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Abstract

When a single-object is to be traded, Bayesian and dominant-strategy in-

centive compatible mechanisms are interim-utility equivalent in independent,

private-values environments; in the same environments, the equivalence breaks

down when there are many distinct, indivisible objects to trade. We show that

the fixed supply of each type of good imposes strong restrictions on the mecha-

nisms that can be implemented. These restrictions can then be used to determine

whether a given Bayesian mechanism has an equivalent dominant strategy mech-

anism in a multi-unit model.
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1 Introduction

Consider the assignment of L distinct and indivisible objects to I agents in a multi-

dimensional version of the standard, symmetric, independent private-values model:

Each agent observes, as private information, an L-dimensional vector representing the

agent’s monetary valuations for the various objects. Agents’ valuation for any set of

objects is the sum of the valuations of each object in the set. Valuation vectors are

independent and identically distributed across agents. Money enters utility functions

linearly and agents are risk neutral. Within this environment, we investigate when

a given Bayesian incentive compatible mechanisms (BIC) has an equivalent dominant

strategy incentive compatible (DSIC) mechanism.

We employ a notion of equivalence based on payoffs, not on allocations. Two

mechanisms are equivalent if each agent receives the same interim utility in both

mechanisms—i.e. the agent receives the same expected payoff given the agent’s true

valuation and assuming by way of equilibrium analysis that opponents report their val-

uations truthfully. (We introduced this notion of equivalence to trading mechanisms

in Manelli and Vincent (2010)). Thus, two mechanisms that implement different allo-

cations may still be equivalent provided that they both grant the same payoffs to all

involved.

When there is a single object (L = 1), for any BIC mechanism there is a DSIC

mechanism that gives each agent the same expected payoff that the agent obtained in

the Bayesian mechanism (Manelli and Vincent (2010)). Thus, there is a priori no loss

in requiring dominant-strategy incentive compatibility over Bayesian incentive compat-

ibility. An example in Gershkov et al. (2013) shows that equivalence fails when there

are multiple objects (L > 1). The questions then arise: When are BIC mechanisms

also DSIC and what, in general, is the relationship between BIC mechanisms and DSIC

mechanisms when there are multiple goods to allocate?

We focus on finite Bayesian mechanisms – i.e. mechanisms in which agent types

pool into finitely many sets such that each agent within a set receives the same expected

probabilities of trade and makes the same expected payment. The interim equilibrium

utility of agents in finite BIC mechanisms is a piecewise linear function: the domain

of each linear component corresponds to a set of pooling types. Theorem 3 demon-

strates that, for any finite BIC mechanism, there is a direct mechanism that generates

it which is linear over the same subsets – that is, Bayesian mechanisms which pool

agents in terms of expected outcomes can always be generated by direct mechanisms

that pool agents in terms of ex post outcomes. This fact is valuable because in as-
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sessing whether a finite BIC mechanism has a DSIC equivalent we will only need to

search within finite DSIC mechanisms. Theorem 4 characterizes the interim utilities

from finite BIC mechanisms using the feasibility inequalities in Border (1991) and the

incentive compatibility property of Rochet (1985). Theorem 5 identifies necessary con-

ditions, implied by the feasibility inequalities, that any finite mechanism must satisfy.

A DSIC mechanism that implements a candidate BIC mechanism must satisfy these

conditions and ex post incentive compatibility. We demonstrate that some candidate

BIC mechanisms cannot be implemented in dominant strategies by showing that the

two criteria are inconsistent (see the examples in Section 6 and 8). In certain cases

the conditions allow us to construct the ‘closest’ dominant-strategy implementable

mechanism. In other cases, the conditions are strong enough to demonstrate when a

candidate Bayesian mechanism can be implemented as a dominant-strategy incentive

compatible mechanism by explicitly constructing the unique mechanism that generates

it and then showing that the resulting mechanism is DSIC (Section 7).

Identifying when the BIC-DSIC equivalence holds is valuable. Dominant-strategy

mechanisms have advantages over Bayesian mechanisms. For instance, one may be

more confident that a rational agent will play a dominant strategy (if one is available)

than that the same agent will play a Nash equilibrium strategy.1

While the equivalence or lack thereof between BIC and DSIC mechanisms has a

long history, equivalence was defined, for much of that history, in terms of allocation: A

DSIC mechanism is equivalent to a BIC mechanism if it implements the same allocation.

(See, for instance, Mookherjee, D. and S. Reichelstein (1992), and Williams (1999).)

In the trading environment that we study, allocative equivalence means that the same

probability-of-trade function—that is to say, the probability with which goods are

allocated to each agent given the reports made—can be obtained by Bayesian and

dominant-strategy mechanisms that only differ on their transfer functions. This is a

stronger notion of equivalence than the one we use.

The equivalence between BIC and DSIC mechanisms in single-object environments

is robust in various ways and fails to be robust in others. First, it holds for any

mechanism—not just the efficient mechanism or the revenue maximizing one as it is

the case with the first price auction and its equivalent second price auction.2 Second,

1See Mas-Colell, Whinston, and Green (1995), page 870, for a brief discussion of this point.
2An extensive literature, including d’Aspremont and Gérard-Varet (1979b), Laffont and Maskin

(1979), Makowski and Mezzetti (1994), and Williams (1999), shows in various cases that if an ex

post efficient allocation is implemented by a Bayesian incentive-compatible mechanism, then it can

also be implemented by a dominant-strategy mechanism. Williams (1999) obtains an equivalence for

quasilinear utilities and provides interesting applications, a lucid discussion, and a summary of the
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the equivalence holds even with heterogeneous agents and nonsymmetric mechanisms.

In particular, it holds when the seller is also privately informed (Manelli and Vin-

cent (2010).) Third, the equivalence has been extended to an independent private

values model with finitely competing outcomes (Gershkov et. al. (2013)) and to some

instances with non-linear utilities by Kushnir and Liu (2018).

The one-dimensional equivalence fails outside the model described. Gershkov et al.

(2013) illustrate this failure in various examples. One of them, with two homogeneous

goods and discrete types, shows that the revenue optimal BIC mechanism differs from

the revenue optimal DSIC mechanism. An example in Crémer and McLean (1988, Ap-

pendix A) provides an example of equivalence failure with interdependent valuations.

We provide examples of the failure of equivalence when L > 1 that illustrate the extent

of the problem.3

Multi-dimensional mechanism design problems are notoriously complex. Our ap-

proach focuses on finite mechanisms and combines two separate strands of the im-

plementation literature. For the one good case, Matthews (1984) and Border (1991)

characterize the functions that are the expected probability of trade for some mecha-

nism. Maskin and Riley (1984) prove, constructively, a variation of Border’s character-

ization for a particular case. Border (2007) extends his own result to nonsymmetric,

one-dimensional environments. These results effectively demonstrate when a candidate

mechanism is feasible in the sense that it obeys the resource constraint that no more

than one object be allocated.

Separately, Rochet (1985) provides necessary and sufficient conditions for incentive

compatibility in the case of multi-dimensional buyer types. In brief, the condition

requires the convexity of the implied interim utility function for each agent. Combining

this result with an adaptation of the above feasibility results allows us to characterize

BIC mechanisms in our environment. We then exploit the interaction of convexity

constraints with the feasibility constraints to generate our main results concerning the

relationship between BIC and DSIC mechanisms.

2 Notation

The vector of all ones in a Euclidean space is denoted by 1, the zero vector is 0. Given

any vector x, xi denotes its ith component, x−i is obtained by removing xi from x,

and (y, x−i) is constructed by replacing xi with y in x. If n ∈ NK , ‖n‖ =
∑K

i=1 ni.

literature.
3Other related examples can be found in Jehiel, Moldovanu, and Stacchetti (1998).
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The function 1C is the indicator function that takes the value 1 if condition C is true,

otherwise it is 0.

If A is a set, Ac is its complement, Ao is its interior, and |A| is the number of

elements in A.

For any real-valued function u on [0, 1]L, ∇u(x) in RL denotes its gradient (when

it exists) at x. The `th component of ∇u(x) is denoted by ∇`u(x). For any real-valued

function v on ×Ii=1[0, 1]L, ∇xiv(x) in RL denotes the gradient of v (when it exists) with

respect to the vector xi evaluated at x.

We assume sets and functions are measurable with respect to the corresponding

Borel σ-algebras and product spaces are endowed with the product σ-algebras. The

integral of a vector-valued function is the vector of the integrals component wise.

3 Model

There are L indivisible objects to allocate to I agents, labelled by ` = 1, . . . , L and i =

1, . . . , I respectively. Each agent i observes privately the realization of a random vector

xi ∈ X = [0, 1]L. The L-dimensional vector xi is interpreted as agent i’s valuations

for the L objects. The restriction of X to be the unit L-cube is a normalization. The

random vectors xi, i = 1, . . . , I, are independent and identically distributed, each xi

according to the distribution λ. The distribution λ has full support in X and admits

a density function. The product distribution with I factors is denoted by λI .

Agent i’s preferences over consumption and money transfers are represented by the

real-valued function xi · q − t where q is the L-vector of quantities consumed of each

good, and t ∈ R is a monetary transfer from the agent to the mechanism designer. All

agents are risk neutral.

