 + r)B] XI+, - (1 + +X,+,-, = E,ht+,, (6) 

r=o,...,cQ. 

Unstable solutions are again ruled out by the corresponding transversality 
condition. We assume that the exogenous variables grow of exponential order 
less than (1 + r)l12. The solution of (6) is well known and given by the 
accelerator equations 

x,,.=J!fx,:,+ u-MM,,,-1, 

Xtf7= (1 +r)_‘K’(I-M) 

. f (1 ++‘(I- M)‘B-lEth,+,+l. 
i=o 

The matrix of accelerator coefficients A4 solves the matrix equation 

(74 

BM2+ (A +rB)M-A =O. (7b) 
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Furthermore, C = -BM is symmetric and negative definite.6 The implied 
optimal factor inputs in period t corresponding to the closed-loop feedback 
control policy or, equivalently, corresponding to the certainty equivalence 
feedback control policy are given by the accelerator model 

x,=fVx;lb+(z-M)X,_,. (8) 

The certainty equivalence feedback control policy considered in Prucha and 
Nadiri (1984) assumes a firm with a finite but shifting planning horizon of 
T + 1 periods. The stocks of the quasi-fixed factors at the end of the planning 
horizon are determined endogenously subject to the assumptions of static 
expectations and constant firm size beyond the actual planning horizon. This 
means that under the finite horizon specification the firm minimizes (5) in each 
period t subject to the constraints Xt+, = X,,, and with E,Y,+, = E,Y,+r, 

EtQ,-t.r='%Qr+~ for r 2 T and sets the current quasi-fixed inputs according 

to the optimizing plan. As in the infinite horizon case, the process is repeated 
every period as new information becomes available. Under the constraints of 
constant firm size and static expectations beyond the actual planning horizon, 
minimizing (5) is equivalent to minimizing 

c** = i d&+7> L--1, E,Yr+,> E,Q,+,)(l + y>-’ I 

7=0 

+dXn X,9 KY,+ T, E,Q,+,)/[dl +r)=]. (9) 

The first-order conditions are given by 

-BX,+,+r + [A + (2 + r)B] XI+, - (1 + r)BXtt7_r = ElhZ+,, (10a) 

T=O,...,T-1, 

(lob) 

‘In somewhat more detail: Let A and II be matrices such that B-’ = A’A and LIAAA’II’ = D 
with II orthogonal and where D is the diagonal matrix of (positive) eigenvalues of AAA’; let 
S = A’II’ and hence S- ‘B-‘AS = D; furthermore, let A be the diagonal matrix of the stable 
(positive) roots of the characteristic equation corresponding to (6) which satisfies A* - A[ D + 
(2 + r) I] + (1 + r) I = 0; then the matrix of accelerator coefficients can be shown to be given by 
M = S( I - A) S- ‘. We also note that the expressions in (7) differ somewhat from those given in 
Epstein and Yatchew (1985). The reason is that we have not assumed that the quasi-fixed factors 
become immediately productive. Which of the two specifications is more appropriate will depend 
on the specific application. 
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A comparison of (6) and (10a) shows that the first-order conditions for the 
initial T periods are, in both the infinite and finite horizon model, identical. 
Expressions (lob) may be interpreted as an approximation to the transversal- 
ity condition and to the first-order conditions of the infinite horizon model for 
r 2 T. 

3. Expectations formation and empirical demand functions 

In the following it is maintained that the infinite horizon model underlying 
the first and second approaches is the true model. Hansen and Sargent (1981) 
and Epstein and Yatchew (1985) assume that expectations on the exogenous 
variables in the firm’s input decision process are formed from a (possibly 
multivariate) autoregressive model. To keep the number of parameters rea- 
sonably small, prices and output are assumed to evolve according to the 
following simple autoregressive processes: 

Q,2 = ~02 + ~2Qt-1,2 + ~(27 

r, = PO3 + PST-, + l),3. 

The disturbances nt = [~),i, nr2, ~~~1’ are taken to be distributed i.i.d. over time. 
We assume that expectations are formed rationally, i.e., 

E,Z,+,.i = po,/(l - P;) + P: [ zt, - POi/(l - Pi)1 9 

with 

Ztl=Qr~‘ Zr2=Qr2, Z,,= r,, i= 1,2,3. 

