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Abstract

In many settings, it is natural to think of limited consideration exhibiting spillovers: attention paid
to a particular alternative may “spill over” to another alternative based on shared characteristics, com-
plementarities, features of the choice environment, etc. However, it is not straightforward whether,
given choice data, a) preferences among alternatives can be revealed, or b) the network of consideration
spillovers can be revealed. Using a novel laboratory experiment, I test a deterministic Network Choice
model proposed in previous work and find a plethora of violations thereof, even at the individual level.
I then propose a stochastic model, Random Network Choice, and analyze its properties regarding the
formation of consideration sets. When applied to the laboratory data, I find considerable consistency
with the general Random Network Choice model. Armed with a model of network choice consistent
with my experimental data, I consider one application in the realm of advertising to show that such
a generalization of so-called “positive spillovers” in attention is necessary to avoid misleading welfare
analysis.
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1 Introduction

In decision environments with a large number of alternatives, decision makers (DMs hereinafter) may struc-

ture search according to a network of connections between these alternatives. For example, a shopper on

Amazon.com utilizes a list of “suggested items” to navigate between available goods. The network of con-

nections between options need not be exogeneously provided by some firm, however. Consider a DM who is

considering donating to some charity from the set {Animal Shelter in DC, Animal Shelter in NYC, Homeless

Shelter in NYC}. Then a DM who initially considers donating to the Animal Shelter in DC may subsequently

consider donating to the Animal Shelter in NYC because of the shared attribute of being an Animal Shelter.

Similarly, the same DM may then consider the Homeless Shelter in NYC because of the shared geographic

location with the Animal Shelter in NYC. The DM will eventually consider both the Animal Shelter in DC

and the Homeless Shelter in NYC, even though the two charities share no common attributes. If attention

“spills over” between options in this manner in some decision making environment, it would be important

for firms to be able to properly elicit the network from the choices of DMs and attention data, if observable.

Indeed, there is evidence from the marketing body of literature to suggest that DMs exhibit such attention

spillovers. Shapiro (2018) shows that Direct-To-Consumer advertising exhibits positive spillovers in the

case of pharmaceutical anti-depressants: sales of a given drug increase by about 1.6% in response to the

advertisement of a rival drug. Sahni (2016) provides experimental evidence that suggests that these positive

spillovers are indeed attention-based by studying the response to online advertising in the restaurant market.

Advertising a particular restaurant online can increase sales leads1 to a competing restaurant by round 4%.

Finally, Lewis and Nguyen (2015) show that online advertisements can lead to an increase in online searches

for competitors’ brands by up to 23%.

These marketing studies on attention spillovers have been focused on brand or product categories: the

advertisement of a particular good has an effect on consideration of all goods in the same category as that

which is advertised. However, two stylized facts suggest that this implicit modelling restriction may be too

strong: i) Shapiro (2018) finds a variety of advertising elasticities between goods even in the same defined

“category,” and ii) Sahni (2016) finds differential effects of rival advertising based on features of the firm

(e.g. firm age, aggregate review scores, etc.). A general model of attention spillovers would then need to

represent such spillovers as operating on a network of connections between options, with this category-specific

treatment as a special case.

Beyond the importance that a model of such network consideration has for firms, a precise model of

network consideration is important for welfare analysis. Indeed, a common refrain among these marketing

1Sales leads are defined in Sahni (2016) as the consumer searching for the restaurant’s phone number, which is observable
in his dataset.
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studies of attention spillovers is that these positive externalities lead to an under-allocation of advertising

relative to the social optimum; Shapiro (2018) presents a supply-side model to make this case. However, if

consideration is modelled as following a more general network structure, this is not necessarily true. I show

this much in the Section 7.

In this work, I present the results of an experiment designed to test the consideration set properties

of several nested models of network consideration. To my knowledge, this is the first experimental study

of a decision (i.e. non-strategic) environment with a network structure. First, the deterministic special

case, studied previously by Masatlioglu and Suleymanov (2017) and which I’ll call “Network Choice” (NC

hereinafter), is leveraged to structure the parameterization of the laboratory experiment. NC also serves

as a deterministic baseline model against which to test the elicited attention data. The consideration set

properties of NC are quite strong and I find evidence that attention, even at the subject level, is not consistent

with NC in the observed data. In light of the pervasiveness of violations of NC, I suggest a more general

stochastic model, which I’ll call Random Network Choice (RNC hereafter). This model shares several features

with NC. First, it exhibits limited consideration whereby the DM only considers a subset of the available

set of alternatives. It also possesses a form of status quo bias where the status quo or “starting point” of

the DM determines the set of alternatives that are reachable according to the random network structure.

However, RNC utilizes a general random product network structure, as opposed to a deterministic network,

as is assumed in NC. The generalization to a random network structure allows for more general consideration

set mappings and better fits the experimental data. To preview how this model works, consider the following

example:
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Figure 1: Example random graph on four options
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In the above example, the options {w, x, y, z} are connected to one another in a random graph structure.

The random graph is represented as a distribution over the set of all possible graphs on these four options.

In Figure 1, the graph g1 occurs with probability 1
3 , and the graph g2 occurs with probability 2

3 . All

other possible graphs occur with probability 0. Consider a DM who starts at option x and considers options

according to RNC. Then with probability 1
3 , the network g1 is in effect, in which case attention spills over from

option x to option y, then from option y to option z. Let Γx(T | S) be the probability that set T is considered

when S is available and the starting point is x. Since there are no other networks that connect the set {x, y, z},

Γx({x, y, z} | {w, x, y, z}) = f(g1) = 1
3 . Notice that, similarly, Γx({w, x, z} | {w, x, y, z}) = f(g2) = 2

3 . The

RNC model works as follows: given a starting point x and an available set S, the DM forms stochastic

consideration sets according to some distribution over possible networks. From each consideration set, the

DM chooses the option that is maximal according to some partial order �. The NC deterministic model is

a special case of RNC where f(g) = 1 for some network g, and f(g′) = 0 for all other networks g′.

Given some dataset that is consistent with RNC, the properties of RNC are such that it may admit

an infinite number of representations. In some settings, this may not be a desirable property. For this

reason, I then consider a special case of RNC, which I dub the “Pseudo-Markovian RNC” model (PM-RNC

hereinafter) due to its proximity to “Markov networks,” common in the network analysis body of literature.2

Under PM-RNC, I show that the PM-RNC representation of some set of stochastic choice data must be

2See Frank and Strauss (1986) for a discussion of Markov networks.
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unique (up to permutations of preferences between alternatives for which preferences cannot be revealed

with the given dataset). I present an additional necessary consideration set mapping property for PM-RNC,

Binary Separability, and take this to the experimental data. I find mixed evidence of consistency with Binary

Separability, suggesting that there is likely a family of RNC special cases between the most general RNC

model and PM-RNC that i) adds structure beyond RNC in the direction of PM-RNC, but ii) is similarly

consistent with my experimental data. An exploration of such classes of models is beyond the scope of the

current work and would make for a fruitful next step in the study of network consideration.

This paper proceeds as follows. Related literature, both theoretical and experimental studies, are reviewed

in Section 2. The experimental design and results of tests of NC are presented in Sections 3 and 4. Section

5 presents the RNC and PM-RNC models which are tested in Section 6. These results are discussed in light

of an application to advertising in Section 7. Section 8 concludes.

2 Related Literature

2.1 Experiments

The experiment contained herein is most closely connected to a growing body of literature in economics on

experimental investigations of limited attention. Firstly, this experiment elicits data regarding consideration

sets in a manner complementary to earlier work. Reutskaja et al. (2011) rely on eye-tracking technology

to infer the consideration and search behavior of subjects.3 Caplin et al. (2011) elicit choice process data

as defined previously in Caplin and Dean (2011). Instead of directly observing consideration through eye-

tracking technology, Caplin et al. (2011) incentivize the revelation of the path of present-best options at each

point in time during which the subject is evaluating a set of options. Geng (2016) studies the impact of a

status quo on attention allocation as measured by decision and consideration time. Finally, Gabaix et al.

(2006) use the MouseLab coding language to investigate subject attention in a setting with attribute-level

information regarding available options.

Several studies of attention and information acquisition have been devoted to testing, estimating, or

informing theoretical models. Dean and Neligh (2017) present a set of experiments regarding the rational

inattention model of Sims (2003; 2006), generalized in Caplin and Dean (2015), where they document consis-

tency with a generalized model beyond the Shannon case. Chadd et al. (2018) show that the presentation of

irrelevant information can affect the consideration set in a manner not predicted by extant models of limited

attention. The aim of this experiment is similar to these previous studies in that it seeks to determine

3See Orquin and Loose (2013) for a review of eye-tracking studies in decision making.
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consistency with a model of network consideration formation.

The experimental body of literature on networks is often focused on environments where the nodes on the

network are optimizing agents and not feasible options to be considered by a central DM. A number of studies

exist of network games, where agents are connected to one another via a network structure (See Charness

et al. (2014) for a canonical example and Choi et al. (2015) for a thorough survey of such experiments through

2015). In a similar vein, more recent studies have been focused on dynamic network formation, in which

agents enter a network sequentially and choose to connect themselves to a subset of extant nodes (agents)

in the network. Neligh (2017) shows that entrants to a network “vie for dominance” by connecting to many

extant nodes in a manner consistent with forward-looking behavior.

While the experiments above on network formation and network games are at least nominally related to

the experiment contained herein insofar as they are explorations of “networks” in economic settings, their

connection to the current experiment ends there. All of the above are game-theoretic explorations of behavior

in network structures, whether they be exogenously determined or endogenously determined in equilibrium.

RNC and PM-RNC are both decision theoretic models and involve no strategic interaction between multiple

agents.

2.2 Theory

The proposed RNC model contained herein is closely related to several models of path-dependent attention

and choice. Masatlioglu and Suleymanov (2017) present a model of Network Choice (NC hereinafter) where

attention spills over between options in a given deterministic network. In the realm of stochastic path-

dependent models of limited consideration, Suleymanov (2018) presents a Path-Dependent Consideration

model that is also similar to RNC, in that consideration follows a path of connections between available

options according to some stochastic process. Suleymanov (2018) assigns probabilities in this model to

paths with some initial starting point, where RNC assigns probabilities to more general networks. Further,

Suleymanov (2018) builds on earlier work contained in Masatlioglu and Nakajima (2013) where new elements

are added to the consideration set only when they dominate everything that has already been included

in the consideration set. RNC does not share this feature, instead allowing consideration sets to evolve

stochastically, independent of the preference relation. The same approach is used in NC, though for a

deterministic setting.

Several other models of limited consideration are based on stochastically determined consideration set

mappings. Manzini and Mariotti (2014) first explore consideration sets that are stochastically determined.

In contrast to RNC, the model of Manzini and Mariotti (2014) focuses on consideration of individual options
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in the feasible set where each feasible option is considered with some fixed probability. This results in choice

probabilities that violate a regularity condition of Luce (1959), where adding an element to the feasible

set should not increase the choice frequency of a given element previously available. In more recent work,

Cattaneo et al. (2017) present a “Random Attention Model” (RAM hereinafter), that actually relies on

violations of the Luce regularity condition to reveal preference. They apply a monotonicity condition on

attention rules of the following form:

For any a ∈ S − T , Γ(T | S) ≤ Γ(T | S − a).

where Γ(T | S) is the probability that the set T is considered when S is available. In Section 5, I show that

RNC satisfies a starting-point contingent version of this monotonicity condition. This allows me to directly

connect the revealed preference approach in Cattaneo et al. (2017) to that in RNC.4

RNC also shares features with a number of models that exhibit status quo bias. Note that, in accordance

with the distribution over networks of options, a change in the starting point may change both consideration

probabilities and, subsequently, choice in RNC. In this way, RNC exhibits a form of status quo bias akin to

that explored in Masatlioglu et al. (2005), Masatlioglu and Ok (2013), and Dean et al. (2017). However, in

the models presented in Masatlioglu et al. (2005) and Masatlioglu and Ok (2013), the status quo affects what

is considered by the DM according to whether the status quo dominates an option, with only undominated

options being considered. The status quo rules out consideration of certain options more generally in Dean

et al. (2017). In contrast, the status quo (or starting point) of RNC simply affects which networks of

connections may feasibly be followed in the DM’s search - an assumption that is independent of preferences

and which is undefined in the absence of a status quo (starting point).

3 Experiment

In order to test the deterministic NC model, we construct a laboratory environment with several goals.

First, the environment must mimic a choice setting where distinct options are linked to one another via a

product network. Second, the environment must induce the subject to behave as if they were in the real

world analogue to the laboratory environment - that is, choice must be properly incentivized. Finally, we

err on the side of creating an overly restrictive environment in order to test the NC model where it is most

likely to succeed. That is, if NC fails in this context, it is not likely to succeed in a real world analogue with

more complicated considerations or fewer restrictions.

4Manzini and Mariotti (2014), Suleymanov (2018), and Cattaneo et al. (2017) are not the only examples of random attention
models. See Cattaneo et al. (2017) for a full review of random attention models and their connection to RAM, of which RNC
is a starting-point contingent special case.
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Option X
Shape Pattern Size Number

SMALL 5

Table 1: Option Example

3.1 General Environment

A total of 107 undergraduate subjects at the Experimental Economics Laboratory at University of Maryland,

College Park participated in this experiment across eight sessions. On average, subjects earned $23.63 for

approximately 90 minutes of time spent in the lab.5

It is helpful to consider the experimental environment from the perspective of a given subject. The

subject faces 31 distinctive extended problems, each defined by a starting point x and a set of available

options, S, just as in the theory. For each extended decision problem (x, S) the subject’s task is to select

the option with the highest value among the ones they consider. For each extended decision problem, the

subject’s payoff is simply the value of the option they have chosen, converted to cash. While subjects make

decisions in each of 31 extended decision problems, they are only paid for one, which is chosen randomly at

the end of experiment. Subjects do not know which extended decision problem will be chosen when making

decisions, so they are incentivized to treat each decision as if it is the one for which they are paid.

Each option is described by four separate attributes: Shape, Pattern, Size, and Number. The value of an

option is simply the sum of the value of its attributes, denominated in Experimental Currency Units (ECUs).

Each attributes can take on one of 5 values, from 1 ECU to 5 ECU, resulting in 625 distinct possible options,

with values ranging from 5 to 25 ECU. A full table of attribute values can be found in Appendix D. For

clarity, consider the following option described by these four attributes:

Option X in Table 1 is described by 4 attributes: Square, Two-Bar Pattern, Small, and 5. These each pay

off 2 ECU, 3 ECU, 2 ECU, and 5 ECU, respectively. Then the value of Option X is 13 ECU (= 2+3+2+5).

Deciding which option has the highest value in any extended decision problem is thus non-trivial, since it

requires i) associating an attribute with its value per the payoff table provided in the instructions and ii)

calculating the resultant option value from the sum of its attribute values.

