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Abstract

Cross-sectional spatial models frequently contain a spatial lag of the dependent variable as a regressor or a

disturbance term that is spatially autoregressive. In this article we describe a computationally simple procedure

for estimating cross-sectional models that contain both of these characteristics. We also give formal large-sample

results.
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1. Introduction

Cross-sectional spatial regression models are often formulated such that they permit

interdependence between spatial units. This interdependence complicates the estimation

of such models. One form of interdependence arises when the value of the dependent

variable corresponding to each cross-sectional unit is assumed, in part, to depend on a

weighted average of that dependent variable corresponding to neighboring cross-sectional

units. This weighted average is often described in the literature as a spatial lag of the

dependent variable, and the model is then referred to as a spatially autoregressive model

(see, e.g., Bloomestein, 1983, and Anselin, 1988, p. 35).1 The spatially lagged dependent

variable is typically correlated with the disturbance term (see, e.g., Ord 1975, and Anselin,

1988, p. 58), and hence the ordinary least squares estimator is typically not consistent in

such situations. Another form of interdependence that arises in such models is that the

disturbance term is often assumed to be spatially autoregressive. Consistent procedures,

other than maximum liklihood, have been suggested in the literature for models that

contain one of these interdependencies.2 Unfortunately, such procedures are not available

for models that have both of these characteristics. This shortcoming is of consequence

because maximum likelihood procedures are often computationally very challenging

when the sample size is large.3 Furthermore, the maximum likelihood procedure requires

distributional assumptions that the researcher may not wish to specify.4

The purpose of this article is to suggest an estimation procedure for cross-sectional

spatial models that contain a spatially lagged dependent variable as well as a spatially



autocorrelated error term. Our procedure is computationally simple, even in large samples.

In addition, our procedure is conceptually simple in that its rational is obvious. We give

formal large sample results with modest assumptions regarding the distribution of the

disturbances.

The model is speci®ed in section 2. That section also contains a discussion of the

assumptions involved. Our procedure is described in section 3. Concluding remarks are

given in section 4. Technical details are relegated to the appendix.

2. The Model

In this section we ®rst specify the regression model and all of its assumptions; we then

provide a discussion and interpretation of these assumptions. It proves helpful to introduce

the following notation. Let An with n 2 N be some matrix; we then denote the �i; j�th
element of An as aij;n Similarly, if vn with n 2 N is a vector, then vi;n denotes the ith
element of vn. An analogous convention is adopted for matrices and vectors that do not

depend on the index n, in which case the index n is suppressed on the elements. If An is a

square matrix, then Aÿ1
n denotes the inverse of An. If An is singular, then Aÿ1

n should be

interpreted as the generalized inverse of An. Further, let �Bn�n2N be some sequence of

n� n matrices. Then we say the row and column sums of the (sequence of ) matrices Bn

are bounded uniformly in absolute value if there exists a constant cB51 (that does not

dependent of n ) such that

max
1�i�n

Xn

j�1

jbij;nj � cB and max
1�j�n

Xn

i�1

jbij;nj � cB for all n 2 N

holds. As a point of interest, we note that the above condition is identical to the condition

that the sequences of the maximum column sum matrix norms and maximum row sum

matrix norms of Bn are bounded (see Horn and Johnson, 1985, pp. 294±295).

2.1. Model Speci®cation

Consider the following cross-sectional (®rst-order) autoregressive spatial model with

(®rst-order) autoregressive disturbances �n 2 N�:

yn � Xnb� lWnyn � un; jlj < 1

un � rMnun � en; jrj < 1;
�1�

where yn is the n� 1 vector of observations on the dependent variable, Xn is the n� k
matrix of observations on k exogenous variables, Wn and Mn are n� n spatial weighting

matrices of known constants, b is the k � 1 vector of regression parameters, l and r are

scalar autoregressive parameters, un is the n� 1 vector of regression disturbances, and en
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is an n� 1 vector of innovations. The variables Wnyn and Mnun are typically referred to

as spatial lages of yn and un, respectively. For reasons of generality we permit the

elements of Xn;Wn;Mn; and en to depend on nÐthat is, to form triangular arrays. We

condition our analysis on the realized values of the exogeneous variables, and so,

henceforth, the matrices Xn will be viewed as matrices of constants.

In scalar notation the spatial model (1) can be rewritten as

yi;n �
Xk

j�1

xij;nbj � l
Xn

j�1

wij;nyj;n � ui;n; i � 1; : : : ; n;

ui;n � r
Xn

j�1

mij;nuj;n � ei;n:

�2�

The spatial weights wij;n and mij;n will typically be speci®ed to be nonzero if cross-

sectional unit j relates to i in a meaningful way. In such cases, units i and j are said to be

neighbors. Usually neighboring units are taken to be those units that are close in some

dimension, such as geographic or technological. We allow for the possibility that

Wn � Mn.

We maintain the following assumptions concerning the spatial model (1).

Assumption 1: All diagonal elements of the spatial weighting matrices Wn and Mn are
zero.

Assumption 2: The matrices �I ÿ lWn� and �I ÿ rMn� are nonsingular with jlj51 and
jrj51.

Assumption 3: The row and column sums of the matrices Wn;Mn; �I ÿ lWn�ÿ1, and
�I ÿ rMn�ÿ1 are bounded uniformly in absolute value.

Assumption 4: The regressor matrices Xn have full column rank ( for n large enough).
Furthermore, the elements of the matrices Xn are uniformly bounded in absolute value.

Assumption 5: The innovations fei;n : 1 � i � n; n � 1g are distributed identially.
Further, the innovations fei;n : 1 � i � ng are for each n distributed ( jointly)
independently with E�ei;n� � 0, E�e2

i;n� � s2
e , where 0 < s2

e5b with b51. Additionally
the innovations are assumed to possess ®nite fourth moments

In estimating the spatial model (1) we will utilize a set of instruments. Let Hn denote the

n� p matrix of those instruments, and let Zn � �Xn;Wnyn� denote the matrix of regressors

in the ®rst equation of (1). We maintain the following assumptions concerning the

instrument matrices Hn.

Assumption 6:5 The instrument matrices Hn have full column rank p � k � 1 ( for all n
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large enough). They are composed of a subset of the linearly independent columns of
�Xn;WnXn;W

2
nXn; : : : , MnXn;MnWnXn;MnW2

nXn; : : :�; where the subset contains at least
the linearly independent columns of �XnMn;Xn�.

