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Abstract

A seller of a nondurable good repeatedly faces a buyer who is privately informed about the

position of his demand curve. The seller offers a price in each period. The buyer chooses a quantity

given the price. The quantity demanded reveals information about the buyer. An equilibrium is

characterized with the feature that buyer types separate completely in the first period. This equilibrium

uniquely satisfies a modified refinement of the Cho-Kreps criterion. Despite the immediate separation,

the buyer distorts his behavior throughout the game. The requirements to signal types can raise the

utility of all types of informed players.
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1. Introduction

Playing hard to get is time-honored in markets as it is in love. The coy and clever buyer knows

that betraying too much eagerness to a seller can often place him at a disadvantage as their relationship

develops. However, feigned indifference comes at a cost. Delayed consumption destroys irrevocably

some  opportunities for satisfaction. A careful buyer must always balance his wish for immediate

gratification with a caution against betraying his true desires; an interested seller must balance her

desire to benefit from the current transaction with the need to extract information about the future of

the relationship. 

In dynamic games, this phenomenon gives rise to the so-called ratchet effect. When an

uninformed agent learns information early in a game, she can be expected to exploit it subsequently

to her opponent's disadvantage. One result is that the cost of inducing information revelation grows

the longer the trading relationship is expected to persist. The consequence of this behavior has been

found to suppress the revelation of information in dynamic games (see Freixas, Guesnerie and Tirole

1985, Hart and Tirole 1988 or Laffont and Tirole 1987). These results have generally been derived

in models in which the uninformed agent is in an unusually strong strategic position either because

of her contracting power or because of very simple preferences of the informed agent which offer

agents of one type very little scope to separate from agents of another type. If the consequences of

revealing information to an uninformed agent are severe, then we can expect little information

revelation.  And, in dynamic trading games, if the only way agents can separate is through the stark

choice of zero purchases or single unit purchases, again we can expect little information revelation.

What happens in a different contracting environment and when preferences are such that the

possibilities for screening are richer?
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In Section 2, a dynamic contracting game is described in which two agents desire to trade a

divisible, non-durable good or a service, period by period. The buyer has private information about

the position of his demand curve. Since the relationship is dynamic, the problem of an uninformed

seller is twofold: to extract surplus from the current trade; and to extract information that may be

exploited in future trades. Allowing an agent in a bilateral monopoly the sole right to offer non-linear

contracts  yields that player a substantial amount of strategic power. This power and the temptation

to extract surplus in later periods reduces the ability to extract information in the current period. One

way to relax this stark formulation is to restrict the seller to another commonly observed type of offers,

linear contracts in which the seller offers a price and the buyer chooses a quantity. 

This game possesses a perfect Bayesian equilibrium with a very stark feature. For a large subset

of the parameter space, the equilibrium path is characterized by immediate information revelation by

both types. Despite the revelation, though, economic behavior continues to be distorted along the

equilibrium path as the low type buyer is forced to continue to convince the seller that he is indeed

a low type. The low type buyer separates from the high type by selecting a quantity determined by a

demand curve lower than his true demand in every period but the last even though at intermediate

stages of the game the seller has acquired enough information to know with probability one whether

the buyer is a high or low type.  In this sense, the equilibrium illustrates that HOW an agent knows

information as well as WHAT the agent knows can play an economic role. 

Dynamic games in which the informed player has a large strategy space are typically plagued

by a large set of equilibria. This model is no exception and, indeed, there also exist other separating

equilibria as well. It is natural, therefore, to investigate the plausibility of this particular equilibrium.

In Section 4, I show that if the model is extended to allow for any small but positive probability that
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a buyer's type might change in every period, then the equilibrium characterized in Section 3 is the

unique one to survive the iterative application of a well-known refinement of perfect Bayesian

equilibrium. 

Section 5 examines other features of this equilibrium. As a result of the persistent concern that

a seller may revise her beliefs, the equilibrium behavior confers a surprising benefit on both buyer

types. In signalling games, one type of informed agent often incurs a cost due to the asymmetry of

information as he attempts to separate from the other type. In this environment, though, it is shown

that both types of buyers can benefit from the presence of asymmetric information. In a repeated

context, the fear that the uninformed agent may update in an unfavorable way following some actions

of the informed agent can serve as a valuable commitment device in earlier stages of the game that

allows the agent to commit to strategies that would otherwise not be credible.

2. The Model

In a T-period game , an uninformed supplier faces a buyer who is privately informed about his2

preferences for a non-durable good.  The seller can provide the good at constant (zero) marginal cost

and seeks to maximize total discounted expected profits. A buyer of type a  in period t obtains a pert

period utility from a quantity, q , of the good purchased at a per unit price,  p , given byt t

(1)

Observe that the marginal rates of substitution between q  and the money good differs depending ont

the buyer type. The buyer wishes to maximize the expected value of the T-period discounted sum of

(1) (the discount factor, 
, is the same for buyer and seller) and has private information about the true
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value of a  which may be high or low. The prior probability that the buyer is a high type at thet

beginning of the game (Prob[a  = a ]) is µ  � (0,1).   An example generating these payoffs is a marketT H T
3

where the seller sells to a downstream retailer or importer who incurs a quadratic cost of distributing

the good. In addition, the true price the retailer receives upon reselling the object, a , remains privatet

to the retailer perhaps because of unobserved taxes or rebates or other linear costs. 

