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price auctions without commitment results. When the time between auctions goes to zero, seller
expected revenues converge to those of a static auction with no reserve price. With many bidders,
the seller equilibrium reserve price approaches the reserve price in an optimal static auction. An
auction in which the ssimple equilibrium reserve price policy of the seller mirrors apolicy commonly
used by many auctioneers is computed.
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1. Introduction

Regular participants in the now defunct Christies auctions of fine wines in Chicago often
experienced degja vu. The same bottles of rare wine seemed to appear auction after auction. Similar
phenomena occur in government auctions of lumber tracts, oil tracts and real estate, though with
somewhat less mystery -- by policy, properties that failed to sell at earlier auctions were put up for
bids at later auctions. Either implicitly or by explicit policy, auctioneers were acknowledging the
impossibility of resisting the temptation to try to resell an object that failed to meet areserve price
in an earlier auction.

It has long been recognized in the bargaining literature that sequential rationality imposes
constraints on the behavior of agents. Although in many environments, bargainers would like to
impose take-it-or-leave-it offers, they often cannot credibly commit never to attempt to renegotiate
in the event that no sale occurs. This inability often prevents a trader from extracting much surplus
from the transaction, a phenomenon called the " Coase conjecture.” Solutionsto dynamic bargaining
games, therefore, frequently impose, as an additional constraint, some form of sequential rationality.
This constraint has been ignored in the literature on optimal auctions (McAfee and McMillan (1987)
survey this extensive literature) which shows that in many circumstances, sellers maximize expected
profits by withholding the item from the market, even when it is common knowledge that the buyer's
willingness to pay exceeds the seller's value.

In this paper, we wed the literature on one-sided offer sequentia bargaining (seefor example,
Gul, Sonnenschein and Wilson (1986) or Fudenberg, Levine and Tirole(1986)) with that of optimal
auctions to characterize the dynamic path of reserve pricesin auctions in which a seller can commit

not to sell only for an exogenoudy fixed period of time. We show that if bidder types are



independently and identically distributed such that the value of the lowest possible bidder type
exceeds the seller's use value, then in a game consisting of repeated second price auctions with
reserve prices, there is a unique perfect Bayesian equilibrium path of reserve prices which decline
deterministically over time. We aso show that there is an equilibrium in the repeated first price
auctions with reserve prices which generates the same reserve prices and expected revenue for the
seller as the sequentially optimal repeated second price auction. In both cases, as the length of time
which the seller can commit to keeping the object off the market goesto zero, her revenue converges
to her expected revenue from an auction with no reserve price. In contrast to the dynamic monopoly
case, however, asthetime between auctions shrinksto zero, theinitial reserve priceremainsbounded
above the lowest possible bidder valuation. As the number of bidders becomes large, the reserve
prices converge to the static optimal reserve price.

In arecent study of auction mechanisms by Bulow and Klemperer (1994) it is shown that an
auctioneer may opt to seek more bidders and impose no reserve price rather than attempt to impose
an optimal reserve price. Our resultsin Section 4 provide acomplementary explanation. A seller may
just aswell forgo any attempt to post reserve prices since the gain in expected revenue issmall. We
begin the analysis with an illustrative "no gap" example in which an equilibrium path of an auction
game hasthe characteristic that reserve pricesfall infixed proportion -- afeature of sequential reserve
price policies actualy followed by some auctioneers.

2. A Linear Example

We begin with a parametrized example of an infinite horizon auction game. Supposeaseller
with one object for which her value is normalized to zero faces n bidders each with vauations for the

good which are drawn independently and identically from the Uniform [0,1] distribution. The seller



wishes to sell the object via a second price auction with areserve price. It is well-known that if the
seller can commit to areserve price, the optimal reserve price in this environment is one-half for any
number of bidders. If the reserveis not met, however, the seller is now faced with the temptation to
reauction the good. Furthermore, if sheisnot ableto resist thistemptation, thenit isclear that in the
first period, bidders with valuations close to but above one-half, will not submit bids and will wait,
instead, for achance at alater auction at alower reserve price. In this example, we will show that a
stationary equilibrium exists which is characterized by two simple constants, r and vy. In any period,
if the seller believesthat the support of the bidder typessheisfacing liesintheinterval, [O,v], shewill
post areserve price such that only bidders with valuations above yv, submit bids above the reserve
price. And, in any period, a bidder with valuation v will submit a bid above the reserve price only if
the reserve priceisrv or lower. (Thus the equilibrium reserve price in any period isryv,.)

This example differs somewhat from the general class we will analyze later since the bottom
of the support of the biddersis not bounded away from the seller's marginal cost. If thereisonly one
bidder, (n= 1), Ausubel and Deneckere (1989) show that aswell asthe Coasian stationary equilibria
inwhich theinitial seller price approaches zero as the discount factor, 6, approaches one, there also
exist supergame-like equilibriain which the seller is able to support high initial prices which decline
dowly over time. This price path is supported by a non-stationary equilibrium involving athreat to
revert to the low-profit Coasian price path. However, with more than one bidder, such equilibriaare
lesslikely to be supportable. The difference between the two cases arises because even if the reserve
price were to approach zero, seller profits do not go to zero. Thus the threat which supports the
Ausubd and Deneckere path is not as severe when n > 2. Observe that the equilibrium we

characterize here, aswell asthe unique equilibrium we find in the general model, are both stationary.



To construct the stationary, linear equilibrium, suppose that whenever the seller believesthe
bidder typeslieintheinterval [0,v], the seller's best response cutoff function is given by a constant
fraction of v,, y. Assume, aswell, that the function determining the maximal reserve price for which
a bidder of type submits a serious bid is also a constant fraction of his valuation, denote it by r.
Becausethe auction isasecond price auction, it is straightforward to show, that if the bidder submits
abid, bidding his true valuation is a best response.

Throughout the paper, we use the notation, X,, to denote the random variable which is the
highest of the n bidders valuations and Y, to denote the random variable which is the highest of n-1

bidders valuations. The corresponding distribution and density functions of Y, are

Fy (Y,) =FP3(Y,), R, (Y)) =f (Y,) =(n-1) FP2(Y) T (Y,).

For any reserve price, R, if abidder of typex > R/r, submitsabid and if other bidders and the seller

follow the assumed behavior, his expected payoff is

xF, (x) -RF, (R/T) —fR;‘rYldFYl.

That is, hewill win only if al the other bidders have vauations below x, will pay the reserve price if
al other bidders valuations are below v' such that rv' < R and otherwise will pay the second highest
bid. If, on the other hand, he waits but expects to bid in the next period, in the event of no sale, he

will obtain

“(xFy (Rir) -r (RITF, ((RIT) —f(:/rrYldFYl) .



