The outputs of retail activities: French evidence

ROGER R. BETANCOURT* and DAVID A. GAUTSCHI

*Department of Economics, University of Maryland, College Park, MD 20742, USA
and †Yale School of Organization and Management, Box 1A, New Haven, CT 06520, USA

A new economic framework is applied to the empirical analysis of retail margins. This framework is founded on the definition of profits and incorporates recent theoretical developments formalizing the role of distribution services as outputs of retail activities. The main results are: the measures of outputs of retail activities identified in the data perform as important and robust determinants of retail margins; variables that purport to capture the oligopolistic features of market structure have little association with the variation in retail margins; hypotheses of price setting and quantity setting under the assumptions of profit maximization and monopolistic competition are categorically rejected by the data. The data base is information on 50 retail sectors from the 1982 survey of firms in commerce and the 1983 survey of firms in services reported by INSEE.

I. INTRODUCTION

Discussions of retail activities often acknowledge that services are an important aspect of these activities but do not pursue the economic implications of this idea very far. The starting point of our analysis is that these distribution services are outputs of retail firms and fixed inputs into the household production functions of consumers. Among the economic consequences of this view is a simple but powerful theoretical framework for the empirical analysis of retail margins. We have applied this framework to the analysis of US 1982 Census data (Betancourt and Gautschi, 1991). In this paper we apply the same framework to the analysis of similar data for France.

Retail firms provide consumers with a variety of distribution services which can be classified into five broad categories: accessibility of location, assortment, assurance of product delivery in the desired form and at the desired time, information, and ambiance. In their economic role as outputs of retail firms higher levels of these services cost the firms more; in their economic role as fixed inputs of the households, higher levels of these services reduce costs for consumers. Each of these categories can have several dimensions. Some of these services, or aspects of them, are provided for all items in an assortment (thus we label them 'specific'). Undoubtedly, it is difficult to capture all the dimensions of these concepts in our empirical measurements; nevertheless, we have developed a data base for France which contains empirical counterparts to these concepts comparable to what exists for other purposes at a similar level of aggregation (roughly the four digit level of the ISIC). Perhaps more importantly we have tried to measure these concepts in as similar a way as possible to our measures of the same concepts in US data.

While our specific approach is new, several strands of literature overlap with some part of our formulation. Our insistence on viewing a set of distribution services as outputs of retail firms is paralleled in the work of Oi (1990), who presents a list of these services under the heading of output of a retail firm. His list can be reconciled easily with the five broad categories identified above. Other writers tend to select one of these broad categories, or an aspect of them and explore their economic implications at the theoretical or empirical level, e.g. Mathewson and Winter (1986) or Smith and Hitchens (1985), respectively. To illustrate, we will consider specifically one contribution that is close to our work in its integration of theoretical and empirica considerations.

Ratchford and Stoops (1988, 1992) adapt to the analysis of retail activities a model developed by Ehrlich and Fishe
(1982) for the analysis of the demand for advertising. Furthermore, they develop several implications for the estimation of an econometric model that allows for one distribution service (information). This model is implemented with proprietary store level data. As they point out, the theoretical work underlying our analysis can be viewed as a generalization of the Ehrlich and Fisher model. This generalization takes place in two dimensions: the specification of a broader set of distribution services and a rich theoretical framework for demand analysis. This framework obviates the need to impose the assumption of additivity between the retail price and the determinants of the opportunity cost of time in affecting the price paid by the consumer. One difficulty of this general approach noted by these authors is empirical implementation. The present contribution demonstrates how to implement empirically this more general approach with publicly available aggregate data.

One strand of the literature on retail markets focuses on the analysis of price behaviour, in particular explanations of price dispersion. For instance, Borenstein (1989) and Shepard (1989) appeal to price discrimination to explain price dispersion in gasoline retail markets. By contrast, Pashgian (1988) appeals to the increased uncertainty generated by an increased demand for fashion goods in order to explain the increased price dispersion generated by more frequent markdowns and higher percentage markups. Finally, Reinsdorf (1992) finds evidence from the consumer price index that there is substitution toward lower priced outlets after allowing for variations on some distribution services. These studies suggest consideration of the hedonic approach. The framework presented here can be made to yield the hedonic approach by assuming a single item firm and quantity setting behaviour. The first assumption generates a one-to-one correspondence between the retail margin and the retail price and the second one generates a positive relation required by the hedonic approach between distribution services and price (the retail margin). A by-product of our analysis is to show that the data is inconsistent with these two assumptions.