Substitution of these expressions into (8) and making use of the factor 
requirement function (1) yields the following system of demand equations: 

v, = “0 + "yY, -k :a,,Y,' + a’X,_, + b’X,-,Y, 

+ +X;_,AX,_, + jAX;BAX,+ E,~, 02) 

MX;T,= -(I-M) i q1- &(I-M)]pn,,, 
iso 1 +r (13) 
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with 

%PO3/(1- P3) + (r + ~JPOl/(l - dl/O - 4 
nt0= 

a2 + ~2YPO3/0 - PJ + (r + ~2)boAl - dl/(l - 4 I ’ 

1 0 0 0 
nt1 = [ 1 n,*, *t2 

= 
0 0 [ 

0 1 1 nt*, 

nr3 = 
[ 1 1;; [Y,-Po3/(1 -P,>L 

[Cl+ d/p, - (1 - i-5)] [Q,, -PO& - d/(1 - 4 
n,* = 

[(I + d/p2 - (I- a,>] [Q,, - ~02/(1- ~2)1/0 - u) 1 ’ 

and p. = 1. These equations determine together with (11) the variable and 
quasi-fixed factor inputs V,, Xi, and X2,. Note that a stochastic disturbance 

term is added to each of the factor demand equations. As in Epstein and 
Yatchew (1985), we interpret the disturbances E, = [~,i, &;*I’ = [Q, E,~, rt3]’ as 
optimization errors. They are assumed to be distributed i.i.d. over time.’ 
Furthermore, we assume Ed and q, as well as the elements of 7, to be 
stochastically independent.8 We define ,Z, = (u,,,) = E( E&) and ,Z, = ( u,,,i j = 
E(%$j. 

Approach I takes the system (ll), (12), and (13) as the fundamental system 
of equations from which the technology parameters and the expectations 
parameters are to be estimated. Since the approach is based on a complete 
solution of the firm’s intertemporal optimization problem it utilizes all avail- 
able a priori information. In general, it is not possible to estimate the model 
parameters from (ll), (12), and (13) using standard estimation algorithms. The 
reason is that, in general, we cannot solve (7b) explicitly for M in terms of B 

and A (unless the quasi-fixed factors are separable). Therefore, we adopt the 
estimation procedure suggested by Epstein and Yatchew (1985) which is based 
on a reparameterization of the model.’ Note that while (7b) cannot be solved 

‘Alternatively we could have interpreted the disturbances E, as random shocks to the technology 
which are observed by the firm but not by the researcher. In that case, however, we would expect 
et, to be heteroscedastic. Since this would further complicate the estimation of the model, we do 
not adopt this interpretation in the present study. 

8Given the assumption of independence between E, and n,, we can use in the second approach 
the current period price and output variables as instruments. This avoids putting the second 
approach into a possibly unfair disadvantage. 

9As noted in the introduction, Hansen and Sargent (1981) have suggested an alternative 
estimation procedure that can also be applied to models with adjustment ccst that involve 
higher-order changes in the factor inputs. We have adopted the procedure suggested by Epstein 
and Yatchew (1985) in the present study, since it is computationally simpler. Both procedures 
yield the same parameter estimates. 
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explicitly for M in terms of B and A it can be solved for A in terms of B and 
M. This suggests that we estimate the elements of B and M rather than those 
of B and A as the principal parameters. To impose the symmetry of C, we can 
also estimate B and C instead of B and M. It is not difficult to see from (7b) 
and the definition of C that 

A=c-(l+r)[~-B(c+B)-'B], M= -B-lc. (14) 

Upon substitution of (14) into (12) and (13), we can estimate B and C and 
the remaining technology and expectations parameters from (ll), (12), and 
(13) using standard system methods. Once estimates for B and C are obtained 
we can estimate A from (14). The actual implementation of the factor demand 
system (ll), (12), and (13) requires that the equations be written in scalar 
notation. The reader can easily verify that the resulting expressions turn out to 
be quite complex even for our relatively simple example.” 