Sincex > RI/r, if no sale occursin the current period, he will win for sure in the next period and pay
either the second highest price of the other bidders or the next period reserve price which by
assumption will be ryR/r since given the equilibrium strategies, the seller believes only bidder with
valuations below R/r would fail to submit bids in the current period. Similar computations can be
performed for x < R/r. Notice that given that the lowest type of bidder to submit a bid is strictly
monotonic in the reserve price and bids are strictly monotonic in bidder type, in equilibrium, if x is
the lowest type to submit a bid with reserve price R, then x will only winif no other bidder submits
abid and therefore if he wins he must win at exactly the reserve price. Thus, for areserve price, R,
the lowest type bidder to bid isx such that rx = R. Combining the equations above yields that r must

satisfy

(x-rx) Fvl( X) =*( xFYl( X) -r (xFYl( x) _f(:YldFYl) : (2)

Using the uniform distribution, thisimplies

kS 1_(n

r :1_F 1_*(n. (2)

The stationary character of the equilibrium implies that we should be able to represent the expected
payoff of asaller who isfacing bidderswith typesin theinterval, [0,v,] asatimeindependent function
of v, alone, II(v,). Also, since for any reserve price, R, there is a unique lowest type bidder who
submits a bid, we can write the seller's choice problem as if she were choosing the lowest type, or
cutoff type, rather than thereserve price, R. In any given period, then, for any cutoff level, x, selected

by the sdller, her payoff is



g(v,, Xx) =r Xanl(X) [F(v,) -F(x)]
o[V [ XnY,dF, dX, *A(X) (3)

II(v,) must yield the maximized value of this expression for every v, € [0,1]. Therefore, we can use
the envelope theorem to get

aA( X) B X
- (xFy ((X) +nf(XYldFY1.

An optimal choice of cutoff level x given beliefs v, must satisfy

ag(v,, X)
ox
-n(n-1) (v, -x) x"t+*(nr (x( (x) ”’1+nf(x( n-1) Y 'dY,).

=0=-nrxx"t+n(v, -x)nrx"*

Using (1), and the assumption that y(v,) = vy v, = X, then thisimpliesy and r must satisfy

r:1+((1-*)1_f(—1)/n @)

Equations (4) and (2) together define the linear solution to the stationary equilibrium. They combine
to yield 2y - 1 = §y™*. The graphsillustrated in Figure 1 show how the reserve price, ry, and the
cutoff value, y, vary with selected values of 6 and n.

Comments. These equations imply

i) As d rises, y increases. The limit of these equations as & approaches zero approaches the static

solution

lim (-7 and [im g -1



Simulations indicate that the reserve price, ry, decreasesin 6.

i) Asnrises, y fals and the limit as n approaches infinity also approaches the static solution

. 1 .
l'i mnm(:E and lim_r=1.

iii) As & approaches one, vy isthe solution of y(2-y™*) = 1. For n = 1, the unique solutionisy = 1,
for n> 1, the correct solution islessthan one. The cutoff reserve price constant r gpproaches (n-1)/n.
For n= 1, then, thisimpliesthat theinitial priceisarbitrarily closeto zero. Thisisthe standard Coase
like equilibrium price path. (See, for example, Ausubel and Deneckere (1989)). If n> 1, sincey <
1, the reserve price begins strictly positive but must fall arbitrarily quickly as & approaches one.?
iv) Simulation of the equations indicates that y falls with n, and r increases with n and the reserve
price, ry increases with n (asindicated in the last of the four graphsin Figure 1).

The US Forest Service uses a reserve price policy of aform that very closely matches that
illustrated in the above example. If the tract failsto sell a a current reserve price, the property isre-
auctioned at areserve pricethat isten percent below the previousreserve’. That is, the Forest Service
has adopted apolicy that involves alinearly decreasing reserve price. However, at areal interest rate
of anywhere from three percent to ten percent, and assuming that the US Forestry Servicereauctions
tracts every six months, such a policy would be optimal only if the number of biddersis essentialy
one. While this is evidently counterfactual, the policy could be interpreted as a concern about
collusive behavior by bidders, a possbility ruled out exogenoudly in this anaysis.

The closed form equilibrium strategies allows a more precise determination of the value of

% We are grateful to an associate editor who pointed out this feature.
4 We are grateful to Robert Marshall for drawing our attention to this fact.
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posting reserve prices with limited commitment. Assuming an annua interest rate of 5%, if the
auctioneer can commit to keeping the object off the market for aslong as ayear each timeit failsto
sl hisgainisat most 10% of the increment earned in the case of full commitment The 10% gainis
computed with 2 bidders, and fallsto 4% in the case of 5 bidders. If the auctions are spaced only six
months apart, the corresponding increments are 5% and 3% of the extra revenues earned in the
auction with full commitment. These results reinforce the conclusions of Bulow and Klemperer
(1994) that the very small benefits from imposing reserve prices may often be swamped by other
considerations.

3. Equilibriain Two Seguentially Optimal Auction Games

The example in Section Two provides some suggestive comparative statics. In this section,
we provide agenera characterization of equilibriain sequentially optimal reserve price auction games
for the case of both first and second price auctions. As mentioned earlier, in this section we focus on
the case in which the bidder types valuations are bounded above the valuation of the seller. Thisis
primarily for tractability reasons. The"no-gap" case posessubstantial difficultiesasagenera anaysis.
So far as we know, little is known about the full equilibrium set even in the case withn= 1. The
reason isthat in the case where the lowest possible bidder valuation is not bounded above the seller's
valuation, thereis no finite number T after which the game ends with probability one. The proofs of
the existence and uniqueness of equilibriain this section show how the equilibria can be constructed
by iterating from informationally "small" games (games with the support limited to the bidders with
low types and which will always end immediately) to larger games.

The seller of asingle good for which she has zero use-value attempts to sell it to a market of
n potential buyers. Each buyer values the object in monetary units, v which is ex ante independently

and identically distributed according to the distribution function, F(). It is assumed that F(!) has
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adtrictly positive density f(1) on[1,v,], Vi < «.>. The seller can commit in any given period to sell
the good via a second price auction with areserve price or minimum accepted bid. A bid exceeding
the reserve price will be called a"serious bid". The seller cannot commit to withholding the object
from sale one period later if bids fail to meet the reserve price in the current period. A sequential
auction trading game thus emerges consisting of a potentialy infinite sequence of second price
auctions with reserve prices. In any period t = 0,1,2,..., if the seller obtains the price, p,, her payoff
isgiven by &'p,; similarly, if abidder with valuation, v obtains the object and pays p, in period t, his
payoff isd'(v - p,), otherwise hereceives zero. All agentsarerisk neutral. (For an analysis of repeated
auctions with risk averse bidders, see McAfee and Vincent (1993)) Incorporating both the demand
for sequentia rationality and for sophisticated learning by the seller, the solution concept we focus
on is perfect Bayesian equilibrium (pBe).°

Often the phrase "beliefs v," will be used as shorthand for the state of a game in which the
seller believesthat all remaining bidder valuationsliein[1,v,) in period t. The skimming behavior this

terminology impliesisjustified by the following lemma.

Lemma 0O:i) In any pBe, if a bidder submits a bid above the posted reserve price, R, his unique
weakly dominant strategy isto bid B(v) = v.

i) (Successive skimming) In any pBe following any history h, with posted reserve price, R, for
any bidder, if it isa best response to submit a serious bid for a bidder with valuation v, thenitisa

strict best response for a bidder with valuation v' > v to submit a serious bid.