Surprisingly enough, there is a paucity of studies seeking to explain retail margins with interindustry data. What makes this scarcity remarkable is the abundance of studies seeking to explain profit margins with the same type of data, e.g. Schmalensee (1988). The existing body of literature on the empirical explanation of variations in retail margins across retail sectors is primarily due to Nooteboom (1985) and his coworkers, for example Nooteboom et al. (1988). This literature is based on assuming a mark-up model in which different variables are added to capture empirically the role of other factors. A recent collection of sophisticated econometric studies from this perspective is available in Bode (1990). Our conceptual framework provides an alternative to this one. Of course, in terms of the empirical variables there is some complementarity between the two approaches. For instance, Nooteboom et al. (1988) introduce a variable to capture empirically 'the product service package' in the mark-up model. This variable is measured in the same manner as one of our distribution services.

Our argument proceeds in the following manner. Section II contains the main implications of the conceptual framework for the analysis of retail margins. Imposing quantity setting or price setting behaviour under monopolistic competition allows additional implications for empirical analysis to be derived. These issues are presented in Section III. Implications for the choice of functional form are discussed in Section IV. Measurement issues, the link between theory and data and estimation procedures constitute the subject of Section V. Results are presented in Section VI. Finally, a brief conclusion highlights our main findings and relates them to our earlier empirical results for the US.

II. CONCEPTUAL FRAMEWORK

Consider the following definition of the retail margin, \(R \), which follows from manipulating the definition of profits (\(\pi \)):

\[
R = \frac{\pi}{p^* X_1} + \frac{VQ}{p^* X_1}
\]

(1)

where \(p^* \) can be interpreted as a vector of retail prices or as a single retail price. Similarly, \(X_1 \) can be interpreted as a vector of quantities of items sold at retail or as the quantity of a single item. This identity simply states that the retail margin equals the ratio of profits to sales plus the ratio of the costs of retailing to sales.

By assuming cost-minimizing behaviour by retailers and by treating distribution services as outputs of retail firms, we can replace the numerator of the second term in Equation 1 with a joint cost function (Betancourt and Gautschi, 1988)

\[
VQ = C(X_1, X; V)
\]

(2)

where \(X \) represents a vector of distribution services, and \(C \) is a classical cost function with the usual properties. In particular, a relevant implication for the empirical analysis is that this cost function must be increasing in outputs \(X_1, X \).

Similarly, assuming utility-maximizing behaviour by consumers and treating distribution services as fixed inputs into the production functions of consumers, we can replace the denominator in the ratio of the costs of retailing to sales by an inverse demand function, to analyse quantity-setting behaviour (Betancourt and Gautschi, 1988), or by a standard demand function, to analyse price-setting behaviour (Betancourt and Gautschi, 1990a, 1992). Thus, we can

\(^1\)That is, \(\pi \equiv p^* X_1 - p X_1 - VQ \), where \(p \) represents suppliers' prices, \(V \) is a vector of input prices, \(Q \) is a vector of input quantities and the other variables are defined in the text.
The outputs of retail activities

replace the denominator in Equation 1 by either one of the two expressions below

\[p^* X_1 = p^*(X_1, X; r) X_1 = p^* X_1 (p^*, X; r) \] (3)

where \(r \) is a vector of other variables that affect the household demand functions. Important implications of these demand specifications are \(\partial p^*/\partial X_j > 0 \) and \(\partial X_j/\partial X_j > 0 \) as well as the usual \(\partial p^*/\partial X_j < 0 \) and \(\partial X_j/\partial p^* < 0 \).

At this point we have a theory for the second term in Equation 1. It can be specified for empirical purposes as follows:

\[C(X_1, X; V)/p^*(X_1, X; r) X_1 = f(X_1, X; V, r) + \mu \]

\[= C(X_1 (p^*, X; r), X; V)/p^* X_1 (p^*, X; r) \] (4)

where \(\mu \) is a disturbance term with the usual properties. The interpretation of Equation 4 will depend on whether one assumes quantity-setting or price-setting behaviour. This topic is addressed in the next section.

In principle there are two alternatives for completing the specification in Equation 1. If profits were directly observable, one could proceed by subtracting the ratio of profits to sales from both sides of Equation 1 and specify Equation 4 as the estimating equation. When profits are not directly observable, one needs a theory of profits. It is assumed that profits are proportional to sales, i.e.

\[\pi = G p^* X_1 \] (5)

where the proportionality factor depends on the assumptions made about market structure. The specification of this factor provides a link with the voluminous literature on the empirical analysis of profit margins. An excellent guide through the main issues is Waterson (1984, ch. 10) who argues that the essence of the literature is captured by the systematic component in the following specification:

\[G = g(c, b, \theta) + \varepsilon \] (6)

where \(c \) stands for concentration, \(b \) stands for barriers to entry, \(\theta \) is the elasticity of demand and \(\varepsilon \) is a disturbance term. Subsequently, Mueller (1986, ch. 4) argues that barriers affect the profit margin through \(\theta \) and in this case Equation 6 becomes

\[G = k(c, \theta(b)) + \varepsilon \] (7)

This specification is consistent with a variety of market structures. If oligopolistic structures prevail we would expect \(k \) to be positive. If the market structure is that of monopolistic competition or perfect competition, we would expect \(k \) to be zero. Since we do not expect markets to be observed in long-run equilibrium, even if \(k \) is zero, firms could be experiencing non-zero profits under either perfect or monopolistic competition, in which case \(E(a) = \beta_0 > 0 \).

