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Abstract
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1 Introduction

It is not uncommon to sell a given number of indivisible objects by offering them in bundles,
i.e., subcollections of objects. Bundling may be carried out by posting a schedule of prices, one
price for each possible bundle, thus permitting the buyer to select the price-bundle pair of his
choice. We consider a model with a seller with n indivisible objects, and a consumer with linear
preferences (over goods and money) whose valuations for the objects are private information.
Our goal is to identify environments in which bundling is optimal in that it maximizes the seller’s
expected revenue. (Henceforth the adjective optimal is used in this sense.) First, we study the
revenue-maximizing price schedule within the class of all such schedules. We identify neces-
sary conditions for optimality. Second, we investigate the optimality of price schedules within
the class of all incentive compatible (henceforth IC) and individually rational (henceforth IR)
mechanisms. We provide sufficient conditions for the optimality of bundling. These conditions
can be expressed as a pair of functional inequalities. We illustrate how the conditions can be
used to identify a class of environments for n = 2 and n = 3 in which bundling is the optimal
mechanism.

It has long been known that when there is only one good, posting an appropriately selected,
take-it-or-leave-it price generates the highest expected revenue among all feasible trading mecha-
nisms.! This remarkable result implies that, despite the enormous class of incentive compatible,
individual rational bilateral trading mechanisms, in the one-good case, the search for expected
revenue-maximizing mechanisms can be restricted to a very simple class of institutions. Posting
a price schedule, i.e. bundling, is the natural extension of the one dimensional mechanism to the
case n > 1.2 In addition bundling is ‘simple’ in that randomization in the assignment of goods
is not used; a buyer of certain type will buy a given bundle with probability zero or one. It is
therefore valuable to understand when these deterministic posted price mechanisms are optimal.

In spite of its attractive characteristics, surprisingly little is known about the consequences
of bundling for revenue. For instance, it is not known, even in the n = 2 case, what the revenue
maximizing price schedule is, or under what circumstances posting a price schedule is indeed
the best trading institution. We show by example that, unlike in the one good case, revenue
maximization may require the randomization of assignments even for n = 2.3

As an intermediate step in searching for environments where bundling is optimal with respect
to all IC and IR mechanisms, we provide conditions that the best price schedule (within the class
of all price schedules) must satisfy. We illustrate the usefulness of these conditions by providing

sufficient conditions for when the optimal price schedule is submodular.

!See, for example, [11] or [15].
2[9] show that posting prices both for individual goods and for bundles typically strictly dominates in terms

of revenue the posting of prices for only the individual goods.
3As part of a 1988 piece, [8] describe an environment with n = 2 in which bundling is optimal. Our example

shows that their claim is not accurate. A related counterexample was discovered independently and simultaneously
by [16].



We next use our characterization of the best price schedule to explore our main goal. Our
approach yields sufficient conditions for the optimality of the price schedule within the class of
all IC and IR mechanisms. Those conditions are not easily interpretable but, nevertheless, prove
very useful: we use them in the n = 2 and n = 3 cases (and they could potentially be used
in other cases) to identify environments, mainly restrictions on the distribution of valuations,
where bundling is indeed the revenue-maximizing institution.

Our approach is loosely based on the methodology we employed in [6]. Consider any specific
trading institution. To such an institution corresponds an incentive compatible and individually
rational direct mechanism. The direct mechanism is a solution to the seller’s linear program
if there is a feasible solution to the dual program such that dual and primal programs have
the same value. We identify environments in which the proposed mechanism solves the primal
program by constructing the relevant dual variables. The described approach could be applied,
in principle, to any trading institution. We focus on price schedules (or bundling) because
we believe they are simple, easily implemented institutions, and are natural extensions of the
optimal mechanism in the one good case. Price schedules offer, in addition, a technical advan-
tage: since the (sequentially rational) behavior of a buyer choosing among price-bundle pairs is
straightforward, the implicit direct mechanism is immediate.

This paper is a contribution to the research on multidimensional mechanism design. [§]
examined the question of when deterministic mechanisms, i.e., mechanisms where the assignment
is not random, are optimal in cases of multidimensional uncertainty. [1] showed that under
optimal mechanisms there is a set (of positive measure) of buyer types who never trade. [13]
and [14] extended both of these papers and show that optimal mechanisms typically require
‘bunching’ (even in the case where goods are divisible). Bunching implies that buyer types
virtually always pool into a set of positive measure of other buyer types. [13] also offers an
example of discretely distributed buyer types in which deterministic mechanisms are suboptimal.

Our work contributes to the literature on bundling as a form of second degree price dis-
crimination, and might also shed some light on a related problem. When n = 1, the optimal
take-it-or-leave-it price in the seller’s problem corresponds to the optimal reserve price in a stan-
dard auction with m buyers in an independent private values environment. In addition such
auctions are optimal over the class of all IC and IR mechanisms.* Similarly the optimal price
schedule might play a role in the auctioning of n indivisible goods to m buyers.

The outline of the paper is as follows. In Section 2, the model and some notation is intro-
duced. Section 3 provides some preliminary results that describe how buyer types self-select in
response to price schedules. In Section 4, we provide necessary conditions for the optimality
of a price schedule within the class of all price schedules. In Section 5, we provide a two-good
example where the expected revenue generated by an optimal price schedule is strictly lower
than that generated by another, more complicated mechanism. This leads to the question: Un-

der what conditions are price schedules optimal over all incentive compatible and individually

“See [11], for example.



rational mechanisms? In Section 6 we obtain sufficient conditions for the optimality of the price
schedule within the class of all IC and IR mechanisms and show that they can be expressed as
a pair of functional inequalities. In Section 7, we apply the results in Section 6 to the n = 2 and

n = 3 cases.

2 Notation and Preliminaries

A seller with n different objects attempts to maximize expected revenue by trading with a single
buyer (that is, we assume zero marginal costs). The buyer’s preferences over consumption and
money transfers are given by

U(x,q,t)=x-q—t,

where x is the vector of buyer’s valuations, ¢ is the quantity consumed of each good, and t is
the monetary transfer made to the seller. Since the buyer has demand for at most one unit of
each good, the vector ¢ is an element of {0,1}"; = is assumed for simplicity to be in I"™ where
I =[0,1], and t is in IR.

Index the n goods by ¢ = 1,...,n and let IV represent the set of all available goods. Given a
vector x in IR", x; represents its ith component, x_; the remaining components, and (y,z_;) the
vector where the i*" component is y and the other components are z_;. Similarly, for J C N,
J¢ denotes the bundle N \ .J, z; denotes the |.J|-dimensional vector with components in .J, I’
the |J|-cartesian product of I, and we may write (zj,zjc) when convenient. Similar notation
will be applied to other objects.

The seller does not observe the buyer’s valuation—the buyer’s private information—but it
is common knowledge that valuation x is distributed according to a prior density function f(z).

Assumption 1 is maintained throughout.

Assumption 1 The density f(x) is a continuously differentiable, strictly positive function in
.

Additional requirements on f will be imposed at different points in our analysis. We list the

requirements here for future reference.

Assumption 2 The density f(x) satisfies

(a) flx) =10 fi(w:),
(b) ViV, f(x) +xi%§&f) > 0.

Assumption 2a states that the buyer’s valuations for the n goods are independently dis-
tributed. When Assumption 2a is invoked, it will be convenient to use the notation f/(z;) =
dfi(x;)/dz;.

Given a function f(z), V f(z) denotes the gradient of f evaluated at x. Note that Assumption
2b implies (n+1) f(z) +x -V f(z) > 0, which is an assumption invoked by [8]. In the case where



1—F(z)

n = 1, the restriction implies that the ‘virtual valuation function’, = — F(z)  Crosses zero only

once. This implies the uniqueness of the optimal take-it-or-leave-it price in that case and is an
alternative assumption to the monotone hazard condition that is sometimes invoked.

In searching for an optimal mechanism, one may restrict attention to direct revelation mech-
anisms where buyers report their types truthfully. A direct revelation mechanism is a pair of

functions

p:I"— I"
t: 1" — IR,

where p;(z), the i component of p(z), is the probability that the buyer will obtain good i
when his valuation is x, and t(x) is the transfer made by the buyer to the seller when valua-
tions are z.° In addition, the buyer must have adequate incentives to reveal his information
truthfully—incentive compatibility (IC)—and to participate in the mechanism voluntarily—
individual rationality (IR). The buyer’s expected payoff under the mechanism (p,t) when the
buyer has valuation z and reports a’ is p(z’) -  — t(2’). The equilibrium expected utility of a

buyer of type x is denoted m(x). Then, (p,t) must satisfy 6

(IC) Va, m(z) > p(a') -z — t(z') Vo'
(IR) Vo, m(x) > 0.

We informally describe some readily available properties of IC and IR mechanisms—well
known in one dimensional problems—that have been noted and used in the literature in higher
dimensional environments (See [12], [1], and [3], [5], [7]). Graphically, a mechanism is IC if and
only if the corresponding buyer’s payoffs 7(x) are convex, with partial derivatives Om(x)/dz;
between zero and one. Furthermore, Om(x)/0x; represents the probability that the buyer of type
x receives good ¢ in equilibrium.

The preceding discussion completely characterizes IC mechanisms in terms of the buyer’s
expected-payoff function 7(x). Individual rationality requires in addition that 7 be non-negative.
Define

C={r:I"— IRy | m(z) is increasing and convex} .
Thus, 7 is an incentive compatible, individually rational mechanism if and only if 7 belongs to
C and V7 (x) € I almost everywhere (since the ith component of the gradient is the probability
that good i is traded).

Given any 7w € C, a buyer with type x receives a payoff m(z) = Vr(x) - x — t(z). Therefore,

the seller’s expected revenue when using the mechanism 7(-) is

Blt(a)] = [ (V@) -~ (o) f(a) da.