The general solution to the first-order conditions (6) corresponding to the 
infinite horizon model, { Xt,r}~Zo, is defined in (7). For comparison with the 
other two approaches, we note that (13) can be written (in general notation) 
equivalently as 

x, = x,,, + Et+ 

= [A + (2 + r)B] -‘{ BX,,, + (1 + r)BX,_, + E,h,} + E,*. (15) 

The empirical demand equations for the quasi-fixed factors corresponding 

to the approach II are given by 

X,= [A+(2 +r)B]-'{BX,+,+(1+r)BX,_,+h,} ++, (16) 

where u,, denotes the vector of disturbances. The system is completed by the 
demand equation for the variable factor (12). Eqs. (16) have been obtained 
from the initial (r = 0) set of stochastic Euler equations (4) by replacing the 
unobserved conditional expectations on X(+i, Y,, 1 and Q,,, by their actual 
values. As with (13) or (15), we normalize the equation so that the coefficients 
of the elements of X, are equal to one. The approach does not require explicit 
specification of the process that generates the exogenous variables in the firm’s 
decision process. Consequently, it avoids problems that may arise from 
(possible) misspecification of that process. It requires, however, that expecta- 
tions are formed rationally, as we have maintained for the ‘true’ model (11) 
(12) and (13). From (ll), (13), (15) and (16) it is not difficult to see that the 

“The following result is useful to sim lify the expressions: (I - M)[ I - c( I - M)]-‘Em’ = 
-(l/c){ B-l + (l/c)[C - ((1 - c)/c)B]-‘1, where c > 0 is some constant. 
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disturbances uI. are homoscedastic and of the form 

u f. = E,* + [A + (2 + r)B] -‘{ B[ X,,, - X,,,] + E,h, - h,} 

= PO%+ 1 + PIE,* + P+,+1,*, 

where the Pi's are matrices of constants. 
Hansen (1982) and Hansen and Singleton (1982) have introduced a class of 

generalized instrumental variable estimators that allow the estimation of the 
technology parameters from the stochastic Euler equations (16) and (12). 
These estimators minimize the correlation between any variable known at time 
t and the residuals of the demand equations. In the case of zero optimization 
errors, the disturbances in (16) simplify to u,+ = Poql,+l and are hence distrib- 
uted i.i.d. In this case the procedure suggested by Hansen and Hansen and 
Singleton reduces to non-linear three-stage least squares. [See also Pindyck 
and Rotemberg (1983a, b) on this point.] We note that the expected values of 
X f+l’ AX:, x,2 Y,+l, et+,, conditional on Y,, Q,, X,_ 1, are linear or linear- 
quadratic in these variables and a constant. The conditioning set is orthogonal 
to the disturbances in (12) and (16) and consistent with the possibility of 
optimization errors. For the present Monte Carlo study, we choose these 
variables as well as their products and cross-products as instruments. From a 
practical point of view, the empirical factor demand equations corresponding 
to approach II are much simpler to implement than those of approach I. 

In the present context, we interpret the finite horizon model underlying 
approach III as an approximation to the infinite horizon model.” Let { X,Tr}T=O 
denote the solution to the first-order conditions given by (10). Assuming 
expectations are formed rationally from (11) and adopting an analogous 
stochastic specification as in (13) or (15), the empirical quasi-fixed factor 
demand equations corresponding to approach III are given by 

x,= [A+(2+r)B]-’ 

x { sx,Tl+ (1 + +3X,_, + E,h,} + ~,a, 07) 

l1 Prucha and Nadiri (1984) argue that the finite horizon model may yield a more realistic 
description of empirical data than the infinite horizon model. However, the subsequent results 
suggest that the discussion which of the two models should be considered the more realistic one is 
rather academic. 
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where w,+ denotes the vector of disturbances and X,TI is defined implicitly by 

-BX&+1 + [A + (2+r)B]X;r,- (1 +r)BX;C,_.,= E,h,+,, 

7=0,1 ,..., T- 1, 

[A + rB]X;r- ‘BX;T,_, = E,h,+r, 08) 

with 

E,h,+,= -[n,,+p;+‘n,,+p;+‘n,,+p;+‘n,,], 7=0,1,...,T-1, 

@,+T= -[ nto + PL + Ph + Ph3 1. 
Expressions for n,,, n,,, nr2 and nt3 are defined in (13). The expressions for 
- 
n,, and Fi,, are identical to those for n,, and nr2 except that the terms 
(1 + r)/pl and (1 + t-)/p2 are replaced by 1 + r. The system is completed by 
the demand equation for the variable factor (12) and model (11) which 
generates the exogenous variables in the firm’s input decision.12 