This specification provides a convenient test of whether competitive or non-competitive market structures prevail in retail markets. That is, if concentration and barriers to entry are not statistically significant determinants of retail markets, we cannot reject the hypothesis that retail markets are characterized by either perfect or monopolistically competitive market structures.

To sum up, our conceptual framework leads to the following equation for the retail margin.

\[R = k(c, \theta(b)) + f(X_1, X; r, V) + \varepsilon^* \]

where \(\varepsilon^* = \varepsilon + \mu \).

III. QUANTITY-SETTING VERSUS PRICE-SETTING BEHAVIOUR

By coupling the framework developed in the previous section with the assumption of short-run profit maximization, it is possible to discriminate between price-setting behaviour and quantity-setting behaviour.

If we assume price-setting behaviour we have from the second equality in Equation 4 that

\[\partial R/\partial X_j = [(C_j - C_1 (\partial X_1/\partial X_j))/p^* X_1 - C_1 (\partial X_1/\partial X_j)]/(p^* X_1)^2 = f_j \] (9a)

where \(C_j = C_1 - C_1 (\partial X_1/\partial X_j) \) and \(f_j = \partial f/\partial X_1 \).

Since \((\partial X_1/\partial X_j) \) is positive, \(f_j \) is of ambiguous sign. Similarly, we have for the quantity of retail items under price-setting behaviour

\[\partial R/\partial X_1 = a(C_1 (p^* X_1 - C p^*))/p^* X_1^2 = a f_1 \] (9b)

where \(a = 1/(\partial X_1/\partial X_j)^2 \) and it is assumed positive. The sign of \(f_1 \) is also ambiguous. Use of the first-order conditions for short-run profit maximization under price-setting behaviour, however, allows Equation 9a to be rewritten as

\[\partial R/\partial X_j = [(p^* - p) X_1 - C] p^* (\partial X_1/\partial X_j)/(p^* X_1)^2 = f_j \] (9a')

Manipulation of Equation 9b yields

\[\partial R/\partial X_1 = a[C_1 X_1 / C - 1] C p^*/(p^* X_1)^2 = a f_1 \] (9b')

The sign of Equation 9a' will be positive (negative) when net revenues from retailing exceed the costs of retailing, i.e. when the retailing activity generates profits (losses). While the effect of a distribution service on the retail margin may be positive or negative, it must be of the same sign for all

Footnotes:

2 The ratio of profits to sales is used in this literature as an approximation to the profit margin, which is not directly observable because it depends on marginal costs.

3 \(x \) is a demand shifter. This notation is necessary because under price setting \(X_1 \) is not a control variable.

4 For any distribution service, profit maximization under price setting implies \((p^* - p) \partial X_1/\partial X_j = C_j + C_1 \partial X_1/\partial X_j \) (Betancourt and Gautschi, 1990b).
distribution services. This implication provides an exacting test of the price-setting hypothesis. From Equation 9b’ we conclude that the effect of explicit outputs on the retail margin is in general ambiguous but likely to be negative. If there is only a single output and the representative firm is in long-run equilibrium, it must operate on the increasing returns portion of the average cost schedule. Hence, \(f_i < 0 \).

If there are many outputs, then the proportionate contribution to total marginal costs of any one of them is likely to be less than total costs, and \(f_i < 0 \). Nonetheless, circumstances can be constructed in which \(f_i > 0 \), for example, a single output case where the representative firm is not in long-run equilibrium and it operates on the rising portion of the average cost curve.

If we assume quantity-setting behaviour (the first term in Equation 4), then

\[
\frac{\partial R}{\partial X_i} = (C_i p^* X_i - C (\partial p^*/\partial X_i) X_i)/(p^* X_i)^2 = f_i
\]

(10a)

Since \((\partial p^*/\partial X_i)\) is positive, \(f_i\) would seem to be of ambiguous sign. Similarly

\[
\frac{\partial R}{\partial X_1} = (C_1 p^* X_1 - C [(\partial p^*/\partial X_1) X_1 + p^*])/(p^* X_1)^2 = f_1
\]

(10b)

which would also seem to be of ambiguous sign. Use of the first-order conditions for profit maximization under quantity-setting behaviour, however, allows Equations 10a and 10b to be rewritten as follows:

\[
\frac{\partial R}{\partial X_i} = [p^* X_i - C] (\partial p^*/\partial X_i) X_i = f_i > 0 \quad (10a')
\]

\[
\frac{\partial R}{\partial X_1} = [C_1 (p^* X_1 - C) - p C]/(p^* X_1)^2 \quad (10b')
\]

From Equation 10a’ one can conclude that the effect of distribution services on the retail margin must always be positive and use this result as the basis for an exacting test of the quantity-setting hypothesis. Note that \(C \) includes only the costs of retailing and not the costs of goods sold; on the other hand, \(p^* X_1 \) is the total revenues from the product, including what must be used to cover the costs of goods sold. From Equation 10b’ we conclude that the effect of explicit output on the retail margin is ambiguous.