5In order to compute expected payoffs, the functions p and t must be integrable.

6 As stated, the constraints hold everywhere; it suffices that they hold almost everywhere in z and everywhere

in 2’



Given Assumption 1, we can apply integration by parts (as done in [8]) or the divergence theorem

(as done in [14]) to obtain a representation of the seller’s expected revenue in terms of 7 (-) alone:

Elt(x)] = Z /I{i}c 7(1,x_)f(1,z_;)dr_; — /n m(z)[(n+1)f(x) +z-Vf(z)de. (1)
i=1

The seller’s expected revenue is a linear functional of the mechanism 7 employed in the
transaction; we denote the linear functional by 7', and the expected revenue of using the mech-
anism 7 by (m,T). The seller’s problem is to maximize expected revenue over all IC and IR

mechanisms:
maxﬂeqvﬂgl (71', T) . (2)

When there is only one good, maximum seller’s revenue can be achieved with a mechanism
that, depending on the buyer’s reported valuation, either assigns the object for certain (i.e. with
probability one), or not at all (i.e., with probability zero). Posting the good’s price implements
this mechanism; the potential buyer acquires the good if his/her valuation exceeds the posted
price. With many goods there are additional issues to consider. The seller can post a price not

only for each good but also for each combination of goods, i.e., for each bundle.

Definition 1 A bundle of goods is a set J C N.7 A bundle J can also be represented by an

J

n-dimensional vector of zeros and ones, a’ = (af{, aQJ, oy azn) where a;-] takes the value 1 if i € J

and the value 0 otherwise.

Both representations of a given bundle are used in the paper.

Casual observation suggests that indeed sellers frequently set prices for different bundles
leaving consumers the choice of what bundle to purchase. It may be profitable for the seller to
set a price for a bundle that is higher than the sum of the prices of its components. In this
case, the potential buyer has an incentive to bypass the bundle price, and acquire the bundle by
purchasing the individual components.

The above discussion prompts the following definition.

Definition 2 A price schedule is a collection of prices P = {Pj}jcn, one price per bundle;
potential buyers select the bundle they prefer and pay the quoted price for that bundle (i.e.,

buyers cannot aggregate individual sub-bundles independently).

Given that IR must be satisfied, without loss of generality, for all price schedules, we set
Py = 0. Note that, as defined, price schedules are deterministic—purchasing bundle J implies
obtaining all goods in J with probability one. This restriction is significant. Section 5 provides
an example where deterministic price schedules are suboptimal.

Any price schedule P implicitly segments buyer types by grouping them according to the
bundles they choose to consume. Employing the notation in Definition 1, the utility of a buyer

of type = € I"™ who acquires the bundle J at price Py is a’ - © — P;.

"Note that the expression, J C N includes the empty set.



Definition 3 Given a price schedule P and a bundle J, the market segment acquiring bundle
J is
Aj={zeI"|a’ 2 —P;>d® -z - Px VK C N}.

Note that Ay is the intersection of I"™ with finitely many half spaces in R™. If, given any two
bundles J and K, AyN Ag # (), then A;N A is a subset of the hyperplane {z | (a” —a®)-z =
Py — Pg} and has Lebesgue measure zero in 1.

Fix a bundle J and its corresponding market segment A ;. For each i € J,
b={r_ e I | (1,22) € Ay}

represents the intersection of Ay with the boundary of I"™ along the coordinate z; = 1. If A;
has positive measure in IR", then Bf, also has positive measure in IR"!.
For some results, we restrict attention to price schedules that satisfy a submodularity con-

dition.
Definition 4 A price schedule P is submodular (SM ) if
(SM) VJ,KCN,PJU[(SPJ-FPK—PJQK.

If SM is not satisfied, then a type of arbitrage incentive is present. Suppose that a buyer was
allowed to buy and sell at the outstanding prices, P. If K and J overlap (that is, K NJ # ()
and the condition is violated, a buyer could form bundle K U J more cheaply by buying K and
J separately and then selling back the duplicated goods in K N J.

We emphasize that we do not impose SM as a constraint on the type of mechanisms the
seller may use. (Such an imposition would correspond to mechanisms where the seller is unable
to monitor the bundle acquired by the buyer and would require modifying the seller’s program
considered in this essay.) In Section 4, it is shown that in some environments the optimal price
schedule must satisfy SM and we take advantage of the additional restrictions it implies.?

A final restriction concerns price schedules such that all bundles are purchased with positive

probability.
Definition 5 A price schedule P sells all bundles (ABS) if

(ABS) VI #0, [ f(z)dz > 0.
Ay

The condition ABS is typically invoked for technical reasons as it allows us to ignore some

arguments that apply only on sets of zero measure.

8Condition SM does not appear to hold generally in optimal bundling mechanisms; we can show computa-
tionally, however, that in the case of independent and identically distributed valuations with F'(z;) = %,n = 3
for @ < 3, optimal bundling mechanisms satisfy this condition. Computations suggest that SM is violated with
a > 3.



3 Price Schedules—Some Properties

We introduce here some technical observations, used in later sections in the proofs of our main
results.

The first lemma illustrates that BiJ corresponds to the projection of A on the boundary,
Jatias

Lemma 1 Let P be any price schedule and {Aj}jcn the corresponding market segments. For
JCN,ielJ if (xi,x_;) € Ay then (x},x_;) € Ay for all x}, > x;. Fori ¢ J, if (x;,x—;) € Ay
then (z},x_;) € Ay for all 2} < ;.

Proof In the Appendix.

The lemma implies that for i € J, if (x;,x_;) € Ay then (1,z_;) € A;. Conversely, if x_; is
such that z_; ¢ B%, then there does not exist any x; such that (z;,z_;) € Aj.

In general, the construction of the market segment Aj; requires the comparison of utility
obtained from purchasing J with the utility obtained from purchasing any other set K. The
next lemma shows that if the price schedule satisfies SM, the number of relevant comparisons
is much smaller since it implies that, for any J, we need only compare the purchase of J with
any K such that either K C J or J C K. The result also yields a type of independence of the

set of valuations for the goods outside of the set J from the valuations for the goods in J.

Lemma 2 Suppose the price schedule P satisfies SM and let {Aj}jcn be its corresponding

market segments. Then,
(i) x € Ay if and only if a’ - x — Py > a® -2 — P for all K such that K C J or K D J.
(ii) For all K,J,K ¢ J and J ¢ K, AjN A has zero Lebesgue measure in IR" 1.
(iii) Define
4] = {eyel | (zs.y) € Ay for some y},

AT = {yel’ | (z5,y) € Aj, for some x5 € AJ}
Dy = {zeI’V | (1,2) e A} whereie J.

Let x = (xg,x ) € Ay, &’ = (2/),2';c) € Aj. Then (2}, 25c) € Ay. Thus,

(a) Ay =A% x AJ for J # N; and
(b) By =AY x DY, for N # J # {i}.

Proof In the Appendix.



4 Necessary Conditions for Optimal Price Schedules

Suppose the seller—perhaps due to industry regulations, convenience, or practice—is constrained
to choosing a price schedule in order to sell his wares. How is the price schedule determined?
Theorem 1 identifies a necessary condition for a price schedule to maximize expected revenue
within this class. The remainder of the section offers some simple applications of the result.

In Section 6 we use the results of this section to identify sufficient conditions for the optimality
of price schedules over allIC and IR mechanisms. In those environments the necessary conditions

found in this section become sufficient as well.

Theorem 1 Suppose f satisfies Assumption 1. Let P be a price schedule generating {As}jcn-
If P is optimal among all price schedules, then for all J # () such that fAJ f(x)dx > 0, the

following equation must hold,

[l 0@ 4o Vi@lde =Y [ o) dei =0,
A ieg /B
Proof ? We will state the seller’s revenue R(P) as a function of P and then compute the first
order conditions. A P such that P; = 0 for some J # () cannot be optimal, since this would
imply that the seller gains zero on buyers who purchase J and can always do better by charging
a slightly higher price (See [1] for a fuller discussion.)

For a given price schedule, P, the utility of a buyer of type x is given by maxxny{a® -z— P }.

Thus, the revenue function is given by (utilizing the representation in Equation 1)
n
R(P) = Z/” maXKCN{aK (L) — P Hf(l,—)dz—
=1 /1"

- /. maxpcn{a’ -z — P} [(n+1)f(z) + - Vf(z)] dz.

For any set B C IR™, let B be its interior and 0B its boundary.

Note that
-1, if xe (AJ)O

0, if x¢ Ay.

0
ijmachN{aK x—PK} = {

The derivative may be undefined on 9(A ;)N (I™)° but since this set has measure zero in I,
and f is a density, we ignore this component in what follows.

The assumption that the measure of Ay is strictly positive implies that Bf] has positive
measure in IR" ! and a” - (L,z_;) — Py >0,2_; € Bg. Therefore,

—1, ifxz_; € (BY)°,

9 K
——max a” - (l,x_;) — Px} = .
wenta” - (1a—i) = P} { 0, ifz_; ¢ B

OPj

9The present proof, suggested by Jean-Charles Rochet, is much simpler than our original proof.



and, again, is undefined on the (JR"~!) measure zero boundary. Since these derivatives converge
almost everywhere to a bounded, integrable function, we can apply the Lebesgue Bounded
Convergence Theorem ([4], pp. 303-305) to take the derivative of R(P) inside the integral and
obtain the first order condition so the optimal selection of Py must satisfy

0=-% [ f(1,x_i)1(1’xi)€Ade_i+/ (0 +1)f(2) + 2 - V()] Lo, da.
ey e w

Since 1(1,_,ea, = 1if and only if z_; € BY, the conclusion follows. Q.E.D.

Theorem 1 states, for any market segment A; (determined by an optimal price schedule P),
the integral of (n + 1)f(z) + Vf(x) -  on the interior of A; must equal the integral of f(x)
restricted to the intersection of Ay with the “outside boundary” of the set I"™.

