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Abstract

This paper considers a class of generalized methods of moments (GMM) estimators

for general dynamic panel models, allowing for weakly exogenous covariates and cross

sectional dependence due to spatial lags, unspecified common shocks and time-varying

interactive effects. We significantly expand the scope of the existing literature by al-

lowing for endogenous time varying spatial weight matrices without imposing explicit

structural assumptions on how the weights are formed. An important area of application

is in social interaction and network models where our specification can accommodate

data dependent network formation. We consider an exemplary social interaction model

and show how identification of the interaction parameters is achieved through a com-

bination of linear and quadratic moment conditions. For the general setup we develop

an orthogonal forward differencing transformation to aid in the estimation of factor

components while maintaining orthogonality of moment conditions. This is an impor-

tant ingredient to a tractable asymptotic distribution of our estimators. In general, the

asymptotic distribution of our estimators is found to be mixed normal due to random

norming. However, the asymptotic distribution of our test statistics is still chi-square.
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1 Introduction1

Network and social interaction models have recently attracted attention both in empirical

work as well as in econometric theory. In this paper we develop Generalized Methods of

Moments (GMM) estimators for panel data with network structure. Our focus is on esti-

mating linear models for outcome variables that may depend on outcomes and covariates of

others in the network. We assume that the network structure is observed but do not impose

any explicit structural restrictions on the process that generates the network. We allow for

the network to change dynamically and being formed endogenously. Implicit restrictions

we impose are in the form of high level assumptions about the convergence of sample mo-

ments. These assumptions imply restrictions on the amount of cross-sectional dependence

one can allow for in covariates and on how dense the network can be. The assumptions are

similar to high level assumptions imposed in Kuersteiner and Prucha (2013). In addition,

when networks are formed endogenously we do assume that some sequentially exogenous

covariates predict network formation. Recent work on the estimation of models with en-

dogenous weights includes Goldsmith-Pinkham and Imbens (2013), Han and Lee (2016),

Hsieh and Lee (2016) who propose Bayesian methods, Qu and Lee (2015), Qu, Lee and Yu

(2017), Shi and Lee (2018) proposing quasi maximum likelihood estimators, Kelejian and

Piras (2014) proposing GMM, Auerbach (2016) who develops a local matching estimator,

and Arduini, Patacchini and Rainone (2015) and Johnson and Moon (2017) using a control

function approach. All these papers assume specific generating mechanisms for the network

formation process.

Because we do not estimate parameters of the network formation model and because

our GMM estimators are identified from moment restrictions imposed on the idiosyncratic

errors, our approach can be completely agnostic about the way the network is formed, at

least as long as the network formation is sequentially exogenous. When network matrices are

endogenous, in the sense of being correlated with the idiosyncratic model errors, instruments

for network matrices are required for identification. These instruments are constructed from

1We gratefully acknowledge financial support from the National Institute of Health through the SBIR

grant R43 AG027622, 1 R43 AG056199-01 and R44 AG027622. We thank David M. Drukker, Stata,

for his very helpful collaboration on computations issues. Earlier versions of the paper were presented

at the International Panel Data Conference 2013, London, the Econometric Workshop 2104, Shanghai,

Joint Statistical Meetings 2014, Boston, Labor Workshop 2014, Laax, VII World Conference of the Spatial

Econometrics Association, 2014, Zurich, 14th International Workshop of Spatial Econometrics and Statistics

2015, Paris, as well as at seminars at Michigan State University, Penn State University, Columbia University,

University of Rochester, Chicago Booth, University of Michigan, Colorado University and Harvard-MIT.

We thank seminar and conference participants, as well as two co-editors, Ulrich Müller and Elie Tamer, and

referees for their helpful comments.
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sequentially exogenous covariates that predict network formation. While not required for

our estimators, a network formation model may be helpful in thinking about such predictors.

Our work also extends the estimation theory for dynamic panel data models with higher

order spatial lags to allow for interactive fixed effects, unobserved common factors affecting

covariates and error terms and sequentially (rather than only strictly) exogenous regressors.2

Our treatment of common shocks is inspired by Andrews (2005). Unlike Andrews (2005)

we do not maintain that the data are conditionally i.i.d. The common shocks may effect

all variables, including the common factors appearing in the interactive fixed effects. Our

analysis is for panel data with the cross-sectional sample size n tending to infinity while the

number time periods T is fixed. Our treatment of interactive effects is related to the large

literature on panel models including Phillips and Sul (2003, 2007), Bai and Ng (2006a,b),

Pesaran (2006), Bai (2009, 2013), Moon and Weidner (2015,2017). We propose a new quasi

differencing transformation, given in Proposition 1, that we call the generalized Helmert

transform to eliminate individual factor loadings and treat factors as estimands. Our trans-

formation combines and extends quasi differencing proposed by Holtz-Eakin, Newey and

Rosen (1988) and the Helmert transform of Arellano and Bover (1995) into an orthonormal

forward filtering procedure with estimated filter weights. Our estimators are most closely

related to the fixed T GMM estimators of Ahn et al. (2013).

The moment conditions of our GMM estimator depend on a general result, Theorem

1, for the mean, variances and covariances of linear-quadratic forms of transformed dis-

turbances. The limiting properties of our GMM estimator and associated test statistics,

given in Theorems 2-4, are based on Proposition 2, which establishes the consistency of

stochastic minimizers and on Proposition 3 which is a new stable central limit theorem

(CLT) for linear and quadratic forms. The CLT is suitable to handle the type of unmod-

eled cross-sectional dependence in covariates and heteroskedastic errors we allow for and

builds on the CLT for linear forms of Kuersteiner and Prucha (2013). The CLT, as well as

simplifications of the asymptotic variance of our estimators that are possible because of the

way the generalized Helmert transform is designed, are critical inputs to the asymptotic

methods for inference that we propose.

Our work also relates to the spatial literature dating back to Whittle (1954), Anselin

(1988) and Cliff and Ord (1973, 1981), and the GMM framework based on linear and

quadratic moment conditions introduced in Kelejian and Prucha (1998,1999) and Kapoor

et al. (2007) for cross sectional and panel data. Dynamic panel data models with spatial

2Endogenous regressors in addition to spatial lags of the l.h.s. variable can in principle be accommodated

as well, at the cost of notation to separate covariates that can be used as instruments from those that cannot.

For ease of exposition we do not explicitly account for this possibility.
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interactions have recently been considered by Mutl (2006), and Yu, de Jong and Lee (2008,

2012), Elhorst (2010), Lee and Yu (2014) and Su and Yang (2015). Papers combining

spatial lags and common shocks include Chudik and Pesaran (2015), Bai and Li (2013),

and Pesaran and Torsetti (2011). All of these papers assume that both n and T tend to

infinity, they do not consider endogenous spatial weight matrices, and the latter two papers

only consider a static setup. We significantly expand the scope of these models by allowing

for dynamic and endogenous network formation in combination with interactive effects and

common shocks affecting the covariates in non-parametric ways while still being able to

provide tractable inference procedures.

Section 2 contains a worked example that illustrates the main features of our theoret-

ical results, which are presented in Section 3. Appendix A contains formal assumptions,

Appendix B develops the generalized Helmert transformation, and Appendix C contains

proofs.3

2 Example and Motivation

We consider a stylized social interactions model to illustrate the main ideas behind our

estimators and to illustrate identification and estimation for the general cross sectional

interaction model considered in Section 3. Assume that we observe outcomes, collected in

a vector yt = [y1t, . . . , ynt]
′, for n individuals with exogenous characteristics collected in a

matrix z1
t . Interactivity between individuals is captured by an observed and possibly time

varying n × n network interaction matrix Mt. Our setup allows for Mt to be determined

endogenously, and allows for endogenous and exogenous peer or network effects captured,

respectively, by Mtyt and Mtz
1
t (Manski, 1993). Consider the following simple linear social

interactions model with time-varying fixed effects,

yt = λMtyt + Ztβ + εt = Wtδ + εt, εt = µft + ut, t = 1, . . . , T, (1)

where Zt = [z1
t ,Mtz

1
t ] is a n× pz matrix, εt = [ε1t, ..., εnt]

′ denotes the vector of regression

disturbances, µ = [µ1, . . . , µn]′ denotes the vector of fixed effects, ft is an unobserved

scalar factor, ut = [u1t, ..., unt]
′ denotes the vector of unobserved idiosyncratic disturbances,

Wt = [Mtyt, Zt], and δ = [λ, β′]′ is the vector of unknown parameters. For expositional

purposes we assume that uit is i.i.d. in both indices and we set T = 2 in this section. We

relax both assumptions in Section 3 where uit is allowed to be heteroskedastic and where

independence is replaced by conditional mean independence.

3A supplementary appendix available separately provides additional details for the proofs.
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The model in (1) illustrates the following main contributions of our paper: (i) We show

how to handle endogenous and time varying spatial weight matrices and interactive fixed

effects using linear and quadratic moment conditions. (ii) We show how a novel generalized

Helmert transformation of the model can be used to eliminate the fixed effects µ, and

orthogonalize both the linear and quadratic moments. We use the orthogonalization to

simplify the criterion function and demonstrate how the simplification can be used to prove

identification, facilitate inference and construct estimation algorithms. (iii) We illustrate

how projections can be used to instrument for endogeneity in Mt. (iv) We develop a

new CLT for linear quadratic moments, capable of handling the unmodeled cross-sectional

dependence we allow for.

Define zt = [z1
t , ζt], where the matrix ζt collects additional exogenous variables which

may be only partially observed, and where the number of columns of ζt can depend on

n. For our example we assume further that zt is strictly exogenous, and consider GMM

estimators for the parameter δ based on the moment condition

E [uit|z1, z2, µ] = 0, t = 1, 2. (2)

To keep the example simple, we also assume that conditionally on z1, z2 and µ the elements

of u = (u′1, u
′
2)′ are mutually independent and identically distributed (0, σ2). It is well

known that the parameter δ may not be identified by linear moment conditions alone, see

for example Manski (1993), Kelejian and Prucha (2002), Kelejian et al. (2006), Lee (2007),

Bramoulle, Djebbari and Fortin (2009) and de Paula (2017). Consistent with the spatial

literature, to overcome the limitations of linear IV, our GMM estimator augments linear

with quadratic moment conditions.

Model (1) accounts for cross-sectional correlation stemming both from individual in-

teraction as well as from common factors. To make progress on our inference problem,

we develop a novel generalized quasi-differencing transformation that efficiently eliminates

the fixed effects µ.4 We refer to this transformation as the generalized Helmert transform.

When T = 2, we can, without loss of generality, normalize f2 = 1. The transform for y1

is then defined as y+
1 = (y1 − f1y2)/

√(
f2

1 + 1
)
σ2. Using anlogous notation for the other

variables we note that u+
1 = ε+

1 . Since f1 is unobserved in general, we treat it as a param-

eter to be estimated in Section 3. For expositional purposes we assume for now that f1

is known. An important special case where f1 is known, and equal to 1, is the pure fixed

effects model. In this case our generalized quasi-differencing transformation is the same as

4See Section 3 and Proposition 1.

5



the Helmert transform. The transformed version of (1) can be written as

y+
1 = λ(M1y1)+ + Z+

1 β + u+
1 = W+

1 δ + u+
1 . (3)

It is convenient to adopt the following notation for the transformed spatial lag,

y+
1 = (M1y1)+ = (M1y1 − f1M2y2) /

√(
f2

1 + 1
)
σ2. (4)

We formulate GMM estimators which exploit restrictions implied by (2) and the assump-

tion, maintained for this example, that the elements of u are i.i.d. Let hr = (hri ), r = 1, ..., p,

be a set of n× 1 instrument vectors, and let Ar = (arij), r = 1, ..., q, be a set of n× n sym-

metric matrices of instruments with zero diagonal elements arii = 0, where the elements of

hr and Ar are observed and measurable w.r.t. z1, z2, µ. It then follows from (2) that

E
[
hr′u+

1

]
= 0, E

[
u+′

1 A
ru+

1

]
= 0. (5)

The spatial and peer effects literatures have suggested to construct hr and Ar from functions

of Mt and z1
t . When Mt is exogenous, similar ideas, explored in more detail below, can be

applied in our setting. When Mt is potentially endogenous, these ideas need to be modified.

For more detail, assume that Mt is generated as

Mt = Mt(τ
o
t , υ

o
t , µ, ν) (6)

where Mt (.) is an unknown function, τt is a matrix of strictly exogenous variables which

may partially overlap with those in z1
t , and τ ot = [τ1, . . . , τt]. Unobserved innovations are

collected in a matrix υt, and υot = [υ1, . . . , υt]. Finally, ν is a vector ν = [ν1, . . . , νn]′ of

further unobserved unit specific effects for the network formation process. We assume for

our example that (ut, υt) are i.i.d. in t. When υt and/or ν are dependent with ut we refer

to Mt as endogenous. In this case we may think of ζt to contain the exogenous variables τt

of the network formation process (or the subset of strictly exogenous variables not already

included in z1
t ). When υt and ν are independent of ut we refer to Mt as exogenous. In this

case we may think of the matrix ζt to contain τt (or the subset of strictly exogenous variables

not already included in z1
t ) as well as υt and ν, or more conveniently Mt.

5 The case where

Mt = M is time invariant corresponds to τt = τ and υt = υ. All variables are allowed to vary

with the cross-sectional sample size n, although we suppress this dependence for notational

convenience. When Mt is endogenous we propose to predict Mt with M∗t = M∗t (τ ot ) in the

5Suppose the mean of ut conditional on {z1s , τs, υs}Ts=1, µ, ν is zero, then by iterated expectations so is

the mean of ut conditional on {z1s ,Ms}Ts=1, µ. Consequently, when Mt is exogenous, Mt is measurable w.r.t.

z1, . . . , zt and µ under either interpretation of ζt. Also note that exogeneity is defined w.r.t. ut, while Mt

may be endogenous w.r.t. εt, because it could depend on µ.
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construction of instruments. The choice of the function M∗t (.) may be motivated from a

specific network formation model as discussed below, or be more empirically oriented as is

typical for reduced form IV approaches.

2.1 Estimator

We now discuss in more detail how to construct the estimator and how to select instru-

ments hr and Ar. To keep the presentation of the example simple, we take σ2 = 1, and

defer the discussion of the general case to Section 3. Let u+
1 (δ) = y+

1 − W+
1 δ denote

the vector of transformed model errors, and let mn,l (δ) = n−1/2
[
h1′u+

1 (δ) , ..., hp
′
u+

1 (δ)
]′

,

leading to the linear moment conditions E [mn,l (δ0)] = 0. Similarly, let mn,q (δ) =

n−1/2
[
u+

1 (δ)′A1u+
1 (δ), ..., u+

1 (δ)′Aqu+
1 (δ)

]′
, with the corresponding quadratic moment con-

ditions E [mn,q (δ0)] = 0. The linear and quadratic moment functions can be stacked as

mn(δ) = [mn,l(δ)
′,mn,q(δ)

′]′ and the moment conditions written more compactly as

E [mn(δ0)] = 0. (7)

The generalized Helmert transformation greatly simplifies the correlation structure between

linear and quadratic moments, as compared to other linear transformations used in the

literature to eliminate the fixed effects, e.g., by subtracting unit sample averages over time.