Definition 1 (Direct mechanism). A direct mechanism is a pair of functions per bidder

i, qi : XI → [0, 1]L and ti : XI → R such that

I∑
i=1

qi(x) ≤ 1. (1)

Bidder 1’s expected probabilities of trade when her report is x1 and all other bidders

report truthfully is Q(x1) = Ex−1q(x1, x−1).

We use permutations to define symmetric anonymous mechanisms and to exploit

their properties.
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Definition 2 (Permutation). A permutation π is a bijection from {1, . . . , I} to itself.

Given y = (y1, . . . , yI), yπ denotes the Ith-tuple (yπ(1), . . . , yπ(I)). The symbol πi

denotes the permutation in which πi(1) = i, πi(i) = 1 and ∀j, 1 6= j 6= i, πi(j) = j.

Definition 3 (Symmetric mechanism). A direct mechanism {qi, ti}Ii=1 is symmetric if

∀i, qi(x) = q1(xπ
i) and ti = t1(xπ

i).

Definition 4 (Anonymous mechanism). A mechanism q is anonymous if for every

permutation π with π(1) = 1, q(x) = q(xπ).

An anonymous symmetric mechanism is described by a single pair of functions,

the probability of trade and transfer functions (qi, ti) associated with bidder i = 1.

Henceforth all mechanisms are anonymous and symmetric. We drop the subindex

i = 1 and denote the mechanism by (q, t).

Definition 5 (Incentive compatible mechanism). The mechanism (q, t) is dominant-

strategy incentive compatible (DSIC) if

∀x1, x′1 ∈ X, x−1 ∈ XI−1, q(x1, x−1) ·x1− t(x1, x−1) ≥ q(x′1, x−1) ·x1− t(x′1, x−1). (2)

It is Bayesian incentive-compatible (BIC) if 4

∀x1, x′1 ∈ X,
∫
XI−1

[
q(x1, x−1) · x1 − t(x1, x−1)

]
λI−1(dx−1) ≥∫

XI−1

[
q(x′1, x−1) · x1 − t(x′1, x−1)

]
λI−1(dx−1). (3)

Definition 6. Given a mechanism (q, t), define the real-valued functions

v(x1, x−1) = q(x1, x−1) · x1 − t(x1, x−1)

u(x1) =

∫
XI−1

v(x1, x−1)λ
I−1(dx−1)

.

If (q, t) is DSIC, then v is the agent’s ex post utility function. If (q, t) is BIC then u is

the agent’s interim utility function.

A typical mechanism problem involves the selection of a function q—satisfying

the resource constraint (1), BIC (3) or DSIC (2), and interim individual rationality

(u(x1) ≥ 0)—to maximize a given objective function.

Essentially, a mechanism is DSIC if and only if its ex post utility v(x1, x−1) is convex

in x1 for any profile x−1. Furthermore, the gradient ∇x1v is the probabilities-of-trade

4The definition of BIC mechanism is often stated for almost all x1 and for all x′1. This distinction

is not important in what follows.

6



function q. See for instance Myerson (1981) for the single-good, many-buyers case;

and Rochet (1985), Theorem 1, for the many-goods, single-buyer case. A mechanism

is feasible if it allocates no more than one object of each type for any type profile.

Anonymous DSIC mechanisms then are characterized by the following theorem.

Theorem 1 (Rochet). A measurable function v : X ×XI−1 → R is the ex post utility

of a DSIC, symmetric, anonymous mechanism if and only if

(a) ∀x−1, v(x1, x−1) is convex in x1. Its gradient, ∇x1v(x), is defined almost every-

where and is agent 1’s probability of trade (DSIC).

(b)
∑I

i=1∇x1v(xπi) ≤ 1 (Resource constraint).

(c) ∇x1v(x) = ∇x1v(xπ) for every permutation π with π(1) = 1 (Anonymity).

The proof follows directly from the characterization of incentive compatibility, see

for instance, Theorem 1 and its proof in Rochet (1985).

Similarly, a mechanism, (q, t), is BIC if and only if q satisfies (1), its interim utility

u is convex and its gradient ∇u is the expected probabilities-of-trade function, Ex−1q.

Remark. Let (q, t) be a BIC mechanism with interim utility u. We will use the fol-

lowing notation interchangeably, Q ≡ Ex−1q = ∇u where the equation follows from

the characterization of incentive compatibility. If (q, t) is DSIC with ex post utility

v, then in addition, q(x1, x−1) = ∇x1v(x1, x−1). In incentive compatible mechanisms,

transfers—or expected transfers if only BIC is required – are determined up to a con-

stant by the probability of trade function. See for instance Williams (1999). Thus,

we often refer to v or q as a mechanism without mentioning explicitly the transfer

function. Similarly, in considering BIC mechanisms, we will variously describe them

in terms of the interim equilibrium utilities they generate, u, or their corresponding

expected probabilities of trade, Q.

To determine the feasibility of a candidate BIC mechanism, Matthews (1984) and

Border (1991) characterize the expected probability of trade functions Q that can be

obtained from a mechanism q with I bidders. This amounts to representing the resource

constraint (1) in terms of Q. Combining both characterizations, if a function u(x1) is

convex, its gradient ∇u is the only candidate for expected probabilities of trade Q. If

∇u = Q satisfies the Matthews and Border representation of the resource constraint,

then u is the interim utility of a mechanism—that is to say there is q that satisfies (1)

and (3) and whose interim utility is u. Theorem 2 makes the argument precise.

Theorem 2 (Matthews-Border-Rochet). Let u : X → R+. The function u is the

interim utility of a BIC mechanism with I bidders if and only if u is convex, ∀x1 ∈
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X,∇u(x1) ∈ [0, 1]N , a.e. and

∀A ⊂ X, I

∫
A

∇u(x1) dλ ≤ [1− [λ(Ac)]I ]1. (4)

Theorems 1 and 2 together yield a program for determining when a given BIC mech-

anism can be implemented in dominant strategies. For a candidate Bayesian mecha-

nism, represented by its interim utility function, u, Theorem 2 determines whether or

not it is Bayesian incentive compatible. The mechanism u is also DSIC if and only if

there exists a function v : X×XI−1 → R+ satisfying the conditions of Theorem 1 such

that for all x1 ∈ X, u(x1) = Ex−1v(x1, x−1).

4 Finite Mechanisms

Finite mechanisms and their corresponding piecewise linear utility functions play an

important role in our results. This is so partly because the interplay of convexity and

linearity adds structure to the problem. In addition, the restriction to piecewise linear

mechanisms reduces the number of feasibility conditions required by Theorem 2. In

classic indirect mechanisms for single object problems such as first and second price

auctions, finite mechanisms arise from plausible constraints on the bidding space such

as that bidders can only select from a finite number of bids. An equilibrium consequence

is that bidders pool into a finite collection of groups in which all members of a group

obtain the same expected probability of trade (and make the same expected payment).

We incorporate a similar feature in the multi-dimensional case by restricting attention

to direct mechanisms where, in equilibrium, bidders separate into a finite number of

subsets of their type space and members within the same subset all have the same

expected probability of acquiring the available objects.

Definition 7 (Finite mechanism). A mechanism q is finite if there is a finite partition

P of X such that ∀B ∈ PI , ∀x, x′ ∈ Bo, q(x) = q(x′). We say q is finite with partition

P . The function Q = Ex−1q is finite if ∀Ak ∈ P , ∀x1, x′1 ∈ Aok, Q(x1) = Q(x′1).

Throughout, we restrict attention to partitions with elements only of strictly posi-

tive λ-measure. Thus, all elements possess non-empty interiors. Given our assumption

that λ possesses a density, the behavior of either q or Q on the boundary of any such

set is, for the most part, inconsequential. For concision in what follows, we do not

make further distinctions between whether types are in the interior or on the boundary

of a given subset. When no confusion arises and ∀x, x′ ∈ B, q(x) = q(x′), we may write

q(B) = q(x); similarly when ∀x1, x′1 ∈ Ak, Q(x1) = Q(x′1) we may write Q(Ak) = Q(x1)

and λk = λ(Ak).
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Definition 8 (Counting Function). Fix a finite partition {Ak}Kk=1 of X. A counting

function is a map c, c : XI → {1, 2, . . . , I}K , where c(x) = (c1(x), c2(x), . . . , cK(x)) is

defined by

ck(x) = {#i|xi ∈ Ak}.

The definition of the function requires a partition. For concision, we omit this

dependence in the notation.

A finite mechanism partitions the setX of consumer types into finitely many groups.

Types in each group are treated similarly, in the sense that they face the same prob-

abilities of trade (and pay the same expected transfers). We refer to those groups

as market segments. Given a market-segment profile B = (B1, . . . , BI), writing q(B)

highlights that the probabilities of trade are the same for any realization of valuations

in B. If in addition the mechanism is anonymous, q depends only on the market seg-

ment containing bidder 1’s valuation, and on the number of bidders with valuations in

each market segment, c(x); anonymity renders the names of those bidders immaterial.

We record this observation as a lemma.

Lemma 1. An anonymous mechanism q̄ is finite with partition P = {Ak}Kk=1 if and

only if there exists p : {1, . . . , K} × {n ∈ NK : ‖n‖ = I} → [0, 1]L such that

p(k, n) =

0, if nk = 0

q̄(x), if x1 ∈ Ak and c(x) = n,
(5)

∀n,
K∑
k=1

nkp(k, n) ≤ 1. (6)

We say q̄ is an anonymous, finite mechanism with partition P and anonymous proba-

bility of trade, p(k, n).