When there is only one good, it is well known that the optimal price P must be a zero of

the buyer’s ‘virtual valuation’ function = — 1}@():”) ([10]). Theorem 1 generalizes this property.

To see this, note that for n = 1, the condition in Theorem 1 becomes

0=/P{2f(3?)+$f’(w)}dx—f(1)=—{Pf(P)—(l—F(P))}-

We conclude the section with some applications of Theorem 1. The first order condition
yielded by Theorem 1 provides an insight about how to compute the optimal price schedule
when the prior density f is the uniform. In this case, f/ = 0. If the optimal price schedule
satisfies SM, Lemma 2(iii) implies that

A{l} = [P{l}, 1] X B:

Thus, the necessary condition determining the price of good ¢, call it Py}, can be expressed as

1
0:/ {1—/ (n+1)dmi}d:ni.
B} Py

Solving this equation yields that the optimal price schedule (when f represents the uniform
distribution) includes single good prices given by
n
Py = n+1
The next theorem shows that there exists a price schedule P, optimal among price schedules,
that satisfies SM.

Theorem 2 Suppose f satisfies Assumptions 1 and 2. Let n = 2. If P satisfies ABS and is
optimal among price schedules then P satisfies SM .

Proof Suppose Py > Py + Ppy;. Applying the definition of A yields
Ay = {z|z; > Py — Pj,j # i}

A{l} = {z|zy < Py — P{l}, T > max{P{l}, P{l} — P{Q} + z9}}.

10



Applying Theorem 1 to the set J = N yields,

1 2 ,
- (D das | — i fi (i)
0 = Z [/PNP{Z-} filzy) fi(1)d J] /AN LZ; Filz) +3

1,J 71

fi(@i) fj(x;)dz;dz;

Therefore, at least one element of the sum is non-positive. Suppose it is the element 7 = 1.
Assumptions 1 and 2 imply x; f/(x;) + %fz(:m) > 0,7 = 1,2. Therefore, for all z < Py — Py,

VN DU
A= [ [ fenan <o ®)

Applying Theorem 1 to Ayqy, then yields

. /PN—P{l} Folwa) {f1(1) - /1 [wlf{(xl) + 2f1($1)] dxl} dxo

maX{P{l},P{l}—P{2}+Z‘2}

- / [ lar) [aafifen) + 3 foen)|
0 ma.X{P{l} P{l} P{2}+Z‘2}

—P, 1
< Y ){fl( ) — / [Sﬂlf{(ﬂﬁl) + gfl(ﬂfl)] dv’Ul} dy

0 maX{P{l},P{l}—P{Q}-FxQ}
< 0.

The first inequality follows from Assumption 2b. The second inequality from the fact that
Py > P{l} + P{Q} implies maX{P{l},P{l} - P{Q} +x9} < Py — P{Q} for zo < Py — P{l} and
applying (3). A contradiction. Q.E.D.

5 An Example Where Price Schedules Are Suboptimal

The following example illustrates that every price schedule may be dominated in terms of ex-
pected revenue by a mechanism involving random assignments.'?

Let f(x) be a constant on the region above the line joining the points (0,1) and (1,.5) and
zero elsewhere. Note that f(x) is (weakly) increasing on the unit square and V f(z) = 0 almost
everywhere, so the McAfee and McMillan condition ([8]) is satisfied almost everywhere and a
continuous approximation to this density would satisfy the condition everywhere. Note that a
separate price for good 1 is never optimal if it is such that the line z1 = Py, intersects the line
x1 + 22 = Py below the line .5bx1 + 22 = 1 since it must be strictly less than 1 and, in this case,

will only draw buyers away from the more profitable bundle priced at Py. If the intersection is

1918] claim that if n = 2 and if 3f(2) + Vf(z) - © > 0, then a price schedule maximizes expected revenue within
the class of all IC and IR mechanisms. Our example indicates that their claim is not correct. [16] independently

discovered a related example.

11



above this line, it is conceivable that a price for good one below 2(Py — 1) could add more sales
but, intuitively, it would have to be significantly below to add much and the costs from lost
bundle sales are correspondingly large. For conciseness, we restrict attention here to two-price
mechanisms. A formal analysis which shows that three price mechanisms are not optimal is
provided in the Appendix (Section 9.2).

A two-price schedule in this framework consists of the prices (P{Q},PN) where Ppoy is the
price for good 2, and Py is the price for the bundle. A typical two-price schedule is represented
in Figure 1. Buyer types who buy good 2 alone are in the set Ag,. Types who buy the bundle
are in Ay. The triangle below these regions represents types who do not trade. Note that as
the Figure is constructed, it is assumed both that Pjsy < 1 and that the intersection of the lines
xg = Ppyy and z9 = Py — x1 lies in the support of buyer types. The former fact is shown below,
the latter is true since if the intersection were below, the alternative randomized mechanism

illustrated below is easily shown to dominate this mechanism.

Apz

t t t 1: I
2(1= Pay)p P{22}(PN —1)

Figure 1: Price Schedules Can Be Dominated

Computing the area of a quadrilateral with two parallel sides, the probability mass of Ao

is given by !
/ d.f:(l—P{Q})(PN—l)
A2}

The probability mass of Ay is given by

/ dr =
AN

1To be probability density functions, all integrals should be multiplied by a factor of 4. For conciseness, the

[(Px + Ppgy — 2)(Py — Ppay) + (3 —2Py)(Py — 1/2)] .

N |

computations presented here ignore this inessential normalization.

12



Expected revenues from a given Py, Py are Ppgy [ Ay dx+ Py [ Ay dz. Using the above equa-
tions and differentiating with respect to Pyoy yields a value that is strictly negative at Ppgy =1
(unless Py = 1 which is easily shown to be dominated) and the optimal Py} as a function of
Py is given by

Ppoy = (2Py — 1)/(3Py — 2).

Substituting this value for Py, into the expected revenue function and maximizing over Py
gives via Mathematica, Py = 1.26, I:’{Q} = 0.85 with expected revenues 1.16.

Suppose that instead of the price schedule, a buyer is offered the bundle at price Py =1.26
or a stochastic bundle at price equal to 1 which consists of good two with probability one and
good one with probability one-half . This mechanism can also be seen in Figure 1. Observe that
if a buyer type (z1,x2) is indifferent between the two choices, then xo + 21 — Py = x2+ .521 — 1,
so a buyer of type (x1,2}), x5 > x9 is also indifferent. Therefore the set of buyers who choose
the full bundle is given by the region above the bottom of the support and to the right of the
dotted line. The remaining region represents buyers who choose the random bundle.

The probability mass of these regions are given by (3 — 2Py )(Py — 1/2)/2 for buyer types
who get the full bundle and (Py — 1)? for those who buy the random bundle. Therefore, profits

from this mechanism are
1
(Pv —1)* + 4 (3= 2Py)(2Py — 1)Py.

Evaluated at Py = 1.26, i.e. the optimal two-price schedule, the expression above indicates
profits of 1.19, higher than those obtained with the two-price schedule. Optimizing within this
class of random mechanisms improves profits slightly to 1.192 and yields a bundle price of 1.28.
Notice that this random mechanism is more efficient than the optimal price schedule because
the latter never sells good 1 unless it is sold as part of the full bundle. The random mechanism
offers at least a chance at good one. This increased efficiency also raises seller revenues.?
Compared to price schedules, random mechanisms may be very complicated to compute and
difficult to implement. It is therefore of great interest to understand when attention can be

restricted to price schedules. This is the subject of the following sections.

6 Revenue-Maximizing Price Schedules

We now identify environments where a price schedule is the optimal mechanism within the class
of all IC and IR mechanisms. We find conditions under which a price schedule is the solution
to the optimization problem in (2). To that effect we use the following Lemma. The Lemma
resembles a duality result from linear programming. Therefore, we use in its statement the
abbreviations CSD, CSP, FD, and NN, that stand for complementary slackness in the dual,

12For computational ease, the density in the example is only continuously differentiable in a strict subset of the
unit square with Lebesgue measure one. By continuity of expected revenue with respect to measures, there are

continuously differentiable densities that yield similar results.
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complementary slackness in the primal, feasibility of the dual, and the non-negativity of the

dual operator, respectively.!

Lemma 3 Let 7 € C, Vi < 1. Suppose there exists a linear functional w on C' such that

(CSD) (7, T —w) =0,
(CSP) (1-z—7,w)=0,

(FD) (m, T —w) <0,Vmr € C,

(NN) (l-z—mw)>0,VreC,Vr <1.

Then 7t € argmaxcc, va<1(m,T).

Proof Using the four hypotheses, it follows that

(w7, T) = (1 -z,w)
> (1 z,w)+ (7, T —w), Vmre C
= (m, > (1-z—muw), Vel
> (m,T),Vme C,Vr < 1.

The first line comes from C'SP and C'SD, the second line from F'D, the third line from linearity,
and the last line from NN. Q.E.D.

Let P be the revenue-maximizing price schedule within the class of such schedules. Suppose
in addition that P satisfies SM and ABS. Let {A;}jcn be the corresponding market segments,
and 7(z) be the expected utility of a buyer of type x in this mechanism.

Theorem 3 essentially shows that under certain conditions on the density f, P is globally
optimal if F'D and NN in Lemma 3 hold. After stating and proving Theorem 3, we discuss
the case n = 1, and then offer an alternative representation of one of the Theorem’s conditions,
later used in the applications.