Assumption 7: The instruments Hn satisfy furthermore the following:

�a� QHH � lim
n!1 nÿ1H0nHn;

where QHH is ®nite, and nonsingular;

�b� QHZ � plim
n!1 nÿ1H0nZn

and

QHMZ � plim
n!1 nÿ1H0nMnZn;

where QHZ and QHMZ are ®nite and have full column rank; furthermore,

QHZ ÿ rQHMZ � plim
n!1 nÿ1H0n�I ÿ rMn�Zn

has full column rank where jrj51;

�c� F � lim
n!1 nÿ1H0n�I ÿ rMn�ÿ1�I ÿ rM0n�ÿ1Hn

is ®nite and nonsingular where jrj51.

The following assumption ensures that the autoregressive parameter r is ``identi®ably

unique'' (see Kelejian and Prucha, 1995).

Assumption 8: The smallest eigenvalue of G0nGn is bounded away from zeroÐthat is,
lmin�G0nGn� � l� > 0, where

Gn �
1

n

2E�u0nun� ÿE�u0nun� 1

2E�u0nun� ÿE�u0nun� tr�M0nMn�
E�u0nun � u0nun� ÿE�u0nun� 0

0B@
1CA �3�

and un � Mnun and un � Mnun � M2
nun:
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2.2. Some Implications of the Model Speci®cation

The speci®cations in (1) and Assumption 2 imply that6

yn � �I ÿ lWn�ÿ1Xnb� �I ÿ lWn�ÿ1un

un � �I ÿ rMn�ÿ1en:
�4�

Assumption 5 implies further that E�un� � 0, and that the variance±covariance matrix of

un is

Oun
� E�unu0n� � s2

e �I ÿ rMn�ÿ1�I ÿ rM0n�ÿ1: �5�

Thus, the disturbance terms are generally both spatially correlated and heteroskedastic. It

follows from (4) and (5) that E�yn� � �I ÿ lWn�ÿ1Xnb, and that the variance±covariance

matrix of yn is

Oyn
� s2

e �I ÿ lWn�ÿ1�I ÿ rMn�ÿ1�I ÿ rM
0
n�ÿ1�I ÿ lW0n�ÿ1

: �6�

Furthermore,

E��Wnyn�u0n� � Wn�I ÿ lWn�ÿ1Oun

� s2
eWn�I ÿ lWn�ÿ1�I ÿ rMn�ÿ1�I ÿ rM0n�ÿ1

6� 0:

�7�

Thus, in general, the elements of the spatially lagged dependent vector Wnyn are correlated

with those of the disturbance vector. One implication of this is, of course, that the

parameters of (1) cannot be consistently estimated by ordinary least squares.

2.3. Further Interpretations of the Model Speci®cation

Assumption 1 is a normalization of the model; it also implies that no unit is viewed as its

own neighbor. Assumption 2 indicates that the model is complete in that it determines yn

and un. Next consider Assumption 3. In practice, weighting matrices are often speci®ed to

be row normalized in that
Pn

j�1 wij;n �
Pn

j�1 mij;n � 1 (see, e.g. Kelejian and Robinson,

1993, and Anselin and Rey, 1991). In many of these cases, no unit is assumed to be a

neighbor to more than a given numberÐsay, qÐof other units. That is, for every j the

number of mij;n 6� 0 is less than or equal to q. Clearly, in such cases Assumption 3 is

satis®ed for Wn and Mn. Also, often the weights are formulated such that they decline as a

function of some measure of distance between neighbors. Again, in such cases

Assumption 3 will typically be satis®ed for Wn and Mn. Assumption 3 also maintains

that the row and column sums of �I ÿ rMn�ÿ1
and �I ÿ lWn�ÿ1

are uniformly bounded in
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absolute value. In light of (5) and (6) this assumption is reasonable in that it implies that

the row and column sums of the covariance matrices Oun
and Oyn

are uniformly bounded in

absolute value, thus limiting the degree of correlation between, respectively, the elements

of un and yn.7 Our results relate to the large sample; the extent of correlation is limited in

virtually all large-sample analysis (see, e.g., Amemiya, 1985, chs. 3, 4, and PoÈtscher and

Purcha, 1997, chs. 5, 6). Assumptions 4 and 5 regarding the regressor matrices Xn and the

innovations en seem in line with typical speci®cations (see, e.g., Schmidt, 1976, pp. 2, 56).

The instrument matrices Hn will be used to instrument Zn � �Xn;Wnyn� and

MnZn � �MnXn;MnWnyn� in terms of their predicted values from a least squares

regression on HnÐthat is, bZn � PHn
Zn and dMnZn � PHn

MnZn with

PHn
� Hn�H0nHn�ÿ1H0n. The ideal instruments are E�Zn� � �Xn;WnE�yn�� and

E�MnZn� � �MnXn;MnWnE�yn��; where E�yn� � �I ÿ lWn�ÿ1Xnb: In principle, we

would like bZn and dMnZn to approximate E�Zn� and E�MnZn� as closely as possible.

Assumption 6 assumes that Hn contains, at least, the linearly independent columns of Xn

and MnXn; which ensures that bZn � �Xn; dWnyn� and dMnZn � �MnXn;Mn
cWnyn� withdWnyn � PHn

Wnyn and Mn
cWnyn � PHn

MnWnyn. Furthermore, suppose all eigenvalues of Wn

are less than or equal to one in absolute valueÐwhich is, for example, the case if Wn is row

normalized. Then, observing that jlj51, it is readily seen that8

E�yn� � �I ÿ lWn�ÿ1Xnb

�
X1
i�0

liWi
n

" #
Xnb; W0

n � I:
�8�

Consequently, in this case, WnE�yn� and MnWnE�yn� are seen to be formed as a linear

combination of the columns of the matrices Xn;WnXn;W
2
nXn; . . . ;MnXn;MnWnXn,

MnW2
nXn; . . . : It is for this reason that we postulate in Assumption 6 that Hn is composed

of a subset of the linearly independent columns of those matrices. In practice that subset

might be the linearly independent columns of �Xn;WnXn;W
2
nXn;MnXn;MnWnXn,

MnW2
nXn�, or if the number of regressors is large, just those of �Xn;WnXn, MnXn,

MnWnXn�:9 We also note that the assumption that the matrices Hn have full column rank

could be relaxed at the expense of working with generalized inverses, since the orthogonal

projection of any vector onto the space spanned by the columns of Hn is unique even if Hn

does not have full column rank. Finally, for future reference we note that the elements of

Hn are in light of Assumptions 3 and 4 bounded in absolute value.