Rejection of quantity setting also implies a rejection of the perfectly competitive model for the analysis of the retail margin. An interesting special case brings out this point most clearly. Under perfect competition, we would expect the first term on the right hand side of Equation 8 to be zero or constant. If we now assume that there is only a single item in the assortment, then there is a one-to-one direct relationship between the retail margin and the retail price of the item, i.e.

\[
R \equiv (p^* X_1 - p X_1)/p^* X_1 \equiv (p^* - p)/p^*
\]

(11’)

Hence, we can replace \(R \) with \(p^* \) in Equation 8 and together with the assumption of perfect competition obtain

\[
p^* = f(X_1, X; r, V) + e^{p^*}
\]

(8’)

which is a typical hedonic equation (Rosen, 1974). The components of the vector of distribution services, \(X \), would be expected to behave as attributes of the item and to have positive signs.\(^6\)

IV. FUNCTIONAL FORM

While economic theory does not normally provide much guidance in the specification of functional form, in this instance some features of the previous discussion suggest characteristics of the functional form. In particular, Equations 9a and 9b as well as 10a and 10b suggest that the functional form should be general enough to allow the response of the retail margin to retail output and distribution services to be a function of these same variables. Thus, an additive linear specification of the second term in Equation 8 is unacceptable on a priori grounds.

Among the several nonlinear functional forms that allow one to incorporate this feature of the theory into the empirical analysis, we selected a logistic functional form for two reasons: parsimony and tractability. With respect to parsimony, consider one of the most frequently used alternative nonlinear forms – a quadratic in the variables or in the logarithms of the variables. This alternative would require the estimation of at least 35 (29 for the logarithmic version) parameters in order to capture the behaviour implied by Equations 9a and 9b or 10a and 10b.\(^7\) With respect to tractability, consider another of the frequently used nonlinear forms – a CES-type of power function. This alternative requires the values of the element being raised to a power to be positive. Since the slopes in Equations 9a and 9b can be either positive or negative, the positivity restriction on the argument of the power function must be imposed by constraining some parameters to a different range of values of the variables. No general estimation techniques with this property are available.

Consider now the logistic specification of the second term on the right hand side of Equation 8, i.e.

\[
f(X_1, X; r, V) = e^{p^* X}/(1 + e^{p^* X})
\]

(11)

\(^5\)For these outputs, profit maximization under quantity-setting behaviour implies \(C_j = (\partial p^*/\partial X_j) X_j \) and \(C_1 = (p^* - p) + (\partial p^*/\partial X_1) X_1 \) (Betancourt and Gautschi, 1988, p. 133).

\(^6\)In this special case the distinction between common and specific distribution services disappears, since by assumption there is only a single item.

\(^7\)These numbers are based on our identification in the data of one explicit output variable, five variables representing common distribution services and one variable representing specific distribution services as well as one variable representing concentration and another barrier to entry.
where $X = [X_8, X_9, X]$ and β is a 1×8 vector of parameters that determines the sign of the response of the retail margin to output, β_γ, common distribution services ($\beta_\delta - \beta_\gamma$), and specific distribution services, β_γ. This form allows us to capture the intrinsic nonlinearity implied by Equations 9a, 9b, 10a and 10b with a minimum of eight parameters. Furthermore, it can be estimated by relatively straightforward nonlinear techniques. Finally, the range of values generated by the right hand side of Equation 11 lies in the zero to one interval, thus coinciding with the feasible range of values of the retail margin.

Regarding the specification of the determinants of the profit margin, we follow the literature by adopting a polynomial specification. More precisely, the following quadratic specification of the first term on the right hand side of Equation 8 will be employed, i.e.

$$k(c, \theta(b)) = \beta_\theta X_8 + \beta_\gamma X_9 + \beta_\delta X_8 X_9 + \beta_1(X_8)^2 + \beta_2(X_9)^2$$

(12)

where X_8 is concentration, c, and X_9 is barriers to entry, b.

V. EMPIRICAL IMPLEMENTATION

Our main data sources are the 1982 survey of firms in commerce, and the 1983 survey of firms in services (INSEE 1982, E. 88; 1983, E. 97, respectively). These reports provide a wide variety of information for 50 retail sectors classified at the four-digit level. To preserve continuity in the exposition, the exact definition of the variables is presented in the Appendix. Here, we discuss measurement issues, estimation procedures and the assumptions linking the theory to the data.

