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Abstract

The seller of N distinct objects is uncertain about the buyer’s valuation for those
objects. The seller’s problem, to maximize expected revenue, consists of maximizing a
linear functional over a convex set of mechanisms. A solution to the seller’s problem
can always be found in an extreme point of the feasible set. We identify the relevant
extreme points and faces of the feasible set. We provide a simple algebraic procedure to
determine whether a mechanism is an extreme point. We characterize the mechanisms
that maximize revenue for some well-behaved distribution of buyer’s valuations.
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1 Introduction

We consider a standard setting. An individual wishes to sell N indivisible objects. A potential
buyer has private information about his or her valuations—the maximum amounts the buyer
is willing to pay for each object. The seller has prior beliefs about the buyer’s valuations and
the buyer’s preferences are linear.

How to carry out the sale so as to maximize seller’s expected revenue, is a classic problem
in mechanism design. When there is a single object (i.e. N = 1), its solution is well known:
The seller posts a price and lets the buyer decide whether to purchase the object. The “same”
mechanism solves the seller’s problem for any seller’s beliefs—beliefs determine the actual
price posted but not the general form of the optimal mechanism. This property is largely
responsible for the success of mechanism design in numerous applications across various fields.
There is a regularity in the form of the optimal mechanism that allows to make predictions
independent of the seller’s beliefs, typically an unobservable component of the model.

We do for the case of multiple objects (i.e. N ≥ 2), what standard mechanism design
did for the N = 1 case. We characterize the set of all mechanisms that maximize the
seller’s expected revenue for some seller’s beliefs. While in the N = 1 case the optimal
mechanism has always the same form, in the N > 1 case the form of the optimal mechanism
varies significantly with seller’s beliefs. Our analysis is based on the following observation.
The seller’s problem is an optimization program where the mechanism is the optimization
variable and the seller’s expected revenue is a linear objective function. The set of maximizers
of the objective function coincides with a face of the feasible set of mechanisms. In addition,
a maximizer can always be found at extreme point of the feasible set (Bauer Maximum
Principle). By characterizing the relevant faces and extreme points of the feasible set, we
identify all potential solutions to the seller’s problem.

Consider first the N = 1 case. If a mechanism is represented by a function p(x) that
indicates the probability that a buyer with reported valuation x will get the object, extreme
points are step functions with at most two steps. In the first step, the good is not traded
(p(x) = 0); in the second step the good is traded for certain (p(x) = 1). Extreme-point
mechanisms can be implemented by a simple and familiar institution: the seller posts an
appropriate price and consumer types separate themselves into types who purchase the object
and those who do not. Thus, whatever the beliefs of the seller, posting the appropriate price
is a revenue-maximizing mechanism. There is no loss in restricting the optimization problem
solely to this class of mechanisms. Note, in particular, that to maximize expected revenue,
it is never necessary to randomize in the assignment of the object.

When N ≥ 2, posting prices—for instance, a price for each individual good and a price
for each possible bundle—no longer suffices to implement all the extreme-point mechanisms.
Posting prices maximizes expected revenue for some prior beliefs but for many other beliefs,
revenue-maximization requires the use of other mechanisms. We find that the set of extreme
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points contains, in addition to price-posting, many “novel” mechanisms. In particular, ex-
treme points need not be simple functions (Example 2), and even when they are, they may
randombly assign objects to consumers (Examples 1 and 3). In contrast to the one-good
case, the form of the optimal mechanism is determined by the prior distribution of buyer
valuations.

We offer two main contributions: A procedure to determine whether a proposed mecha-
nism is an extreme point of the feasible set; and a characterization of the mechanisms that
maximize expected revenue for some seller’s beliefs.

The procedure that we introduce is based on a characterization of some relevant faces
of the feasible set (Theorem 19 and Subsection 6.3). Determining whether a mechanism is
an extreme point is equivalent to determining if a consistent, linear system of finitely many
equations has a unique solution. If the coefficient matrix has full rank the mechanism is an
extreme point. The “novel” extreme points illustrated by our examples are generically so, in
the sense that small changes will not alter their status as extreme points. One might have
hoped that “novel” extreme points might be peculiar, in the sense that they are not plentiful.
This is not the case.

Identifying extreme points of the feasible set is not sufficient for our purposes because
there are extreme points that minimize rather than maximize the seller’s expected revenue.
For instance, the mechanism that never sells the goods and the mechanism that always sells
all the goods are extreme points but generate no revenue. One may conjecture that the
“novel” extreme points are within the class of mechanisms that never maximize expected
revenue. We show that this is not the case. A mechanism specifies the dollar amount t(x)
that a buyer of valuation x must transfer to the seller; i.e. t(x) is the seller’s revenue of
dealing with a buyer of valuation x under the mechanism. We say a mechanism is undom-
inated if there is no alternative mechanism that generates at least as much seller’s revenue
for all buyer’s valuations (and strictly more for some). We prove that every undominated
mechanism—not just the extreme points—maximizes expected seller’s revenue for some in-
dependent distribution of valuations (Theorem 9). This describes the relevant portion of the
boundary of the feasible set. We also show that all our “novel” examples of extreme points
are, indeed, undominated (Lemma 12 and Remark 22).

Finally, we note that our methods have a strong geometric quality.

We conclude the introduction with a brief review of related literature. Our primary
concern is with the theory of mechanism design in multi-dimensions, i.e. when the uncertainty
variables has more than one dimension. The application on which we focus, that of monopoly
pricing, is of independent interest and has a long history in economics. We mention only two
works in the area. Adams and Yellen (1976) showed by example that if the buyer’s valuations
are negatively correlated, the monopolist may obtain higher revenue by bundling—posting a
bundle price in addition to prices for the individual goods. McAfee, McMillan, and Whinston
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(1989) provide sufficient conditions under which bundling dominates individual sales, and note
that when the buyer’s valuations are independently distributed those conditions are satisfied.
The papers mentioned do not pose a full mechanism design question; they restrict a priori
the seller’s available instruments.

The multi-dimensional mechanism design literature is not as extensive. We will present
a very brief summary here. (Rochet and Stole (2003) offer a very readable survey.) Different
authors use slightly different models and assumptions; the interested reader should consult
the original sources.

McAfee and McMillan (1988) propose a generalized “single crossing property” to pursue
global optima. They use this condition to extend the results of Laffont, Maskin, and Rochet
(1985) in a model with a single good but where consumers are differentiated by a two-
dimensional parameter.

Wilson (1993) derives first order-conditions for the optimality of a mechanism. In general
this approach does not yield a description of the optimal mechanism. Wilson also uses compu-
tational methods to obtain particular solutions. Armstrong (1996) extends the methodology
used in the one-good case. He obtains a general and useful principle, his “exclusion” principle.
He proves that when there are at least two objects to sell, provided the support of the prior
density of buyer’s valuations is strictly convex, the optimal mechanism will assign no goods
to a group of buyers of positive measure. In addition, Armstrong finds closed-form solutions
in some environments where the only binding incentive compatibility constraints are along
rays from the origin. Rochet and Choné (1998) argue that the assumptions necessary to
obtain these environments make them the exception rather than the rule. Armstrong (1999)
studies how to find an approximately optimal mechanism in certain models when the number
of objects to be sold is large.

Rochet and Choné (1998) analyze a general multi-dimensional screening model. They
show that, in general, the monopolist will use mechanisms in which there is bunching, i.e.,
different consumer-types will be treated equally. Rochet and Choné develop a methodology,
their sweeping technique, for dealing with bunching in multiple dimensions. Basov (2001)
extends Rochet and Choné’s sweeping technique using a Hamiltonian approach. Basov (2005)
summarizes the existing literature, illustrates the usefulness of the Hamiltonian approach, and
presents many new developments. He analyses a variety of problems including cases where
the number of instruments and the number of goods do not coincide.

Thanassoulis (2004) studies a model with two perfectly substitutable goods and shows,
among other things, that randomization in the assignment of goods typically dominates deter-
ministic assignments. Thanassoulis (2004) shows that conditions on prior beliefs, previously
believed to guarantee that zero-one mechanisms maximize seller’s expected revenue, do not
do so. (Manelli and Vincent (2004) independently provided another example in this regard.)

One may hope that restricting the class of prior distributions may yield some general
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results. Our work suggests that if the class of prior densities considered is sufficiently rich, so
will be the variety of solutions to the seller’s problem. As a point of methodology, we think
it may be more promising to proceed in the opposite direction, that is to say, to propose a
class of mechanisms and then to find the prior densities under which those mechanisms solve
the seller’s problem. This is what we do in a companion paper (Manelli and Vincent (2004)).
There we identify conditions on the prior distributions under which the zero-one mechanisms,
i.e. the posting of prices for bundles, solve the seller’s problem.

There have also been some recent contributions to the question of optimal multiple-object
auctions. We mentioned only two, Kazumori (2001) and Zheng (2000). (The interested reader
should consult the references listed by them.) Kazumori applies the Rochet and Choné’s
sweeping procedure. Zheng adapts many of the ideas in Armstrong (1996). He also obtains
an explicit formula for the non-linear pricing mechanism in his setting.

Section 2 presents the basic notation and describes the model. Section 3 describes the
optimization program in terms of the buyer’s indirect utility. Section 4 contains examples,
both single and multi-dimensional. Section 5 describes the class of mechanisms that maximize
the seller’s expected revenue. Section 6 characterizes the faces and extreme points of the
feasible set. It also introduces a procedure to determine whether a mechanism is an extreme
point. An Appendix contains some technical results; lemmas whose label begins with the
letter A are located in the Appendix.

2 Preliminaries

2.1 Notation

Sequences are denoted by {xn}; when confusion is unlikely we may use xn to denote both
the sequence and its nth element. Given a subset E of a topological space X, int E is the
interior of E and E is the closure of E.

We let I represent the interval [0, 1]. For any positive integer N , a ray from the origin
through an element x ∈ IN is defined as Rx = {δx : δ ∈ [0,∞)}. We denote by RN

+ and
RN
− the weakly positive and weakly negative orthants of RN . We write 0 to denote the null

element in RN , and 1 to denote (1, 1, . . . , 1) in RN . The ith component of any vector x ∈ RN

is denoted by xi; x−i is the vector obtained by removing xi from x; and (y, x−i) is the vector
constructed by replacing xi in the vector x with y ∈ R.

Given A ⊂ RN , 1A is the indicator function of A.
The Lebesgue measure is denoted by λ. For 1 ≤ p ≤ ∞, Lp(IN ) is the classical Banach

space of equivalent classes of real-valued functions f on IN with finite norm ‖f‖p. We will
often write simply Lp. If f ∈ Lp and g is an element of its dual Lq, then the bilinear
dual operation is denoted by 〈f, g〉 =

∫
IN f(x)g(x) dλ. By C0(IN ) we denote the space of

continuous functions on IN .
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Let u be a real-valued function defined on a subset E of RN . Then, for all x in E,
u+(x) = max{u(x), 0}, and u−(x) = max{−u(x), 0}. If u is differentiable at x, its gradient
at x is denoted by ∇u(x) in RN ; ∇iu(x) is its ith component.

2.2 Model

A seller with N different objects faces a single buyer. The buyer’s preferences over consump-
tion and money transfers are given by U(x, p, t) = x · p − t, where x ∈ IN is the N -vector
of buyer’s valuations, p is the N -vector of quantities consumed of each good, and t ∈ R
is a monetary transfer made to the seller.1 The buyer’s valuations x are only observed by
the buyer. A density function f(x) represents the seller’s beliefs about the buyer’s private
information x.