Consider now Assumption 7. This assumption will ensure that the estimators de®ned

below remain well de®ned asymptotically. Assumption 7a is standard. Assumption 6 and

Assumption 7a imply that nÿ1H0nXn converges to a full column rank matrix. Because of

this and since nÿ1H0nZn � �nÿ1H0nXn; n
ÿ1H0nWnyn� the force of the ®rst part of Assumption

7b relates to the probability limit of nÿ1H0nWnyn and its linear independence from the limit

of nÿ1H0nXn. In the appendix we show that

plim
n!1 nÿ1H0nWnyn � lim

n!1 nÿ1H0nWn�I ÿ lWn�ÿ1Xnb: �9�
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Two points should be noted. First, Assumption 7b clearly rules out models in which b � 0.

That is, Assumption 7b rules out models in which all of the parameters corresponding to

the exogenous regressorsÐincluding the intercept parameter, if an intercept is presentÐ

are zero. We note that in this case the mean of yn is zero and hence this case may be of

limited interest in practice. Second, as shown in more detail below, if Wn is row

normalized, the ®rst part of Assumption 7b will also fail if the only nonzero element of b
corresponds to the constant term. Thus, in this case, Assumption 7b requires that the

generation of yn involve at least one nonconstant regressor. One implication of this is that

if the weighting matrix in the regression model is row normalized, the hypothesis that all

slopes are zero cannot be tested in terms of the results provided in this article.

We now give more detail concerning the case in which Wn is row normalized, and its

relation to Assumption 7b. Let en be the n� 1 vector of unit elements. Also, suppose that

the ®rst column of Xn is en and the remaining columns are denoted by the n� �k ÿ 1�
matrix X1;n so that Xn � �en;X1;n�. Partition b correspondingly as b � �b0; b

0
1�0. Then the

®rst equation in (1) can be expressed as

yn � enb0 � X1;nb1 � lWnyn � un: �10�

If Wn is row normalized, it follows that Wnen � en. Now, if b1 � 0, then it follows from (8)

that

E�Wnyn� � Wn

X1
i�0

liWi
nenb0 � enk; k � b0=�1ÿ l�: �11�

Thus, the mean of Wnyn is not linearly independent of en. In the appendix, we

demonstrate that

plim
n!1 nÿ1H0n�en;Wnyn� � lim

n!1 nÿ1H0n�en; enk�: �12�

Clearly, this matrix does not have full column rank, and thus the ®rst part of Assumption

7b is violated. In a similar fashion it is not dif®cult to show that analogous statements hold

for the second and third part of Assumption 7b.

In a sense, our Assumptions 7b are similar to the rank condition for identi®cation in

linear simultaneous equation systems. Among other things, that condition implies that a

certain number of predetermined variables that are excluded from a given equation appear

elsewhere in the system with nonzero coef®cients. However, there is an important

difference between our Assumption 7b and the rank condition for identi®cation in linear

simultaneous systems. Speci®cally, suppose our Assumption 7b does not hold because Wn

is row weighted and b1 � 0. Then, the estimation procedure we suggest in section 3 is not

consistent. However, the model's coef®cients may still be identi®ed and there may exist

another procedure that, although perhaps more complex, is consistent. See Kelejian and

Prucha (1995) and note that the parameters of their autoregressive model can be

consistently estimated but yet a condition corresponding to Assumption 7b would clearly
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not hold. We note that if Wn is not row normalized, then in general Wnen will be linearly

independent of en and the development in (12) no longer holds. Thus in this case

Assumption 7b does not require the existence of a nonconstant regressor in the generation

of yn.

Finally, consider Assumption 8. This assumption was made in Kelejian and Prucha

(1995) in proving consistency of their estimator for r, which is used in the second step of

the estimation procedure proposed below. Our development in the next section indicates

the role of Gn in that procedure.

3. A Generalized Spatial Two-Stage Least Squares Procedure

Consider again the model in (1). Essentially, we propose a three-step procedure. In the ®rst

step the regression model in (1) is estimated by two-stage least squares (2SLS) using the

instruments Hn. In the second step the autoregressive parameter r is estimated in terms of

the residuals obtained via the ®rst step and the generalized moments procedure suggested

in Kelejian and Prucha (1995). We note that r can be consistently estimated in this manner

whether or not Wn and Mn are equal. Finally, in the third step, the regression model in (1) is

reestimated by 2SLS after transforming the model via a Cochrane±Orcutt type

transformation to account for the spatial correlation. In analogy to the generalized least

squares estimator we refer to this estimation procedure as a generalized spatial two-stage

least squares (GS2SLS) procedure.10

For the following discussion it proves helpful to rewrite (1) more compactly as

yn � Znd� un;

un � rMnun � en;
�13�

where Zn � �Xn;Wnyn� and d � �b0; l�0. Applying a Cochrane±Orcutt type transformation

to this model yields furthermore

yn� � Zn�d� en; �14�

where yn� � yn ÿ rMnyn and Zn� � Zn ÿ rMnZn. In the following we may also express

yn� and Zn� as yn��r� and Zn��r� to indicate the dependence of the transformed variables

on r.

3.1. The First Step of the Procedure

We have previously indicated in (7) that E��Wnyn�u0n� 6� 0 and so d in (13) cannot be

consistently estimated by ordinary least squares. Therefore, consider the following 2SLS

estimator:

edn � �bZ0n bZn�ÿ1 bZ0nyn; �15�
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where bZn � PHn
Zn � �Xn; dWnyn�; where dWnyn � PHn

Wnyn and PHn
� Hn�H0nHn�ÿ1H0n.

The proof of the following theorem is given in the appendix.

Theorem 1: Suppose the setup and the assumptions of Section 2 hold. Thenedn � d� Op�nÿ1=2�, and hence edn is consistent for dÐthat is, plimn!1edn � d.

Remark 1: The essence of Theorem 1 is that the 2SLS estimator that is formulated in

terms of the instruments Hn is consistent. For purposes that are related to our second step,

however, it is also important to note that the rate of convergence is nÿ1=2.

Although edn is consistent, it does not utilize information relating to the spatial

correlation of the error term. We therefore turn to the second step of our procedure.

3.2. The Second Step of the Procedure

Let ui;n ui;n, and ui;n be, respectively, the ith elements of un; un � Mnun, and un � M2
nun.