We begin with some useful definitions. Suppose Assumptions 1 and 2 hold. The sets
AT ATE, f] are defined in Lemma 2. Define Ky = 0 and, for any bundle J # N, let

fAjc i¢J mffix Hk¢Jfk(~’Uk)d33Jc
fAf Hk¢J fr(z)dz ge

Since Aj; has positive measure, K ; is well-defined. Define the functions ¢ : Aj — IR by ty =0,

K;= (4)

and

Sczf

(xj —71+1+Z f

ied

K. (5)

13The duality theorem from linear programming yields both necessary and sufficient conditions. Our statement
offers only sufficient conditions because we do not possess a complete characterization of the adjoint of the linear

functional that corresponds to the constraint, Vo < 1.
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Note that by definition of ¢x and (1), the objective function (7, T’) can be expressed as,

n

1) =3 [ aefa) - [ @) [, ()
i=1 71"
and that when P satisfies SM and = € A, Assumption 2 and Lemma 2 imply

@) [ f@dee = [ @) fe)daye (7
A A
Assumption 2 implies ¢ (-) > 0; therefore t;(-) > 0 for all J.

Before stating Theorem 3, two additional assumptions are necessary:

Assumption 3 Fiz a density f and a price schedule P. Let {A;} and {B%} be the market
segments and their boundaries corresponding to P and let {t;} be the functions defined using

(4) and (5).1* Then,

Vore C,Vr <1,
J;V {ZEZJ/J [t a-e) =l o)) ST, =d)d—s = /A(, [1-2—n(z)] tJ(:I:J)f(x)de‘} > 0.

Assumption 4 Fiz a density f and a price schedule P. Let {A;} be the market segments
corresponding to P and let {t;} be the functions defined using (4) and (5). Then,

vreC, ) /A m(x)[tn(z) — ty(z))]f(z)dz > 0.

JCN

Assumptions 1 and 2 do not imply NN and FD in general, however, the next section
identifies environments where, given Assumptions 1 and 2, there exists a price schedule P,
optimal among all price schedules, that satisfies SM, ABS and Assumptions 3 and 4. It will
then follow from Lemma 3 that P maximizes expected revenue over all IC' and I R mechanisms.
Assumptions 3 and 4 serve the role of ensuring that conditions NN and F'D respectively are
satisfied more generally. They are by no means transparent. Their role, here, is mainly to
illustrate that the problem of checking the optimality of price schedules can be distilled to

checking these conditions. We defer discussion of the assumptions until after the Theorem.

Theorem 3 Let the density [ satisfy Assumptions 1 and 2. Suppose P is optimal among all
price schedules and satisfies SM and ABS.

1. Then, there exists a linear functional w such that conditions CSP and CSD hold.

2. If in addition Assumptions 8 and 4 hold at the optimal P, w satisfies conditions F'D and
NN.

4 Note that all these objects depend on P. Note as well that Assumptions 3 and 4 require the inequalities to

hold for a wide class of functions, 7, not just the candidate optimal 7.
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Proof The proof proceeds by defining a candidate linear functional and then showing that,
under the hypotheses of the Theorem, all four conditions of Lemma 3 are satisfied where 7(x) =
max -y (a’ -z — Py) is the equilibrium utility of a buyer of type z offered a price schedule P.
Throughout, the market segments, {A4;}, the boundaries, {B%}, and the functions, {t;}, are
determined by P.

We first prove an intermediate result that follows from Theorem 1. At the optimal P, for
any J C N,

0 = Z i f(law—i)diﬁ—i_/AJ /AJC ty(x)f(z)dz jedr s

icJ
- /flﬁcklngk(m)dwc ; /D?} kelgﬁfk(xk)fi(l)dm/i—//‘j tJ(xJ)Efj(xj)de

The first equality follows from Theorem 1 and (6). The second equality follows from Lemma 2,
independence, and (7). The final equality collects the terms in k ¢ J. ABS implies that the
first term is strictly positive. The case for J = {i} follows identically noting that B} = A7J".

Therefore,

VJ £ 0,0=">" fi(1) / I fiepdas| - / i) [ fitag)day, 8)
icJ Dy jerjti Ay jeJ
where it is to be understood that fo] ez fixi)da s = 1if J = {i}.
We now prove the Theorem. The following expression defines the linear function w. For any

continuous function 7 : I — IR,

e x (]

JCN \ied

(L) f(l,a:_,-)dx_i] - / (@)t (2)) (@) dx} T
7 Ay

To show CSP, x € Ay implies that 1 -z — #(z) = a’* -+ P;. This implies that for z € A,
12 — #(x) does not vary with z; and, in particular, 1 - (1,2_;) — 7#(1,z2—;) = 1 -z — 7(x).

Therefore, applying the definition in (9)

<l z—-—Tw> = ZAJc(aJc-x+PJ)Hfj(xj)dec><
J

JCN Jj¢J

S A [T fandess = [ e T] e

icJ T jEd ji jeJ

= 0.

The first equality exploits Assumption 2a and Lemma 2(iii). The second equality applies Equa-

tion 8.
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To prove C'SD, we show first that, for any i, 71 and U Jic JBf] are equivalent. Note that
ABS implies Pg;p < 1. Therefore (1,2_;) ¢ Ay for any i. Suppose there exists i and z_; such
that x_; ¢ BY for any J containing i. Then there is a K # (0,7 ¢ K such that

Ko (Lo — P> a0 (1,0_) = Py,

But this implies
PKU{i} >1+ Pg > P+ P{Z-}

which violates SM. Thus I3 = UJ7ieJB3. Noting that U;en Ujics Bf] =Ujcn Useg Bf] yields

lz:;/z{i}c m(a-)f(Ledr= 3 Z/ Lz i)dr_;.

JCN ieJ

Therefore, using this expression in the definition of (m,w), we have (using (6))

<, T —w>=— Z/A x) — ty(x )] f(x)dx reda ;. (10)

JCN

J

Since z € Ay implies that 7(z) = a’ - * — Py which does not vary with z;,7 € J¢ and = € Ay

implies 7(x) = 0, (10) becomes

S / a {/AJ it (z) — tJ(xJ)]f(x)dec} dzy = 0.

JCN,J#D

The equality follows using (7), SM and Assumption 2a.

F'D follows immediately from Assumption 4 since this implies Expression 10 is non-positive
for all T € C.

The definition of w implies (1 - x — 7, w) is the same as the left side of the inequality in
Assumption 3. Thus Assumption 3 implies NN is satisfied. Q.E.D.

Consider briefly the content of Theorem 3 in the special case of one good, i.e. n = 1.

Assumption 4 is trivially satisfied because the only case to consider is J = N = {1}. Let P

solve 0 = P — 1}%;3). The left side of the inequality in Assumption 3 can be written as

1 1

_1-F(z)
f(z)

by noting that ty(x)f(z) = 2f(x) + zf'(z) = %{mf(ac) — (1= F(z))} and integrating by parts.

u—wu»ﬂn—/

P

o= n(@tx(o) ) = [ 1= V()] [« | rt@)as,

the region of integration for all 7 € C,Vr < 1. Thus Assumption 3 is satisfied as well. When
n = 1, both SM and the independence of f are trivially satisfied and thus Assumptions 1 and
2 are sufficient to conclude the optimality of a price schedule. Theorem 3, therefore, specializes
although in a somewhat weaker form (because it requires Assumption 2b), the known result for

n = 1. Assumption 2b remains useful even for n = 1 because it implies that the requirement
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that the buyer expected utility function be convex, more precisely that IC is satisfied, does

not bind at the optimal solution. (Recall that 7 € C implies 7 is convex.) If Assumption 2b

failed, so that = — 1}8()9”) becomes positive and then negative, setting 1 — Vr(x) = 0 when it

turns negative would satisfy Assumption 3 but would violate convexity. For the one-good case,
without Assumption 2b, the solution involves the ‘ironing’ approach on ¢y (z) to eliminate the
double-crossing. (See, for example, [14].) We conjecture that Assumption 2b plays a similar role
in the general n-good case.

Assumptions 3 and 4 are only indirectly assumptions on the primitives of the environment
(the f;s) since, in principle, testing whether they hold requires determining the optimal price
schedule for the given f;s and then checking the conditions on the resulting market segments.
The usefulness of Theorem 3, thus, relies to a large extent on the feasibility of verifying Assump-
tions 3 and 4. Admittedly, the assumptions do not possess a simple economic interpretation.
However, the conditions are implied by a more familiar mathematical property. Inspection of
Assumption 4 reveals that it is a type of covariance condition. Once the market segments have
been constructed, if every feasible mechanism, m covaries positively with ¢ty —t; over A for all
subsets J, then F'D in Lemma 3 is satisfied. For some families of distributions, this feature

follows readily. For example, if F*(z;) = 2, then
ty(zy)=n+1+n(la—1),VJ

so ty —ty = 0, and the condition follows directly. In other circumstances, more knowledge about
the behavior of ¢ty — t; and the structure of the market segments will be required. Theorem 4
below offers an example of such an application.

We conclude this section with a lemma and corollary that play the role analogous to inte-
gration by parts in the one dimensional case. Under Assumption 2b, these results offer a second
covariance condition that implies Assumption 3. The next section uses the new condition to
verify Assumption 3 in two different environments.

For x € Ay,i € J, define

1

Th(wi,x—;) = f(1,2—;) —/ th (v, 2 y) f(v,2-;)dv (11)
for some t4: A} — R, ti(xs) >0, Zt?j(.’]}']) =ty(zy).
icJ

Setting tf] =t  for some ¢ € J, and tf} =0 for k # i,k € J illustrates that there always exists a
collection of tf;’s that satisfy the conditions in the definition. By construction and Assumption
2b, T (x;,_;) is increasing in z; and T%(1,z_;) = f(1,2_;).

By Lemma 1, we can define the functions z; : I"™! — IR by

zi(x—;) = min{z; | (2, 2-;) € Ujcn,icsAs}- (12)
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Lemma 4 Let Assumptions 1 and 2 hold. Suppose P is a price schedule satisfying SM and
ABS and let {T%,t"} be a collection of functions satisfying (11) and let x;(x_;) be defined as in
(12). Then,

()
< T w >= Z Z/ {/ (1, 2_) — m(x)|ty (xy) f(x)dx; +W(l,x_i)T}(xi(a:_i),x_i)} dx_;.