The first assumption imposed on the data is that the cost and demand function parameters are the same in each of the 50 sectors. The data point for each sector represents a different equilibrium in the retail market. An interpretation of this assumption is that the cost function embodies the range of techniques available for operating and the representative firm selects in each sector the levels of distribution services and items to provide to satisfy the demands of the representative consumer. In turn, the demand function embodies the range of options desired by the representative consumer at different times during a given calendar period, let us say a year. The representative consumer operates different consumption and purchase activities at nonzero levels at different times within the calendar period. Different equilibria result for each sector as a consequence of the interaction between the representative consumer’s demand at a particular time and the representative firm’s ability to meet that demand in a cost minimizing framework.

A second assumption imposed on the data is that the parameters which capture the effect of concentration and barriers to entry are the same across retail sectors. This assumption follows from Equation 12 and it requires no further discussion.

It is useful to note here one measurement problem that arises in our data. Namely, one obvious measure of information is advertising expenditures of each retail sector. This measure is not available in our European data and no reasonable proxy could be found for this variable. Hence, the possibility of an omitted variable bias arises. Due to other econometric issues discussed below, four alternative estimating equations will be implemented. Since the bias would differ according to the correlations among variables in different specifications, those results that are robust to changes in specification will be free of this possible omitted variable bias problem.

The next measurement issue leads us into a discussion of estimation procedures. The output of the retail sector will be measured as sales per establishment X_1. Since the definition of the retail margin is $(X_1 - CG)/X_1$, where CG is cost of goods sold per establishment, this raises the possibility of an error in the variables problem. We address this issue by estimating Equation 8 via both nonlinear least squares and nonlinear two-stage least squares. In addition, we considered the following reformation of Equation 8

$$R = (X_1 - CG)/X_1 = h(X_1, \bar{X}) + e^*$$

(13)

where \bar{X} is a vector of all other explanatory variables. Equation 13 implies

$$CG = X_1[h^*(X_1, \bar{X}) - e^*]$$

(14)

which has X_1 on only one side of the equation. If Equation 14 is corrected for heteroskedasticity using the predicted value for sales per establishment, then

$$CG = \frac{X_1}{X_1}[h^*(X_1, \bar{X}) - e^*]$$

(15)

This issue thus leads to four versions of the model for estimation, Equation 13 using NLLS or NL2S, Equation 14 and Equation 15.
The main estimation method employed is nonlinear least squares. This choice was based on several considerations.

1. The method was well documented and supported in the SAS packages available at INSEAD and at Maryland;
2. The asymptotic properties of the estimator are well established, as demonstrated by Amemiya's (1985, ch. 4) discussion of the estimator in the context of extremum estimators;
3. The Monte Carlo experiments undertaken by Gallant (1975a, b) relied on a model specification similar to ours. It consisted of a first degree polynomial added to an exponential.

The experiments allow one to ascertain the accuracy of employing testing procedures in the nonlinear case that were similar to those valid for the linear one. Therefore, Gallant’s results can be used confidently to guide our choice of testing procedures. For example, our joint tests of hypotheses will be carried out by using ratios of differences in residual sums of squares to residual sums of squares instead of ratios of explained sum of squares to residual sums of squares, i.e. by applying Equation 4.3 in Amemiya (1985).

The rationale is that tests based on the former statistic were found by Gallant (1975b) to have higher power than those based on the latter statistic in the context of a model similar to ours. For one of the four models we employed nonlinear two-stage least squares, Amemiya (1985, ch. 8), as indicated earlier.

VI. RESULTS

Three classical joint tests of hypotheses were performed on the three models estimated by NLLS. These tests are presented in Table 1. For all combinations of specifications, we reject the null hypothesis that the variables identified as determinants of the ratio of the costs of retailing to sales and of profits to sales have no effect on the relevant dependent variable, F^1, at the 1% level of significance. Similarly, for all combinations of specifications, we reject the null hypothesis that the variables identified as determinants of the ratio of the cost of retailing to sales have no effect on the relevant dependent variable, F^3, at the 1% level of significance. The last result in particular is a powerful endorsement of the analysis of retail activities underlying our empirical work. It implies that the outputs of retail activities identified and measured here need to be incorporated into the analysis of this service sector.

Our remaining classical hypothesis test, F^2, yields somewhat mixed results. In the estimation of Equation 13 with sales per establishment as an independent variable, R, the hypothesis that the determinants of the ratio of profits to sales have no effect on retail margins cannot be rejected at the 1%, 5, or even 10% level of significance. By contrast, in the other two specifications this hypothesis is rejected at the 1% level of significance. Moreover, in every case these variables alone have a less statistically powerful effect than those capturing distribution services, i.e. $F^3 > F^2$.

Before discussing the individual results, it is useful to consider a test of functional form suggested by our analysis. A simple linear regression of the predicted value from the nonlinear estimation of Equation 13, as in model R, on the retail margin yields an $R^2 = 0.7314$, the R^2 in the corresponding linear regression with the same explanatory variables yields $R^2 = 0.6177$. To supplement this descriptive information on our choice of functional form a non-nested hypothesis test designed to discriminate between the two functional forms was performed.