5 The assumption that the bottom of the support is one has no further substantial consequence beyond the implication
that we arein what is known as the "gap" case.

% For adefinition of perfect Bayesian equilibrium, see Freixas, Guesnerie and Tirole (1985).
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Proof: Proofs are provided in the Appendix.

Remark: Second priceauctionsal so possessasymmetric equilibriain which onebidder bidsvery high
and al others bid low. These equilibria involve the use of weakly dominated strategies. In what
follows, werestrict attention to equilibriawith the feature that if aseriousbid issubmitted, it satisfies
B(v) = V.

Webegin by iteratively defining asequence of optimization problems. Theidea(smilar to that
of Fudenberg,Levineand Tirole(1986)) isto consider gameswhich artificially must end after at most
i periods with the imposition of areserve price of one.” We show that thereis a strictly increasing
sequence of numbers, {z}, with the feature that for seller beliefs v, v, < z, in al equilibria, the game
will end in a most i periods and yield outcomes equivalent to the solution of the artificialy
constrained optimization problem.

Fix
x_fx _ _ (V[ X B
(=(=C,=1, AL(V) :fl fl nY,f(X)dF, dX,, r.=1.

Define the sequences,®

i-1 ¥ i-1 i-1 i-1 i-1
G G o ko (Al {90

" We restrict attention to reserve prices of at least onein order to include the case of asingle sdller facing asingle
bidder -- the one-sided offer bargaining situation. If there are two or more bidders, since the lowest possible bidder typeis
assumed to be one, all serious bidswill be at least as high as one. Thus, any reserve price from zero to one would have the
same conseguence. However, if n= 1, the price is solely determined by the price posted by the sdller. In this case, she
would definitely prefer to set areserve price no lower than one.

8 The optimization problem is stated in terms of choosing bidder types who submit serious bidsin a given period rather
than choosing reserve prices. Since it will be shown that for each reserve price there is a unique partition of bidder types
who submit serious bids, this behavior will correspond to equilibrium behavior.
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iteratively in the following manner.
The sequence of functions, r;(v,w), denotes the lowest reserve price which would induce a

bidder of type v to submit a serious bid:

15 (W) Fy () (1% XFy () *(r) (W G (W) Fy (W) [ Y,dFy).

The definition corresponds to equation (1) given in the linear example where, in that case, r(v,w) =
rv. The equation is derived from the comparison made by a bidder who is just indifferent between
bidding this period and bidding in the next period. Sincethisisthelowest type of bidder who will bid,
if hewinsin this period, it will only be at the reserve price. If hewinsin the following period, it may
be at the next period reserve price or at a price submitted by a serious bidder next period.

The second argument, w, requires some further explanation. By virtue of Lemma 0O, the
strategy choice of the seller can be expressed in terms of aselection of thelowest type of bidderswho
would submit bids in any period instead of as a choice of reserve prices. In some histories of the
game, it may be the case that there exist more than one choice of alowest type that maximizes the
seller's expected profitsin the next period. Along the equilibrium path, it will be shown that the seller
will always select the highest of these possible optimizers (see Lemma Three in the Appendix).
However, to show this result we need a device that will illustrate how bidders would behave if they
anticipated a different selection by the seller in the subsequent period. Therefore, whether a bidder
of type x submits aserious bid depends also on the marginal type, w, that is expected to be indifferent
between submitting a bid in the subsequent period and waiting one period more. Observe that,

assuming thisfunction isincreasing, the lowest bidder type to win at the current reserve price trades
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off winning at the reserve price this period against the probability weighted sum of the next period
reserve price and the second highest bid.

The next sequence of functions, g,(v;,x,w) characterize thereturn to aseller when the possible
bidder typeslieintheinterva, [1,v], the lowest bidder type who submits a bid this period is x and
the lowest type to submit a bid next period if the game continues would be w.

g, (v, X, W) =1 (X, W) nFy () [F(v,) -F(x)]
[ Y[ TnYLE (X)) dF, dX A (X).

Thisexpression isthe analog to equation (3) in the linear example. The seller may obtain asaleinthe
current period, either at the reserve price (with probability nF™(x)[ F(v,)-F(X)]), or at the second
highest valuation if there are two or more bidders. Otherwise, the seller learns that no bidder had a
value as great as x and she obtains a discounted continuation value, II;,(X).

Thefunctions, IL(v,), arethe maximized val ues of the seller's continuation payoff in any period
with beliefs [1,v,] assuming the game must end after j periods and subject to what will be the

sequential rationality constraint on subsequent choices of bidder cut-offs (selections from vy, ;).

AJ. (vt) :rraxxgvtlwg(j 71(X)gj (vt, X, W) .

Finaly, the sequence of correspondences, y(v,), aretheset of maximizersfromthesameseller
optimization problem and determine the seller's sequentially optimal cutoff bidder type when her
beliefs are such that the remaining typesliein the interval [1,v]. As mentioned above, in general vy;

might be set-valued. The function y*j(vt) is constructed by choosing the maximum from v,(v,) for
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every V..

(j(vt) = ar grraxxgvt{gj(vt, X, w) | for sorrewe(j L(x)},

G(v) =sup{((v,)}.

Whenever v, is single-valued, the two coincide. In general, y" is acomplicated function of v, but it
is analogous to the constant, 'y, from the linear example.

For any i, assume that this sequence is defined up to i-1 and make the following induction
hypothesesfor all j < i:

(H1) II increasing and continuous.

(H2) v,(x) < x and v, is compact-valued, increasing and upper hemi-continuous

(implying y*j isincreasing and upper semi-continuous).

(H3) ri(x,w) isstrictly increasing in both of its arguments, continuous in x and upper

semi-continuous in w and satisfies r,(x,w) < x for w < x and, where defined,

dlr; (X, G (X)) Fy (x)]
dx

>Xf Yl( X) . (5)

Observe that (H1-H3) hold for i-1 = 1.
Lemma One: If (H1-H3) hold for i-1, (H1-H3) also hold for i.

Define

z,= sup{v,[((v,) =1}
z. = min{sup{v |((Vv,) <z .}, Vv.}.
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The artificial optimization problem represented by the maximizers y, determine the seller's optimal
choice of a cutoff bidder type this period given that the game must end in a most i-1 periodsif no
sale occurs this period, that is, counting from the next period on. The terms, z, denote the largest
interval [1,v,] of possible bidder types such that if the seller believed bidder typeslay inthisinterval,
she would be willing to end the gamein a most i-1 periods counting from the current period -- that
is, the constraint that the game end in at most i periodsis not binding. The next lemmaindicates that
for someinterval, [1,v], v, > 1, the seller would prefer to post atrivia reserve price this period, (R,
= 1) and gain asaefor sure rather than wait until the next period and offer the trivial reserve price.
It also shows that as we define higher z's, eventually we must cover the whole possible interval of
bidder types.

Lemma Two: Thereexistsan € > 0 such that for all & and for all n, z, > 1 + € and there existsan

T < 0, such that z; = v,,.