At the start of each extended decision problem, the subject is first shown information for the starting

point and no other available option. This information includes an option identification label, unique at the

extended decision problem level (i.e. “Option 5” is displayed at the top of the screen when information for

5A single pilot session was conducted with 16 subjects in order to test the experimental software and receive feedback
regarding clarity of the instructions used. A few minor changes were made to the design and instructions following this pilot
experiment, including, but not limited to, the use of extended decision problem unique option labels. These subjects are not
included in any of the analysis contained herein.
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Option 5 is presented), attribute information for the displayed option, as well as two lists of information

(explained below). In addition, the interface displays information for the subject’s provisional choice at all

times (explained in detail in Section 3.2).

In order to navigate to information for another option, the subject can utilize two lists on their screen:

i) a list of “Linked Options” and ii) a list of “Options Already Viewed.” The list of “Options Already

Viewed” simply lists the options within the available set for which the subject has already viewed attribute

information (defined as having navigated previously to the option information page for that option). To see

information for an option other than the one currently displayed, the subject may simply click on the option

label in one of these lists and then click a box labelled “View the Selected Option” pertaining to that list.

At that time, all relevant information on the screen will update to reflect information for the option to which

the subject has navigated.

The list of “Linked Options” displays a list of options that are said to be “linked” to the currently

displayed option. An option is said to be “linked” to another if the two share two or more attributes. Thus,

for Option X in Table 1, if another available option also had the Shape attribute “Square” and the Number

attribute “5,” it would be included in this list of linked options for Option X. An option that only shared

one attribute, but no more, with Option X would not be included in this list. It is through this method that

the design induces an exogenous network structure on the set of available options.

This system of “linking” options to one another was chosen for two reasons. First, in order to mimic

a real-world environment where NC may be an appropriate model, the experiment necessitated an exoge-

nous network of some form. Second, this particular exogenous network structure was chosen over a more

conservative alternative in order to avoid potential subject confusion or experimenter demand effects. In

an alternative design where “links” between options are simply agnostic of characteristics of said options,

subjects may ask themselves why providing the network structure is necessary in the first place. This may

lead to the perception of some deception on the part of the subject or general confusion. The chosen network

structure is both easy to understand and mimics real world scenarios where we might believe that NC is the

correct model for individual choice.

It is through this navigation process that I argue the current design properly incentivizes revelation of

the consideration set for each extended decision problem. In effect, navigating from one option to another

“uncovers” hidden information in the extended decision problem regarding the attribute information for

each option. Other experiments, both in psychology and experimental economics, use similar designs. I

view the design used herein as complementary to approaches incorporating MouseLab, eye-tracking, and

choice-process elicitation procedures discussed in Section 2.1.

In the baseline version of this experiment, “linked” options were displayed in a list without any additional
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information regarding these options. For robustness, a variation of this display method was used for half of

the sessions. In this variation, the full list of “linked” options was split into four lists, one for each attribute.

The option linked to the currently displayed option was then displayed in the lists for the attributes that

it shared with the currently displayed option. The goal of using this variation is to determine whether

consistency with NC was dependent on arguably minor features of the laboratory environment. In all of

the following, whenever statistical tests are conducted separately based on this variation, I use “Baseline”

to refer to the original context-less display and “Context” to refer to those observations that came from the

variant with more context provided as to the source of the link between options.

Each extended decision problem has a time limit of 75 seconds, and the subject can choose to stop

viewing information at any time prior by clicking a “Stop” button located at the bottom of the interface.

If this is done, the subject may not view any additional information for options and may not further alter

their provisional choice. Stopping the extended decision problem does not allow the subject to immediately

move on to the next extended decision problem, however; they must wait for the entirety of the 75 allotted

seconds to pass before moving on. This design was chosen to disincentivize haphazard choices on the part

of the subject in the interest of finishing the experiment early.

At the end of the experiment, one of the 31 extended decision problems was chosen at random (with each

extended decision problem chosen with equal likelihood), and subjects were paid for that single choice only.

Once these extended decision problems were completed, they were asked a set of demographic questions on

age; gender; self-reported ACT, SAT, and GPA scores; native language; and major of study. They were also

given the opportunity to explain their decisions and indicate whether they felt they sufficiently understood

the instructions to the experiment.

3.2 Choice Process Data

The experimental design elicits choice process data a la Caplin et al. (2011) in the following manner. Choices

in each extended decision problem are treated as provisional, in that choosing a new option does not end

the current period. This simply updates the subject’s provisional choice, allowing the subject to make a

number of switches between provisionally chosen options within a single period. At all times, information

regarding the subject’s provisional choice was displayed in the upper-right portion of the experimental

interface, including the option label (e.g “Option 12”) for the provisional choice and attribute information.

This information was provided as a reference for the subject to avoid concerns of imperfect recall during the

option evaluation process.6

6It should be noted that, while the appearance of this information differs between the design used herein and that used in
Caplin et al. (2011), the two share the feature of always displaying the subject’s provisional choice. In Caplin et al. (2011),
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At the end of each period, a “decision time” was chosen randomly from a uniform distribution from 2 to

75 seconds. The provisional choice held by the subject at the realized decision time was then treated as the

final choice for the extended decision problem and subjects were paid the value of the option held at that

time.

In each period, while subjects were initially shown the information for the starting point, they did not

initially have any option provisionally chosen. They must then choose some option to serve as their initial

provisional choice (usually the starting point itself). For this reason, the lower end of the decision time

support was 2 seconds, giving the subject time to choose an initial provisional choice and thus minimizing

the number of observations for which the subject might be paid nothing for a given extended decision

problem.

3.3 Data Generation Process

For each extended decision problem, both the set of available options and the starting point were chosen

intentionally to create explicit tests of properties of consideration sets in NC. This design was chosen to

ensure that there would be a sufficient number of tests of each consideration set property. One alternative

design would have randomized the extended decision problems presented to subjects. With four attributes,

each taking on one of five different values, the grand set of alternatives is of size 625, with 2625 − 1 unique

non-empty subsets. With such a large dataset over which to randomize, it would be highly unlikely that

the final dataset would end up with a sufficient number of tests of the properties of NC using a reasonable

number of laboratory subjects. Extended decision problems were thus chosen such that the observations

gleaned from each would constitute, at minimum, one test of some axiom of NC.

3.3.1 NC: Upward Monotonicity

The first property of consideration sets in NC that I utilize to create extended decision problems is Upward

Monotonicity. For some extended decision problem (x, S), let Γx(S) be the set of all options in S which are

considered when x is the starting point. Then the NC property of Upward Monotonicity is as follows:

B1. Upward Monotonicity: Γx(T ) ⊆ Γx(S) for all T ⊆ S

In essence, this property describes the process of aggregation across nested extended decision problems.

Under the deterministic NC model, if the DM faces (x, T ), they will consider all of those options which are

the provisional choice is indicated by a selected row in a list of continuously displayed available options. In the experiment
contained herein, this information is contained in a portion of the interface that simply updates when the provisional choice is
altered by the subject.
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“reachable” from the starting point x and are also in T .7 Then when the DM is confronted with (x, S) for

T ⊆ S, it should be clear that all those options which were reachable from x and in T remain reachable

under (x, S) (i.e. nothing about the underlying connections between options has been changed). Moreover,

since T ⊆ S, these options are also still available and therefore should still be considered under (x, S).

In order to test this property in the lab, I define five extended decision problems that are “nested” within

one another. Let δi = (x,Ai) be one of these five extended decision problems. Each Ai was then chosen

such that A1 ⊆ A2 ⊆ ... ⊆ A5. The starting point x was chosen such that x ∈ A1. A violation of Upward

Monotonicity would then look like Γx(Ai) 6⊆ Γx(Ai+1). From these five extended decision problems, we then

have 10 separate tests of Upward Monotonicity per subject, or 1070 in total across 107 subjects.

3.3.2 Symmetry

The next property of NC to be tested concerns the “undirectedness” of how products are connected in NC.

By the definition of “reachable,” it should be clear that if y is reachable from x, x is also reachable from y.

This is simply the result of consideration spilling over in either direction of a connection between options,

regardless of the origin. This has a clear implication for how consideration sets should compare across the

same available set, but given distinct starting points, which is captured in the NC Symmetry property:

B2. Symmetry: If y ∈ Γx(S), Γx(S) = Γy(S) for all S.

To test the Symmetry Axioms of NC, I repeat the available sets in each of δi above, letting γi denote

one such extended decision problem. These Symmetry extended decision problems use a distinct starting

point y 6= x, with y ∈ A1. A test of these Symmetry Axioms would then involve a comparison between

consideration sets in δi and γi. Then, in total, these ten extended decision problems create a maximum

of five tests of Symmetry for each subject. However, notice that the Symmetry property only applies if

y ∈ Γx(S), which may not be born out in the data for a given subject. The actual total number of tests of

Symmetry will then be endogenously determined by consideration behavior of subjects.

3.3.3 Path Connectedness

The final property of NC to be tested concerns the impact of an option that uniquely provides a connection

between two other options. This property, Path Connectedness, essentially states that the revelation that

some option y is required to make z reachable from x should also reveal i) that y is reachable from x in the

absence of z and ii) that z is reachable from y in the absence of x. Formally, Masatlioglu and Suleymanov

(2017) write this property as follows:

7Masatlioglu and Suleymanov (2017) say that y is “reachable” from x if there exists a path from x to y in the network of
connected options. I follow in their footsteps and use the same terminology here.
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B3. Path Connectedness: If z ∈ Γx(S) and z 6∈ Γx(S \ y), then y ∈ Γx(S \ z) and z ∈ Γy(S \ x)

This property is best understood through a simple example. In Figure 2, clearly z ∈ Γx({x, y, z}), but

z 6∈ Γx({x, z}); the only connection between x and z passes through y. Path Connectedness essentially

identifies the fact that this tells us two things. First, y must then be connected to x, independent of z.

Similarly, y must then be connected to z, independent of x. So, we can then say i) y ∈ Γx({x, y}) and ii)

z ∈ Γy({y, z}), as stated in the property above.

Figure 2: Example graph with three options

x

y

z

This property utilizes four separate extended decision problems: (x, S), (x, S \y), (x, S \z), and (y, S \x).

Further, note that the hypothesis of the property, similar to that of the Symmetry property, is going to be

endogenously determined by subject consideration data: it may be the case that we present both (x, S) and

(x, S \ y), to the subject and that their behavior does not satisfy the hypothesis of this statement. In order

to increase the probability that there is a sufficient number of observations where the hypothesis is satisfied,

two separate options for y and z in the above are presented to each subject, holding x and S fixed. There are

thus four possible tests of Path Connectedness for each subject, constructed using seven extended decision

problems. The actual number of tests conducted are a function of the consideration set data.

In total, these three properties of NC lead to the creation of 17 extended decision problems to be used

in the laboratory experiment. The remaining 14 (out of 31) were constructed to test axioms on choice data
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of NC, along with the choice axioms of a related model contained in Suleymanov (2018). The results of

these tests are not included, as the focus of the main body of the paper is an exploration of consideration

set formation in NC.

4 Results: NC

The results of tests of consistency with NC are presented below. Given data on both choices and consideration

sets, one can check for consistency in two separate ways: simultaneous and sequential. Under a simultaneous

test, one would test whether the resultant choices were consistent with some NC representation. This is,

in general, the approach taken when consideration sets are unobserved and consistency with some decision

theoretic model can only be tested using choice data. In this experiment, consideration sets are elicited,

so one can take a sequential approach, paying more attention to the consideration set formation process.

In a sequential test consistency with NC is separated into two questions. First, in each extended decision

problem, does the subject choose a money-maximizing element of the consideration set? Second, is the

formation of random consideration set mappings consistent with an NC representation (i.e. do consideration

sets satisfy Upward Monotonicity, Symmetry, and Path Connectedness)? Subsection 4.1 presents general

experimental results and demographic information. Subsection 4.2 answers the first question on optimality

of choice. Finally, Subsection 4.3 reports tests of the NC properties.

4.1 General Results

In all of the below, statistical tests were conducted on aggregate data, pooled across the Baseline and Context

displays, except where explicitly mentioned. Tests of differences between the two displays that were omitted

in the main text can be found in Appendix C. Upon completion of the experimental task, subjects filled

out a brief demographic questionnaire which asked questions on Age, self-reported SAT and ACT scores (if

any), self-reported GPA, and Gender. Results are presented in Table 2.

Table 2: Demographic Information

Age SAT ACT GPA Female
mean 20.68224 1810.833 30.11429 3.363364 .4485981
sd 1.551616 324.1159 3.946491 .438533 .4996913
min 18 1100 20 2 0
max 27 2360 36 4 1
count 107 84 35 107 107

In order for data on self-reported GPA, SAT, and ACT to be used in subsequent analysis, responses
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were normalized as in Cohen et al. (1999), Filiz-Ozbay et al. (2016), and Chadd et al. (2018): Let j be the

variable under consideration with j ∈ {GPA, SAT, ACT}, µji be the value of variable j for subject i, µjmax

be the maximum value of j in the subject population, and µjmin be the minimum value of j in the subject

population. Then let µ̂ji , the normalized value of variable j for subject i, be defined as follows:

µ̂ji =
µji − µ

j
min

µjmax − µjmin

such that µ̂ji can be interpreted as the measure of j for subject i, normalized by the distribution of j in the

subject population. Some subjects were missing one or more measures for j ∈ {GPA, SAT, ACT}, since

these measures were self-reported (and some subjects could not recall their scores on one or more of these

measures). Additionally, some responses were outside the range of feasible scores (for example, an SAT score

of 20). All subjects could reliably self-report a feasible GPA from the range of 2 to 4, so µ̂GPAi will be used

for any subsequent analysis involving cognitive ability. Normalized scores are reported in Table 3 along with

an additional measure for Cognitive Score. For some subject i Cognitive Score is taken to be µ̂SATi if the

subject reported a feasible SAT score and µ̂ACTi if the subjects did not report a feasible SAT score and

reported a feasible ACT score. Cognitive Score is lower than µ̂GPAi and has higher variance (likely due to

more imperfect recall of SAT/ACT scores relative to GPA).

Table 3: Cognitive Scores

µ̂SAT 0.564
(0.257)

µ̂ACT 0.632
(0.247)

µ̂GPA 0.682
(0.219)

Cognitive Score 0.579
(0.256)

Observations 107

4.2 Choice Optimality

For the purposes of testing “choice optimality,” I say that a subject chose a “highest-valued option” in a

given extended decision problem when the option that was last chosen by the subject before the end of

the period (i.e. before 75 seconds elapsed) led to the highest possible ECU payoff among those options

that the subject considered. Note that this, in general, is not equivalent to standard mistake rate analysis
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conducted in Caplin et al. (2011) and Chadd et al. (2018), for example. Here, we only say that a “mistake”

was made when the subject ended up choosing a lower-valued option than one that was actively considered

in the current period. Note: we view an option as having been “considered” if the subject navigated to its

information at some point in the period. Since we are testing for choice optimality in the context of NC,

which says that a DM will choose the optimal option in the DM’s consideration set, it is natural to define

“mistakes” as described above.