JCN ieJ

If, in addition, P is optimal among price schedules,
(i) 0="13c; fo} T}(wi(xj/i,ch),xJ/i,:ch)de/i,VJ C N,zjc € Ajc; and

(iii) Th(zi(x—;),x—;) = 0,VJ = {i},Vo_; € BY.

Proof In the Appendix.

The following Corollary, based on Lemma 4(i), is useful to verify that Assumption 3 holds.

It requires that the functions 7% (z;(+), ) covary positively with any increasing function over BY.

Corollary 1 Let Assumptions 1 and 2 hold. Suppose P satisfies SM and ABS. Let {Ti,tf]} be
a collection of functions satisfying (11), and let x;(x—;) be defined as in (12). If for all J C N,

for alli € J, for all w: I""' — IR,, T increasing,

[ r@Tiaa) e > o

J
then Assumption 3 is satisfied.
Proof If w € C,Vnw <1, then, for all x € I", convexity implies
1-(1,z—) —7(l,z—;) — (1 -z —w(x)) > 0.

Since tj(xy) > 0 by Assumption 2, applying Lemma 4 (i) gives

lz-—mw)y> ) Z/ (L z )T (zi(2_i), 2_;) Ydx_;.

JCN ied

But 7 € C,Vr < 1, implies 1-(1,2_;) — 7(1,2_;) is increasing so the conclusion follows. Q.E.D.

Note that Lemma 4(iii), under the hypotheses of Theorem 3, implies that for J = {i}
/ (@) Ty (wi(w i), w—i)dw_; = 0,V
b

Therefore, we only need to check the hypothesis of Corollary 1 for J,|J| > 1. Of course, in the
case n = 1, the only relevant bundle has cardinality one, so Assumption 3 follows directly from
Assumptions 1 and 2.

The next section illustrates the usefulness of Theorem 3 by constructing the functions {T° }, tf]}

so that the hypothesis of Corollary 1 is satisfied.
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7 Applications

Although the features of revenue-maximizing mechanisms are well-understood in the one-good
case, far less is known in the very simple generalization to multiple goods. In this Section, we
use Theorem 3 to identify environments in which price schedules are optimal over all IC and
IR mechanisms. We first provide simple sufficient conditions for the optimality of posted price
mechanism in a general class of two-good models. Then we study a more specialized case for
n = 3 with a uniform distribution of valuations.

Corollary 1 illustrates that Assumptions 3 and 4 can be confirmed by checking whether
certain functions covary positively with increasing functions over the market segments or pro-
jections of the market sections. There exist a variety of results that inform us when two functions
covary positively. For example, if a function g : [a,b] — IR integrates to zero and crosses zero
once then the integral of the product of g with any increasing, positive function can be signed.

This fact is used frequently in this section to prove that the covariance conditions are satisfied.

Theorem 4 Let N = {1,2},(n = 2) and let f satisfy Assumptions 1 and 2. Suppose x}fég(ﬂx)z)

is increasing for i = 1,2. If P is optimal among price schedules and satisfies ABS, then it is

optimal over all IR and IC mechanisms.

Proof By Theorem 2, P satisfies SM. Figure 2 illustrates the typical form of A; and B?} given
SM:

Ay = {(wi2-) |- < Py — Ppyai = Py,

Anv = {z |22 > Pn — Py, 71 > max{Py — Pg}, Px — 22}},
By = {z_i|xzi€[0,Py— Py},

B;V = {x—i ‘ r_; € [PN - P{z}al]}

We first verify that Assumption 4 holds by showing each component in the summation is

non-negative. This follows trivially for J = @) and J = N. For J = {1}, say, SM implies

z2 f3(w2)

/A @) b} e = /;} /OPN_p{”W(x)[ i —K{l}] f(@)da

1 Pn—Pp,
/ {/ m(x) fa(x2)dra X
Py Wo

/PN_P{” [@fﬁ(@)
0 fa(z2)

v

- K{1}} f2($2)d$2} fi(z1)dzy
= 0.

The first equality follows by definition of Ay and t;, the inequality follows because 7 and
xa f5(x2)
f2%ﬂc2)
definition of Kyjy. A similar argument holds for J = {2}.

— K1y are both increasing in x5 and, so, covary positively. The final equality follows by
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Z2

A 7
, #1(8) .
A2y 2=ty Ay
th =0 :
: th +t% =tn
Pray
L Py — 21(0)
[
t5 =
Aoy Ay
t > T

Figure 2: Construction of tﬁ\, for Theorem 4

We now verify Assumption 3. We do so by defining the t’s required by Corollary 1.
Lemma 4 and Corollary 1 imply we need to check the result only for J = N. Lemma 5 shows
that the proposed definition satisfies the conditions of (11). The spirit of the definitions can be
seen in Figure 2.

Define

LTouf(v .
w'(z; 8) = f:(1) —/ { J{Z((v)) +3/2+ (—1)'8| fi(v)dv. (13)

Assumption 2 and 8 € (—1/2,1/2) imply that w! is strictly increasing in z. Since w(1;3) >
0 > w'(0; B3), #;(3) can be uniquely defined implicitly by

w'(2:(8); B) = 0. (14)

The next lemma characterizes the decomposition of ¢y that is used to apply Corollary 1. The

proof is in the appendix.
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Lemma 5 For 3 € (—1/2,1/2), define ;(8) by (14) and define t'(z; 8) by

thiz;B) = tn(z), x <& (),
- ”}f(f)) +3/2 4 (—1)i3, vy > 3 i(B), i > #:(8),

There exists (8, 3) C (—1/2,1/2) such that for all 8 € (3, B), t (x; 8) is defined for z € An(ae),
th(z;8) > 0, and th (z; B) + 13, (z; B) = tn(z) for x € An(ae).

Thus, the conditions in (11) are satisfied and T% (z; 8) is defined as in (11) using t4(+; 5).
We prove that Assumption 3 is satisfied by showing the existence of a § such that the hypothesis
of Corollary 1 holds for T4 (x; 3).

Part (i) of the next lemma confirms a single-crossing property and Part (ii) shows how to

address the potential asymmetries of the f;s. The proof is in the appendix.

Lemma 6 For i=1,2,

(4) Ty (zi(z—i),x-3; 8) <0, i <&-4(B),
T (@i(z—i), -5 8) > 0, z—; > 2(B),
(i) 38 € (8, B) such that /1 T4 (i(x_), 2 B)dz_; = 0.
B Pn—Ppy

Thus, selecting a [ satisfying Lemma 6(ii), for any increasing, positive m,

1
/ (a1, TR (21, 22(x1); B)dwy

Pn—Pyay

#1(6) 1
:/ 77(301,1)T1%f(l‘1,902($1);5)d$1+/ m(21, )T (21, 22(21); B)dr:
Py —Prg) 21(B)

Z?T(fffl(ﬁ)ﬂ)/P . Tx (w1, x2(21); B)dws
N — P2y
=0.

The inequality follows from the single-crossing property of T%(z1, z2(z1); 3) in 21 (Lemma 6(i))
and the monotonicity and non-negativity of m. The equality follows from Lemma 6(ii). A
similar argument follows for T%. Applying Corollary 1 and Theorem 3, the conclusion follows.
Q.E.D.

The assumption that x}f zg(;f; ) is increasing is unusual, and appears to arise specifically because

of the multidimensional character of the problem. As far as we know, it is not a commonly
imposed restriction. The conditions are strong but not empty. The class of distributions,
7z, oy > 0, and the class of distributions, K" ;(e*® —1),a; > 0, K > 0, both satisfy

this condition and Assumption 2. '

15The family of beta distributions also satisfy the assumption for 3 > 1. Neither the normal nor the Gamma
distributions satisfy it. See [2], pp. 37-40.
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Remark: Note that the program in Theorem 1, selecting an optimal price schedule among all
such schedules, is typically not concave. Thus, in general the necessary conditions obtained
need not be sufficient. Since Theorem 4 solves an optimization problem over a larger feasible

set, it illustrates that, for n = 2, if f satisfies Assumptions 1 and 2, and if :;cf éx)) is increasing,

the necessary conditions in conjunction with ABS are also sufficient. (The requirement that all
bundles be sold with positive probability serves, in part, to rule out the possibility that the first

order conditions are identifying minima to the seller’s problem.)

Checking that Assumptions 3 and 4 are satisfied becomes progressively more challenging as
n increases. If more structure is placed on the problem, however, it is still possible to verify

both assumptions. We do so for n = 3 in the following theorem.

Theorem 5 Let N = {1,2,3},(n = 3) and let f; = 1,i = 1,2,3. The price schedule P, Pp;; =
3/4, Py = 114, 5 # i, Pn ~ 1.22 is optimal among all such schedules. It is also optimal over
all IR and IC mechanisms.

Proof Direct computation shows that the best price schedule is Py = 3/4, P; ;3 ~ 1.14,5 #
i, Py =~ 1.22. Note that this satisfies SM, ABS and is symmetric.'6

Assumption 4 holds because the uniform density implies f/(z) = 0 and thus ty(x)—t;(z) =0
for all J and =.

It remains to verify that Assumption 3 holds. The proof proceeds as follows. First, the tf,’s
are defined and it is shown they satisfy (11). Second, it is verified that Assumption 3 holds
for two and three good bundles. The symmetry of prices implies that if (v,w,y) € Agyy, then
(w,v,y) € Afgy and so on. Thus we can restrict attention to the argument for one good and
bundles containing it, say, good 3.

The next lemma exploits the symmetry of the optimal price schedule to construct the de-

composition of ¢;(z ) that is used to apply Corollary 1. The proof is in the appendix.