Observe that for any v, < z, yi(v) = v,.(v), IL(v) = II. ,(v) and r,(X,y"; 1(X)) =
r.,(Xy ,(X) for x < v,. Thus, by Lemma Two, we can define some vy, y*, II and r independent of i
over [1,v,]. Fix av, and definev, so that v, € y(V), V. = ¥ (V.,) and R so that R = r(V,,1,Y (Vis1))-
Observe that since y'(¢) is increasing, such a sequence is generically unique in v,,. Theorem One
shows that the solution to the inductively defined optimization problem described above yields the

unique pBe path of the sequentially optimal second price auction game.

Theorem One: In the sequential second price auction game, in any perfect Bayesian equilibrium,

inany periodt>1, if the belief isv, the sdller'sbest responsereserve priceisR = r(V,, 1,y (V) for
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Vi1 € Y(V). All bidders with type x > y"(v,) submit bids equal to their own value. No other bidder
type submits a serious bid. In period t = 1, any reserve price R, = r(v,,y (V) for v, € y(v,,) isan
equilibriumreserve price offer. Along the equilibriumpath, for t > 2, the unique equilibriumreserve

priceisR = r(y" (W), (v* ().

Corollary One: For any seller belief, v, let {v,,}, 1 =1,2,.., bethe subsequent seller beliefs along
the (unique) equilibrium continuation. The seller's expected equilibrium revenue from this period
onward can be expressed as

o [ (v ) F)

foyy O (fmadv. (6)

Now consider a sequentia auction game in which the seller conducts first price auctions in
every period with reserve prices. In this game, given areserve price, R, in period t, if the highest bid
exceeds R, the bidder submitting the bid obtainsthe object and paysthe amount bid. If no bid exceeds
the reserve, then the game moves to the next period and the seller names a new reserve price.
Theorem Two showsthat in this game, thereisapBewhich isvery similar to that of the sequentially

optimal second-price auction.

Theorem Two (Revenue Equivalence): Thereexistsa perfect Bayesian equilibriumof the sequential
first priceauction such that along the equilibriumpath, for every seller belief[1,v], theequilibrium
reserve price and the seller's expected revenue along the equilibriumisthe same as the Sequentially

Optimal Second Price Auction.

Theorem Two demonstrates that there is a pBe for the first-price sealed bid auction which

replicates the payoffs of the equilibrium in the second price auction. Thus, the well-known revenue
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equivaence theorem for one-shot auctions with independent private values (see Milgrom and Weber
(1982)) extends to the dynamic auction environment. Furthermore, the reserve prices in the two
auctions coincide.

4. Comparative Statics

When asingleseller facesasingle buyer and hasthe strategic power to make take-it-or-leave-
it offersin every period, Gul, Sonnenschein and Wilson (1986) prove, formally, aconjecture of Coase
that as the time costs of waiting until the next period go to zero, the expected profits of the seller
converge to the profits she would enjoy against only the buyer with the lowest valuation. That
environment, of course, is a specia case of the environment analyzed here and, not surprisingly, a
generalized version of the Coase Conjecture also holds. Theorem Three shows that as the time costs
go to zero, the expected seller revenues converge to the expected revenues from an auction with a
reserve price set at the lowest valuation.? In the case of more than one bidder, this correspondsto the

revenues earned in a no-reserve price auction.
Theorem Three: (Coase Conjecture)

Lim_ Ay, =2yt (X) dFy dX,

That is, as & approaches one, the expected revenues of the seller is the same asin a game with no

reserve price.

The next result uses Theorem Three to provide a bound on seller revenues when she cannot

® In acontinuous time version of this game where the seller's valuation equals the lowest bidders valuation, Milgrom
(1987) shows the existence of a perfect equilibrium with the same feature.
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commit to keeping the object off the market in the event the reserve price is not met.

Corollary Two: Let P denote the seller's expected revenue in a static optimal auction beginning
from any period with beliefs, [1,v]. Let P, denote the expected revenue in the sequential second

price auction, and let P denote the expected revenue in an auction with no reserve price. For any

0> 1/2,
P.-P p_
p - PP*(l_*T)
where T is approximately
n(v, -1
F(z,)"

Corollary Two boundsthe gainsfrom using the sequentially optimal auctionsrelativeto aone-
shot auction without reserve. It depends on the discount factor, the number of bidders, the range of
possible values, and the likelihood that any given bidder has alow enough valuation that he would
trade only in the last period of the auction game, (F(z))). By Lemma Two, and the assumption that
f(») > 0, F(z) is bounded above zero for al 6 and n.

Corollary Three: For v, > z, and n> 1, as 6 approaches one, there existsan € > 0, independent of

0 such that the first period equilibriumreserve price exceeds 1 + €.

By Theorem Three, as agents become more patient, seller expected revenue converges to
expected revenue from the no-reserve auction. In the standard Coase situation, with n = 1, a

consequence of thisresult, isaninitial pricethat isvery closeto thefinal price of one. If n> 1, so the
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Situation is one of a non-trivial auction, Corollary Three shows that this does not imply a trivia
reserve pricein genera. Theinitial reserve price remains above one. Furthermore, the next Theorem
illustrates that as the number of bidders becomes large, seller revenue approaches that achievablein
an auction in which the seller can commit to a static auction with a reserve price. This result is
somewhat obvious since even in the one-shot case, as n becomes large, the reserve price tends not
to add much to expected revenues. More significantly, for the casein which the equilibrium solution
is differentiable, it shows that the equilibrium reserve price approaches the optimal reserve pricein

a static auction.

Theorem Four: If for all n, thereisa number M such that 9y*(v)/ov < M, then as n becomes large,

the sequentially optimal reserve prices in each period approach the static optimal reserve price.

Whether or not the condition of Theorem Four is satisfied will depend on how well-behaved
is the sequence of seller optimization problems corresponding to equation (3). Typically, we might
expect it to fail if y turns out not to be singleton-valued for some cutoff bidder type, v, along the
equilibrium path. In the linear case, since y is a constant, the condition is trivially satisfied. If the
objective function g(v,,x,w) is concave in x for al v,, then a version of the theorem of the maximum
would imply the differentiability of vy.

Theorem Four implies a monatonicity of the reserve prices in the limit as n becomes large.
One might expect that as & approaches one, the equilibrium reserve price fals, however, analytic
comparative staticsin 6 do not appear to be available. Theorem Five yields someinformation on the
behavior of the reserve prices and cutoff bidder types for informationally "small" games (which end

within two periods).
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Theorem Five: Let v, € [1,z). For all n and 6 such that v, < z(n',0") for any n',d' in a
neighborhood of n and &,%° in the unique pBe of the sequential auction game,

i) the first period reserve price R, falls as & increases and rises as n increases.

ii) the second period equilibrium reserve price R, is the same independent of & and n.

iii) thereisa number v satisfying 0 = F(v,) - F(v) - vf(v) such that the probability that trade occurs
in thefirst period is given by 1- F"(v). In particular the probability trade occursin thefirst period

isindependent of 6 and depends on n only as 1- F"(v) depends on n.