Similarly, let ei;n and ei;n be in the ith elements of en and en � Mnen. Then, the spatial

correlation model implies

ui;n ÿ rui;n � ei;n; i � 1; . . . ; n �16�

and

ui;n ÿ rui;n � ei;n; i � 1; . . . ; n: �17�

The following three-equation system is obtained by squaring (16) and then summing,

squaring (17) and summing, multiplying (16) by (17), and summing, and ®nally by

dividing all terms by the sample size n:11

2rnÿ1
P

ui;nui;n ÿ r2nÿ1
P

u2
i;n � nÿ1

P
e2

i;n � nÿ1
P

u2
i;n

2rnÿ1
P

ui;nui;n ÿ r2nÿ1
P

u
2
i;n � nÿ1

P
e2

i;n � nÿ1
P

u2
i;n

rnÿ1
P�ui;nui;n � u2

i;n� ÿ r2nÿ1
P

ui;nui;n � nÿ1
P

ei;nei;n � nÿ1
P

ui;nui;n: �18�

Assumption 5 implies E�nÿ1
P

e2
i;n� � s2

e . Noting that
P

e2
i;n � e0nM0nMnen, Assumption 5

also implies that

E nÿ1
X

e2
i;n

� �
� nÿ1E Tr�e0nM0nMnen�� � � nÿ1Tr�Eene

0
nM0nMn�

� s2
en
ÿ1Tr�M0nMn�;

where Tr�:� denotes the trace operator. Finally, using similar manipulations, it is not

dif®cult to show that Assumptions 1 and 5 imply E�nÿ1
P

ei;nei;n� � 0. Now let
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a � �r; r2; s2
e �0 and gn � nÿ1�E�u0nun�;E�u0nun�;E�u0nun��0. Then, if expectations are taken

across (18), the resulting system of three equations can be expressed as

Gna � gn; �19�

where Gn is de®ned in Assumption 8. If Gn and gn were known, Assumption 8 implies

that (19) determines a as a � Gÿ1
n gn.

Kelejian and Prucha (1995) suggested two estimators of r and s2
e . Essentially, these

estimators are based on estimated values of Gn and gn. To de®ne those estimators for r and

s2
e within the present context, let eun � yn ÿ Zn

edn, eun � Mneun, and eun � M2
neun, where edn is

the 2SLS estimator obtained in the ®rst step, and denote their ith elements, respectively, aseui;n, eui;n, and eui;n. Now consider the following estimators for Gn and gn:

Gn �
1

n

2
Peui;n

eui;n ÿPeu2
i;n 1

2
Peui;n

eui;n ÿPeu2
i;n Tr�M0nMn�P eui;n

eui;n � eu2
i;n

h i
ÿPeui;n

eui;n 0

2664
3775; gn �

1

n

Peu2
i;nPeu2
i;nPeui;n
eui;n

264
375:
�20�

Then, the empirical form of the relationship gn � Gna in (19) is

gn � Gna� vn; �21�

where vn can be viewed as a vector of regression residuals. The simplest of the two

estimators of r and s2
e considered by Kelejian and Prucha (1995) is given by the ®rst and

third elements of the ordinary least squares estimator ean for a obtained from regressing gn

against Gn. Since Gn is a square matrix,

ean � Gÿ1
n gn: �22�

Clearly, ean is based on an overparameterization in that it does not utilize the information

that the second element of a is the square of the ®rst. We will henceforth denote the

estimators of r and s2
e , which are based on ean as ern and es2

e;n. The second set of estimators

of r and s2
e , say, eern and ees2

e;n, considered by Kelejian and Prucha (1995)Ðand that turned

out to be more ef®cientÐare de®ned as the nonlinear least squares estimators based on

(21). That is eern and ees2
e;n are de®ned as the minimizers of

gn ÿ Gn

r
r2

s2
e

24 3524 350 gn ÿ Gn

r
r2

s2
e

24 3524 35: �23�

The basic results corresponding to the second step of our procedure are contained in the

following theorem. The proof of the theorem is given in the appendix.
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Theorem 2: Suppose the setup and the assumptions of section 2 hold. Then �ern; es2
e;n� andÿeern;

ees2
e;n

�
are consistent estimators of �r; s2

e �.

Remark 2: The essence of Theorem 2 is that a consistent estimator of r can be obtained

by a relatively simple procedure. The third step of our procedure can be based on eitherern or eern. The large-sample properties of the 2SLS estimator in the third step are

the same whether it is based on ern or eern. However, eern is more ef®cient than ern as an

estimator for r, and hence its use in the third step may be preferred due to small-sample

considerations.

3.3. The Third Step of the Procedure

If r were known, we could estimate the vector of regression parameters d by 2SLS based

on (14). As remarked above, in analogy to the generalized least squares estimator, we refer

to this estimatorÐsay, bdnÐas the generalized spatial 2SLS estimator, or for short as the

GS2SLS estimator. This estimator is given by

bdn � bZn��r�0 bZn��r�
h iÿ1 bZn��r�0yn��r�; �24�

where bZn��r� � PHn
Zn��r�. (Recall that Zn��r� � Zn ÿ rMnZn; yn��r� � yn ÿ rMnyn,

Zn � �Xn;Wnyn�, and PHn
� Hn�H0nHn�ÿ1H0n:� Because Hn includes the linearly

independent columns of both Xn and MnXn, it should be clear thatbZn��r� � �Xn ÿ rMnXn;Wnyn ÿdrMnWnyn�, where

Wnyn ÿdrMnWnyn � PHn
Wnyn ÿ rMnWnyn� �

are the predicted values of �Wnyn ÿ rMnWnyn� in terms of the least squares regression on

the instruments Hn.

Of course, in practical applications r is typically not known. In this case we may replace

r in the above expressions by some estimatorÐsay, brn. The resulting estimator may be

termed the feasible GS2SLS estimator and is given by

bdF;n � bZn��brn�0 bZn��brn�
h iÿ1 bZn��brn�0yn��brn�; �25�

with bZn��brn� � PHn
Zn��brn�; Zn��brn� � Zn ÿ brnMnZn; yn��brn� � yn ÿ brnMnyn. By the

same argument as above bZn��brn� � �Xn ÿ brnMnXn;Wnyn ÿ dbrnMnWnyn� with

Wnyn ÿ dbrnMnWnyn � PHn
�Wnyn ÿ brnMnWnyn�:

The proof of the following theorem is given in the appendix.
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Theorem 3: Suppose the setup and the assumptions of section 2 hold, and brn is a
consistent estimator for r. (Thus, in particular brn may be taken to be equal to ern or eern,
which are de®ned in the second step of our procedure.) Furthermore, letben � yn��brn� ÿ Zn��brn�bdF;n, and bs2

e;n � be0nben=n. Then
(a)

���
n
p �bdF;n ÿ d� !D N�0;F� with

F � s2
e plim

n!1 nÿ1 bZn��brn�0 bZn��brn�
h iÿ1

� s2
e plim

n!1 nÿ1 bZn��r�0 bZn��r�
h iÿ1

:

�26�

(b) plimn!1 bs2
e;n � s2

e .