We note that replacing XtTI by X,,, in (18) brings us back to the accelerator 
model (13). This is readily seen from a comparison of (15) and (17) and from 

the fact that (13) and (15) are equivalent. Such a comparison also shows that 

W,’ = E,* + [A -i (2 + r)B]-'B[ X,,, - X,TJ. The disturbances wt* do not satisfy 
standard assumptions. This, of course, does not, e.g., preclude questions about 
the properties of the (pseudo-) maximum likelihood estimator for the un- 

known model parameters. 
Since (18) is linear, we can, in principle, solve explicitly for XT,, substitute 

the explicit solution for XtTI into (17) and estimate the unknown technology 
and expectations parameters from (ll), (12) and (17) by standard methods. 
However, in general this is impractical due to the complexity of the explicit 
solution for X,rI. The alternative is to numerically solve (18) N times (where N 

is the sample size) for Xtrl, . . . , Xl,t for each new set of trial parameter values 
used by the iterative algorithm employed in optimizing the statistical objective 
function. Various numerical algorithms for the optimization of non-linear 
objective functions are available. The estimation of non-linear econometric 
models is generally quite expensive even in standard applications.13 Conse- 
quently, numerical efficiency of the algorithm is important. To calculate the 
gradient of the statistical objective function we need to calculate the deriva- 

I2 We could have written the quasi-fixed factor demand equations for the finite horizon model as 
X, = X,rO + w,.. However, we prefer the specification in (17) since it emphasizes the relationship 
with the second approach. Also, (17) can be used conveniently to find starting values for the 
estimation algorithm by first estimating (17) with X:l replaced by X,, t. 

t3 Details on the numerical costs involved in estimating the dynamic factor demand model that 
underlies the present study will be given in the next section. 
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tives of XTi, . . . , Xz,i with respect to the respective parameters. Suppose X,ri 
depends on L parameters. The numerical calculation of the partial derivatives 

of XIT1 with respect to its parameters requires that we evaluate X*Ti at least 
L + 1 times for slightly different parameter values so that we can approximate 
the partial derivatives by respective difference quotients; see, e.g., Chow (1983, 
p. 234). Consequently, an algorithm that computes the gradient numerically 
would require that we solve the system (18) at each basic iteration step at least 
(L + 1) x N times. Since those solutions are expensive, Prucha and Nadiri 
(1984) designed an algorithm for the estimation of models like (ll), (12) (17) 
and (18) that allow the gradient to be evaluated from analytic expressions in 
terms of the unsubstituted model. l4 The performance of that algorithm is 
explored here. In terms of the actual implementation of (11) (12) (17) and 
(18) we note that (18) may be lengthy but that the expressions involved are not 
very complicated. 

4. Parameter and data design and Monte Carlo results 

4.1. Parameter and data design 

The design of parameter values and data borrows liberally from an em- 
pirical application where we estimated a three-factor demand model, similar to 

the one considered here, using U.S. manufacturing data. In that application Y 
represented value added, V denoted hours worked, and Xi and X, corre- 
sponded to end-of-period net capital stock of equipment and structures, 
respectively. Data on Y, V, Xi and X, were normalized by their sample means 
while prices were constructed conformably.” In estimating the model, we 
imposed restrictions on the technology parameters in (1) such that the long-run 
elasticities of output with respect to the factor inputs, and hence the long-run 
scale elasticity, were unity at the point of sample means. 

While the design of particular parameter values was guided by the parame- 
ter estimates obtained from the empirical analysis, the parameter values 
chosen are not identical to those estimates. Specifically, changes were imple- 
mented so that quite different adjustment speeds for the two quasi-fixed 
factors were obtained. This allows an analysis of the possible implications of 
the magnitude of the adjustment speed. Regression parameters and non-zero 
elements of the disturbance variance-covariance matrix which describe the 

t4The algorithm is described exemplarily for the case of full-information maximum likelihood 
estimation. The algorithm put forward by Berndt et al. (1974) is taken as a starting point. 

t51n somewhat more detail: The data on value added, hours worked and total compensation 
(used to calculate an hourly compensation rate) were taken from the NIPA accounts as published 
in U.S. Department of Commerce (1981). The data on capital stocks and on current and constant 
dollar investment (needed to calculate the price variables for the capital goods) were taken from 
U.S. Department of Commerce (1982). 
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true structure of the model (ll)-(13) were chosen as follows: (Ye = 0.05, 
(Yt = -0.2, (Y* = -0.1, (Yu = 0.4, (Y22= 0.3, a,,=O.l, tit, = 0.7, E,, = 5.0, (Yy 
= 1.5, lIyyy= 1.0, (Yry= -0.5, (Y*y= -0.4, no1 = 0.15, pt = 0.7, po2 = 0.1, p* = 
0.7, PO3 = 0.1, pJ = 0.98, UVll = 0.0003, a,,, = 0.0003, UVjS = 0.003, cl,tl = 0.001, 