Recall that in optimal static auctionswithindependent private val ues, the optimal reserveprice
isindependent of the number of bidders. Theorem Fiveillustrates that this result does not extend to
auctions in which the seller cannot commit to keeping the good off the market. There is a good
intuition for this difference. With the possibility of future auctions, along any equilibrium path, the
opportunity cost to abidder of failing to trade in a given auction is determined by the continuation
value from subsequent auctions. That is, in any period, a bidder's net value of trading is an induced
value determined in part by the continuation path of the equilibrium. A bidder's expected utility from
an auction isdetermined in part by the degree of competition. Thusrisesin nincrease the opportunity
cost of afailureto trade. In the second to last period, thisisthe only effect at work sincein the last
period, the seller's reserve priceis, by assumption, independent of n. In longer games, though, there
is the additional effect that the seller alters her reserve price as well in response to changes in the

profile of induced bidder valuations brought on by changesin n.

10 Note that z, will in general vary with & and n. In this sense, the results of Theorem Five are to be thought of as "local"
results. We are grateful to an associate editor who pointed out this partial dependence.
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Thereader acquainted with literature on mechani sm design might wonder why an assumption
on distributions commonly used in the analysis of reserve price auction, the so-called inverse hazard
rate condition, is not needed here. There aretwo reasons. First, by construction, werestrict attention
to the smaller class of mechanisms which is the class of reserve price auctions. Thus, in a full
sequentialy optimal mechanism game, where the strategy choice of the seller may range across the
whol e class of implementable mechanisms, the equilibrium pathislikely to be different in the absence
of thisassumption. However, in adifferent environment where many sellers compete in mechanisms,
McAfee (1993) showsthat, in fact, seller choices of reserve price auctions are anecessary feature of
equilibria. Second, the assumption of an inverse hazard rate condition is often used to ensure the
concavity of the seller's static optimization problem and thus the uniqueness of a solution. As is
evident in the proof, we do not require the seller's best response correspondence to be singleton-
valued in order to obtain uniqueness of the equilibrium path. In periods where the seller's best
response correspondence may be multiple-valued, self-interest on the part of the seller ensures that
actions are taken in early periods to ensure that the highest element of this set is selected. (See
Lemma Three and the discussion in Footnote 10.)

5. Conclusion

The results of our analysis confirm natural conjectures about the ability of sellersto impose
reserve prices. Asin the case of sequentia bargaining, the ability to impose a credible reserve price
hinges on the seller's ability to commit to either destroy the product in the event of no sale or keep
it for herself. Excessrents are derived from this commitment power. The paper also suggeststestable
implications of the theory of sequentially optimal auctions. Suppose datawhich tracks objectsfor sale

at a sequence of auctions and records the number of bidders and\or the length of time between
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auctions were available, Theorem Four and the example in Section 4 provide predictions about the
response of reserve prices to changes in interest rates, auction frequency and the number of bidders.
A note of caution must be voiced though. The practice of many auctioneers may frustrate the attempt
to gather such data. Ashenfelter (1989) remarks on the tendency of auctioneersto keep reserve prices
secret. One possible explanation of this behavior involves common vaues which we rule out in our
model. Thus, the phenomenon of secret reserve prices, themselves, may be treated as evidence that
the current private model is not appropriate. (See Vincent (1994)). However, some auctioneers do
post explicit reserve prices sometimes asamatter of policy and in other cases, effectivereserve prices
may be derivable from other data such as suggested minimum bids. Unless bidders are required to
apply for €eligibility before bidding (as happens in many government auctions), it may aso be
extremely difficult to extract exact information on the number of bidders. Thus, the positive
applications of the theory of sequentially optimal auctions, are limited as are many results from the
theory of auctions, by the availability of the appropriate data. Nevertheless, asthe analysis of Section
4 illustrates, there remain normative applications of the theory that may be useful either in providing
guidance to policymakers or deriving information about other, hidden, aspects of the auction

environment.

Appendix
Proof of Lemma O: i) Fix areserve price R, and any bidder and let dB, be the density of the highest
bid of the other n-1 bidders. Conditional on submitting a serious bid, trade will occur in the current

period with probability one. The expected return from any bid b is
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(v—rt)fortdBl+frb(v—Bl)dBl

For any bidding behavior of the other bidders, abid of b = v maximizes this expression.

i) Observe that if abidder bids seriously against R, then by i) he bids B(v) = v and will never bid if
v < R. Let dB, be the density of the highest of the other n-1 bidsin the current period and consider
the expected utility from the equilibrium continuation to a bidder of type v when the history ish, the
bidder has not submitted a bid in the current period and the game has continued to the next period.

If v submits abid then

‘V-R) fOthsl +th“( v-B,) dB,>*V (v, h,) Prob[ B,<R ] )

Suppose thereisatype V' > v who does not submit abid. Then

)thBl+th"(v -B,) dB,+[¥(v/-B,) dB,<*Vy(v ', h,) Pro )

Subtracting (8) from (9) and rearranging yields

Prob[ B,<R ]

vivs Prob[ B, <v] *( VB(V/’ h) -Vg(v, h)) (10)

Observe that a bidder of type v can dways mimic the behavior of bidder of typev'. Let o,,;(V',h,) be
the probability a bidder who behaves as if he were v' obtains the object in period t+] in the pBe
following history h, (calculated from period t) and let p,,;(V',h,) bethe expected price paid conditional

on obtaining the good. By definition
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Vo(V, hy) =Y o0 (v h) (vep (v h)) (11)

while

Va(v/ b)) =X o= (v h) (viep, (v h) . (12)

Subtracting (11) from (12) and combining with (10) yields

. Prob[ B,<R ]

/_ /_
Vv ) B b B ]

Do (vih).

a contradiction since the sum of the «'s must be one or less.
Proof of Lemma One: (H3) r,(x,w) < xfor x> w sinceit is aconvex combination of x and values

strictly less than x. To see how it changes with w,

ari(X,W)FYl(X) _*( d[ri,l(va (i*,z(vv))Fyl(\N)]

ow dw

Wy (W)
Thisterm is positive by (H3) for i-1. Furthermore,

or (X, WF, ()] ar,(x,w

Fy. () 1, (X, W, (%)

oX oX
=xf (%) +(1-*) Fy (X)
or
or, (X, w)

5 (X)) =X (G w) |y (%) +(1-5) Fy (%)

0 r;(x,w) isincreasing in x for x > w. Sincer; is also increasing in w and since y',; is increasing,
equation (5) is satisfied for i.

(H1) Since g, is continuous in v, and x and increasing and continuousin r;, Sincer;(X,w) isincreasing
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and upper semi-continuous, g; is upper semi-continuous. A version of the theorem of the maximum
(exploiting the fact that w > +y,(w)) then implies that II,(v,) is continuous and y;(V,) is upper hemi-
continuous.

