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Abstract

This paper proposes new jackknife IV estimators that are robust to the effects of many weak
instruments and error heteroskedasticity in a cluster sample setting with cluster-specific effects
and possibly many included exogenous regressors. The estimators that we propose are designed
to properly partial out the cluster-specific effects and included exogenous regressors while pre-
serving the re-centering property of the jackknife methodology. To the best of our knowledge,
our proposed procedures provide the first consistent estimators under many weak instrument as-
ymptotics in the setting considered. We also present results on the asymptotic normality of our
estimators and show that t-statistics based on said estimators are asymptotically normal under
the null and consistent under fixed alternatives. Monte Carlo results show that our t-statistics
perform better in controlling size in finite samples than those based on alternative jackknife IV
procedures previously introduced in the literature.
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1 Introduction

The problem of endogeneity remains central to research in economics and econometrics. The

key reason for this is that there are many different regression settings for which endogeneity is
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an issue, but for which valid estimators are not currently available. Omne such setting involves
the case where the objective is to estimate an IV regression with fixed effects using panel or
cluster-sampled data in situations where the number of available instruments may be large, but
where the instruments themselves are all only weakly correlated with the endogenous regressors.
There is now a substantial literature on estimation and inference under many weak instruments,
including Chao and Swanson (2005), Stock and Yogo (2005), Hansen, Hausman, and Newey (2008),
Hausman et al. (2012), Chao et al. (2012, 2014), Bekker and Crudu (2015), Crudu, Mellace, and
Sandor (2020), and Mikusheva and Sun (2021). However, the analyses given in these papers are
for cross-sectional data, thus precluding panel data or cluster sampling settings where there is
additional unobserved heterogeneity modeled by fixed or cluster-specific effects. Moreover, even in
the cross-sectional context, 2SLS and the LIML estimators are not well behaved under many weak
instruments. In particular, Chao and Swanson (2005) and Stock and Yogo (2005) show that the
2SLS estimator is inconsistent under many weak instrument asymptotics, even when the errors are
homoskedastic. In addition, Hausman et al. (2012) and Chao et al. (2012) point out that LIML is
also inconsistent under many weak instruments when there is error heteroskedasticity. Estimators
which are currently known to be robust to the effects of many weak instruments in cross sectional
settings with error heteroskedasticity all have a jackknife form, as discussed in Chao and Swanson
(2004), Chao et al. (2012), and Hausman et al. (2012). These include the JIVE1 and JIVE2
estimators studied in Angrist, Imbens, and Krueger (1999), for example. For further discussion,
see Phillips and Hale (1977), Blomquist and Dahlberg (1999), Ackerberg and Devereux (2009),
and Bekker and Crudu (2015). These papers again only study various versions of the jackknife IV
estimator in a cross-sectional setup without fixed effects.

The goal of this paper is to consider the problem of many weak instruments in a panel data
or cluster-sampling framework with fixed or cluster specific effects. In addition to the presence
of unobserved heterogeneity, our setup allows for additional (included) exogenous regressors which
appear in both the outcome, or structural, equation and in the first-stage equations. To consistently
estimate the structural parameter vector of interest in an IV regression with fixed or cluster-specific
effects, we propose three new estimators, which we refer to by the acronyms FEJIV, FELIM, and
FEFUL. These estimators are so named as they are modified versions and generalizations, respec-
tively, of the jackknife IV (JIV), the LIML, and the Fuller (1977) estimators. In contrast to the
original JIV, LIML, and Fuller estimators, our new estimators are designed to be robust to the
effects of many weak instruments and error heteroskedasticity, even in the presence of additional
complications caused by having fixed or cluster-specific effects and many included exogenous re-
gressors. To achieve consistency in our setting requires an estimator that not only properly partials

out additional covariates and cluster-specific effects, but at the same time must also be properly



centered in a form similar to a degenerate U-statistic. It turns out that accomplishing both of
these objectives simultaneously is quite challenging. While a number of innovative JIV-type es-
timators have been proposed recently (see, for example, the improved jackknife estimator IJIVE
of Ackerberg and Devereux (2009), as well as the UJIVE estimator of Kolesér (2013)), due to the
aforementioned difficulties, these estimators are not consistent when applied to our setting under
many weak instrument asymptotics, as we shall elaborate on in greater detail in Section 3. On the
other hand, the estimation procedures that we introduce here are carefully designed to properly
partial out fixed or cluster-specific effects and included exogenous regressors, while preserving the
re-centering property of the jackknife methodology. To the best of our knowledge, the estimators
presented here are the first consistent estimators under many weak instrument asymptotics in an
IV regression model with fixed or cluster-specific effects and possibly many included exogenous
regressors. In addition to consistency, we also establish the asymptotic normality of the FELIM
and FEFUL estimators'.