The seller’s problem is to design a revenue-maximizing mechanism to carry out the sale.
By the revelation principle, the seller may restrict attention to direct revelation mechanisms
where each buyer type reports his type truthfully.2 A direct revelation mechanism is a pair
of integrable functions

p : IN −→ IN

t : IN −→ R,

where, given the buyer’s valuation x, pi(x) (i.e. the ith component of p(x)) is the probability
that the buyer will obtain good i given her valuation x, and t(x) is the expected transfer
made by the buyer to the seller.3

The buyer’s expected payoff under the direct revelation mechanism (p, t), when the buyer
has valuation x and reports x′ is p(x′) ·x− t(x′). Truthful reporting of valuation x yields the
payoff

u(x) = p(x) · x− t(x).

The buyer must prefer to reveal its information truthfully—incentive compatibility (IC)—
and to participate in the mechanism voluntarily—individual rationality (IR). Thus (p, t)
satisfies IC and IR if and only if

(IC) for almost all x, u(x) ≥ p(x′) · x− t(x′) ∀x′

(IR) for almost all x, u(x) ≥ 0.

The seller’s problem is therefore to select the functions (p, t) to maximize expected revenue,
E(t), subject to IC and IR.

1These preferences rule out the complementarities and substitutabilities that would be capture with the

more general preferences
P

A⊂{1,...,N} yA pA − t where yA is the buyer’s valuation for the bundle A.
2The possibility of multiple equilibria in the direct revelation mechanism is the basis of a well-known

critique to the use of the revelation principle.
3In an alternative formulation we could allow for correlation in p(x). Since the buyer’s preferences are

linear there is no loss of generality in the alternative we adopted in the paper.
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3 The Approach

When N = 1, the seller’s problem is usually simplified using a familiar characterization
of incentive compatibility: a mechanism satisfies IC if and only if p is non-decreasing. In
turn, integrating a non-decreasing p, one obtains the buyer’s expected payoff u(x) = u(0) +∫ x
0 p(y) dy. The seller’s problem is then generally stated and solved using only the probability-

of-trade function p.
We set up the optimization problem in two alternative forms. In the first one, we use the

payoff functions u as the variable of optimization. In the second one, developed in Section 5,
we use the transfer functions t as the optimization variables. A useful characterization of
incentive compatibility, first noted by Rochet (1985), gives us the choice. We state it without
proof as Lemma 1.4

Lemma 1. If (p, t) satisfies IC, the corresponding buyer’s expected payoff u(x) is convex with
gradient ∇u(x) in IN for almost all x and ∇u(x) = p(x) almost everywhere.

If u(x) is a convex function with gradient ∇u(x) in IN for almost all x ∈ IN , then
there exist functions (p, t) satisfying IC such that u represents the corresponding buyer’s
payoffs. The direct revelation mechanism is defined by p(x) = ∇u(x) almost everywhere, and
t(x) = ∇u(x) · x− u(x).

The lemma states that, roughly, a mechanism is IC if and only if the corresponding buyer’s
payoff is convex, with partial derivatives between zero and one.

Lemma 1 characterizes incentive compatibility. To satisfy individual rationality, u must
be non-negative. Since the objective is to find an optimal policy for the seller, and since the
buyer’s expected payoff is non-decreasing, any mechanism that maximizes expected seller’s
revenue will yield payoff u(0) = 0 to buyers with valuation x = 0. This discussion prompts
the following definition.

Definition 2. The feasible set in the seller’s problem is

W =
{
u ∈ C0(IN ) | u(x) is convex, ∇u(x) ∈ IN a.e., and u(0) = 0

}
.

Abusing terminology, we refer to any u in W as a feasible mechanism. (A mechanism however
is the pair (p, t) yielding u.)

Given a feasible mechanism u, a buyer with type x receives u(x) = ∇u(x) · x− t(x). The
seller’s revenue from a buyer of type x when using mechanism u is t(x) = ∇u(x) · x− u(x).
The seller’s expected revenue is therefore E[t(x)] = E [∇u(x) · x− u(x)] . Hence, the seller’s
problem is

max
u∈W

E[∇u(x) · x− u(x)]. (1)

4This characterization has been extensively used in the literature. See, for instance, Armstrong (1996),

and Jehiel, Moldovanu, and Stacchetti (1998).
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The objective function of the seller’s problem is an expectation and is linear on the
optimization variable, the function u in problem (1).

Note that any u obtained as a convex combination of elements of W is convex, non-
negative, and satisfies the bounds on partial derivatives (its gradient takes values in IN ).
Hence, W is itself a convex set. It is also simple to verify that W is compact with respect to
the sup-norm topology (Lemma A.1). Thus, the seller wishes to maximize a linear function
on a convex compact set.

If this maximization took place on the plane, the solution would be at a point where a
hyperplane representing a level set of the objective function is tangent to the feasible set.
The solution set may be a singleton or it may include a segment. If the feasible set were
a polygon, the solution set would always include a corner point but may also include an
entire face of the polygon. This intuition carries over to the infinite dimensional optimization
problem. The corresponding definitions are as follows.

Definition 3. Let V be a subset of a linear space X. A set E ⊂ V is an extreme set of V if

[(x = αy + (1− α)z) ∈ E, α ∈ (0, 1), z, y ∈ V ] =⇒ y, z ∈ E.

A face is an extreme set of V that is also convex. An extreme set of V consisting of a single
point is an extreme point of V .

Thus a point u ∈ V is an extreme point of V if and only if for every g ∈ X with g 6= 0,
u+ g does not belong to V or u− g does not belong to V . Alternatively, u ∈ V is an extreme
point of V if and only if u is not the midpoint of any segment included in V .

The Bauer Maximum Principle (Lemma A.2) implies that the set of maximizers in the
seller’s problem must be a face of the feasible set; and that the maximum is achieved at an
extreme point of the feasible set. To study the seller’s problem, we characterize extreme
points and some relevant faces of W .

4 Examples

This Section illustrates the differences between the single and the multiple-good monopoly.
We first characterize the extreme points of W when N = 1. We then show, by example, that
when N > 1, the extreme points of W have very different characteristics.

4.1 A single good, N = 1

The following lemma characterizes the extreme points of W .

Lemma 4. If the seller has a single good, a mechanism u ∈ W is an extreme point if and
only if for almost all buyer’s valuations x ∈ IN , the object is assigned either with probability
one or with probability zero, i.e., p(x) = ∇u(x) ∈ {0, 1}.
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Proof. Let u ∈ W be such that ∇u(x) ∈ {0, 1} for almost all x ∈ I. Then u is absolutely
continuous. Let g be any continuous real-valued function defined on IN . If g is not absolutely
continuous, or a.e. differentiable, then u + g is not in W . If ∇g(x) 6= 0 a.e., then u + g or
u − g are not in W . Hence, ∇g(x) = 0 a.e, and therefore, since g is absolutely continuous,
g = 0. We conclude u is an extreme point of W .

To establish the converse select any u ∈ W that is not a zero-one mechanism. Then, there
is a set of positive measure B ⊂ [0, 1] such that ε < ∇u(x) < 1− ε. Let

∇g(x) =

{
1−∇u(x) if ∇u(x) > 0.5
∇u(x) if ∇u(x) ≤ 0.5

Let g(x) =
∫ x
0 ∇g(z)dz; g(x) is an absolutely continuous function. We now verify that both

u + g and u− g are in W . First, the gradient of u + g is in [0, 1]:

∇(u(x) + g(x)) =

{
1 if ∇u(x) > 0.5
2∇u(x) if ∇u(x) ≤ 0.5

Second, since ∇(u(x) + g(x)) is increasing a.e. in x, u + g is convex. Third, g(0) = 0 by
construction. Thus u + g is in W . A similar argument applies to u− g. Q.E.D.

Lemma 4’s characterization of the extreme points of W immediately provides an alter-
native and simple proof of various well-known results which we summarize below (Myerson
1981).

1. A take-it-or-leave-it offer is the mechanism that maximizes expected seller’s revenue
among all feasible bargaining mechanisms. (Given the optimal mechanism, p, the offer
is inf{x ∈ [0, 1] : p(x) = 1}.)

2. Randomization (i.e. “haggling” as in Riley and Zeckhauser (1984)) is not necessary to
maximize expected seller’s revenue.

3. The revenue-maximizing mechanism is piecewise linear. The buyer’s expected payoff u

is a piecewise linear function. There is always an optimal mechanism where the transfer
t and the probability of trade p are step functions with at most two steps.

The next Subsection illustrates with several examples that these well-known results do
not extend to higher dimensions.

4.2 Some Examples with two goods N = 2

Two examples demonstrate that if N ≥ 2 the set of extreme points of W becomes much
more varied. The first example identifies an extreme point of W that is piecewise linear but
involves randomization. The second example identifies an extreme point that is not piecewise
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u(x,y)
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Figure 1: u(x) = max{0, (0.5x1 − 0.2), (x1 + x2 − 1)}

linear. In Section 5 we show that these extreme points are the optimal mechanisms for some
well-behaved prior distributions of bidders’ types.

Example 1. An extreme point with random assignments. Let N = 2 and let u ∈ W be

u(x) = max{0, (0.5x1 − 0.2), (x1 + x2 − 1)}.

The graph of u is depicted in Figure 1. The mechanism u has three linear pieces. Each
piece defines a group of consumer-types: A0 = {x ∈ IN : ∇u(x) = (0, 0)}, A1 = {x ∈ IN :
∇u(x) = (1

2 , 0)}, and A2 = {x ∈ IN : ∇u(x) = (1, 1)}. These market segments are depicted
in Figure 2. (All three sets Ai are open.) Buyers with valuations in any given set Ai are
treated similarly. Consider, for instance, a buyer with valuation x ∈ A1. The corresponding
probabilities of trade are ∇u = (1

2 , 0). The buyer never receives good two. The toss of a fair
coin determines whether the buyer receives good one.5

We now show that u is indeed an extreme point of W . If u is not an extreme point, then
there is a function g 6= 0 such that both u + g and u − g are in W . Since both u + g and
u − g are convex, they are continuous, and a.e. differentiable. Thus, g must be continuous,
and a.e. differentiable. Then for x ∈ A0 ∪ A2, ∇g must be identically zero; otherwise either
∇(u+ g) or ∇(u− g) is not in IN . Therefore g(x) = 0 for all x ∈ A0∪A2.6 Suppose g(x) > 0

5The direct mechanism can also be implemented with an indirect mechanism that consists of a menu of

choices offering a fifty percent chance at good 1 alone for a price of 0.2 or the full bundle for sure for a price

of 1.
6This follows, for instance, from Krishna-Maenner (2001) who prove that if a function is convex, the

function can be recovered through line integration of any measurable selection of its subdifferential.
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Figure 2: Market Segments

for some x = (x1, x2) ∈ A1. Since u + g is in W , u + g is non-decreasing. Hence g(x′) > 0 for
some x′ ∈ A2. (Simply find r > 1 so that x′ = (x′1, x

′
2) = (x1, rx2).) This is a contradiction.

A similar argument holds using u− g if g(x) < 0 for some x ∈ A1.

With N = 1 all extreme-point mechanisms are deterministic; there is no randomization
in the assignment of the good. If, however, expected seller’s revenue achieves its maximum
at more than one extreme point, any randomization between those mechanisms will also
maximize seller’s revenue. Thus, although randomization may maximize expected revenue,
the expected revenue can always be achieved with a deterministic mechanism. More formally,
if a mixture of deterministic mechanisms is optimal, it must belong to the relative interior of
a non-trivial face of W . The same expected revenue, however, is obtained at any vertex of
that face.

Example 1 shows that when N ≥ 2, there are extreme points that involve randomization.
Thus, randomization is a “robust” feature.

Example 2. A non-piecewise linear extreme point. Let N = 2 and let u ∈ W be defined by

u(x) = max{0, (0.25x2
1 + x2 − 0.5), (x1 + x2 − 1.01)}.