Proof. If q̄ is a finite mechanism with partition P , then q̄ is constant on each element

of PI . Define p(k, n) by (5); since q̄ is anonymous, p is well defined. Inequality (1)

implies (6). For the converse, suppose p satisfes (6) and p(k, n) = 0 for nk = 0. Define

q̄ as follows: ∀x ∈ XI , q̄(x) = p(k, c(x))1x1∈Ak . Then q̄ satisfies (1). By construction,

it is anonymous and finite with partition P .

Note that p(k, n) ∈ [0, 1]L is the vector of bidder 1’s probabilities of trade for the L

goods, when she reports any x1 ∈ Ak, and each nj in n = (n1, . . . , nK) is the number

of bidders with reported valuations in Aj. The identity of those bidders is irrelevant

because of anonymity. Since P is a partition, every bidder has valuation in some

element of the partition, thus ‖n‖ = I. The resource constraint (1) in an anonymous,

finite mechanism becomes (6).
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Lemma 2 provides a way of approximating arbitrary anonymous mechanisms by

finite mechanisms. Taking conditional expectations with respect to any finite partition

of the type space yields a finite mechanism that is also anonymous.

Lemma 2. Let q be an anonymous mechanism and P = {Ak}Kk=1 be a partition of X

such that ∀k, λ(Ak) > 0. For each B ∈ PI and x ∈ B, let n = c(x), k ∈ {1, . . . , K}
and define

p(k, n) =

0, if nk = 0

E[q | x ∈ B], if B1 = Ak and ∀1 ≤ j ≤ K, nj = |{i : Bi = Aj}|

and

q̄(x) = p(k, c(x))1x1∈Ak .

Then, q̄ is an anonymous, finite mechanism with partition P and anonymous probability

of trade p.

Proof. Observe that p(k, ·) depends only the number of bidders in each element of the

partition P while the conditioning event on the right side, x ∈ B describes a specific

allocation of bidders to elements of the partition. We verify that p(k, n) is well defined.

Let B,B′ ∈ PI , B1 = B′1 = Ak, and ∀j, |{i : Bi = Aj}| = nj = |{i : B′i = Aj}|.
Then there is a permutation π with π(1) = 1 such that x ∈ B ⇐⇒ xπ ∈ B′. By

anonymity, q(x) = q(xπ). Then E[q(x) |x ∈ B] = E[q(x) |xπ ∈ B′] = E[q(xπ) |xπ ∈
B′] = E[q(x) |x ∈ B′]. Thus, p(k, n) satisfies (5).

By Lemma 1, it suffices to verify (6). For any x ∈ XI ,
∑I

i=1 q(xπ
i) ≤ 1. Then

∀B ∈ PI ,
∑I

i=1E[q(xπi) |x ∈ B] ≤ 1. Given B ∈ PI , let Ik = {i : Bi = Ak}, let nk =

|Ik| and n = (n1, . . . , nK). For i ∈ Ik, E[q(xπi) |x ∈ B] = E[q(x) |xπi ∈ B] = p(k, n).

Then, 1 ≥
∑I

i=1E[q(xπi) |x ∈ B] =
∑K

k=1

∑
i∈Ik E[q(xπi) |x ∈ B] =

∑K
k=1 nkp(k, n).

This proves (6).

The definition implies p(k, n) is the expectation of the probability of trade q(x)

conditional on a particular draw of bidders valuations to sets {Aj}Kj=1: This explicitly

places bidder 1’s valuation x1 in Ak and for every j, nj bidders must have valuation in

Aj. Symmetry, however, implies that p(k, n) is the expectation of the probabilities of

trade for any bidder i with xi ∈ Ak given a realized profile of types, n.

Lemma 3 computes the expected probability of trade by splitting bidders according

to the market segment to which they belong.

Lemma 3. Let q̄ be an anonymous, finite mechanism with partition P = {Ak}Kk=1 and

anonymous probability of trade, p(k, n). Then, for any j = 1, . . . , K, for any good `,

I

∫
Aj

Q`(x1)λ(dx1) =
∑

‖n‖=I,nj>0

(
I

n

) K∏
k=1

λnk(Ak)

 nj p`(j, n)
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where n ∈ NK.

Proof. Given symmetry and that
∫
Aj
Q`(x1)λ(dx1) is the expected probability of the

event that bidder 1 has a type in Aj and obtains good `, the left side is the expected

probability that some bidder with type in the setAj obtains good ` given the mechanism

Q. We show that the right side also yields this expected probability.

For any n ∈ NK , ‖n‖ = I, p`(j, n) gives the probability that a given bidder with

type in Aj (say bidder 1) obtains good `. Since symmetry implies that every bidder

with type in Aj has the same probability, given n, the probability that some bidder in

Aj obtains the good is njp`(j, n). The event that a realization of bidder types generates

the profile n occurs with probability

(
I

n

) K∏
k=1

λnk(Ak)

 .

Thus, summing njp`(j, n) over all possible realisations of n, ‖n‖ = I times the proba-

bility of each realisation yields the expected probability a trade of good ` with a bidder

in Aj occurs. The summation need only be over the set of realizations such that nj > 0

because otherwise, p`(j, n) = 0.

5 Results

The results in this section make explicit the relationship between incentive compatible

finite anonymous mechanisms and the piecewise linear equilibrium utility functions

they correspond to. For certain BIC mechanisms of interest, this relationship imposes

strong restrictions on the form that the direct mechanisms can take. In turn, as the

following sections demonstrate, these restrictions can in some cases guide the construc-

tion of DSIC mechanisms that generate the BIC mechanism, or, in other cases, rule

out the existence of DSIC mechanisms that could generate them.

Definition 9. A convex function u : X → R is piecewise linear if there is a smallest (by

set inclusion) finite family of affine functions {fk}Kk=1 defined on X such that ∀x1 ∈ X,

u(x1) = max{fk(x1) : k = 1, . . . , K}. The market segment Ak, k = 1, . . . , K, is the set

Ak =
{
x1 ∈ X | fk(x1) ≥ fj(x1) ∀j 6= k

}
\
k−1⋃
`=0

A`

where A0 = ∅. We denote by Mu the collection of all such market segments. The

collection Mu is a partition of X.
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Remark. A market segment is a collection of buyer types satisfying finitely many, linear

inequalities. Linear pieces that are never a maximum or those that are, at best, a weak

maximum, are not considered. A market segment is a convex set of full dimension. The

collection Mu of all market segments is a partition of X. The definition of a market

segment depends on the labelling of a different linear pieces: for instance, the first

market segment is a closed set but any linear piece could be labelled k = 1.

If u : X → R is a piecewise linear convex function with market segments {Ak},
then

∀x, x′ ∈ Ak,∇u(x) = ∇u(x′).

Thus, following our previous abuse of notation, for such functions we write ∇u(Ak) =

∇u(x1), x1 ∈ Ak. Given any two market segments Aj and Ak, k 6= j, then ∇u(Ak) 6=
∇u(Aj).

Theorem 3 demonstrates that if an anonymous BIC mechanism u is piecewise linear,

then there is a corresponding anonymous finite mechanism q̄ defined on the partition,

M I
u that generates u. In this sense, when presented with such a u, in searching for

direct mechanisms that generate it, we can restrict attention to direct mechanisms that

utilize only u’s market segments.

Theorem 3. Let (q, t) be an anonymous BIC mechanism with interim utility u. Let

u be piecewise linear with market segments Mu = {Ak}Kk=1 and let q̄ and p be as in

Lemma 2 using the partition Mu. Then q̄ is an anonymous finite BIC mechanism with

interim utility u. If in addition q is DSIC, then q̄ is DSIC.

Proof. It follows from Lemma 2 that q̄ is an anonymous, finite mechanism. Thus q̄

satisfies (1) and hence (q̄, t) is a mechanism.

Let Q̄(x1) be the expected probabilities of trade generated by q̄ for a bidder 1

who reports a type x1 assuming all other bidders report truthfully. Then using the

definitions from Lemma 2, for x1 ∈ Ak,

Q̄(x1) = Ex−1 [p(k, c(x1, x−1))]

= Ex−1 [E[q | x ∈ B ∈ PI , B1 = Ak and ∀1 ≤ j ≤ K, cj(x1, x−1) = |{i : Bi = Aj}|]]
= Ex−1 [q | x1 ∈ Ak]
= Q(x1).

The first two equalities utilize the definitions from Lemma 2, the third equality applies

the law of iterated expectations. Observe that since Q(x1) = ∇u(x1) and u is linear

on Ak, Q(x1) (and Q̄(x1)) are constant on Ak. Since q̄ generates the same expected

probabilities of trade under truthful reporting as q and (q, t) is BIC, so too is (q̄, t).
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We now show that if q is DSIC, then q̄ is DSIC. Let v be the ex post utility of q.

Then, ∀x−1, v(x1, x−1) is convex in x1, and its gradient ∇x1v = q, x1-a.e. (Theorem 1).