Subjects chose the highest-valued option in 85.675% of extended decision problems (Wilcox p < 0.001

for H0 : µ = 1). Given that the overall mistake rate is non-trivial, I further investigate the determinants

of choice optimality through several logistic regression specifications. In Table 4, the dependent variable is

Correct, a binary variable that takes the value 1 if the subject chose the consideration set optimal option in

the extended decision problem and 0 otherwise. Context is a binary variable used to indicate whether the

observation came from the Context display. Period goes from 1 to 31, indicating the period in which the

extended decision problem was completed. CSεN is the residual generated from an OLS regression of CSN

onto Period and N . Both the size of the available set (N) and the period in which the extended decision

problem is conducted affect the size of the consideration set.8 These residuals are the portion of CSN left

unexplained by N and Period, and they are used in both models to estimate the effect of consideration set

size on choice optimality separately from the effects of N , the size of the available set. Female and GPA

are defined as above (i.e. GPA is normalized according to the POMP procedure described in Subsection

4.1). In both model specifications, marginal effects from a logistic regression are reported, along with robust

standard errors clustered at the subject level.

From Table 4, we can see that the prevalence of sub-optimal choice can partly be attributed to learning:

each additional period increases the probability that the choice will be consideration set optimal by 0.1

percentage points, resulting in higher rates of sub-optimal choice in earlier periods. Further evidence of

this can be seen by looking at the final period only, where 94.33% of observations are consideration set

optimal. Additionally, the size of the available set matters; for each additional element added to the set

of available options, the probability that the chosen element will be consideration set optimal decreases by

0.953 percentage points. Somewhat surprisingly, the size of the consideration set itself matters - an additional

option considered (holding N and Period fixed) decreases the probability of consideration set optimal choice

by about 1.3 percentage points. Note that in neither specification do Context, Female, or GPA matter. This

brings us to our first two results on consideration set optimality of choice:

8An interested reader can find these results in the Appendix C. I replicate a version of the results contained in Reutskaja
et al. (2011), that additional available options lead to more options being considered by the DM.
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Table 4: Determinants of Optimal Choice

Model 1 Model 2
Context -0.0156 -0.0164

(0.031) (0.031)
Period 0.00175∗∗ 0.00174∗∗

(0.001) (0.001)
CSεN -0.0126∗∗∗ -0.0129∗∗∗

(0.003) (0.003)
N -0.00953∗∗∗ -0.00952∗∗∗

(0.001) (0.001)
Female -0.0359

(0.027)
µ̂GPA 0.0358

(0.080)
Observations 3276 3276

Standard errors in parentheses

Marginal effects from logit regression specifications
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Result 1. Consideration set choice optimality in the aggregate is broadly consistent with NC:

• 85.675% of choices are consideration set optimal

Result 2. There is a non-trivial number of observations where choices are not consideration set optimal in

a manner not predicted by NC:

• larger consideration sets decrease the likelihood of consideration set optimality

• larger available sets decrease the likelihood of consideration set optimality

4.3 Property Tests

In Subsections 4.3.1 - 4.3.3, we consider subject-level data to test the deterministic consideration set prop-

erties of NC.

4.3.1 Upward Monotonicity

The five extended decision problems constructed to test Upward Monotonicity, when repeated twice (in order

to test Symmetry - results in Subsection 4.3.2) comprise 20 tests of Upward Monotonicity per subject. In

the aggregate, 79.8% of these observations were inconsistent with Upward Monotonicity, as seen in Table 5.

Moreover, an analysis of the CDF of the proportion of Upward Monotonicity violations per subject, displayed

in Figure 3, reveals that nearly 50% of subjects had more than approximately 80% of their observations in

violation of Upward Monotonicity. No subjects had fewer than 20% of their observations in violation of
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Upward Monotonicity. Taken together, these results suggest that Upward Monotonicity may be too strong

an assumption on how consideration sets are formed in the presence of an exogenous network, even at the

individual level.

Table 5: Aggregate Test of NC Upward Monotonicity

Monotonicity Violation
Mean 0.798
Std Error 0.000
N 2140

p < 0.001 for aggregate test of H0 : µ = 0

Figure 3: Cumulative of Mean Monotonicity Violations by Subject

Given the prevalence of violations of Upward Monotonicity, we ask what characteristics of extended

decision problems and the choice environment affect the likelihood of observing a violation. First, note that

Upward Monotonicity does not take into account the “distance” between the sizes of the relevant available

sets. At first glace, this appears as if it should not matter. If set Γx(T ) is considered when T is available,

then this indicates that option x is connected to elements in T through some combination of paths. When

S ⊇ T is available, these same paths are still present, so at least all of the elements in T should again be

considered. However, if there is some probability that the DM switches from one path or sub-network to

another when encountering a new extended decision problem with the same starting point, then the size of

S \T may matter.9 As S \T gets larger, the number of sub-networks on S relative to T also gets considerably

9Note that, in NC, the probability that the DM “switches” consideration sub-networks across identical or nested extended
decision problems is implicitly 0. We mention this switching behavior as an empirical possibility in the environments NC is
modelling, not as behavior that is consistent with the MS model itself.
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larger, leading to an increased likelihood that the DM follows some sub-network that is distinct from the one

they follow when T is available. We may thus expect that the likelihood of observing a violation of Upward

Montonicity to be increasing in |S \T |. We see that this is the case in Figure 4 below. For extended decision

problems (x,Ai), for Ai ⊆ Aj , we define the Distance between Ai and Aj to be equal to |Aj | − |Ai|. In

Figure 4, we see that as Distance increases, so too does the likelihood of observing a violation of Upward

Monotonicity (though there is considerable overlap in 95% Confidence Intervals for these categories).

Figure 4: MV by |Aj | − |Ai|, Ai ⊆ Aj

To further investigate the determinants of Upward Monotonicity violations in our data, Table 6 reports

the results of several logistic regressions. In each model, Context is a dummy variable used to indicate

whether the observation came from the Context display, and Female, GPA, and Age are as they were defined

previously. Reported coefficients are marginal effects from logistic regressions and standard errors are robust

and clustered at the subject level. From Table 6, it initially appears that Distance increases the likelihood of

Upward Monotonicity violations by approximately 0.93 percentage points, per the reported marginal effect in

Model 1. However, the entirety of this effect in the aggregate is driven by the tests of Upward Monotonicity

involving A1 ⊆ A2. These available sets are of size 5 and 10, respectively. Thus, it appears as if Upward

Monotonicity violations are ubiquitous regardless of Distance, provided that the available sets involved are

sufficiently large.
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Table 6: Determinants of Monotonicity Violations

Model 1 Model 2 Model 3 Model 4
Distance 0.00927∗∗∗ 0.00241 0.00241 0.00241

(0.00153) (0.00178) (0.00178) (0.00178)
A1 to A2 -0.234∗∗∗ -0.234∗∗∗ -0.234∗∗∗

(0.0259) (0.0257) (0.0263)
Context 0.0138 0.0181

(0.0232) (0.0223)
Female 0.00377

(0.0242)
GPA 0.0679∗

(0.0354)
Age -0.00599

(0.00586)
Observations 2140 2140 2140 2140

Standard errors in parentheses

Marginal effects from logistic regressions reported
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.3.2 Symmetry

Recall that extended decision problems were constructed such that the five nested available sets, A1 ⊆

A2... ⊆ A5, were each used in two extended decision problems: (x,Ai) and (y,Ai), x, y ∈ A1. This results in

ten possible tests of symmetry for each subject: for each (x,Ai)− (y,Ai) pair of extended decision problems,

we can write two statements of Symmetry to be tested in the data:

y ∈ Γx(Ai) =⇒ Γx(Ai) = Γy(Ai) (1)

x ∈ Γy(Ai) =⇒ Γy(Ai) = Γx(Ai) (2)

These two conditions are clearly interrelated. If both the hypothesis and implication of condition 1 are

satisfied for some observation, then so will those of 2, and vice versa. However, if the hypothesis is not

satisfied in one, it is possible that the other test may fail. In order to rule out double-counting successes

(and failures), in all of the following we exclude tests of condition 2 unless condition 1 is satisfied only

trivially (i.e. y 6∈ Γx(Ai)). We will thus only include a maximum of five tests of symmetry per subject.

Out of a possible maximum of 535 tests of deterministic symmetry, there were 401 observations where

the hypothesis of this axiom was satisfied. In the aggregate, 84.29% of these observations violated symmetry

(Wilcox sign rank p < 0.001 for H0 : µ = 0). Table 7 presents aggregate summary statistics. Hypothesis is a

dummy variable indicating whether the observation satisfied at least one hypothesis contained in conditions

1 and 2, Symmetric is a dummy variable indicating whether the implication in the relevant condition is
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satisfied (conditional on the hypothesis being satisfied), and Violation is simply equal to 1 - Symmetric.

Table 7: NC Symmetry Summary Statistics

hypothesis symmetric violation
Mean .7495327 .1571072 .8428928
SD .4336877 .3643564 .3643564
N 535 401 401

At the subject level, we also examine Symmetry violation counts and rates. Of a total of 5 possible tests

of Symmetry per subject, subjects satisfied a hypothesis of conditions 1 or 2 for 3.75, on average. Notably,

the maximum number of symmetric observations for a given subject is 3 (out of 5 tests). We can further

examine the distribution of Symmetry violation rates in Figure 5. Notably, more than half of subjects

violated MS Symmetry in 100% of their valid tests.

Table 8: NC Symmetry Subject Level Summary Statistics

Mean SD Min Max N
Hypothesis N 3.748 (1.237) 0.000 5.000 107.000
Symmetric N 0.589 (0.672) 0.000 3.000 107.000
Violation N 3.159 (1.175) 0.000 5.000 107.000

Figure 5: Cumulative Mean Symmetry Violations per Subject

We conjecture that one reason Symmetry may fail in this context is that little information is available

regarding an individual option prior to its consideration. The deterministic MS Symmetry axiom requires

much of the DM: conditional on arriving at some node in the network, the DM follows the same pattern
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of search for a given available set. If a given subject then follows different paths of consideration starting

at, say, option y in (x,Ai) and (y,Ai), then their consideration set will not satisfy symmetry. In the

Baseline environment, no information is available to the subject regarding an individual option prior to its

consideration. Thus, if we make some information available to the subject prior to an object being considered,

this may increase the likelihood of symmetry consideration paths across extended decision problems. We test

this hypothesis by comparing the rate of violations of Symmetry in Table 9. In the Context environment,

81.9% of observations violated symmetry compared to 87.4% in the Baseline, which runs counter to this

hypothesis. However, this difference is not statistically significant (Wilcox p > 0.10).

Table 9: Symmetry Violations by Context

Baseline Context
Mean 0.819 0.874
Std Error 0.026 0.025
N 227 174

Wilcox p > 0.10 for H0 : µBaseline = µContext

While a simple analysis of aggregate Symmetry violations is helpful, it is illuminating to consider subject-

level mean violations of symmetry. Recall that we may be including a maximum of five tests of Symmetry

for a given subject. Table 8 presents summary statistics for subject-level data on the number of tests per

subject (Hypothesis) and violations of MS Symmetry at the subject level. Further, from Figure 5 we can see

that nearly 50% of all subjects violated Symmetry in each observation where the hypothesis was satisfied.

When we decompose this cumulative distribution function by informational environment, we can see that a

larger proportion of subjects have a 100% Symmetry violation rate in the Context environment than in the

Baseline (42.11% vs 58.33%; Mann-Whitney p < 0.10).

Therefore, on the whole, subjects tend to exhibit behavior more consistent with Symmetry in the Baseline

than when Context is provided, though behavior in both is largely inconsistent with Symmetry.
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Figure 6: Cumulative of Per Subject Mean Symmetry Violations by Context

4.3.3 Path Connectedness

With 107 subjects and four possible tests of Path Connectedness per subject, we have a maximum of 428

tests. In the aggregate, only about 23% of possible tests were such that the hypothesis of the MS Path

Connectedness axiom was satisfied, making for 99 total tests used, across 67 subjects. Of these 99 tests,

roughly 45.5% were consistent with with Path Connectedness, as reported in Table 10.

Table 10: Aggregate Test of NC Path Connectedness

Path Connectedness
Mean 0.455
Std Error 0.050
N 99

Wilcoxon signed-rank p < 0.001 for aggregate test of H0 : µ = 1

Thus, taken together, the experimental results pertaining to consideration set data largely reject the NC

deterministic model at the subject level. This leads me to the next result:

Result 3. Consideration set probabilities are largely inconsistent with the deterministic NC model in the

experimental data:

• Nearly 80% of observations violate Upward Monotonicity

• Approximately 84% of observations violate Symmetry

• 45.5% of observations violate Path Connectedness
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5 Random Network Choice

Given that the experimental data is largely inconsistent with the deterministic NC model, I propose a

stochastic generalization to be tested against the same dataset. First, I propose the most general Random

Network Choice (RNC) model and discuss necessary properties that this model imposes on stochastic consid-

eration set mappings. These properties are directly related to the deterministic properties of NC. The RNC

model has a feature that leads to an infinite number of representations for a given set of choice data that

is consistent with this model. Guided by the notion that eliciting a unique network structure from choice

or consideration set data may be desirable in many applications, I present a special case, Pseudo-Markovian

Random Network Choice (PM-RNC hereinafter) which does have a unique representation.

I should note that the following section is meant only to provide suitable modelling alternatives to the

NC model that may be consistent with the experimental dataset contained herein. While the NC model of

Masatlioglu and Suleymanov (2017) is an axiomatic characterization of choice in the deterministic setting,

such an axiomatic characterization of RNC and PM-RNC is beyond the scope of the current work. Instead,

I focus on necessary conditions of consideration set mappings to be tested against the experimental data.

5.1 Random Network Consideration

Let X be a finite set of alternatives with 2X as the set of all subsets of X. I consider random networks on

X. To that end, let the random variable Gij indicate whether items i and j are connected (Gij = 1) or not

(Gij = 0). Let G be the incidence matrix consisting of these random variables and G be the collection of all

such incidence matrices.

To consider subsets S ∈ 2X , I must restrict attention to only those nodes that are in S. We denote GS as

the incidence matrix G with attention restricted to S; in other words, GS is simply G with Gij replaced with

0 for all {i, j} 6⊆ S. Let F be an element of ∆(G), with f(g|S) as the conditional probability that G = g when

the set of available options is S. We say that a distribution is S-Independent if f(g|S) = f(g|S′) = f(g)

for all S, S′ ∈ 2X and for all g ∈ G. For the remainder of the analysis, I restrict attention to only S-

Independent distributions, though I mention this generalization as a possible path to pursue in future

theoretical explanations of deviations from the RNC model.