The mechanism u is piecewise differentiable but not piecewise linear. The function u and
its corresponding pieces are depicted in Figure 3.

The mechanism u, determines three pieces, A0 = {x ∈ IN : ∇u(x) = (0, 0)}, A1 = {x ∈
IN : ∇u(x) = (1

2x1, 1)}, and A2 = {x ∈ IN : ∇u(x) = (1, 1)}. The boundary between A0

and A1 is A0 ∩A1 = {x ∈ IN : x1 ∈ [0, 0.6], and x2 = 1
2 −

1
4x2

1}.
Suppose u is not an extreme point. Then there is a function g(x) 6= 0 such that both

u+ g and u− g are in W . For any x in A0∪A2, ∇g(x) is (0, 0). (As in our previous example,
g(x) can be recovered by line integration of any measurable selection of its subdifferential.)
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Figure 3: u(x) = max{0, (0.25x2
1 + x2 − 0.5), (x1 + x2 − 1.01)}

It thus follows that g(x) must also be 0. If g 6= 0, there must be an element x′ = (x′1, x
′
2)

in A1 such that g(x′) 6= 0. Suppose without loss of generality that g(x′) > 0. (If g(x′) < 0,
a similar argument will apply to u − g.) Let y′ = 1

2 −
1
4x′21 ; thus (x′1, y

′) is the point on the
boundary between A0 and A1, directly below (x′1, x

′
2). On that boundary both g and u must

be zero; thus g(x′1, y
′) = 0 = u(x′1, y

′). Because u + g must be convex and its gradient is in
[0, 1]2,

u(x′1, x
′
2) + g(x′1, x

′
2) ≤ u(x′1, y

′) + g(x′1, y
′) + (x′1 − x′1) + (x′2 − y′).

Since u(x′1, x
′
2) = u(x′1, y

′) + (x′2 − y′), we obtain, g(x′1, x
′
2) ≤ g(x′1, y

′) = 0, a contradiction.

Both examples illustrate that extreme points may include randomization in the assign-
ment of goods to customers. Example 1 demonstrates that randomization can occur even
with piecewise linear mechanisms. Example 2 demonstrates that an extreme point need not
be piecewise linear. In both examples, randomization takes place on the assignment of a
single good. Example 3 in Subsection 6.2 presents a piecewise linear extreme point with
randomization over all goods.

5 Revenue Maximization vs Revenue Minimization

In this section we characterize the mechanisms that maximize seller’s revenue for some prior
distribution of buyer’s valuations. The examples discussed so far are shown to be within this
class.

There are extreme points of W that are never a best choice for the seller. Two such
extreme points are the mechanism in which no buyer ever gets an object (i.e., ∇ū = 0), and
the mechanism in which buyers always get the object (i.e., ∇ū = 1). That these mechanisms
are extreme points follows easily from the definition noting that the vector of probabilities
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of trade, ∇u(x), equals 0 and 1 respectively. Both mechanisms, however, always yield zero
revenue to the seller, t = 0. Clearly, the seller will not use the mechanisms described. There
are alternative mechanisms, for instance the mechanism u′(x) = max

{
0, (1 · x− N

2 )
}
, which

always yield at least as much revenue.
In order to identify mechanisms that are the solution to the seller’s problem for some prior

density of buyer’s valuations, we restate the program so that the optimization variable is the
transfer function t. We do so for two reasons. First, the characterization of the mechanisms
that maximize seller’s revenue for some prior density of valuations is very natural in terms of
transfers. Second, transfers underline the geometric quality of our arguments. Both points
are developed throughout this section.

Definition 5. The feasible set of transfer functions in the seller’s problem is

T = {t : t(x) = ∇u(x) · x− u(x) a.e., u ∈ W} .

Since feasible mechanisms u ∈ W need only be differentiable almost everywhere in IN ,
their corresponding transfers t are only defined for almost all x in IN .

Remark 6. It is simple to verify that T is convex, L1-compact (Lemma A.3), and that for
any extreme point ū ∈ W , its corresponding transfer function t̄ is an extreme point of T .
For any u ∈ W there is a t ∈ T . However, for some t ∈ T there may be many u ∈ W that
generate it.

In terms of transfers, the seller’s problem is

max
t∈T

E[t]. (2)

Although the two forms of the seller’s problem—program (1) in terms of payoffs u and
program (2) in terms of transfers t—are equivalent, the latter has a more transparent geo-
metric interpretation. The expectation in the objective function of both problems is taken
with respect to a density of buyer’s valuations, the seller’s prior beliefs. If f ∈ L∞(IN ) is
such density function, then

E[t] =
∫

IN

t(x)f(x) dx = 〈t, f〉.

The latter notation highlights the bilinear relationship between the density f and the transfer
t; f may be seen as a linear function with t as argument, and t is a linear function with f as
argument. For any real number r, the set {g ∈ L1(IN ) : 〈g, f〉 = r} represents a “hyperplane”
in the space L1—each “hyperplane” corresponds to a level set of the seller’s objective function
for the given beliefs f .

Intuitively, a mechanism is undominated if there is no alternative mechanism yielding
always at least as much revenue to the seller and strictly more in some cases. (A formal
definition is provided below.) We prove that, for any undominated mechanism t̄ ∈ T , there
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is a density over valuations f for which t̄ is a revenue-maximizing mechanism. That is to say,
〈t̄, f〉 ≥ 〈t, f〉 for all t ∈ T .

Definition 7. A mechanism t ∈ T is dominated if there is an alternative mechanism t′ ∈ T

such that t′(x) ≥ t(x) a.e. in IN , with strict inequality in a set of positive Lebesgue measure.
A mechanism t is undominated if it is not dominated. (We will say a mechanism u ∈ W is
undominated if its corresponding transfer t(x) = ∇u(x) · x− u(x) is undominated.)

Definition 8. An integrable function f : IN −→ R+ is a density function if
∫
IN f(x)dx = 1.

In addition f satisfies independence if f(x) = f1(x1)× . . .× fN (xN ), where for i = 1, . . . N ,
fi(xi) =

∫
f(xi, x−i) dx−i.

The following theorem shows that any mechanism t̄ which is undominated is optimal for
some seller beliefs. Furthermore, the result holds even if we restrict attention to the narrower
class of densities where the buyer’s valuations for each good are distributed independently.
We briefly describe its proof; the same approach may apply to other classes of prior densities.
First, the set F from which the supporting density will be obtained is defined. (In our case
the set of essentially bounded densities satisfying independence.) Arguing by contradiction,
suppose that t̄ is not the solution to the seller’s problem for any relevant density. For each
f ∈ F there is a mechanism tf that yields higher expected revenue than the proposed t̄.
(Otherwise the claim is established.) Any density sufficiently close to f will also yield a
higher expected revenue under tf than under t. Compactness of F implies that we can select
finitely many mechanisms {tf}, so that under any density, one of those tf will give higher
revenue than t̄. A convex combination t̃ of those finitely many transfers {tf} is constructed
using a finite-dimensional separating hyperplane argument to obtain the weights. It is shown
that for any density in F , t̃ yields higher expected revenue than t̄. Only the compactness
of F has been used so far. To prove that t̃ dominates t̄, the set F must be sufficiently rich.
Let E be the set of buyer types where t̄(x) > t̃(x). The set of possible densities F must
include some density with support in E. Then E must have zero measure or the separation
established earlier would be violated. In summary, since F is weak* compact, and it includes
sufficiently many densities, the argument holds.

Theorem 9. Let t̄ ∈ T be undominated. Then there is a density function f ∈ L∞ satisfying
independence for which t̄ maximizes expected revenue.

Proof. Let F be the set of independent density functions f ∈ L∞(IN ). The set F is weak*
compact.

For each f ∈ F , select tf ∈ T such that 〈tf , f〉 > 〈t̄, f〉. If, for some f ∈ F , no such tf

exists, then for that f , 〈t̄, f〉 ≥ 〈t, f〉 ∀t ∈ T and the proof is complete.
By continuity, there is a weak* open neighborhood Of 3 f such that

f ′ ∈ Of =⇒ 〈tf , f ′〉 > 〈t̄, f ′〉. (3)
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The collection {Of : f ∈ F} is an open cover of F ; by compactness it has a finite subcover
{Om : m = 1, . . . ,M}. Denote by {t1, t2, . . . , tM} the corresponding transfer functions iden-
tified in (3). The identified transfer functions are now used to construct a weakly dominant
strategy t′ using a finite-dimensional separating hyperplane argument.

Let
G = {〈t1 − t̄, f〉, 〈t2 − t̄, f〉, . . . , 〈tM − t̄, f〉 : f ∈ F}

The set G is a convex subset of RM and G ∩ RM
− = ∅. Therefore, there is a separating

hyperplane α ∈ RM
+ such that α ·y > 0 ∀y ∈ G. Without loss of generality, we may normalize

α so that
∑M

i=1 αi = 1. Let
t̃ = α · (t1, . . . tM ).

Since T is convex, t̃ ∈ T . Observe that

∀f ∈ F 〈t̃, f〉 − 〈t̄, f〉 = α · (〈t1 − t̄, f〉, . . . , 〈tM − t̄, f〉) > 0. (4)

Since f is arbitrary within F , it must be the case that t̃ dominates t̄. To see this, let
E = {x ∈ IN : t̄(x) > t̃(x)}. This set is measurable. Suppose λ(E) > 0. Let D = {A ⊂ IN :
〈t̃, 1A〉 ≥ 〈t̄, 1A〉}. Note that D is a π− class, and a λ− class. Then D is a sigma field. Since
f comes from the class of independent densities, (4) implies that all measurable rectangles in
IN are in D and, therefore, D must include the Borel sigma field in IN . Thus E ∈ D. This
proves that t̃ ≥ t̄ a.e. in IN . If the two functions were equal, the separation in (4) would not
be strict.

Q.E.D.

Remark 10. Theorem 9 applies to every undominated t in T , not just its extreme points.
The supporting density function identified need not have full support in IN .

Lemma 11 below presents a property of undominated mechanisms that links domination,
defined on transfers, with the behavior of the corresponding payoff functions. We use this
property to show, among other things, that the extreme points in our Examples are undom-
inated. According to the lemma, if a mechanism tu′ dominates a mechanism tu, and if u′(x)
exceeds u(x) for some x, then u′ must remain above u for all points farther out along the ray
through the origin containing x.

Lemma 11. Let u and u′ be two mechanisms in W and let t and t′ denote their corresponding
transfer functions. Suppose t′ dominates t and let x be any element of IN . Then,

1. u′(x) > u(x) =⇒ u′(δx) > u(δx) for all δx ∈ IN , δ > 1, and

2. u′(x) ≥ u(x) =⇒ u′(δx) ≥ u(δx) for all δx ∈ IN , δ > 1.
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Proof. Part 1. Let u′(x) > u(x) and suppose that for some δ > 1, u′(δx) ≤ u(δx). Let
δ′ = inf{δ > 1 : u′(δx) ≤ u(δx)}. By continuity, u′(δ′x)−u(δ′x) = 0 and δ′ > 1. Furthermore,
u′(δx) > u(δx) for all δ ∈ (1, δ′).

By definition, t′ = ∇u′ · x− u′ and t = ∇u · x− u almost everywhere. Since t′ dominates
t, (∇u′(x)−∇u(x)) · x− (u′(x)− u(x)) ≥ 0 for almost all x ∈ IN .