Remark 3: Among other things, Theorem 3 implies that bdF;n is consistent. In addition, it

suggests that small sample inferences concerning d can be based on the small sample

approximation

bdF;n _�N d; bs2
e;n
bZn��brn�0 bZn��brn�
h iÿ1

� �
: �27�

4. Concluding Remarks

In this article we propose a feasible GS2LSL (generalized spatial two-stage least squares)

procedure to estimate the parameters of a linear regression model that has a spatially

lagged dependent variable as well as a spatially autoregressive disturbance term. We

demonstrate that our estimator is consistent and asymptotically normal, and we give its

large-sample distribution. We also demonstrate that the autoregressive parameter in the

disturbance process, r, is a nuisance parameter in the sense that the large-sample

distribution of our feasible GS2LSL estimator, which is based on a consistent estimator of

r, is the same as that of the GS2LSL estimator, which is based on the true value of r. We

note that our results are not based on the assumption that the disturbance terms are

normally distributed.

Our feasible GS2LSL estimator is conceptually simple in the sense that its rational is

obvious. It is also computationally feasible even in large samples. This is important to note

because, at present, the only alternative to our estimator is the maximum likelihood

estimator, which may not be feasible in large samples unless the weighting matrices

involved have simplifying features, such as spareness, symmetry, and so on.

The analysis of the feasible GS2SLS estimator given in this article focuses on its large-

sample distribution. An obvious suggestion for further research, therefore, relates to corre-

sponding small-sample issues. In this regard, a Monte Carlo study focusing on both our sug-

gested GS2SLS procedure as well as the maximum likelihood estimator should be of

interest. Such a study could also shed light on how well the large-sample distribution given

in this article approximates the actual small-sample distribution under various conditions.
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Appendix

Proof of (9) and (12):

Let cn � nÿ1H0nWnyn. Then from (4)

cn � nÿ1H0nWn�I ÿ lWn�ÿ1�Xnb� un�: �A:1�

Because Hn;Wn and Xn are nonstochastic matrices, Assumption 5 implies that the mean

vector and variance covariance matrix of cn are

E�cn� � nÿ1H0nWn�I ÿ lWn�ÿ1Xnb

E�cn ÿ Ecn��cn ÿ Ecn�0 � nÿ2H0nWn�I ÿ lWn�ÿ1Oun
�I ÿ lW0n�ÿ1W0nHn

� nÿ2H0nAnHn;

�A:2�

where An � Wn�I ÿ lWn�ÿ1Oun
�I ÿ lW0n�ÿ1W0n and where Oun

is given in (5).

Assumption 3 and note 7 imply that the row and column sums of An are uniformly

bounded in absolute value. That is, there exists some ®nite constant ca such thatPn
r�1 jars;nj � ca and

Pn
s�1 jars;nj � ca. Observe also that in light of Assumptions 3 and 4

the elements of Hn are uniformly bounded in absolute value by some ®nite constantÐsay,

ch. Now let the �i; j�th element of E�cn ÿ Ecn��cn ÿ Ecn�0 be Dij;n. Then

jDij;nj � nÿ2
Xn

s�1

Xn

r�1

jhri;njjars;njjhsj;nj

� nÿ2ch

Xn

s�1

jhsj;nj
Xn

r�1

jars;nj

� nÿ1c2
hca ! 0: �A:3�

The result in (9) follows from (A.2), (A.3) and Chebyshev's inequality. Since

E�Wnyn� � Wn�I ÿ lWn�ÿ1Xnb the result in (9) can also be stated as

plim
n!1 nÿ1H0nWnyn � lim

n!1 nÿ1H0nE�Wnyn�:

The result in (12) follows as a special case. w
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Proof of Theorem 1

The proof of Theorem 1 is based on a central limit theorem for triangular arrays. This

theorem is, for example, given in Kelejian and Prucha (1995), and is described here for the

convenience of the reader.

Theorem A.1: Let fvi;n; 1 � i � n; n � 1g be a triangular array of identically
distributed random variables. Assume that the random variables fvi;n; 1 � i � ng are
( jointly) independently distributed for each n with E�vi;n� � 0 and E�v2

i;n� � s251. Let
faij;n;1 � i � n; n � 1g, j � 1; . . . ; k, be triangular arrays of real numbers that are
bounded in absolute value. Further, let

vn �
v1;n

..

.

vn;n

264
375; An �

a11;n . . . a1k;n

..

. ..
.

an1;n . . . ank;n

264
375:

Assume that limn!1 nÿ1A0nAn � QAA is a ®nite and nonsingular matrix. Then
nÿ1=2A0nvn !D N�0;s2QAA�.

Proof of Theorem 1: Recall that bZn � PHn
Zn with PHn

� Hn�H0nHn�ÿ1H0n. Hence, clearlybZ0n bZn � bZ0nZn. In light of this we have from (13) and (15) that

edn � bZ0n bZn

� �ÿ1 bZ0nyn

� d� bZ0n bZn

� �ÿ1 bZ0nun

� d� bZ0n bZn

� �ÿ1 bZ0n�I ÿ rMn�ÿ1en

� d� Z0nHn�H0nHn�ÿ1H0nZn

h iÿ1

Z0nHn H0nHn� �ÿ1
H0n�I ÿ rMn�ÿ1en: �A:4�

Let QHH;n � nÿ1H0nHn;QHZ;n � nÿ1H0nZn;F
0
n � H0n�I ÿ rMn�ÿ1

then

���
n
p edn ÿ d
� �

� Q0HZ;nQÿ1
HH;nQHZ;n

� �ÿ1
Q0HZ;nQÿ1

HH;nnÿ1=2F0nen: �A:5�

Observe that, as remarked in the text, in light of Assumptions 3, 4 and 6 the elements of Hn

are bounded in absolute value. Observe further that by Assumption 3 the row and column

sums of �I ÿ rMn�ÿ1
are uniformly bounded in absolute value. Consequently, the elements

of Fn are bounded in absolute value. Since limn!1 nÿ1F0nFn � F is ®nite and nonsingular

by Assumption 7c, it follows from Theorem A.1 that nÿ1=2F0nen !D N�0; s2F�. Given

Assumptions 7a and 7b, it then follows from (A.5) that

���
n
p edn ÿ d
� �

!D N�0;D�; �A:6�
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where

D � s2 Q0HZQÿ1
HHQHZ

� �ÿ1
Q0HZQÿ1

HHFQÿ1
HHQHZ Q0HZQÿ1

HHQHZ

� �ÿ1
:

The claims in Theorem 1 now follow trivially from (A.6). w

Proof of Theorem 2

In proving Theorem 2 we will use the following notation: let A be some matrix or vector.