Given a network g, i and j are connected under g if there exists an i − j path in g. That is, they are

connected if there exists a sequence (x0, x1, ...xn) with x0 = i and xn = j where yxk,xk+1
= 1 for all xk and

xk+1. Using this terminology, the definition of what it means for a given subset of nodes to be connected

under some network g directly follows:

Definition 1. A network g ∈ G is said to be T - Connected if
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1. t and t′ are connected in g for all t, t′ ∈ T with t 6= t′

2. 6 ∃k 6∈ T and t ∈ T such that k and t are connected under g

Given an extended problem (S, x) which consists of an alternative set S and starting point x ∈ S, the

DM forms a consideration set stochastically. Let Γx(T | S) be a random consideration set mapping that

gives the probability that the consideration set is T , given that the starting point is x under alternative set

S.

A random network consideration set mapping, Gx(T | S) is defined in the following manner. For ease of

notation, let GST = {g ∈ G | gS is T-Connected}.

Definition 2. Given a distribution F on ∆(G), a random network consideration set mapping is

defined as follows:

Gx(T | S) =



1 if {x} = T ⊆ S∑
g∈GS

T

f(g) if {x} ⊆ T ⊆ S

0 otherwise

(3)

The extreme cases, where {x} = T ⊆ S, where x 6∈ T , or where T 6⊆ S are trivial. For the non-trivial

case, a random network consideration set mapping can be thought of as being constructed according to

a sequential process. First, given S, restrict attention of networks to gS . This is done to include those

networks in Gx(T | S) that are not T-Connected due to some element k ∈ X \S. Second, among all gS ∈ G,

consider those that are T-Connected, further restricting attention to GST ⊆ G. Finally, given these networks

that connect set T under available set S, the probability that T is considered is simply the sum of the

probabilities of each network occurring.

5.2 Necessary Properties

We first look at a natural implication of the definition of T-Connectedness for some network gS . Consider

both gS and gS∪{a}, for a 6∈ S. A network gS that is T-Connected for some T ⊆ S may or may not stay

T-Connected for the same set under S ∪ {a}. The new element a may be connected to some t ∈ T or it may

not. What is certain, however, is that all of the elements in t remained connected to one another when this

new element is added. This is formally stated in the following Lemma:

Lemma 1. For any g such that gS is T-Connected for some T ⊆, gS
′

is T ′-Connected for some unique T ′

such that T ⊆ T ′ and T ′ ⊆ S′ for all S ⊆ S′. Equivalently, GST ⊆
⋃

T ′⊆S′:T⊆T ′
GS′T ′ for all S ⊆ S′.
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This leads us to our first characteristic of random network consideration set mappings:

A1. RNC Upward Monotonicity For each x ∈ T ⊆ S, Γx(T | S) ≤
∑

T ′⊆S′:T⊆T ′
Γx(T ′ | S′)

That random network consideration set mappings should satisfy this condition should be obvious. If a

network with attention restricted to S leads to set T being considered (i.e. it is part of the sum that makes

up Γx(T | S)), then by Lemma 1, that same network is T ′-Connected for some T ′ ⊆ S′ with S ⊆ S′. Then

that same network will appear as part of the sum that makes up some (unique) Γ(T ′ | S′). In short, if a

network is included on the left-hand side of A1, it will show up on the right-hand side as well. To see why

this expression does not hold with equality, consider the following example network:

Figure 7: An RNC Monotonicity Example

x

y

z

w

(a) y1

x

y

z

w

(b) y2

Then when S = {x, y, z} is available, the set T = {x, y, z} is considered with probability f(g1) when

the starting point is x. However, when S′ = {w, x, y, z} is available, the probability that T ′ is considered is

f(y1) + f(y2). Under y2, node z is connected to x and y through node w. When w is removed, z cannot

connect to x or y under g2, resulting in f(g2) being included on the right-hand side of the RNC Upward

Monotonicity axiom, but not the left hand side when T = {x, y, z}. Notice that, in this example, had we

considered T = {x, y}, the expression would have held with equality.

This property is clearly a stochastic generalization of the Upward Monotonicity property of Masatlioglu

and Suleymanov (2017). When we restrict attention to Γx(T | S) ∈ {0, 1}, A1 is equivalent to B1. This,

along with the relationship between other properties of RNC and NC, will be further explored in the proof
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to Proposition 1.

I now consider what the effect of changing the starting point might have on the probability of a given

subset being considered. First, it should be clear that Γx(T | S) to Γy(T | S) for some y 6∈ T is essentially

a trivial comparison. If x ∈ T , y 6∈ T will imply that T cannot be considered from y, and so Γx(T | S) ≥

Γy(T | S) = 0. But this is not informative, since Γx(T | S) ≥ 0 by definition. However, when switching from

x to y while both are in T, we reveal a fundamental characteristic of random network consideration:

A2. RNC Symmetry: Γx(T |S) = Γy(T |S) for all {x, y} ⊆ T ⊆ S

This comes from the straightforward observation that GST does not depend on the starting point and will be

the same for all t ∈ T . Thus, in the non-trivial case in Definition 2, which is satisfied by both x and y (since

{x, y} ⊆ T ), we are summing over the same set of networks, resulting in the same consideration probabilities

for each t ∈ T as the starting point.

In a similar fashion to the RNC Upward Monotonicity property above, RNC Symmetry is a generalization

of NC Symmetry in the deterministic case. In the Symmetry property for NC, the inclusion of y in Γx(S)

indicates that y is connected to x when S is available. When we change the starting point to y, this

connection remains. Contrary to A2, Symmetry in NC restricts the DM to follow the same sub-network

of consideration on S in both extended decision problems (x, S) and (y, S), such that not only x, but the

entirety of Γx(S) must be considered in (y, S), since we know that y and x exist on the same sub-network.

In RNC, it is not required that the same sub-network be followed by the DM to construct the consideration

set in both extended decision problems. The only requirement is that the probability of a given sub-network

occurring does not depend on the starting point, conditional on the starting points being included in that

sub-network.

Finally, we explore what this random network structure implies about the connectedness of certain

options. Consider the following: there exists some T ⊆ S with z ∈ T where Γx(T | S) > 0. This then implies

that there exists some network that connects x to z when S is available. Now consider the removal of some

element y ∈ S. If there still exists some T ′ ⊆ S \ {y} with z ∈ T ′ and Γx(T ′ | S \ {y}) > 0, we do not learn

anything additional about how x, y, and z are connected, other than that y is not required for there to exist

a path between z and x. However, if there exists no such T ′, we learn that y is required for there to be a

path between x and z. This information illuminates direct relationships between x and y and between y and

z and it leads us to our final axiom used to characterize random network consideration set mappings:

A3. RNC Path Connectedness If ∃T ⊆ S with z ∈ T such that Γx(T | S) > 0 and 6 ∃T ′ ⊆ S \ {y} such

that z ∈ T ′ and Γx(T ′ | S \ {y}) > 0, then the following must hold:

(a) ∃T ′′ ⊆ S \ {z} with y ∈ T ′′, such that Γx(T ′′ | S \ {z}) > 0
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(b) ∃T ′′′ ⊆ S \ {x} with z ∈ T ′′′, such that Γy(T ′′′ | S \ {x}) > 0

The hypothesis, as mentioned previously, reveals that y is required to establish a connection between z and

x. In other words, all such paths that have x and z as terminal nodes must include y as an intermediate

node. Then we can break up one such path into its x-y and y-z sub-paths. The x-y sub-path survives

when z is removed, which means y is considered with some positive probability when z is removed (the first

implication of the above). Similarly, the y-z sub-path survives when x is removed, so z is considered with

some positive probability when x is removed and the starting point is y.

Again, RNC Path Connectedness is a stochastic generalization of Path Connectedness in the deterministic

NC model. Thus far, I have claimed that each of A1 - A3 are stochastic generalizations of consideration set

properties of NC. The following Proposition captures this notion, with the proof contained in the Appendix.

Proposition 1. If Γx(T | S) is a random consideration set mapping such that i) Γx(T | S) ∈ {0, 1} for all

x ∈ T ⊆ S and ii) Γx satisfies A1 - A3, then Γx(S) satisfies B1 - B3 where Γx(S) = T for Γx(T | S) = 1.

Finally, it should be clear at this point that RNC consideration set mappings necessarily exhibit all of

the above properties. Proposition 2 captures this idea, with the proof contained in the Appendix.

Proposition 2. If a random consideration set mapping has a random network consideration set mapping

representation, it satisfies RNC Symmetry, RNC Upward Monotonicity, and RNC Path Connectedness.

5.3 Choice Rule

The DM is also endowed with an antisymmetric and transitive preference relation, �. Given the consideration

set T ⊆ S, after the realization of the random network process, the DM chooses the � −maximal element

of T . We thus define a Random Network Choice (or, abusing abbreviations, RNC) as follows:

Definition 3. A choice rule π is a random network choice (RNC) if there exists a set of networks G

on X, a probability distribution over these networks F , and an antisymmetric, transitive preference relation

� on X, such that:

πy(x | S) =
∑

{x,y}⊆T⊆S

1{x is �-best in T}Gy(T | S) (4)

where G is a random network consideration set mapping.
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5.4 Revealed Preference

In general, it may be possible for there to be multiple RNC representations of a given π. Suppressing

notation for X and G, we denote a given RNC representation using only the distribution over networks and

the preference relation, (F,�). Given some choice rule π, we denote the set of possible RNC representations

as (Fπ,�π) = {(F 1,�1), ..., (FN ,�N )}. Following Masatlioglu et al. (2012) and Lleras et al. (2017) and

erring on the side of being conservative in assessing revealed preference, we say that “x is revealed preferred

to y” (denoted x � y) if x �i y for all �i such that (F i,�i) ∈ (Fπ,�π).

With the possibility of multiple RNC representations for a given π, under what conditions can we guar-

antee that x � y for each representation? It turns out that a very simple condition captures all aspects of

revealed preference.

Lemma 2. For any RNC π, x is revealed preferred to y if ∃S ⊆ X such that:

πy(x | S) > 0 (5)

Given this method to reconstruct � for an RNC π, we then ask whether this condition is sufficient to

reveal preferences completely. We first define the following binary relations to assist in exploring this idea:

Definition 4. Let P be a binary relation X2 such that xPy if ∃S ⊆ X such that:

πy(x | S) > 0 (6)

Further, let PR be the transitive closure of P on X2.

We utilize this binary relation to obtain the following helpful result:

Lemma 3. For some RNC π, x is revealed preferred to y if, and only if, xPRy.

5.4.1 Connection to RAM

As mentioned previously, the random consideration set mappings of RNC satisfy a starting-point contingent

version of the monotonicity condition laid out in Cattaneo et al. (2017). We call this condition “Starting

Point Monotonicity” and it is as follows:

Starting-Point Monotonicity: Γx(T | S) ≤ Γx(T | S \ {a}) (7)

for a 6∈ S. It should be clear that, provided Γx has an RNC representation, it will satisfy this Starting-Point

Monotonicity condition. If an element a is removed from Cattaneo et al. (2017) show, albeit with no starting-
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point contingent attention, that if some random choice rule has a RAM representation, preferences can be

revealed in the following manner. Under RAM, x is revealed preferred to y if, and only if, the following

holds:

∃S such that πz(x | S) > πz(x | S \ {y}) (8)

One might surmise that since RNC satisfies Starting-Point Monotonicity, that preferences could also be

revealed using condition 8. In this case, we may be missing some revealed preferences by only considering

PR as defined above. Lemma 4 shows that this worry is unfounded: under RNC, if x and y satisfy condition

8, (x, y) ∈ P as defined above.

Lemma 4. Let π be an RNC and let x and y be such that there exists some set S ⊇ {x, y, z} such that the

following holds:

πz(x | S) > πz(x | S \ {y}) (9)

Then (x, y) ∈ P and x is revealed preferred to y.

5.5 Pseudo-Markovian RNC

As mentioned in Section 5.4, it is possible that, for a given set of consideration set or choice data consistent

with RNC, there may be multiple (F,�) representations thereof. Consider the following example. The

choice probabilities in Table 11 come from an RNC where all possible networks on three options having

the same probability of 1
8 and � is such that x � y � z. Given this choice data, one could work in the

opposite direction, uniquely identifying probabilities of a subset of networks that are consistent with an RNC

representation. As it turns out, in this example, one cannot uniquely identify probabilities for a subset of

these networks given choice probabilities alone.

Available Set S

{x, y} {x, z} {y, z} {x, y, z}
πz(x | S) - 1

2 0 5
8

πz(y | S) - 0 1
2

1
8

πz(z | S) - 1
2

1
2

1
4

πy(x | S) 1
2 - 0 5

8

πy(y | S) 1
2 - 1 3

8

Table 11: Choice Data for f(g) = 1
8

30



To see this starkly, first consider the RNC representation of this choice data that actually generated these

choice probabilities (i.e. F such that f(g) = 1
8 for all g). Now, consider those networks under which z is

isolated or only connected to x, as displayed in Figure 8.

Figure 8: Networks under which z is isolated or only connected to x

x

y

z

(a) g1

x

y

z

(b) g2

x

y

z

(c) g3

x

y

z

(d) g4

It is easy to see that, for any ε ∈ [0, 1
8 ], a newly constructed pair (F ′,�) will also represent the data in

Table 11, where F ′ is constructed as follows:

f ′(g) =



1
8 if g 6∈ {g1, g2, g3, g4}

1
8 + ε if g ∈ {g1, g3}

1
8 − ε if g ∈ {g2, g4}

(10)

with g1, g2, g3, and g4 as in the figure above. In words, F ′ is simply F adjusted by ε for some of the

networks. Thus, even for this very simple case, the most general RNC model can lead to an infinite number

of plausible representations of some given π. However, this may not be a desirable property in some empirical

environments. In this section, I consider a stochastic special case of RNC, Pseudo-Markovian RNC (PM-

RNC, hereafter) that does end up exhibiting a unique representation for some π.
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In this special case, we consider only RNC representations of a particular form, where we add restrictions

on F in the following manner:

Definition 5. An RNC (F,�) is a Pseudo-Markovian RNC (PM-RNC) if there exists a matrix µ

with entries µij ∈ [0, 1] where for each network g ∈ G, the probability of g occurring, f(g) can be written as

follows:

f(g) =
∏

(i,j)∈X2

[1{gij = 1}µij + 1{gij = 0}(1− µij)] (11)

For PM-RNC, we use the notation Mx(T | S) to refer to the RNC Gx under this particular formulation.

Further, it suffices to represent the entire distribution over networks as a weighted network, with the weight

on the connection between options i and j as µij . We denote a PM-RNC representation as (µ,�).

A benefit of considering the special case of PM-RNC is that the distribution over networks in each

PM-RNC representation is unique:

Lemma 5. Let π be a PM-RNC with representations (µπ,�π). Then µi = µ̄ for all (µi,�i) representations

of π (i.e. µ is unique).