In a myopic or static framework, the preferences of the buyer yield a demand curve of the form

q = max{0,a  - p} and the monopolist's optimal price for a  � a /2 is just a weighted combination oft t t L H

her monopoly price against each of the possible demand curves where the weight is given by her prior

belief about the buyer type. It is never optimal for the seller to charge a price above a /2 so there isH

no loss of generality in restricting attention to prices below this bound. However, if a  < a /2, evenL H

in the static game, the seller's profit function is non-concave in prices for some beliefs. In this case,

her optimal price is either the weighted combination or just a /2 depending on her beliefs. Since theseH

issues are not the focus of this paper, I rule out this possibility by maintaining the restriction, a  �L

a /2.H

 The game consists of the following moves. At the beginning of each period, the seller offers

a per unit price and commits herself to providing any quantity the buyer chooses at that price. The

buyer then chooses a non-negative quantity.  In the dynamic game, the strategic power of the seller

is determined by the space of contracts available to her. The extreme case in which the seller may

choose only linear pricing contracts is restrictive but it is of interest for two reasons . A truly bilateral4

monopoly should have the characteristic that in the case of complete information, there is a non-trivial

sharing of surplus. Restrictions on the strategy space are often exploited to induce this division. One

way to model bilateral bargaining power would be to incorporate explicitly offer-counteroffer
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negotiations in each period as in Rubinstein (1982). Solving this game would be a daunting task. The

restriction to linear pricing schemes allows the construction of a game which forces the sharing of

some surplus and, as it turns out, is tractable. Furthermore, we often observe such restrictive pricing

schemes. For example, negotiations between unions and firms often have the characteristic that a wage

is determined (in this model, set by the union) and employment is then selected by the firm.  

In the next Section, a perfect Bayesian equilibrium  of the linear pricing game is illustrated5

with the feature that for a large class of parameter values the buyer types separate in every period. 

3. Equilibrium Behavior in the Linear Pricing Game -- the Case of Complete Separation

Dynamic signalling games typically possess many perfect Bayesian equilibria (pBe). The focus

of this paper is on equilibria which are fully revealing in every period. It is well-known that even in

"well-behaved" two-stage signalling games, fully separating equilibria may not exist if, given

preferences, the signalling space is not large enough to allow one type to profitably distinguish himself

from another type (Cho and Sobel 1990). Since I am interested in examining the nature of separation

in many period signalling games, that issue is side-stepped by placing restrictions on the parameter

space in order to allow the possibility of full and immediate revelation. The equilibrium characterized

in this section is extremely simple. In each period, buyer types separate for every price by choosing

a quantity determined by a linear demand curve independent of seller beliefs and of the history of the

game. The high type chooses the demand corresponding to his static demand curve, the low type, in

every period, chooses a quantity off a linear demand curve that is generally lower than (but parallel

to) his static demand curve. The actual position of the demand curve is such that in any period if the

buyer type is high, he is just indifferent between mimicking the low type in this period and for the rest
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of the game and choosing his high demand. As a result, the more periods remaining to the end of the

game, the lower this low type equilibrium demand curve must be. (See Figure 1.)

[FIGURE 1 ABOUT HERE.]

The proof that such behavior is the outcome of a perfect Bayesian equilibrium is best seen by

construction. Define a monotonic sequence, {a } as follows. Let x* = a (4-3
)/(4-
). If a  � x*, setLt H L

a  = a . Otherwise define a  iteratively by a  = a  andLt L Lt L1 L

(2)

The intercept of the low type demand curves is given by a  in every period. It can be shown that aLt Lt

converges to x* as t becomes large and that for a fixed t, a  falls with increases in 
. In order to ensureLt

that the signalling space is large enough to allow complete separation, I maintain the following

restriction on parameters: 

(A1) T,
,a ,a  are such that a  � a /2. L H LT H

Notice that for 
 � 4/5, A1 holds for all values of T as long as a  � a /2 holds. L H

In a perfect Bayesian equilibrium, we must specify seller beliefs following any history of the

game. In all of what follows, I consider equilibria in which the seller's beliefs may change only

following a move by the buyer. Given Bayes' rule, then, it is sufficient to characterize seller beliefs

solely by the sequence, {µ } , which is the probability the seller places on the buyer being a hight t=1
T

type in period t just before the seller posts a price, p .t
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Theorem 1: Assume A1. The following behavior can be supported as a perfect Bayesian equilibrium

outcome of the game. For any price, p , a buyer who is a high type in period t demands q  = a  - pt H H t

and a low type buyer demands q  = a  - p . For any history resulting in seller's beliefs in period t ofLt Lt t

µ  the seller offers a price p  = (µ  a  + (1-µ )a )/2.t, t t H t Lt

Proof: For some period - onwards define strategies as

H1 : In every period, i � -, for every history, for every seller belief, and for every price
--

offer, p , a high type buyer in period i demands a  - p and a low type buyer demandsi H i

a  - p.Li i

H2 : In every period, i � -, for every history of the game, the seller offers a price, p (µ )
-- i i

= (µa  + (1-µ )a )/2.i H i Li

Clearly, H1 and H2 are perfect Bayesian equilibrium strategies for - = 1.  Suppose that they can be6

supported as pBe strategies following some period - = t-1. I show that they can also be supported as

pBe strategies for - = t and the theorem follows by induction. 