This paper also provides a number of results showing that hypothesis testing procedures based
on FELIM and FEFUL are robust to the effects of many weak instruments. In particular, we
construct t-statistics based on these two estimators and show that, when the null hypothesis is
true, these t-statistics converge to an asymptotic standard normal distribution under both many
weak instrument asymptotics and also standard asymptotics. Moreover, our t-statistics are shown
to be consistent in the sense that under fixed alternatives they diverge, with probability approaching
one, in the direction of the alternative hypothesis.

The many-weak-instrument asymptotic framework used in the sequel to analyze the perfor-
mance of FELIM and FEFUL was first proposed in Chao and Swanson (2005). This framework
extends earlier work by Morimune (1983) and Bekker (1994) on what has become known in the IV
literature as the many-instrument asymptotics or “Bekker asymptotics”, whereby a large sample
approximation is carried out by considering an alternative sequence where the number of instru-
ments is allowed to approach infinity as the sample size grows to infinity. A key difference between
the Bekker asymptotic framework and the many-weak-instrument asymptotic framework is the rate
of growth of the so-called concentration parameter. As has been pointed out by Phillips (1983) and
Rothenberg (1984), among others, the concentration parameter is the natural measure of instru-

ment strength in a linear IV model. In the original papers by Morimune (1983) and Bekker (1994),

"We do not provide a formal proof of the asymptotic normality of the FEJIV estimator because the results of
our Monte Carlo study, as reported in Section 6, show that FELIM and FEFUL tend to have better finite sample
properties than FEJIV. For this reason, we shall focus the presentation of our theoretical results on FELIM and
FEFUL only. However, one can easily show, by slightly modifying the arguments that we give for FELIM and
FEFUL, that FEJIV is also asymptotically normal, under many weak instrument asymptotics. Note also that our
simulation finding regarding the properties of FEJIV are consistent with the findings of Davidson and MacKinnon
(2006).



the concentration parameter is assumed to grow at the same rate as the sample size, which is also
what is assumed under standard (strong but fixed number of instruments) asymptotics, whereas
the many-weak-instrument asymptotic framework allows the concentration parameter to grow at
a rate much slower than the sample size, thus allowing for much weaker instruments. Let u2 be
a sequence that gives the rate of growth of the concentration parameter, and let K5, denote the
number of instruments. Chao and Swanson (2005) show that for consistent point estimation to
be possible, a sufficient condition is \/m Ju2 — 0, as Ko, p2,mn — oo. This allows for the
possibility that u2 is of an order smaller than K>, which, in turn, can be of an order much smaller
than the sample size n. The original Bekker framework, on the other hand, requires K>, p2, and
n to all be of the same order of magnitude. Recent work by Mikusheva and Sun (2021) indicates
that the condition \/m Jut — 0, as K, p2,m — oo is not only sufficient but also necessary for
consistency in point estimation and hypothesis testing.?

The rest of the paper is organized as follows. Section 2 provides some brief motivation for our
paper. Section 3 states the model, defines the FELIM, FEFUL, and FEJIV estimators, and provides
an explanation of how our estimators improve upon various alternative jackknife IV estimators that
have previously been proposed in the literature. Analytical results presented in Section 4 establish
that our estimators are consistent and asymptotically normally distributed. Section 5 shows how
to estimate the variances of the estimators and also provides asymptotic results for t-statistics
based on our estimators. Section 6 contains the results of a series of Monte Carlo experiments in
which the relative performance of our estimators is compared with that of extant estimators in the
literature. Section 7 concludes. Proofs of Theorem 1, Corollary 1, Theorems 4-5, and Corollaries
2-3 are presented in the Appendix to this paper. The proofs of Theorems 2 and 3 are longer and
are given in a supplemental Appendix®.