We exploit these simplifications to set up the GMM criterion function, which as a result

conveniently decomposes into a sum of two components, one based on linear moments and

one based on quadratic moments.

Let V h
n = n−1

∑n
i=1 h

′
ihi with hi = [h1

i , . . . , h
p
i ] and V a

n = n−1
∑n

i=1

∑n
j=1 aija

′
ij with

aij = [a1
ij , . . . , a

q
ij ] where arij is the ij-th element of the instrument matrix Ar. Exploit-

ing the orthogonality of the elements of u+
1 and that arii = 0, it can be shown that

E [mn(δ0)mn(δ0)′ | z1, z2, µ] = Ξ̃−1
n where Ξ̃n = diag[

(
V h
n )−1, (2V a

n

)−1
]. The GMM esti-

mator for δ0 is defined as the minimand of n−1mn(δ)′Ξ̃nmn(δ) and can be represented

as

δ̃n = arg min
δ∈Θδ

n−1

[
mn,l(δ)

′
(
V h
n

)−1
mn,l(δ) +mn,q(δ)

′ (2V a
n )−1mn,q(δ)

]
, (8)

where Θδ is a compact set.

We next explore explicit choices for hr and Ar, and discuss how, in line with the spatial

literature, the structure of Model 1 can be exploited towards finding additional instruments.

We first consider the case where Mt = M is time invariant and exogenous. As discussed,

when Mt is exogenous it is convenient to think of Mt as being part of ζt and thus of

zt = [z1
t , ζt]. Consequently E

[
M sz1

t u
+
1

]
= 0 for s = 0, 1, . . .. Observe that the reduced

form of yt is yt = (I−λMt)
−1[Ztβ+εt]. For exogenous time invariant Mt = M the reduced
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form of the quasi-differenced model (3) is given by

y+
1 = (I − λM)−1[Z+

1 β + u+
1 ], (9)

because in this case y+
1 = My+

1 . Using (9) and assuming ‖λM‖ < 1 we have

E
[
My+

1 | z1, z2, µ
]

= M(I − λM)−1Z+
1 β =

∞∑
s=0

λsM s+1Z+
1 β.

From this we see that the optimal instrument for My+
1 is a nonlinear function of unknown

parameters andM sz1
t , s = 0, 1, . . .. This suggests that the set of instruments hr, r = 1, . . . , p

can be taken to correspond to the the linearly independent columns of {M sz1
t , s = 0, 1, . . .}

with t = 1, 2. This set can be viewed as providing an approximation to the optimal

instruments. Kelejian and Prucha (1998,1999) make a corresponding observation within

the context of a spatial cross sectional model and suggested the use of higher order spatial

lags of the exogenous variables as additional instruments.

From the reduced form it further follows that

V C
[
y+

1 | z1, z2, µ
]

= (I − λM)−1(I − λM ′)−1 =
∞∑
s=0

∞∑
τ=0

λs+τM sM ′τ .

As in the spatial literature, and also motivated by an inspection of the score of the Gaussian

log-likelihood function, this suggests that the Ar, r = 1, . . . , q can be chosen from the set

{M sM τ ′ − diag(M sM τ ′), s, τ = 0, 1...}. Without loss of generality we can work with

symmetrized versions of these matrices, with (M + M ′)/2 and MM ′ − diag(MM ′) as

leading selections.

In the case where Mt is time varying arguments analogous to those above suggest that

the instruments hr and the matrices Ar can be chosen from {M s
t z

1
t , s = 0, 1, . . . ; t = 1, 2}

and {M s
tM

τ ′
t −diag(M s

tM
τ ′
t ), s, τ = 0, 1...; t = 1, 2}. In the case where Mt is endogenous it is

convenient to think of the exogenous variables τt, which affect network formation, to be in-

cluded in ζt and thus in zt = [z1
t , ζt]. In this case we can replace Mt in the above expressions

with projections on z1, z2. We discuss possible practical choices in the next section where the

context of an explicit network formation model makes it easier to give specific recommenda-

tions. Our general setup allows for situations where E [uit|z1, . . . , zT , υ1, . . . , υt−1µ, ν] = 0.

In this situation and T > 2 a further simple alternative would be to replace Mt by Mt−1 in

the above expressions.

2.2 Network Formation

Explicit assumptions about the network formation process in (6) are not needed for our

GMM estimators, especially when Mt is exogenous. Nevertheless, a specific model for (6)
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may be useful to check the plausibility of high level assumptions or, in case of endogenous

Mt, aid in the construction of valid instruments. We illustrate these points by considering

the network formation model analyzed by Graham (2016). A growing literature on estima-

tion of network formation models includes Chandrasekhar (2016), de Paula (2017), Graham

(2016), Leung (2016), Ridder and Sheng (2016) and Sheng (2016). However, our focus is on

developing a GMM estimator for the parameters δ that is robust to the network formation

process, rather than on the estimation of the network formation process itself.

We start our discussion of a specific model for (6) by assuming that we observe relation-

ships between individuals through the indicator variable dij,t, where dij,t = 1 if individuals i

and j are related in period t, and dij,t = 0 otherwise. Let
∑n

j=1 dij,t = ni,t be the number of

relationships of i in period t and define the n×n matrix Mt = (mij,t) with mij,t = dij,t/ni,t.

Assume that the adjacency matrix Dt = (dij,t) is formed by a dynamic network formation

model as in Graham (2016). Let ψij = ψji = νi + νj + αµ |µi − µj | be the utility from

matching on unobserved characteristics νi and µi and define a link at time t = 1 as

dij,1 = 1 {α0 + ατ |τi − τj |+ ψij + υij,1 > 0} 1{sij ≤ c} (10)

where sij = sji is a measure of “distance” between i and j, and c is a finite constant.

For simplicity the covariates τi are taken to be time invariant scalars. A simple example

for the above model arises in situations where τi refers to physical location, sij = |τi − τj |
and individuals only form links if they are in sufficiently close proximity. Another simple

example arises in situations where interactions are formed within groups. In this case

we define sij = |τi − τj |, where τi ∈ {1, 2, 3...} represents a group index, and c = 0.

Another example where, say, τi in (10) refers to gender, race, income, etc., and interactions

are formed within groups can readily be accommodated if τi is taken to be multivariate

(combined with a trivial relabeling of the variables). Further generalizations to multivariate

and time varying τit are straightforward. More generally, we can model sij as a function of

τ such that sij = sij(τ). To illustrate dynamic network formation we assume that at time

t = 2 links are formed based both on characteristics and on whether a direct or indirect

link existed at time t = 1. For this purpose define `ij,1 =
∑n

k=1 dik,1djk,1 as the number of

common links between i and j in period 1. Links at time t = 2 are then formed according

to

dij,2 = 1 {α0 + α1dij,1 + α2`ij,1 + ατ |τi − τj |+ ψij + υij,2 > 0} 1{sij ≤ c}. (11)

Endogeneity of dij,t is now modeled as follows. Let υij,t = υ̃ij,t + εijt where υ̃ij,t = υ̃ji,t is

correlated with uit and ujt, and the εijt are time varying link specific shocks. Assume that

υ̃t = (υ̃ij,t) and εt = (εijt) are i.i.d. over time, independent of each other, and independent

9



of τ ,µ, ν. Furthermore, the elements of εt are i.i.d., independent of ut and follow a logistic

distribution. Given this setup, υij,t contemporaneously depends on ut through υ̃ij,t.

We deal with the endogeneity of dij,t by replacing them with predictors that are based on

functions d∗ij,t (τ) of the exogenous variables τ . A search for predictive functions may be mo-

tivated by considering the non-parametric reduced forms E [dij,1|τi, τj ] and E [dij,2|τi, τj , dij,1, `ij,1].

Let Λ (a) = exp (a) / (1 + exp (a)) denote the cumulative distribution function of the Logis-

tic distribution and let cij,1 = α0 + ατ |τi − τj |, ατ < 0. It follows that

E [dij,1|τi, τj ] = Eυ1 [Λ (cij,1 + ψij + υ̃ij,1)] 1{sij ≤ c} (12)

where for given τ the expectation Eυ1 is with respect to the joint distribution of ψij and

υ̃ij,1.
6 Similarly, one obtains, for cij,2 = α0 + α1dij,1 + α2`ij,1 + ατ |τi − τj | , that

E [dij,2|τi, τj , dij,1, `ij,1] = Eυ2 [Λ (cij,2 + ψij + υ̃ij,2)] 1{sij ≤ c} (13)

where for given τ the (conditional) expectation Eυ2 is with respect to the joint distribu-

tion of ψij and υ̃ij,2, conditional on dij,1, `ij,1. A series expansion of Λ (a) around cij,1

under the integral in (12) can be used to obtain candidate predictors for dij,1. A sim-

ple approach consists in using only the leading term Λ (cij,1) 1{sij ≤ c} and by setting

d∗ij,1 = Λ(cij,1)1 {sij ≤ c}. The case for dij,2 is slightly more complicated. While dij,1 and

`ij,1 are sequentially exogenous for dij,2, they are not exogenous relative to ui1, which enters

the moment condition through the transformed error u+
1 . We therefore replace cij,2 with

c∗ij,2 = α0 + α1d
∗
ij,1 + α2`

∗
ij,1 + ατ |τi − τj | where `∗ij,1 =

∑n
k=1 d

∗
ik,1d

∗
jk,1. We then use the

predictor d∗ij,2 = Λ(c∗ij,2)1 {sij ≤ c} . Using the notation cij,1 = c∗ij,1, the tail behavior of d∗ij,t

is proportional to exp
(
−2c∗ij,t

)
as c∗ij,t becomes large. This motivates an alternative speci-

fication d∗ij,t = exp
(
−2(c∗ij,t − α0)

)
1 {sij ≤ c}. To accommodate that the “α parameters”

are unknown, we can simply use

d∗ij,1 = exp (−κ |τi − τj |) 1 {sij ≤ c} , (14)

d∗ij,2 = exp (−κ |τi − τj |) Λ
(
κdd∗ij,1

)
Λ
(
κ``∗ij,1

)
1 {sij ≤ c} . (15)

with some non-negative “κ parameters” chosen by the econometrician. Another possibility

is to define d∗ij,2 = d∗ij,1, which may be attractive in situations where Mt varies slowly over

time. In this case we could, instead, specify d∗ij,1 = d∗ij,2 = 1 {|τi − τj | ≤ cξ} 1 {sij ≤ c}. The

tuning parameters κ and cξ can be obtained, for example, by splitting the sample into two

6Since dij,1 does not directly depend on u1 it is enough to integrate over the marginal distribution of

ψij+ υ̃ij,1. The LHS of (12) is, for a given marginal distribution, invariant to the joint distribution of ψij+

υ̃ij,1 and u1.
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parts and fitting a parametric model for dij,t on the first part. If data at t = 0 are available,

then using that time period to estimate the tuning parameters is a natural choice.7

Using either of these predictors, we set M∗t with typical element m∗ij,t = d∗ij,t/n
∗
i,t where

n∗i,t =
∑n

j=1 d
∗
ij,t. Instrument vectors hr and matrices Ar can now be constructed as dis-

cussed above, but with Mt replaced by M∗t . In panel models with T > 2, Mt−1 is sequen-

tially exogenous for u+
t and correlated with Mt and Mt+1. In this scenario Mt and Mt+1

can be replaced with Mt−1 in the formulations for hr and Ar. Alternatively, if υ̃ij,t only

depends on lagged uis for s < t, then Mt is sequentially exogenous and can be used to form

instruments.

The above discussion is intended to illustrate how a parametric model for dij,t may be

useful in the construction of possible instruments. However, it is important to stress that

such a model is by no means required. A more empirically oriented approach of finding

exogenous variables with good predictive power for dij,t may work just as well.

2.3 Identification and Regularity Conditions

We now discuss high level conditions for identification and give an empirical criterion that

can be used to assess identification based on linear and quadratic moments. We then show

that the network formation example given in Section 2.2 satisfies regularity conditions

required for our theoretical results in Section 3. It proves helpful to collect the instruments

in the n× p matrix H = [h1, ..., hp] and to observe that V h
n = n−1H ′H.

Assumption EX Let y be generated according to (1), and assume that the instruments hr

and matrices Ar satisfy the conditions stated above. Let δ0 = (λ0, β
′
0)′ where λ0 ∈ Θλ with

Θλ = (−1, 1) and β0 ∈ Θβ where Θβ is an open and bounded subset of Rpz . Furthermore

assume that

(i) n−1H ′u+
1 = op(1), n−1u+′

1 A
ru+

1 = op(1),

(ii) plimn−1H ′ȳ+
1 = ΓHMy, plimn−1H ′Z+

1 = ΓHZ , plimn−1W+′
1 Aru+

1 = ΓWAru, and

plimn−1W+′
1 ArW+

1 = ΓWArW are finite for all r = 1, .., q,

(iii) plimV h
n = V h and plimV a

n = V a are finite with V h and V a nonsingular.

The postulated convergence assumptions are at the level typically assumed in a general

analysis of M -estimators; see e.g., Amemiya (1985, pp. 110). The assumptions n−1H ′u+
1 =

op(1), n−1u+′
1 A

ru+
1 = op(1) are the asymptotic analogue of the orthogonality conditions

(5). Let ΓHW = plimn−1H ′W+
1 ≡ [ΓHMy,ΓHZ ], and consider the q × 2 matrices S = plim

7Other possibilities for selecting nuisance parameters include fitting of a model for dij,t on the estimation

sample or cross-validation. A theoretical analysis of these methods is beyond the scope of the paper.
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Sn with

Sr,n = n−1
[
y+′

1 Q′HA
rQH ȳ

+
1 , ȳ

+′
1 Q′HA

rQH ȳ
+
1

]
and Sn =

[
S′1,n, ..., S

′
q,n

]′
whereQH = I−Z+

1 (Z+′
1 PHZ

+
1 )−1Z+′

1 PH with PH = H (H ′H)−1H ′.

The following lemma establishes conditions for identification irrespective of whether Mt is

endogenous or exogenous.