Observe that by assumption A1, p (µ ) � a  in every period, so positive quantities will bei i Li

demanded in every period. H1 and H2 imply that in period t-1, whatever his behavior in the past, a

high type expects to separate by demanding a  - p  in period t-1 and that the subsequent equilibriumH t-1

path is stationary. Thus, his payoff following period t-1 can be represented simply by some constant,

v . Ht
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Now let p  be a seller price offer in period t and define q  so thatt Lt

2(a -p)q -q +
((a -p (0)) +v ) = (a -p) +
((a -p (1)) +v )H t Lt Lt H t-1 Ht H t H t-1 Ht
2 2 2 2

That is, q  is the highest quantity choice such that the high type is just indifferent between revealingLt

herself now by demanding a  - p or demanding q  in this period, persuading the seller he is a low typeH t Lt

and receiving the lowest possible price, p (0) in period t-1. By H1, in either case, he will demand a -Lt H

p  in the following period and reveal his type. Note that q  = a  - p where a  is defined by (2).t-1 Lt Lt t Lt

In order to show that demanding a -p is optimal for the high type we need to describe theH t

consequences of other choices. Observe that given H1 , the seller's strategy defined by H2  ist-1 t-1

sequentially rational and determined solely by her t-1'st period beliefs. The consequences of a deviant

quantity in period t, then, are determined by the effects of this quantity on the t-1'st period beliefs of

the seller, µ . For any history and any quantity choices, q  � q , the seller believes that the type is at-1 t Lt

low type in the current period with probability one and therefore µ  = 0. If q1 � q , define µ*(q1)t-1 Lt

implicitly by

2(a -p)q1-q1 +
((a -p (µ )) +v ) = (a -p) +
((a -p (1)) +v ).H t H t-1 H H t H t-1 H
2 * 2 2 2

For any history with q  > q , she believes that the buyer is a high type with probability at least µ (q1)t Lt
*

and therefore, µ  � µ . (Note that even for µ  = 0, so the seller initially believes she is facing a high-t-1 t
*

type buyer with probability zero, whenever q1 > q  is an out-of-equilibrium event, seller updatingLt

from µ  = 0 to µ  > 0 is consistent with pBe.) With these beliefs, the definition of µ  ensures that thet t-1
*

high type at least weakly prefers to demand a -p to any lower quantity. Lemma 1 in the Appendix usesH t

the induced preferences of the two types of buyers to show via a single-crossing property that the low

type strictly prefers q  which results in the lowest plausible price in the next period to any higherLt

quantity and the higher next period price, p (µ*). Thus the behavior of both buyer types satisfy H1t-1
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for period t, and since buyer types separate for any price, there is no dynamic role of pricing for the

seller. For any seller belief in [0,1], given the separating behavior of the buyer for any p , thet

monopolist's optimization problem is exactly the same as the static problem confronting a monopolist

with a linear demand curve with intercept a  or a . Given A1, this problem is concave, p (µ ) � a /2H Lt t t H

for all µ  and the behavior described in H2 is optimal for period t as well. Since H1 and H2 is satisfiedt

for - = 1, induction implies that the behavior satisfies the conditions of a perfect Bayesian equilibrium

for all periods T such that a  � a /2. bLT H

Notice that in the extreme case of 
 = 0, buyers discount the future completely. In this case,

x* = a  and, by definition, a  = a  for all t. Separation implies no distortion since there is no incentiveH L Lt

for the high-type to underdemand. Similarly with low 
's, separation will always occur and the

equilibrium corresponds to the repeated static solution.  

More interesting, however, is the case where the future matters because of a higher discount

factor. In this case, where x* < a , the succession of demand curves, a , is monotonically decreasingL Lt

in t. As the length of the game increases, the low type buyer must underdemand more in order to

dissuade imitation by the high type. 

Observe that,

If 
 is high and T is large, it is possible that assumption A1 is violated. This possibility is also a

potential source of non-concavity in the seller's optimization problem and her pure strategy best

response correspondence may not be convex-valued. In such cases, complete separation cannot be

supported by the perfect Bayesian equilibrium described in Theorem 1. Some partial pooling will

typically occur in early stages of the game such that a  < a /2. Initially, then, there may be someLT H
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gradual learning. In these cases, the equilibrium behavior is not as simple as that of Theorem 1 since

they will typically involve mixed strategies in equilibrium for the high type buyer and mixed strategies

(out of equilibrium) for the seller. These complications are accounted for in an earlier version of this

paper (Vincent, 1994) which provides a characterization of equilibrium strategies over the full

parameter space. For values of a , a , 
, and t such that a  � a /2, the equilibrium paths coincide.H L Lt H

Otherwise, if the seller believes relatively strongly that the buyer is a high type, it may be in her best

interest to offer prices which induce only gradual revelation by the high-type buyer. In these periods,

behavior very similar to the original ratchet effect of Laffont and Tirole emerges. The high-type buyer

reveals himself with some probability, � . Only as the game approaches the later periods does completet

separation emerge.

Theorem 1 characterizes only one of many possible pBe. Even in two stage signalling games,

pooling equilibria often can coexist with separating equilibria. This is true here for T = 2 and,

therefore, for T > 2 as well. In two-period games, many such pooling equilibria fail to survive common

belief-based refinements of perfect Bayesian equilibria. I show next that a similar approach may be

applied in the multi-period game. A recursive application of the Cho-Kreps (1987) intuitive criterion

is defined. The original game is modified to allow for stochastically changing types (but with

arbitrarily small probabilities of changes). Theorem 2 illustrates that, in this game, the equilibrium

path described in Theorem 1 is the only one to survive this restriction.

4. A Refinement of Perfect Bayesian Equilibrium

The equilibrium characterized in Theorem 1 has the feature that the private information of the

buyer is revealed in the first period of the game. This stark learning behavior points to an intriguing

and controversial feature of the equilibrium. If the seller observes an equilibrium low quantity in an
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early period of the game, she must believe she is facing a low type with probability one. Furthermore,

she must continue to believe she is facing a low type throughout the rest of the game. Even so, it is

not sequentially rational for her to revert to the optimal monopoly price, a /2 against a low type.L

Instead, since the low type is demanding off a lower demand curve, a  - p, the seller's sequentiallyLt t

rational price falls to a /2. Despite the equilibrium generated knowledge that the low type is in theLt

game, behavior continues to be distorted along the equilibrium path.