We will prove the theorem under two additional assumptions and show later that the two
assumptions are always satisfied. Suppose for the moment that

∀δ ∈ (1, δ′), −[u′(δx)− u(δx)] =
∫ δ′

δ
[∇u′(γx)−∇u(γx)] · x dγ, and that (5)

∇u′(x) · x− u′(x) ≥ ∇u(x) · x− u(x), ∀x ∈ IN . (6)

(Note that (5) holds immediately if u and u′ are differentiable everywhere. Assumption (6)
simply states that t′(x) ≥ t(x) everywhere in IN . When u and u′ are differentiable, t and t′

are defined everywhere and (6) holds, provided t′ dominates t.)
Using (5) and our observation that u′(δx)− u(δx) > 0 for δ ∈ (1, δ′), we obtain

∀δ ∈ (1, δ′), −[u′(δx)− u(δx)] =
∫ δ′

δ
[∇u′(γx)−∇u(γx)] · x dγ < 0.

From (6), it follows in particular, that for all γ in (δ, δ′), we have that (∇u′(γx)−∇u(γx))·
γx ≥ u′(γx) − u(γx) > 0. This implies that [∇u′(γx) − ∇u(γx)] · x > 0, which contradicts
(5) and proves Part 1 under our two additional assumptions.

That the two extra assumptions are unnecessary follows from Lemma A.4 in the Appendix.
There we construct selections from the subdifferential of u and u′ satisfying both assumptions.

Part 2. A similar argument to that used in Part 1 suffices; we sketch it in the following
lines. Suppose in this case that u′(x) < u(x) and for some δ < 1, u′(δx) ≥ u(δx). Let δ′ =
sup{δ < 1 : u′(δx) ≥ u(δx)}. By continuity, u′(δ′x) − u(δ′x) = 0 and δ′ < 1. Furthermore,
u′(δx) < u(δx) for all δ ∈ (δ′, 1). The proof continues as in Part 1. Q.E.D.

The following lemma illustrates the usefulness of Lemma 11 in identifying undominated
mechanisms. It also highlights that, depending on priors, the type of revenue-maximizing
mechanism varies significantly.

Lemma 12. The mechanisms described in Examples 1 and 2 are undominated, and hence
they maximize expected seller’s revenue for some prior density of buyer’s valuations.

Proof. Before considering each example individually, we highlight the following consequence
of Lemma 11 for later use:

Let u and ū be feasible mechanisms with associated transfers t and t̄ respectively. Suppose
t dominates t̄. Then

[u ≥ ū and for some x ∈ IN , u(x) = ū(x)] =⇒ u(δx) = ū(δx) ∀δ ∈ [0, 1]. (7)
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We now consider the examples individually. In both examples we suppose, arguing by con-
tradiction, that there is a mechanism u ∈ W with transfer t, and that t dominates t̄, the
transfer associated with ū ∈ W . In each example ū represents the candidate optimum.

Example 1. It is useful to revisit Figure 2.
First, we establish that u(x) ≥ ū(x) for all x. Note that if x ∈ A0, u(x) ≥ ū(x) = 0.

Lemma 11 then implies that u(y) ≥ ū(y) for all y in Rx ∩ IN . The set IN is a subset of⋃
x∈A0 Rx.

Second, we show that u(x) = ū(x) for any x ∈ A2. Since t dominates t̄, we have t(x) ≥
t̄(x), or equivalently ∇u(x) ·x−u(x) ≥ ∇ū(x) ·x− ū(x) a.e. in IN . We also have ∇ū(x) = 1

a.e. in A2. Therefore 0 ≥ (∇u(x) − 1) · x ≥ u(x) − ū(x) ≥ 0 a.e. in A2. It follows that
u(x) = ū(x) a.e in A2. Continuity implies the desired result.

Third, we prove that u(y) = ū(y) for any y ∈
[
IN ∩

(⋃
x∈A2 Rx

)]
. This follows from (7).

Fourth, we show that u(y) = ū(y), for any y ∈
[
IN \

(⋃
x∈A2 Rx

)]
. Pick any such

y = (y1, y2) and suppose by way of contradiction that u(y) > ū(y). It must be the case
that y2 < 0.3y1; otherwise y would belong to

[
IN ∩

(⋃
x∈A2 Rx

)]
. Let y′2 = 0.3y1. Then,

u(y) > ū(y) = ū(y1, y
′
2) = u(y1, y

′
2). Hence u is not monotone. It follows that u /∈ W , a

contradiction.
We have demonstrated that u = ū. This implies t = t̄ and therefore t does not dominate

t̄.
Example 2. Figure 4 is useful in following the proof.
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Figure 4: Proof of Lemma 12

Similar arguments to those used in the previous example establish that first, u ≥ ū;
second, u(x) = ū(x) for all x ∈ A2; and third, u(y) = ū(y) for all y ∈

[
IN ∩

(⋃
x∈A2 Rx

)]
.

Note that the area underneath the solid line in the figure, IN ∩
(⋃

x∈A2 Rx

)
, is {(y1, y2) ∈

IN : 3
5y2 ≤ y1}.

Fourth, let x′ = (x′1, x
′
2) be the intersection of the line x2 = 5

3x1, and the line defining
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the boundary between A0 and A1, x2 = 1
2 −

1
4x2

1. We show that u(y) = ū(y) for any y

with y1 ∈ [x′1, 0.6] and y2 > 5
3y1. Pick any such y = (y1, y2), and suppose u(y) > ū(y).

Note that (y1,
5
3y1) ∈

[
IN ∩

(⋃
x∈A2 Rx

)]
, and therefore u(y1,

5
3y1) = ū(y1,

5
3y1). Using the

fact that 0 < ∇u2 < 1, that ∇ū2 = 1, and that u(y) > ū(y) we generate the following
contradiction,

(
y2 − 5

3y1

)
+ u(y1,

5
3y1) ≥ u(y) > ū(y) = ū(y1,

5
3y1) +

(
y2 − 5

3y1

)
. We have

proved that u′(y) = u(y) for any y ∈ E, where E ⊂ IN is the union of the convex hull of
{(0, 0), x′, (1, 0)} and the convex hull of {x′, x′′, (1, 1), (1, 0)}.

Fifth, we prove that u′(y) = u(y) for any y ∈ (IN ∩
⋃

x∈E Rx). This follows from (7).
Note that the proof proceeds by showing that u = ū in a given area, and then that in

the rays defined by that area u must also equal ū. We continue with this procedure. The
intersection of the segment [0, x′′] with the boundary A0 ∩ A1, defines a point x′′′. In turn
the points (x′′′, (x′′′1 , 1), x′′, x′) define a new area. Arguments similar to those used in point
four, establish that u = ū in that region. Continuing with this process establishes that u = ū

for all x ∈ IN . Q.E.D.

In Section 6.1 we prove that any undominated, piecewise-linear mechanism must include
a market segment where all goods are traded with certainty, and a market segment where
there is no trade at all (Theorem 16).

6 The Structure of Potential Solutions

Section 6 contains our main results. It outlines a procedure to determine whether a proposed
mechanism is an extreme point. The procedure is based on the structure of the feasible set.

Before presenting our findings, we summarize them, although not in the order in which
they are derived. First, we show that restricting attention to piecewise linear mechanisms
is, essentially, without loss of generality. We have already shown that non-piecewise linear
mechanisms can be extreme points (Example 2), and they can even maximize expected rev-
enue (Lemma 12). That piecewise linear mechanisms are dense in W is a straightforward
observation (Lemma A.5). We demonstrate that, in addition, the set of piecewise linear ex-
treme points, is dense in the set of all extreme points (Theorem 21). Since expected seller’s
revenue is always maximized at an extreme point (Bauer Maximum Principle), there is little
loss in restricting attention to piecewise linear extreme points.

Second, we show that it is comparatively simple to verify whether a piecewise linear
mechanism is an extreme point. Generally, a mechanism ū in W is an extreme point when it
is not possible to move from ū in any direction g and in the opposite direction −g, remaining
in both cases within the feasible set W , i.e. ū + g or ū − g must be outside W . Thus, to
determine whether a given mechanism is an extreme point, the number of directions g to
check is quite large. The situation is simpler, however, when ū is piecewise linear. Piecewise
linear mechanisms partition the set of buyers in finitely many pieces or subsets such that
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consumer types in each piece are treated similarly by the mechanism. We demonstrate that
to verify whether a piecewise linear mechanism ū is an extreme point, it suffices to check
directions g that are also piecewise linear, and that define the same pieces or subsets as ū

does (Theorem 17). This observation is fundamental in the sense that all other results in the
section rely on it.

Finally, we describe an algebraic method to identify extreme points. Determining whether
a piecewise linear mechanism is an extreme point is, essentially, equivalent to determining
if a consistent, linear system of equations has a unique solution. To obtain this procedure
we characterize first some useful faces of W . Pick any piecewise linear mechanism ū and
its implicit partition of buyer’s types. We define a face relative to ū and more importantly,
relative to the partition defined by ū. More precisely, the collection of all piecewise linear
mechanisms with coarser partitions of buyer’s types than the partition defined by ū is a face
Fū of W (Theorem 19).

We present our result in three subsections. The first one contains the theoretical results.
The second consists of an example of an undominated extreme point that involves random-
ization for all goods. The example also illustrates the use of some of the results developed
in the first subsection. The last subsection describes how to use our characterization of faces
to determine if a piecewise linear mechanism is an extreme point. We use the example to
illustrate this methodology.

6.1 Piecewise Linear Mechanisms

A function u is piecewise linear if it consists of finitely many linear pieces. Because of
incentive compatibility, feasible mechanisms are the pointwise supremum of linear functions
with gradient in the N -dimensional unit cube (see Lemma 1 and the discussion surrounding
it). A piecewise linear mechanism must, therefore, be the pointwise maximum of finitely
many linear functions. Because of individual rationality, one of those linear functions is the
null map. These observations establish the following remark.

Remark 13. The mechanism u is piecewise linear and feasible if and only if there is a finite
family of linear functions, aj · x − bj with aj ∈ IN and bj ∈ R for j = 0, 1, . . . , J , such that
for every x in IN , u(x) = max{aj · x− bj : j = 0, 1, . . . , J, and a0 = 0, b0 = 0}.

A piecewise linear mechanism “partitions” the set IN of consumer types into finitely
many groups. Types within each group are treated equally, in the sense that they all face the
same probabilities of trade and pay the same transfer. We refer to those groups as market
segments. Market segments are the effective domains of the different linear pieces forming
the mechanism.

Definition 14. Let u be a piecewise linear mechanism in W , and let {aj · x− bj}J
j=0 be the

smallest (by set inclusion) family of linear functions such that u(x) = max{aj · x − bj : j =
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0, 1 . . . , J}. We say that Aj = {x ∈ IN : aj · x− bj > ak · x− bk ∀k 6= j} is a market segment
of the mechanism u. We denote by m(u) the collection of all such market segments, by ∇uAj

the gradient of u in Aj (i.e., ∇uAj
= ∇u(x) for every x in Aj), and by tA

j
the transfer from

members of Aj to the seller (i.e., tA
j

= t(x) for every x ∈ Aj where t is the transfer associated
with u). For ease of notation, we will use ∇uj instead of ∇uAj

when no confusion is possible.

A market segment is a collection of buyer types x satisfying finitely many, linear, strict
inequalities. Redundant pieces, such as those that are never a maximum or those that are,
at best, a weak maximum, are eliminated from the definition. From this consideration we
derive the following remark.

Remark 15. Given a piecewise linear, feasible mechanism u, its market segments are convex,
and relatively open subsets of IN with full dimension. Given any two market segments Aj

and Ak, k 6= j, then ∇uAj 6= ∇uAk
.

The following Theorem states that any undominated, piecewise-linear mechanism must
include a market segment where all goods are traded with certainty, and a market segment
where there is no trade at all. We use it in Section 6.3 in conjunction with Theorem 20 to
identify extreme points.