U e21 = 0.0005, a,,, = 0.0005, a,,, = 0.00005, a,,, = 0.00005, a,,, = 0.00005. 
Based on these values for the non-zero elements of the variance-covariance 
matrix, the disturbances were drawn independently over time from a multi- 
variate normal distribution.‘6 For initial values for the quasi-fixed factors, the 
normalized acquisition prices, and output, respectively, we use the 1950 values 
ermployed in the empirical study: X0, = 0.580, X0, = 0.779, Q,, = 0.740, QoZ 
= 0.506, Y, = 0.623. The real discount rate, r, the tax rate, U, and the 

depreciation rates, 6, and a,, were chosen to be 0.05, 0.5, 0.13 and 0.07, 
respectively. Based on these values, the sample data for V, XI, X,, Q,, Q2 and 
Y, for each random drawing of the disturbances, were generated by solving the 
model dynamically. The implied squared correlation coefficients between fitted 
and actual observations for AV, AX,, AX,, Q,, Q2 and Y were found to be 
approximately 0.9, 0.8, 0.8, 0.85, 0.7 and 0.99, respectively.” On average each 
equation fit quite well. Nevertheless, in some cases the convergence of the 
estimation procedure required a considerable number of iterations. More 
details are given below. 

The data set corresponding to zero disturbances may be used as a reference 
set for the Monte Carlo data sets that were actually employed by the Monte 
Carlo experiment. For that reference set we estimate the following average 

growth rates for V, XI, X,, Q,, Q2 and Y, respectively, over fifty sample 

periods: 3.4, 3.6, 3.0, -0.8, -0.8 and 3.4 percent. These growth rates are 
within the range of values observed from empirical data. The values selected 
for the elements of A and B imply the following values for the elements of the 

accelerator matrix M = (mij): m,, = 0.50, ml2 = 0.09, rnzl = 0.01 and m 22 = 

0.19. Note that these values imply a considerable spread in the adjustment 
speeds for the two quasi-fixed factors. The positive cross-adjustment coeffi- 
cients imply that the two quasi-fixed factors are dynamic substitutes and 
compensate for each other in the adjustment process. Note that the elements 
of A and B satisfy all restrictions implied by the convexity of the factor 
requirement function in X and AX. Restrictions on the first derivatives of the 
factor requirement function have been checked and were comfortably satisfied 
for all observations in the reference data set. The implied scale elasticities are 
close to one, both in the neighborhood of sample means and over the entire 
sample. Of course, this implies long-run output elasticities for V, X, and X, 

16We used subroutine GGNML from the IMSL program library as the principal random 
number generator. 

“The fitted values for AV, AX, and AX, were calculated by solving (12) and (13) for given 
observations on Q,, Q2 and Y. 



I. R. Prucha and M. I. Nadiri, Estimation of dvnamic factor demand models 201 

around unity. The calculation of various short- and long-run price elasticities 
for V, Xi and X, reveals that all of them possess the correct sign with 

magnitudes within the range of those reported, e.g., by Morrison and Berndt 
(1981) and Mohnen, Nadiri and Prucha (1985). 

4.2. Monte Carlo results 

As noted in section 3, the estimating equations corresponding to approach I 
are given by (ll)-(14), for approach II by (12) and (16) and for approach III 
by (11) (12) (17) and (18). For both approaches I and III we have used the 
full-information maximum likelihood estimator (based on a Gaussian log-like- 

lihood function) as our estimation method. We did not impose zero-parameter 
restrictions on the variance-covariance matrix. The parameter estimates corre- 
sponding to approach II have been obtained by applying three-stage least 
squares to data sets that have been generated identically to those underlying 
approaches I and III, except that the optimization errors in the quasi-fixed 
factor demand equations E,+ were set equal to zero. The instruments for the 
three-stage least squares estimator are listed in the preceding section. As noted 
previously, the disturbances u, * in (16) are, in this case, distributed i.i.d. and 
the generalized instrumental variable estimator reduces to the three-stage least 
squares estimator. We cannot expect to obtain more efficient estimates in the 

presence of non-zero optimization errors. (Note that E, and 7, are indepen- 
dent.) Hence, the results of our comparisons should constitute lower bounds 
for the gain in efficiency between approaches I and III and approach II. [We 
note that for the purpose of the present Monte Carlo comparison we have not 
selected a list of instruments that includes X, and AX:, since for the basic 
data set with optimization errors these variables are correlated with the 
disturbances in (12) and (16).] 