Is this apparently counterintuitive feature simply a curiosum of the large size of the set of

perfect Bayesian equilibria of repeated signalling games? One way to approach this question is to

determine whether the equilibrium would survive the application of a common refinement of

sequential equilibrium. A difficulty arises however, in the attempt to extend the definitions of these

refinements to multistage games with full separation. After separation occurs, the seller will believe

with probability zero that the buyer is of a particular type. But many belief-based refinements require

the comparison of the value to various types of potential continuation paths following a deviation. In

this environment, such a comparison would be vacuous if we did not allow the seller to consider the

possibility of changing her belief from probability zero to a positive probability. 

The equilibrium characterized in Theorem 1 exhibits this phenomenon of increasing supports

off the equilibrium path. Seller updating includes the feature that for high-quantity deviations the

seller will change her belief that the buyer is a high-type with probability zero to a belief that the buyer

is a high-type with some positive probability. Note that perfect Bayesian equilibria (and sequential

equilibria) of signalling games not only allows for this type of updating, in some games, it is required

to ensure the existence of sequential equilibrium. (See, Madrigal, Tan and Werlang, 1987 and van

Damme and Noldeke, 1990.) Beaudry and Poitevin also use a dynamic extension of a standard
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refinement to analyze one-shot signalling game with the possibility of later renegotiation. Their model

also yields equilibria where the uninformed agent's beliefs feature increasing supports off the

equilibrium path. 

In this section, I skirt the issue by extending the model to ensure that the uninformed agent can

never believe she is facing any given type with probability one. The extended model introduces the

possibility that informed agents' types may change exogenously in every period. Bayesian updating

by the seller must take this possibility into account when she formulates her new beliefs. Specifically,

let a  be the buyer's type in period t+1 and assume that in any period, buyer types follow a stationaryt+1

Markovian process of the following form:

(3)

Thus, conditional on being of type i in period t+1, the buyer is relatively more likely to be of type i

in period t. I focus on the limiting case where �  approaches one and �  approaches zero, but theH L

model could, of course, be interpreted literally as a description of a game where there is a significant

probability that types change over the course of the game. Consistent with full rationality, both the

buyer and the seller factor in the possibility of future type changes in the determination of current

optimal strategies. The operative role of this modification is that for any �  > 0, in no period, does theL

seller believe with probability zero, she is facing a high-type buyer and therefore, the issue of non-

increasing supports does not arise. This feature is used to describe the extension of the refinement.

Before defining the refinement formally, it may be helpful to walk through a short example to

illustrate its application in a three period game with a  = 1, 
 = 1, a  = 3/4 and �  = 1.  Consider theH L H
7

subform of the game beginning at the second stage of the second last period with the seller's price, p ,2

already set and with some current seller belief, µ , strictly above 0. Sequential rationality imposed on2
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the buyer in the last period implies that we can represent buyer types's preferences in (q ,p ) space by2 1

the following induced utility function:

Figure 2 illustrates these preferences in (q ,p ) space. It can be shown (Lemma 1) that these2 1

indifference curves are concave and that the slope of the high type indifference curves are steeper than

those of the low type. Seller behavior in the last period is determined for any belief µ , and since buyer1

behavior in the last period is a function only of seller price, p , a two-period signalling game emerges1

from the overlap of the second stage of period two and the first stage of the last period. The buyer's

second period quantity demand acts as a signal which the seller observes and generates a response

which is the final period price. 

[FIGURE 2 ABOUT HERE.]

In a two-period signalling game, the Cho-Kreps (1987) Intuitive Criterion (what will be

refinement R  in the multi-period game) rules out candidate pBe outcomes such as point A in Figure2

2 as follows.  Trace the indifference curve of the high-type downward and to the left until it crosses8

the p  = 3/8 line at q1. Suppose a deviant quantity, q1 - � is demanded at this stage. There is no seller1

belief and subsequent best response that could yield an outcome for the high type buyer that the buyer

prefers to the candidate outcome, A. On the other hand, if the seller updates her beliefs following the

deviation by putting zero weight on the high type and responds with the price p  = 3/8, for small1

enough �, the low type gains a strictly higher payoff than from A. In a simple two-stage signalling

game, the Cho-Kreps criterion would imply that the seller then should believe that only a low type
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would demand such a low quantity and therefore update with a belief µ  = �  and respond with a price1 L

in the last period of p  = 3/8. 1

This argument can be used to eliminate all pooling outcomes. The only outcome that survives

the restriction to this type of seller updating rule is the separating outcome B for the high type and C

for the low type shown also in Figure 2. The high type receives his full information equilibrium payoff

while the low type underdemands just enough so as to dissuade imitation from the high type. This last

condition yields the quantity q  = a  - p  = 5/8 - p  for any price offer p . Thus a lower "effective"L2 L2 2 2 2

demand curve determines the low type's behavior in the second to last period.

Given the necessary buyer behavior in period 2, the seller's best response in period 2 is again

a simple function of her beliefs: p(µ ) = (µ  + (1-µ )*5/8)/2. The fact that the buyer types separate for2 2 2

any sequentially rational price offer of the seller implies that there is no informational (and therefore

no dynamic) role of prices. Instead, the seller is again in a situation analogous to that of the static

monopolist facing one of two possible demand curves. This time, though, the low demand curve is

lower than before because of the low type's desire to separate from the high type.