(H2) To seethat v,(v) isincreasing, lety < y" and x € y,(y), X' € y;(Y') and suppose that X' < x. To
save on notation, let m= r;,(X,w)F,,(X) for somew e v, ,(x) and m' = r,(X',W)F,,(X) for somew € v,

1(X). By theinduction hypothesis, w < w. By definition,

9,(y, X, W) +fyv’fXX1nY1dFYlf (X)) dX,

(13)
+mn[ F(y ) -F(y)]1=0;(y’ x, W)
and
FwA 1 (Y[
g,(y, x’, w' fyyfx/nYldFYlf(Xl) dX, (14
+m'n[F(y ) -F(y)]=g,(y ', x’, w)
Subtracting equation (14) from (13) yields
n(F(y’) -F m-m'- [ *Y. dF
(F(y’) -F(y)) (m-m'- [ 7Y, dF ) s

3, (y o xow) -g, (v, x, w) =(g; (y, x, w) -g; (y, x', w)

Theright side of equation (15) isnon-positive by definition of x,y, X' andy'. Sincew' < wand we have

shown that r; isincreasing in w, by definition of r;,

rrpri(x,vv)FYl(x)
>r (%, w) FYl(x)

=m'+(1-*) (xF, (x) -x F, (x)) +*fledFY
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We can rewrite the left side of (15) therefore as greater than

n(1-*) (F(y") -F(y)) {(x-x") FYl(X/) +
(FYl(x) —FYl(x )) (x-E[ Y, [x'<Y,<x])}

Since x > X' this expression is strictly positive -- a contradiction. Therefore, v,(x) isincreasing and
v*.(X) isincreasing and upper semi-continuous. [ |

Proof of Lemma Two: Observe that

ag,(v,, x, 1)
ox

=n(1-")[F(v,) -F(x) xF(x)TF, (x)
Sincef(x) > 0, thereisan € > 1 such that this expression is strictly less than zero for al v, € [1,€).
Fix i-1. By definition, for x € y,(v), X < z_, and therefore IL,(x) = II, ,(X). Since

A (V) A (X) =n(F(v) -F(x)) 1 (X G (X)) Fy (X) +
N[ Y (X) dFy dX (A4 (X) <A (X))
=n(F(v,) FOO) T (% G 4(0) Fy (0 +n [ 7[5 1 (X)) dFy dX,

and
* * Vi (% *
A (V) -*A (x)2(1- )Ai(vt)znfl fl Y,f (X)) dF, dX(1-*)
we have that for al x € y;(v,), there existsan v > 0 independent of i such that x < v, - v. Since vy, is

increasing and upper hemicontinuous and satisfies y;(x) < x - v, the convex hull of y; has an inverse

which isincreasing and upper hemicontinuous defined over [1,v,] and liesabovetheline y- v = x.
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Thus z = max{v | vi(v) = z_,} existsand satisfiesz > z_, +v. This procedure extends the definition
of z over theinterval [1,v,]. [ |
Proof of Theorem One: The proof proceeds by defining necessary conditions of bidder and seller
strategies iteratively over the support of bidder types viatwo lemmas. Let R°(v,,h,) the seller's best
response reserve price in some pBe, o, following ahistory, h, and with beliefs that bidder typesliein
[1,v] and let P°(v,,h,) be her expected payoff. Condition C1(a,)) partly characterizes the strategy of

the sdller.

Cl(a,j):VF, Vv,<a, vh,, RF(vt, h,) :rj(x, (J.*(x)), for xe(j(vt).

Condition C2(j) characterizes strategies of bidder types below z and partially for types above z.

CZ(j):VF,Vht,Vvt<zj, i f R[>rj(vt,(j*(vt)), No Bi d
., if R[srj(vt,m'n(j(vt)), BidB(v,) =v,.

t

Lemma Three': If C1, C2 hold for j= i-1and a= z_,, then C1 holdsfor j = i and a = z.

Proof of Lemma Three: Let a denote the supremum of a's such that C1 holdsfor j = i and a'. Since
forv,<z,r,=r ady,, = v, forv, <z, thena> z,. Observethat for a> 1, sncell(v) is
bounded above zero, and f(V) is positive, thereis always an € >0 such that (F(v)-F(a))v,yn + 011,(a)
< IL(v), foral vin[a,ate€). Suppose a < z. Then thereexistsa o and h, and v, in (a,a+€) such that

the seller's best response reserve price exceeds r,(z_,,z_,) and since areserve price below that level

11 Observe that the optimization problems as stated are "as if" the seller can also choose in period t her most favorable
cutoff level (among her optimal responses) in period t+1 if the object failsto sell. Thisis not truein general since y(Vi.1)
may not be single valued. Lemma Three illustrates that since if there were a possibility that the future belief is unfavorable
(that is, v too low) then the upper hemicontinuity and monctonicity of the optimal choice function would have alowed the
seller to do better by selecting adlightly higher cutoff level this period. Thiswould yield only first order costsin the
probability of a sale but increase the reserve price by an amount bounded above zero. Therefore, for t > 2, the equilibrium

reserve priceis R(v) = r(y"(v),y (v’ (W)
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generates payoffs determined by C2, the payoff from o is bounded from above and below by

A (v,) <PF(v,, h) <(F(v,) -F(a)) Vv, +*A (a) <A (V,)

Which is a contradiction. Therefore, a > z.
Now, supposethat R = r(v,,,,y) fory < vy (Vi.,), Y € Y(V,.1). Sincer(x,v) isstrictly increasing
inv, forevery v > v,,,, and every y' € y(v'), thereisan e > O such that r(v',y') > r(v,.,y) + €. A

reserve price of r' instead of R, yields the seller an expected revenue of

gV, vy ) 2n(F(v) -F(v)) (1 ) Fy (v« [ TYidRy F (X)) dX A (V)

Since this function is continuous in v'

[ m,,wmg(vt, v’y -g(Vv,, Vv, 1, ¥)=n,(F(v,) -F(v, ,)) FYl( v,.,)>0

the seller could have improved on R, by offering a dightly higher reserve price contradicting the
assumption that R, was an equilibrium reserve price. |
Lemma Four: If C2 holdsfor j = i-1 and C1 holdsfor j = i and a = z, C2 holds for j = i. Proof
of Lemma Four: Since r(x,w) is strictly increasing in both its arguments and vy is an increasing
correspondence, the correspondence, r(x,y (X)), X € y(v), has a unique inverse, cal it p(r). By
LemmaoO, for any reserve price, R, thereisav,, , such that only bidder typesabovev,, , submit serious
bids. Suppose R > r(z,y'(z)) and v,,, < z. By C1, the next period reserve price is R, <

r(y-ot+1),y (Y (Vi.y)). By bidding in period t, v, , receives

(Vi1 R) Fvl( Vi) (16)
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while by waiting until the next period, he would get no worse than

(v, R Fvl( Vi) +fVVt H(v-Yy) dFvl] (17)

By definition of r, equation (17) strictly exceeds equation (16) so all typesin the neighborhood of v,
do better not to bid when thereserve priceisR.. Now supposethat R, < r(z,miny(z)) and v, > p(R)
= v. Let t bethe smallest number such that along the equilibrium continuation path, z > v, .. ;. (If the
equilibrium involves mixed strategies, then the following argument can be made using distributions
over continuation paths). If v,,. > v, then R, > r(y"(v),y vy (v)) (by C1) and bidder type v would
have done better to bid when thereservepricewasR. If v,,. < v, sincev,, ., > z, R, ., > r(z,miny(z))
> 1(Z.4,Y (2.,)) and