Then (see for instance Ioffe and Levin (1972), Theorem 1, page 8)

∀B ∈M I−1
u , ∇x1

∫
B

v(x1, x−1)λ
I−1(dx−1) =

∫
B

q(x1, x−1)λ
I−1(dx−1)

or equivalently, ∀B ∈M I−1
u ,∇Ex−1 [v |x−1 ∈ B] = Ex−1 [q |x−1 ∈ B].

The interim utility of q is u = Ex−1v =
∑

B∈MI−1
u

Ex−1 [v |x−1 ∈ B]λI−1(B). By

hypothesis, the restriction of u to any Ak ∈ Mu is linear. Each term on the right side

is convex and therefore must also be linear when restricted to Ak. Hence for a fixed

B ∈ M I−1
u , ∀x1 ∈ Ak, ∇Ex−1 [v |x−1 ∈ B] = Ex−1 [q |x−1 ∈ B] is a constant. This

implies that, for any B ∈M I−1
u , and for all Ak, x1 ∈ Ak,

∇Ex−1 [v | (x1, x−1) ∈ (Ak, B)] = Ex−1 [q | (x1, x−1) ∈ (Ak, B)]

= p(k, c(x)), (x1, x−1) ∈ (Ak, B)

= q̄(x1, x−1), (x1, x−1) ∈ (Ak, B).

The second equality follows by definition of p(k, n) in Lemma 2. The final line follows

by definition of q̄. Thus, the probabilities of trade generated by q̄ for any x ∈ (Ak, B)

equal the gradient vector with respect to x1 of the expectation of v given x−1 ∈ B.

Since u is DSIC, v(x1, x−1) is convex in x1 for each x−1 ∈ B and thus Ex−1 [v |x−1 ∈ B]

is also convex in x1. Therefore, q̄(x1, x−1), x−1 ∈ B is the gradient of a convex function

with respect to x1 for any given B and, thus, q̄ is DSIC.

Definition 10. Let u : X → R be piecewise linear and convex with market segments

Mu = {Ak}Kk=1. For any good, `, define A`k, k = 1, . . . , K`, K` ≤ K, iteratively as

A`1 = ∪{Ak|∇`u(Ak) ≤ ∇`u(Ak′)∀Ak′ ⊂Mu},

A`k = ∪{Ak|∇`u(Ak) ≤ ∇`u(Ak′)∀Ak′ ⊂Mu/ ∪k−1κ=1 A
`
κ}.

The collection of sets {A`k}K
`

k=1 is both a coarsening of Mu and an ordering from

lowest to highest values of the gradient of u with respect to good `. While restricting

attention to piecewise linear and convex mechanisms reduces the number of inequalities

in Theorem 2 to a finite number, it remains large at 2K . The next result shows that

this coarsening reduces the number of inequalities to be tested even further to just K`

for each good, `.

Theorem 4 provides necessary and sufficient conditions for a piecewise linear func-

tion, u : X → R+ to represent the expected utility of an agent in a Bayesian Nash

equilibrium of a finite anonymous mechanism. It is an implication of Proposition 3.2

in Border (1991).
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Theorem 4. Let u : X → R+ be piecewise linear and convex. Then u is the interim

utility of a BIC mechanism with I bidders if and only if ∇u(x1) ∈ [0, 1]L almost

everywhere, and ∀`,∀k = 1, . . . , K`,

I
K`∑
κ=k

λ(A`κ)∇`u(A`κ) ≤ [1− [λ(
k−1⋃
κ=1

A`κ)]
I ]. (7)

Proof. From Theorem 1, u is Bayesian incentive compatible if and only if it is convex

and has gradients that lie (almost everywhere) in [0, 1]N where the gradients represent

the expected probabilities of trade. Fix any good ` and let Q`(x) = ∇`u(x). In turn,

Q`(x) can be the expected probability of trade for good ` if and only if it satisfies

inequality (4) in Theorem 2. We show that for piecewise linear convex functions with

gradient in [0, 1]L, inequality (4) holds for all A ⊂ X if and only if inequality (7) holds

∀`,∀k = 1, . . . , K`.

By Proposition 3.2 in Border (1991), inequality (4) holds if and only if

∀α ∈ [0, 1], I

∫
Eα

Q`(x)dλ(x) ≤ 1− (λ(Ec
α))I , (8)

where

Eα = {x|Q`(x) ≥ α}.

For any piecewise linear, convex function, u : X → R+ with ∇u(x) ∈ [0, 1]L and for any

good, `, fix the partition {A`k}K
`

k=1 described in Definition 10. By construction, ∇`u(x)

is constant for all x ∈ A`k. Denote its value by ∇`u(A`k). If α > ∇`u(A`
K`), then Eα is

empty and inequality (8) holds trivially. Select any k = 2, . . . , K`. By construction,

0 ≤ ∇`u(A`k−1) < ∇`u(A`k) ≤ 1 and for any α ∈ (∇`u(A`k−1),∇`u(A`k)], Eα = ∪K`

κ=kA
`
κ.

Therefore, for α in this range, the inequalities in (8) reduce to the single inequality

I
K`∑
κ=k

λ(A`κ)∇`u(A`κ) ≤ [1− [λ(
k−1⋃
κ=1

A`κ)]
I ].

If ∇`u(A`1) > 0 and α ∈ [0,∇`u(A`1)], then Eα = X and (8) becomes

I
K`∑
κ=1

λ(A`κ)∇`u(A`κ) ≤ 1.

Thus, the continuum of inequalities in (8) reduce to K` inequalities, one for each

interval (∇`u(A`k−1),∇`u(A`k)] for k > 2 plus (possibly) the interval [0,∇`u(A`1)].

Theorem 5 lists three properties of finite mechanisms that are derived from the

resource constraint. First, if there are precisely nk bidders with the same type realiza-

tion (that is, with types in the same market segment Ak), then a symmetric mechanism
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cannot assign any object to any of those bidders with probability higher 1/nk. Second,

if, given a bidder’s type realization, her interim probability of trade is zero, then her (ex

post) probability of trade must be zero for any realization of her opponent’s valuations.

Simply, if the expectation of non-negative variables is zero, the realization of those vari-

ables must be zero. Third, if given a bidder’s type realization, her interim probability

of trade is close to its maximum, then her ex post probability of trade must be close

its maximum for any realization of her opponent’s valuations. This last property is

somewhat complex to state because the two maximums must be defined appropriately.

The maximum interim probability of trade is the Matthews-Border constraint (4) in

Theorem 2. The maximum ex post probability depends on the actual realization of

valuations.

Theorem 5. Let q̄ be an anonymous, finite mechanism with partition P = {Ak}Kk=1

and anonymous probability of trade function p. Then, ∀` = 1, . . . , L, ∀k = 1, . . . , K,

∀n ∈ NK : ‖n‖ = I,

(a) p`(k, n) ≤ 1
nk

,

(b)
[
Q`(x1) = 0, x1 ∈ Ak

]
=⇒ p`(k, n) = 0.

(c) Let J ⊂ {1, 2, . . . , K}, {Aj}j∈J ⊆ P, A =
⋃
j∈J Aj and Ac = X \ A. If

I
∑

j∈J Q`(j)λ(Aj) = (1− [λ(Ac)]I), then ∀n,
∑

j∈J nj > 0, ‖n‖ = I,∑
j∈J

njp`(j, n) = 1

and for j′ /∈ J ,

p`(j
′, n) = 0.

Proof. (a) follows from the resource constraint (1). (b) follows because since q ≥ 0, if

0 = Q`(x1) =
∑

B∈PI−1 q(Ak, B)λI−1(B), then ∀B, q(Ak, B) = 0.
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To prove (c), suppose
∑

j∈J njp`(j, n) < 1. Then we have

(1− [λ(Ac)]I) = I
∑
j∈J

Q`(j)λ(Aj)

=
∑
j∈J

 ∑
‖n‖=I,

∑
j∈J nj>0

(
I

n

) K∏
k=1

λnk(Ak)njp`(j, n)


=

∑
‖n‖=I,n 6=ñ,

∑
j∈J nj>0

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J

njp`(j, n)

<
∑

‖n‖=I,
∑
j∈J nj>0

(
I

n

) K∏
k=1

λnk(Ak)

= (1− [λ(Ac)]I),

a contradiction. The second equality applies Lemma 3. The next equality changes the

order of summation. The following inequality is by hypothesis. The final line applies

the binomial theorem. The result p`(j
′, n) = 0, j′ /∈ J follows from inequality (6).

Theorem 5(c) implies that, there are very strong limitations on the possible values

of some parts of the mechanism. These restrictions are made explicit in the following

Corollaries. The first corollary demonstrates that, if the Border-Matthews inequality is

achieved for some collection of market segments {Aj}j∈J , then the expected probability

of trade for a bidder type in a market segments outside {Aj}j∈J must be strictly lower

than for bidder types in {Aj}j∈J .

Corollary 1. Let J ⊂ {1, 2, . . . , K}, {Aj}j∈J ⊆ P and A =
⋃
j∈J Aj. If I

∑
j∈J Q`(j)λ(Aj) =

(1− [λ(Ac)]I), then for all j̃ /∈ J , for all j ∈ J , Q`(Aj̃) < Q`(Aj).