Observe that, except for the determination of the seller's price, p , this argument is made2

independent of the actual value of the seller's current prior, µ . What is required is that, fixing any2

candidate equilibrium, for `low enough' deviant quantities, the seller will believe that a low type made

the demand. This requirement, in turn, requires that to support the only equilibrium outcome

satisfying this feature, we be able to place a high enough probability that a high type makes a deviant

quantity above the low type's quantity, q . If T = 2, then these requirements are satisfied as long as aL2 L

> a /2 and µ  = µ  > 0. In a three-period game, the issue becomes more delicate if �  = 0, because thenH T 2 L

it is possible that along the equilibrium path, µ  = 0. 2
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Given that buyers expect to separate in this manner  for all prices in the second stage of the

middle period, the utility that each buyer type expects from any continuation path at the beginning of

period 2 will be a function only of the seller price offer, p , independent of the history of the game.2

Furthermore, if we move forward in the game to the second stage of the initial period, with a seller

price, p , outstanding, it can be shown that the induced buyer preferences over the quantity they3

demand given this price and the subsequent p  that this generates from the seller are qualitatively2

similar to those in Figure 2. The equilibrium path isolated in Theorem 1 is obtained by applying the

intuitive criterion (R ) after replacing the continuation paths of the game with the expected payoffs3

(which depend only on the seller beliefs and through them on subsequent seller price offers).  An

argument similar to that for the overlap of period 2 and 1 applies here as well and yields complete

separation again in the first period, this time with the low type buyer demanding a quantity, q  = 1-L3

.5((1-5/8)(3-5/8))  = .528 - p . .5
t

The equilibrium price path follows one of two patterns. Independent of the buyer type, the

initial price is given by (µ +(1-µ )a )/2. If the buyer is a high type, the quantity demanded is relatively3 3 L3

high, and subsequent prices move immediately to 1/2 in each of the remaining two periods. If the

buyer is a low type, the initial demand is lower than the low type's static demand, the seller's next

period price falls to a price below her static monopoly price against a low type and then rises as the

game continues.

The characterization of the formal refinement requires some more notation and definitions.

Let h denote a history of a game up to the end of period t and (h ,p ) denote the history to the middlet t t-1

of period t-1.   Since a strategy determines the continuation play of the game for any given history, we9

can compute expected payoffs from t-1 onwards for buyer and seller given a history and a strategy, ).
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Denote the buyer's expected payoff by v (h ,p ,a) when the history is (h ,p ), the buyer type in period)

t t t-1 j t t-1

t is a  and the strategies from t onwards are determined by ). The seller's expected payoff from thej

same stage in the game onward, conditional on the buyer type in period t being a  is u (h ,p ,a). Givenj t t t-1 j
)

a history, (h ,p ) and a profile of pure strategies,  ), let q (h ,p ,a) be the strategy choice of a buyert t-1 t-1 t t-1 j
10 )

who is of type a  in period t-1. Similarly, p (h ) is the corresponding seller price choice fixed by ).j t-1 t
)

A pBe also characterizes seller beliefs after any history. Let µ (h ) denote the seller's interimt-1 t
)

probability that the buyer is a high type at the beginning of period t-1 (following the random move by

nature at the beginning of period t-1). Recall that I consider only pBe such that beliefs may change

only after buyer deviations.11

Definition 1: A subset of perfect Bayesian equilibrium strategies, (, satisfies condition C  if for allt

strategy profiles, ) � (, for all i � t, for all h ,h1 , for all p  � a /2, q (h ,p ,a) = q (h1 ,p ,a), a  �i+1 i+1 i H i i +1 i i i i +1 i i i
) )

{ a ,a }.L H

Definition 1 characterizes a class of strategies which exhibit a strong type of stationarity from

some period t to the end of the game. Since for any pBe, q (h ,p ,a ) = a  - p , for all histories, the set)

1 2 1 1 1 1

of all pBe strategies satisfies C .1

Definition 2: For any set of pBe strategies, (, satisfying C , define t

BR  is not necessarily the set of seller equilibrium strategies since any given seller belief µ(

t



Rt(()
{)�(
~ht�1,~pt�aH/2,for any q̃Õ{ q )

t (ht�1,pt,aL),q
)

t (ht�1,pt,aH)}
such that if

v)t (ht�1,pt,q̃,p,aj)�v)

t (ht�1,pt,aj) ~p�BR
t
(
(µ)~µ�[�L,�H],

and

v)

t (ht�1,pt,q̃,p,ak)>v)t (ht�1,pt,ak), for some p�BRt
(
(�k),j,k�{ L,H},kgj,

then,µ)t	1(ht,pt,q̃)
�k}.
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may never arise in a pBe. However, in order to apply the refinement, I want the ability to conduct

thought experiments that range over all possible seller beliefs following a deviation. This device

allows that flexibility. Notice that u  is defined as a function of the strategy profile alone, not seller)

beliefs. The variation of beliefs, µ, in the current period is not assumed to affect future play of the

game.  12

I now define a refinement of a subset of pBe. 

Definition 3: If ( is a subset of pBe of the T period game satisfying C , t-1

If ( does not satisfy C , then R(() = (.  The refinement is generated by applying Rt-1 t t

iteratively. Let (  be the full set of pBe. The T-fold application of the refinement yields the subset of1

pBe, (  = R (R (...R (( )...)) � R (( ).T T T-1 1 1 1
T

In words, the t'th refinement states the following.  Suppose that all the pBe under

consideration, ( , have the feature that buyer behavior is stationary in all periods following periodt-1

t and, so, continuation payoffs will depend only on the seller's subsequent price offers, which in turn

depend only on her subsequent beliefs. Then, if a deviant demand occurs in period t with the

characteristic that, given the hypothesized equilibrium continuation, one type does worse for any

sequentially rational seller price offer while there is a sequentially rational seller price offer for which

the other type does strictly better, then the seller must believe that it was the latter type who deviated



aLt
min{aL,aH	 
(�H	�L)(3(�HaH�(1	�H)aLt	1)	(�LaH�(1	�L)aLt	1)/2}
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in period t. Theorem 2 shows that for any �  > 0, the equilibrium path described in Theorem 1 is theL

only one to survive the T-fold application of this refinement.

