Lecture 1

This is going to Cost You or

 TANSTAAFL.
Lecture Outline

\&In making good decisions, it is generally important to understand the benefits and costs of the consequences.
\mathscr{A} Generally, the benefits are clear, the costs less so.
\mathscr{H} The goal of this lecture is to highlight some important notions of costs that help to inform optimal decision-making

Costs or Benefits?

\&Actually, it is not always clear what is the difference between a cost and a benefit.
\&For example, one possible benefit of going to grad school is avoiding (the cost of) having to pay off student loans immediately.
\mathscr{H} A "cost" of going to grad school is losing the benefits of a working salary.

Costs vs. Benefits

Calling the positive consequences of a decision benefits then is often just a convention.
\mathscr{H} The various notions of costs we examine also, therefore, have obvious parallels in terms of benefits as well.

Outline: The Various Concepts of Costs.

Opportunity Cost:

There ain't no such thing as a free lunch.
(TANSTAAFL)
${ }_{\&}$ Fixed Cost and Variable Cost
\& Marginal Cost
\& Sunk costs
Hhe Sunk Cost Fallacy

Opportunity Cost

\&Economists and other decision theorists have developed the idea of opportunity cost because, at times, people tend to overlook important sources of costs.
BThe correct measure of the cost of a decision, is what must be given up as the next best alternative to the decision.

Opportunity Cost: Example

\&You have all made the decision to go to university.
\&What are some examples of the cost you bore to go to UMD?

Explicit versus Implicit Costs

\mathscr{H} One reason that the notion of opportunity cost has been developed is because of the tendency to focus primarily on explicit versus implicit costs When you have to pay someone for something, the cost is fairly obvious. However, even when something does not have a price, that does not mean it is free.
TANSTAAFL

Example

\& Suppose two cities are considering building a hospital.
©the hospital site requires 10 acres of land plus $\$ 100$ million to construct
\mathscr{H} One city has ten acres acquired for nonpayment of taxes.
\mathscr{H} The other city has to purchase the land.
\mathscr{H} For which city is the hospital going to be cheaper to build?

Example

\&Recently, Baltic herring were discovered to contain dioxin, a toxic chemical
\&The Finnish government decided, nevertheless, not to ban capture and sale of the fish. Was this a callous decision?

TANSTAAFL

\&ls there really no such thing as a free lunch?
What about Free Trade? Isn't that an example of something for nothing?

Fixed Costs and Variable Costs

\&In a standard economics course, we often break down the costs of a firm into two parts: fixed and variable.
Consider a decision scenario that includes deciding how much of an action to take.
\triangle For example, when you go to university you might decide how many courses to take.
When you go to a nightclub you might decide how much to drink.

Fixed Costs and Variable Costs

\mathscr{H} Fixed costs refer to costs that do not change with the amount you decide on.
Variable costs vary with this amount.
\triangle When you go to university, you will have to pay room and board no matter how many courses you take -therefore, FC .
\triangle The more courses you sign up for, the higher your tuition, therefore, VC.
\triangle The cover charge at a club is independent of the number of drinks -- therefore, FC. Unless..
\triangle The amount you spend rises with the number of drinks. Therefore, VC.

Fixed versus Variable Costs

Both concepts are important.
In a sense, FC, factor in at crude, big picture decision problems (should you go to a club? Should you go to University?)
VC factor in at the incremental decision problems, (should you have another drink?) However, since ultimately, you will incur VCs as well, they also must be factored in for the BIG Picture decisions as well.

Marginal Costs: A Mathematical Interlude

\& For mathematical minds:
\not Suppose that amount of the decision is Q. The cost of choosing Q is $\mathrm{c}(\mathrm{Q})$.
The Marginal cost is the cost of one extra unit of Q.

Mathematically, it is the derivative of $\mathrm{c}(\mathrm{Q})$ (or formally, $\mathrm{MC}(\mathrm{Q})=\mathrm{d} \mathrm{c}(\mathrm{Q}) / \mathrm{dQ}$.
\triangle Example: A drink costs $\$ 6$. Q drinks cost $\mathrm{c}(\mathrm{Q})=6 \mathrm{Q}$.
\triangle the marginal cost of another drink is $\mathrm{dc} / \mathrm{dQ}=6$.

Fixed Costs: Avoidable or Not?

Certain fixed costs are avoidable. Others cannot be avoided no matter what decision you take.
\&For decisions, generally it makes sense that only the avoidable fixed costs should be factored in.
After all, if you incur a cost no matter what you decide, why should it matter?

Fixed Costs: Avoidable or Not?

$\not \&$ For Toyota, increasing production of Prius by 100,000 a year could well involve building a new factory including the facility cost of, say, $\$ 100 \mathrm{M}$.
\& If T builds the plant, it will pay $\$ 100 \mathrm{M}$ whether it produces 100 K cars or 150 K cars, so the \$100M is a FC.
However, it could decide NOT to build the plant. So the $\$ 100 \mathrm{M}$ is at an early phase, at least, an avoidable FC.

Fixed Costs: Avoidable or Not?

\&Part of your cost of living at university is the cost of your clothes.
\&However, whether or not you go to university, you still need to buy clother (unless the alternative is a nudist colony)
Therefore, even though clothing costs are significant, they are not avoidable.

Sunk Costs

\mathscr{H} Sunk costs are unavoidable fixed costs.
${ }^{\circ}$ That is, no matter what you decide, you will incur the costs anyway.

Sunk Costs: Should they matter?

The standard answer is that, for any costs that are SUNK, since you will have to pay them no matter what you decide, they should not factor in your decision.
"Bygones are bygones."
http://www.visionarytools.com/decision-making/sunk-cost-dilemma.htm

Examples

Suppose you have just bought 2 tickets to a concert, \$100 each.
\mathscr{L} It is your favorite band. But, the afternoon before the concert, you come down with the worst case of swine flu ever.
There is no way you could enjoy the music.
BUT, you just spent \$200 on tickets...
Should you go?

Examples

\mathscr{H} You are carefully watching your weight.
\&You have gone with your parents to an expensive restaurant and, inadvertently, find that the $280 z$ steak was a bit more than you expected.
\&Your father says, "that steak cost \$53, you better eat it!"
How should you respond?

Why do people still use them in their decisions?

\mathscr{H} Are they really sunk?
\& Probability bias
\& Loss aversion.
\& Cognitive dissonance.