Before proceeding, we will first say a few words about some of the commonly used notations
in this paper. In what follows, we use Amin (A), Amax (A), and ¢r (A) to denote, respectively,
the minimal eigenvalue, the maximal eigenvalue, and the trace of a square matrix A, whereas A’
denotes the transpose of a (not necessarily square) matrix A. |la|, denotes the usual Euclid-
ean norm when applied to a (finite-dimensional) vector a. On the other hand, for a matrix
A, ||A]l; = max {\/m : A (A’A) is an eigenvalue of A’ A} denotes the matrix spectral norm,

while ||Al|p = +/tr {A’A} denotes the Frobenius norm and ||A||, = maxi<i<m, Z;n:nl la;j| (ie.,

2An alternative to the asymptotic framework considered here is the weak instrument asymptotic framework pro-
posed in Staiger and Stock (1997). The Staiger-Stock framework considers a setting where 2 = O (1), in which case
the IV model is not point identified. We do not consider the Staiger-Stock framework in this paper because our focus
is on consistency of point estimation and on test consistency.

3The supplemental Appendix can be viewed at the URL: http://econweb.umd.edu/~chao/Research /research _files/
Supplemental Appendix to Jackknife Estimation Cluster Sample IV Model December 20 2022.pdf



the maximal row sum of an m,, x m,, matrix). In addition, we use A o B to denote the Hadamard
product of two conformable matrices A and B (i.e., Ao B = [a;;b;j], for A = [a;;] and B = [b;j]).
We take D (a) to be a diagonal matrix whose diagonal elements correspond with the elements of the
vector a, while D (A) is taken to be a diagonal matrix whose diagonal elements are the same as the
diagonal elements of the square matrix A. Furthermore, we will let ¢, = (1,1,...,1)" denote a p x 1
vector of ones, and we take the shorthand a.s.n. to mean almost surely for all n sufficiently large.
Finally, we use CS and T, respectively, to denote the Cauchy-Schwarz and the triangle inequality,
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and the abbreviation w.p.a.l stands for “with probability approaching one”.

2 Some Background and Motivation

In this section, we briefly discuss some of the issues that arise when one needs to partial out
additional covariates in a setting with many weak instruments, with the hope that such a discussion
will provide the necessary background to help readers gain a stronger intuitive feel for the estimation
procedures which we will introduce in subsequent sections. To offer a point of contrast, we will
start by first reviewing some basic aspects of IV estimation under many weak instruments in the
context of a simple, cross-sectional model with a single endogenous regressor and no additional

covariate, i.e.,

y = 00 x + €,
nx1 1x1nx1  nx1
T = oy Tnp + u
nx1 nxKaKax1 nxl

Here, y is vector of observations on the outcome variable, x is the vector of observations on the
endogenous regressor, and Zy is a non-random matrix of observations on the Ky instruments. In
addition, we intentionally specify the coefficient vector 7, of the first-stage equation to depend
on n to allow for local-to-zero modeling of weak instruments?. Even in this simple setup, it is
well-known that, in the presence of many weak instruments and error heteroskedasticity, the usual
IV-type estimator such as 2SLS and LIML will not have desirable asymptotic properties. To see

this, consider the case of the 2SLS estimator, which in this case, can be decomposed as

Sosrs — 80 = (:E/PZZSL‘)_l o' P?¢ = (), Zh Zomy + 27}, Zhu + u/PZZU)_l (7l Zhe +u'P%e) (1)

4See Assumption 3 in section 3 for the type of (generalized) local-to-zero structure which we assume for the more
general cluster-sample/panel-data IV regression setting studied in this paper.