Theorem 2: Let (  be the set of pBe and define (  = R (( ). Assume A1 and suppose �  > 0. If ) �1 T 1 L
T

( , then ) generates the equilibrium path described in Theorem 1 with a  defined asT Lt

Proof: The proof of Theorem 2 is found in the Appendix. 

The direct application of refinement, R  puts restrictions on how the seller can update whenT

she observes lower than expected quantities demanded. In a way, it allows the low type the

opportunity to destroy any pooling equilibrium by signalling his type with a low quantity demand. The

richness of the preferences implies that the high type is not willing to sacrifice high quantity

consumption now for lower prices in the future. However, this restriction eliminates many pBe and

as a consequence it also forces restrictions on how she may update when higher than expected

quantities are observed. Even though information is fully revealed, screening costs are incurred

throughout the game. After the first period, both the buyer and the seller know all the relevant

information for the rest of the game. Nevertheless, the equilibrium strategy of the low type is to

underdemand for the remainder of the game (except the final period). He acts as if he had a demand

curve with a strictly lower intercept. Given this behavior, the seller can do no better than to post a

lower price. The buyer who is informed that he is of a low type signals this to the seller in the first

period but is `forced' to continue to convince the seller throughout the game. There is a sense in
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which, although, all the information is revealed immediately, complete separation has really not

occurred until the game is fully over.

 Observe that a condition of the theorem is that �  > 0. If �  = 0, there are other pBe satisfyingL L

R . For example, in the three-period game , a pBe exists with the following characteristics. In the firstT 13

period, for any price, p , the low type demands a low enough quantity, q , that even if the high type3 3

demanded q , was offered p  = a /2 for the rest of the game and the buyer was able to demand a -p3 L L H L

in the last two periods, the high type still prefers to demand a -p  and reveal himself. In thisH 3

equilibrium, the seller believes µ  = 0 (µ =1) if she sees the low (high) quantity in the first period and2 2

never changes it for the rest of the game. In the subsequent periods, she offers the full information

static price, a /2 or a /2. The equilibrium is not eliminated by R . It may seem odd that if the sellerL H
3

sees first a low quantity and then the quantity a  - p , she never wavers from her belief, µ = 0.H 2

However, the demand a  - p  = q (h ,p ,a ) and therefore, according to Definition 3, there is noH 2 2 3 2 H
)

restriction implied for how she should update. 

This type of equilibrium does not result in the peculiar phenomenon of reaching a point in the

game where it is common knowledge that the buyer is a low type and yet underdemanding persists

and, perhaps, is attractive for that very reason. On the other hand, it implies a sort of dogmatic belief

formation by the seller. She forms her belief in the first period of the game and never changes her mind

thereafter. Not surprisingly, for very long games, it is much harder to support complete separation with

this type of equilibria since the temptation for the high type to deviate in the first period and get a low

price for many periods in spite of high demands is very strong. To support these dogmatic equilibria

for games of arbitrarily many periods and for any a  > a /2 requires a discount factor below 4/9 whichL H

is much lower than the 4/5 bound in the equilibrium characterized in Theorem 1 (see the comment
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following assumption A1.) Of course, there may also be other separating equilibria with less dogmatic

behavior by the seller. For example she may change her mind only after observing some fixed number

of deviations, but then some assessment would have to be made concerning what is a reasonable

number of deviations before the seller should switch her beliefs.

No equilibrium of this type survives the application of the refinement with �  > 0 because µL 2

> 0 after any history leading to period 2 and, by Bayes' rule, if the seller observes a high demand in

period 2 she must believe it came from a high type and respond with a high price in period 1. The

definition of q  would then fail to satisfy the incentive compatibility constraint on the high type. Of3

course, the pBe described in Theorem 1 also survives in the limit as �  goes to zero.L

5. Implications of Equilibrium

The equilibrium exhibits some intuitive comparative statics. As long as we continue to assume

that A1 holds, the low type's demand falls as 
 rises. He must distort his demand even further the more

important the future becomes. Similarly, as T becomes large, the more the low type must underdemand

in early periods since longer games offer greater rewards to a high type who successfully mimics a low

type. Finally, holding � +�  fixed, demand rises as � -�  falls. The closer the �'s, the less valuable isH L H L

current information, and therefore the less costly it is for the low type to separate from the high type.

The equilibrium characterized in Section 3 exhibits some additional noteworthy

characteristics. A sort of ratchet effect is still present although in a different sense than in the nonlinear

model. There, the principal is forced to offer a more generous scheme in order to induce information

revelation. In the case of the linear contracting game, the informed agents will often reveal following

any price offer of the seller. However, it is this behavior which forces the seller's price offer to be
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lower than in a static price setting problem. For any given belief of the seller, her optimal price is

higher with the same belief as the game nears the final period.

Since, in equilibrium, information is completely revealed in each period, it is interesting to

compare the results here with those of a similar model where the buyer has the same preferences but

acts non-strategically.  Both types can benefit from the strategic behavior. To see this, note that the

price offer of the seller is typically lower in the strategic game. If the true state is high, the lower price

is a straight gain to the buyer. When the true state is low, the lower price is a benefit even though the

buyer is also forced to underdemand relative to his true demand curve. For a  > a /3, a conditionLt L

implied by A1, the low type buyer is made strictly better off by the lower price.