We can build up intuition for this form of a starting point contingent random consideration set mapping

by working through the following example:10

Figure 9: Network g with Four Nodes

x

y

z

w

µxy µyx

µxz

µxw µzw

Suppose that we are interested in computing Gx(T | S) under the network in Figure 9. Consider

Gx({x, y, z} | {w, x, y, z}). The DM starts at option x, considering node x with probability 1. Consideration

of the set {x, y, z} from the set {w, x, y, z} can then follow any of the T -Connected networks under S, shown

in Figure 10.

10Note that, in all figures, µij = 0 is represented as the absence of a connection between nodes i and j.
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Figure 10: Networks that generate Consideration Set {x, y, z}
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x

y
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µxy 1− µyz
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1− µxw 1− µzw

(b) g2

x
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w

µxy 1− µyz

µxz

1− µxw 1− µzw

(c) g3

x

y

z

w

µxy µyz

µxz

1− µxw 1− µzw

(d) g4

In each case, we consider the probability that consideration spills over from node x to nodes y and z, but

not to node w (hence its inclusion in each of the networks in Figure 10). Taking g1 as an example, we then

construct f(g1) by multiplying together µxy and µyz (consideration spills over from node x to y, then from

y to z), then (1− µxz) (consideration does not spillover from x to z or vice versa), and finally by (1− µxw)

and (1− µzw) (consideration does not spillover from x or z to w).

We can then calculate the probability of the consideration set being {x, y, z} as follows:
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Gx({x, y, z} | {x, y, z, w}) = f(g1) + f(g2) + f(g3) + f(g4)

= µxyµyz · (1− µxz) · (1− µxw)(1− µzw)

+µxzµyz · (1− µxy) · (1− µxw)(1− µzw)

+µxyµxz · (1− µyz) · (1− µxw)(1− µzw)

+µxyµxzµyz · (1− µxw)(1− µzw) (12)

We can thus use the above procedure to calculate Gx(T | {x, y, z, w}) for any T . But what happens when

we add an element to the grand set of alternatives? Now consider the following example:

Figure 11: Network g′ with Five Nodes

A

B

C

D E

µGAB µGBC

µGAC

µGAD µGCD

µGDE

µGCE

When inspecting the same consideration set T = {x, y, z} under {x, y, z, w, v}, we have to include the

possibility that consideration now spills over to node v from node z. In this case, we use the following

constrained sub-networks of G′:
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Figure 12: Networks that generate Consideration Set {A,B,C}
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(b) g′2
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µAC

1− µAD 1− µCD

1− µCE

(c) g′3

A

B

C

D E

µAB µBC

µAC

1− µAD 1− µCD

1− µCE

(d) g′4

Solid lines indicate connections

Looking just at nodes {x, y, z} and connection weights between them, we can see that this is identical

to the networks in Figure 10. This is straightforward, as nothing has changed in connection weights within

the set {x, y, z}. Additionally, in each network displayed in Figure 12, we have to account for the possibility

that consideration spills over to node w, just as we did for the networks in Figure 10. However, we now

have to consider the possibility that node v is considered once z is considered. For this reason, we can write

Gx({x, y, z} | {x, y, z, w, v}) as follows:

Gx({x, y, z} | {x, y, z, w, v}) = f(g′1) + f(g′2) + f(g′3) + f(g′4)

= (1− µzv)[f(g1) + f(g2) + f(g3) + f(g4)]

= (1− µzv)Gx({x, y, z} | {x, y, z, w}) (13)
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Then as we inspect the same potential consideration set T in larger and larger sets, the probability of set T

being considered aggregates by including the probability that none of the added alternatives are considered,

accounting for all links between the added alternatives and the set T . Notice that in the above, we don’t

consider any connection weights between alternatives w and v in any of the networks used to construct

Gx({x, y, z} | {x, y, z, w, v}). This is intuitive: since we aren’t considering cases where alternative w is

considered, we never need to account for the possibility that consideration spills over from w to v (even

though there is a positive probability of this happening under the network g′, represented by µwv).

From the above examples, one can intuit an additional property of PM-RNC consideration set mappings

beyond those of the general RNC case. The networks enumerated in Figures 10 and 12 should illuminate the

fact that RNC Symmetry holds under PM-RNC. However, a comparison between the examples in Figures 9

and 11 suggests a more strict form of monotonicity than that required in RNC Upward Monotonicity. This

characteristic is given below:

A1. PM-RNC Binary Separability Γx(T | S ∪ {S′}) = Γx(T | S)
∏

z∈S′\S

∏
t∈T

Γz({z} | {t, z}),

Proposition 3. If an RNC Gx has a PM-RNC representation, it satisfies PM-RNC Binary Separability.

6 Results: Random Network Choice

In this section, tests of the more general stochastic properties of RNC are conducted. For each test, in

order to generate consideration probabilities, observations are aggregated over all subject, treating each

observation as if it came from a representative subject who encountered each problem multiple times. Thus,

for a given extended decision problem (x, S) and for some consideration set T ⊆ S, Γx(T | S) was set to

be equal to the frequency of consideration set T observed in the full data set, conditional on the extended

decision problem being (x, S).

6.1 RNC Monotonicity

For each T observed with strictly positive probability, RNC Monotoncity is constructed by comparing Γx(T )

to the sum of probabilities over supersets of T for some presented superset of S, offering a direct test of the

RNC Monotonicity property. Table 12 presents the aggregate mean violations of RNC Monotonicity. Many

consideration sets T are feasible for a given (x, S) extended decision problem, in that they are such that on

T ⊆ S, but they do not occur with positive probability. Then RNC Monotonicity will, by default, be satisfied

trivially. While these observations are technically consistent with RNC Monotonicity, they are excluded in

the column labeled “NT”, for “Non-Trivial” in Table 12. In the aggregate, 12.5% of all observations result
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in a violation of RNC Monotonicity, compared to 79.8% when testing against the NC model. Even when

only considering “Non-Trivial” observations, the rate of Monotonicity violations is considerably lower under

RNC than under NC at 39.7% (Wilcoxon signed-rank p < 0.01 for H0 : µ = 0.8).

Table 12: Aggregate Test of RNC Monotonicity

All NT
Mean 0.125 0.397
Std Error 0.000 0.000
N 9974 3132

Wilcoxon signed-rank p < 0.01 for aggregate test of H0 : µ = 0 for both All and NT

Mann-Whitney p < 0.01 for H0 : µAll = µNT

NT results exclude observations where Γx(T | S) = 0

Considering the presence of RNC Monotonicity violations even when “trivial” observations are included,

I further investigate the determinants of these violations. For a given (x, S) and T pairing, one can imagine

several measures as generalizations of the “Distance” measure used in Section 4.3.1. First, conditional on S,

larger consideration sets T leave less room for supersets to be included in the right-hand side of the RNC

Monotonicity expression. Larger sets T more closely approach full consideration of the set S, leaving less

room for non-trivial observations of supersets of T under S′ ⊇ S. Thus, we may expect that violations are

more likely to occur as S \ T increases in size across observations. Second, when comparing to some set

S′ ⊇ S, the size of S′ \ T relative to T may have a similar effect. These factors are considered in Table

13. Additional options in S \ T actually increase the likelihood of a violation occurring by 0.299 percentage

points each, though this effect is only marginally significant. Consistent with the hypothesis presented above,

each additional option in S′ \ T decreases the likelihood of a violation occurring by 2.57 percentage points

each. This result is further confirmed in Figure 13, where average RNC monotonicity violations are plotted

by quartile of |S′ \ T |. This leads to an interesting comparative result relative to NC. Recall that in Section

4.3.1, it is shown that monotonicity violations were ubiquitous once the distance between S and S′ became

sufficiently large. Here, the opposite is true: holding the size of T constant, as options are added to S′, RNC

Monotonicity violations become less common.

While none of these results on the determinants of RNC Monotonicity Violations are implied by the

RNC model directly - clearly the RNC model implies no violations of RNC Monotonicity at all - I view

the analysis above as reasonable starting points for further generalizations of network consideration in the

stochastic case. It is possible that generalizing RNC further to include adaptive consideration behavior,

directed random network structures, and/or other features may directly imply the results above.
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Table 13: Determinants of RNC Monotonicity Violations

Model 1
|S \ T | 0.00299∗

(0.00175)
|S′ \ T | -0.0257∗∗∗

(0.00185)
Observations 9974

Standard errors in parentheses

Marginal effects from logistic regression specifications
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure 13: RNC Monotonicity Violations by |S′ \ T | Quartile
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6.2 RNC Symmetry

While the subject-level data reveals a number of violations of the deterministic Symmetry property in NC, it

may be possible that aggregate consideration set probabilities are consistent with RNC. This is tested using

two methodologies: first, by conditional logit regression estimation and second, by individual difference-in-

means tests for each pair of consideration set and available set.

Initially, each observation used for the conditional logistic regression specifications consists of a subject,

an extended decision problem (i.e. a starting point that is an element of {x, y} and an available set Ai), and

the set of options considered by the subject (i.e. the observed consideration set). A test of RNC Symmetry

consists of a test of whether the probability of a given consideration set being observed is dependent on the

starting point in {x, y}, given that the consideration set contains both starting points. To this end, for each

of the five available sets used for the Symmetry extended decision problems, I treat each observed unique

consideration set that includes both starting points as an “available consideration set” that the subject may

then “choose”. Thus, a case for the purposes of these conditional logistic regressions is defined as a subject

- available set pair, with the unique consideration sets which include both starting points observed in the

data for that available set across all subjects constituting the “available consideration sets” from which this

subject can “choose.” Note that, for a given case, each of these consideration sets is offered to the subject

as an available consideration set twice: once for each extended decision problem that utilized the available

set for this case. This is done to allow for the possibility that the same consideration set was chosen by

an individual subject in both extended decision problems that utilize the available set for this case. Thus,

in these conditional logit specifications, the dependent variable Choose indicates whether the “available

consideration set” was “chosen” for an individual case. The lone dependent variable, Starting Point, is a

binary variable that takes the value 1 when the starting point for the observation is y and 0 otherwise.

Of the 553 distinct consideration sets observed for the 10 extended decision problems constructed to test

the Symmetry property, 235 were such that {x, y} ⊆ T . Results at the aggregate level are displayed in

Table 14. When we aggregate over all possible available sets (N ∈ {5, 10, 15, 20, 25}), we see that there is

no relationship between the starting point and whether a consideration set is “chosen.” This result is robust

to whether a separate conditional logit regression is run on each available set individually, as can be see in

Table 15. There are thus broad, early indications that consideration set formation is consistent with RNC

Symmetry.

While aggregate results support RNC Symmetry according to these conditional logistic regression models,

it is possible that additional information provided to the subject in the Context environment might have

an effect on RNC Symmetry, especially in light of the slight, though statistically insignificant, difference
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Table 14: RNC Symmetry: Aggregate

All
Choose
Starting Point -0.0862

(0.0848)
Observations 38082

Standard errors in parentheses

Odds ratios from conditional logit regression specifications
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 15: RNC Symmetry Regressions

N = 5 N = 10 N = 15 N = 20 N = 25
Choose
Starting Point -0.252 -0.0155 -0.155 -0.0216 0.134

(0.168) (0.176) (0.186) (0.208) (0.232)
Observations 776 5100 13448 11088 7670

Standard errors in parentheses

Odds ratios from conditional logit regression specifications
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

in symmetry violations at the individual level between the Baseline and Context environments. The same

regression specification used in Table 15 and is conducted separately for each environment in Tables 16

and 17. This reveals a significant, though mixed, effect of the starting point in certain treatment - N

combinations.

Table 16: RNC Symmetry Regressions: Baseline

N = 5 N = 10 N = 15 N = 20 N = 25
Choose
Starting Point -0.319 -0.358 -0.407∗ -0.437 -0.443

(0.232) (0.229) (0.236) (0.274) (0.302)
Observations 400 3000 8036 6006 4602

Standard errors in parentheses

Odds ratios from conditional logit regression specifications
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 17: RNC Symmetry Regressions: Context

N = 5 N = 10 N = 15 N = 20 N = 25
Choose
Starting Point -0.178 0.527∗ 0.288 0.614∗ 1.147∗∗∗

(0.244) (0.291) (0.312) (0.345) (0.434)
Observations 376 2100 5412 5082 3068

Standard errors in parentheses

Odds ratios from conditional logit regression specifications
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Each consideration set observed in the data individually can be examined directly by looking at Γx(T | S)

and Γy(T | S) for each T ⊆ S combination. If the frequency of T conditional on S being available is

significantly different between Γx and Γy, this is a violation of RNC Symmetry. We thus conduct a Wilcoxon

sign-rank test on each of the Y consideration sets where {x, y} ⊂ T . Note, however, that if a given T is only

ever chosen once in the entire sample, a sign-rank test will result in an insignificant difference by starting

point.11 A relatively conservative approach is used here, where only those consideration sets that occur with

non-trivial frequency, defined as “having occurred more than once across all 10 symmetry extended decision

problems,” are included in this analysis. Of the 235 distinct consideration sets observed in these extended

problems that satisfy {x, y, } ∈ T , 183 occurred only once. The remaining consideration sets are then used

to construct Γx(T | S) and Γy(T | S) for each S such that T appeared at least once across (x, S) and (y, S).

This resulted in 69 separate tests of T ⊂ S pairs.12 Of these 69 tests, only 5 resulted in a statistically

significant rejection of H0 : Γx(T | S) = Γy(T | S), only 7.23%. We therefore find robust support for RNC

Symmetry regardless of the test method (conditional logit vs. rank-sum at the consideration set - available

set pair level).

6.3 RNC Path Connectedness

Finally, RNC Path Connectedness is tested by systematically considering subsets of the experimental data

according to their satisfication of hypotheses of RNC Path Connectedness for each potential case. Recall

that, in the construction of the extended decision problems used to test Path Connectedness in NC, four

different cases resulted from varying the option used in each extended decision problem. Table 18 presents

the results of aggregate tests of RNC Path Connectedness separately for each case.

Recall that under the RNC Path Connectedness, the hypothesis of this property would be endogenously

determined by consideration set data in the experiment:

11Consideration set - available set pair has 214 observations, 107 for each starting point. If the consideration set only occurs
once, the sign-rank test will result in p > 0.10.

12Note that this is greater than 235− 183 = 52. This is due to the fact that several consideration sets were observed under
multiple available sets.
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∃T ⊆ S with z ∈ T such that Γx(T | S) > 0 and 6 ∃T ′ ⊆ S \ {y} such that z ∈ T ′ and Γx(T ′ | S \ {y}) > 0,

In order to structure tests of RNC Path Connectedness, I then consider, for each case, the largest number of

observations such that this hypothesis is satisfied when aggregating over subjects to construct each Γx(T | S).

Then N in Table 18 can be interpreted as the number of subjects (out of 107) who satisfy the particular

hypothesis of the case under consideration. Cases 2 and 4 are clearly less stringent tests of RNC Path

Connectedness; all 107 subjects satisfy the hypothesis of these cases.