Proof. Fix a market segment j ∈ J . Define three disjoint subsets of {0, 1, 2, . . . , I−1}K
as

CJ ′ = {n|
∑
j′∈J/j

nj′ > 0, , ‖n‖ = I − 1}

CJ = {n|nj′ = 0, j′ ∈ J/j, nj > 0, ‖n‖ = I − 1}
C0
J = {n|nj = 0, j ∈ J, ‖n‖ = I − 1}.

For a given bidder 1, say, the number of rival bidders in each market segment, n, lies

in one of these sets. Let ej denote the K-dimensional unit vector with 1 in the jth
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position and zeroes elsewhere. By Theorem 3, we have

Q`(Aj) =
∑

n∈CJ′∪CJ∪C0
J

(
I − 1

n

) K∏
k=1

λnk(Ak)

 p`(j, n+ ej)

≥
∑
n∈CJ

(
I − 1

n

) K∏
k=1

λnk(Ak)

 1

nj + 1
+
∑
n∈CcJ

(
I − 1

n

) K∏
k=1

λnk(Ak)

 .

The first equality follows because, by independence, an allocation of the I − 1 bidder

types to theK market segments, n ∈ CJ ′∪CJ∪C0
J occurs with probability

∏K
k=1 λ

nk(Ak)

and anonymity allows us to duplicate this allocation
(
I−1
n

)
times. The inequality follows

because for n ∈ CJ ′ , p`(j, n + ej) ≥ 0 and by Theorem 5(c), for n ∈ CJ ∪ C0
J , (nj +

1)p`(j, n+ ej) = 1. Similarly, for j̃ /∈ J ,

Q`(Aj̃) =
∑

n∈CJ′∪CJ∪C0
J

(
I − 1

n

) K∏
k=1

λnk(Ak)

 p`(j̃, n+ ej̃)

≤
∑
n∈C0

J

(
I − 1

n

) K∏
k=1

λnk(Ak)

 1

nj̃ + 1

<
∑
n∈C0

J

(
I − 1

n

) K∏
k=1

λnk(Ak)


≤ Q`(Aj).

The first inequality follows because, by Theorem 5(c), for n ∈ CJ ′ ∪ CJ , p`(j̃, n) = 0

and by Theorem 5(a), for n ∈ C0
J , p`(j̃, n+ ej̃) ≤ 1

nj̃+1
.

Corollary 1 implies that if u is a piece-wise linear BIC mechanism with market

segments P and a collection of market segments J achieves the Border-Matthews bound

for good `, then ∪j∈JAj must equal ∪K`

k A`k for some k ∈ {1, 2, . . . , K`} (see Definition

10) – that is, the set ∪j∈JAj must correspond to an upper contour set of the function

∇`u and the maximal probabilities of trade can only be achieved via a nested set of

market segments .

The next corollary shows that when a nested set of market segments each satisfy the

Border inequality exactly, then yet more limits are imposed on the ex post probabilities

of trade.

Corollary 2. Let J ⊂ J̃ ⊂ {1, 2, . . . , K}, {Aj}j∈J , {Aj}j∈J̃ ⊆ P, A =
⋃
j∈J Aj,

Ã =
⋃
j∈J̃ Aj and Ac = X \A, Ãc = X \ Ã. If I

∑
j∈J Q`(j)λ(Aj) = (1− [λ(Ac)]I), and
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I
∑

j∈J̃ Q`(j)λ(Aj) = (1− [λ(Ãc)]I) then for all n, ‖n‖ = I, nj = 0, j ∈ J,
∑

j̃∈J̃ nj̃ > 0,∑
j∈J̃/J

njp`(j, n) = 1,

Proof. By hypothesis,

I
∑
j∈J̃

Q`(j)λ(Aj) = I
∑
j∈J

Q`(j)λ(Aj) + I
∑
j∈J̃/J

Q`(j)λ(Aj)

= (1− [λ(Ac)]I) + I
∑
j∈J̃/J

Q`(j)λ(Aj)

= (1− [λ(Ãc)]I)

Thus,

I
∑
j∈J̃/J

Q`(j)λ(Aj) = (1− [λ(Ãc)]I)− (1− [λ(Ac)]I).

The left side is the expected probability that some bidder in Ã/A obtains object `.

The right side is the probability of the event that a bidder is in Ã/A and no bidder is

in the set A. Define NA = {n ∈ NK : ‖n‖ = I,
∑

j∈J nj > 0}, N Ã = {n ∈ NK : ‖n‖ =

I,
∑

j∈J̃ nj > 0} and N Ã/A = {n ∈ NK : ‖n‖ = I,
∑

j∈J nj = 0,
∑

j∈J̃ nj > 0}. The

right side is the probability that the set N Ã/A occurs. The definitions then imply

(1− [λ(Ãc)]I)− (1− [λ(Ac)]I) =
∑

n∈N Ã/A

(
I

n

) K∏
k=1

λnk(Ak). (9)

Using the definition of the mechanism q̄,

I
∑
j∈J̃/J

Q`(j)λ(Aj) =
∑
j∈J̃/J

∑
‖n‖=I

(
I

n

) K∏
k=1

λnk(Ak)njp`(j, n)

=
∑
‖n‖=I

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J̃/J

njp`(j, n)

=
∑
n∈N Ã

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J̃/J

njp`(j, n)

=
∑
n∈NA

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J̃/J

njp`(j, n)

+
∑

n∈N Ã/A

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J̃/J

njp`(j, n)

=
∑

n∈N Ã/A

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J̃/J

njp`(j, n)
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The second equality changes the order of summation (feasible because the limits of

the two summations are independent of each other). The next equality follows from

Theorem 5(c) since if n /∈ N Ã then p`(j, n) = 0 for all j ∈ J̃ . The next equality

partitions the set N Ã into two mutually exclusive events, NA, N Ã/A. The final equality

follows from Theorem 5(c) since if n /∈ NA then p`(j, n) = 0 for all j ∈ J̃/J . Equation

(9) then implies that for n ∈ N Ã/A,
∑

j∈J̃/J njp`(j, n) = 1.

Remark. Corollaries 1 and 2 demonstrate the power of Theorem 5. To determine if

there exists any collection of market segments from a piecewise linear BIC mechanism

u that reach the Border-Matthews bound for good `, rather than testing all possible

subsets of the K market segments, Corollary 1 implies that only the K` upper contour

sets of ∇`u need be examined. Suppose the Border-Matthews inequality for good ` is

satisfied exactly for two collections of market segments, J and J ′. Corollary 1 implies

that one is a subset of the other, say J ⊂ J ′. Corollary 2 implies that for any realization

of bidder types with some bidders in the market segments J , the direct mechanism that

generates u must give good ` to one of the bidders in those segments. And, if no bidder

type is in those market segments but some bidder type is in J ′, then the mechanism

must give good ` to the bidder types in J ′/J . If the mechanism is DSIC, then the

gradient with respect to x` of the ex post utility corresponds to the ex post probability

of trade and the ex post utility must be convex (Theorem 1). The two facts then

impose strong restrictions on the form this mechanism can take. These observations

are at the core of the examples that follow.

The Appendix shows that the logic underlying Theorem 5(c) can be used to gen-

erate a stronger result, demonstrating that its implications also apply to ‘close by’

mechanisms:

Theorem 5(c̃). Let J ⊂ {1, 2, . . . , K}, {Aj}j∈J ⊆ P, A =
⋃
j∈J Aj and Ac = X\A.

If I
∑

j∈J Q`(j)λ(Aj) = α(1− [λ(Ac)]I), α ∈ [0, 1], then ∀n,
∑

j∈J nj > 0, ‖n‖ = I,∑
j∈J

njp`(j, n) ≥ 1− 1− α(
I
n

)∏K
k=1 λ

nk(Ak)
(1− [λ(Ac)]I).

In the next three sections, we demonstrate implications of Theorems 3, 4 and 5

by analyzing three classes of BIC mechanisms. In the first case, we show how to

conclude that a given interim mechanism is BIC by applying Theorem 4. We then apply

Theorem 3 and parts (a) and (b) of Theorem 5 to construct the building blocks of all

possible ex post mechanisms that could generate the mechanism and show that no DSIC

mechanism can be within this set. The second example applies part (c) of Theorem 5

to reduce the set of potential direct mechanism that could generate a particular class of

BIC mechanisms and shows that each of them are ex post incentive compatible. Thus

19



all elements of this class of BIC mechanisms are DSIC. The mechanisms within this

class are all extreme points of the set of BIC mechanisms. The final example applies

a small modification to a mechanism within the previous class to show that there is a

set of BIC mechanisms that cannot be implemented in dominant strategies with this

modification.

6 A BIC Mechanism That is Not DSIC

Manelli and Vincent (2010) demonstrated that in this environment, with L = 1, the

interim utility of any BIC mechanism can be generated by a DSIC mechanism. In this

section, we provide a simple example that shows the same conclusion does not follow

when there are many goods to sell.

We describe a function u : [0, 1]2 → R and a prior distribution λ and show that

u is the interim utility of a BIC mechanism with two bidders and two goods. To do

so we appeal to Theorem 4, the modified Matthews-Border inequality. In Subsection

6.1 we describe the mechanism that generates u and in Subsection 6.2 we prove that u

cannot be obtained from a DSIC mechanism.