Theorem 16. Let u be an undominated, piecewise linear mechanism in W . Then there are
market segments A0 and AJ such that no good is assigned if the buyer’s type is in A0, and all
goods are assigned with certainty if the buyer’s type is in AJ , i.e. ∇uA0

= 0 and ∇uAJ
= 1.

We provide the proof in the Appendix.
Theorem 17 is the fundamental building block of this section. To determine that a

mechanism u is not an extreme point of W it suffices to find a single function g such that
moving from u in the direction g yields a feasible mechanism u + g ∈ W , and moving in the
opposite direction also yields a feasible mechanism u−g ∈ W . To determine that a mechanism
ū is an extreme point, however, involves verifying that u+g or u−g are not feasible for every
possible direction g. Theorem 17 reduces significantly the number of directions that must be
verified when dealing with piecewise linear mechanisms. It states that if ū is piecewise linear,
it suffices to verify only the piecewise linear, continuous functions g whose pieces have, as
effective domain, the market segments of ū.

Theorem 17. Let ū be a piecewise linear mechanism. The mechanism ū is an extreme point
of W if and only if ū + g /∈ W or ū− g /∈ W , for every continuous, piecewise linear function
g : IN −→ R such that A ∈ m(ū) implies g is linear on A.

Proof. By definition of extreme point, necessity is obvious.
We prove sufficiency. If ū is not an extreme point of W , then there is a function g such

that ū + g ∈ W and ū− g ∈ W . This implies that g must be continuous for otherwise ū + g

is not continuous.
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Figure 5: Identifying Extreme Points

Pick any market segment A in m(ū). The restriction of u to A is linear. Both 1A(ū + g)
and 1A(ū − g) are convex when restricted to the domain A. Therefore, g must be linear
within A. Q.E.D.

Figure 5 illustrates Theorem 17. The mechanism ū determines three market segments,
A0, A1, A2. To determine if ū is an extreme point of W , it suffices to check whether ū + g

and ū− g are in W for functions g that are linear on the market segments of ū.
We use Theorem 17 repeatedly in this and the next Sections. We also use it to show that

the mechanism in Example 3 is an extreme point. In that example all goods are assigned
randomly within a market segment.

We now characterize some very useful faces of W . Theorem 19 states, roughly, that given
a piecewise linear mechanism ū, the set of piecewise linear mechanisms in W with the same
market segments as ū is a face of W . Theorem 20 shows that the market segments determine
whether a candidate piecewise linear mechanism is an extreme point.

Definition 18. Given any piecewise linear mechanism ū in W , define the set

Fū = {u ∈ W : ∀A ∈ m(ū), u is linear on A; and [∇i ū(x) ∈ {0, 1} =⇒ ∇iu(x) = ∇i ū(x)]} .

The set Fū contains the mechanisms u that have three properties: (i) u must be linear
on every market segment of ū; (ii) whenever ū(x) assigns an object i with probability zero,
so does u(x); and (iii) whenever ū(x) assigns an object i with probability one, so does u(x).
Note that because of (i), consumers in two different market segments of ū, may be treated
equally by some u in Fū; for instance, in Figure 5, consumers in A1 and A2 in m(ū) are
treated equally by u.

21



Theorem 19. Let ū be any piecewise linear mechanism in W . The set Fū is a face of W .

Proof. Let u be any element of Fū. Suppose u = 1/2u′+1/2u′′, for some u′, u′′ ∈ W , u′ 6= u′′.
Pick any A in m(u), and suppose u′ is not linear on A. Then, since u′ is convex, there are
x′, x′′ ∈ A such that u′(x̄) < u′(x′)+u′(x′′)

2 where x̄ = x′+x′′

2 . Note that

u′′(x̄)− 1
2
[u′′(x′) + u′′(x′′)] = 2u(x̄)− u′(x̄)− [u(x′)− 1

2
u′(x′)]− [u(x′′)− 1

2
u′(x′′)]

= [2u(x̄)− u(x′)− u(x′′)]− [u′(x̄)− 1
2
u′(x′)− 1

2
u′(x′′)]

= −[u′(x̄)− 1
2
u′(x′)− 1

2
u′(x′′)] > 0,

which implies that u′′ is not convex and therefore u′′ is not an element of W , a contradiction.
We conclude that u′ must be linear on A. A symmetric argument shows that u′′ must also
be linear on A. Since A is arbitrary, both u′ and u′′ must be linear on each A. This proves
that Fū is an extreme set of W . Noting that Fū is also convex, completes the proof. Q.E.D.

The definition of Fū includes a restriction on the gradient of its members. If we did not
impose the restriction on gradients, the resulting set of mechanisms would still be a face of
W . However, not all faces of W are useful for our problem. For instance, the entire set W

is a face, and the singleton containing any extreme point is a face. The faces we defined are
useful to identify extreme points. Pick any piecewise linear mechanism ū and consider the
face Fū described earlier. Theorem 20 below demonstrates that ū is an extreme point if and
only if Fū is the singleton {ū}.

Theorem 20. Let ū be a piecewise linear element of W . Then ū is an extreme point of W

if and only if Fū = {ū}.

Proof. One direction is trivial: Theorem 19 demonstrates that Fū is a face of W ; therefore if
Fū = {ū}, ū is an extreme point of W .

We prove the converse. Suppose ū is a piecewise linear element of W and suppose there
is u′ ∈ Fū, u′ 6= ū. We will show that ū is not an extreme point.

Let {Aj}J
j=0 be the family of all market segments m(ū). It follows from the definition of

Fū, that both ∇ū and ∇u′(x) are constant in any market segment Aj in m(ū). For simplicity,
we denote those constants as ∇ūj and ∇u′j respectively.

For r ∈ [0, 1], define functions mapping IN into R by by

vr = (1− r)ū + ru′,

wr = (1− r)ū + r[2ū− u′].

The functions vr and wr are piecewise linear, indeed they are linear on each market segment
Aj in m(ū). For any such Aj ∈ m(ū), denote by ∇vj

r and ∇wj
r the gradients of vr and

wr respectively (evaluated at any x ∈ Aj), and denote by tjvr and tjwr the corresponding
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intercepts. For any r, both ∇vr and ∇wr take at most J + 1 values, the number of market
segments defined by ū.

Pick any r. The function vr is in W because it is the convex combination of elements of
W . By construction ū is the midpoint of the interval [wr, vr]. Hence, it suffices to show that
for some r ∈ (0, 1), the function wr is in W to prove that ū is not an extreme point. We must
prove that (i) wr(0) = 0; (ii) ∇wr is in IN ; and (iii) wr is convex. Point (i) is obvious from
the definition of wr.

The proofs of (ii) and (iii) follow from an observation: wr is piecewise linear, defines the
same pieces as ū, and converges uniformly to ū. Since the gradient ∇wr takes only finitely
many values, ∇wr also converges uniformly to the gradient ∇ū. The details are below.

We verify (ii). We prove that there is an r′ ∈ (0, 1) such that for every r ∈ (0, r′) and
every j, ∇wj

r is in IN .
If for some good i and market segment Aj ∈ m(ū), ∇i ū

j ∈ {0, 1}, then ∇iu
′j = ∇i ū

j .
Thus, ∇iw

j
r is in {0, 1} for any r.

If for some good i and market segment j, 0 < ∇i ū
j < 1, let

ε = min
i,j

{
min{(1−∇i ū

j),∇i ū
j} : 0 < ∇i ū

j < 1
}

.

The minimum is taken over finitely many values. As r tends to zero, the functions wr

converge uniformly to u. It follows from Lemma A.3 that ∇wr converges pointwise to ∇ū.
Hence there is rj

i ∈ (0, 1) such that |∇iw
j
r −∇i ū

j | < ε and therefore, 0 < ∇iw
j
r < 1. Letting

r′ = minj,i{rj
i }, the claim (ii) is established.

We verify (iii). We will prove that there is r′′ ∈ (0, 1) such that r ∈ [0, r′′) implies that
wr is convex.

For x ∈ RN , denote by
wj

r(x) = ∇wj
r · x− tjwr

.

The function wj
r is the extension to the entire space RN of the linear piece forming wr on Aj .

Similarly, we denote by ūj and u′j the extensions of the linear pieces forming ū and u′ on Aj

respectively. Thus, wj
r = (1 + r)ūj − ru′j .

Fix any Aj and Ak in m(ū) such that dim(Āj ∩ Āk) = N − 1. For any x ∈ Aj ,

wj
r(x)− wk

r (x) = (1 + r)[ūj(x)− ūk(x)]− r[u′j(x)− u′k(x)]. (8)

Since Aj and Ak share an (N −1)-dimensional boundary and since u′ is linear on Aj and Ak,
we obtain that

∃α ∈ R : u′j − u′k = α[ūj − ūk].

(This follows because (u′j − u′k) and (ūj − ūk) are affine operators with the same kernel of
dimension N − 1.) Replacing the last expression in (8), we obtain that for any x ∈ Aj

wj
r(x)− wk

r (x) = (1 + r − rα)[ūj(x)− ūk(x)].
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The second factor is non-negative because ū is convex and therefore ū is the maximum of the
linear functions forming it (Remark 13). There is rj,k in (0, 1] such that for each r ∈ [0, rj,k]
the first factor is strictly positive thus making the entire expression non-negative:

∀x ∈ Aj , wj
r(x)− wk

r (x) ≥ 0. (9)

The value rj,k depends on the chosen market segments Aj , Ak ∈ m(ū). Let r′′ = min{rj,k :
Aj , Ak ∈ m(ū),dim(Āj ∩ Āk) = N − 1}. Since there are finitely many market segments,
r′′ > 0. Hence, using (9), we have proved that for every r ∈ [0, r′′], for every market segments
Aj , Ak ∈ m(ū) with dim(Āj ∩ Āk) = N − 1, and for every x ∈ Aj ∪Ak,

wr(x) = max{wj
r(x), wk

r (x)}.

We now prove that wr is convex. For any (x, y) ∈ IN × IN , let

f(x, y) =
1
2
[wr(x) + wr(y)]− wr

(
x + y

2

)
.

Suppose by way of contradiction that wr is not convex. Then there are market segments
Aj , Ak in m(ū) and points x′ ∈ Aj , y′ ∈ Ak such that f(x′, y′) < 0. Since f is continuous,
there is an ε > 0 such that for any x ∈ B(x′, ε) and y ∈ B(y′, ε), the function f(x, y) < 0.

Denote by [x, y] = {αx+(1−α)y : α ∈ [0, 1]}. Let C = {[x, y] : x ∈ B(x′, ε), y ∈ B(y′, ε)}.
Then C is an N -dimensional cylinder.

There is [x, y] in C such that any element z ∈ [x, y] belongs to the closure of, at most,
two market segments: if z ∈ D′ ∩ D′′ for D′, D′′ ∈ m(ū), then z /∈ D for any D ∈ m(ū),
D′ 6= D 6= D′′.

The proof of this fact is based on the following observation. Let B(0, ε) ⊂ RN−1. Define
the N -dimensional cylinder

C ′ = {z ∈ RN : z = (x, d), where x ∈ B(0, ε), d ∈ R+}.

For h = 1, . . . ,H, let Sh be an affine subspace of RN with dim(Sh) ≤ N − 2. We will show
that there is an x ∈ B(0, ε) such that {(x, d) : d ∈ R+} ∩ Sh = ∅ for every h. To see this, let
sh be the projection of Sh into B(0, ε). Then dim(sh) ≤ N − 2 and therefore has measure
zero in B(0, ε). The countable union of set of measure zero, has measure zero. Thus there
exists x ∈ B(0, ε) such that x /∈ sh for all h. Then, the set {(x, d) : d ∈ R+} is the desired
path. Q.E.D.