Then the Euclidean or l2 norm of A is jjAjj � �Tr�A0A��1=2: This norm is

submultiplicativeÐthat is, if B is a conformable matrix, then jjABjj � jjAjj jjBjj. We

will utilize the following simple lemma, which is proven here for the convenience of the

reader.

Lemma A.2: Let fxi;n : 1 � i � n; n � 1g with xi;n � �xi1;n; . . . ; xim;n� be a triangular
array of 1� m random vectors. Then a suf®cient condition for

nÿ1
Xn

i�1

jjxi;njjs � Op�1�; s > 0; �A:7�

is that the sth absolute moments Ejxij;njs are uniformly boundedÐthat is, that there exists
a ®nite nonnegative constant cx such that for all 1 � i � n; n � 1; and j � 1; . . . ;m

Ejxij;njs � cx <1: �A:8�

Proof: First observe that a suf®cient condition for (A.7) is that there exists some ®nite

nonnegative constant c1 such that

E nÿ1
Xn

i�1

jjxi;njjs
 !

� c1 �A:9�

for all n � 1. To see this consider some arbitrary Z40 and de®ne the constant c2 � c1=Z.

Then

P nÿ1
Xn

i�1

jjxi;njjs � c2

 !
� E nÿ1

Pn
i�1 jjxi;njjs

ÿ �
c2

� c1

c2

� Z;

which stais®es the requirements of the de®nition of Op�1�. The ®rst of the above

inequalities follows from Markov's inequality. Of course, a suf®cient condition for (A.9)
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is that for all 1 � i � n and n � 1.

Ejjxi;njjs � c1: �A:10�

Given the de®nition of ||?|| we have

Ejjxi;njjs � E
Xm

j�1

x2
ij;n

" #s=2

� ms=2
Xm

j�1

Ejxij;njs; �A:11�

where the last step is based on an inequality given, e.g., in Bierens (1981, p. 16). Hence,

clearly, if (A.8) holds, then we can ®nd a constant c1 such that (A.10) and hence (A.7)

holds. w

Proof of Theorem 2: We prove the theorem by demonstrating that all of the conditions

assumed by Kelejian and Prucha (1995)Ðthat is, their Assumptions 1 to 5Ðare satis®ed

here. Theorem 2 then follows as a direct consequence of Theorem 1 in Kelejian and Prucha

(1995). Assumptions 1 to 3 and 5 in Kelejian and Prucha (1995) are readily seen to hold by

comparing them with the assumptions maintained here. We now show that Assumption 4

in Kelejian and Prucha (1995) also holds.

Recall Zn � �Xn; yn�with yn � Wnyn, and let zi:;n � �xi1;n; . . . ; xik;n; yi;n� be the ith row of

Zn. Then via (13) in the text, eun � yn ÿ Zn
edn � un � Zn�dÿ edn� and so

jui;n ÿ eui;nj � jjzi:;njj jjdÿ ednjj: �A:12�

Assumption 4 in Kelejian and Prucha (1995) now holds if we can demonstrate that

�dÿ edn� � Op�nÿ1=2� and that for some z40

nÿ1
Xn

i�1

jjzi:;njj2�z � Op�1�: �A:13�

The former condition was established by Theorem 1. We now establish that (A.13) holds in

particular for z � 1. By Lemma A.2 a suf®cient condition for this is that there exists some

®nite constant cz such that for all 1 � i � n; n � 1 and j � 1; . . . ; k � 1

Ejzij;nj3 � cz: �A:14�

For j � 1; . . . ; k we have zij;n � xij;n. Since the xij;n's are assumed to be uniformly bounded

in absolute value, (A.14) is trivially satis®ed for those zij;n's. For j � k � 1 we have

zij;n � yi;n. To complete the proof we now establish that

Ejyi;nj3 � cz �A:15�
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for some ®nite constant cz. From (1) or (4) we have

yn � Wnyn � Wn�I ÿ lWn�ÿ1Xnb�Wn�I ÿ lWn�ÿ1�I ÿ rMn�ÿ1en: �A:16�

Assumptions 3 and 4 imply that the elements of dn � Wn�I ÿ lWn�ÿ1Xnb are bounded in

absolute value and that the row and column sums of Dn � Wn�I ÿ lWn�ÿ1�I ÿ rMn�ÿ1
are

bounded uniformly in absolute value (compare note 7). Let cd denote the common upper

bound. From (A.16) we have

yi;n � di;n �
Xn

j�1

dij;nej;n; �A:17�

and hence

y3
i;n � d3

i;n � 3d2
i;n

Xn

j�1

dij;nej;n � 3di;n

Xn

j�1

Xn

l�1

dij;ndil;nej;nel;n

�
Xn

j�1

Xn

l�1

Xn

m�1

dij;ndil;ndim;nej;nel;nem;n: �A:18�

By Assumption 5 the ei;n's are distributed identically, and for each n ( jointly)

independently, with ®nite fourth moments. Hence, there exists some ®nite constant ce
such that for all indices i; j; l; m; and all n � 1: Ejei;nj � ce;Ejej;nel;nj � ce,
Ejej;nel;nem;nj � ce. It now follows from (A.18) and the triangle inequality that

Ejyi;nj3 � jdi;nj3 � 3jdi;nj2
Xn

j�1

jdij;njEjej;nj

� 3jdi;nj
Xn

j�1

Xn

l�1

jdij;nj jdil;njEjej;nel;nj

�
Xn

j�1

Xn

l�1

Xn

m�1

jdij;nj jdil;nj jdim;njEjej;nel;nem;nj

� c3
d � 3c2

dce
Xn

j�1

jdij;nj � 3cdce
Xn

j�1

Xn

l�1

jdij;nj jdil;nj

� ce
Xn

j�1

Xn

l�1

Xn

m�1

jdij;nj jdil;nj jdim;nj

� c3
d�1� 7ce�;

observing that jdi;nj � cd and
Pn

j�1 jdij;nj � cd . This establishes (A.15), which completes

the proof. w
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Proof of Theorem 3