For x1 ∈ [0, 1]2, let

u(x1) = max
{

0,
(
3/4, 0

)
· x1 − 1/2,

(
0, 3/4

)
· x1 − 1/2,

(
3/4, 3/4

)
· x1 − 3/4

}
.

The function u is composed of four linear pieces. Let Mu = {Ak}k=4
k=1 be the domains of

the linear pieces; we often call these sets the market segments. The market segments

are depicted in Figure 1. The numbers in parenthesis in Figure 1 are ∇u(Ak), the

gradient of u on each Ak. Then u can be written as

u(x1) =


(0, 0) · x1 − 0 if x1 ∈ A1

(0, 3
4
) · x1 − 1

2
if x1 ∈ A2

(3
4
, 3
4
) · x1 − 3

4
if x1 ∈ A3

(3
4
, 0) · x1 − 1

2
if x1 ∈ A4.

Let the prior λ be any distribution that satisfies λ(Ak) > 0,∀k, λ(A2) = λ(A4), λ(A3)+

λ(A2) = 1/2.5

We verify that u is the interim utility of BIC mechanism with two bidders using

the characterization of incentive compatibility in terms of the convexity of u, and the

characterization of the resource constraint (1) in terms of u’s gradient ∇u (Theorem 4).

5Within Ak, the distribution is arbitrary.
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Figure 1: The function u and its gradient ∇u(Ak)

As the pointwise maximum of four linear functions, u is convex. By construction,

∇u is in [0, 1]2. It remains to verify that u satisfies inequality (7).

Focus on good 2, the symmetry of the mechanism implies the argument also holds

for good 1. To apply Theorem 4, the relevant partition with respect to good 2 is the

collection {A1 ∪ A4, A3 ∪ A2}. Inequality (7) requires, (setting A2
K2 = A3 ∪ A2)

Iλ(A2
K2)∇2u(AK2) ≤ [1− [λ(A1 ∪ A4)]

I ].

Recalling that λ(A3 ∪A2) = 1/2, the left side is 2 · 1
2
· 3
4

= 3
4

which equals 1− (1
2
)2, the

right side. So the inequality is (exactly) satisfied. The inequality for the second nested

set, A1 ∪A2 ∪A3 ∪A4 holds trivially since the gradient is 0 in A1 ∪A4. Applying the

same argument to good 1 implies u is BIC.

6.1 A BIC mechanism that generates u

Figure 2 depicts a mechanism q(x1, x2) that generates u. The mechanism is finite

(Definition 7). Thus we write q(Ak, Aj) to indicate bidder 1’s probabilities of trade

when her valuation is in Ak and bidder 2’s valuation is in Aj. Direct calculations

determine that ∇u(Ak) =
∑4

j=1 λjq(Ak, Aj), that is to say the expected probabilities

of trade are the gradient of the interim utility, and the convexity of u implies that q is

BIC.

The mechanism q, however, is not DSIC. If it were, its ex post utility v(x1, x2)

would be convex in x1 for every x2. It suffices to inspect the diagram (b) in Figure 2

to note that this is not so. That diagram represents q(Ak, A2) = ∇x1v(Ak, A2), the

probabilities of trade are the gradient (with respect to x1) of the ex post utility for

fixed x2 ∈ A2. The gradient does not correspond to the gradient of a convex function

since the boundary between A1 and A2 has slope −1 which is inconsistent with the
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(d) x2 ∈ A4

Figure 2: The mechanism q(x1, x2)

stated gradients. Thus, if it were known that bidder 2’s valuation is in A2, bidder 1

will not report her type truthfully given the probabilities in diagram (b).

6.2 No DSIC mechanism generates u

The previous subsection shows that a given BIC mechanism (that induces u) is not

DSIC. We now demonstrate that no DSIC mechanism induces u.

First, since u is piecewise linear, if there is a DSIC mechanism, v, generating u, by

Theorem 3 there is a DSIC mechanism that is finite with respect to the partition Mu

and the expected probabilities of trade, ∇u(Ak), are a convex combination of the ex

post probabilities of trade, ∇x1v(Ak, Aj). More precisely,

∀k,∇u(Ak) =
4∑
j=1

λj∇x1v(Ak, Aj).

Figure 3 illustrates the usefulness of Theorem 3. The top-left diagram shows the

gradient of the u on each market segment Ak, and the bottom-left diagram represents

the prior distribution λ. The four remaining diagrams, labeled (a) to (d), represent

the finite mechanism—or equivalently the gradient of the expost utility ∇x1v(Ak, Aj)
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Figure 3: The finite mechanism ∇v

of the finite mechanism. For instance, diagram (b) corresponds to the ex post utility

when x2 ∈ A2. Within each section of (b), Theorem 3 implies that the gradient vectors

of v must be constant. The values of ∇u in the top-left diagram must be obtained as

a convex combination of the values to be filled in the four diagrams (a) to (d) using

the weights given by λ.

Second, we use a property of finite mechanisms, Theorem 5(b), to obtain the missing

gradients in Figure 3. Theorem 5(b) states that if, for some good `, bidder one has

valuation in Ak and expects to receive good ` with probability zero, then the mechanism

must assign good ` with probability zero for any valuation of bidder 2: To average zero

with positive numbers, all numbers must be zero. Therefore we fill with zeros the

corresponding missing values in Figure 4.

Third, Theorem 5(a) states that

x1, x2 ∈ Ak =⇒ ∇x1v(x1, x2) ≤

(
1/2
1/2

)
.

If two bidders have valuation in the same market segment, they cannot be assigned the

good with probability higher than 1/2. This is so because there is at most one unit of

each good.

Figure 4 (b) depicts the gradients of the ex post utility v when bidder 2 has valuation

in A2. If bidder 1 also has valuation in A2, then ∇x1v(A2, , A2)—the ex post probability

of assignment—cannot exceed 1/2. Thus (0, 1/2) is placed in A2, the top left corner of
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Figure 4: Properties of finite mechanism, Theorem 5

Figure 4 (b).

In turn, this implies that the entry in A3 in Figure 4 (b) is ∇x1v(A3, A2) = (1/2, 1/2).

This is the only possibility for a finite mechanism given the partitionMu. The boundary

between A2 and A3 is vertical. Thus the gradient in A3 must have the form (·, 1/2).
(Its first component is not determined.) Since the boundary between A1 and A3 has

slope −1, the gradient in A3 must be (1/2, 1/2). Since the boundary between A3 and A4

is vertical the gradient in A4 must be (1/2, 0).

Figure 4 (d) is completed similarly and the results are recorded in Figure 5 (d).

Consider now Figure 4 (c). It depicts the ex post utility when bidder 2’s valuation is

in A3. If bidder 1’s valuation is also in A3, then ∇x1v(A3, A3) ≤ (1/2, 1/2). We complete

the missing values as we did in Figure 4 (b) and record the results in Figure 5 (c).

It remains to complete Figure 4 (a). In this case bidder 2 has valuation in A1

and thus receives both goods with zero probability. Therefore both goods can be

assigned to bidder 1 with probability one when her valuation is in A3, the entry in A3

is (1, 1). Respecting convexity, the missing gradients can be filled in. We record them

in Figure 5 (a).

The expectation with respect to λ of the ex post utilities will yield the gradients of

the interim utility indicated by Q in the left-bottom diagram in Figure 5. (Symmetry of

the ex post mechanisms and the assumption that λ2 = λ4 imply that the two gradients
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Figure 5: DSIC mechanism

are the same.) Applying the expectation yields (for good 2, for example)

Q = λ11 + λ4
1

2
+ (λ2 + λ3)

1

2

= (λ11 + λ4)1− λ4
1

2
+

1

4

=
3

4
− λ4

1

2
.

The second line uses the condition λ2 + λ3 = 1/2 and the third line uses the condition

λ1 +λ4 = 1/2. Thus, since λ4 > 0 the maximum gradient of an interim utility function

generated by a DSIC mechanism must be less than 3/4, which is the gradient of u.

This completes the proof that u is not the interim utility of a DSIC mechanism. It also

shows that in the left-bottom diagram in Figure 5 is the closest DSIC interim utility

(in terms of expected probabilities of trade) to u if the structure Mu is to be preserved.

6.3 Implications of Theorem 5(c)

An alternative and shorter proof that u is not DSIC can be obtained using the conclu-

sion in Theorem 5(c). This alternative approach does not provide the building blocks

of all DSIC direct mechanisms that can be used to construct mechanisms with similar

market segments, however, it shows there is, in fact, a unique direct mechanism that

implements u, the mechanism defined in Subsection 6.1.
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Consider good 1 and note that for the collection of sets, {A3, A4}, the equality in

Theorem 5(c) holds (and similarly for good 2 using the sets, {A2, A3}). Theorem 5(c)

then implies that for x2 ∈ A1 ∪ A2, x1 ∈ A3 ∪ A4, q̄1(x1, x2) = 1 and similarly for

x2 ∈ A2 ∪A3, x1 ∈ A1 ∪A4, q̄2(x1, x2) = 1. This yields the direct mechanism in Figure

2(a) and the gradients with respect to good 1 in Figure 2(b) as well as the gradients

with respect to good 2 in Figure 2(d). Additionally, for x1, x2 ∈ A3 or x1, x2 ∈ A4,

Theorem 5(c) implies q̄1(x1, x2) = 1/2 yielding the gradients in A3 in Figure 2(c) and

A4 in Figure 2(d). A similar argument yields the gradients with respect to good 2 in

A3 in Figure 2(c) and A2 in Figure 2(b). From Theorem 5(b), any direct mechanism

must have gradients equal to 0 in the same cases as in Figure 2.