where 525 s is of course obtained by minimizing the objective function
Qasrs (8) = (y — 2/8) P?2 (y — 2/8) with P%2 = Z, (Z4Z5)~" Z. Under conventional asymptotics
with a fixed number of strong instruments, the asymptotic behavior of the denominator &’ P%2z will
be dominated by the concentration parameter 7}, Z, Zom, which in this case grows at the rate of the
sample size n, whereas 7/, Z,e = O, (y/n) and v P?2¢ = O, (1) so that, in some sense, the signal in
the denominator overwhelms the noise elements in the numerator, leading to the consistency of the
2SLS estimator. Viewed from this perspective, the problem caused by having weak instruments is
that the signal component as represented by the concentration parameter 7’2 Zsm, is now weaker
and grows at some rate p2 which is much slower than n. On the other hand, the problem caused
by many instruments is that it inflates one of the noise components u'P#2¢ which now grows, in
probability, at the rate Ks. This combination of having stronger noise and a weaker signal can
then lead to inconsistency of the 2SLS estimator when p2/Ks = O(1). Note also that under
conventional, strong-instrument asymptotics the term u'P%2¢ is of a lower order relative to 7 Zhe
but this will no longer be true when 2 /K> = O (1), so having sufficiently many weak instruments
leads to a reshuffling of the order of magnitude of the terms in the numerator of expression (1).
Now, one way to fix this problem in the case with no additional covariates is to use one of the
JIVE estimators proposed in Angrist, Imbens, and Krueger (1999). As an illustration, consider the
JIVE2 estimator proposed in that paper which can be obtained by minimizing a modified 2SLS
objective function whereby the diagonal elements of the projection matrix P%2 are removed; that

is, the JIVE2 estimator is obtained by minimizing the objective function
Qurves (9) = (y —'9) [P = D (P%)] (y - '9)

where D (PZ2) is the diagonal matrix whose diagonal elements are the same as those of P?2. The
reason why such “jackknife-type" modification helps is that if we do a decomposition of JIVE2

similar to the decomposition given for 2SLS in expression (1) above, we obtain
Syrves — 60 = (¢ [P — D (P?)]2) " (x, 2, [P?% — D (P%)] e + 4/ [P?% — D (P?%)]¢) .

Comparing the JIVE2 bilinear term v’ [P#2 — D (P#2)] ¢ with its counterpart v’ P#2¢ for the 2SLS
estimator, we see that the former has a smaller order of magnitude than the latter under a many
instrument asymptotic regime, so that, in particular, v’ [P22 - D (PZz)] e =0, (\/ITQ) whereas
u'P?2¢ = O, (K3). The reason why this is the case is related to the so-called concentration of
measure phenomenon that has been studied in the probability literature. Note that, under the

assumption that (g;,u;) is independent of (¢;,u;) for all i # j (where ; and u; denote the ™



component of ¢ and u respectively); E [u’ [P22 - D (PZz)] 5] = 0, even under heteroskedasticity,
whereas F [u’ PZze} # 0, so that the former, being a properly centered bilinear form, will have a
lower order of magnitude than the latter, which is not properly centered at zero®. It follows that
JIVE2 will be more robust to the effects of many weak instruments in the sense that it will be
consistent as long as the concentration parameter grows fast enough so that \/Kz/u2 — 0, whereas
the consistency of the 2SLS requires the stronger condition that Ks/u2 — 0.

Consider next a more realistic model with additional covariates

) = 50 x + Z Y + €,
nx1 Ix1nxl  pxKi Kix1  nXxl
x = Ziy B + Zy m + u
nx1 nxK1K1x1 nxKyKexl —nX1

To see why it is not as straightforward as one might think to generalize the JIVE2 estimator
discussed previously to this setting, consider the IJIVE2 (the improved JIVE2) estimator discussed
in Evdokimov and Kolesédr (2018). To construct the IJIVE2 estimator, one first partials out the

covariates Z; to obtain the system of equations

y = 00T+¢E (2)
T = Zom+a (3)

(where § = M%1y, & = M%1z, Zy = M1 Zy, & = M%'e, i = M%wand M% = I,,— 7, (Z,2,) "' 1)
and then construct a JIVE2 estimator based on the representation given in expressions (2)-(3). It
is easy to see that this estimation strategy leads equivalently to an estimator that minimizes that

objective function
Qe (0) = (5 —79) [PZ2 - D (PZ2)} (v —79)

and the deviation of this IJIVE2 estimator, 25\1 JIVE2, from the true value, dg, can be decomposed