Consider the simple T = 2 game. In a game where there is no possibility of a high type,

subgame perfection forces the buyer to choose q = a  - p in every period and, therefore, theL

equilibrium price path is just p = a /2 in each period. In the game with a small initial probability ofL

a high type, the initial price is (close to) a /2 < a /2 and then reverts to a /2 in the last period if theL2 L L

type is in fact low. Even with the lower quantity demanded in the first period, the low type does better

than in the game with no possibility of a high type.  This result is noteworthy since it represents a14

situation in which informed types are in a position in which they are forced to separate but the

separation can benefit both types. In a typical screening model, some types of the informed players are

usually forced to incur screening costs to separate themselves from other types. Here the screening

environment can bestow an advantage. In a static or non-strategic monopoly pricing game, a low type

buyer would prefer it if, by committing to demand a lower quantity, he could convince the seller to

offer a lower price. In general, the technology for such a commitment is lacking. Here, though, the low

type has a credible concern that the seller will mistake him for a high type in the remainder of the
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game. The concern serves as a commitment device and allows him to induce a lower price from the

seller to shift some of the surplus from the trade in his direction. This differs from results in standard

two-stage signalling games because of the addition of at least one earlier stage where the actions of

the uninformed agent (the seller's initial pricing stage) is affected by the later signalling concerns of

the informed agent. In addition, the strategy space of the uninformed agent is rich enough to allow for

strategy choices that both types strictly prefer to the strategy choices in the complete information

game. For example, in Kreps and Wilson's (1982) multi-period signalling game, a version of the

chainstore paradox, the uninformed entrant can only decide whether to enter or not. In that

environment, never enter is the outcome in a complete information game with the strong incumbent

and there are no other strategies which can benefit both types as in this game where both types prefer

the lower price. As a result, the possibility for this beneficial commitment feature did not arise in their

model.

6. Conclusion

The ability of a seller to extract information depends on her strategic power. The more

powerful the seller, the more dangerous it is for an informed buyer to reveal his private information

and in long games the ratchet effect shows us that the result is very little information transfer. If the

strategic power is more equally shared, though, as in linear contracting games, the likelihood of

information revelation rises dramatically. In this class of bilateral monopoly games, the signalling

space is rich enough for informed buyers to separate in each period. However, even though this

separation conveys a great deal of information, it does not relieve the players of the burden of

separation in subsequent play of the game. Some transactions are not consummated even if the players
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are virtually certain that they should be. The disinterested partner shows his true colors in the first

period and proves it over and over for the rest of the relationship by demanding less of his partner than

he truly desires. Playing hard to get results in the persistence of an under-requited love.

Department of Economics
University of Western Ontario
London, Ontario   N6A 5C2
Canada
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APPENDIX 

Proof of Theorem 2: If a  = a , then the proof is similar but simpler so I focus on the harder caseLt L

with a  < a . Let (  be the subset of pBe such that buyer behavior satisfies H1  from Theorem 1.Lt L t-1 t-1

Note that this stationary and separating buyer behavior implies that for ) � ( , after any history ht-1 i+1

resulting in a seller belief, µ , i � t-1, the seller's unique sequentially rational response must be p (µ )i i i

= (µ a  + (1-µ )a )/2. Since (  satisfies C , BR (µ) = p (µ). Also note that the set of all pBe equalsi H i Li t -1 t-1 ( i
i

(  and satisfies (  = R (( ) since any seller posterior µ  is irrelevant because the game has ended. By1 1 1 1 0

Theorem 1, (  = R (R (...R (( )..)) is non-empty. If we can show that for (  = R (RT T T-1 1 1 t-1 t-1 t-

(...R (( )))...), ) � R(( ) implies that buyer behavior according to ) satisfies H1  then Theorem 22 1 1 t t-1 t

follows by induction. Therefore, suppose that (  = R (R (...R (( ))). Let ) � R(( ) and let p  bet-1 t-1 t-2 1 1 t t-1 t

any price offered after any history. Since H1  fixes buyer behavior in the following periods, for anyt-1

quantity, q, chosen in this period, and price p  offered in the next period, the continuation utility oft-1

a buyer of type L in period t, given ) is

V(q,p;a ,p) = (2(a  - p) - q)q + 
{� (a  - p)  + (1-� )((a  - p) -(a -a ) )}+K1j t j t j H j L L Lt -1 jt
2 2 2

= (a -p) -(a  - p  - q)  + 
{� (a  - p)  + (1-� )(a  - p) }+K ,j t j t j H j L jt
2 2 2 2

for constants K , j = L,H. By H1  and sequential rationality on the seller, p  must lie between pjt t-1 t-1 t-

(� ) = p  and p (� ) = p . The worst that can happen to the buyers in the next period is the1 L Lt-1 t-1 H Ht-1

highest of these prices, therefore a buyer who is a high type in period t has continuation utility that

is bounded by what he would get if he chose the current period utility maximizing quantity, a  - pH t

and received the highest price in the next period, p :Ht-1

(5) V(q,p;a ,p) � (a  - p)  + 
{� (a  - p )  + (1-� )(a  - p ) }+K .H t H t H H Ht-1 H L Ht-1 Ht
2 2 2
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We use the following result concerning the continuation function in the proof. 

Lemma 1: For any � ,� , with 1 � �  � �  � 0, if (q,p) satisfy (5), the indifference curves generatedH L H L

by V are concave and the slope of the H curve is greater than that of the L curve.