For each of the three approaches, samples of size N = 30 and N = 50 are 
considered. Since for approach II the bias and dispersion of the estimators 
remained quite large for N = 50, we also considered a sample of size N = 100 
for that approach. The planning horizons for approach III were chosen as 
T + 1 = 5 and T + 1 = 10. Hence a total of nine Monte Carlo experiments 
were performed. All parameter estimates were calculated using TSP 4.0 with a 
tolerance for convergence equal to 0.001. The true parameter values were used 
as starting values. For N = 30 the number of iterations needed for convergence 
ranged from 9 to 84 for approaches I and III and from 10 to 238 iterations for 
approach II; the median number of iterations needed for convergence was 18 
for approach I and III and 24 for approach II. (The number of iterations 
needed for N = 50 or N = 100 was typically less than that for N = 30.) 

Two hundred and fifty Monte Carlo trials were performed for each of the 
experiments corresponding to approaches I and III and (since there was more 
variation) five hundred Monte Carlo trials were performed for each of the 
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Table 2b 

Characteristics of the small-sample distribution of the parameter estimators corresponding to 
approach II. 

Monte Carlo estimates 

Parameter 
True 
value 

Int. quant. Int. decile Median Tail 
Median range range abs. dev. Skewness thickness 

Sample size N = 100 

0.05 0.048 0.030 0.061 
-0.2 - 0.197 0.023 0.045 
-0.1 -0.100 0.027 0.055 

0.4 0.386 0.068 0.134 
0.3 0.227 0.094 0.193 
0.1 0.092 0.068 0.151 
0.7 1.004 0.148 0.303 
5.0 5.849 0.853 1.600 
1.5 1.498 0.060 0.110 
1.0 0.894 0.292 0.594 

-0.5 - 0.476 0.129 0.259 
-0.4 - 0.311 0.167 0.326 

0.016 
0.012 
0.013 
0.038 
0.084 
0.036 
0.304 
0.854 

- 0.034 2.038 
- 0.002 1.962 

0.015 2.055 
0.056 1.958 
0.107 2.046 
0.042 2.226 
0.070 2.053 
0.068 1.874 

- 0.034 1.844 
0.115 2.037 

- 0.052 2.001 
- 0.132 1.945 

experiments corresponding to approach II. In tables l-3 we give various 
characteristics of the small-sample distribution of the estimators. Results 
concerning the existence of small-sample moments for the full-information 
maximum likelihood and the three-stage least squares estimator are, to the 
best of our knowledge, not available for the models considered in this study.18 
We therefore base our characterization of the small-sample distributions on 
fractiles rather than moments. 

In particular, we report Monte Carlo estimates for the median, the inter- 
quantile range, the interdecile range and the median absolute deviation. The 
median is our measure of location; we refer to the difference between the 
median and the true parameter value as the (median) bias. The interquantile 
range and the interdecile range are measures of dispersion. They are defined 
as, respectively, the difference between the 0.75 and 0.25-quantile and the 
difference between the 0.9- and O.l-decile. The median absolute deviation 
(from the true parameter value) is defined as the median of the absolute 
difference between the estimator and the true parameter value. It is a com- 
bined measure of bias and dispersion. (In case the bias is zero and the 
distribution is symmetric the median absolute deviation equals one half of the 
interquantile range.) We report, furthermore, Monte Carlo estimates for 

‘sFor the general linear simultaneous equation system satisfying classical assumptions the 
full-information maximum likelihood estimator is known to possess no finite integral moments; 
the three-stage least squares estimator is known to possess finite moments up to the order K, where 
K is the degree of overidentification. For more details, see, e.g., Mariano (1982) and Phillips 
(1984); compare also Hendry (1984). 
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measures of the skewness and the tail thickness of the small-sample distribu- 

tion of the parameter estimators. Define the quantile-midpoint as the average 
between the 0.75 and 0.25quantile. Then our measure of skewness is defined 
as the ratio of the difference between the quantile-midpoint and the median to 
the interquantile range. Our measure for the tail thickness is defined as the 
ratio of the interdecile range to the interquantile range.” 