Proof of part a: Recall that bZn��brn� � PHn
�Zn ÿ brnMnZn� and bZn��r� �

PHn
�Zn ÿ rMnZn� with PHn

� Hn�H0nHn�ÿ1H0n. We ®rst establish the following pre-

liminary results:

plim
n!1 nÿ1 bZn��brn�0 bZn��brn� � plim

n!1 nÿ1 bZn��r�0 bZn��r� � Q; �A:19�

nÿ1=2 bZn��brn�0en !D N�0; s2
eQ�; �A:20�

plim
n!1 �brn ÿ r�nÿ1=2 bZn��brn�0Mnun � 0; �A:21�

where

Q � QHZ ÿ rQHMZ� �0Qÿ1
HH QHZ ÿ rQHMZ� � �A:22�

is ®nite and nonsingular.

The result (A.19) follows immediately from Assumption 7 and the consistency of brn

observing that

nÿ1 bZn��brn�0 bZn��brn� � nÿ1�Zn ÿ brnMnZn�0PHn
�Zn ÿ brnMnZn�

� �nÿ1Z0nHn ÿ brnnÿ1Z0nM0nHn�
�nÿ1H0nHn�ÿ1�nÿ1H0nZn ÿ brnnÿ1H0nMnZn�:

�A:23�

To prove result (A.20) observe that

nÿ1=2 bZn��brn�0en � nÿ1=2�Zn ÿ brnMnZn�0PHn
en

� �nÿ1Z0nHn ÿ brnnÿ1Z0nM0nHn��nÿ1H0nHn�ÿ1nÿ1=2H0nen: �A:24�

In light of Assumptions 3, 4, and 6 the elements of Hn are bounded in absolute value.

Given this and Assumptions 5 and 7 we have from Theorem A.1 that

nÿ1=2H0nen !D N�0; s2
eQHH�: �A:25�

The result (A.20) now follows from (A.24) and (A.25), Assumption 7 and the consistency

of brn.
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To prove result (A.21) observe that

�brn ÿ r�nÿ1=2 bZn��brn�0Mnun � �brn ÿ r�nÿ1=2�Zn ÿ brnMnZn�0PHn
Mun

� �brn ÿ r��nÿ1Z0nHn ÿ brnnÿ1Z0nM0nHn�
� �nÿ1H0nHn�ÿ1nÿ1=2H0nMnun:

�A:26�

Note that E�nÿ1=2H0nMnun� � 0 and E�nÿ1H0nMnunu0nM0nHn� � nÿ1H0nMnOun
M0nHn where

Oun
is given in (5). Assumptions 3, 4, and 6 imply that the elements of nÿ1H0nMnOun

M0nHn

are bounded in absolute value and hence nÿ1=2H0nMnun � Op�1�. Given this the result

(A.21) now follows from (A.26), Assumption 7, and the consistency of brn.

To prove part a of the theorem observe that bZn��brn�0 bZn��brn� � bZn��brn�0Zn��brn� and

hence

bdF;n � bZn��brn�0 bZn��brn�
h iÿ1 bZn��brn�0yn��brn�

� d� bZn��brn�0 bZn��brn�
h iÿ1 bZn��brn�0un��brn�; �A:27�

where

un��brn� � yn��brn� ÿ Zn��brn�d � en ÿ �brn ÿ r�Mnun: �A:28�

Consequently,

���
n
p bdF;n ÿ d
� �

� nÿ1 bZn��brn�0 bZn��brn�
h iÿ1

nÿ1=2 bZn��brn�0en

ÿ nÿ1 bZn��brn�0 bZn��brn�
h iÿ1

�brn ÿ r�nÿ1=2 bZn��brn�0Mnun:

�A:29�

The second term on the r.h.s. of (A.29) converges to zero in probability in light of (A.19)

and (A.21). Applying (A.19 and (A.20) to the ®rst part on the r.h.s. of (A.29) yields���
n
p �bdF;n ÿ d� !D N�0;F� with F � s2

eQ
ÿ1

, which establishes part a of the theorem. w

Proof of part b: To prove part b of the theorem observe that

ben � yn��brn� ÿ Zn��brn�bdF;n

� yn��brn� ÿ Zn��brn�dÿ Zn��brn��bdF;n ÿ d�
� en ÿ �brn ÿ r�Mnun ÿ Zn��brn��bdF;n ÿ d�: �A:30�

Consequently

bs2
e � nÿ1be0nben � nÿ1e0nen � D1

n � D2
n � D3

n � D4
n � D5

n; �A:31�
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where

D1
n � ÿ2�bdF;n ÿ d�0�nÿ1Zn��brn�0en�;

D2
n � �bdF;n ÿ d�0�nÿ1Zn��brn�0Zn��brn���bdF;n ÿ d�;

D3
n � 2�bdF;n ÿ d�0�nÿ1Zn��brn�0Mnun��brn ÿ r�;

D4
n � ÿ2�brn ÿ r��nÿ1e0nMnun�;

D5
n � �brn ÿ r�2�nÿ1u0nM0nMnun�:

�A:32�

Assumption 5 and Chebyshev's inequality imply plimn!1nÿ1e0nen � s2
e . To prove that

plimn!1 bs2
e;n � s2

e we now demonstrate that plimn!1D
j
n � 0 for j � 1; . . . ; 5. Since

plimn!1bdF;n � d by part (a) of the theorem, and plimn!1 brn � r by assumption, it

suf®ces to show that each of the terms in square brackets on the r.h.s. of (A.32) is Op�1�.
By de®nition Zn��brn� � �Zn ÿ brnMnZn� � �Xn;Wnyn� ÿ brn�MnXn;MnWnyn�, and thus it

suf®ces to demonstrate that

nÿ1Z0nen �
nÿ1X0nen

nÿ1y0nW0nen

� �
� Op�1�;

nÿ1Z0nM0nen �
nÿ1X0nM0nen

nÿ1y0nW0nM0nen

� �
� Op�1�;

nÿ1Z0nZn �
nÿ1X0nXn nÿ1X0nWnyn

nÿ1y0nW0nXn nÿ1y0nW0nWnyn

� �
� Op�1�;