Lemma EX1 Let Assumption EX hold. Then,

i) if ΓHW has full column rank, then plimn−1/2mn,l (δ) = 0 has a unique solution at δ = δ0,

and the parameters are identifiable from the linear moment condition alone.

ii) if ΓHW does not have full column rank, but ΓHZ and S have full column rank, then

plimn−1/2mn (δ) = 0 has a unique solution at δ = δ0 and the parameters are identifiable

from the linear and quadratic moment conditions.

Part (i) of the lemma assumes that ΓHW has full column rank. This condition is

maintained in Kelejian and Prucha (1998), and subsequent papers on instrumental variable

estimators for spatial network models. If ΓHZ has full column rank, this condition is

equivalent to postulating that ΓHMy is not collinear with ΓHZ .

Part (ii) shows that by utilizing the quadratic moment conditions identification is still

possible even if ΓHW does not have full column rank. We maintain that ΓHZ has full

column rank, which is a standard instrument relevance condition typically imposed in IV

settings. Given that ΓHZ has full column rank we have ΓHMy = ΓHZc for some vector c.

This arises for example if y+
1 is collinear with Z+

1 .

Our adopted data transformation has the advantage that the objective function of the

GMM estimator given by (8) is additive in the parts involving the linear and quadratic

moment conditions. Given this structure we show in the proof of the lemma that asymptot-

ically all solutions of the linear moment conditions are described by the relation β (λ)−β0 =

−c (λ− λ0). Substitution of this expression for β(λ) into the quadratic moment conditions

yields

plimn−1/2mn,q(λ, β (λ)) = S

[
1/2 0

λ0 1

]−1

[λ− λ0, (λ− λ0)2]′. (16)

Equations (16) have a unique solution at λ = λ0 if S has full column rank. This in turn

implies that linear and quadratic moment conditions have a unique solution at δ = δ0; see

Lee (2007, pp. 493) for a corresponding discussion of a cross sectional spatial model. In an

application it may be convenient to check this condition by checking on the non-singularity

of S′nSn. A necessary condition for Sn to have full column rank is that y+
1 and ȳ+

1 do not

lie in the space spanned by Z+
1 . This condition is likely satisfied since the reduced form (9)

depends on both Z+
1 and u+

1 .
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Assumption EX postulates that n−1hr′u+
1 = op(1), n−1u+′

1 A
ru+

1 = op(1). The next

lemma implies these assumptions from lower level conditions that can be imposed on the

model in Section 2.2. The lemma also provides specific choices of hr and Ar for which these

conditions are satisfied.

Lemma EX2 Suppose the network is generated by (10) and (11), and suppose Assumption

EX holds, except for postulating that n−1hr′u+
1 = op(1) and n−1u+′

1 A
ru+

1 = op(1) holds.

Then the following statements are true for all i = 1, ..., n and n ≥ 1, with bounding constants

K, Kh, Ka, Kz that do not depend on i, j, n or t:

(a) A sufficient condition for n−1hr′u+
1 = op(1) and n−1u+′

1 A
ru+

1 = op(1) to hold is that

‖hir‖2+δ ≤ Kh <∞ for some δ > 0, and
∑n

j=1

∣∣∣arij∣∣∣ ≤ Ka <∞.

(b) Suppose that
∑n

l=1 dil,t ≥ 1, sij = sji and

(i)
∑n

j=1 1 {sij ≤ c} ≤ K <∞,

(ii)
∑n

j=1 (Pr (sij ≤ c))1/[s(2+δ)] ≤ K < ∞,
∥∥z1

t

∥∥
4+δ
≤ Kz < ∞ for some δ > 0 and some

s = 1, 2, ...., and the instruments hr are taken from {M τ
t z

1
t , τ = 0, . . . , s} and the matrices

Ar are of the form Ar = (Ar + Ar′)/2 with Ar taken from {M τ−σ
t Mσ′

t − diag(M τ−σ
t Mσ′

t ),

0 ≤ σ ≤ τ, τ = 1, . . . , s} with t = 1, 2. Then the sufficient conditions in (a) are satisfied.

Furthermore, for some finite Ka we have
∑n

j=1

∥∥∥arij∥∥∥
2+δ
≤ Ka.

Part (b) of the lemma shows that for our exemplary network model the specific selection

for hr and Ar satisfy the properties postulated for our general model; cp. Assumption

2(i),(ii) in Appendix A. As shown in the proof of the lemma in the supplemental appendix,

the condition in (b)(ii) that
∑n

j=1 (Pr (sij ≤ c))1/[s(2+δ)] ≤ K is implied by the stronger

condition
∑n

j=1 1 {Pr (sij ≤ c) > 0} ≤ K. If Pr (sij ≤ c) = 0 implies 1 {sij ≤ c} = 0 then

(b)(i) and (b)(ii) can be replaced with
∑n

j=1 1 {Pr (sij ≤ c) > 0} ≤ K. The summability

condition in (b) allows for all individuals in the network to potentially be connected, albeit

with small probability for most connections, while the stronger condition rules out most

connections with probability one.

A computational algorithm to obtain consistent starting values using both linear and

quadratic moment conditions is based on partialling out the term Ztβ using the linear

moment conditions only. This is possible because β is identified by the linear moment

conditions for any fixed value of λ. Let β̂ (λ) =
(
Z+′

1 PHZ
+
1

)−1
Z+′

1 PH
(
y+

1 − λȳ
+
1

)
be the

2SLS estimator of a linear IV regression of
(
y+

1 − λȳ
+
1

)
on Z+

1 using instruments H and

set δ̃n (λ) =
(
λ, β̂ (λ)′

)
. The second step consists in substituting δ̃n (λ) into the quadratic

moment conditions and in minimizing the quadratic part of the moment function. The

algorithm can be summarized as follows:
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Algorithm EX Let mn(δ), β̂z (λ) and δ̃n (λ) be as defined before. Let mn,q,r

(
δ̃n (λ)

)
=

u+
1 (δ)′Aru+

1 (δ)

(1) Solve the problem λ̃ = arg minλ n
−1mn,q

(
δ̃n (λ)

)′
(V a
n )−1mn,q

(
δ̃n (λ)

)
.

(2) Set the starting values to λ̂ = λ̃, β̂z = β̂z

(
λ̂
)

.

When Assumption EX holds it follows from (16) that mn,q

(
δ̃n (λ)

)
= 2 (λ0 − λ) γb +

(λ0 − λ)2 γc+op (1) where γb and γc are constant vectors. In large samples mn,q

(
δ̃n (λ)

)
= 0

has only one solution if S has full column rank. As a result, Algorithm EX provides starting

values that are consistent estimates asymptotically. Using starting values obtained from

Algorithm EX in a subsequent full optimization step as in (8) leads to parameter estimates

that have the limiting distributions derived in Section 3.

2.4 Monte Carlo

We conduct a Monte Carlo experiment with data generated from (1) with Zt =
[
z1
t ,Mtz

1
t

]
,

T = 2, f1 = f2 = 1 and networks formed according to (10) and (11). In our first de-

sign Mt is exogenous w.r.t. ε+
t = u+

t . We set pz = 2 and draw µi, uit, νi and z1
it mu-

tually independently from standard Gaussian distributions, while υij,t = υji,t is drawn

independently from a logistic distribution. The location characteristics τi are drawn in-

dependently from uniform distributions with heterogeneous means, τi ∼ U [i, i+ 2], and

sij = 1 {|τi − τj | < 10} . We set α0 = 1, ατ = −1, β1 = 1 and αµ = −.1. We vary λ in

{.1, .5, .7} and set β2 = − (λ+ ∆)β1 where ∆ takes values in {.1, .5, 1}. Linear instruments

are H =
[
z1

1 , z
1
2 ,M1z

1
1 ,M2z

1
2 ,M

2
1 z

1
1 ,M

2
2 z

1
2 ,M

3
1 z

1
1 ,M

3
2 z

1
2

]
, and quadratic moment conditions

are formed with A1 = (M1 +M ′1) /2, A2 = (M2 +M ′2) /2, A3 = M ′1M1 − diag(M ′1M1) and

A4 = M ′2M2 − diag(M ′2M2). As shown in Bramoulle, Djebbari and Fortin (2009) and de

Paula (2017) the model is not identified by linear moment conditions if β2 = −λβ1, which

is consistent with a failure of a general condition for identification by linear moment re-

strictions given in Kelejian and Prucha (1998). Our Monte Carlo design thus approaches

the point of non-identification for linear IV as ∆ shrinks towards zero. We consider sample

sizes of n = 250 and n = 500 for all designs. Table 1 reports results for the estimator of λ

using conventional OLS of y+
1 on W+

1 , two stage least squares (2SLS) of y+
1 on W+

1 using

H as instruments and our linear-quadratic GMM (GMM) estimator defined in (8). We use

Algorithm EX to find starting values, followed by a full optimization step over the entire

criterion function. The computational complexity of minimizing the linear-quadratic crite-

rion of GMM is essentially independent of the cross-sectional sample size n.8 For λ = .1

8Matlab replication code for the simulations is available from the authors.
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endogeneity is relatively mild leading to OLS being reasonably unbiased, at least in abso-

lute terms. As λ increases to .5 and .7, OLS becomes seriously biased. The 2SLS estimator

performs well when ∆ = 1, although biases exist in the small sample case where n = 250.

As the sample size increases to n = 500 the bias considerably drops and the Mean Absolute

Error (MAE) significantly improves. However, as ∆ moves towards .1 the performance

of linear IV starts to rapidly deteriorate even in the large sample design with n = 500.

This first manifests itself in elevated MAE’s and, as ∆ = .1, in severely biased estimates

and large MAE values. GMM on the other hand shows very robust performance across

all designs and clearly dominates all estimators in both sample sizes and for all parameter

values. It is essentially unbiased even when n = 250, with a percentage median bias of 5%

or less when λ > .1 and around 10% median bias for λ = .1. For the larger sample size the

bias further drops and is substantially smaller than the bias of the other two estimators.

The MAE is significantly smaller for GMM than either for OLS or 2SLS in all designs and

for both sample sizes.

We also consider a design where Mt is endogenous w.r.t. ε+
t = u+

t . We generate

υij = υji by setting υij,t = (uit + ujt) /2 + εij,t where εij,t is independent logistic. All other

parameters are the same as in the case where Mt is exogenous. We predict the endogenous

Mt with M∗t using the functional forms in (14) and (15). The parameters for the prediction

are set at χ = .75, χd = 1, χ` = 1 and c = 5. Linear instruments and quadratic instruments

are formed as in the case with exogenous Mt, except that in H and Aj the matrix Mt

is replaced with M∗t . Simulation results are reported in Table 2. The OLS estimator is

somewhat more biased than in the case of exogenous Mt with a corresponding increase

in the MAE. The 2SLS estimator now is significantly more biased than in the exogenous

Mt case. The MAE of 2SLS is accordingly significantly inflated. GMM is somewhat more

biased than in the case with exogenous Mt. It is much less biased than OLS in all designs

and also much less biased than 2SLS. The MAE of the GMM estimator rises somewhat

as λ increases but overall is very insensitive to ∆. At n = 250 it clearly dominates OLS

both in terms of bias and MAE except when λ = .1 and ∆ = 1. It also dominates 2SLS in

terms of MAE across all parametrization of the model. When n = 500 the GMM estimator

dominates OLS clearly across the entire parameter space. The 2SLS estimator continues

to do poorly except when ∆ = 1 and λ = .7. GMM on the other hand does well across

the entire parameter space with low bias and MAE that is not very sensitive to the DGP.

Overall GMM clearly dominates 2SLS when Mt is endogenous and approximated by M∗t .
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3 The General Model

3.1 Specification

We consider a fairly general panel data model, which covers the example in Section 2 as

a special case. In addition, it allows for higher order and time dependent spatial lags,

weakly exogenous covariates and unobserved common factors that we treat as unknown

parameters. Let {yt, xt, zt}Tt=1 be a panel data set defined on a common probability space

(Ω,F , P ), where yt = [y1t, ...., ynt]
′, xt = [x′1t, ..., x

′
nt]
′, and zt = [z′1t, ..., z

′
nt]
′ are of dimension

n× 1, n× kx and n× kz. The dynamic and cross sectionally dependent panel data model

we consider can then be written as

yt =
∑P

p=1 λpMp,tyt + Ztβ + εt = Wtδ + εt,

εt =
∑Q

q=1 ρqM q,tεt + µft + ut,
(17)

where Zt is a n×k matrix composed of columns of x1
t , z

1
t ,M1,tx

1
t ,M1,tz

1
t , . . . ,MP,tx

1
t ,MP,tz

1
t

and a finite number of time lags thereof, Wt = [M1,tyt, . . . ,MP,tyt, Zt] and δ = [λ′, β′]′ are

the parameters of interest. As for the exemplary model discussed in the previous section

zt = [z1
t , ζt] is a matrix of kz strictly exogenous variables, where z1

t denotes the strictly

exogenous variables in the regression, and ζt denotes additional strictly exogenous variables

which may affect network formation, and where the dimension of ζt may depend on n.

In addition we now also include kx weakly exogenous covariates xt = [x1
t , ξt], which we

partition in an analogous manner. The specification allows for temporal dynamics in that

xit may include a finite number of time lags of the endogenous variables.

Our setup allows for fairly general forms of cross-sectional dependence. Consistent with

the exemplary social interaction models discussed in the previous section, we allow for

network interdependencies in the form of “spatial lags” in the endogenous variables, the

exogenous variables and in the disturbance process. Our specification accommodates higher

order spatial lags, as well as time lags thereof, where spatial lags of predetermined variables

should be viewed as being included in xit. The n × n spatial weight matrices are denoted

as Mp,t = (mp,ijt) and M q,t = (mq,ijt). We do assume that the matrices Mp,t and M q,t are

known or observed in the data. As a normalization we take mp,iit = mq,iit = 0.

Alternatively or concurrently, we allow in each period t for the regressors and distur-

bances to be affected by common shocks. As in Andrews (2005) and Kuersteiner and Prucha

(2013), those common shocks are captured by a sigma field, say, Ct ⊂ F , but are otherwise

left unspecified. Let C = C1 ∨ . . . ∨ CT where ∨ denotes the sigma field generated by the

union of two sigma fields. An important special case where common shocks are not present

arises when Ct = C = {∅,Ω}.
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We also allow for interactive effects in the error term where µ is an n × 1 vector of

unobserved factor loadings or individual specific fixed effects, which may be time varying

through a common unobserved factor ft. The factor ft is assumed to be measurable with

respect to a sigma field Ct. Furthermore, let λ and ρ be, respectively, P and Q dimensional

vectors of parameters with typical elements λp and ρq.