To give perhaps a more familiar example of the concentration of measure phenomenon, we can consider a simple
case where Wy, ..., W, is a sequence of independent random variables such that sup, & [Wf] < oo and F [W;] # 0 for

all 4. In this case, it is well-known that Zn . W; = O, (n) whereas Zn ) (Wi — u;) = Op (v/n), so that the order
1= 1=
of magnitude in probability of the uncentered sum Zé_l Wi is much larger than that of the properly centered sum

E n ) (Wi — p;). In other words, the sum of an independent sequence of random variables will concentrate more

i=

sharply in a much narrower range around its mean. It follows also that if it had been the case that E [W;] = 0 for all
n

1; then, we would have E - W; = O, (v/n), so the order of magnitude in this case is smaller than in the case where
i=

E [W;] # 0. Moreover, the concentration of measure phenomenon is known to exist more generally, not just for sums
of independent random variables but also for Lipschitz functions of such variables and for multilinear forms. See, for
example, Tao (2012) for additional discussion.



as
S1u1vEs — 80 = (5' [PZ? - D (Pz)} %)_1 (w;% [PZZ - D (PZZ)} e+ [PZ2 - D (PZN E)

Again, if we focus on the term o’ [PZQ - D (Pz)} €, we can show by simple manipulation that,

= ~ ~ o~ 1 ~

since P% = 7, (Zgzz) Zy = M%7, (25 M % 75) Zy M2,

W |P% - D(P2)|E = W M% M%7y (M7 Zo) ZpM% — D (P%)] M7
= [PZ2 — M%D (PZ2) le] e

By an easy calculation, one can show that F {u’ [Pzz —M%D (P22> le} 5} = 0, so this term
is not properly centered at zero, even under the usual assumption that (g, w;) is independent of
(€j,u;) for all i # j, as long as there is error heteroskedasticity. Note that, the matrix pZ
M?%D (PZZ) M?#" in the middle of the bilinear form in « and e turns out not to have zero diagonal
elements because, in some sense, the process of partialing out Z; has interfered with the process
of jackknife recentering in this case. Our basic point in presenting this example here is simply to
show that it is not as easy as it might seem to construct an IV estimator which simultaneously
partial out all additional covariates and at the same time preserve the recentering property of the
jackknife methodology. As we will show in the remaining sections of this paper, such estimators
can be constructed, however, even in a more general cluster-sample/panel-data setting with fixed

effects and with many stochastic instruments and included exogenous regressors.

3 Model, Assumptions, and Estimation Procedures

The more general model that we consider in this paper is a cluster-sample IV regression model

yl(zpi) = X{i7t)50 + On 2 + i e, (4)
X
Xiy = Q2160+ 10,2560 + &+ Uy, (5)

where ¢t = 1,...,n, t = 1,...,T;, and the total sample size is given by m, = Zn 1Ti. The notation
1=

(i,t) : Nx N — N denotes a pairing function which maps an ordered pair of natural numbers

into a natural number, so that, in particular, we have (1,1) = 1,...,(1,T1) = T1,(2,1) = T1 +

1,...,(n,T,,) = my. This is just a notational device used to convert a double index into a single



index, thus, facilitating certain vectorization and summation operations while still allowing one
to keep track of both ¢ and ¢. In this setup, we take X4 to be a d x 1 vector of endogenous
regressors, and we let 7y (; 1) denote a K1, X 1 vector of included exogenous variables and let Z (; 1)
denote a Ky, x 1 vector of instruments, for ¢ = 1,2,...,n and t = 1,...,T; (or, equivalently, for
(i,t) = 1,...,my). To allow for the possibility that Z; ; ;) and Z (; +) may be weakly correlated with
the endogenous variables y(; ;) and X(; ;), we let each of the coefficient parameters ,,, ®,, and 11,
to possibly have a (generalized) local-to-zero structure which we will specify more precisely later in
Assumptions 3 and 4. In addition, a; and &; in the above equations denote unobserved or individual
effects interpreted as “fixed effects” in the sense that although we do not necessarily require «; and
&, to be (non-random) constants, they are allowed to be correlated with the exogenous variables
Z1(ir) and Zy (; ), unlike the typical assumptions specified in a traditional “random effects” model.
More precise assumptions on the model given by equations (4) and (5) are given below.
We will develop some additional notations before proceeding. First, let