nÿ1Z0nM0nMnZn �
nÿ1X0nM0nMnXn nÿ1X0nM0nMnWnyn

nÿ1y0nW0nM0nMnXn nÿ1y0nW0nM0nMnWnyn

� �
� Op�1�;

nÿ1Z0nMnZn �
nÿ1X0nMnXn nÿ1X0nMnWnyn

nÿ1y0nW0nMnXn nÿ1y0nW0nMnWnyn

� �
� Op�1�;

nÿ1Z0nun �
nÿ1X0nun

nÿ1y0nW0nun

� �
� Op�1�;

nÿ1Z0nM0nun �
nÿ1X0nM0nun

nÿ1y0nW0nM0nun

� �
� Op�1�;

nÿ1e0nMnun � Op�1�;

nÿ1u0nM0nMnun � Op�1�: �A:33�
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Recall from (4) that yn � �I ÿ lWn�ÿ1Xnb� �I ÿ lWn�ÿ1�I ÿ rMn�ÿ1en and

un � �I ÿ rMn�ÿ1en. On substitution of those expressions for yn and un in (A.33) we

see that the respective components are composed of three types of expressions. Those

expressions are of the form nÿ1An; n
ÿ1Bnen or nÿ1e0nCnen, where An is a vector or matrix of

nonstochastic elements, and Bn and Cn are matrices of nonstochastic elements. Given

Assumptions 3 and 4 it is readily seen that the elements of expressions of the form nÿ1An

are bounded in absolute valueÐthat is, nÿ1An � O�1�. Furthermore, it is seen that for

expressions of the form nÿ1Bnen and nÿ1e0nCnen the elements of the matrices Bn are

bounded uniformly in absolute value, and the row and column sums of the matrices Cn are

bounded uniformly in absolute value (compare note 7). Now let cb51 denote the bound

for the absolute values of the elements of Bn. Then we have

Ejnÿ1Bnenj � E

..

.

nÿ1
Pn

i�1 bji;nei;n

..

.

2664
3775

��������
��������

�
..
.

nÿ1
Pn

i�1 jbji;njEjei;nj
..
.

2664
3775 �

..

.

cbEje1;nj
..
.

2664
3775 <1: �A:34�

Similarly, let cc51 be the bound for the row and column sums of the absolute elements

of Cn. Then

Ejnÿ1e0nCnenj � E nÿ1
Xn

i�1

Xn

j�1

cij;nei;nej;n

�����
�����

� nÿ1
Xn

i�1

Xn

j�1

jcij;njEjei;njjej;nj � s2
ecc <1;

�A:35�

where we have also used the Cauchy±Schwartz inequality. Using Markov's inequality it

now follows from (A.34) and (A.35) that nÿ1Bnen � Op�1� and nÿ1e0nCnen � Op�1�. We

have thus established that all expression in (A.33) are Op�1�, which complete the proof of

part b of the theorem. w

Notes

1. As an example, in a spatial model explaining property values, the property value at each location could relate

to, among other things, the property values of neighboring locations. For empirical studies in which spatial

lags of the dependent variable are considered, see, e.g., Case (1991, 1992), Case, Hines, and Rosen (1993),

and Kelejian and Robinson (1993).
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2. An early procedure that is partially based on maximum likelihood principles and that relates to models that

have a spatially autoregressive disturbance term was suggested by Ord (1975). A more recent procedure for

such models that is partially based on a generalized moments approach was suggested by Kelejian and Prucha

(1995). An instrumental variable estimator for models that contain a spatially lagged dependent variable is

described in Anselin (1982). See also Anselin (1990) and Anselin, Bera, Florax, and Yoon (1996) for a wide

variety of tests relating to models that contain either a spatially autoregressive error term, a spatially lagged

dependent variable, or both.

3. These computationally challenging issues can be moderated by using Ord's (1975) eigenvalue approach to

the evaluation of the likelihood function. Further simpli®cations can be realized by the use of sparse matrix

routines if the weighting matrix involved is indeed sparse (see, e.g., Pace and Barry, 1996). Our experience is

that the computation of eigenvalues for general nonsymmetric matrices by standard subroutines in the IMSL

program library may be inaccurate for matrices as small as 400� 400. The accuracy improves if the matrix

involved is symmetric and that information is used. Bell and Bockstael (1997) report accuracy problems in

determining eigenvalues for matrices of, roughly, order 2000� 2000, even though sparse matrix routines in

MATLAB were used. On the other hand, Pace and Barry (1996) were able to work with matrices of,

approximately, order 20; 000� 20; 000.

4. Given appropriate conditions, the maximum likelihood estimator should be consistent and asymptotically

normally distributed. However, to the best of our knowledge, formal results establishing these properties for

spatial models of the sort considered here under a speci®c set of low-level assumptions do not seem to be

available in the literature (see Kelejian and Prucha 1995, on this point).

5. In principle, we could have different instrument matrices for the ®rst and third steps of the estimation

procedure discussed below, but this would further complicate our notation without expanding the results in an

essential way.

6. We note that, in general, the elements of �I ÿ lWn�ÿ1
and �I ÿ rMn�ÿ1

will depend on the sample size n, even

if the elements of Wn and Mn do not depend on n. Consequently, in general, the elements of yn and un will also

depend on n and thus form a triangular array, even in the case where the innovations ei;n do not depend on n.

7. This follows from the following fact. Let An and Bn be matrices that are conformable for multiplication and

whose row and column sums are uniformly bounded in absolute value. Then the row and column sums of

AnBn are also uniformly bounded in absolute value (see, e.g., Kelejian and Prucha, 1995).

8. If all eigenvalues of Wn are less than or equal to one in absolute value, then jlj51 implies that all eigenvalues

of lWn are less than one in absolute value. This in turn ensures that �I ÿ lWn�ÿ1 �P1i�0 l
iWi

n (see, e.g.,

Horn and Johnson, 1985, pp. 296±301). The claim that all eigenvalues of Wn are less than or equal to one in

absolute value, given Wn is row normalized, follows from GersÏgorin's theorem (see, e.g., Horn and Johnson,

1985, p. 344).

9. While we believe that our suggestion for selecting instruments is reasonable, permitting other instruments

would not affect the subsequent analysis in any essential way.

10. Of course, if no spatially lagged dependent variable is present in (1), we can estimate the model in the ®rst

and third steps by ordinary least squares; in this case the estimator computed in the third step would be the

feasible generalized least squares estimator.

11. All sums are taken over i � 1; . . . ; n.
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