The implication portion of the RNC Path Connectedness property is framed around “the existence” of

some set that includes z (y) and is considered with positive probability. This is equivalent to a positive

frequency of z(y) being observed for the observations considered in each case. Then for each case, the fact

that Prob(Y ) and Prob(Z) are positive in Table 18 indicates that the dataset, as a whole, is consistent with

this property. This should not be a surprise, even considering the fact that there are non-trivial violations

of other properties of RNC consideration sets documented in this section. RNC Path Connectedness, like

Path Connectedness, is a relatively weak requirement to impose on consideration set probabilities.

Table 18: RNC Path Connectedness

Case 1 Case 2 Case 3 Case 4
Prob(Y) Prob(Z) Prob(Y) Prob(Z) Prob(Y) Prob(Z) Prob(Y) Prob(Z)

Mean 0.327 0.327 0.925 0.561 0.227 0.091 0.879 0.178
Std Error 0.068 0.068 0.026 0.048 0.045 0.031 0.032 0.037
N 49 49 107 107 88 88 107 107

Result 4. Aggregate consideration set frequencies are largely consistent with RNC:

• Only 12.5% of all observations violate RNC Monotonicity

• Fewer than 8% of all consideration sets observed in the aggregate data violate RNC Symmetry

• Aggregate results are wholly consistent with RNC Path Connectedness

6.4 PM-RNC Binary Separability

In addition to RNC Monotonicity, RNC Symmetry, and RNC Path Connectedness, consideration set data

consistent with PM-RNC necessarily must satisfy the additional Binary Separability property. Results of

tests thereof using this experimental data are presented in this section.

Notice that Binary Separability will necessarily result in consideration set probabilities such that Γx(T |

S∪S′) is weakly less than Γx(T | S), since PM-RNC simply takes the latter and multiplies it by the product
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of a number of probabilities between 0 and 1, inclusive. A clear violation of Binary Separability would thus

consist of an observation of Γx(T | S ∪ S′) > Γx(T | S). Aggregate tests of violations of this type, which I

term “First-Order Binary Separability Violations,” are presented in Table 19.

Table 19: Aggregate Test of First Order PM-RNC Binary Separability Violations

All NT
Mean 0.122 0.282
Std Error 0.003 0.007
N 9974 4308

Wilcoxon signed-rank p < 0.01 for aggregate test of H0 : µ = 0 in each case

NT: Γx(T | S) = Γx(T | S′) = 0 excluded

In the aggregate, 12.2% of observations constitute first-order Binary Separability violations, with the

proportion of such violations jumping to 28.2% when we isolate attention to only “Non-Trivial” observations

as defined above.

In order to provide a more finely-tuned test of Binary Separability, the expression provided in the PM-

RNC Binary Separability property is constructed for each observation that does not constitute such a first-

order Binary Separability Violation. Recall this expression:

Γx(T | S ∪ S′) = Γx(T | S)
∏

z∈S′\S

∏
t∈T

Γz({z} | {t, z})

In the above, the construction of Γx(T | S∪S′) and Γx(T | S) is straightforward and conducted as in previous

analyses in this section. However, the construction of product on the right-hand side,
∏

z∈S′\S

∏
t∈T

Γz({z} |

{t, z}), is not so clear, given that subjects are never presented with an extended decision problem of the

form (z, {t, z}) for any pair of options. In the PM-RNC model, Γz({z} | {t, z}) is clearly equal to 1−µzt, or

the probability that consideration does not spill over from z to t in the binary comparison. Thus, in order

to construct this nested product, I utilize an estimated 1 − µzt as a proxy for Γz({z} | {t, z}). For each

pair of options (i, j) presented to subjects in the experiment, an observed µij is estimated by calculating the

frequency with which subjects navigate from i to j, or from j to i, conditional on a link being provided in

the experimental interface. Note that this frequency is across all observed links between i and j, regardless

of the direction followed, so that the resulting estimated weighted network of µij is undirected. Only those

estimated µij which were statistically significantly greater than 0 at the α = 0.10 level were taken as non-zero

frequencies.13

Mean direct Binary Separability violations are reported in Table 20. Results in Table 20 are presented

only for those observations that did not constitute a first-order Binary Separability violation. Across all

13Each µij was tested using a Wilcoxon signed-rank test.
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Table 20: Aggregate Test of Binary Separability Violations

All NT
Mean 0.349 0.989
Std Error 0.005 0.002
N 8759 3093

Wilcoxon signed-rank p < 0.01 for aggregate test of H0 : µ = 0 in each case

NT: Γx(T | S) = Γx(T | S′) = 0 excluded

such observations, 34.9% violate Binary Separability directly along with a staggering 98.9% of Non-Trivial

observations (as defined above). The latter result is not particularly surprising, since a “violation” as defined

in this section does not allow for additional noise in consideration probabilities beyond that directly implied

by the strong form of PM-RNC: unless the realized left-hand side of the Binary Separability expression was

exactly equal to the estimated right-hand side, the observation was coded as a Binary Separability violation.

A more thorough investigation of Binary Separability would thus necessitate analyzing the size of errors in

estimation.

Table 21 reports the summary statistics of two measures of errors in the estimation of these Binary

Separability expressions, compared to the distribution of positive Γx(T | S ∪ S′) for reference. In an abuse

of notation for the sake of brevity, in Table 21 and in this discussion, let Γ refer to Γx(T | S ∪S′) and Γ̂ refer

to the estimate of Γx(T | S)
∏

z∈S′\S

∏
t∈T

Γz({z} | {t, z}). Then Γ−Γ̂
Γ gives the normalized difference between

the two expressions, conditional on positive Γ, and Γ̂ | Γ = 0 gives the estimated right-hand side expression,

conditional on Γ being equal to zero. Both of these measures of Binary Separability errors are presented

only for those observations where a violation is observed.

Table 21: Binary Separability Error Size Summary Statistics

Γ Γ−Γ̂
Γ Γ̂ | Γ = 0

Mean .011 .031 .005
SD .008 .759 .004
N 1427 178 2881
p1 .009 -3.591 .000
p25 .009 -.143 .002
p50 .009 .253 .005
p75 .009 .471 .007
p99 .047 .938 .016

Notes:
Γ s.t. Γx(T | S ∪ S′) > 0

First compare the first two columns for Γ and Γ−Γ̂
Γ . Note that the interquartile range deflation rate of Γ

(given by Γ−Γ̂
Γ for p50) is −0.143 to 0.471 implying that there is considerable spread in the PM-RNC Binary

Separability estimate of Γ. This implies that PM-RNC Binary Separability is likely too strong an assumption
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for the given experimental data. However, the distribution of Γ̂ | Γ = 0 appears to closely resemble that of

Γ suggesting that Γ̂ may yet still present a reasonable estimate of Γ for out-of-sample consideration sets; it’s

possible that because the experimental data includes a considerable number of observations of Γ = 0, that

PM-RNC Binary Separability is failed because of data limitations. There are thus only mixed, and generally

negative, results concerning the fit of PM-RNC Binary Separability to the experimental data set. I view

further exploration of PM-RNC Binary Separability using a large field dataset to be a worthwhile avenue

for future research on this topic.

7 Discussion

The NC and RNC models can be applied to many settings, but in this section I focus on one particular appli-

cation of note: empirical studies of the effects of advertising. As mentioned previously, Shapiro (2018),Sahni

(2016), and Lewis and Nguyen (2015) report evidence of so-called “positive spillovers in advertising,” where

attention spills over from an advertised good to similar competitor goods. A common refrain in studies such

as these is that the positive externalities resulting from these attention spillovers lead to an under-allocation

of advertising in the competitive equilibrium. Indeed, Shapiro (2018) presents a supply-side model and

accompanying estimates which support this claim.

However, an implicit assumption in the models commonly assumed in the above studies is that these

positive attention spillovers affect competing goods at the category level. When this framework is rooted in

an RNC model setup, it can be easily seen that a more general treatment of these spillovers as coming from

a generalized random network structure will result in more ambiguous welfare implications.

7.1 A Simple Advertising Model

Consider a simple RNC Advertising Game with firms A, B, and C, each producing a single good (which

I will also denote A, B, and C, respectively), and each choosing whether advertise or not, such that the

strategy for each firm is σi ∈ {0, 1}. Advertising (σi = 1) involves a fixed cost of c > 0, which is identical

across firms. There is a continuum of DMs of mass 1, each of whom exhibits limited stochastic attention

according to the RNC model. The distribution over possible networks on X = {A,B,C} is given in Figure

14, with a restriction on α such that α ∈ [0, 1
2 ].
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Figure 14: Example Distribution on X = {A,B,C}
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(b) f(g2) = α
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C

(c) f(g3) = 1 − 2α

The DM’s choice of any firm leads to the same level of utility, so I assume that a DM who considers more

than one firm is equally likely to choose any of the firms they consider.14 Further, since RNC is starting-point

dependent, I assume that DMs set their starting points based on the firms that are advertising. If more than

one firm advertises, the mass of DMs is divided equally among all those firms who advertise. The sequence

of the game then works as follows:

1. Firms simultaneously choose whether to advertise or not

2. DMs observe who advertises and sets a firm as their starting point with equal probability among all

those who advertise

(a) If no firm advertises, DMs consider no firm and choose nothing (resulting in 0 profit for all firms)

3. DMs form stochastic consideration set mappings according to their starting points and the distribution

over networks on the set of firms

4. DMs choose each firm that they consider with equal probability

5. Firms realize profit, which is simply the mass of DMs who choose their firm minus the fixed cost of

advertising (if the firm chose to advertise)

For a given network g, let Ni(g) represent the set of firms connected to firm i under g by some path

(i.e. firm i’s “neighbors”). Given a strategy profile σ, let the set of firms who advertise under σ be equal to

σa. Then for a given strategy profile and distribution over networks on {A,B,C}, firm i’s expected profit is

equal to the following:

πi =

3∑
j=1

f(gj)
|σa ∩Ni(gj)|
|σa| · |Ni(gj)|

− c · σi (14)

14Note that this random choice procedure is indeed a departure from the choice procedure used in RNC. This is done for
tractability in this particular application and is of no particular consequence to the main point under discussion.
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Given this setup, it is straightforward to show that there exists a non-empty subset of the α−c parameter

space that lead to i) σ∗ = (1, 0, 1) as a Nash Equilibrium and ii) σ′ = (0, 1, 0) not as a Nash Equilibrium,

where profit is strictly higher under σ′. This is captured in the following proposition, with the proof included

in the Appendix:

Proposition 4. In the RNC Advertising Game with parameters α, β, and c, such that (α, β, c) is in the

unit cube, there exist non-empty subsets of the parameter space where:

1. σ∗ = (1, 0, 1) is supported as a Nash Equilibrium

2. σ′ = (0, 1, 0) is not supported as a Nash Equilibrium

3. Aggregate profit under σ′ is higher than under σ∗

This proposition then tells us that the welfare properties of advertising in such an environment will

depend on the structure of distribution in the RNC limited consideration on the part of the consumers. In

particular, the “category” spillover approach implicitly assumed in previous work in the marketing body of

literature is nested in the RNC Advertising Game where α = 0. When this is true, advertising will never

be undertaken by multiple firms simultaneously in equilibrium. Indeed, for sufficiently high costs (c > 1
3 ),

no firm will advertise. This is a stark example of the free-riding effect documented in Shapiro (2018), but is

only implied by a narrow interpretation of attention spillovers as spillovers occurring equally across an entire

category of goods. In the more general case described here, positive attention spillovers actually result in an

over-allocation of advertising relative to an alternative allocation with the same levels of revenue.

8 Conclusion

In this work, I present a the results of an experiment designed to test for the validity of the deterministic

Network Choice (NC) model of Masatlioglu and Suleymanov (2017). Overall inconsistency of the data with

NC led to a proposed stochastic generalization thereof in RNC and PM-RNC. These models have applications

in the realms of choice architecture, web platform search optimization, and advertising. In the latter case,

I view a significant contribution of this work as illuminating a possible model for positive spillovers in

advertising behavior, which highlights the need to examine product network structures empirically, especially

for the purposes of welfare analysis.

It should be noted that RNC is only one version of a stochastic generalization of NC. Indeed, Cattaneo

et al. (2017) present another version in which the network is deterministic and starting points are stochas-

tically determined. While the experimental data presented herein was predominantly consistent with RNC,
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there remain non-trivial violations thereof to be investigated in either further generalizations of RNC or other

attempts at modelling stochastic network consideration. This is likely a fruitful avenue for future research.

Additionally, the mixed results of the PM-RNC model, combined with the RNC results, suggest that

there is a nested model of network consideration with more structure than RNC (which potentially leads to

a unique representation), but less than that of PM-RNC. Future theoretical research can likely shed light on

the structure and validity of models between the two.
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A Proofs for Section 5 (Random Network Choice)

Lemma 1. For any g such that gS is T-Connected for some T ⊆, gS
′

is T ′-Connected for some unique T ′

such that T ⊆ T ′ and T ′ ⊆ S′ for all S ⊆ S′. Equivalently, GST ⊆
⋃

T ′⊆S′:T⊆T ′
GS′T ′ for all S ⊆ S′.

Proof. The proof is straightforward and comes from the definitions of gS and T -Connectedness. Recall that

gS = g −
∑

{i,j}⊆X\S
yij . If gS is T -Connected, by definition, there exists a t − t′ path in gS for all t, t′ ∈ T ,

t 6= t′. Each of these paths survives in gS
′

for some S′ ⊇ S, since gS
′

= gS +
∑
i∈S′

∑
j∈S′\S

yij . Therefore, each

t, t′ ∈ T is connected under gS
′
.

Let T ′ be the largest set of nodes in S′ such that each t, t′ ∈ T ′ is connected under gS
′

and T ′ ⊇ T .

Clearly T ′ 6= ∅, since T itself is connected under gS
′

by the above logic. Then gS
′

is T ′-Connected.

To show that T ′ is unique, consider T ′′ ⊆ S′, but T ′′ 6= T . Note that T ⊂ T ′′, by construction, so either

i) ∃k ∈ T ′′ such that k 6∈ T ′ or ii) T ′′ ⊆ T ′. Suppose it is case (i), then T ′ was not the largest set of nodes

in S′ such that each t, t′ ∈ T ′ is connected under gS
′
, since k is connected to some t ∈ T (by T ⊆ T ′′) and

T ′∪{k} ⊇ T ′, a contradiction. Next, suppose it is case (ii), then gS
′

is not T ′′-Connected, since ∃t′′ ∈ T ′\T ′′

that is connected to some t ∈ T ⊆ T ′′ by construction, which is a contradiction. Therefore, T ′ is unique.

Proposition 1. If Γx(T | S) is a random consideration set mapping such that i) Γx(T | S) ∈ {0, 1} for all

x ∈ T ⊆ S and ii) Γx satisfies A1 - A3, then Γx(S) satisfies B1 - B3 where Γx(S) = T for Γx(T | S) = 1.