We note that from the results reported it is possible to recover the underly- 
ing 0.75- and 0.25quantiles and 0.9- and O.l-deciles. Our measure of skewness 
will be zero for symmetric distributions, and positive [negative] for distri- 
butions which are more spread out to the right [left] of the median. Com- 
paratively larger values for our measure of the tail thickness indicate that 
comparatively more mass is concentrated in the tails of the distribution. For a 
normal distribution with mean ~1 and variance a2 the median will clearly 
equal p and our measure of skewness will be zero. The interquantile and 
interdecile range will be, respectively, 1.35~ and 2.57~; our measure for the tail 
thickness will be 1.9. We note that asymptotically all estimators considered are 

normally distributed. 
As expected, the median absolute difference, the interquantile range and the 

interdecile range decrease in all cases as the sample size increases. No general 
observations are apparent for the skewness of the sample distributions. Some 
are left skewed while others are right skewed. On average the parameter 
distributions exhibit thinner tails as the sample size increases. For samples of 

size N = 30 the maximum observed value for our measure of the tail thickness 
is 2.68; for N = 50 the maximum observed value is 2.26. We emphasize that all 

three approaches estimate the parameters determining the dynamics of the 
system, i.e., the accelerator matrix, and the parameters associated with the 
output variable, with less precision than the remaining parameters. Multicol- 
linearity due to the underlying growth patterns in output and the quasi-fixed 
factors may be the source of the difficulties with the estimation of the output 
parameters. The parameter that seems to be the most problematic for estima- 
tion is the adjustment cost coefficient of the slow adjusting quasi-fixed factor, 
. . 
(Yap. As a partial explanation we note that, for the parameter values consid- 
ered, comparatively large changes in &,, induce only comparatively small 

t91n more detail: Consider the estimator, say, a^ for the parameter, say, a’. For any number A, 
0 < X < 1, the A-fractile of the population is defined as the value aA such that Pr( ci 5 aA} = A. 
Clearly, the median of a^ corresponds to a0 5. The 0.75, 0.2%quantiles and @.9-, O.l-deciles 

correspond to ao.75. ao.25, ao.9 and ao.l, respectively. The median absolute deviation corresponds 
to the median of 16 - acl. The interquantile range and interdecile range are defined as ao.75 - a,, a5 

and a09 - ao.1, respectively. Our measures for the skewness and tail thickness are given by 

{(ao.~ + %A/2 - aa. 1Aa0.75 - a0.A and (aa. - ca.i)/(aa.7s - ao.2s), respectively. For a fur- 
ther discussion of the above measures, see, e.g., Elashoff and Elashoff (1978), Greenberg (1978), 
Keller (1978) and the literature cited therein. The Monte Carlo estimates of the A-fractile of the 
population are based on the corresponding order statistics; see, e.g., Greenberg (1978). 
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changes in the accelerator coefficients mjj(i, j = 1,2). For example, a change 
m g,, from the assumed value of 5 to 6 [4] leads to a change in mz2 from 0.19 
to 0.17 [0.21]. In contrast, a change in E,, from the assumed value of 0.7 to 0.8 
[0.6] leads to a change in m,, from 0.50 to 0.48 [0.53]. 

A comparison of the results from approaches I and III shows that the 
respective sampling distributions are nearly identical when a ten-period plan- 
ning horizon is assumed for the latter approach. Moreover, even when ap- 
proach III is based on only a five-period planning horizon we observe the 
respective sampling distributions to be very close. This is offered as further 
evidence that the finite horizon model underlying approach III approximates 
the infinite horizon model very closely even for planning horizons of moderate 
length. A detailed inspection of the Monte Carlo results shows that this close 
approximation not only holds in terms of sampling distribution but also in 
terms of the actual parameter estimates. The results also suggest that a longer 
planning horizon is needed for close approximation when a slow adjusting 
quasi-fixed factor is included. 