The test is based on the artificial embedding procedure developed by Davidson and McKinnon (1981) and subsequently extended by others, e.g. McKinnon et al. (1983). This procedure is known as the J-test. For instance, consider the null hypothesis

$$ H_0: R_i = g(X_i) + u_i^0 $$

and the alternative

$$ H_1: R_i = h(Z_i) + u_i^1 $$

where X_i represents the linear specification and Z_i represents the nonlinear specification. One can then construct a compound model in the following manner:

$$ H_0: R_i = (1 - \theta) g(X_i) + \theta h(Z_i) + u_i $$

where $\hat{}$ indicates the nonlinear least squares estimator of the parameter vector.

Estimation of Equation 18 by nonlinear least squares yields estimates of θ. When one uses the linear specification
The outputs of retail activities

Table 2. Nonlinear least squares estimates

<table>
<thead>
<tr>
<th></th>
<th>R^1</th>
<th>R^2</th>
<th>R^1</th>
<th>R^2</th>
<th>$R^0 = R^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.2925*</td>
<td>0.6242*</td>
<td>0.2012*</td>
<td>0.1168</td>
<td>0.3954*</td>
</tr>
<tr>
<td></td>
<td>(0.0742)</td>
<td>(0.2917)</td>
<td>(0.0251)</td>
<td>(0.3352)</td>
<td>(0.0617)</td>
</tr>
<tr>
<td>β_6</td>
<td>-2887.0</td>
<td>575.87</td>
<td>-320.3</td>
<td>442.86</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(1840.0)</td>
<td>(436.70)</td>
<td>(280.5)</td>
<td>(583.57)</td>
<td>-</td>
</tr>
<tr>
<td>β_1</td>
<td>-3.827^*</td>
<td>0.2236</td>
<td>-3.120^*</td>
<td>0.1748</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(1.052)</td>
<td>(0.2430)</td>
<td>(0.6706)</td>
<td>(0.2057)</td>
<td>-</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.7714^*</td>
<td>-1.146</td>
<td>-0.9597^*</td>
<td>1.187</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.3450)</td>
<td>(1.74)</td>
<td>(0.1889)</td>
<td>(1.88)</td>
<td>-</td>
</tr>
<tr>
<td>β_3</td>
<td>0.1832</td>
<td>-0.6563</td>
<td>0.0422</td>
<td>0.4420</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.4706)</td>
<td>(0.8042)</td>
<td>(0.3393)</td>
<td>(0.4984)</td>
<td>-</td>
</tr>
<tr>
<td>β_4</td>
<td>0.4679</td>
<td>0.4641</td>
<td>-0.2153</td>
<td>0.2368</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(1.499)</td>
<td>(1.114)</td>
<td>(1.126)</td>
<td>(0.6068)</td>
<td>-</td>
</tr>
<tr>
<td>β_6</td>
<td>53.99^*</td>
<td>-11.49</td>
<td>47.22*</td>
<td>-11.57^*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(8.927)</td>
<td>(8.04)</td>
<td>(6.565)</td>
<td>(13.41)</td>
<td>-</td>
</tr>
<tr>
<td>β_7</td>
<td>21.74^*</td>
<td>-1.97</td>
<td>19.72*</td>
<td>-0.9369</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(5.123)</td>
<td>(2.86)</td>
<td>(4.087)</td>
<td>(1.171)</td>
<td>-</td>
</tr>
<tr>
<td>β_8</td>
<td>-0.0159</td>
<td>0.0962</td>
<td>-</td>
<td>-</td>
<td>-0.0596</td>
</tr>
<tr>
<td></td>
<td>(0.0268)</td>
<td>(0.2070)</td>
<td>-</td>
<td>-</td>
<td>(0.0509)</td>
</tr>
<tr>
<td>β_9</td>
<td>-0.3316</td>
<td>0.1248</td>
<td>-</td>
<td>-</td>
<td>0.0330</td>
</tr>
<tr>
<td></td>
<td>(0.2047)</td>
<td>(0.2183)</td>
<td>-</td>
<td>-</td>
<td>(0.3288)</td>
</tr>
<tr>
<td>β_{10}</td>
<td>0.0146</td>
<td>-0.0543</td>
<td>-</td>
<td>-</td>
<td>0.0520</td>
</tr>
<tr>
<td></td>
<td>(0.0189)</td>
<td>(0.2043)</td>
<td>-</td>
<td>-</td>
<td>(0.0360)</td>
</tr>
<tr>
<td>β_{11}</td>
<td>0.0002</td>
<td>-0.0017</td>
<td>-</td>
<td>-</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0009)</td>
<td>-</td>
<td>-</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>β_{12}</td>
<td>0.2741</td>
<td>-0.2119</td>
<td>-</td>
<td>-</td>
<td>-0.1793</td>
</tr>
<tr>
<td></td>
<td>(0.2566)</td>
<td>(0.2903)</td>
<td>-</td>
<td>-</td>
<td>(0.4191)</td>
</tr>
</tbody>
</table>