Proof. Let Γx(T | S) be a random consideration set mapping such that i) Γx(T | S) ∈ {0, 1} for all x ∈ T ⊆ S

and ii) Γx satisfies A1 - A3. Let Γx(S) = T for Γx(T | S) = 1

B1. Consider Γx(S). Since Γx(T | S) satisfies A1, Γx(T | S) ≤
∑

T ′⊆S′:T⊆T ′
Γx(T ′ | S′) for each x ∈ T ⊆ S

and S′ ⊇ S. By definition of Γx(T ′ | S′), which requires that Γx(T ′ | S′) = 1 for some unique T ′ ⊆ S′,

there exists some T ′′ such that Γx(T ′′ | S′) = 1. This, together with
∑

T ′⊆S′:T⊆T ′
Γx(T ′ | S′) ≥ 1 =

Γx(T | S), ensures that T ⊂ T ′′. Then Γx(S) = T ⊆ T ′′ = Γx(S′) and Γx(S) satisfies B1.

B2. Consider Γx(S) and Γy(S), assuming x, y ∈ S and that y ∈ Γx(S). Then ∃T, T ′ where Γx(T | S) = 1 =

Γy(T ′ | S). Since y ∈ Γx(S), y ∈ T and T = T ′, since by A2 y ∈ T implies Γx(T | S) = Γy(T | S) = 1.

Then Γx(S) = Γy(S) and Γx(S) satisfies ??.

B3. Let z ∈ Γx(S) and z 6∈ Γx(S \ {y}). Then z ∈ T for T such that Γx(T | S) = 1 and z 6∈ T ′ for

Γx(T ′ | S \ {y}) = 1. Note that T ′ is the only subset of S \ {y} for which Γx(T ′ | S \ {y}) > 0, by

definition of Γx(T | S) and Γx ∈ {0, 1}. Since Γx(T | S) satisfies A3, 6 ∃T ′′ with y ∈ T ′′ such that

Γx(T ′′ | S \ {z}) > 0 and 6 ∃T ′′′ with z ∈ T ′′′ such that Γy(T ′′ | S \ {x}) > 0. Then, by definition of

Γx(S), y 6∈ Γx(S \ {z}) and z 6∈ Γy(S \ {x}). Therefore, Γx(S) satisfies B3.
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Proposition 2. If a random consideration set mapping has a random network consideration set mapping

representation, it satisfies RNC Symmetry, RNC Upward Monotonicity, and RNC Path Connectedness.

Proof. Suppose a random consideration set mapping Γ has a random network consideration set mapping G:

RNC Symmetry Consider any T ⊂ S with {x, y} ⊆ T and x 6= y. If Gx(T | S) > 0, then there exists

some network gS that is T -Connected. Since y ∈ T , gS will also be included in Gy(T | S). Therefore,

Gx(T | S) ≤ Gy(T | S). Gy(T | S) ≤ Gx(T | S) by the same logic. Finally, if Gx(T | S) = 0, then there are

no y ∈ G such that gS is T -Connected. This will hold regardless of the starting point in T , so Gy(T | S) = 0

as well. Then RNC Symmetry holds

RNC Upward Monotonicity Given Lemma 1, the proof is trivial. With GST ⊆
⋃

T ′⊆S′:T⊆T ′
GS′T ′ for all

S ⊆ S′, the statement follows directly from the definition of Gx(T | S).

RNC Path Connectedness Let T be such that z ∈ T with Gx(T | S) > 0. Then there exists some

gS ∈ GST where f(gS) > 0. Since 6 ∃T ′ ⊆ S \ {y} with z ∈ T ′ such that Gx(T ′ | S \ {y}) > 0, then every

path that connects x to z under gS must include y as an intermediate node. To see why this is the case,

consider some x-z path in gS that does not include y as an intermediate node. When y is removed from

S, this path remains (since y was not on this path under gS) and Gx(T ′ | S \ {y}) > 0 for T ′ = {j |

j is connected to some node on this x-z path in gS} since f(gS) > 0. Since there exists an x-y-z path in yS ,

we can consider each sub-path independently.

Consider the x-y sub-path. When z is removed from S, this path survives, and if we let T ′′ = {j ∈

S \ {z} | j is connected to some node on the x-z path in gS}, then Gx(T ′′ | S \ {z}) > 0, since f(gS) > 0.

By similar logic, Gy(T ′′′ | S\{x}) > 0 for T ′′′ = {j ∈ S\{x} | j is connected to some node on the y-z path in gS}.

Lemma 2. For any RNC π, x is revealed preferred to y if ∃S ⊆ X such that:

πy(x | S) > 0 (15)

Proof. For some π with an RNC representation, suppose that there exists S ⊆ X such that πy(x | S). Choose

some RNC representation of π, call it (F̂ , �̂). By definition of π with an RNC representation, this implies

that ∃T ⊆ S with {x, y} ⊆ T where GFy (T | S) > 0. Further, by definition, x is �̂−best in T . Since y ∈ T ,

x�̂y according to this representation.

To show that x � y for all RNC representations, suppose not. Then ∃(F ′,�′) 6= (F̂ , �̂) that also

represents π, but for which y �′ x. However, πy(x | S) > 0 implies that x �′ y, by the above logic, a
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contradiction.

Lemma 3. For some RNC π, x is revealed preferred to y if, and only if, xPRy.

Proof. →:

The if part of this proof is trivial. Since xPRy, either xPy, indicating that x is revealed preferred to y

directly by Lemma 2 or ∃k such that xPk and kPy. In the latter case, xPk and kPy in all representations

of π, again by Lemma 2, which, by transitivity of � implies that xPRy in all RNC representations of π.

Thus, x is revealed preferred to y.

←:

Suppose that x is revealed preferred to y, but not xPRy. Since PR is the transitive closure of P , it can

be written as PR =
⋃

i=1,2,3,...

P i, where P 1 = P and P i+1 = P ◦ P i. Then, if xPRy, (x, y) ∈ P i for some i

and there then exists some finite sequence {k0, k1, ..., kn} where xPk0P...PknPy. Since (x, y) 6∈ PR, there

exists no such finite sequence.

By Lemma 2, all representations of π will be such that P ⊆�. Select one, calling it (F,�). From this,

we construct an additional RNC (F,�′), where �′ is such that:

1. P ⊆�′

2. (y, x) ∈�′

3. �′ is transitive

Note that by the last requirement, PR ⊆�′ (all transitive supersets of P will include PR). Since (x, y) 6∈ PR,

the construction of �′ to include P and (y, x) is valid.

We claim that (F,�′) also represents π. To show this, let π�
′

be RNC choice probabilities under �′ and

consider πw(z | S) and π�
′

w (z | S) for some arbitrary w, z ∈ S.

Case 1: (z, w) ∈ P or (w, z) ∈ P

Suppose, to the contrary, that πw(z | S) > π�
′

w (z | S), without loss of generality. Then ∃ some T ⊆ S

with {w, z} ⊆ T and z as �-best in T , but z is not �′ −best in T , with some gS ∈ GST such that f(gS) > 0.

Let t�
′

be the �′-best element in T . Note that t�
′ 6= w, since (z, w) ∈ P ⊆�′. Let T ′ ⊆ T be the set of

all nodes on some w − t�′ path in gS . Now consider πt�′ (z | T ′). Since f(gS) > 0, t�
′

and z are connected

under gS , and πt�′ (z | T ′) > 0, since z is �-best in T ⊇ T ′. Then (z, t�
′
) ∈ P ⊆�′, a contradiction.

For (w, z) ∈ P , follow the above logic, reversing the roles of w and z.

Case 2: (z, w) and (w, z) 6∈ P
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Since neither (z, w) nor (w, z) ∈ P , by definition πw(z | S) = πz(w | S) = 0 for all S ⊆ X. Suppose

under �, z � w. Then for πw(z | S) = 0 to be true, either i) f(gS) = 0 for all gS such that z and w are

connected or ii) for all gS such that f(gS) > 0 and z is connected to w, all w − z paths in gS include some

node k such that k � z and k � w. Clearly, if F such that (i) holds, π�
′

w (z | S) = π�
′

z (w | S) = 0.

Then if (ii) holds, for each gS such that f(gS) > 0 and z is connected to w, and for each a w−z path that

includes some node k such that k � z, consider independently the w−k and k−z sub-paths. Denote the sets of

nodes for each of these sub-paths T g
S

w−k and T g
S

k−z, respectively. Then πw(k | T g
S

w−k) > 0 and πz(k | T g
S

k−z) > 0,

since f(gS) > 0. It follow then, that {(k,w), (k, z)} ⊆ P ⊆�′ and π�
′

w (z | S) = π�
′

z (w | S) = 0 for all S ⊆ X.

Therefore, π�
′

= π and (F,�′) also represents π. Since both (F,�) and (F,�′) represent π, but

(y, x) ∈�′, x is not revealed preferred to y, a contradiction.

Lemma 4. Let π be an RNC and let x and y be such that there exists some set S ⊇ {x, y, z} such that the

following holds:

πz(x | S) > πz(x | S \ {y}) (16)

Then (x, y) ∈ P and x is revealed preferred to y.

Proof. Let x and y be such that there exists some set S and z ∈ S such that πz(x | S) > πz(x | S \ {y}).

Then when S is available, there exists some network gS ∈ GST for some T ⊇ {x, z} such that x is � −best

in T and f(gS) > 0. Suppose, to the contrary, that y 6∈ T . Then if gS is T -Connected, gS\{y} is also

T -Connected. Then πz(x | S) = πz(x | S \{y}), since this will hold for all T such that y 6∈ T and x is �-best

in T , a contradiction. Then y ∈ T .

Note that if gS is T -Connected, gT is T -Connected. Then πy(x | T ) > 0, since f(gS) = f(gT ) > 0,

{x, y} ⊆ T , x is �-best in T , and gT is T -Connected. Therefore, (x, y) ∈ P and x is revealed preferred to

y.

Lemma 5. Let π be a PM-RNC with representations (µπ,�π). Then µi = µ̄ for all (µi,�i) representations

of π (i.e. µ is unique).

Proof. This lemma is fairly straightforward and is a function of the restrictions imposed by the particular

consideration structure.

Note that for this lemma to hold, we must show that for any (succi, µi) and (�j , µj) that both represent

π, µikl = µjkl k, l ∈ X such that k 6= l.

Suppose k � l (or k is revealed preferred to l). Then the following must be true πl(k | {k, l}) = µikl since

µi represents π. Similarly, πl(k | {k, l}) = µjkl. It follows that µikl = µjkl for all k, l such that k is revealed

preferred to l.
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But what if k cannot be revealed preferred to l? Assume to the contrary that µikl > 0 for some µi that

represents π. By definition,

πl(k | {k, l}) =


µikl, for k �i l

0, for l �i k
(17)

Since µikl > 0 and 6 (k � l), l �i k. By definition,

πk(l | {k, l}) =


µikl, for l �i k

0, for k �i l
(18)

Since µikl > 0 and l �i k, πk(l | {k, l}) > 0, which implies that l � k, a contradiction.

Thus, for any two elements k and l where we cannot reveal preference, µikl = 0 for any µi that represents

π.

Proposition 3. If an RNC Gx has a PM-RNC representation, it satisfies PM-RNC Binary Separability.

Proof. The proof is written for S′ = {z}, but the aggregate of the logic to larger S′ is trivial.

Let Gx be an RNC with a PM-RNC representation, which is denoted as the matrix of consideration

weights µ. For any network g, the probability that it occurs can be written as follows:

f(g) =
∏

(i,j)∈X2

[1{gij = 1}µij + 1{gij = 0}(1− µij)]

Then for any starting point x in set S, the probability that set T ⊆ S is considered is given by the

following, for any non-trivial probability:

Γx(T | S) =
∑
g∈GS

T

f(g)

=
∑
g∈GS

T

∏
(i,j)∈X2

[1{gij = 1}µij + 1{gij = 0}(1− µij)]

Note that by Lemma 1, if gS∪{z} is T -Connected, then gS is also T -Connected. In other words, Γx(T | S∪{z})

can be constructed by beginning with GST and subtracting out those networks for which gS is not T -Connected.

Consider a partition P(GST ) of GST into subsets where g and g′ are included in the same subset if gij = g′ij

for all {i, j} 6= {t, z} for some z 6∈ S and t ∈ T . Let P be an arbitrary one of these subsets. We define the
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following:

f(P ) ≡
∑
g∈P

f(g) (19)

where f(P ) is taken to be probability over all networks in P . Recalling that on each g ∈ P is such that

gS is T -Connected, restrict attention only to those in P such that gS∪{z} is T -Connected. There is clearly

a single g ∈ P such that gS∪{z} is T -Connected, the network g such that gtz = 0 for all t ∈ T (otherwise,

gS∪{z} would not be T -Connected). Let this unique g ∈ P be denoted g∗(P ). Since g∗tz(P ) = 0 for all t ∈ T ,

it follows that f(g∗(P )) =
∏
t∈T

(1− µtz)f(P ).

Then Γx(T | S ∪ {z}) can be constructed as follows:

Γx(T | S ∪ {z}) =
∑

g∈GS∪{z}
T

f(g)

=
∑

P∈P(GS
T )

f(g∗(P ))

=
∑

P∈P(GS
T )

∏
t∈T

(1− µtz)f(P )

=
∑

P∈P(GS
T )

∏
t∈T

(1− µtz)
∑
g∈P

f(g)

=
∏
t∈T

(1− µtz)Γx(T | S)

The result then directly follows an observation that (1 − µtz) is simply equal to Γz({z} | {t, z}) in the

PM-RNC model.

B Proofs for Section 7 (Discussion)

Proposition 4. In the RNC Advertising Game with parameters α, β, and c, such that (α, β, c) is in the

unit cube, there exist non-empty subsets of the parameter space where:

1. σ∗ = (1, 0, 1) is supported as a Nash Equilibrium

2. σ′ = (0, 1, 0) is not supported as a Nash Equilibrium

3. Aggregate profit under σ′ is higher than under σ∗

Proof. 1. σ∗ = (1, 0, 1) is supported as a Nash Equilibrium:
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First, consider each firm’s incentives under σ∗ = (1, 0, 1). Firm A’s expected profit under σ∗ is as

follows:

πA(σ∗) =
3α

4
+

1− 2α

3
− c

In order for Firm A to not have an incentive to unilaterally deviate to σA = 0, the following condition

must then hold:

3α

4
+

1− 2α

3
− c > 1− 2α

3
3α

4
> c (20)

The condition for Firm C is identical.

Conditional on Firm’s A and C choosing to advertise, Firm B has no incentive to advertise if the

following holds:

2α

3
+

1− 2α

3
− c < α

2
+

1− 2α

3
α

6
< c (21)

Clearly there exist positive α and c such that conditions 20 and ?? hold.

2. σ′ = (0, 1, 0) is not supported as a Nash Equilibrium:

For Firm A, there exists an incentive to unilaterally deviate from σ′A = 1 if the following holds:

α+
1− 2α

3
− c > α

2
+

1− 2α

3
α

2
> c (22)

The condition is identical for Firm C.

Clearly, for any feasible and strictly positive α, 20 - 22 are satisfied for any c ∈ (α2 ,
3α
4 ).