In comparing the results for approaches I and II, substantial differences in 
the respective sampling distributions emerge. We note that for small samples 
the estimator associated with approach II show considerable biases for some 
of the parameters. This is particularly true for the parameters that determine 
the dynamics of the factor demand system and some of the parameters 
associated with the output variable. The sampling distributions associated with 
approach II are also, on average, characterized by a considerably larger 
dispersion than those associated with approach I. This comparison dem- 
onstrates that by incorporating the full solution of the firm’s optimizing 
problem substantial improvements in terms of statistical efficiency are possi- 
ble. 

All computations have been performed with TSP 4.0 on an IBM 4341. For 
approach III we have modified TSP 4.0 somewhat and added FORTRAN 
subroutines to calculate the plan values XZTr and their derivatives with respect 

to the model parameters. As described in Prucha and Nadiri (1984) those 
derivatives were calculated from expressions obtained by differentiating (18) 
implicitly. For each approach we have estimated the CPU seconds required for 
one iteration. In all cases these estimates correspond to the last iteration 
before convergence. Results corresponding to samples of size N = 30 and 
N = 50 are presented in table 4. As expected, approach II is by far less 
expensive than the other two approaches. Approach III is the most expensive 
one. However, its computational cost remains, in comparison to approach I, 
within reasonable bounds. Computational cost increases quite steeply with the 
planning horizon. This may be avoided, in part, by obtaining preliminary 
estimates from a model with a short planning horizon which can then be used 
as starting values for a model with a longer planning horizon. 
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Table 4 

CPU seconds per iteration. 

Approach I 

2.05 

3.30 

Approach II 

0.50 

0.75 

Approach III (T + 1 = 5) 

Sample size N = 30 

2.25 

Sample size N = 50 

3.90 

Approach III (T + 1 = 10) 

3.10 

5.80 

5. Conclusion and suggestions for future research 

paper analyzed the differences in statistical and computational 

effiency among three alternative approaches to the estimation of dynamic 
factor demand models. The results provide evidence that: (i) considerable 
gains in statistical efficiency can be obtained by incorporating a full solution 
of the firm’s optimizing problem, either analytically (approach I) or numeri- 
cally (approach III); (ii) parameters estimates from approach II may be 
considerably biased (in small samples); (iii) estimation of the parameters 
determining the dynamics of the factor demand system is especially difficult; 
(iv) the finite horizon model of approach III approximates the infinite horizon 
model very closely even for planning horizons of moderate size; (v) approach 
II is the easiest to implement and computationally the least involved. As 

expected, approach III is computationally the most expensive. However, since 
a moderate planning horizon can be chosen and the gradient of the statistical 
objective function is evaluated from analytic expressions, the computational 
cost of approach III remains reasonable. The price that has to be paid by 
approach III for not requiring the knowledge of the explicit analytic solution 
of the firm’s optimum problem seems quite moderate. 

Since differences among the approaches exist also in terms of the generality 

with which technology and expectations formation can be specified and in 
terms of informational requirements, our results cannot imply a uniform 
superiority of one approach over the others. In particular, as remarked earlier, 
only approaches II and III are applicable in cases where the technology is not 
a linear-quadratic technology. In such situations, the stochastic closed-loop 
feedback control policy employed by approach II and the certainty equiv- 
alence feedback control policy employed by approach III will not yield 
identical input decisions. However, because of the results on first-order cer- 
tainty equivalence by Malinvaud (1969) we expect input decisions to be 

similar, especially when the uncertainty concerning the exogenous variables 
and the degree of non-linearity are moderate. This issue as well as the 
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empirical question of which of the two policies better describes actually 
observed data warrants further investigation. 

We note that our analysis has assumed a correctly specified model. There- 
fore one avenue of future research concerns the robustness of approaches I 
and III to misspecification in the model generating the exogenous variables; 
another issue would be the robustness of approach II to nonrational expecta- 
tions. For approaches I and III one might also investigate how precisely the 
technology and expectations parameters can be estimated from the technology 
and quasi-fixed factor demand equations alone. A further analysis of the small 
sample properties of the generalized instrumental variables estimators used in 
approach II also seems of interest. 

Finally, although the results of the present study are based on what we 
believe to be a representative example, the robustness of those results using 
other specifications, parameter constellations and instruments needs to be 
checked. In such a future study control variate methods may be used to reduce 
the computational cost and results may be summarized in terms of response 
functions [see Hendry (1984)]. Preliminary simulation results based on a small 
number of iterations suggest that the main conclusions of this paper remain 
robust against alternative parameter constellations.20 
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