*No coefficient for β_0 was estimated as it represents a variable not available in our data.
1Equation 13 estimated by NLLS.
2Equation 13 estimated by NL2S.
t-ratios greater than 2 in absolute value.

as the null hypothesis one obtains $\bar{\theta} = 0.8704$ with a standard error of (0.0975). If one uses instead the nonlinear specification as the null hypothesis, one obtains $\bar{\theta} = 0.4757$ with a standard error of (0.0923). If one uses 0 to test the null hypothesis, the test is inconclusive. Nevertheless, if one uses 1 to test the null hypothesis the linear specification is rejected at the 1% level of significance whereas the nonlinear specification is accepted. These results provide support for the nonlinear specification.

Just as one would expect from the joint hypotheses tests, several of the variables identified as outputs of retail activities have statistically significant coefficients in Tables 2 and 3 when one uses 2 as the critical value. The results differ, however, across econometric specifications. In the estimation of Equation 13 by NLLS, the coefficient of accessibility of location, β_2, is negative and statistically significant whether or not the variables determining the ratio of profits to sales are included. The coefficients of output, β_1, ambience, β_6, and specific distribution services, β_7, are also statistically significant. Perhaps more importantly, none of the coefficients of the determinants of the ratio of profits to sales is statistically significant in this specification, regardless of the inclusion of the variables representing the outputs of retail activities.

For the other two models (C and CC), the results are similar for the variables representing the outputs of retail activities. That is, output, β_1, ambience, β_6, and specific distribution services, β_7, are statistically significant in all four possible cases and accessibility of location, β_2, is statistically significant in three of the four possible cases. Furthermore, the statistically significant coefficients have the same sign as before. In contrast, several of the coefficients of the determinants of the ratio of profits to sales now become statistically significant. Finally, the results for the fourth specification (NL2S) suggest that none of the variables affects retail margins.

To sum up, these individual results support the earlier conclusion on the importance of the role of distribution services as outputs of retail activities and they yield a somewhat mixed conclusion with respect to the determinants of the ratio of profits to sales in that their importance is less robust to changes in specification.

An important reason for our interest in the individual results, however, stems from what they can tell us about the relevance of quantity-setting or price-setting behaviour in retail markets. In every possible specification estimated by NLLS, the hypothesis of quantity-setting behaviour was rejected at the 5% level of significance. Recall from Sectio
III that this hypothesis implies that all the coefficients of distribution services must be positive ($\beta_4 - \beta_6$). A quick check of Tables 2 and 3 shows that in every case one of the coefficients of distribution services is negative and statistically significant at the 5% level. Similarly, the hypothesis of price-setting behaviour implies that all of the coefficients must be of the same sign, either positive or negative, and the individual results also reject this hypothesis conclusively in every specification. The specification estimated by NL2S yields no evidence on this issue.

VII. CONCLUSION

Our most important findings are that treating distribution services as outputs of retail firms provides a sound conceptual framework for the empirical analysis of retail margins, suggests a number of feasible empirical constructs as measures of these outputs, and generates empirical results that provide strong support for viewing distribution services as critical determinants of retail margins. In terms of the two empirical traditions in industrial organization, as articulated by Schmalensee (1988) and Bresnahan (1988), we have gone considerably beyond the approach of doing ... a search for empirical regularities ... and we have stopped just short of the approach of doing ... an econometric model of an industry or identifying separately the cost and demand function parameters. Our main finding, however, furnishes a solid foundation on which to search for bodies of data more amenable to the development of a complete econometric model, for example micro panel data.

Another important finding of our analysis is the systematic and categorical rejection of the quantity-setting and price-setting hypotheses by the data. There is a substantial literature on the implications of whether firms choose prices or quantities for the analysis of conjectural variations, Kamen and Schwartz (1983), or for the existence of equilibrium in game theoretic contexts, Friedman (1987). To our knowledge empirical evidence on this issue has been largely nonexistent and, therefore, our results should stimulate further research on the issue. Since the development of these hypotheses for testing with our data was based on the maintained hypothesis of monopolistic competition, our interpretation of these results is that they suggest the development of models of oligopolistic behaviour for the analysis
of retail markets. Of course, one could also interpret them as challenging the assumption of short-run profit maximization.

Mention should also be made of the relation between these results and our earlier ones using US Census data. Despite the fact that the retail categories in the two countries are substantially different and some of the variables had to be measured differently, including one, information \((X_3)\), that was not available in the French data, the results are strikingly similar. The tests of functional form yield similar results; the classical tests also yield similar results and the sign and significance of individual coefficients are often the same. For instance, the sign and significance for \(\beta_1\), \(\beta_2\) and \(\beta_3\) in the regression for the retail margin are exactly the same in both countries; the coefficient of \(\beta_6\) is insignificant in the US but the variable \((X_6)\) is measured differently. Undoubtedly, our results have uncovered substantial empirical regularities.