Note that (17) is a system of n equations describing simultaneous interactions be-

tween the individual units. The weighted averages, say, yp,it =
∑n

j=1mp,ijtyjt and εq,it =∑n
j=1mq,ijtεjt model contemporaneous direct cross-sectional interactions in the dependent

variables and the disturbances. In line with the literature on spatial networks we refer to

those weighted averages as spatial lags, and to the corresponding parameters as spatial

autoregressive parameters.9 We do not assume that the weights are given constants, but

allow them to be stochastic. The weights are allowed to be endogenous in that they can

depend on µ1, . . . , µn and uit, apart from predetermined variables and common shocks, and

thus can be correlated with the disturbances εt.
10 In fact, and in contrast to most of the

recent literature discussed in the introduction on models with endogenous spatial weights,

we do not impose any particular restrictions on how the weights are generated.

For i = 1, ..., n let zoi = (zi1, . . . , ziT ), xoit = [xi1, . . . , xit], u
o
it = [ui1, . . . , uit], u−i,t =

[ui1, . . . , ui−1,t, ui+1,t, ...unt]. We next formulate our main moment conditions for the id-

iosyncratic disturbances.

Assumption 1 Let Ku be some finite constant (which is taken, w.o.l.o.g., to be greater

than one), and define the sigma fields

Bn,i,t = σ
({
xojt, z

o
j , u

o
j,t−1, µj

}n
j=1

, u−i,t

)
, Bn,t = σ

({
xojt, z

o
j , u

o
j,t−1, µj

}n
j=1

)
and

Zn=σ({zoj , µj}nj=1).

For some δ > 0 and all t = 1, . . . , T , i = 1, . . . , n, n ≥ 1:

(i) The 2 + δ absolute moments of the random variables xit, zit, uit, and µi exist, and the

9An alternative specification, analogous to specifications considered in Baltagi et al (2008), would be

to model the disturbance process in (17) as εt = φft + vt, where φ and vt follow possibly different spatial

autoregressive processes. Since we are not making any assumptions on the unobserved components µ it is

readily seen that the above specification includes this case, provided that the spatial weights do not depend

on t.
10It is for this reason that we list spatial lags of xt and zt separately in defining the regressors in Zt. If

the Mp,t are strictly exogenous we can incorporate those spatial lags w.o.l.o.g. into xt and zt. The matrix

Zt may also contain additional endogenous variables, apart from the spatial lags in yt. We do not explicitly

list those variables for notational simplicity.
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moments are uniformly bounded by a generic constant K.

(ii) The following conditional moment restrictions hold for some constant cu > 0:

E [uit|Bn,i,t ∨ C] = 0, (18)

E
[
u2
it|Bn,i,t ∨ C

]
= σ2

t %
2
i with σ2

t , %
2
i ≥ cu, (19)

E
[
|uit|2+δ |Bn,i,t ∨ C

]
≤ Ku. (20)

The variance components γσ = (σ2
1, . . . , σ

2
T )′ are assumed to be measurable w.r.t. C. The

variance components %2
i = %2

i (γ%) are taken to depend on a finite dimensional parameter

vector γ% and are assumed to be measurable w.r.t. Zn ∨ C.

Condition (18) clarifies the distinction between weakly exogenous covariates xit and

strictly exogenous covariates zit. The latter enter the conditioning set at all leads and lags.

The conditioning sets Bn,i,t and Bn,t can be expanded to include additional conditioning

variables without affecting the analysis. In the following we use the notation Σσ = diag(σ2
t )

and Σ% = diag(%2
i ). As a normalization we may take σ2

T = 1 or n−1 tr(Σ%) = 1. Specifica-

tions where σ2
t and %2

i are non-stochastic, and specifications where the uit are conditionally

homoskedastic are covered as special cases.

In addition to Assumption 1 we maintain Assumptions 2-7, which are collected in Ap-

pendix A for ease of presentation. We note that those assumptions do not maintain that

the ft are non-stochastic, but only maintain that the ft are measurable w.r.t. C. As a

normalization we maintain fT = 1. The unit specific effects µ are left unspecified and are

allowed to be correlated with the covariates.

Define Rt (λ) = In −
∑P

p=1 λpMp,t and Rt(ρ) = In −
∑Q

q=1 ρqM q,t, then the reduced

form of the model is given by

yt = Rt(λ)−1 (xtβx + ztβz + εt) , (21)

εt = Rt(ρ)−1 (µft + ut) .

Applying a Cochrane-Orcutt type transformation by premultiplying the first equation in

(17) with Rt(ρ) yields

Rt(ρ)yt = Rt(ρ)Wtδ + µft + ut. (22)

A further transformation of the spatially Cochrane-Orcutt transformed model (22) is

needed to eliminate the unit specific effects µ. In the classical panel literature with ft = 1

the Helmert transformation was proposed by Arellano and Bover (1995) as an alternative

forward filter that, unlike differencing, eliminates fixed effects without introducing serial
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correlation in the linear moment conditions underlying their GMM estimator.11 Building

on this idea we first develop an orthogonal quasi-forward differencing transformation for

the more general case where factors ft appear in the model. More specifically, consider the

T × 1 vectors f = [f1, . . . , fT ] and ui = [ui1, ..., uiT ]′ such that ηi = µif + ui with typical

element ηit = µift+uit. A quasi-forward differencing filter has a representation as an upper

triangular T − 1 × T matrix Π with the property Πf = 0. Let πt = [0, . . . , 0, πtt, . . . , πtT ]

denote the rows of Π, let η+
i = Πηi and u+

i = Πui, then η+
i = u+

i , and the elements of η+
i

and u+
i can be written as

η+
it =

∑T
s=tπtsηis, u+

it =
∑T

s=tπtsuis. (23)

If in addition ΠΣσΠ′ = I then under our assumptions the transformed errors u+
it are

uncorrelated across i and t. In Proposition 1 in Appendix B we present a generalization of

the Helmert transformation that satisfies these two conditions, and give explicit expressions

for the elements πts = πts(f, γσ). Such expressions are crucial from a computational point of

view, especially if ft is estimated as an unobserved parameter. A more detailed discussion,

including a discussion of a convenient normalization for the factors and how to handle

multiple factors, is given in that appendix and a supplementary appendix. Our moment

conditions involve both linear and quadratic forms of the forward differenced disturbances.

3.2 Estimator

For clarity we denote the true parameters of interest θ and the true auxiliary variance

parameters γ defined in Assumption 1 as θ0 = (δ′0, ρ
′
0, f
′
0)′ and γ0 =

(
γ′0,%, γ

′
0,σ

)′
. Using (22)

we define

u+
t (θ0, γσ) =

∑T
s=tπts (f0, γσ)us =

∑T
s=tπts (f0, γσ)Rs(ρ0) [ys −Wsδ0] , (24)

with the weights πts(., .) of the forward differencing operation defined by Proposition 1.

Note that this operation removes the unobserved individual effects even if γσ 6= γ0,σ. Our

estimators utilize both linear and quadratic moment conditions based on

u+
∗t(θ0, γ) = Σ%(γ%)

−1/2u+
t (θ0, γσ). (25)

with γ =
(
γ′%, γ

′
σ

)′
. Considering moment conditions based on u+

∗t(θ0, γ) is sufficiently general

to cover initial estimators with Σσ = IT and Σ% = In. As illustrated in Section 2 quadratic

moment conditions are often required to identify parameters associated with spatial lags

11Hayakawa (2006) extends the Helmert transformation to systems estimators of panel models by using

arguments based on GLS transformations similar to Hayashi and Sims (1983) and Arellano and Bover (1995).

19



and may further increase the efficiency of estimators by exploiting spatial correlation in the

data generating process.

Let hit = (hrit) be some 1× pt vector of instruments, where the instruments are measur-

able w.r.t. Bn,t ∨ C. Also, consider the n× 1 vectors hrt = (hrit)i=1,...,n, then by Assumption

1 and Theorem 1 we have the following linear moment conditions for t = 1, . . . , T − 1,

E


h1′
t u

+
∗t(θ0, γ)

...

hpt′t u+
∗t(θ0, γ)

 = E

[
n∑
i=1

h′itu
+
∗it(θ0, γ)

]
= 0 (26)

with u+
∗it(θ0, γ) = u+

it(θ0, γσ)/%i(γ%). For the quadratic moment conditions, let aij,t = (arij,t)

be a 1 × qt vector of weights, where the weights are measurable w.r.t. Bn,t ∨ C. Also

consider the n × n matrices Art = (arij,t)i,j=1,...,n such that by Assumption 1 and Theorem

1, and imposing the constraint that aii,t = 0 one obtains the following quadratic moment

conditions for t = 1, . . . , T − 1,

E


u+
∗t(θ0, γ)′A1

tu
+
∗t(θ0, γ)

...

u+
∗t(θ0, γ)′Aqtt u

+
∗t(θ0, γ)

 = E

 n∑
i=1

n∑
j=1

a′ij,tu
+
∗it(θ0, γ)u+

∗jt(θ0, γ)

 = 0. (27)

The requirement that aii,t = 0 is generally needed for (27) to hold, unless Σ0,% = In.

W.o.l.o.g. we also maintain that aij,t = aji,t.

By allowing for subvectors of hit and aij,t to be zero and by redefining both pt and qt

as pt + qt, the above moment conditions can be stacked and written more compactly as

E [mn,t(θ0, γ)] = 0, with (28)

mn,t(θ, γ) = n−1/2
n∑
i=1

h′itu
+
∗it(θ, γ) + n−1/2

n∑
i=1

n∑
j=1

a′ij,tu
+
∗it(θ, γ)u+

∗jt(θ, γ).

The example in Section 2 is a special case of mn,t(θ, γ) with t = 1 where mn,1(θ, γ) =

mn (δ) = [mn,l(δ)
′,mn,q(δ)

′]′, hi1 =
[
h1
i , ..., h

p
i ,0
′
q

]′
, aij,1 =

[
0′p, a

1
ij , ..., a

q
ij

]′
and 0k is a k×1

vector of zeros. The formulation in (28) allows for more general forms of the empirical

moment function by allowing for nontrivial linear combinations of (26) and (27) in addition

to simply stacking both sets of moments. The particular form of (28) is motivated by a

need to minimize cross-sectional and temporal correlations between empirical moments.

Theorem 1 below provides for sufficient conditions for the choice of moments, moment

weights At and forward differences Π that lead to a covariance matrix of the moment

vector, which can be estimated reasonably easily.
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Let θ = (δ′, ρ′, f ′)′ and γ =
(
γ′%, γ

′
σ

)′
denote some vector of parameters, let p =

∑T−1
t=1 pt,

and define the p× 1 normalized stacked sample moment vector corresponding to (28) as

mn(θ, γ) =
[
m1(θ, γ)′, . . . ,mT−1(θ, γ)′

]
. (29)

For some estimator γ̄n of the auxiliary parameters γ and a p × p moment weights matrix

Ξ̃n the GMM estimator for θ0 is defined as

θ̃n (γ̄n) = arg min
θ∈Θθ

n−1mn(θ, γ̄n)′Ξ̃nmn(θ, γ̄n) (30)

where the parameter space Θθ is defined in more detail in Appendix A. The parameter γ

is a nuisance parameter that can either be fixed at an a priori value or estimated in a first

step.

The optimal weight matrix of a GMM estimator based on both linear and quadratic

moment conditions depends on the variance covariances of linear quadratic forms based on

forward differenced disturbances. Simplifying them as much as possible is critical to the

implementation of the estimator. The following proposition establishes sufficient conditions

under which significant simplifications can be achieved.

Theorem 1 12 Let the information sets Bn,i,t, Bn,t, Zn be as defined in Section 3. Fur-

thermore assume that for all t = 1, . . . , T , i = 1, . . . , n, n ≥ 1, E [uit|Bn,i,t ∨ C] = 0,

E
[
u2
it|Bn,i,t ∨ C

]
= %2

iσ
2
t > 0, E

[
u3
it|Bn,i,t ∨ C

]
= µ3,it, E

[
u4
it|Bn,i,t ∨ C

]
= µ4,it, where σt is

finite and measurable w.r.t. C, and %i, µ3,it and µ4,it are finite and measurable w.r.t. Zn∨C.

Define Σ% = diag
(
%2

1, ..., %
2
n

)
and Σσ = diag

(
σ2

1, ..., σ
2
T

)
. Let At = (aijt) and Bt = (bijt)

be n × n matrices, and let at = (ait) and bt = (bit) be n × 1 vectors, where aijt, bijt, ait,

bit are measurable w.r.t. Bn,t ∨ C. Let πt = [0, . . . , 0, πtt, . . . , πtT ] be a 1 × T vector where

πtτ is measurable w.r.t. C, and consider the forward differences u+
t =

[
u+

1t, . . . , u
+
nt

]′
with

u+
it = πtu

′
i. Assume that vecD (At) = vecD (Bt) = 0, Πf = 0 and ΠΣσΠ′ = I. Then

E
[
u+′
t Atu

+
t + u+′

t at|C
]

= 0, (31)

Cov(u+′
t Atu

+
t + a′tu

+
t , u

+′
t Btu

+
t + b′tu

+
t |C) (32)

= E
[
tr(AtΣ%(Bt +B′t)Σ%)|C

]
+ E

[
a′tΣ%bt|C

]
,

Cov(u+′
t Atu

+
t + a′tu

+
t , u

+′
s Bsu

+
s + b′su

+
s |C) =0 for all t > s. (33)

12A more general version of the proposition, further details and an explicit proof are given in the sup-

plemental appendix in Section D.2. There we consider generalized forms u+′
t Atu

×
t + u+′

t at , where u+
t and

u×t contain, respectively, forward differences corresponding to upper triangular matrices Π and Γ. We show

that, in general, linear and quadratic moment conditions are correlated when the condition of the theorem

that vecD (At) = vecD (Bt) = 0, Π = Γ with Πf = 0 and ΠΣσΠ′ = I fails. We also show that in that case,

variances and covariances depend on additional higher order terms that are difficult to estimate.
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The proof shows that a sufficient condition for E
[
u+′
t Atu

+
t + u+′

t at|C
]

= 0 is vecD(At) =

0 where vecD(At) is the vector of diagonal elements of At. We note that with vecD(At) = 0

no restrictions on E
[
u2
it|Bn,i,t ∨ C

]
are necessary to ensure E

[
u+′
t Atu

+
t + u+′

t at|C
]

= 0.

Since At is a quantity chosen by the econometrician, the constraint vecD(At) = 0 can easily

be imposed and is satisfied for the example discussed in Section 2. Setting vecD(At) =

vecD(Bt) = 0 for all t, and using orthogonally transformed disturbances, ensures that

variances and covariances in (32) and (33) do not depend on higher order moments and

thus simplifies the optimal GMM weight matrix. In particular, (32) implies that linear and

quadratic moments are uncorrelated, while (33) implies that the linear quadratic forms are

uncorrelated over time. Expressions for the variance of linear quadratic forms are obtained

as a special case where At = Bt and at = bt. The results of Theorem 1 are consistent with

some specialized results given in Kelejian and Prucha (2001, 2010) under the assumption

that the coefficients at and At in the linear quadratic forms are non-stochastic.