Theorem 20 reduces the process of verifying whether a piecewise linear mechanism u is
an extreme point to determining if there are other mechanisms in the face Fu. In turn this
is equivalent to determining whether a consistent system of linear equations has multiple
solutions. We expand and illustrate this statement in Subsection 6.3, where we analyze
another example.
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Before turning to that pursuit, we discuss another application of the faces Fu identified
above. Although some extreme points are not piecewise linear, there is no great loss in
restricting attention to piecewise linear extreme points of W . This is the content of the
following theorem.

Theorem 21. The set of feasible mechanisms W is the closed convex hull of the set of its
piecewise linear, extreme points.

Proof. Let ū be an extreme point of W that is not piecewise linear, and let t̄(x) = ∇ū(x) ·
x− ū(x) be its corresponding transfer function. Let In = {0, 1/n, 2/n, . . . , n/n}. Thus, (In)N

is a discretization of the set IN , increasingly finer as n tends to infinity. For each x ∈ IN ,
define vn(x) = maxz∈(In)N [∇ū(z) ·x− t̄(z)]. It is routine to verify that vn belongs to W , and
that

sup
x∈IN

|vn(x)− ū(x)| −→ 0 as n −→∞. (10)

The mechanism vn belongs to Fvn , the face of W defined earlier. Note that if ek
n is an

extreme point of Fvn , then it is also an extreme point of W . (To see this, assume by way of
contradiction that ek

n is not an extreme point of W . Then ek
n = (1/2)e′ + (1/2)e′′ for some

e′, e′′ in W , e′ 6= en 6= e′′. Since Fvn is a face, however, e′, e′′ must then be in Fvn . But then
ek
n is not an extreme point of Fvn .)

The face Fvn is convex and compact; therefore Fvn is the closure of the convex hull of its
extreme points (Krein-Milman Theorem). Hence, for each vn, there is

wn =
Kn∑
k=1

αk
nek

n

where αk
n ∈ (0, 1];

∑Kn

k=1 αk
n = 1; for each 1 ≤ k ≤ Kn, ek

n is a piecewise linear extreme point
of W ; and

‖vn − wn‖∞ −→ 0 as n −→∞. (11)

Combining (10) and (11) it follows that ‖wn − ū‖∞ −→ 0 as n −→∞. Q.E.D.

Since the closure of the set of extreme points of W is the minimal closed subset of W

whose convex closure equals W (Schaefer (1966), Corollary to Theorem 10.5, page 68); we
have the following result.

Corollary 21.1. The set of piecewise linear extreme points of W is norm dense in the set
of extreme points of W .

6.2 Another Example

The following example identifies an extreme point in which randomization occurs over all
goods for all consumers within a market segment.
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Example 3. Mixing on all goods. Let N = 2 and let u ∈ W be defined by

u(x) = max{0, (0.4x1 + 0.6x2 −
1
5
), (x1 + x2 −

3
5
)}.

The graph of u and its market segments {Aj}2
j=0 are depicted in Figure 6.
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Figure 6: Mixing in all Goods

To see that u is indeed an extreme point, suppose temporarily that it is not. By Theo-
rem 17, u = 1

2u1 + 1
2u2 where u1 and u2 are piecewise linear and belong to W . Furthermore,

the market segments {Aj}2
j=0 determined from u suffice to define the linear pieces of u1 and

u2. Note also that ∇u must be the average of ∇u1 and ∇u2. Thus, for i = 1, 2, ∇ui must be
(0, 0) in A0, and ∇ui must be (1, 1) in A2. Pick any i in {1, 2}. It follows that

ui(x) =


(0, 0) · (x1, x2)− 0, if x ∈ A0

(c1, c2) · (x1, x2)− c0, if x ∈ A1

(1, 1) · (x1, x2)− b0, if x ∈ A2

, (12)

for some b0, c0 ∈ [0,∞) and c1, c2 ∈ [0, 1]. The value of these unknowns is determined by the
boundaries of the market segments, i.e., A0∩A1 and A1∩A2. From u, it follows that A0∩A1 ={
x ∈ I2 : x2 = 1

3 −
2
3x1

}
, and A1 ∩ A2 =

{
x ∈ I2 : x2 = 1− 3

2x1

}
. From ui, the boundaries

in question are A0 ∩A1 =
{

x ∈ I2 : x2 = c0
c2
− c1

c2
x1

}
and A1 ∩A2 =

{
x2 = c0−b0

c2−1 −
c1−1
c2−1x1

}
.

We thus obtain the following system of four equations and four unknowns: c0
c2

= 1
3 , c1

c2
= 2

3 ,
c0−b0
c2−1 = 1, c1−1

c2−1 = 3
2 . The unique solution to the system is c0 = 3

5 , c1 = 2
5 , c2 = 3

5 , and b0 = 1.
Thus, ui equal u, a contradiction that proves u is an extreme point.

Remark 22. The mechanism ū in the example is undominated. To see this, suppose t̄ is
dominated by t derived from a mechanism u. Since I2 ⊂

⋃
x∈A0 Rx, then u ≥ ū (Lemma 11).

For every x ∈ A2, ∇ū(x) = 1; hence, u(x) = ū(x). By (7), u(δx) must be equal to ū(δx) for
every δ ∈ [0, 1].

The example shows that mixing in all goods may be a feature of the optimal mechanism.
The argument used to prove that ū is an extreme point is an application of Theorem 17.
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6.3 Identifying Extreme Points

We construct an algebraic procedure to determine whether any proposed piecewise linear
mechanism is an extreme point, and argue, based on that procedure, that piecewise linear
extreme points with randomization are plentiful. The procedure is based on properties of
faces of the feasible set and can be implemented numerically.

For the remainder of the section let ū be a piecewise linear mechanism in W .
The face Fū is the set of all mechanisms u that have the same market segments as ū

and satisfy a gradient restriction (Definition 18). The mechanism ū is an extreme point if
and only if its face Fū has ū as its unique element (Theorem 20). Therefore, determining
whether ū is an extreme point is roughly “equivalent” to determining whether there is another
mechanism u that generates the same market segments as ū. In turn, market segments are
defined by finitely many linear inequalities (Definition 14). These inequalities, when satisfied
as equalities, determine the boundaries between adjacent market segments. The collection
of those boundaries constitute a system of linear equations. Mechanisms that generate the
same market segments must solve the same system of linear equations. These ideas will be
developed presently.

Market segments are subsets of IN . Neighboring market segments share an (N − 1)-
dimensional boundary (See Remark 15). We make this precise with a definition.

Definition 23. Two market segments A and A′ of a piecewise linear mechanism are adjacent
if their common boundary A ∩A′ is an (N − 1)-dimensional set.

The market segments {A0, A1} and {A1, A2} in Examples 1 and 3 are adjacent. In
Example 1, the market segments {A0, A2} are also adjacent.

Let
Bū = {{A,A′} : A,A′ ∈ m(ū), A and A′ are adjacent.}.

The set Bū contains all pairs of adjacent market segments. Its elements are used to index
boundaries. For instance {A,A′} ∈ Bū refers to the boundary A ∩A′ between A and A′.

Pick any {A,A′} in Bū. If a piecewise linear mechanism u defines the same boundary
between A and A′ as ū does, then

∀x,
[
(∇uA −∇uA′

) · x = tAu − tA
′

u

]
⇐⇒

[
(∇ūA −∇ūA′

) · x = tAū − tA
′

ū

]
.

This holds if and only if there is a number αA,A′
such that

∇uA −∇uA′
= αA,A′

(∇ūA −∇ūA′
) and tAu − tA

′
u = αA,A′

(tAū − tA
′

ū ).

To every pair of adjacent market segments {A,A′}, we associate the equation

zA − zA′ − αA,A′
(∇ūA −∇ūA′

) = 0.
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The collection of all such equations, one per boundary, constitutes a system of linear equa-
tions:

zA − zA′ − αA,A′
(∇ūA −∇ūA′

) = 0 ∀{A,A′} ∈ Bū. (13)

Each unknown zA is an N -dimensional vector; it will be used to construct the gradient∇uA of
a mechanism u in market segment A. Each unknown αA,A′

is a real number. Therefore system
(13) has N × |m(ū)| real-valued unknowns zA

i , and |Bū| real-valued unknowns αA,A′
.7 For

each boundary {A,A′} ∈ Bū, expression (13) represents N equations, one for each component
zA
i . Thus there are N |Bū| equations in total.

The number of equations will exceed the number of unknowns for some mechanisms but
not for others. System (13), however, is always consistent. One solution is zA = ∇ūA for
every A ∈ m(ū), and αA,A′

= 1 for every {A,A′} ∈ Bū. We refer to this solution as the trivial
solution.

The following theorem summarizes the algebraic procedure.

Theorem 24. Let ū in W , ū 6= 0, be a piecewise linear mechanism with market segments
m(ū), and let Bū identify the boundaries of its adjacent market segments. The following
statements are equivalent.

(a) The mechanism ū is an extreme point of W .

(b) There is a unique, non-negative solution to the system of equations (13) such that
∀A ∈ m(ū), zA ≤ 1, and

∀A ∈ m(ū),∀1 ≤ i ≤ N,
[
∇i ū

A ∈ {0, 1}
]

=⇒
[
zA
i = ∇i ū

A
]
. (14)

The unique solution is the trivial one.

Theorem 24 is essentially a corollary to Theorem 20. It is based on three observations.
First, a non-negative solution (other than the trivial one) to system (13) exists if and only if
there is a mechanism u that generates the same market segments as ū. (The solution is the
mechanism’s gradient.) Second, a mechanism u with the same market segments as ū satisfies
the gradient restriction (14) if and only if u is a member of the face Fū. (Note that (14)
is precisely the gradient restriction used in the definition of Fū (Definition 18).) Finally, by
Theorem 20, ū is an extreme point if and only if Fū is the singleton {ū}. The proof of the
theorem makes these observations precise.

Proof. We show that “not (a)” implies “not (b).” If ū is not an extreme point, there is u′ 6= ū,
u′ in Fū. Let u = (1/2)u′+(1/2)ū. Then u is in Fū and m(u) is equal to m(ū). (The average
is carried out because the market segments of u′ may be coarser than those of ū.)

7Given finite set D, |D| is its cardinality.
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Since u is in W , ∇uA is in IN for every A ∈ m(ū). Since u is in Fū, its gradient
{∇uA}A∈m(ū) satisfies (14) (Definition 18). Since m(u) = m(ū), for every {A,A′} ∈ Bū,
there is αA,A′ ∈ R such that

∇uA −∇uA′
= αA,A′

(∇ūA −∇ūA′
) and tAu − tA

′
u = αA,A′

(tAū − tA
′

ū ).

Thus, (13) is satisfied.
We now show that αA,A′

> 0. For every x in A, (∇uA − ∇uA′
) · x > tAu − tA

′
u . This is

equivalent to writing αA,A′
(∇ūA−∇ūA′

) ·x > αA,A′
(tAū − tA

′
ū ). Since it must be the case that

for x ∈ A, (∇ūA −∇ūA′
) · x > tAū − tA

′
ū , we conclude αA,A′

> 0.
Since u 6= ū, ∇uA 6= ∇ūA for some A ∈ m(ū). For every A ∈ m(ū), define zA = ∇uA.

We have constructed an alternative solution.
We prove that “not (b)” implies “not (a).” Let {zA}A∈m(ū), {αA,A′ ≥ 0}{A,A′}∈Bū

be the
alternative (non-trivial) solution mentioned in (b).