Zy = (Z1,11)s - Z0,1,11)5 > Z1,(n1) ..,ZL(n’Tn))/ be an m, x Ki, matrix of observations on the
include exogenous variables and let Zy = (Zy 1,1y, - Zo,(1,13)s -+ 42, (n,1)s > ZZv(an))/ be an m, X
K, ,, matrix of observations on the instruments. Also, define the m,, x K,, matrix Z = [ Z1 Zy } ,
where K,, = Ky, + K2,. Now, let y and X be defined similar to Z; and Zz by stacking the
observations across the index (i,t) = 1,...,my,; and we can write the model given by equations (4)

and (5) more succinctly as

y = XootZip, +Qate, (6)
My, X
X = Z@,+ Bl +QE+U, (7)
!/
where a = (ala ) an)/a == (51& "'7517,)/’ and Q = ( el,nl’/Tl 62,71[’/1"2 U en,n[/’/fn ) with
My XN

ejn being an n X 1 elementary vector whose 4t component is 1 and all other components are
0. Note that our setup allows the clusters to be of possibly different sizes, so that our model
can also be interpreted as a possibly unbalanced panel data model. For notational convenience,
we have suppressed the dependence of y, X, Z1, Zs, @, €, and U on n but have made explicit
the dependence of ¢,,, ®,, and II,, on n to highlight the fact that these parameters may have a
local-to-zero structure.

Making use of these notations, we can write down the following assumptions for our model.

Assumption 1: Let FZ = o(Z) (i.e., the o-algebra generated by Z). Assume the following
conditions are satisfied (i) Conditional on FZ, (E(lyl), U(’1 1)) ey (5(1;1), U(’l T1)) ,

..... , <€(n71), U(’n,l)) s ey (E(an), U(’an)) are mutually independent. (ii) F [E(i7t)‘f5] =0 and

9



E [U(Z:t)‘fnz} = O a.s., fOI’ (Zat) = 17 ceey M.

Assumption 2: There exists a constant C > 1 such that for all n

(1) maxi<(ip<m, F [E?i’t)\}'ﬂ < C < 00 a.s.and max;<(j)<m, F [‘U(Zt H2 |]-“Z] < C < > a.s.

and (ii) infi<(; ¢)<m,, Amin (Q(z‘,t)) >1/C >0 a.s., where Q) = E [l/(, HY ( )|.7-' with vy =
/

( (i) U(Ii7t) ) :

Assumption 3: Let I, = YD, /\/n, where D, = diag (ulm, ..,udm) Also, let ™" = ming<g<g

M. and let Ky ;, denote the number of instruments or the number of columns of Z3. The following

conditions are assumed on the diagonal elements fi; ,,, .., fig,, as n — oo. (i) Either py,, = /n

or ppn/vn — 0, for k € {1,...,d}. (i) p™ — oo, as n — oo, such thaty/Ks,/ (1 mm) — 0

(ili) Amin (Hn) > 1/C > 0 and Amax (Y/Z522Y/n) < C < oo a.s., for all n sufficiently large,

where H, = Y/ZbM#Q ZyY /n. Here, we take M(Z1:Q) = MQ — M@z, (Z;M?2,) " Z;M?

where M@ = I, — Q(Q'Q)"*Q', so that M(%1:Q) is a projection matrix which projects into the

orthogonal complement of the space spanned by the columns of the matrix [ Z1 Q }

Assumption 4: Let ®, = ©D,/\/n and ¢, = y7,/\/n, where D,, = diag (K1, .., Kin) and 7,
is a sequence of positive real numbers. The following conditions Zuxrg assumed on ki p, .., Kqp and
on T, as n — oo: (i) either ky,, = /n or kg pn/v/n — 0, for £ € {1,...,d}; (ii) either 7, = /n or
Tn/v/n — 0.