It remains to show the gradients for the case (x1, x2) ∈ (A3, A4) and (x1, x2) ∈
(A4, A3) (and symmetrically for good 2). By Lemma 2 and Theorem 3,

Q1(A4) =
4∑

k=1

λ(Ak)q̄1(A4, Ak)

=
1

2
+ λ4

1

2
+ λ3q̄1(A4, A3)).

The second line follows from our conclusions about the gradients in the relevant cases

and the condition λ1 + λ2 = 1/2. Similarly

Q1(A3) =
1

2
+ λ3

1

2
+ λ4q̄1(A3, A4)).

Theorem 5(c) implies q̄1(A3, A4) + q̄1(A4, A3) = 1 by setting J = {3, 4}, A = A3 ∪
A4. This fact, the above two equations and the fact that Q1(A3) = Q1(A4) implies

q̄1(A3, A4) = q̄1(A4, A3) = 1/2. A similar argument yields q̄2(A3, A2) = q̄2(A2, A3) =

1/2. This demonstrates that the only ex post mechanism that can yield the BIC

mechanism u is the mechanism shown in Figure 2.

7 A Class of DSIC Mechanisms

In this section, we demonstrate how the restrictions imposed on direct mechanisms in

Theorem 5 can guide the construction of the unique DSIC mechanism that implements

a class of BIC mechanisms. The mechanisms are all extreme points of the set of BIC

mechanisms so, in that sense, they are on the boundary of the set of such mechanisms.6

Furthermore, as extreme points, they are natural candidates for solutions to common

6Note that for any BIC mechanism, u, it is straightforward to show that the mechanism αu, α > 0

is always DSIC for α small enough.
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optimal mechanism design problems where the objective function is linear in u such

as revenue maximization. This class is more general than the example in Section 11

in that there are an arbitrary number of market segments and bidders. However, it

is more narrow in that the set of good-specific market segments used, for example, in

Theorem 4, {A`k}
K`
k=1, is the same for each good.

There are L = 2 goods and I ≥ 1 bidders and assume λ(x) > 0,∀x. For any

piecewise linear convex mechanism, u, let its market segments, Mu, be {Ak}Kk=1 each

with measure λk > 0. A mechanism, u is in the class of examples if

i) Mu is such that, for k = 2, . . . K, the set Ak ∩ Ak−1 is a straight line in [0, 1]2 with

slope −mk, mk ∈ [0, 1];

ii) ∇u(A1) = (0, 0);

iii) for all l = 2, 3, . . . K,

I
K∑
k=l

∇2u(Ak)λk = 1−

 l−1∑
k=1

λk

I

.

Property i) implies that the sets {A`k} used in Theorem 4 are the same for each good.

Property iii) implies that the expected probability of obtaining good 2 satisfies the

equation in Theorem 5(c). That is, the Border inequality holds exactly for good 2 for

all its market segments (except the no-trade segment).

Observe that continuity of u implies that agent types on the boundary manifolds,

Ak ∩ Ak−1 must be indifferent between the outcomes offered in the two sets. Define

sk ≡ ∇1u(Ak)/∇2u(Ak).

Convexity implies that s2 = m2 and (via continuity)

sk = (1− ∇2u(Ak−1)

∇2u(Ak)
)sk−1 +

∇2u(Ak−1)

∇2u(Ak)
mk, k = 3, . . . , K. (10)

Convexity implies that ∇2u(Ak−1)

∇2u(Ak)
< 1. Since mk ∈ [0, 1], this implies that sk ∈ [0, 1] and

is fully determined by the ∇2u(Ak)s and mks. Accordingly, the gradients ∇1u(Ak) are

also fully determined for each Ak. Thus, conditions i)-iii) fully determine the expected

probabilities of trade associated with u. The expected payments can be derived but

are not relevant for the argument. Since u is convex, has gradients in [0, 1] and satisfies

the Border inequalities, it is BIC. Since, for this class of mechanisms, the Border
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inequalities bind on good 2, for every market segment except the no-trade segment,

A1, a mechanism in this class is also an extreme point of the set of BIC mechanisms.

Figure 6 provides an example of such a u where I = 2 and λk = 1/3 for all k.
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Figure 6: Market Segments for an Example Mechanism

To see that u in this class is DSIC, we show that the properties i)-iii), by applying

Theorem 5, yield a unique p2(k, n) for all k, n. We then assume that the corresponding

direct mechanism satisfies q̄2(x) = p2(k, c(x)) for x1 ∈ Ak and assume that q̄2(x) is

the gradient with respect to good 2 (for x1) of a function v(x1, x−1) that is piecewise

linear and convex in x1. This assumption fully determines the gradient with respect to

good 1 of v(x1, x−1). Then, invoking Theorem 1, we assume this gradient corresponds

to q̄1(x). Finally, showing that Ex−1 [(q̄1(x1, x−1), q̄2(x1, x−1))] = (∇1u(x1),∇2u(x1))

demonstrates that u is DSIC.

Focus on good 2. For any x ∈ XI , define l(x) to be the highest market segment

containing a bidder type:

l(x) = max{k : ck(x) > 0}.

Theorem 5(b) implies

p2(1, c(x)) = 0, ∀x, x1 ∈ A1.

Corollary 2 and inequality (6) imply that since the Border inequality binds for each

nested set A2
k, if l(x) > 1,

cl(x)(x)p2(l(x), c(x)) = 1
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and

p2(k, c(x)) = 0, k < l(x).

Jointly, this implies that for any finite anonymous mechanism that generates u,

q̄2(x) = 0, x1 ∈ A1, or x1 ∈ Ak, k < l(x)

=
1

cl(x)(x)
, x1 ∈ Al(x).

Suppose that q̄2(x1, x−1) equals the second component of ∇x1v(x1, x−1), where v

is a piece-wise linear convex function with linear pieces defined on a (weakly) coarser

partition than Mu. Let l̂(x−1) = max{k|xi ∈ Ak, i 6= 1}. The definition of q̄2 implies

that v(x1, x−1) has at most three relevant domains, {∪l̂(x−1)−1
k=0 Ak, Al̂(x−1)

,∪K
k=l̂(x−1)+1

Ak}
(If l̂(x−1) = K, then there are only two market segments, the last one is not present).

The probability of trade in the first domain for good 2 is 0 and convexity implies that

the probability of trade for good 1 is also 0. The probability of trade for good 2, in the

second domain is 1/cl(x)(x). Convexity implies that the gradient of v in middle domain

is (ml̂(x−1)
/cl(x)(x), 1/cl(x)(x)). The probability of trade for good 2 in the final domain

if it is present is 1. Continuity then implies that the gradient of v in the last domain

segment is (sB, 1), where sB satisfies

sB = (1− 1

cl(x)(x)
)ml̂(x−1)

+
1

cl(x)(x)
ml̂(x−1)+1.

(This uses the same argument that was used to construct the sks earlier generating

equation(10).)

For each x−1, this argument fully characterizes a unique v(·, x−1), each of which is

convex and satisfies ∇v(x1, x−1) = q̄(x) and, so, is a DSIC mechanism. Furthermore, it

is a finite anonymous mechanism. Let ũ = Ex−1[v] be the interim utility function that

arises from this collection of ex post functions. Since v(x1, x−1) is piece-wise linear and

convex for all x−1, ũ is also piece-wise linear and convex. By construction, the market

segments of ũ are also Mu.

Applying Lemma 3 to the set A2
k = ∪Kκ=kAκ,

I

∫
A2
k

∇2ũ(x1)λ(dx1) =
∑

‖n‖=I,
∑K
j=k nj>0

(
I

n

) K∏
k=1

λnk(Ak)

 nj p2(j, n)

= 1− ((A2
k)
c)I

= I

∫
A2
k

∇2u(x1)λ(dx1).
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Thus, ũ generates the same probabilities of trade for good 2 as u.

Since ũ is convex and has market segments Mu, ∇1ũ(A1) = ∇2ũ(A1) = 0 and

∇1ũ(A2)/∇2ũ(A2) = m1.

Set sk = ∇1ũ(Ak)/∇2ũ(Ak). Convexity now implies that (10) fully defines ∇1ũ(Ak) =

∇1u(Ak). Thus, ũ = u and u is DSIC.

8 A Further Example

The class of mechanisms in Section 7 suggested a (restricted) positive result in that

a general class of BIC mechanisms were shown to be DSIC. As noted, an important

property of this class is that {A`k}
K`
k=1 is the same for both goods. In this section, we

show that this property is not sufficient to ensure dominant strategy implementation.

Additionally, we describe a ‘thick’ set of such mechanisms to demonstrate that the

failure to achieve DSIC does not merely stem from selecting mechanisms that are

extreme points of Bayesian incentive compatible mechanisms.

We first define a piecewise linear function u and show that it is the interim utility of

a symmetric BIC mechanism with two bidders. We then show that the interim utility

αu, α ∈ [0, 1] cannot be obtained from a DSIC mechanism for α close to 1.