APPENDIX

We start with the dependent variable, \(R\). For each sector the retail margin is measured as \([\text{sales} - \text{cost of goods sold}] / \text{sales}\). The first of these variables is taken directly from the original data source and requires no further discussion. The second one is constructed by adding up purchases and net changes in stocks, both of which are available in the original data sources.

The output of a retail sector, \(X_1\), is measured as sales per establishment. Because of the error in the variables problem indicated in the text, we developed another measure for output, which is constructed from the data sources, namely selling space per establishment. The original sources provide information for each sector on the number of enterprises in five different size categories with respect to selling space. For each sector we constructed a weighted average of selling space using the relative frequency of stores in these categories as weights. The basic idea is that higher quantities of output are associated with larger spaces.

Accessibility of location, \(X_2\), is measured by the number of establishments in each sector, which was obtained from INSEE's microfiche d'Observatoire Economique for both commerce (1982) and services (1983). While the theoretical concept is broader than this empirical measure, e.g. it could include other dimensions of access such as size of parking lot, etc., the empirical measure is as good a counterpart of the theoretical concept as any that one finds in an economic study.

A distribution service which has a well-defined empirical counterpart is the breadth of product assortment, \(X_3\). For each sector the data contain information on the sales made on a particular product line for a universe of four product lines. Thus, we construct an index of assortment for each sector or observation as follows:

\[
X_{3l} = - \sum_{j=1}^{30} (S_{jl}/S_l) \ln (S_{jl}/S_l)
\]

(A1)

where \(X_{3l}(S_l)\) is the percentage of sales of a product line in a sector relative to total sales in this sector. This index simply measures the level of breadth of assortment in a sector by the entropy of sales over product lines in that sector. There is a direct relation between the value of the index and the level of assortment.

For some of the remaining distribution services, there is a wider gap between the theoretical construct and the empirical counterpart and little that can be done about it. For instance, assurance of product delivery at the desired time and in the desired form has several dimensions. Our empirical measure, \(X_4\), will be the average of inventory holdings at the beginning and at the end of the year (both pieces of information are directly available in the original source) per establishment. This empirical measure captures the idea that the greater the number of goods available the more likely the consumer is to find the desired product, but it does so imperfectly because it is a value term rather than a quantity measure.\(^{14}\) Moreover, this measure captures mainly the common aspects of this distribution service, i.e. those that are available to all the items in the assortment, but not the specific ones, i.e. those that would be available to particular items in the assortment as a result of the efforts for example of specialized sales personnel.

As mentioned in the text, advertising expenditures per establishment is a logical measure of information but is not available in the French data.

Last among the common distribution services is ambiance, \(X_5\). It will be measured empirically by the value of expenditures for new construction, which is taken directly from the data sources and put on a per establishment basis. This distribution service varies across retail sectors and our argument is that higher levels of this quantity will be associated with higher values of building and structures.

Finally, different sectors provide different levels of specific distribution services, that is, those associated with a particular item or sets of items in the assortment. Thus, we will define a variable, \(X_7\), to capture the levels of these specific distribution services. Since most of them require the use of labour resources, sometimes specialized ones, we will use the sector’s payroll per establishment (including payments in kind), which is available in our data sources, as an indication of the level of specific distribution services provided.

Turning to the determinants of the profit margin, we will be measuring concentration, \(X_8\), by the value of accounting

\(^{14}\) In addition, for five observations, this information is missing but information on the net change in inventories is available. Thus, we estimated the value for these five observations by using the coefficients of a regression of this variable on our measure of \(X_4\) for the 4 observations where both pieces of information are available.
profits per enterprise in the sector. This measure is directly available in the data. Finally, we note that barriers to entry, X_9, will be measured by a variable that proxies for the ratio of multi-establishment firms to single establishment firms: namely, (the number of establishments — the number of enterprises)/the number of establishments. Both variables are directly available in the data. While this construct is a sensible measure of barriers to entry, it may also proxy for economies in purchasing thus capturing part of the effect of concentration.

ACKNOWLEDGEMENTS

We thank P. McNeil and E. Hoffnar for their excellent research assistance. A substantial part of the research for this project was carried out while both authors were at INSEAD. We acknowledge a sabbatical leave from the University of Maryland for the first author and the financial support of INSEAD’s R&D committee for project 2135. We also thank the CSC at Maryland for support. Earlier versions of this paper were presented at research seminars in Brandeis, Georgetown, Tulane, Rochester and BLS as well as at Maryland’s IO Workshop and Consumer Economics Seminar and at the Marketing Science meeting in Wilmington. We thank the participants for their comments, especially A. Lewbel, J. Albrecht, W. Oi, S. Moorthy, and M. Reinsdorf.

REFERENCES