Lemma 7 Define
ng{xEAJ‘xink,iEJ,k#i}.
th(zg) = ty(2)Lgi-
Then t'(z) is defined for all x € Ay, t4(z) >0, and Y, t%(z) = t;(x) for allz € Aj.
Define
x;(x_;) = min{x; | (x5, 2_;) € SY,i € J}.

Recall from Lemma 2 that, for z € Ay, both z,(-) and z;(-) are independent of components in
Je. Since t(z;) = 0 for z; < z;(w/;,2),2 € A, and t(z;) = 4 for z; > zi(2 )i, 2),2 € A%,

(because of the uniform independent density assumption) direct integration in (11) yields

Ti(zi(z_s), 2_;) = 4x;(x_;) — 3, x_; € BY. (15)

18The computed price schedule also satisfies the necessary conditions derived in Theorem 1.
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Two-good Bundles: For (say) J = {1,3}, SM and Lemma 2(ii), imply that B?I 3y is bounded
on the interior of [0, 1] x [0, 1] by B?S} and B?’l gy1- Using the definition of Bf{)’3} and the fact

that = € A{1,3} N Ay implies o = Py — P{1,3} yields

B}y 5y = {(z1,22) | 21 > P gy — Pysy, w2 < Py — Pgy ),

and, applying the definition of S?l 3

x3(x—3) = Ppgy — a1, z1 € [P 3y — Pysy, Prusy /2]
= I, x1 € [P{173}/2,1}

which does not vary with z2. This implies that for z_3 € B?l 3p z3(7r—3) < Pgy if and only if
z1 < P3y and, thus,

Tf’lyg}(xg(xfg),x,g) <0<& 1 < P{3} (16)
Since Tf’l’g}(ﬂfg(:c%),x,g) does not vary with xo for x_3 € 3?173}, Lemma 4(ii) along with
symmetry implies

1

V.%'Q S PN - P{1,3}, /P » T?l’g}(.%'g,(l‘_g),l‘_g)dxl =0. (17)
{1,337 +{3}

Thus, for all increasing 7,

/ m(x_3, 1)T§173}($3(3§‘,3),$,3)d$1d$2
B

3
{1,3}

PN7P{173} 1 3
2 / W(P{g,}, 9, 1) / T{173} (333(:6_3), .CC_3)dl’1dx2
0 Priay—Piay

=0.

The inequality follows from the definition of 3%1,3}7 (16) and the restriction to 7 increasing.
The equality follows from (17). The symmetric argument shows the same inequality for J €
{{2,3),{1,2}}.

Three-good Bundle: Figure 3 in the appendix represents the set B3, N {(z1,z2) | #1 > 72} in
(z1,72) space. By SM and Lemma 2(2), B3; is bounded on the interior of [0,1] x [0, 1] by the

3 3 3
sets B{1,3}’ B{g}, B{2,3}' Thus,

B?V = {(a:l,xg) | Ty > PN — P{Q’g},l’g > maX{PN — P{173}’ PN — P{3} — $1}}

We use the following lemma, shown in the appendix. For ¢ = 1,2, j # i, define the function,

1
GZ(LEZ) = / T]%($3($,3),$,3)d£ﬂj. (18)

max{z;,Py—Pzy—z;}
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Lemma 8 For:=1,2,

(i) T3 (x3(x_3),2_3) > 0 & maz{zy, z2} > Pysy.
(49) 3a < Pgy such that G'(z;) > 0 < z; > a.
1
(itd) / i) das = 0.
Pn—Pyy 3y

Let 7 be any increasing, positive function. We can now apply the following inequalities:
/3 7'['(35‘_3,1)T]%($3($_3),l’_g)l{zlsz}dl‘ldIQ
BN

1 1
= / / 71'(.1‘_3, 1)T]{’,(x3(:v_3),3:_3)dx1dx2

PN_P{l,S} maX{z‘Q,PN—P{g,}—xQ}

\%

1 1
> / / 7(Prsy, 2, DT3(x3(z_3), x_3)dz1ds
PN7P{1’3} maX{wg,Ppr{:;}fmz}

1

Il
S

(P, 2, 1)G*(x2)dxy
Pn—Pyy 33
1

/ F(P{g}, 9, 1)G2(sc2)dx2 + / 7T(P{3}, 9, 1)G2(x2)dx2
PN7P{1,3} a

1

> 7T(‘P{3}a a, ]-) / G2($2)d$2
Pn—Pyy,3y

=0.

The equality follows by applying the characterization of Bf’\,. The first inequality follows be-
cause 7 is positive and increasing in x; and applying Lemma 8(i). The next equality applies
the definition of G2(-) in (18). The second inequality follows from Lemma 8(ii) and because
7(Py3), w2,1) is positive and increasing in z2. The final equality follows from Lemma 8(iii).

A symmetric argument shows
/3 71'(.%'1, 9, l)T]?\)[(.%'g(l'_g), $_3))1{122x1}dx2d$1 Z 0.
BN
Thus, for all increasing ,
/ m(x_g, )T (x3(x_3), x_3)dr_3 > 0.
BY

Applying the same arguments to B]2\,7 lev yields the conditions required by Corollary 1 to

show that Assumption 3 holds for J = N. Combining with the argument for |J| = 2 and

applying Corollary 1 we have Assumption 3 is satisfied and Theorem 3 yields the conclusion.
Q.E.D.
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8 Conclusion

We conclude with a brief discussion of the possibilities for weakening some of the conditions
invoked in Theorems 4 and 5.

The identified environments are quite restrictive even in the n = 2 case. We believe this is
no accident. In a companion paper, [7], we note that the set of IC and IR mechanisms is convex
and has extreme points. Since the seller’s objective functional is linear, the solution set will
always contain an extreme point of the feasible set. In the case of n = 1, the extreme points are
simply the set of take-it-or-leave-it prices. Thus, the well-known result for n = 1 is immediate.
The set of extreme points when n > 1 is far richer and includes mechanisms with significant
randomization in the allocation of objects.

Some conditions arise as a consequence of the strategy of proof. Assumption 2b also appears
(in various forms) in many single-dimensional applications. In the one good, one buyer case, it
is known not to be required, however, it is often invoked to simplify the analysis. It implies the
monotonicity of the virtual valuation function. In the context of our approach, it allows us to
ignore the convexity constraint on the utility functions that comes from incentive compatibility
because the requirement that utility be convex is not binding at a solution.

The example in Section 5 suggests that negative covariance of valuations poses problems, so,
it may be possible to weaken Assumption 2a (independence). A potential conjecture to explore
is whether this can be weakened to the requirement that f satisfy affiliation. One hurdle to such
an extension is that sufficient conditions for multivariate functions to covary positively against
affiliated densities (and therefore, to check Assumptions 3 and 4) require the domain of the
functions to be sublattices — a condition that is not typically satisfied by market segments even
when SM holds.

xi fl(24)

The requirement that 7o) be increasing is the most unusual condition. It does not arise in

the one good case. However, ensuring that Assumption 4 in Theorem 3 is satisfied relies critically
on this restriction and its role is clearly tied to the multiple good problem. We have constructed
examples which satisfy Assumptions 1 and 2 but not this final restriction and which appear to
show that price schedules can be dominated. However, the comparisons lead to differences in
the order of the sixth digit and we do not have that much confidence in these results.

Finally, the extension to n > 2 brings forth additional difficulties. To verify that Assumption
4 is satisfied additional restrictions on the family of distributions may be necessary. A density

such that x}f Eix)l) is increasing need not suffice because sets such as Af are not generally sub-

lattices and the covariance argument used in the proof of Theorem 4 no longer can be applied.
If we restrict attention, however, to distributions of the form Fj(x;) = z¢, then it can be shown

that Assumption 4 is always satisfied.
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9 Appendix

9.1 Proofs

Proof of Lemma 1 (z;,z_;) € Ay implies that aj-x — Py > ag - x — Px for all K. If i € K,
then raising z; to z raises both the left and right side without affecting the inequality. If i ¢ K,
then raising z; to x increases the left side but the right remains fixed. The argument for the

second statement is similar. Q.FE.D.

Proof of Lemma 2 (i). Necessity follows from the definition of A;. To show sufficiency,

suppose z, J satisfy the hypotheses of Part (i) but ¢ A ;. Then, there exists a set K such that

JNK

CLJ'J)—PJ a -x — Pjnk

a‘]-x—PJ > aJUK-x—PJuK

v

o x—Px > ol z— Py

Summing the inequalities and using a’ + o = a/™K + oY yields Pxyuy; > P;+ Pk — Pjnk
which violates SM.
(ii) Now suppose that x € A;jN A, KNJ ¢ {J, K}. Applying the same argument as above

implies
CLJ'l’—PJ > a‘mK-:c—PmK
CLJ'QS—PJ > aJUK-x—PJuK
aK-x—PK = a‘]-x—PJ.

Summing the three inequalities and applying SM implies that all three must hold with equality.
But this means that A;NAg is the intersection of at least three linearly independent hyperplanes
(we could have K N J = () which has zero measure in IR"~ 1.

(ili) Let = (2, zjc). Part (i) implies if # ¢ A there must exist K, K C J or J C K such
that o -7 — Px > a’ -7 — Pj.

Suppose a® - T — Py > a’ - T — Py for K C J. 2/ € Ay implies
al ' —Pr=a’ T—-P;>a" -2 — Px=d" -7 — Pk,

a contradiction.

Observe that J C K, implies a® -7 —a”’ - (2/ —2) =a® -z and 0’/ -7 —a’ - (2 —2) = a’ - 2.

J .7 — Py < af - T — Py implies a’ - © — P; < o' - x — Pk which contradicts the

Therefore, a
hypothesis that x € Aj.