First note that there is no loss of generality in assuming that αA,A′
> 0 for all {A,A′} ∈

Bū. To see this, note that in the trivial solution αA,A′
= 1 for all {A,A′} ∈ Bū. Since a

convex combination of solutions is a solution, there will be a solution to the system that has
strictly positive variables αA,A′

. We thus assume, without loss of generality, that αA,A′
> 0

for all {A,A′} ∈ Bū.
We will construct a function u and show that u 6= ū and u is in Fū. This implies ū is not

an extreme point. For every A ∈ m(ū), define ∇uA = zA. To construct the corresponding
transfers tu , we proceed as follows. If 0 ∈ A, then tAu = 0. For every {A,A′} ∈ Bū, let
tAu − tA

′
u = αA,A′

(tAū − tA
′

ū ).
For x ∈ IN , define u(x) = maxA∈m(ū) zA ·x−tAu . By construction u(0) = 0 and u is convex.

Also u defines the same market segments as ū: for every {A,A′} ∈ Bū, (zA−zA′
)·x ≥ (tAu−tA

′
u )

if and only if (∇ūA −∇ūA′
) · x ≥ (tAū − tA

′
ū ). Thus u belongs to Fū. Theorem 20 implies ū is

not an extreme point, a contradiction. Q.E.D.

Theorem 24 may be applied as an algebraic procedure to determine whether any piecewise
linear mechanism is an extreme point. A candidate mechanism ū is proposed. Its gradient
{∇ūA}A∈m(ū) defines the system of linear equations (13). The proposed mechanism ū is an
extreme point if and only if the only non-negative solution satisfying the gradient restriction
(14) is the trivial solution.

We will illustrate a different application of Theorem 24 than the one described in the
previous paragraph. Instead of proposing a single mechanism ū, we propose a class of mech-
anisms, and we take advantage of the structure of system (13)—every equation has few
non-zero coefficients—to determine the elements within the class that are extreme points.
We summarize our findings in Corollary 24.1 and the remark following it. Before stating the
corollary, we explain the ideas leading up to it for they may prove useful in obtaining similar
results.
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A piecewise linear mechanism ū is in the proposed class if it has two defining character-
istics,

∃A0 ∈ m(ū) : A0 = {x ∈ IN : ∇ū(x) = 0} (15)

∃AJ ∈ m(ū) : AJ = {x ∈ IN : ∇ū(x) = 1}. (16)

Candidate mechanisms have a market segment A0 where no goods are assigned, and a market
segment AJ where all goods are assigned for certain. Since every undominated, piecewise
linear mechanism has these characteristics (Theorem 16), it is unlikely that the seller will
choose a mechanism without them. The mechanisms in Examples 1 and 3 are within the
class considered.

Given any mechanism ū in the proposed class, the system of equations (13) can be rewrit-
ten so that every vector of unknowns zA is expressed solely in terms of the real-valued
unknowns {αA,A′}{A,A′}∈Bū

. To see this, two observations are useful. First, in any solution
to (13) compatible with the gradient restriction (14), z0 must be 0 and zJ must be 1 (be-
cause ∇ū0 = 0 and ∇ūJ = 1 respectively). Second, for any A in m(ū), there is a path of
market segments from A0 to A where each element of the path is adjacent to the previous
one. In other words, there is a collection of market segments that includes both the null
assignment set A0 and the target set A, and whose members can be conveniently labeled so
that contiguous segments (according to their label) are adjacent:
∀A ∈ m(ū),∃{Ak}K

k=0 ⊂ m(ū) such that
(i) A0 = {x ∈ IN : ∇ū0 = 0},
(ii) AK = A, and
(iii) for 1 ≤ k ≤ K, Ak and Ak−1 are adjacent.

(17)

The market segments in Examples 1 and 3 have been labeled to illustrate this condition: For
instance, let A2 in Example 1 be the target market segment. The collection of all market
segments {A0, A1, A2} satisfies (17-(i)) to (17-(iii)). The collection consisting only of A0 and
A2 also satisfies the requirements when properly relabeled.

The equations in (13) derived from contiguously labeled adjacent market segments in
{Ak}K

k=0 are

zAk
= zAk−1

+ αk,k−1(∇ūAk −∇ūAk−1
), for k = 1, 2, . . . ,K.

Reordering terms and substituting repeatedly, the system may be written as

zAk − zA0 −
k∑

j=1

αj,j−1(∇ūAj −∇ūAj−1
) = 0, for k = 1, 2, . . . ,K.

Since zA0
= 0, every vector zAk

may be expressed solely in terms of the unknowns αj,j−1. In
other words, the values of αj,j−1 for j = 1, . . . , k determine the value of the unknown zAk

:

zAk
=

k∑
j=1

αj,j−1(∇ūAj −∇ūAj−1
). (18)
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Of the two characteristics (15) and (16) defining the proposed class, we have used so far
only (15). We will now describe how the second one is used. Every equation in (18), i.e.,
the equation corresponding to each k, is itself a system of N linear equations—one for each
object to be sold—with N + k real valued unknowns—the N values zk

i , and the values αj,j−1

for j = 1, . . . , k. If, in addition, AK = {x ∈ IN : ∇ūK = 1}, the gradient restriction (14)
implies that zK must be 1. Then the Kth equation in (18) becomes

K∑
j=1

αj,j−1
(
∇ūAj −∇ūAj−1

)
= 1.

We thus have a system of equations with only {αj,j−1}K
j=0 as unknowns. Its solutions may

be used to construct solutions to (13). The corollary below summarizes this discussion.

Corollary 24.1. Let ū ∈ W , ū 6= 0, be a piecewise linear mechanism with market segments
m(ū) = {Aj}J

j=0. Suppose

(a) A0 = {x ∈ IN : ∇ū(x) = 0},

(b) AJ = {x ∈ IN : ∇ū(x) = 1}, and

(c) for 1 ≤ j ≤ J , (Aj , Aj−1) ∈ Bū.

If αj,j−1 = 1 for j = 1, . . . , J is the unique solution to

J∑
j=1

αj,j−1
(
∇ūAj −∇ūAj−1

)
= 1

then ū is an extreme point.

Remark 25. The set of piecewise linear extreme points satisfying (a)-(c) is relatively open
in the space of piecewise linear mechanisms satisfying (a)-(c). If in addition, the number
of market segments is no larger than the number of goods plus one (i.e., J ≤ N), then the
above-mentioned set is also dense.

The remark summarizes two genericity results that follow from the corollary and that
apply to mechanisms satisfying the conditions of the corollary. The first one states that
small perturbations of a piecewise linear extreme point yield additional extreme points. The
second one states that, roughly, most piecewise linear mechanisms that have fewer market
segments than the number of goods are extreme points; if one such mechanism is not an
extreme point then it is arbitrarily close to one.

We illustrate the discussion in this section and the genericity statements with an example.
Consider the two-good case (N = 2), and a mechanism ū with three market segments (i.e.,
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J = 2). The reader may think of the mechanisms in Examples 1 and 3. In these cases, system
(18) becomes 

1 0 −∇1 ū
A1

0
0 1 −∇2 ū

A1
0

0 0 ∇1 ū
A1

(
1−∇1 ū

A1
)

0 0 ∇2 ū
A1

(
1−∇2 ū

A1
)

 ·


zA1

1

zA1

2

α1,0

α2,1

 =


0
0
1
1


where subindices indicate goods. The first two rows correspond to the equation k = 1 in (18)
and the last two rows represent the equation k = 2 in (18).

If the coefficient matrix has full rank, then the trivial solution is unique and, by Theo-
rem 24, ū is an extreme point. The rank of the coefficient matrix is fully determined by its
last two rows, the last equation in (18). Corollary 24.1 shows that this is the case in general.

The last two equations can be written as∇1 ū
A1

(
1−∇1 ū

A1
)

∇2 ū
A1

(
1−∇2 ū

A1
) ·

(
α1,0

α2,1

)
=

(
1
1

)

It is immediate that for the mechanism ū in Examples 1 and 3, the coefficient matrix above
has full rank. Thus, the mechanisms in both examples are extreme points; we have just
provided another proof.

The matrix has full rank except when the rows
(
∇1 ū

A1
,
(
1−∇1 ū

A1
))

and
(
∇2 ū

A1
,
(
1−∇2 ū

A1
))

are not linearly independent. Linear dependence can only arise if ∇1 ū
A1

= ∇2 ū
A1

. Therefore
when N = 2, generically, the piecewise linear mechanisms ū with three market segments,
∇ū0 = 0, and ∇ū2 = 1 are extreme points. Geometrically, one such mechanism ū is not an
extreme point if and only if the boundaries between market segments are parallel.

The examples discussed are canonical in the following sense. For each market segment k

there are N equations, one for each good. The last N equations correspond to the boundary
between market segments AJ and AJ−1. Since ∇uAJ

= ∇ūAJ
= 1, the last N equations

constitute a linear system with the J unknowns {αj,j−1}J
j=1 as the only unknowns. The

same arguments made in the previous paragraph hold whenever J ≤ N . Note that J is
the number of market segments minus one, or the number of market segments where some
assignment is made, according to the mechanism ū. Thus, provided J is no larger than the
number of goods, extreme points are abundant. This is summarized in the remark following
Corollary 24.1.

When the number of market segments is larger than the number of goods plus one, even
if the assumptions of Corollary 24.1 hold, the system of equations in the corollary typically
has more than one solution. We may not conclude, however, that ū is not an extreme point.
For ū to fail to be an extreme point, a non-trivial solution {αj,j−1}J

j=1 must yield a feasible
mechanism u, i.e a mechanism u in W .
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7 Odds and Ends

1. Much of our analysis can incorporate some form of production costs.8 The objective
function in the seller’s problem, E[∇u(x) · x− u(x)], is linear on u. Let C : IN −→ R
be concave. Then, E[∇u(x) · x− u(x)− C(∇u(x))] is convex as a function of u and it
achieves a maximum at an extreme point of W .9

The introduction of the cost function C is more natural in a reinterpretation of the
formal model: the seller produces a single good but must decide on the good’s charac-
teristics, an N -dimensional vector; the buyer buys at most one unit of the commodity
and the buyer’s private information x is the buyer’s valuation for the different charac-
teristics. In this context, p(x) = ∇u(x) is the characteristics selected by the seller given
the buyer’s reported valuations x. The function C(∇u(x)) thus represents the cost of
providing the level of characteristics ∇u(x).

The inclusion of a cost function C(·) facilitates comparisons with Rochet and Choné
(1998). They consider essentially the following problem:

max
u∈W

E[∇u(x) · x− u(x)− C(∇u(x))], (19)

and assume that C(·) is twice-continuously differentiable and strictly convex. Under
their assumptions the optimization problem has a unique solution.

Our case is complementary to theirs. We study essentially the same problem but we
assume that the cost function C(·) is concave. This assumption is consistent with a
common justification for natural monopoly, namely that the cost function has non-
convexities.

2. The algebraic procedure described in Section 6 can be used to determine whether
any proposed piece-wise linear mechanism is an extreme point. To determine whether
the identified extreme point maximizes expected revenue for some seller’s beliefs, one
must show, in addition, that the proposed mechanism is undominated (Section 5).
Lemma A.4 and Theorem 16 are useful in this regard.

Identifing extreme points, even dominated ones, is potentially useful. While dominated
extreme points will not solve the seller’s problem, they will be the solution to some
program with a convex objective function.

3. We have shown in Section 6 that the mechanisms in Examples 1 and 3 are generic
extreme points. Thus, nearby mechanisms are also extreme points. Lemma 12 and
Remark 22) show that the mechanisms in Examples 1 and 3 are undominated. Similar
arguments show that nearby extreme points are undominated.

8We are grateful to Kim Border for this observation.
9In fact, we only need that the objective function E[∇u(x)·x−u(x)−C(∇u(x))] be quasiconvex. Assuming

that C(·) is concave suffices to obtain the quasiconvexity of the objective function.
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Appendix

Lemma A.1. Let W =
{
u ∈ C0(IN ) | u(x) is convex, ∇u(x) ∈ IN a.e., and u(0) = 0

}
. The

set W is compact with respect to the sup norm.