The homoskedastic case where Σ% = %2I leads to some further simplifications. In that

case a sufficient condition for the validity of moment conditions of the from E
[
u+′
t Atu

+
t + u+′

t at|C
]

=

0 is that tr(At) = 0. Consistent with this observation and under cross sectional homoskedas-

ticity, quadratic moment conditions where only the trace of the weight matrices is assumed

to be zero, have been considered frequently in the spatial literature13. However, tr(At) = 0

does not insure that the linear quadratic forms are uncorrelated across time even in the

case of orthogonally transformed disturbances, i.e., Πf = 0 and ΠΣσΠ′ = I.

3.3 Consistency

Consistent with the assumptions in Appendix A let θ∗ = limn→∞ θn,0 and γ∗ = limn→∞ γn,0.

Furthermore, consider a sequence of estimators of the auxiliary parameters γ̄n
p→ γ̄∗.

The objective function of the GMM estimator θ̃n (γ̄n) defined in (30) is then given by

Rn(θ) = n−1mn(θ, γ̄n)′Ξ̃nmn(θ, γ̄n). Correspondingly consider the “limiting” objective

function R(θ) = m(θ)′Ξm(θ) with m(θ) = plimn→∞ n
−1/2mn(θ, γ̄∗). Because m(θ) and Ξ

are generally stochastic in the presence of common factors it follows that R(θ) and the

minimizer θ∗ are also generally stochastic. The consistency proof needs to account for

the randomness in R(θ) and θ∗. The consistency results given below build, in particular,

on Gallant and White (1988), White (1984), Newey and McFadden (1994), Pötscher and

Prucha (1997, ch 3).14 We first establish a general result for the consistency of estima-

13See, e.g., Kelejian and Prucha (1998,1999), Lee and Liu (2010) and Lee and Yu (2014).
14The latter reference also provides citations to the earlier fundamental contributions to the consistency

proof of M-estimators in the statistics literature. We would like to thank Benedikt Pötscher for very helpful

discussions on extending the notion of identifiable uniqueness to stochastic analogue functions, and the
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tors for situations where the limiting objective function and the minimizers are stochastic,

which is given as Proposition 2 in Appendix C. This proposition also extends the notion

of identifiable uniqueness to stochastic limit functions and minimizers. We then use this

result to proof the following theorem establishing consistency.

Theorem 2 (Consistency) Suppose Assumptions 1-7 hold for some estimator of the aux-

iliary parameters γ̄n
p→ γ̄∗. Then θ̃n (γ̄n)− θn,0

p→ 0 as n→∞.

We note that the theorem covers the case where γ̄n = γ̃n and γ̃n is a consistent estimator

of the auxiliary parameters, as well as the case where γ̄n = γ̄∗ = γ̄ for all n. The latter case

is relevant for first stage estimators that are based on arbitrarily fixed variance parameters.

For γσ an obvious choice is γ̄σ = 1T . For γ% convenient choices depend on the specifics of the

model. In many situations the first stage estimator will be based on the choice %2
i (γ̄%) = 1.

3.4 Limit Theory

The limiting distribution of our GMM estimators depends on the limiting distribution of

the sample moment vector mn = mn (θ0, γ0,σ, γ%) defined by (29), evaluated at the true

parameters, except possibly for the specification of the cross sectional variance components

%2
i . The reason for this is to accommodate both leading cases %2

i = %2
0,i and %2

i = 1. Our

derivation of the limiting distribution of mn is based on Proposition 3 in Appendix C.

Proposition 3 can be of interest in itself as a CLT for vectors of linear quadratic forms of

transformed innovations. As a special case the theorem also covers linear quadratic forms

in the original innovations: for fT = σT = 1, ft = 0 for t < T and %2
i = %2

0,i we have

u+
∗it = uit/(σ0,t%0,i). The result generalizes Theorem 2 in Kuersteiner and Prucha (2013).

We emphasize that our result differs from existing results on CLTs for quadratic forms in

various respects:15 First it considers linear quadratic forms in a panel framework. To the

best of our knowledge, other results only consider single indexed variables. As stressed in

Kuersteiner and Prucha (2013) the widely used CLT for martingale differences by Hall and

Heyde (1980) is not generally compatible with a panel data situation. Second, Proposition

3 allows for the presence of common factors which can be handled, because Proposition

3 establishes convergence in distribution C-stably.16 Third, the theorem covers orthogo-

propositions presented in this section.
15See, e.g., Atchad and Cattaneo (2012), Doukhan et al. (1996), Gao and Hong (2007), Giraitis and

Taqqu (1998), and Kelejian and Prucha (2001) for recent contributions. To the best of our knowledge the

result is also not covered in the literature on U -statistics; see, e.g., Koroljuk and Borovskich (1994) for a

review.
16We refer the reader to the working paper version for a detailed discussion of C-stable convergence.

23



nally transformed variables, and demonstrates how these transformations very significantly

simplify the correlation structure between the linear quadratic forms.

The next theorem establishes basic properties for the limiting distribution of the GMM

estimator θ̃n(γ̃n) when γ̃n is a consistent estimator of the auxiliary parameters so that γ̃n−
γn,0

p→ 0 and γn,0
p→ γ∗. Let Gn(θ, γ) = ∂n−1/2mn(θ, γ)/∂θ and G(θ) = plimn→∞Gn(θ, γ∗)

as defined in Assumption 6. To establish our results we show that G(θ) exists, and that

G(θ) is C-measurable for all θ ∈ Θθ, and continuous in θ. Let G = G(θ∗) and observe that

G is C-measurable, since θ∗ is C-measurable in light of Assumption 4.

Theorem 3 (Asymptotic Distribution). Suppose Assumptions 1-7 holds for γ̄ = γ̃n with

γ̃n− γn,0 = Op(n
−1/2) and %2

i = %2
0,i = %2

i (γ0,%), and that G has full column rank a.s. Then,

(i)

n1/2(θ̃n (γ̃n)− θn,0)
d→ Ψ1/2ξ∗, as n→∞,

where ξ∗ is independent of C (and hence of Ψ), ξ∗ ∼ N(0, Ipθ) and

Ψ = (G′ΞG)−1G′ΞV ΞG(G′ΞG)−1. (34)

(ii) Suppose B is some q × pθ matrix that is C measurable with finite elements and rank q

a.s., then

Bn1/2(θ̃n (γ̃n)− θn,0)
d→ (BΨB′)1/2ξ∗∗,

where ξ∗∗ ∼ N (0, Iq), and ξ∗∗ and C (and thus ξ∗∗ and BΨB′) are independent.

The matrix V is defined in Assumption 3. Since %2
i = %2

0,i the expression simpli-

fies to V = diagT−1
t=1 (Vt) with Vt = V h

t + 2V a
t , where n−1

∑n
i=1E [h′ithit| C]

p→ V h
t and

n−1
∑n

i=1

∑n
j=1E

[
a′ij,taij,t

∣∣∣ C] p→ V a
t . By Assumption 3 a consistent estimator of V is

Ṽn = diagT−1
t=1

(
V h
t,n + 2V a

t,n

)
, (35)

where V h
t,n = n−1

∑n
i=1 h

′
ithit and V a

t,n = n−1
∑n

i=1

∑n
j=1 a

′
ij,taij,t.

For efficiency, conditional on C, we select Ξ = V −1, in which case Ψ =
[
G′V −1G

]−1
.

The corresponding feasible efficient GMM estimator is then obtained by choosing Ξ̃n =

Ṽ −1
n yielding

θ̂n = arg min
θ∈Θθ

mn(θ, γ̃n)′Ṽ −1
n mn(θ, γ̃n). (36)

Clearly Ṽ −1
(n)

p→ V −1 by Assumption 3, with V −1 being C-measurable with a.s. finite el-

ements, and with V −1 positive definite a.s. Furthermore, from the proof of Theorem 3,
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Gn(θ̂n, γ̃n)
p→ G where G is C-measurable with a.s. finite elements, and with full column

rank a.s., we have that Ψ̂n =
[
G′n(θ̂n, γ̃n)Ṽ −1

n Gn(θ̂n, γ̃n)
]−1

is a consistent estimator for Ψ.

Let R be a q × pθ full row rank matrix and r a q × 1 vector, and consider the Wald

statistic

Tn =

∥∥∥∥(RΨ̂nR
′
)−1/2√

n(Rθ̂n − r)
∥∥∥∥2

(37)

to test the null hypothesis H0 : Rθn,0 = r against the alternative H1 : Rθn,0 6= r. The next

theorem shows that Tn is distributed asymptotically chi-square, even if Ψ is allowed to be

random due to the presence of common factors represented by C. A similar result is shown

by Andrews (2005).

Theorem 4 Suppose the assumptions of Theorem 3 hold. Then

Ψ̂−1/2
n

√
n(θ̂n − θn,0)

d→ ξ∗ ∼ N(0, Ipθ).

Furthermore

P
(
Tn > χ2

q,1−α
)
→ α

where χ2
q,1−α is the 1− α quantile of the chi-square distribution with q degrees of freedom.

As remarked above, an initial consistent GMM estimator θ̄n can be obtained by choosing

Ξ̃n = I and γ̄ = 1, or equivalently by using the identity matrices as estimators for Σσ and

Σ%.

4 Conclusion

The paper considers a class of GMM estimators for panel data models that include pos-

sibly endogenous and dynamically evolving network or peer effect terms. Identification of

these models may require both linear and quadratic moment conditions. We show that a

judicious choice of quadratic moments combined with efficient forward differencing of the

data leads to tractable limiting approximations of the sampling distribution. Due to the

presence of common factors the limiting distribution of the GMM estimator is nonstandard,

a multivariate mixture normal. This leads to the need for random norming. Despite of this

it is shown that corresponding Wald test statistics have the usual χ2-distribution.

The estimation theory developed here is expected to be useful for analyzing a wide

range of data in micro economics, including social interactions, as well as in some macro

economic settings where short panels are used. Our theory is general in nature. Future

work will examine specific models and estimators in more detail. The exact specification of

instruments and the estimation of nuisance parameters are best handled on a case by case

basis.
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Monte Carlo Results for λ : Exogenous Mt

OLS 2SLS GMM
λ ∆ Bias MAE Bias MAE Bias MAE

(1) (2) (3) (4) (5) (6)

Sample Size n = 250
0.1 1 0.043 0.069 0.015 0.124 0.011 0.059
0.1 0.5 0.052 0.076 0.028 0.216 0.010 0.064
0.1 0.1 0.055 0.078 0.070 0.365 0.012 0.067
0.3 1 0.110 0.111 0.020 0.111 0.014 0.054
0.3 0.5 0.126 0.126 0.054 0.196 0.015 0.059
0.3 0.1 0.132 0.131 0.118 0.335 0.017 0.062
0.5 1 0.145 0.141 0.024 0.090 0.015 0.045
0.5 0.5 0.167 0.163 0.063 0.162 0.016 0.054
0.5 0.1 0.174 0.171 0.150 0.285 0.019 0.061
0.7 1 0.128 0.126 0.020 0.059 0.012 0.034
0.7 0.5 0.151 0.148 0.050 0.110 0.018 0.078
0.7 0.1 0.160 0.157 0.136 0.207 0.024 0.106

Sample Size n = 500
0.1 1 0.038 0.053 -0.000 0.092 -0.001 0.043
0.1 0.5 0.042 0.059 0.002 0.169 0.001 0.046
0.1 0.1 0.042 0.060 0.036 0.343 0.001 0.048
0.3 1 0.104 0.102 0.004 0.083 0.002 0.039
0.3 0.5 0.118 0.117 0.020 0.153 0.002 0.042
0.3 0.1 0.123 0.122 0.113 0.326 0.003 0.043
0.5 1 0.138 0.137 0.008 0.067 0.004 0.032
0.5 0.5 0.160 0.158 0.028 0.124 0.003 0.035
0.5 0.1 0.167 0.166 0.145 0.280 0.005 0.036
0.7 1 0.124 0.123 0.008 0.044 0.004 0.023
0.7 0.5 0.146 0.145 0.026 0.084 0.007 0.061
0.7 0.1 0.154 0.154 0.123 0.201 0.008 0.070

Table 1. Monte Carlo results are based on 1,000 replications. Results are
reported only for estimates of the parameter λ. ’Bias’ is the median bias, MAE
is the mean absolute error. OLS is the ordinary least squares estimator, 2SLS is
the two stage least squares estimator, and GMM is the GMM estimator based
on both linear and quadratic moment conditions.
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Monte Carlo Results for λ : Endogenous Mt

OLS 2SLS GMM
λ ∆ Bias MAE Bias MAE Bias MAE

(1) (2) (3) (4) (5) (6)

Sample Size n = 250
0.1 1 0.061 0.093 0.192 0.372 0.025 0.100
0.1 0.5 0.075 0.108 0.280 0.482 0.022 0.102
0.1 0.1 0.080 0.114 0.322 0.533 0.025 0.102
0.3 1 0.150 0.151 0.199 0.329 0.030 0.109
0.3 0.5 0.184 0.182 0.305 0.432 0.031 0.114
0.3 0.1 0.197 0.195 0.363 0.489 0.030 0.108
0.5 1 0.192 0.189 0.173 0.261 0.038 0.127
0.5 0.5 0.235 0.232 0.272 0.351 0.045 0.160
0.5 0.1 0.255 0.250 0.337 0.410 0.042 0.145
0.7 1 0.165 0.164 0.114 0.166 0.038 0.124
0.7 0.5 0.205 0.205 0.196 0.237 0.047 0.158
0.7 0.1 0.224 0.223 0.245 0.284 0.044 0.156

Sample Size n = 500
0.1 1 0.054 0.071 0.140 0.308 0.010 0.066
0.1 0.5 0.067 0.083 0.248 0.434 0.011 0.067
0.1 0.1 0.072 0.088 0.337 0.518 0.011 0.067
0.3 1 0.146 0.144 0.147 0.264 0.013 0.068
0.3 0.5 0.179 0.175 0.269 0.390 0.015 0.074
0.3 0.1 0.193 0.189 0.370 0.480 0.014 0.070
0.5 1 0.189 0.187 0.117 0.201 0.019 0.099
0.5 0.5 0.233 0.230 0.235 0.312 0.022 0.127
0.5 0.1 0.250 0.248 0.343 0.406 0.021 0.121
0.7 1 0.164 0.163 0.074 0.123 0.025 0.121
0.7 0.5 0.205 0.204 0.160 0.204 0.033 0.161
0.7 0.1 0.223 0.222 0.248 0.285 0.030 0.154

Table 2. Monte Carlo results are based on 1,000 replications. Results are
reported only for estimates of the parameter λ. ’Bias’ is the median bias,
MAE is the mean absolute error. OLS is the ordinary least squares estimator,
2SLS is the two stage least squares estimator, and GMM is the GMM estimator
based on both linear and quadratic moment conditions.
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A Appendix: Formal Assumptions

In the following we state the set of assumptions which we employ, in addition to Assumption

1, in establishing the consistency and limiting distribution of our GMM estimator. We first

postulate a set of assumptions regarding the instruments hit and weights aij,t. Let ξ denote

some random variable, then ‖ξ‖s ≡ (E [|ξ|s])1/s denotes the s-norm of ξ for s ≥ 1.