3. Aggregate profit under σ′ is higher than under σ∗
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This should be clear from the definition of the profit function. Under σ∗, aggregate profit is equal to

1− 2c, since two firms are advertising, whereas under σ′ it is simply 1− c.
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C Additional Results

C.1 Results by Baseline/Context

Table 22: Correct Rate by Treatment

NC C
Mean 0.851 0.863
Std Error 0.009 0.009
N 1733 1555

Wilcox p > 0.10 for H0 : µC = µNC .

Table 23: Monotonicity Violations by Context

Baseline Context
Mean 0.791 0.805
Std Error 0.012 0.013
N 1140 1000

Wilcox p > 0.10 for H0 : µBaseline = µContext

Table 24: Path Connectedness by Context

Baseline Context
Mean 0.456 0.452
Std Error 0.067 0.078
N 57 42

Mann-Whitney p > 0.10 for H0 : µBaseline = µContext
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Figure 15: Cumulative Distribution of Mean MV by Subject and Treatment

C.2 Omitted Results

Table 25: Determinants of Consideration Set Size

Model 1 Model 2 Model 3
N 0.217∗∗∗ 0.218∗∗∗ 0.204∗∗∗

(0.011) (0.011) (0.012)
Period 0.0271∗∗∗ 0.0264∗∗∗ 0.0189∗∗

(0.008) (0.008) (0.009)
Female 0.146 0.529

(0.466) (0.512)
µ̂GPA 2.131

(1.418)
Cognitive Score -0.450

(1.137)
Constant 4.241∗∗∗ 2.687∗∗ 4.520∗∗∗

(0.234) (1.106) (0.859)
Observations 25811 25811 21525

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D Instructions

D.1 Baseline

Instructions

Thank you for participating in the experiment today. At this time, please be sure that your cell phone

is turned off and stored away. At no point during this experiment should you use your cell phone or any

other electronic device. Also, please refrain from communicating with any other subject in the lab today.

Failure to follow these rules will result in your expulsion from the lab and you will forfeit any cash earnings

you may have otherwise received.

This is an experiment in decision making. You will be paid a $7 guaranteed show-up fee in addition to

earnings based on your decisions in the experiment.

Decision Environment

In each of 31 periods, you will be faced with a number of options from which you can select one. Each

option has 4 attributes: Shape, Pattern, Size, and Number. The value of an individual attribute is given in

Experimental Currency Units (ECUs) in the following table:

61



Shape Value Pattern Value Size Value Number Value

1 ECU 1 ECU EXTRA SMALL 1 ECU 1 1 ECU

2 ECU 2 ECU SMALL 2 ECU 2 2 ECU

3 ECU 3 ECU MEDIUM 3 ECU 3 3 ECU

4 ECU 4 ECU LARGE 4 ECU 4 4 ECU

5 ECU 5 ECU EXTRA LARGE 5 ECU 5 5 ECU

The value of a given option is the sum of the value of its attributes as per the table above.

In each period, you will be shown a version of the following screen:
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The screen is composed of the following parts (left to right, top to bottom):

Option Label: this is the option for which information is currently displayed. In the example, Option 19

is shown along with information on the Attributes of Option 19. Option Labels have been chosen randomly

for each Period and do not reflect the value of the option. Moreover, two options with the same option label

may have different values in different periods.

Current Choice: this is the option that you are currently holding as your choice. This will be explained

in detail below. In addition to the label for your Current Choice, you are shown information about the

Attributes for your Current Choice for your reference.

Attribute Information: these are the attributes for the option currently displayed. The value of each

option is the sum of its attributes as according to the table above. For example, the value of Option 19 in

the example above is 16 ECU (5 for Heptagon + 3 for Two-Bar Pattern + 5 for Extra Large + 3 for Number

3 = 16).

Choose this Option Button: you can click this button to change your Current Choice to the option that

is currently displayed. If your Current Choice is the option that is currently displayed, this portion of the

screen with display The option currently displayed is your Current Choice.

Linked Options: this is a clickable list of options that are Linked to the currently displayed option. An

option is Linked to the currently displayed option if it shares 2 or more attributes with the currently displayed

option. For example, if there was another Option in the current Period with a Two-Bar Pattern and the
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Number 3, it would be shown in the list of Linked Options for Option 19 in the screenshot above. Note that

this list may be quite long, in which case you will see a scroll bar next to the list of Linked Options.

Options Already Viewed: this is a clickable list of options that have already been viewed by you in the

given period. You can click on any option in this list and click View Selected Option to view information

for that option again. Again, if the list of Options Already Viewed gets sufficiently long, you will be shown

a scroll bar next to the list. Note: you can only view information for options other than the one currently

displayed by either clicking on it in the Linked Options menu or the Options Already Viewed menu.

Stop: if you would like to Stop looking at information for the available options and would not like to

change your Current Choice, you can click the Stop button.

Period Duration

In each period, you will have up to 75 seconds to evaluate all of the available options and make choices.

At any time, you can click Stop and you will not be shown any more information on any of the options for

the given period. Note: in order to move on to the next period, you must wait for the entire 75 seconds to

pass in the current period. Thus, if you Stop after, say, 45 seconds in the current period, you will still have

to wait the remaining 30 seconds for the period to end in order to move on to the next period.

Choices

At the end of each Period, a random time between 2 and 75 seconds will be chosen and your Current

Choice held at that time will be implemented as your chosen option for that Period. Each time between 2

and 75 seconds is equally likely to be chosen.When evaluating options during the 75 seconds, you will not

know at what time your Current Choice will be implemented as your chosen option for that Period. At

the beginning of each Period, you will start off being shown information for one particular Option but will

have no Current Choice. If you do not have a Current Choice at the time chosen randomly by the computer

program to implement your choice, you will be paid nothing for the current Period. Thus, it is in your best

interest to choose any Option as soon as possible. You can then replace it with a better option when/if you

find an option that has a higher value.

At the end of each period, you will be told i) at what time your Current Choice was implemented, ii)

which Option you held at that time, and iii) what the value (in ECU) of that option was.

For clarification purposes, consider the following example: a subject is in Period 4 with a time limit of

75 seconds and they immediately choose the first option shown to them, Option 1, which has a value that

they have determined to be 10 ECU. After 30 seconds, the subject changes their Current Choice to Option

2 with a value of 12 ECU and continues evaluating the available options. After 10 more seconds (40 in total

since the start of the period), the subject selects a new Current Choice of Option 3 with a value of 14 ECU.

The subject makes no further choices and the 75 seconds runs out. The subject’s choices are shown in the
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Time 0 Seconds 30 Seconds 40 Seconds
Option Option 1 Option 2 Option 3
Value 10 ECU 12 ECU 14 ECU

following table:

If the time chosen randomly by the system at the end of the Period is anywhere between 2 and 30 seconds,

the subject will be paid 10 ECU (for holding Option 1). If it is anywhere between 30 and 40 seconds, they

will be paid 12 ECU (for holding Option 2). If it is 40 seconds or higher, they will be paid 14 ECU.

Earnings

You will be paid a guaranteed show-up fee of $7 in addition to your earnings for your decision. The value

of the option that is treated as your final choice for a period (i.e. the option held by you at the time chosen

by the system) is the sum of the value of its Attributes as given in the table above. Experimental Currency

Units (ECUs) will be converted to cash (USD) at a rate of 1 ECU = $1 USD.

Though you will make decisions in each of 31 periods, you will only be paid for 1 of these periods. Which

period will be paid will be chosen at random at the end of the experiment, with each period being equally

likely to be chosen. Thus, it is in your best interest to behave in each period as if it is the period for which

you will be paid.
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D.2 Environment with Context

Instructions

Thank you for participating in the experiment today. At this time, please be sure that your cell phone

is turned off and stored away. At no point during this experiment should you use your cell phone or any

other electronic device. Also, please refrain from communicating with any other subject in the lab today.

Failure to follow these rules will result in your expulsion from the lab and you will forfeit any cash earnings

you may have otherwise received.

This is an experiment in decision making. You will be paid a $7 guaranteed show-up fee in addition to

earnings based on your decisions in the experiment.

Decision Environment

In each of 31 periods, you will be faced with a number of options from which you can select one. Each

option has 4 attributes: Shape, Pattern, Size, and Number. The value of an individual attribute is given in

Experimental Currency Units (ECUs) in the following table:
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Shape Value Pattern Value Size Value Number Value

1 ECU 1 ECU EXTRA SMALL 1 ECU 1 1 ECU

2 ECU 2 ECU SMALL 2 ECU 2 2 ECU

3 ECU 3 ECU MEDIUM 3 ECU 3 3 ECU

4 ECU 4 ECU LARGE 4 ECU 4 4 ECU

5 ECU 5 ECU EXTRA LARGE 5 ECU 5 5 ECU

The value of a given option is the sum of the value of its attributes as per the table above.

In each period, you will be shown a version of the following screen:
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The screen is composed of the following parts (left to right, top to bottom):

Option Label: this is the option for which information is currently displayed. In the example, Option 16

is shown along with information on the Attributes of Option 16. Option Labels have been chosen randomly

for each Period and do not reflect the value of the option. Moreover, two options with the same option label

may have different values in different periods.

Current Choice: this is the option that you are currently holding as your choice. This will be explained

in detail below. In addition to the label for your Current Choice, you are shown information about the

Attributes for your Current Choice for your reference.

Attribute Information: these are the attributes for the option currently displayed. The value of each

option is the sum of its attributes as according to the table above. For example, the value of Option 16 in

the example above is 15 ECU (4 for Hexagon + 2 for One-Bar Pattern + 4 for Large + 5 for Number 5 =

15).

Choose this Option Button: you can click this button to change your Current Choice to the option that

is currently displayed. If your Current Choice is the option that is currently displayed, this portion of the

screen with display The option currently displayed is your Current Choice.

Linked Options: there are four clickable lists of options that are Linked to the currently displayed option.

An option is Linked to the currently displayed option if it shares 2 or more attributes with the currently

displayed option. For example, if there was another Option in the current Period with a One-Bar Pattern
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and the Number 5, it would be shown in a list of Linked Options for Option 16 in the screenshot above. Note

that a list may be quite long, in which case you will see a scroll bar next to the list of Linked Options. The

full list of Linked options is separated into four different fields, one for each Attribute: Shape, Pattern, Size,

and Number. An option will be displayed in the relevant field if it meets two criteria: i) the option shares

at least two Attributes with the currently displayed option and ii) it shares the Attribute for the relevant

field with the currently displayed option.

For example, Option 4 also has the Hexagon Shape Attribute and the One-Bar Pattern Attribute. Since

Option 16 (the currently displayed option) has both of these Attributes, Option 4 is linked to Option 16.

Since it has the same Shape as Option 16, it will be listed in the Shape Linked Options list. Since it has the

same Pattern as Option 16, it will also be listed in the Pattern Linked Options list. Consider, for example,

another option, call it Option 12 (not displayed in the above screenshot). It has the Attributes: Square, One-

Bar, Small, 4. Notice that it shares the Pattern Attribute with Option 16 (the currently displayed option):

both have the Pattern One-Bar. But it does not share any other Attributes with Option 16. Therefore, it

will not show up in any of the link lists when Option 16 is the currently displayed option. Especially note

that it will not show up in the Pattern Linked Options list for Option 16, even though they have the same

Pattern Attribute, because it does not share two or more Attributes with Option 16.

Options Already Viewed: this is a clickable list of options that have already been viewed by you in the

given period. You can click on any option in this list and click View Selected Option to view information

for that option again. Again, if the list of Options Already Viewed gets sufficiently long, you will be shown

a scroll bar next to the list. Note: you can only view information for options other than the one currently

displayed by either clicking on it in one of the Linked Options menus or the Options Already Viewed menu

and clicking the View the Selected Option button for that list. Whenever you click on a new option from

one of these lists and click View the Selection Option, all of the information on the screen (Option Label,

Attribute Information, Linked Options, Options Already Viewed) will update to display information for the

option to which you are navigating. The Current Choice information in the upper right of the screen will

only ever change if you change your Current Choice (by choosing a new option using the Choose this Option

button).

Stop: if you would like to Stop looking at information for the available options and would not like to

change your Current Choice, you can click the Stop button.

Period Duration In each period, you will have up to 75 seconds to evaluate all of the available options

and make choices. At any time, you can click Stop and you will not be shown any more information on any

of the options for the given period. Note: in order to move on to the next period, you must wait for the

entire 75 seconds to pass in the current period. Thus, if you Stop after, say, 45 seconds in the current period,
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Time 0 Seconds 30 Seconds 40 Seconds
Option Option 1 Option 2 Option 3
Value 10 ECU 12 ECU 14 ECU

you will still have to wait the remaining 30 seconds for the period to end in order to move on to the next

period.

Choices

At the end of each Period, a random time between 2 and 75 seconds will be chosen and your Current

Choice held at that time will be implemented as your chosen option for that Period. Each time between 2

and 75 seconds is equally likely to be chosen.When evaluating options during the 75 seconds, you will not

know at what time your Current Choice will be implemented as your chosen option for that Period. At

the beginning of each Period, you will start off being shown information for one particular Option but will

have no Current Choice. If you do not have a Current Choice at the time chosen randomly by the computer

program to implement your choice, you will be paid nothing for the current Period. Thus, it is in your best

interest to choose any Option as soon as possible. You can then replace it with a better option when/if you

find an option that has a higher value.

At the end of each period, you will be told i) at what time your Current Choice was implemented, ii)

which Option you held at that time, and iii) what the value (in ECU) of that option was.

For clarification purposes, consider the following example: a subject is in Period 4 with a time limit of

75 seconds and they immediately choose the first option shown to them, Option 1, which has a value that

they have determined to be 10 ECU. After 30 seconds, the subject changes their Current Choice to Option

2 with a value of 12 ECU and continues evaluating the available options. After 10 more seconds (40 in total

since the start of the period), the subject selects a new Current Choice of Option 3 with a value of 14 ECU.

The subject makes no further choices and the 75 seconds runs out. The subjects choices are shown in the

following table:

If the time chosen randomly by the system at the end of the Period is anywhere between 2 and 30 seconds,

the subject will be paid 10 ECU (for holding Option 1). If it is anywhere between 30 and 40 seconds, they

will be paid 12 ECU (for holding Option 2). If it is 40 seconds or higher, they will be paid 14 ECU.

Earnings

You will be paid a guaranteed show-up fee of $7 in addition to your earnings for your decision. The value

of the option that is treated as your final choice for a period (i.e. the option held by you at the time chosen

by the system) is the sum of the value of its Attributes as given in the table above. Experimental Currency

Units (ECUs) will be converted to cash (USD) at a rate of 1 ECU = $1 USD.

Though you will make decisions in each of 31 periods, you will only be paid for 1 of these periods. Which

70



period will be paid will be chosen at random at the end of the experiment, with each period being equally

likely to be chosen. Thus, it is in your best interest to behave in each period as if it is the period for which

you will be paid.
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