Proof. The family of functions W is equicontinuous and uniformly bounded. The Arzela-
Ascoli Theorem implies the desired result. Q.E.D.

We provide without proof the following well-known result.

Lemma A.2. Let X be a locally convex, topological vector space, W be a non-empty compact,
convex subset of X, and S : W −→ R be a continuous linear function. Then the set F of
maximizers of S over W is a face of W . Furthermore, F contains an extreme point of W .

Lemma A.3. Let W =
{
u ∈ C0(IN ) | u(x) is convex, ∇u(x) ∈ IN a.e., and u(0) = 0

}
. Let

u ∈ W and let t map x 7→ ∇u(x) · x− u(x). For n = 1, 2, . . ., let un be an element of W and
tn map x 7→ ∇un(x) · x− un(x). If the sequence {un} converges uniformly to u ∈ W , then,
(i) {∇un} λ−a.e.−−−−→ ∇u and therefore {∇un(x) · x} λ−a.e.−−−−→ ∇u(x) · x; and
(ii) {tn} L1−→ t, and
(iii) T is compact in the L1 norm.

Proof. (i) For n = 1, 2, . . ., let Dn be the set of x in the interior of IN where un(x) is
differentiable, and let D′ be similarly defined for u. The sets Dn,∀n and D′ are dense in
IN and have λ-measure one (Rockafellar (1970), Theorem 25.5, page 246). The set D =
(
⋂

n≥1 Dn) ∩D′ has full measure.
Pick any x ∈ D. Since un is differentiable at x, ∇un(x) equals the unique subgradient at

x (Rockafellar (1970), Theorem 25.1, page 242). Therefore

∀y ∈ RN ,
un(x− δy)− un(x)

δ
≤ ∇un(x) · y ≤ un(x + δy)− un(x)

δ
,

for all δ ∈ (0, δ̄] such that (x + δ̄y) ∈ IN and (x − δ̄y) ∈ IN . (Such δ̄ exists because x is in
the interior of IN .)

It follows that for any ε > 0 and y, there is n̄ such that n > n̄ implies

u(x− δy)− u(x)
δ

− ε ≤ ∇un(x) · y ≤ u(x + δy)− u(x)
δ

+ ε. (20)

To see this, note that given any two sequence of real numbers rn, sn, with rn ≥ sn,∀n, and
sn −→ s, the following inequalities hold: rn − s ≥ sn − s ≥ −‖sn − s‖. Since for any ε > 0,
there is n̄ such that n > n̄ implies −‖sn − s‖ ≥ −ε, it follows that [n > n̄ =⇒ rn − s ≥ −ε].
The same argument can be used to obtain both inequalities in (20).

Finally letting δ ↓ 0 in (20) and using the definition of a gradient, it follows that n > n̄

implies
∇u(x) · y − ε ≤ ∇un(x) · y ≤ ∇u(x) · y + ε.

36



Since y and ε are arbitrary, the proof of (i) is complete.
(ii) By (i), |tn−t| λ−a.e.−−−−→ 0. By construction |tn−t| is bounded. The Lebesgue Dominated

Convergence Theorem implies that
∫
|tn − t| dλ −→ 0. This completes the proof.

(iii) It follows from (ii) and Lemma A.1. Q.E.D.

Lemma A.4. Let u and u′ be two mechanisms in W and let t and t′ denote their respective
transfer functions. Suppose t′ dominates t. Then, there exist measurable functions ∇u′ and
∇u both defined from IN into IN , such that

(i) ∇u′(x) ∈ ∂u′(x) and ∇u(x) ∈ ∂u(x), (where ∂u(x) is the subdifferential of u at x) and

(ii) [∇u′(x′)−∇u(x)] · x ≥ [u′(x)− u(x)] for all x ∈ IN ,

(iii) ∀δ ∈ (1, δ′), −[u′(δx)− u(δx)] =
∫ δ′

δ [∇u′(γx)−∇u(γx)] · x dγ,

(iv) ∇u′(x) · x− u′(x) ≥ ∇u(x) · x− u(x), ∀x ∈ IN .

Proof. Let D′ = {x ∈ IN : ∇u′(x) exists}, D = {x ∈ IN : ∇u(x) exists} and D′′ = {x ∈
IN : [∇u′(x) − ∇u(x)] · x ≥ [u′(x) − u(x)]}. Since λ(D′′) = λ(D′) = λ(D) = 1, then
λ(D′′ ∩D′ ∩D) = 1.

Let E = {(x,∇u′(x),∇u(x)) : x ∈ D′′ ∩ D′ ∩ D}. Then E ⊂ IN × IN × IN and E is
compact.

Let projIN (E) = {x ∈ IN : (x, y, z) ∈ E}; projIN (E) is the projection of E on its first
coordinate. The set E is the graph of the correspondence ϕ : projIN (E) −→ IN ×IN defined
by ϕ(x) = {(y, z) ∈ IN × IN : (x, y, z) ∈ E}. By the selection Theorem of Kuratowsky and
Ryll-Nardzewski (see for instance Hildenbrand (1974)), there is a measurable selection g of
ϕ.

We first show that projIN (E) = IN . Suppose not. Then there is x ∈ IN and x /∈
projIN (E). Since projIN (E) is closed, there is ε > 0 such that B(x, ε) ∩ projIN (E) = ∅
where B(x, ε) = {x′ ∈ IN : ‖x′ − x‖ < ε}. Thus λ(projIN (E)) < 1. By construction
(D′′ ∩D′ ∩D) ⊂ projIN (E), and therefore λ(projIN (E)) = 1, a contradiction.

Let ∂u′ and ∂u denote the subdifferential correspondence of u′ and u respectively. Since
both u′ and u are convex, for all x ∈ IN , ∂u(x) is non-empty, and closed.

It is a matter of verifying definitions to show that g(x) ∈ (∂u′(x), ∂u(x)) for all x ∈ IN .
Abusing notation slightly, we will denote (∇u′(x),∇u(x)) = g(x) for all x ∈ IN .

Finally, note that by construction [∇u(x′)−∇u(x)] · x ≥ [u′(x)− u(x)] for all x ∈ IN .
Then, from Krishna and Maenner (2001), Theorem 1, it follows that the integral (5) is

valid for any measurable functions satisfying (i) above. Condition (ii) states that t′ ≥ t

everywhere in IN . Q.E.D.
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Lemma A.5. The set of piecewise linear mechanisms in W is dense in W with the sup
norm.

Proof. Sketch. Pick any u ∈ W and let t = ∇u · x− u be its corresponding transfer function.
Let In = {0, 1/n, 2/n, . . . , n/n}; IN

n is a discretization of the set IN . For each z ∈ IN
n ,

define the linear function of x ∈ IN , ∇u(z) · x − t(z), and consider the function vn(x) =
maxz∈IN

n
∇u(z) · x− t(z). It is routine to check that supx∈IN |vn(x)− u(x)| tends to zero as

n tends to infinity. Q.E.D.

Proof of Theorem 16. For any Aj ∈ m(u), let ∇uAj
denote the gradient of u evaluated at

any x ∈ Aj , and tA
j

be the transfer for every x ∈ Aj . Therefore,

u(x) = max{∇uAj · x− tA
j

: Aj ∈ m(u)}.

First, suppose that for every Aj ∈ m(u), ∇uAj 6= 0. We will show u is dominated.
Let M = {Aj ∈ m(u) : 0 ∈ Aj}. and define

v(x) = max{∇uAj · x− tA
j

: Aj ∈ m(u) \M},

w(x) = max{∇uAj · x− tA
j

: Aj ∈M}.

The set M is non-empty because u(0) = 0. Suppose momentarily that m(u) \ M is not
empty; we will show later in the proof that the alternative case is trivial.

We use the functions v and w to define a new function u′, and to express u. For every
x ∈ IN , let

u′(x) = max{v(x), 0}. (21)

We will show that u′ dominates u. Note that for every x ∈ IN ,

u(x) = max{v(x), w(x), 0}. (22)

The mechanism u has three components and its corresponding transfer t is strictly positive
only on the effective domain of v. More precisely, we will show that

Aj ∈M =⇒ tA
j

= 0, and

Ak ∈ m(u) \M =⇒ tA
k

> 0.

To see this, pick any Aj ∈M. Observe that x ∈ Aj and 0 ∈ Aj implies that αx ∈ Aj for any
α ∈ (0, 1]. By definition, u(αx) = ∇uAj · αx − tA

j
. If tA

j
> 0, then there is α ∈ (0, 1] such

that u(αx) < 0, a contradiction. We have thus shown that tA
j

= 0.
Pick then any Ak ∈ m(u) \M and Aj ∈M. By definition of market segments,

∇uAj · x− tA
j

> ∇uAk · x− tA
k
,∀x ∈ Aj .
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Let x tend to 0 which we may do because 0 ∈ Aj . Then

∇uAj · 0− tA
j ≥ ∇uAk · 0− tA

k
.

If the expression above is satisfied as equality, then 0 ∈ Ak, and this is a contradiction since
Ak ∈ m(u) \M. Thus, we conclude that

−tA
j

> −tA
k
.

Since Aj ∈M, tA
j

= 0 and thus, we have tA
k

> 0.
Consider now the mechanism u′. It has two components and its corresponding t′ is strictly

positive also on the effective domain of v.
Observe that, by construction, max{w(x), 0} ≥ 0 for every x ∈ IN and it is strictly

positive for any x ∈ intAj , Aj ∈ M because the gradient ∇uAj 6= 0. Hence w(x) > 0
in a set of positive measure. Thus, the effective domain of v in the definition (21) of u′,
{x ∈ IN : v(x) > 0}, strictly contains the effective domain of v in the definition (22) of
u, {x ∈ IN : v(x) > max{w(x), 0}}. This completes the proof under the assumption that
m(u) \M is non-empty.

If m(u) \M = ∅, then u yields revenue t = 0 because Aj ∈ M implies tA
j

= 0. Hence u

is clearly dominated. This completes the proof of the first part.

Second, suppose that ∇uAj 6= 1 for every Aj ∈ m(u). For any r ≥ 0 and x ∈ IN define
the functions

vr(x) = 1 · x− [N − u(1)− r]

ur(x) = max{vr(x), u(x)}.

We will prove that for sufficiently small r, ur dominates u.
Define Kr = {x ∈ IN : vr(x) ≥ u(x)}. For all x ∈ IN \Kr, ur(x) = u(x) and therefore

both mechanisms generate the same transfer.
Pick any x ∈ Kr. The transfer generated by ur is

tr = N − u(1)− r = 1 · 1− u(1)− r,

= [1−∇u(1)] · 1 +∇u(1) · 1− u(1)− r. (23)

If x ∈ Kr belongs to Aj ∈ m(u), then the transfer generated by u is

tA
j

= ∇u(x) · x− u(x)

≤ ∇u(x) · x− u(1)−∇u(1) · (x− 1),

= [∇u(x)−∇u(1)] · x +∇u(1) · 1− u(1), (24)
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where the inequality follows because of the convexity of u. Subtracting (24) from (23) we
obtain

tr − tA
j ≥ [1−∇u(1)] · 1− [∇u(x)−∇u(1)] · x− r.

= [1−∇u(1)] · (1− x + x)− [∇u(x)−∇u(1)] · x− r.

= [1−∇u(1)] · (1− x) + [1−∇u(x)] · x− r.

The combination of the first two terms is strictly positive. Therefore, we conclude that

∃ rj > 0 : [0 < r < rj ] =⇒ tr > tA
j
.

Let r′ = min{rj : Aj ∈ m(u)}.
We have thus proved that for 0 < r < r′, tr dominates t. A contradiction. Q.E.D.
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