Assumption 2 Let δ > 0, and let Kh, Ka and Kf denote finite constants (which are

taken, w.o.l.o.g., to be greater then one and do not vary with any of the indices and n),

then the following conditions hold for t = 1, . . . , T and i = 1, . . . , n:

(i) The elements of the 1×pt vector of instruments hit = [hir,t]r=1,...,pt are measurable w.r.t.

Bn,t ∨ C. Furthermore, ‖hirt‖2+δ ≤ Kh <∞ for some δ > 0.

(ii) The elements of the 1 × pt vector of weights aij,t =
[
arij,t

]
r=1,...,pt

are measurable

w.r.t. Bn,t ∨ C. Furthermore, aii,t = 0 and aij,t = aji,t, and
∑n

j=1

∣∣∣arij,t∣∣∣ ≤ Ka < ∞,

and
∑n

j=1

∥∥∥arij,t∥∥∥
2+δ
≤ Ka <∞.

(iii) The factors ft, with fT = 1 as a normalization, are measurable w.r.t. C and satisfy

|ft| ≤ Kf .

In the case where the arij,t are non-stochastic
∥∥∥arij,t∥∥∥

2+δ
=
∣∣∣arij,t∣∣∣. The next assumption

summarizes the assumed convergence behavior of sample moments of hit and aij,t. The

assumption allows for the observations to be cross sectionally normalized by %i, where %i

may differ from %0,i.

Assumption 3 Let the elements of Σ% = diagni=1(%2
i ) be measurable w.r.t. Zn ∨ C with

0 < c%u < %2
i < C%u <∞. The following holds for t = 1, . . . , T − 1:

n−1
n∑
i=1

E

[(
%0,i

%i

)2

h′ithit

∣∣∣∣∣ C
]

p→ V h
t,%, n−1

n∑
i=1

n∑
j=1

E

[(
%0,i

%i

)2(%0,j

%j

)2

a′ij,taij,t

∣∣∣∣∣ C
]

p→ V a
t,%,

where the elements of V h
t,% and V a

t,% are finite a.s. and measurable w.r.t. C, and

V h
t,n,% = n−1

n∑
i=1

(
%0,i

%i

)2

h′ithit
p→ V h

t,%, V a
t,n,% = n−1

n∑
i=1

n∑
j=1

(
%0,i

%i

)2(%0,j

%j

)2

a′ij,taij,t
p→ V a

t,%.

The matrix V% = diagT−1
t=1 (Vt,%) with Vt,% = V h

t,% + 2V a
t,% is a.s. positive definite.
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For the case where %i = %0,i we use the simplified notation V h
t , V q

t , Vt and V for

the matrices defined in the above assumption. The spatial weights matrices, the spatial

lag matrices Rt(λ) and Rt(ρ), and the parameters are assumed to satisfy the following

assumption.

Assumption 4 (i) The elements of the spatial weights matrices Mp,t and M q,t are ob-

served. (ii) All diagonal elements of Mp,t and M q,t are zero. (iii) λn,0 ∈ Θλ, ρn,0 ∈ Θρ,

βn,0 ∈ Θβ, fn,0 ∈ Θf and γn,0 ∈ Θγ where Θλ ⊆ RP , Θρ ⊆ RQ, Θβ ⊆ Rk, Θf ⊆ RT−1 and

Θγ ⊆ Rpγ are open and bounded. Furthermore, λn,0 → λ∗, ρn,0 → ρ∗, βn,0 → β∗, fn,0 → f∗,

γn,0 → γ∗ as n → ∞ with λ∗ ∈ Θλ, ρ∗ ∈ Θρ, β∗ ∈ Θβ, f∗ ∈ Θf , γ∗ ∈ Θγ and where f∗

and γ∗ are C-measurable. (iii) For some compact sets Θλ, Θβ, Θρ and Θf = [−K,K] we

have Θλ ⊆ Θλ, Θβ ⊆ Θβ, Θρ ⊆ Θρ and Θf ⊆ Θf . (iv) The matrices Rt(λ) and Rt(ρ) are

defined for λ ∈ Θλ, ρ ∈ Θρ and nonsingular for λ ∈ Θλ, ρ ∈ Θρ.

The GMM estimator is optimized over the set Θθ = Θλ×Θβ×Θρ×Θf . We observe, as

will be discussed in more detail below, that under the above assumptions the sample moment

vector mn(θ, γ) given in (29), and thus the objective function of the GMM estimator, are

well defined for all θ ∈ Θθ.

The next assumption postulates a basic smoothness condition for the cross sectional

variance components and states basic assumptions regarding the convergence behavior of

the sample moments. (The first part of the assumption also ensures that the measurability

conditions and boundedness conditions of Assumption 3 are maintained over the entire

parameter space.)

Assumption 5 (i) The cross sectional variance components %2
i (γ%) are differentiable and

satisfy the measurability conditions and boundedness conditions of Assumption 3 for γ% ∈
Θγ%.

(ii) For t ≤ τ ≤ s let Cs be a n × n matrix of the form Υ, ΥMp,s, ΥArtΥ, ΥArtΥMp,s,

or M ′q,τΥArtΥMp,s, where Υ is an n× n positive diagonal matrix with elements which are

uniformly bounded and measurable w.r.t. Zn ∨ C. Then the probability limits (n→∞) of

n−1h′r,tCsys, n−1h′r,tCsWs, n−1y′τCsWs,

n−1W ′τCsys, n−1y′τCsys, n−1W ′τCsWs,
(38)

exist for r = 1, . . . , pt, and the probability limits are measurable w.r.t. C, and bounded in

absolute value.

We note that typically those probability limits will coincide with the probability limits
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of the corresponding expectations w.r.t. to C, e.g.,

plim
n→∞

n−1h′r,tCsys = plim
n→∞

E
[
n−1h′r,tCsys|C

]
.

The following assumption guarantees that the moment conditions identify the parameter

θ0. To cover initial estimators for θ0 our setup allows both for situations where the estimator

for θ0 is based on a consistent or an inconsistent estimator of the auxiliary parameters γ0.

In the following let γ̄n
p→ γ̄∗ with γ̄n ∈ Θγ and γ̄∗ ∈ Θγ denote a particular estimator and

its limit. For consistent estimators of the auxiliary parameters γ̄∗ = γ∗, and for inconsistent

estimators γ̄∗ 6= γ∗. The latter covers the case where in the computation of the first stage

estimator for θ0 all auxiliary parameters are set equal to some fixed values, i.e., the case

where γ̄n = γ∗ = γ̄.

Assumption 6 Let δ∗, ρ∗, f∗, γ∗ be as defined in Assumption 4, let θ∗ = (δ′∗, ρ
′
∗, f
′
∗)
′, and

let γ̄n
p→ γ̄∗ with γ̄n ∈ Θγ and γ̄∗ ∈ Θγ, where γ̄∗ is C-measurable. Furthermore, for θ ∈ Θθ

let m(θ) = plimn→∞ n
−1/2mn(θ, γ̄∗) and G(θ) = plimn→∞ ∂n

−1/2mn(θ, γ∗)/∂θ.17 Then the

following is assumed to hold:

(i) θ∗ is identifiable unique in the sense that m(θ∗) = 0 a.s. and for every ε > 0,

inf
{θ∈Θθ:|θ−θ∗|>ε}

‖m(θ)‖ > 0 a.s. (39)

(ii) supθ∈Θθ

∥∥n−1/2mn (θ, γ̄n)−m(θ)
∥∥ = op (1) for γ̄n

p→ γ̄∗.

(iii) supθ∈Θθ

∥∥∂n−1/2mn (θ, γ̄n) /∂θ −G(θ)
∥∥ = op (1) for γ̄n

p→ γ∗, and

plim
n→∞

∂n−1/2mn(θ̄n, γ̄n)/∂γ = 0

for θ̄n
p→ θ∗ and γ̄n

p→ γ∗.

We furthermore maintain the following assumptions regarding the moment weighting

matrix of our GMM estimator.

Assumption 7 Suppose Ξ̃n
p→ Ξ , where Ξ is C-measurable with a.s. finite elements, and

Ξ is positive definite a.s.

17Lemma 5 establishes the existence of the limit of the moment vector m(θ) and the limit of the derivatives

of the moment vector G(θ). To keep our notation simple, we have suppressed the dependence of m(θ) on

γ̄∗. The limiting matrix G(θ) is only considered at γ̄∗ = γ∗.
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Assumptions 6(i) and 7 are crucial in establishing that θ∗ is identifiable unique in the

sense of Proposition 2. Assumptions 6(iii) is not required by Theorem 2.

Our specification allows for the true autoregressive parameters to be arbitrarily close to

a singular point of Rt(λ) and Rt(ρ).18 Technically we distinguish between the parameter

space and the optimization space, which defines the estimator. Since our specification of

the moment vector does not rely on Rt(λ)−1 or Rt(ρ)−1 it remains well defined even for

parameter values where Rt(λ) and Rt(ρ) are singular. Thus for autoregressive processes we

can specify the optimization space to be a compact set Θθ = Θλ×Θβ×Θρ×Θf containing

the parameter space, without restricting the class of admissible models. We note that given

that fT = 1 the weights πts = πts(f, γσ) of the Generalized Helmert transformation defined

in Proposition 1 are well defined on Θf ×Θγ .

B Appendix: Forward Differencing

Let u+
i = Πui with elements u+

it =
∑T

s=tπtsuis denote the vector of forward differenced

disturbances, where Π satisfies Πf = 0 and ΠΣσΠ′ = I. To emphasize that the elements

of Π are functions of the ft’s and σt’s we sometimes write πts (f, γσ). The next proposition

provides explicit expressions for πts (f, γσ).

Proposition 1 19 (Generalized Helmert Transformation) Let F = (fts) be a T − 1 × T
quasi differencing matrix with diagonal elements ftt = 1, ft,t+1 = −ft/ft+1, and all other

elements zero. Let U be an upper diagonal T − 1× T − 1 matrix such that FΣσF
′ = UU ′.

Then, the T − 1 × T matrix Π = U−1F is upper diagonal and satisfies Πf = 0 and

ΠΣσΠ′ = I. Explicit formulas for the elements of Π = Π(f, γσ) are given as

πtt (f, γσ) =
(√

φt+1/φt

)
/σt,

πts (f, γσ) = −ftfs
(√

φt+1/φt

)
/
(
φt+1σtσ

2
s

)
for s > t,

πts = 0 for s < t.

with φt =
∑T

τ=t(fτ/στ )2 For computational purposes observe that φt = (ft/σt)
2 + φt+1.

Also note that if σ2
T = 1 as a normalizations, then fT /σT = 1.

Proposition 1 is an important result because it gives explicit expressions for the elements

of Π. Such expression are crucial from a computational point of view, especially if ft is

18This is in contrast to some of the recent panel data literature; see, e.g., Lee and Yu (2014).
19Further details and an explicit proof are given in the Supplementary Appendix D. While the claims of

the proposition are now easy to verify, the original derivation of explicit expressions for the elements of Π

posed a substantial challenge.
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estimated as an unobserved parameter of the model. Although we do not adopt this in the

following, for computational purposes it may furthermore be convenient to re-parameterize

the model in terms f
t

= ft/σt and σt in place of ft and σt. We note that for ft = 1 and σt = 1

we obtain as a special case the Helmert transformation with πtt =
√

(T − t)/(T − t+ 1)

and πts = −
√

(T − t)/(T − t+ 1)/(T − t) for s > t.

We also note that because Ff = 0 any transformation of the form Π(f, γ̄σ) = Ū−1F

with F Σ̄σF
′ = Ū Ū ′ and Σ̄σ = diag(γ̄σ) some positive diagonal matrix removes the in-

teractive effect. An important special case is the transformation with weights πts (f, 1T )

corresponding to Σ̄σ = IT .

In (17) the disturbance process was specified to depend only on a single factor for

simplicity. Now suppose that the disturbance process is generalized to Rt(ρ)εt = µ1f1
t +

. . . + µP fPt + ut where fpt denotes the p-th factor and µp the corresponding vector of

factor loadings. We note that multiple factors can be handled by recursively applying the

above generalized Helmert transformation, yielding a T − P × T transformation matrix

Π = ΠP . . .Π2Π1 where the matrices Πp are of dimension (T − p) × (T − p + 1), and

Π1ΣσΠ′1 = IT−1, ΠpΠ
′
p = IT−p for p > 1, and Πp(Πp−1...Π1f

p) = 0 with fp = [fp1 , . . . , f
p
T ]′.

Of course, this in turn implies that ΠΣσΠ′ = IT−P and Π[f1, . . . , fP ] = 0. The elements of

each of the Πp matrices have the same structure as those given in Proposition 1. A more

detailed discussion, including a discussion of a convenient normalization for the factors, is

given in the supplementary appendix.

C Appendix: Proofs

C.1 Martingale Difference Representation

Consider the sample moment vector mn = mn (θ0, γ0,σ, γ%) defined by (29), evaluated at

θ0, γ0,σ, but allowing for γ% 6= γ0,%. As discussed in the text, the reason for this is to accom-

modate both leading cases %2
i = %2

0,i and %2
i = 1. Observe from (28) that the subvectors of

mn are given by

mn,t(θ0, γ0,σ, γ%) = n−1/2
∑n

i=1 h
′
itu

+
∗it + n−1/2

∑n
i=1

∑n
j=1 a

′
ij,tu

+
∗itu

+
∗jt,

u+
∗it = u+

∗it(θ0, γ0,σ, γ%) =
∑T

s=t πts (f0, γ0,σ)uis/%i.
(40)
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To establish a martingale difference representation of mn = mn(θ0, γ0,σ, γ%) we define the

following sub-σ-fields of F (i = 1, . . . , n):

Fn,i = σ

({
xoj1, zj , µj

}n
j=1

, {uj1}i−1
j=1

)
∨ C,

Fn,n+i = σ

({
xoj2, zj , u

o
j1, µj

}n
j=1

, {uj2}i−1
j=1

)
∨ C,

...