*

R.;17(1-9)v, +J—1+FY(V—
1

Viig-1
(R P [ Y 0R,)

we must have R, . > r(z.,,y (z,)) and v,,. > z ,. But this violates the optimality of type V's
decision not to bid when the reserve priceis R, since

Fy (V)

1

R=(1-%)v+ (r(y, CON RV [7 YidRy),

for somey e Convexhully(v). [ |
A simple adaptation of Lemmas Three and Four show that (C1) and (C2) holdfori = 1. Therefore,
we can now apply Lemmas Three and Four iteratively to specify necessary conditions of equilibrium
behavior over the whole interval, [ 1,v,]. Sufficiency is not quite shown. The result would follow
amply if y(v) was known to be single-valued. In generad it is not, but the argument given in Gul,

Sonnenschein, Wilson (1986) is easily adapted to show sufficiency as well. Suppose the seller posts
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an out of equilibrium reserve price R, r(v,miny(v)) < R < r(v,y (v)), for some v. Subsequent
randomization of the reserve price off the equilibrium path is a characteristic of the equilibrium in
order to convexify the correspondence, y(¢). All bidder typesv' > v submit bidsand al bidder types
V' < v do not submit bids. In the next period, the seller randomizes between her two best response
choicesof v,,, " (v) and min y(v) by offering either r(min y(v),y" (miny(v))) or r(y"(v),y (v (v))) so
as to make bidder types v and higher willing to submit bids in the current period. [ |
Proof of Corollary One: An adaptation of an argument in Myerson and Satterthwaite (1983) shows
that, if U(v) isthe expected utility of abuyer in any Bayesian equilibrium, then dU(v)/dv = 8'VF™(v)
amost everywhere, where t(v) is the equilibrium period of trade of a bidder of type v. By Theorem

One, this period is deterministic (up to a selection of v, ,). Integrating by partsyields

nfthU(v)f(v) dv=Y, *ifvvw FP1(v) (1-F(v))dv

t+l+

Using the definition of total expected surplus as the sum of seller's expected revenue and total
expected buyer surplus and rearranging terms yields (6). [ |
Proof of Theorem Two: The proof proceeds by characterizing strategies and showing that they
comprise a pBe of the sequential first price auction. Let r(v,y’(v)) and y(v) be as in the proof of
Theorem One.

Sdler Strategies: For every sdler bdief, [1,v), if R, = r(v,y (V)), post a reserve price R =

r(y (v),y (y' (W)). If r. = r(v,miny(v) < R,y < r(v,y' (V) = r’ post reserve price R, = r. with

probability § and R, = r” with probability 1 - p where § satisfies

R ;=$+r(mn((v,), C(mn((v,))) «(1-3)r(C(v,), CCC(v)))
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Sdler Bdiefs: For any beliefs [1,v,,) in period t-1, if r(v,miny(v)) < R, < r(v,y (v)), no bid is
submitted, beliefsin period t are[1,v]. If 1 > R ,;, and no bids are submitted, beliefsin period t are
the same asin period t-1. If R > r(v,,,y (V,,)), beliefsare[1,v,,).

Buyer Strategies: In every period, if v,,; = p(R) where p istheinverse of r(v,y’(v)), al v< v, do

not submit bids. All v > v,,, submit bids, B(v;R), where

B(v; R)F, (V) :fl"xdFY1+c,
B(v,.;; R) =R

(18)

First suppose that this profile of strategies comprise a pBe. In this case, then for any seller
belief, [1,v], the sequence of bidder types who bid in all subsequent periods is the same as in the
second price equilibrium, that is, trade occurs with the same bidder type in the same period as the
second price auction. A ssimple adaptation of the Myerson-Satterthwaite reasoning then implies that
the expected seller revenues are the same. The definition of the seller strategies implies that the
equilibrium reserve prices are the same. Thus aslong as we can show that the strategiesform apBe,
the theorem is proved.

Note that the seller beliefs satisfy Bayes' rule given the buyers' strategies.

To show the optimality of buyer strategies, let the seller beliefsbe[ 1,v,) and thereserve price
beR and vi,; = p(R). Letr. = r(miny(v,),y (Miny(v.,)) and r(y" (vi.0),y (v (%.))) = 1. Findly
suppose that buyers follow the proposed strategies in all later periods. Then, by definition of the

bidding functions next period, if the reserve priceisr’, bidder type v, , bids
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B( Vt +l) I:Yl( Vt +l) :fth +1XdFY1 +C

_[Via * *
=| vt xdF, +F Vv r
[mm) v, By (Cv )

where the constant term is determined by (18). A similar equation holds for a next period reserve
price of r.. Therefore, given the strategies of the other bidders, abidder of type v,,, who bids when

the current reserve is R, will only bid R, and receives expected utility

(v, R) I:Yl( Vi) (19)

If v,,, waits until next period, his expected utility is

*( Vt +1 _$B( Vt +l; r *) _( 1 _$) B( Vt +l; r *) ) FYl( Vt +l)

(v 8 o AR R n(v ) (20)

~(1-9) ([ xdF, +r F, (C(v,.))))
(v, 1 1

By definition of v,,,, and 3, (19) equals (20) so bidder typeVv,, , isjust indifferent between bidding this
period and next. Since this period utility increases faster in bidder type than next period utility, that
meansthat all bidder typesaboveyv,, , strictly prefer bidding and those below, strictly prefer not to bid.
Findly, standard arguments from first price auctions illustrate that the bid function (18) is a best
response for bidders who bid in period t.

Findly, to show the sequential optimality of the seller's strategy, suppose that the seller's
strategy is sequentially rational for all beliefs[1,v] with v < z. Then, for any beliefs satisfying this
restriction, afurther application of Myerson-Satterthwaite illustrates that the expected payoff for the

seller from the pBe is the same as I1(v). An argument similar to that of Lemma Three for Theorem
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One, then shows that thereisan e > 0, such that for all v < z + €, areserve price such that v, < z
is optimal and therefore, given proposed bidder behavior, expected equilibrium payoffs are again
given by II(v). The same argument then isapplied to v < z + 2e and so on. That the proposed seller

behavior isoptimal for v < z, is straightforward to show. [ |

Proof of Theorem Three: Part of this proof follows Tirole (1988). We show first that for any € >
0 thereis an T such that all equilibria of games with 1 > 6 > e end with probability one after T
periods, independent of 6. For any 0, Theorem One shows there exists a unique equilibrium in which
the decision of bidderswhether to participate given acurrent period reserve priceistimeindependent
and the seller's profits depends only on the current state, v,. For any 6 and pBe, let v, v, ,, V.., bethe
equilibrium cutoff levels of participating biddersin periodst,t+1 and t+2 respectively with v,,, > z,
and define F,,; = F(v,;). Note that given the current state, v,, since bidder strategies are stationary,
asdler could always have chosen areserve price to induce a next period state v,, , instead of v,,, SO