The cartesian product representation of the sets Ay now follows. Q.E.D.
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Proof of Lemma 4 (i) By definition of w in (9) and ¢/, in (11)

(mw) = ZZ/ fQ o) de_; — ZZ/ )ty (x) f(x)dz

JCN ieJ JCN ieJ
= m(l,z_;)f(l,x_;)dx_; — x)ty () f(z)dx
J;sze;/ J;sze;/ /xl(a: i) !
1
= l,z_;) — 7(z)th(z x)dx;| dr_;
JZ;VZ;{/ [ ) f(as) /w» (@)t) (@) (@) ] }
= ZZ{ / ) (L a—) - Thwi(a—),a-)
JCN ied

1
- / w(@)ty (2) f (@) dai + 7(L 2 ) Th(ai (), ) dx}

> Z { L] (@)t () (@) dai + (1, )Tz, 1) dm} .

JCN ieJ
The second equality follows from the definition of z;(-) and Lemmas 1 and 2. The next equality
collects all terms in the summation in i and the next one adds and subtracts T (z;(v—;), 7—;)m(1, 2_;).
The final equality follows by (11) using the fact that 7(1,2_;) does not vary in z;.
(ii) Applying Equation 8, Lemma 2 and the definition of ¢/, yields for all J,z € Ay,

0 = J]frl=)d / 11 fj(ffj)fi(l)dfw/i—AJtZ(fJ)Hfj(xj)d$J

k¢ J icd |/ P7 jegjti 7 =
= Z/ HfJ () !fz / tS(xJ)fi(mi)dxi] dx j/;
iceJ J];ﬁl xl(x*i)
= Z/ T (xi(x_;) yT—i)dT g/
ieJ

The second equality follows from the definition of z;(-) and Lemmas 1 and 2. The next equality
uses the definition of T7.

(i) If | J |= 1, then the integration operation vanishes and x_; € BY implies T/ (z;(z_;), v_;) =
0.

Proof of Lemma 5: The proof requires three intermediate results.
(i) B e (—1/2,1/2) implies #1(-) (resp. Z2(+)) is continuous and strictly decreasing (increasing).
(i) 3(B,0) C (—1/2,1/2) such that 8 € (8, 3) implies £;(3) > Py — Py_;,i = 1,2.
(i) VB (B,8),2:(B) < Py —3-i(B):
(Part i) Total differentiate (13) to obtain
L - Fi(a,(8)
2i(B) 7 (2:(B)) + (3/2 + (=1)'B) fi(2:(8B))
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Assumption 2b implies that the denominator is strictly positive so the implicit function theorem
implies #;(+) is continuous. f;(1) > 0 implies #;(3) < 1 so the sign of the numerator is (—1)".
(Part ii) We show first that we cannot have 2;(3) < Py — P{_; for both i = 1,2. The first

order condition from Theorem 1 and the definition of ¢y (x) imply

2 1

0= > /PNP“} fj(xj){fi(l)_/l [xifi’(xi)+(3/2+(—1)2’5)]3(%)] da:i}dwj

ST max{Py—Py;y,Pn—z;}
2 Py . 1 .
= Y [ pel Py -z + [ )l (P - Py s
i=1,j#i Y PN~ Py Py
Theorem 2 implies that Py — P < Py so the first term has positive measure and for z;
in this range, Py — z; > Py — P;. Since w'(+; ) is strictly increasing and w'(#;(3); 8) = 0,
if 29(3) < Py — Pyjy, then both terms are non-negative and the first term is strictly positive
yielding a contradiction. Therefore, suppose that #1(8) > Py — Py while 22(3) < Pn — Py
Since £1(+) is decreasing and continuous and £1(1/2) = 0 we can raise 3 to 3 < 1/2 such that
21(8) = Py — Ppgy > 0 (since Ay} has positive measure) . By the above argument, this implies
#2(8) > Py — Pp1y. To find 8 > —1/2 now reduce 3 so that Z3(8) = Py — Pyq) > 0.
(Part iii) The following inequality is used in the proof. For J = {i},j # i,z < P; and
x; > Py — Py, Equation 8 implies using the definition of ¢t; and K,

o= s [ mf e

> b@ﬁ{ﬁu)_/qrj§£+3+ ﬂxﬂqjxwm}
i(v)

zjfi(x;)
> fm{ﬁl—/[ 434 29 ]fvm}
I U A T A T R
1
= B = [ tx () i) (19)
The first inequality follows because }Jf(/; )) increasing and x; > Py — Pj implies F [U}fjl(fuu;) | w <
x]f (mj)

Py — Py < T ( 5 The second inequality follows by Assumption 2b and z < Pj. The last line
J
comes by definition of ty.
Suppose that 2;(8) > Pn — (), # i. The first order condition from Theorem 1 applied
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to Ay can be written as

Pyn—i;(8) 1
0 - Z{ / [fz-(l)— [ @i

g2i (Y PN—Priy Py —z;

fi(zj)dz; }

&(8) 1 ;
vy [ -/ <x@-f;<mi>+<3/2+<—1>w>fi<xi>>d:u] fi(ay)de,

1]7&1 PN $1 PN—$]'

1
+ Z/ [ / (xifi/(xi)+(3/2+(_1)iﬁ)fi(xi))dxi] fi(zj)dz;

7]# Pn—2;(8)

z;(8) ' 1 | A
< 0

which is a contradiction. The equality follows because the limits of integration divide Ay into
three sections, disjoint except for a measure zero intersection. Two sections are reflected in the
limits of integration in the first term of the summation. The third section is repeated in the
second and third lines but adding each of the integrands yields t(x) (We exploit the hypothesis
that 2;(8) > Py —;(3). The expression assumes that Py — Pp;; < Py —#;(). If this does not
hold, then the first line vanishes and the lower limit of integration in the second line becomes
Px — Py The rest of the argument remains the same.) The first inequality follows since (19)
implies the first line is non-positive and by applying the definition of w*(-; #) in (13) . The second
inequality follows because w'(x; 3) is strictly increasing in = and is zero at = 4;(3) and in both
terms of the fourth line, Py — z; < 2;(8) (because x; > Py — 2;(8)) and Pn — £;(8) < &;(3)
(by hypothesis).
The t%;s are seen to satisfy (11) as follows. The set of points

{1 <21(B)} U{r1 > 21(8), w2 > 22(08)} U {z2 < 22(8)}

covers the set Ax. By construction, the intersection of the first two sets and the intersection of

the last two sets has measure zero. Suppose xa < Z2((3). Since x1 +x9 > Py, Result (iii) implies
r1 > Py — 29 > Py — 22(8) > 21(05)

so the intersection of the first and last set has zero measure as well. Therefore, whenever,
th(z; 8) =0, t]_\,i(a:;ﬂ) = tn(z). The definitions of t§; now yield t} (z; 3) + 3, (z; 8) = tn(z) for
all z € Ax. Assumption 2 and 3 € (—1/2,1/2) imply t4(-; 8) > 0. .

Proof of Lemma 6 (Part i) Consider ¢ = 2. The proof of Lemma 5, (19) implies for
T1 € [PN - P{Q}’il(ﬁ)],

1
0 > {fQ(l)_/ t%v(ibhwz;ﬁ)fz(@)dﬂh}fl(i'?l)

Py—z1

= TR (x1,z2(21); B).
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The inequality follows because in this region, t%\, =ty and zo(z1) = Py — 11 < P{g}.
For z1 € (21(8), Pn — 22(8)],

TR (21, 22(21); 6)

{fz(l) - /1 t?v($1,$2;5)f2($2)d$2} fi(z1)

Pn—x1
= w?(Py — x1; 8) f1(z1)
> w?(22(B); B) f1(z1)
= 0.

The second equality applies (13) and the definition of t?\,. The inequality follows since Py —x1 >
#9(8) and w?(+; B) is strictly increasing. The equality is by definition of £2(3).

Finally, for z1 > Py — #2(8),

f2

TR (z1,22(21); ) = {
iy
0

1
(1) - / t?v(xl,ﬂfz;ﬁ)fz(@)d@} fi(z1)
max{Py—z1,Py—Pp} }
1
1-/
22(B)

/ t?v($17962;ﬁ)f2($2)d$2}f1(961)

The second equality follows because Lemma 5 implies #3(8) > max{Py — z1, Py — P13} and
for zo < #9(8), t3(z) = 0. The final equality follows by definition of #5(3). The same argument
follows for 7 =1

(Part (ii) Since T%(-; 3) satisfies (11), applying Lemma 4(ii) to J = N gives

2 1

0= > / Ty (i(xj), x5 B)da;
i=1,57i 7 PN =Py
2 &;(B) ' Pn—=2:(8)
= Z {/ T}(PN—xj,xj;ﬁ)dxj+/ T5(Pn — xj, 5 B)dx;}
i=1,j#i Y PN—Py ;(P)

2
Z{Fz‘(ﬂ) +Gi(B)}

The second equality uses the implication from Part (i) that T%(z;(x;),zj;3) = 0 for z; >
Pn —2;(8) and for x; < Py —24(8), xi(x;) = Py —xj. Suppose that for some i, F;(3) 4+ G;(f) is
strictly negative (and therefore F;(3) 4+ G;(3) > 0,j # i) for all 8 € (8, 3). Part (i) implies that
F;(0) is non-positive and G;(3) is non-negative. Note that F;(f) + G;() varies continuously
with 3. Let [ increase or decrease as necessary so that Z;(/) approaches Py — Py;y. Since the
measure of (Py — P;, ()] goes to zero, F;(3) goes to zero. But G;(8) is non-negative by Part
i) and, by assumption, F;(3) + G;(0) is strictly positive. This yields a contradiction.