Fn,(T−1)n+i = σ

({
xojT , zj , u

o
j,T−1, µj

}n
j=1

, {ujT }i−1
j=1

)
∨ C,

(41)

with Fn,0 = C. Let λ = (λ′1, . . . , λ
′
T−1)′ ∈ Rp be a fixed vector with λ′λ = 1. Us-

ing the Cramer-Wold device and utilizing (40) consider λ′mn = S1 + S2 with S1 =

n−1/2
∑n

i=1

∑T−1
t=1 λ′th

′
itu

+
∗it and S2 = n−1/2

∑n
i=1

∑T−1
t=1 λ′t

∑n
j=1 a

′
ij,tu

+
∗itu

+
∗jt where u+

∗it =

u+
it/%i = (%0,i/%i)

[
u+
it/%0,i

]
with u+

it/%0,i = u+
it(θ0, γ0,σ)/%0,i =

∑T
s=t πts (f0, γ0,σ) [uis/%0,i].

Since %0,i and %i satisfies the same measurability properties as hit and aij,t, and since

0 < c%u < %2
0,i, %

2
i < C%u <∞, we can w.o.l.o.g. set %0,i = %i = 1 and implicitly absorb these

terms into hit and aij,t. Then

S1 = n−1/2
∑n

i=1

∑T−1
t=1 λ′th

′
it

∑T
u=t πtuuiu =

∑T
t=1

∑n
i=1 cituit, (42)

with

cit =
∑t

s=1 λ
′
sh
′
isπst (43)

and where we set λT = 0. Note that cit only depends on his with s ≤ t and πst, and thus

is measurable w.r.t. Bn,t ∨ C. This implies that cit is measurable w.r.t. Fn,(t−1)n+i and

Bn,i,t ∨ C. Next, observe that

S2 =
∑T

t=1

∑n
i=1 2

(∑i−1
j=1 uitujtcij,tt +

∑t−1
s=1

∑n
j=1 uitujscij,ts

)
(44)

with

cij,ts =
∑s

τ=1 λ
′
τa
′
ij,τπτsπτt (45)

for s ≤ t. Observe that cij,ts = cji,ts and cij,10 = 0 per our convention on summation, and

that cij,ts only depends on aij,τ for τ ≤ s ≤ t. Thus cij,ts is measurable w.r.t. Bn,s∨C. This

implies that cij,ts is measurable w.r.t. Fn,(s−1)n+i and Bn,i,s ∨ C. By Equations (42) and

(44) it follows that λ′mn =
∑Tn+1

v=1 Xn,v with Xn,1 = 0 and, for t = 1, . . . , T, i = 1, . . . , n,

Xn,(t−1)n+i+1 = n−1/2uit

(
cit + 2

(∑i−1
j=1cij,ttujt +

∑n
j=1

∑t−1
s=1cij,tsujs

))
(46)

where λT = 0. Given the judicious construction of the random variables Xn,v and the infor-

mation sets Fn,v with v = (t−1)n+i+1 we see that Fn,v−1 ⊆ Fn,v, Xn,v is Fn,v-measurable,

33



and that E [Xn,v|Fn,v−1] = E
[
Xn,(t−1)n+i+1|Fn,(t−1)n+i

]
= 0 in light of Assumption 1 and

observing that Fn,(t−1)n+i ⊆ Bn,i,t∨C. This establishes that {Xn,v,Fn,v, 1 ≤ v ≤ Tn+ 1, n ≥ 1}
is a martingale difference array.20

C.2 Lemmas and Modules for Consistency

Lemma 1 Suppose Assumptions 1 - 3 hold with %2
0,i = %2

i = 1, and let cit and cij,ts be as

defined in (43) and (45) with πts = πts (f0, γ0,σ). Then the following bounds hold for some

constant K with 1 < K <∞
(i) E

[
|cit|2+δ

]
≤ K,

(ii)
∑n

i=1 |cij,ts| ≤ K,
(iii) for q ≥ 1,

∑n
i=1 |cij,ts|

q ≤ K,
(iv) for 1 ≤ q ≤ 2 + δ,

∑n
j=1 ‖cij,ts‖q ≤ K,

(v) for 1 ≤ q ≤ 2 + δ, E
[
|uit|q |Fn,(t−1)n+i

]
≤ K,

(vi) for s ≤ t, 1 ≤ q ≤ 2 + δ, E [
∑n

i=1 |uis|
q |cij,ts| |Bn,s ∨ C] ≤ K,

(vii) for s ≤ t, 1 ≤ q ≤ 2 + δ, E [(
∑n

i=1 |uis| |cij,ts|)
q |Bn,s ∨ C] ≤ K.

Proof. See Supplementary Appendix.

Lemma 2 Suppose Assumptions 1 - 3 hold with %2
0,i = %2

i = 1, and let cit and cij,ts be as

defined in (43) and (45) with πts = πts (f0, γ0,σ). Let ς
(1)
it = c2

it, ς
(2)
it = 4

(∑i−1
j=1 cij,ttujt

)2
,

ς
(3)
it = 4

(∑t−1
s=1

∑n
j=1 cij,tsujs

)2
, ς

(4)
it = 4cit

∑i−1
j=1 cij,ttujt, ς

(5)
it = 4cit

∑t−1
s=1

∑n
j=1 cij,tsujs

and ς
(6)
it = 8

∑i−1
j=1 cij,ttujt

∑t−1
s=1

∑n
l=1 cil,tsuls.

Define the limits

ς
(1)
t = plim

n→∞
n−1

n∑
i=1

E
[
c2
it|C
]
, ς

(2)
t = plim

n→∞
2σ2

0,tn
−1

n∑
i=1

n∑
j=1

E
[
c2
ij,tt|C

]
,

ς
(3)
t = plim

n→∞

t−1∑
s=1

4σ2
0,sn

−1
n∑
i=1

n∑
j=1

E
[
c2
ji,ts|C

]
.

Then for m = 1, 2, 3,

n−1
∑n

i=1 ς
(m)
it

p→ ς
(m)
t as n→∞.

Furthermore, n−1
∑n

i=1 ς
(4)
it

p→ 0, n−1
∑T

t=1 σ
2
0,t

∑n
i=1 ς

(5)
it → 0 and n−1

∑n
i=1 ς

(6)
it

p→ 0 as

n→∞.

20 As to potential alternative selections of the information sets, we note that defining Fn,(t−1)n+i =

Bn,i,t ∨ C yields information sets that are not adaptive, and defining Fn,(t−1)n+i = σ
{(
xoj1, zj , µj

)n
j=1

}
∨ C

would violate the condition that Xn,v is Fn,v-measurable.

34



Proof. See Supplementary Appendix.

The following proposition regarding the consistency of extremum estimators holds for

general criterion functionsRn : Ω×Θθ → R andR : Ω×Θθ → R, the finite sample objective

function and the corresponding “limiting” objective function, respectively. They include,

but are not limited to the particular specification ofRn andR for our GMM estimator given

above. The notation emphasizes that R is a random function. Furthermore θ̂n = θ̂n(ω)

and θ∗ = θ∗(ω) are the “minimizers” of Rn(ω, θ) and R(ω, θ), where both θ̂n and θ∗ are

implicitly assumed to be well defined random variables. For the following we also adopt the

convention that the variables in any sequence, that is claimed to converge in probability,

are measurable. We now have the following general module for proving consistency.

Proposition 2 (Consistency of Stochastic Minimizers) (i) Suppose that the minimizer

θ∗ = θ∗(ω) of R(ω, θ) is identifiably unique in the sense that for every ε > 0, inf{θ∈Θθ:|θ−θ∗|≥ε}R(ω, θ)−
R(ω, θ∗(ω)) > 0 a.s. (ii) Suppose furthermore that supθ∈Θθ

|Rn(ω, θ)−R(ω, θ)| → 0

a.s. [i.p.] as n → ∞. Then for any sequence θ̂n such that eventually Rn(ω, θ̂n(ω)) =

infθ∈Θθ
Rn(ω, θ) holds, we have θ̂n→ θ∗ a.s. [i.p.] as n→∞.

Proof of Proposition 2. An inspection of the proof of, e.g., Lemma 3.1 in Pötscher

and Prucha (1997) shows that the proof of the a.s. version of their Lemma 3.1 goes through

even if the “limiting” objective functions Rn and the minimizers βn are allowed to be

random, and the identifiable uniqueness assumption (3.1) is only assumed to holds a.s..

The convergence i.p. version of the proposition follows again from a standard subsequence

argument. Consequently Proposition 2 is seen to hold as a special case of the generalized

Lemma 3.1 in Pötscher and Prucha (1997).

We note that for the above proposition compactness of Θθ is not needed. The definition

of identifiable uniqueness adopted in the above proposition extends the notion of identifiable

uniqueness to stochastic limiting functions and stochastic minimizers. In case the limiting

objective function is non-stochastic it reduces to the usual definition of identification.

The next lemma will be useful for, e.g., establishing the consistency of variance co-

variance matrix estimators. We consider general (not necessarily criterion) functions Rn :

Ω×Θθ → R and R : Ω×Θθ → R.

Lemma 3 Suppose R(ω, θ) is a.s. uniformly continuous on Θθ, where Θθ is a subset of

Rpθ , suppose θ̂n and θ∗ are random vectors with θ̂n→ θ∗ a.s. [i.p.], and

sup
θ∈Θθ

|Rn(ω, θ)−R(ω, θ)| → 0 a.s.[i.p.] as n→∞, (47)
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then

Rn(ω, θ̂n)−R(ω, θ∗)→ 0 a.s.[i.p.] as n→∞. (48)

Proof. See Supplementary Appendix.

The next lemma is useful in establishing uniform convergence of the objective function

of the GMM estimator from uniform convergence of the sample moments. In the following

proposition mn : Ω × Θθ → Rm and m : Ω × Θθ → Rm should be viewed as the sample

moment vector and the corresponding “limiting” moment vector.

Lemma 4 Suppose Θθ is compact, m(ω, θ) ⊆ K ⊆ Rpm for all θ ∈ Θθ a.s. with K compact,

and

sup
θ∈Θθ

‖mn(ω, θ)−m(ω, θ)‖ → 0 a.s.[i.p.] as n→∞. (49)

Furthermore, let Ξn and Ξ be pm × pm real valued random matrices, and suppose that

Ξn − Ξ→ 0 a.s. [i.p.] where Ξ is finite a.s.. Then

sup
θ∈Θθ

∣∣mn(ω, θ)′Ξnmn(ω, θ)−m(ω, θ)′Ξm(ω, θ)
∣∣→ 0 a.s.[i.p.] as n→∞. (50)

Proof. See Supplementary Appendix.

Lemma 5 Suppose Assumptions 1- 5 hold, and let γ̄n
p→ γ̄∗ with γ̄n ∈ Θγ and γ̄∗ ∈ Θγ,

where γ̄∗ is C-measurable. Then

(i) m(θ) = plimn→∞ n
−1/2mn(θ, γ̄∗) exists for each θ ∈ Θθ,with m : Ω×Θθ → K where K

is a compact subset of Rp, m(θ) is C-measurable for each θ ∈ Θ.

(ii) G(θ) = plimn→∞ ∂n
−1/2mn(θ, γ∗)/∂θ exists and is finite for each θ ∈ Θθ, G(θ) is

C-measurable for each θ ∈ Θ, and G(θ) is uniformly continuous on Θθ.

Proof. See Supplementary Appendix.

C.3 Main Results

Proof of Proposition 1. Given the explicit expressions for the elements of Π the

claims of the proposition can be readily verified by straight forward calculations.21

21A constructive proof, which allowed us to find the explicit expressions for the elements of Π, is signifi-

cantly more involved and available on request.
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Proof of Theorem 1. The proof of the proposition uses methodology similar to that

used in establishing (54) below in the proof of Theorem 3. Explicit derivations are available

in the Supplementary Appendix.

Proof of Theorem 2. Rn (θ) = n−1mn(θ, γ̄n)′Ξ̃nmn(θ, γ̄n) and R (θ) = m(θ)′Ξm (θ).

We use Proposition 2 to prove the theorem. Under the maintained assumptions, θ∗ is

identifiable unique in the sense of Condition (i) of Proposition 2. This is seen to hold in

light of Condition (39) of Assumption 6, and by observing that R (θ∗) = m(θ∗)
′Ξm (θ∗) = 0

and

R(θ) = m(θ)′Ξm(θ) ≥ λmin (Ξ) ‖m(θ)‖2 ,

with λmin (Ξ) > 0 a.s. by Assumption 7. To verify Condition (ii) of Proposition 2 we employ

Lemma 4. By Lemma 5 we have m(θ) ∈ K, where K is compact, and m(θ) is C-measurable.

By Assumption 6 we have

sup
θ∈Θθ

∥∥∥n−1/2mn (θ, γ̄n)−m(θ)
∥∥∥ = op(1).

Furthermore, observe that by Assumptions 7 we have Ξ̃n− Ξ = op(1) where Ξ is C-
measurable and finite a.s. Having verified all assumptions of Lemma 4 it follows from

that Lemma that also Condition (ii) of Proposition 2, i.e.,

sup
θ∈Θθ

‖Rn (θ)−R (θ)‖ = op(1),

holds. Having verified both conditions of Proposition 2 it follows from that proposition

that θ̃n (γ̄n)− θ∗
p→ 0 and consequently θ̃n (γ̄n)− θn,0

p→ 0 as n→∞.

In the following we establish the limiting distribution of the sample moment vector

mn = mn (θ0, γ0,σ, γ%) defined by (29), evaluated at θ0, γ0,σ, but allowing for γ% 6= γ0,%. We

derive the limiting distribution of mn by utilizing the martingale difference representation

developed in Appendix C.1, and by applying the CLT of Kuersteiner and Prucha (2013,

Theorem 1).

Proposition 3 (CLT for Linear Quadratic Forms) Let the transformation matrix Π =

Π(f0, γ0,σ) be as defined in Proposition 1, and suppose Assumptions 1-3 hold with %2
i =

%2
i (γ%) and V% = diagT−1

t=1 (Vt,%) and Vt,% = V h
t,% + 2V a

t,%.

(i) Then

mn (θ0, γ0,σ, γ%)
d→ V 1/2

% ξ (C-stably), (51)

where ξ ∼ N (0, Ip), and ξ and C (and thus ξ and V%) are independent.

(ii) Let A be some p∗× p matrix that is C measurable with finite elements and rank p∗ a.s.,

then

Amn
d→ (AV%A

′)1/2ξ∗, (52)
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where ξ∗ ∼ N (0, Ip∗), and ξ∗ and C (and thus ξ∗ and AV%A
′) are independent.