Define u : [0, 1]2 → R by

u(x1) = max

{
0,

(
12

24
,

6

24

)
· x1 −

3

24
,

(
19

24
,
20

24

)
· x1 −

17

24

}
.

The function u is composed of three linear pieces. Let Ak, k ∈ {1, 2, 3} be the domains

of each linear piece. These domains are depicted in Figure 7. The pairs of numbers

in Figure 7 correspond to the gradients of u, ∇u(Ak), on each linear piece Ak. The

function u can be written as

u(x1) =


(0, 0) · x1 − 0 if x1 ∈ A1

(12
24
, 6
24

) · x1 − 3
24

if x1 ∈ A2

(19
24
, 20
24

) · x1 − 17
24

if x1 ∈ A3.

The prior λ is any distribution that satisfies λ(Ak) = 1
3

for every k.7

To determine that u is the interim utility a BIC mechanism, note that u is the

pointwise maximum of three linear functions and therefore u is convex. By construc-

tion, ∇u ∈ [0, 1]2. It remains to verify the inequality in Theorem 4. For both goods,

7Within each set Ak, the distribution is arbitrary.
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Figure 7: BIC mechanism that has no DSIC equivalent

the collection of nested sets needed to apply the Theorem are

{A`k} = {X,A3 ∪ A2, A3}.

Inspection makes it clear that if inequality (7) is satisfied for good 2 using the set A3,

it is also satisfied for good 1 and if it is satisfied for good 1 using the set A2 ∪ A3 it is

also satisfied for good 2. As before, the inequality using X will trivially be satisfied as

the gradient is zero in the set A1.

For A3 and good 2, the left side of (7) evaluates to 2 · 20
24
· 1
3

= 40
72

while the right

side evaluates to (1− (2
3
)2) = 5

9
= 40

72
, so the inequality is satisfied exactly. For A2 ∪A3

and good 1, the left side of (7) evaluates to 2 · (19
24

+ 12
24

) · 1
3

= 62
72

while the right side

evaluates to 1− (1
3
)2) = 8

9
= 64

72
and the inequality is satisfied strictly. Thus u is BIC.

Fix α ∈ [0, 1]. Since u is BIC, so is αu. Also note that

2

∫
A3

∇2αu(x1)dλ = α(1− [λ(Ac3)]
2).

We show that there is a α̂ < 1 such that for all α ∈ (α̂, 1], αu is not DSIC.

Suppose that αu is DSIC and let q̄ be a finite anonymous mechanism that imple-

ments it with anonymous probability of trade function p(k, n). Let n = (n1, n2, n3), ‖n‖ =

2 represent the distribution of bidder types across the sets A1, A2, A3. Since αu is a

finite mechanism, Theorem 3 implies that, in seeking an ex post v(x1, x2) that imple-

ments αu, we can restrict attention to piece-wise linear functions such that the domain

of the linear segments with respect to x1 are one of the sets shown in Figure 8 . Fur-

thermore, Theorem 1 implies that v(x1, x2) must be convex in x1 and that the gradient,

∇x1v(x) equal p(j, c(x)) for x1 ∈ Aj. Convexity implies that if the market segments

for v are as in Figure 8(a), then for all x1 in A2 ∪ A3, ∇x1v(x) is proportionate to

(1/2, 1). Similarly, if the market segments for v are as in Figure 8(b), then for all x1

in A3, ∇x1v(x) is proportionate to (1, 1/2).
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Figure 8: Potential direct mechanisms for αu

Finally, if the market segments for v are as in Figure 8(c), then the gradients of v

in A2 have to be proportionate to (1/2, 1) and the gradient of v in A2 and A3 must be

consistent with a continuous function. The slope of the manifold between those two

sets thus imposes restrictions on these gradients. Specifically, fix x2 and suppose the

market segments of v are as in 8(c). Let x1 ∈ A2 and x′1 ∈ A3. Using the fact that

∇x1v(x) = p(j, c(x)), this implies

−2 = −p1(2, c(x1, x2))
p2(2, c(x1, x2))

(11)

and

−1

2
=
p1(2, c(x1, x2))− p1(3, c(x′1, x2))
p2(3, c(x′1, x2))− p2(2, c(x1, x2))

. (12)

Equations (12) and (11) follow by the requirement that the slope of the intersection of

the two adjacent linear pieces of v at Ak∩Ak−1 correspond to the slope of the manifold

at that point. (This is the same logic that generated Equation (10) in Section 7.)

Theorem 5(a) implies that

p1(2, (0, 2, 0)) ≤ 1/2. (13)

For the cases n = (0, 1, 1) and n = (1, 0, 1), the denominator from Theorem 5(c̃)

satisfies (
I

n

) K∏
k=1

λnk(Ak) =
2

9
.

Applying Theorem 5(c̃) to the case n = (0, 1, 1) implies that

p2(3, (0, 1, 1)) ≥ 1− 9(1− α)

2
(1− (Ac3)

2)

= 1− 9(1− α)

2

5

9

= 1− (1− α)
5

2
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Inequality (7) then implies that p2(2, (0, 1, 1)) ≤ (1−α)5
2

and convexity via (11) implies

that

p1(2, (0, 1, 1)) ≤ (1− α)5. (14)

Similarly, for the case n = (1, 0, 1), Theorem 5(c̃) implies that p2(3, (1, 0, 1)) ≥
1− (1−α)5

2
. Convexity (via (11) and (12) along with the fact that p1(2, (1, 0, 1)) ≤ 1)

implies that

p1(2, (1, 1, 0)) ≤ 4/3− p2(2, (1, 0, 1)))

≤ 4/3− 2

3
(1− (1− α)

5

2
)

= 2/3 + (1− α)
5

3
. (15)

The expected probability of trade for good 1 given a bidder is in A2 then must

satisfy

Q1(A2) = λ1p1(2, (0, 2, 0)) + λ2p1(2, (0, 1, 1)) + λ3p1(2, (1, 1, 0))

≤ 1

3
(1/2 + (1− α)5 + 2/3 + (1− α)

5

3
)

=
7

18
+ (1− α)

20

9
.

The first line uses the definition of a finite anonymous mechanism through Theorem 3

and the second line applies inequalities (15),(13) and (14). This inequality combined

with the requirement that Q1(A2) = α/2 implies that for any α > 47
49

the mechanism

αu cannot be DSIC.

9 Conclusion

The application of Theorem 5 is limited in the sense that restrictions on mechanisms

arise only when expected probabilities of trade of a candidate BIC mechanism are close

to the Border-Matthews bounds for some subsets of market segments. Nevertheless,

such cases are important since many optimization problems will typically require meet-

ing these bounds. For example, classic implementation problems such as maximizing

expected seller revenue or maximizing expected social surplus involve maximizing an

objective that is linear in the expected probabilities of trade (the Qs) subject to the

linear constraints represented by incentive compatibility and the unit good constraint.

Solutions to these problems are generically at extreme points of the feasible set and

such points require satisfying the Border-Matthews bounds exactly for at least some

subsets of the market segments. In these circumstances, Theorem 5 provides a method
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to rule out the possibility of implementing a potential optimum in dominant strate-

gies (as illustrated in the examples of Sections 6 and 8), or to construct the DSIC

mechanism (as done in Section 7) or to provide a roadmap for constructing the DSIC

mechanism as close as possible to the optimal mechanism in the sense of retaining the

same market segments (as shown in Section 6).
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11 Appendix: Proof of Theorem 5(c̃)

Proof. To prove Theorem 5(c̃) consider any ñ, ‖ñ‖ = I,
∑

j∈J ñj > 0. For brevity,

define
∑

j∈J ñjp`(j, ñ) = Z and
(
I
ñ

)∏K
k=1 λ

ñk(Ak) = W . By Lemma 3

α(1− [λ(Ac)]I) =
∑
j∈J

 ∑
‖n‖=I,

∑
j∈J nj>0

(
I

n

) K∏
k=1

λnk(Ak)njp`(j, n)


=

∑
‖n‖=I,n 6=ñ,

∑
j∈J nj>0

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J

njp`(j, n)

+

(
I

ñ

) K∏
k=1

λñk(Ak)
∑
j∈J

ñjp`(j, ñ)

=
∑

‖n‖=I,n 6=ñ,
∑
j∈J nj>0

(
I

n

) K∏
k=1

λnk(Ak)
∑
j∈J

njp`(j, n)

+

(
I

ñ

) K∏
k=1

λñk(Ak)× 1

−
(
I

ñ

) K∏
k=1

λñk(Ak)(1− Z)

≤
∑

‖n‖=I,
∑
j∈J nj>0

(
I

n

) K∏
k=1

λnk(Ak)

−
(
I

ñ

) K∏
k=1

λñk(Ak)(1− Z)

= (1− [λ(Ac)]I)−
(
I

ñ

) K∏
k=1

λñk(Ak)(1− Z)

= (1− [λ(Ac)]I)−W (1− Z)

The second equality separates out the term in ñ. The next equality adds and subtracts

W . The following inequality combines the first two lines of the previous equality and

applies (6). The next line rewrites the first line of the previous expression as done in

the proof of Lemma 3 and the final line substitutes in W . Rearranging the inequality

then yields

1− 1− α
W

(1− [λ(Ac)]I) ≤ Z

as required.
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