Proof of Lemma 7 To ensure that the defined t/(x;) satisfy (11), we must show that for
each J, Sf] N S;, i # j € J has measure zero in IR", and that {Sf,}ieJ covers Ay. The first
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requirement follows from the definitions. Thus, it only remains to show that there does not exist
an z € Ay with component k ¢ J such that xj > z;,7 € J. Suppose there is such an element.
Define K = J Uk and for any set J, let 1/ and 07 denote the | J | vector of all ones or zeroes

respectively. « € Ay implies a’ - © > Py, which, in turn implies

P
T > MaXjeg T > ﬁ (20)

Symmetry and SM yield

P
(|J‘"1J o'y e Ay Ay.

(Consider, for example, J = N. Since P132 2 < P;’j < Py, an agent with type (Plé“, PI;’B, Plé“)

would be indifferent between not buying any bundle and buying the whole bundle and would
strictly prefer not to buy any other bundle.) Since by hypothesis, (7, xjc) = (27, 2k, ) € Ay,

Lemma 2 implies

Py
zz(mr} Tp Tre) € Aj. (21)

By construction, # - a’ — P; = 0, a buyer with valuation # gains exactly zero utility from

purchasing the bundle J. If an agent of type £ bought K instead, he would receive

P
ok 7 - Pr = |J|ﬁ+xk—PK

Py Pk

> | J| L+ 2K Py
|J| | K |

> |K‘7_PK
| K |

= (]’

where the first inequality follows from (20) and the second because SM implies ff‘ > ﬁ?‘ Thus
the buyer of type T does strictly better buying K than J, a contradiction to the conclusion in
(21).

Proof of Lemma 8 We first characterize z4(z1,22) on B = B3 N {(z1,22) | 71 > 22}
shown in Figure 3. Observe that SM implies that Pz > PTN > M > Py — Pp3).
Symmetry implies that z4(v,w) = z3(w,v) and T (z3(v,w),v,w) = T (z3(w,v), w,v)and,
therefore, G'(v) = G*(v) for all v € [Py — Ppy 33, 1]. Thus, if we show the desired results on this
region, they follow with the appropriate permutation of variables on the complement.

The manifold,

{(z1,22,73) | 21 € [PN/3, Pl 3y/2), 23 = w1, 72 = Py — 221}

belongs to AxNAy. This follows because the two endpoints, (Py/3, Pn/3, Pn/3) and (P 31/2, Py —

Py 3y, Pigy/2) are in Ay N Ag and Ay N Ay is a convex set. (The first inclusion follows from the

argument for S?V in the proof of Lemma 7, the second because the full bundle and the bundle
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3 - Py
3?2,3} —

L«

: Py

: - 3

—>

o 2
' : : : : : Py — P 3y
Y = )
Pugy — Py 57 Py 1

Figure 3: Level Sets of z4(x1,x2) on B3 N {(21,22) | 21 > x2}

{1,3} give exactly zero utility while SM implies @ < Pp3y so any single good bundle gives

strictly negative utility.) Since Ay is increasing in x;,i = 1,2, 3,
{x ‘ T3 > x1,T1 > PN/3,$2 > max{PN — 2331,PN — P{Lg}}} C AN.

For any x such that z3 = z1,21 < P{1,3}/2,x2 < Py — 2x1, we have x1 + x2 + 3 < Py, so
buying the full bundle yields strictly negative utility. Thus, such points cannot be in Ay and
the lower bound of S3; in this region must be contained in the manifold Ax N Ay. Combining

these arguments yield

z3(x_3) = 1, x1 > x9,x1 > Py /3,29 > Py — 227,

= Py —x1 — 2, r1 > x9, 11 < Ppi3y/2,29 < Py — 221. (22)

The thick line with slope —2 divides the two regions. The level sets of z5(z_3) are illustrated
by the dotted lines in Figure 3. The arrows denote the direction of increase.

(Part i) Applying (22), 71 > Py3y = 3 implies Ty (z3(z_3),z_3) = 4z1 — 3 > 0.
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Similarly, 21 < Py3) implies either Ty (z3(z_3), 2_3) = 41 —3 < 0 or

TN (z3(z_3), ©_3)

A(Py —x1 —x2) — 3

< 4(Py — (Py — P3y)) —
— 4Py -3

The inequality follows because x_3 € B?\, implies x1+xo > Py —Py3y otherwise x1+xz9+1— Py <
1 — Py3y and a buyer with type (1,z_3) would do better buying good 3 alone.
(Part (ii)) The proof proceeds by showing that G?(x3) is positive for x5 in [Pz, 1], non-

Py—P : Py—P
= 5 {31] and quasi-convex over [— 3 {3}

positive for z9 in [Py — Py 33, , P31]. Since this implies
that G?(z32) crosses 0 at at most one interval with upper bound at, say, a, the conclusion then
follows.

Part (i) implies that G*(x2) > 0 for 29 > Pyg).

Now consider xo < @' Restricting attention to the lower horizontal boundary of B?\,,

since z4(71, ¥2) is continuous over B, U 3%1,3}’ for z1 > Pyy 3y — Pyay,

TR (xs(x1, Px — Py gy), 21, Py — Pyy gy) = T{31,3}(903($1,PN — Pusy), 1, Pn — Ppgy)-

Furthermore, (22) implies z4(71,22) is either constant or decreasing in z9 in the region B3 N

{(z1,22) | 1 > x2}. Since (z1, ) € B3, implies f, > Py — P 3y,

Ty (w3(z1, @), w1, 25) < TP g (x3(a1, Py — Pagy) o1, Py — Pagy), (23)
(.21?1,.1‘/2) € B?\hxl > max{xg,P{Lg} — P{g}}

Thus, for x5 € [PN - P{173}, PN_P{S}],
) P13y —Pyay 5 1 5
G (:L’Q) = / TN(Z‘g(l’l,l’g),xl,xg)dxl —|—/ TN(CE3(IL’1,IL’2),$1,J}2)da}1

Pn—Pr3y—x2 P13y —Pyay

< / ¥ (v3(21, 72), 71, 22)d11
P{l 3}~ P{S}

< T{173}<353(901, Py — P{1,3}>7331, Py — P{l,s})dxl
P13y = Pyay

= 0

The first inequality comes because T]?\’, <0 for z1 < Ppy 3y — Pgy < Ppgy (Part (i)). The second
comes from (23), the equality comes from (17).
For x5 € [PN;P{S},PN/B],

PNy —z2

Ga) = [ -

1
{4(PN — 1 — xg) - 3}d1‘1 +/ {41‘1 — 3}diL‘1
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Differentiating with respect to x2 twice (using the continuity of the integrand in x;) gives

dZG2 (IL’Q)

=12>0,
dx3

so G%(x3) is convex in this range.
For x5 € [PN/3,P{3}],

1
G2 () = / (42, — 3¥day.

Differentiating gives
dG?
ﬂ =—4dx2+3 >0,
dl’g
using the fact that zy < Pggy = 3/4, so G*(x2) is increasing in this range. Thus, G*(x3) is
quasi-convex and Part (ii) follows.

(Part (iii)) Lemma 4(ii) and symmetry implies

1 1
0 :/ GQ(xQ)de +/ Gl(azl)dazl.

Pn—Pyy 3y Pn—P(33}

G! = G? and Py 3y = Ppa3y then implies Part (iii).

9.2 Proof of Suboptimality of Three Price Mechanisms For Counterexample

A mechanism with prices such that 1 > Pg3 > 2(Py — 1) (not shown but is a mechanism with
the point (P{l}, Py — P{l}) below the line x1/2 + x5 = 1) is never optimal. This mechanism is
dominated by instead offering P(;y > 1, holding Py, Py fixed. A seller can induce buyers who
purchased only one good at 1 > Py} to buy two goods at Py > 1 because, in this case, z € Ay
and Pgpy > 2(Py — 1) implies

Ty
1+ T2 = 3—1—34—3:2
Py
>
z —
>  Py.

Therefore, Figure 4 illustrates a typical three price mechanism.

The uniform density and some geometry imply

1 1 Ppy
dr = S(1—=P)(Pv—Py) — 5+ (Pv—Ppy) —(1——7))
Aot 2 2 2

= 0= Pu)@Px— 3P0y —2)
/A{Q} dz = %(1 — Ppy)(Py — Ppay + Py — Ppay — 2(1 - Ppay)
= (1= Ppy)(Py—1)
/AN de = %(2 + Ppoy — Py — Pn)(Ppay + Py — Px) + (1 — Ppay)(1 + Pay — Pr).
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11 Py — Py
A
Py {2} Ay
Py = Py
A 1- A

1
2

1 > w

2(1 - Py Py !

Figure 4: A Three Price Mechanism

For any three-price profile,

R(P) = P{l} / dx + P{Q} dx + PN/ dx.
A Ay AN

{1}

Partially differentiating this with respect to Pyoy yields

N 2PNy — 1
Py (Py) = 3Py _2

as before. Partially differentiating R(P) with respect to Pyy) yields

OR(P) 9 o 3
—— =-P7, — 3PP 2Py — —).
apy, 4 Py + 2Py = 7)
Differentiating again gives
9
§P{1} — 3PN
which is negative only if Ppyy < %PN. The roots of %ﬁf{i) are

. 2 / 3
Py (Py) = 3 (PN +1/P% — 2Py + 4>
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and

. 2 3
P{l}(PN) = g (PN— PJ%,—QPN+4> .

The first equation exceeds %PN so only the second root is a potential solution. Since the term
P% — 2Py + 2 = (Py — 3)(Py — 3), the root has a real solution only if Py < 3 or Py > 3.(If
this condition is violated, then the objective function is always increasing in Py;y.) The case
Py <
Py >

We now examine R(P{l}(PN), P{Q}(PN), Py) computationally for Py > 3. This function has

is clearly suboptimal (Py = 1 dominates this.) Thus, we restrict attention to the case,

N D=

its maximum at Py = 3 which implies Pjjy = 1 or Agyy = 0.
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