Proof of Proposition 3. To derive the limiting distribution we apply the martingale

difference central limit theorem (MD-CLT) developed in Kuersteiner and Prucha (2013),

which is given as Theorem 1 in that paper. To apply the MD-CLT we verify that the

assumptions maintained by the theorem hold here. Observe that F0 =

∞⋂
n=1

Fn,0 = C and

Fn,0 ⊆ Fn,1 for each n and E [Xn,1|Fn,0] = 0 where Xn,v is defined in (46). In the proof of

Theorem 2 of Kuersteiner and Prucha (2013) it is shown that the following conditions are

sufficient for conditions (14)-(16) there, postulated by the MD-CLT, to hold:

kn∑
v=1

E
[
|Xn,v|2+δ

]
→ 0, (53)

V 2
nkn =

kn∑
v=1

E
[
X2
n,v|Fn,v−1

] p→ η2, (54)

sup
n
E
[
V 2+δ
nkn

]
= sup

n
E

( kn∑
v=1

E
[
X2
n,v|Fn,v−1

])1+δ/2
 <∞. (55)

with kn = Tn+1. In the following we verify (53)-(55) with η2 = vλ = λ′V λ, for any λ ∈ Rp

such that λ′λ = 1.

For the verification of Condition (53) let q = 2+δ, 1/q+1/p = 1 and v = (t−1)n+i+1.

Observe that using inequality (1.4.4) in Bierens (1994) we have

|Xn,v|q ≤
2q(T + 1)q

n1+δ/2
|uit|q

|cit|q +

 i−1∑
j=1

|cij,tt|1/p |cij,tt|1/q |ujt|

q

+

t−1∑
s=1

 n∑
j=1

|cij,ts|1/p |cij,ts|1/q |ujs|

q
such that by Hölder’s inequality

|Xn,v|q ≤
2q(T + 1)q

n1+δ/2
|uit|q

|cit|q +

 i−1∑
j=1

|cij,tt|

q/p
i−1∑
j=1

|cij,tt| |ujt|q

+

t−1∑
s=1

 n∑
j=1

|cij,ts|

q/p n∑
j=1

|cij,ts| |ujs|q

 .

Consequently, recalling from Section C.1 that cit and cij,ts are measurable w.r.t. Fn,(t−1)n+i
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it follows that

E [|Xn,v|q |Fn,v−1] ≤ 2q(T + 1)q

n1+δ/2
E
[
|uit|q |Fn,(t−1)n+i

]|cit|q +

 i−1∑
j=1

|cij,tt|

q/p
i−1∑
j=1

|cij,tt| |ujt|q

+

t−1∑
s=1

 n∑
j=1

|cij,ts|

q/p n∑
j=1

|cij,ts| |ujs|q



≤ 2q(T + 1)q

n1+δ/2
K

|cit|q +Kq/p
t∑

s=1

 n∑
j=1

|cij,ts| |ujs|q


where we have used bounds in Lemma 1(ii),(v) to establish the last inequality. Employing

Lemma 1(i) and (vi) we have

E [|Xn,v|q] = E [E [|Xn,v|q |Fn,v−1]]

≤ 2q(T + 1)q

n1+δ/2
K

E [|cit|q] +Kq/p
t∑

s=1

 n∑
j=1

E [|cij,ts| |ujs|q]


≤ 2q(T + 1)q

n1+δ/2
K
(
K + TKq/p+1

)
.

Consequently, recalling that kn = Tn+ 1,

kn∑
v=1

E
[
|Xn,v|2+δ

]
≤

kn∑
v=1

E
[
E
[
|Xn,v|2+δ |Fn,v−1

]]
≤ 22+δ(T + 1)3+δK2

nδ/2

(
1 + TK1+δ

)
→ 0,

which verifies condition (53).

To verify (54) with η2 = vλ = λ′V λ we first calculate

E
[
X2
n,v|Fn,v−1

]
= E

[
X2
n,(t−1)n+i+1|Fn,(t−1)n+i

]
.

Recall from Section C.1 that the %2
0,i and %i are absorbed into hit and aij,t, and thus by

Assumption 1 we have E
[
u2
it|Fn,(t−1)n+i

]
= σ2

0,t. Furthermore, recalling that cit and cij,ts

are measurable w.r.t. Fn,(t−1)n+i.we have

E
[
X2
n,v|Fn,v−1

]
= E

[
X2
n,(t−1)n+i+1|Fn,(t−1)n+i

]
= n−1σ2

0,t

cit + 2
i−1∑
j=1

cij,ttujt + 2
t−1∑
s=1

n∑
j=1

cij,tsujs

2

= σ2
0,tn
−1

6∑
m=1

ς
(m)
it
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where the ς
(m)
it are defined in Lemma 2. Thus

V 2
nkn =

kn∑
v=1

E
[
X2
n,v|Fn,v−1

]
=

6∑
m=1

T∑
t=1

σ2
0,tn
−1

n∑
i=1

ς
(m)
it . (56)

Given the probability limits of n−1
∑n

i=1 ς
(m)
it , for m = 1, . . . , 6 derived in Lemma 2 we have

V 2
nkn =

kn∑
v=1

E
[
X2
n,v|Fn,v−1

]
=

6∑
m=1

T∑
t=1

σ2
0,tn
−1

n∑
i=1

ς
(m)
it

p→ η2
∗

with

η2
∗ =

T∑
t=1

σ2
0,t

(
ς

(1)
t + ς

(2)
t + ς

(3)
t

)
= plim

n→∞

(
T∑
t=1

σ2
0,tn
−1

n∑
i=1

E
[
c2
it|C
])

+ plim
n→∞

2
T∑
t=1

σ4
0,tn
−1

n∑
i=1

n∑
j=1

E
[
c2
ij,tt|C

]
+ 4

T∑
t=1

σ2
0,t

t−1∑
s=1

σ2
0,sn

−1
n∑
i=1

n∑
j=1

E
[
c2
ji,ts|C

] .

Recall that for t = 1, . . . , T we have cit =
∑t

τ=1 λ
′
τh
′
iτπτt =

∑T−1
τ=1 λ

′
τh
′
iτπτt where the last

equality holds since πτt = 0 for τ > t. Thus

T∑
u=1

σ2
0,u

n∑
i=1

c2
iu =

T∑
u=1

σ2
0,u

n∑
i=1

T−1∑
t=1

λ′th
′
itπtu

T−1∑
τ=1

λ′τh
′
iτπτu

=

n∑
i=1

T−1∑
t=1

T−1∑
τ=1

λ′th
′
itλ
′
τh
′
iτ

(
πtΣ0,σπ

′
τ

)
=

n∑
i=1

T−1∑
t=1

λ′th
′
itλ
′
τhitλt

observing that πtΣ0,σπ
′
τ =

∑T
u=1 σ

2
0,uπtuπτu and ΠΣ0,σΠ′ = IT−1.

Recall further that for t = 1, . . . , T , s ≤ t, we have cij,ts =
∑s

τ=1 λ
′
τa
′
ij,τπτsπτt =∑T−1

τ=1 λ
′
τa
′
ij,τπτsπτt where the last equality holds since πτs = 0 for τ > s. Thus, by straight

forward algebra,

2

T∑
t=1

σ4
0,t

n∑
i,j=1

c2
ij,tt + 4

T∑
t=1

σ2
0,t

t−1∑
s=1

σ2
0,s

n∑
i,j=1

c2
ji,ts = 2

T∑
t,s=1

σ2
0,tσ

2
0,s

n∑
i,j=1

c2
ji,ts

= 2

T−1∑
t,s=1

n∑
i,j=1

λ′ta
′
ij,tλ

′
sa
′
ij,s

(
πtΣ0,σπ

′
s

)2
= 2

T−1∑
t=1

n∑
i,j=1

λ′ta
′
ij,taij,tλt,

observing again that ΠΣ0,σΠ′ = IT−1. From this we see that

η2
∗ = plim

n→∞

T−1∑
t=1

λ′t

n−1
n∑
i=1

E
[
h′ithit|C

]
+ 2n−1

n∑
i,j=1

E
[
a′ij,taij,t|C

]λt

=

T−1∑
t=1

λ′t

[
V h
t + 2V a

t

]
λt = λ′V λ,
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which establishes that indeed V 2
nkn

p→ η2 = λ′V λ.

Finally, we verify Condition (55). Analogously as in the verification of Condition (53)

observe that using the triangle inequality

|Xn,v|2 ≤
4(T + 1)2

n
|uit|2

|cit|2 +

 i−1∑
j=1

|cij,tt|1/2 |cij,tt|1/2 |ujt|

2

+
t−1∑
s=1

 n∑
j=1

|cij,ts|1/2 |cij,ts|1/2 |ujs|

2
and by subsequently applying Hölder’s inequality we have

|Xn,v|2 ≤
4(T + 1)2

n
|uit|2

|cit|2 +

 i−1∑
j=1

|cij,tt|

 i−1∑
j=1

|cij,tt| |ujt|2

+

t−1∑
s=1

 n∑
j=1

|cij,ts|

 n∑
j=1

|cij,ts| |ujs|2
 .

Consequently in light of Lemma 1 (ii) and (v)

E
[
|Xn,v|2 |Fn,v−1

]
≤ 4(T + 1)2

n
E
[
|uit|2 |Fn,(t−1)n+i

]|cit|2 +K

i−1∑
j=1

|cij,tt| |ujt|2

+K
t−1∑
s=1

n∑
j=1

|cij,ts| |ujs|2


≤ 4(T + 1)2K2

n

|cit|2 +
i−1∑
j=1

|cij,tt| |ujt|2 +
t−1∑
s=1

n∑
j=1

|cij,ts| |ujs|2
 .

In light of the above inequality

E
[
V 2+δ
nkn

]
= E

( kn∑
v=1

E
[
X2
n,v|Fn,v−1

])1+δ/2


≤ 22+δ(T + 1)2+δK2+δ

n1+δ/2
E




kn∑
v=1

|cit|2 +

i−1∑
j=1

|cij,tt| |ujt|2 +

t−1∑
s=1

n∑
j=1

|cij,ts| |ujs|2


1+δ/2

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such that

E
[
V 2+δ
nkn

]
≤ 22+δ(T + 1)2+δK2+δk

δ/2
n

n1+δ/2

kn∑
v=1

E


|cit|2 +

i−1∑
j=1

|cij,tt| |ujt|2 +
t−1∑
s=1

n∑
j=1

|cij,ts| |ujs|2
1+δ/2


≤ 3δ/222+δ(T + 1)2+δK2+δk

δ/2
n

n1+δ/2

kn∑
v=1

E
[
|cit|2+δ

]
+ E


 i−1∑
j=1

|cij,tt| |ujt|2
1+δ/2


+T δ/2

t−1∑
s=1

E


 n∑
j=1

|cij,ts| |ujs|2
1+δ/2




where we have used repeatedly inequality (1.4.3) in Bierens(1994). By Lemma 1 (i) we

have E
[
|cit|2+δ

]
≤ K. Applying Hölder’s inequality with q = 1 + δ/2 and 1/p + 1/q = 1,

and utilizing Lemma 1 (ii)-(vi) we have:

E


 n∑
j=1

|cij,ts| |ujs|2
1+δ/2

 = E


 n∑
j=1

|cij,ts|1/p |cij,ts|1/q |ujs|2
1+δ/2


≤ E


 n∑
j=1

|cij,ts|

q/p n∑
j=1

|cij,ts| |ujs|2+δ


 ≤ Kq/p

n∑
j=1

E
[
|cij,ts| |ujs|2+δ

]
≤ K1+q/p

and by the same arguments E

[(∑i−1
j=1 |cij,tt| |ujt|

2
)1+δ/2

]
≤ K1+q/p. Consequently, ob-

serving that q/p = δ/2 and kn/n ≤ T + 1,

E
[
V 2+δ
nkn

]
≤ 3δ/222+δ(T + 1)2+δK2+δk

δ/2
n 3T 1+δ/2knK

1+δ/2

n1+δ/2

≤ 31+δ/222+δ(T + 1)4+2δK3+3δ/2 <∞

which verifies condition (55). Consequently it follows from Kuersteiner and Prucha (2013,

Theorem 1) that λ′mn =
∑Tn+1

v=1 Xn,v
d→ ηξ0 (C-stably), where ξ0 and C are independent.

Applying the Cramer-Wold device - see, e.g., Kuersteiner and Prucha (2013, Proposition

A.2) it follows further that mn
d→ V 1/2ξ (C-stably) where ξ ∼ N(0, Ip) and ξ and C are

independent.

Recall that in establishing the martingale difference representation of λ′mn we have

absorbed %0,i/%i into hit and aijt. The expression for V% given in Assumption 3 is obtained

upon reversing this absorption.

Proof of Theorem 3. The proof follows from standard arguments. Details are given

in the Supplementary Appendix.
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Proof of Theorem 4. As remarked in the text, Ṽ −1
n

p→ V −1 with V −1 being C-
measurable with a.s. finite elements, and with V −1 positive definite a.s. Furthermore, as

established in the proof of Theorem 3, Gn(θ̂n, γ̃n)
p→ G where G is C-measurable with a.s.

finite elements, and with full column rank a.s. Thus Ψ̂n =
(
Gn(θ̂n, γ̃n)′Ṽ −1

n Gn(θ̂n, γ̃n)
)−1 p→

Ψ = (G′V −1G)−1. It now follows from part (i) of Theorem 3 that

n1/2(θ̂n − θn,0)
d→ Ψ1/2ξ∗, (57)

where ξ∗ is independent of C (and hence of Ψ), ξ ∼ N(0, Ipθ). In light of (57), the consistency

of Ψ̂n, and given that R has full row rank q it follows furthermore that under H0(
RΨ̂R′

)−1/2
n1/2(Rθ̂n − r) =

(
RΨ̂R′

)−1/2
R
(
n1/2(θ̂n − θn,0)

)
=
(
RΨR′

)−1/2
R
(
n1/2(θ̂n − θn,0)

)
+ op(1).

Since B = (RΨR′)−1/2R is C-measurable and BΨB = I it then follows from part (ii) of

Theorem 3 that (
RΨ̂R′

)−1/2
n1/2(Rθ̂n − r)

d→ ξ∗∗ (58)

where ξ∗∗ ∼ N (0, Iq). Hence, in light of the continuous mapping theorem, Tn converges

in distribution to a chi-square random variable with q degrees of freedom. The claim that

Ψ̂
−1/2
n
√
n(θ̂n− θn,0)

d→ ξ∗ is seen to hold as a special case of (58) with R = I and r = θ0.
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