Proof: Let  a  = � a +(1-� )a  and a  = � a +(1-� )a . In what follows I focus on the case, q � a  -~ ~
H H H H L L L H L L L

p. If q > a  - p, then the indifference curves slope in opposite directions and the single crossingL t

property follows in a similar but simpler manner. Observe that in (q,p) space, the line p = a  - a  +~
H H

p  + q lies below the line p = a  - a  + p  + q and so p � a  -a  + p  +q implies p � a  - a  + p  +q.t L L t H H t L L t
~ ~ ~

For q � a  - p , the level sets of V are given byj t

If (q,p) satisfy p = a  - a  + p  +q, the indifference curve has a slope of 1/
 � 1. Since p  �  a /2,~ ~
j j t Ht-1 H

the point ((a  - p),p ) lies strictly below the line p = a  - a  + p +q which has a slope of one. AnH t Ht-1 H H t
~

indifference curve which passes through ((a  - p),p ) cannot cross that line, since at the point ofH t Ht-1

crossing, it would have a slope that exceeds the slope of the line. Therefore the set defined by (5) lies

below the line p = a  - a  + p  +q. The following results rely on this fact. ~
H H t

Taking differences gives,

Rearranging, gives
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ãH	p
)




1
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Cancelling the one in each term and noting that a  - a  > 0 >  a  - a  we get~ ~
L L H H

which is less than zero for p � a  - a  + p  +q and �  � � .~
H H t H L

Differentiate along the indifference curve to get

which is less than zero for p � a  - a  + p  +q. This yields the concavity of the indifference curves. b
~

j j t

Let q  be a quantity prescribed by ) for the high type in period t and let % be the next periodH

seller price. Since �  > 0, q  must occur with positive probability and if H alone demands q , we mustL H H

have % = p . In general, we must have % > p . If % < p , then the low type must also choose qHt-1 Lt-1 Ht-1 H

with positive probability. Define  q(q ,%,p) by�

H t

V(  q,p ;a ,p) = (a  - p) -(a  - p  - q )  + 
{� (a  - %)  + (1-� )(a  - %) }+K .� 2 2 2 2
Lt-1 H t H t H t H H H H L Ht

(In Figure 2,  q corresponds to q1.) Substituting in the definitions also yields that if q  = a  - p and�

H H t

% = p ,  q = q  = a  - p where a  is defined in equation (4) (if a  < a .) By assumption A1,  q � qHt-1 Lt Lt t Lt Lt L Lt
� �

is strictly positive.

Suppose that a deviant offer q =  q - � is demanded. By Lemma 1 and assumption A1, there�

is an � small enough that q > 0 and the high type strictly prefers q  to q and its consequentH

continuation to the deviation and the best possible continuation that he can hope for while the low
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type strictly prefers demanding q, receiving the subsequent price p  = BR (� ) in the next periodLt-1 ( L
t-1

and abiding by the behavior described by H1  subsequently. By the refinement R, then the sellert-1 t

must believe that a low type demanded q and sequential rationality along with the buyer behavior,

H1  requires her to respond with the price, p  in the next period. This breaks any pooling behaviort-1 Lt-1

in period t. A similar argument follows to show that any separating outcome must satisfy condition

H1 . Therefore, (  = R(( ) and yields buyer behavior H1  and induction yields the result. bt t t t-1 t
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E-mail -- vincent@sscl.uwo.ca. This paper has benefitted from conversations with Morton1

Kamien and Alejandro Manelli and the detailed comments of two referees.

The denotation, period t, refers to the period in which t periods remain to the end of the game.2

Thus period 1 is the last period and period T is the first.

With the exception of the treatment in Section 4, for most of the paper, I assume that once a3

buyer's type is chosen by Nature, it remains fixed for the remainder of the game.

The case in which a seller offers non-linear contracts is examined in the two-period case in4

a slightly different model by Laffont and Tirole (1987).

For a definition of perfect Bayesian equilibrium, see Fudenberg and Tirole (1991). This5

definition which more closely corresponds to that of sequential equilibrium is slightly more restrictive

than that used in earlier applications such as Freixas, Guesnerie and Tirole (1985).

Where it is clear, the - subscript is dropped.6

I also set �  very small so some of the actual numbers are not precisely correct but are the7
L

limits as �  goes to 0.L

Point A represents a pooling outcome since any seller offer strictly between 3/8 and 1/2 in the8

last period can only be generated by a seller belief strictly between 0 and 1.

For buyers, a history includes the realized price offers, demand choices AND the realization9

of buyer types to that period. For the seller, a history only includes the first two sequences.

This definition does not require pure strategies but i) as long as A1 is satisfied, the10

equilibrium will be in pure strategies, and ii) restriction to pure strategies requires less notation so I

will refer only to the pure strategy case here.

There is another somewhat technical restriction. The original definition of perfect Bayesian11

equilibrium (for example, Freixas, Guesnerie, Tirole 1985) placed relatively few restrictions following

FOOTNOTES
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out-of-equilibrium histories. Suppose that an out-of-equilibrium history occurs and the pBe assigns

subsequent beliefs {µ }  following it. Even if the continuation path follows the prescription of thei i=t -1
1

pBe following the out-of-equilibrium history, the original definition did not force µ  and µ  to bei i -1

consistent with Bayes' rule and the equilibrium strategies. However, in finite games this additional

restriction would be implied by sequential equilibrium via the condition of consistency and it seems

natural to require it here as well. This restriction requires that beliefs following an out-of-equilibrium

move be what Fudenberg and Tirole (1991) term `reasonable' beliefs.

More generally, one might prefer to consider how the continuation path for the rest of the12

game changes also with changes in the period t belief. However, since pBe fixes strategies and then

appends beliefs, the machinery of pBe does not allow us to specify variations of continuation strategies

following changes in period t beliefs. An alternative approach which could achieve this would be to

use the concept of meta-strategy introduced in Grossman and Perry (1986). 

In a two-period game, the equilibrium path described in this paragraph and that of Theorem13

1 coincide.

Observe that since with T = 2, the "dogmatic" equilibrium discussed after Theorem 2 and the14

equilibrium described in Theorem 1 coincide so this result does not necessarily rely on the refinement.
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