we must have

- v, X
RFMIN[F, -F, ] +fv flnYlf(xl)dFYldX1+

t+1 Vt +1
-1 Vig X 2
*RFanIF R +*fv 1fv LY E(X) dFYldxl AV
t+2 t+2
- Viag X
ZR +1Ftn+21n[ Ft _Ft +2] +-[v 1-[\/ ' nYlf (xl) C“:Yldxl+
t+2 t+2

fv K fv Y, f (X)) dFy dX; + fv Vi fv X nY,f (X)) dFy dX, +*A(v, )

t+1 t+2 t+1 t+1

t +2)

where the second integral has been broken to facilitate rearranging terms. This can be written as
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[RtF”’l— FM n[F, -F ]

t+1 +1° t+2

_ X
>(1-*)R ,F In[ F. . -F o] +(1-%) f\/vt+1f\/ tnY. f(X) dFYldX1+
t+2 t+2

+1° t+2

MY f(O6) ARy dX S (1) ACY )

Vi

By definition of Rand v,,;,

RFM"I-R FM1=(1-*) (v, ,F"!-R F”’1)+*fv"“1YldFYl
t+2

t+1 +1° t+2 t+1 t+1 +1° t+2

so substituting into the above inequality, rearranging terms (by subtracting the last term in the above
equation and dropping the last integral in the right side of the inequality) and dividing by 1-6 > 0

yields

[V RNl R -RGFIINIFR -F ] - ™ f\,VMnYlf(Xl)dFYldxlz*A(Vt 2)
t+2

t+1 t+1 +1° t+2
Vt+1

Rearranging once more gives

n[F -F, 1[v, (F"t-F"h —f Y, dF, ]
t+2

t+1 t+2

+[ Vt +1_R +l] Ftn+721n[ Ft _Ft +2] Z*A( Vt +2)

Thefirst term is positive and F,, < F,,;, S0 the inequality can be written

n[ Ft _Ft +2] [ Vt +l( Ftn;]iI-_Ftn;Zl) _‘/;/Vt +1nY:l.dI:Y1+|: Vt +1_R +1] Fth:Zl] Z*A( Vt +2)
t+2

Sincev, -1 > v,, - p., for any price paid by abidder in any equilibrium, thisimplies

N[F, -F, ] [v,-1] FP1>*A(v, ) >*F,"

t+2] t+1 7™ t+2
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The last inequality comes from the fact that the seller can always post areserve price of onein any
period. By Lemma2, F(z)) > Ofor any v,,, > z, (for v, < z, the game ends in two periods). Rewrite
the inequality as

F _F g *F(Zl)n g *F(Zl)n
CU (v 1) R on(v-l)

Since the inequality holds for all t such that v,,, > z,, definei to be the smallest integer exceeding

n(v,-1)
*F( Zl) n

Suppose that along the equilibrium path, thereisav,,, > z such that t+2 > 2i. Since

t/2 t *F(z)" _~*F(z)"

12240 (FuFocp) =17F p2( 5 +) n(v,-1) 7! n(v,-1) -
whichisacontradiction. Observethat i isdecreasing in 8. Combined with Corollary One, thisimplies
that as & approaches one, the seller's expected revenue approaches the expected revenue in a game

with no reserve price. |

Proof of Corollary Two: By Myerson (1981), P and P satisfy

CF(v,) (V)

P=n}lo [ (v (o P (21)
and
A F(v,) -F )
P:nfot(v— (Vf)(v)(v))Fnl(v)f(v)dv (22)

where V is the optimal reserve price for the static auction. By Corollary One and by definition of V,
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kS'[\?Vt(V_ F(V;)(\_ll):(v) )nanl(V)f(V) dV+*Tfl\7(V— F(Vt) —F(V)

10 Y NEL(v) f (V) dy

where T is defined in (7) replacing v, with v,. Rearranging terms yields the resullt. |
Proof of Corollary Three: Let r’(v) denote the function determining the maximum reserve price for

which a bidder with valuation v will submit a serious bid. Then

lim_r"(v) =E[ Y,|Y,<V]

To see this, note that for any equilibrium corresponding to 9, let {v,,,;} denote the expected
sequence of cutoff levelsalong the equilibrium path when areserveprice R, = r®(v,,,) isposted. Using

the proof of Theorem One, r® satisfies

re(v, ., FYl( v, .,) :Zi-r(:;) * ((1-%) Vo |:Y1( Vi) +*fvvt 1y d FYl)

t 42+

By Theorem Three, since the number of terms in the summation term is bounded by T, thislimit is
computed by replacing T(d) with T and letting & go to one. Theorem Five (iii) illustrates that for v,
> 7, the equilibrium cutoff type of the next serious bidder is bounded above 1 independent of 6. By
the above argument, the minimal reserve price needed to induce his participation is also bounded
above 1. [
Proof of Theorem Four: Fix & and current seller beliefs, v,. From Corollary One, the expected
revenue of a seller with beliefs v, can be expressed solely as afunction of her beliefs in subsequent
periods, {Vv,;}. Let v,,, be the seller's next period beliefsand {v,, }, 1 = 2,3,...T, be the subsequent

beliefs determined by the unique equilibrium continuation.
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F(v,) -F(V)

9(Ve Vi) nZ“l*'fv vt ) F"Y(v) f(v) dv
F(v,) -F(v) N2 i (s F(VC) F(V) F(v) -F(v, )
ey 9RV) i fvm(v V) oy 9

Differentiating with respect to v, ;,

ag( Vt ! Vt +l)

3 =(1-*) (F(v,) -F(v, ) v, ,f(v,.))+

t+1
Frl(v, )  ov, .
(1-%) =35 * (F(v,) -F(v, ;) L2t A2
t e Fnil(vt +l) . Oavt ++1 4]
. V.o 99(Vy .10 Vi) 1
aVt +1 aVt +2 nanl( Vt +;|_)

The last term is zero for @l n sincev,,, must be chosen optimally when the seller beliefs are v,, ; and
the second term goes to zero as n becomes large if the condition on the derivative of vy is satisfied.
Thefirst term is the same as the necessary condition for the static optimization problem. |
Proof of Theorem Five: By Theorem One, trade occurs with probability one by the second period,
for v, < z theinitia reserve priceis one and trade occurs immediately. For v, € [z,2,), the optimal
cutoff level of thesdler isav, < w; and biddersin this range submit serious bidsonly if R, islessthan

r,(v,1) given by

ry(v, 1) F, (V) =(1-%) vF, (V) +* fl"YldFYl

The expected utility for a seller who chooses cutoff level x is

9,(Vv,, %, 1) =1 ,(x, 1) nF, () [F(v,) -F(x) ]
[ [ TnYLE (%) dF dX e [ [y E () dF, dX,
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A necessary condition for x to be chosen optimally isthat the derivative of this expression be zero or

that F(vy) - F(X) - Xxf(X) = O independent of 6 and n. |
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