Assumption 3 is general enough to accommodate a range of situations including both cases

where there are strong instruments and cases where the instruments are weaker. In particular,

when piy,, = -+ = pg, = "

the instruments are strong. On the other hand, the cases where some of the pu;,,’s (j=1,..,d)

= \/n, our model specializes to the more classical situation where

grow at a rate slower than /n correspond to cases where at least some of the components of the
parameter vector of interest § are weakly identified. By allowing for the possibility that different
Kjpn's may grow at different rates, our setup also allows for heterogeneity in how strongly the
different components of § are identified. Note, however, that we do require that \/m / ( mm)2 —
0, since this is both a sufficient and a necessary condition for consistent estimation of 4.

It should be noted that an interesting paper by Antoine and Renault (2012) has also modeled
heterogeneity in instrument weakness in a way similar to Assumption 3. However, our setup here
differs from that of Antoine and Renault (2012) in several respects. First of all, Antoine and

Renault (2012) consider a GMM setup with a fixed number of moment conditions. Hence, Antoine

SThe sufficiency part of this condition has been demonstrated in various settings by Chao and Swanson (2005),
Hausman et al (2012), and Chao et al (2012); whereas the necessity part of this condition has been proved recently
by Mikusheva and Sun (2021).

10



and Renault (2012) allow for nonlinearity in their framework but do not consider the case where
the number of instruments/moment conditions may be large, as we do here in our linear setup.
In addition, the parameter vector in the Antoine-Renault setup is of fixed dimension. In contrast,
although our parameter vector of interest ¢ is also of fixed dimension; our model contains a large
number of additional nuisance and incidental parameters, given that we allow for many included
exogenous regressors and for the presence of fixed effects. Thus, the paper by Antoine and Renault
(2012) does not consider the kind of problems associated with having to eliminate a large number
of nuisance and incidental parameters that we do here in our paper. Given these differences, we
view our analysis here as being largely complementary to that of Antoine and Renault (2012).
Assumption 4 allows for possible local-to-zero modeling of the coefficients of Z; both in the
outcome (or structural) equation and in the first-stage equations. In the special case where k1, =
o =FRgp =Tn =vnand py, =+ = g, = P = \/n, our model becomes a standard textbook
linear IV model (or limited information simultaneous equations model) with strong instruments.
However, by allowing for the possibility that some of the «;,’s and/or 7,, may grow at a rate slower
than \/n, we also accommodate situations where the additional covariates may only be weakly

correlated with y(; and/or with some elements of X (i)

Assumption 5: (i) m, — oo as n — oo, such that m,, ~ n. (i) Ki,, K2y — 00, as n — 00,
such that Klzn/n =0(1) and K%n/n = o0(1). (iii) Let M9 =1I,,, — Q(Q'Q) ' Q. There exists a
positive constant C' such that Ay, (Z’ M@z ) > C > 0 a.s., for all n sufficiently large. (iv) Let pt=
PEQ) _p%.Q) — M(%Q) 7, (7, M@ 7,) ™ 25 M(#1Q) and PAE = MQZ, (Z,M?Z,) ™" Z, M,
where M(Z1:Q) is as defined in part (iii) of Assumption 3 and where PZQ) and P(41:Q) are pro jection
matrices that project into the column space of [ Z Q } and { Zi Q ], respectively’. Assume

1
that max<(; y<m, P(ﬁ)(i,t) = Ou.s. (K1,n/n) and max,<(; y<m, P(tt)7(i’t) = Oqys. (Kan/n)s.

Assumption 6: (i) minj<;<, 7; > 3 for all n; (ii) There exists a positive integer T' > 3, such that

maxi<;<n T < T < oo, for all n.

Assumption 7: Assume that maxi<(<m, HT’ZQM(Zl’Q)e(i7t)H2 /v/n = op(1), where egy is
an my, X 1 elementary vector whose (i,t)" component is 1 and all components are 0 for (i,t) €
{1,2,....,mp}.

"Note that P%%) and P%@can be given the explicit representations P(%® = PZ 4 M?%Q (Q'MZQ)71 Q' M?
and PZ@) = P71t 4 M#A1Q(Q'M7Q) "' Q'M?, where P? = Z(2'2)7' 2!, PP = Z,(Z12,) ' 24, M7 =
Im, — P?', and M% = I,,, — P?.

$More primitive, sufficient conditions for Max) < (i t)<mn P(f};‘(i‘t) = Ou.s. (K1,n/n) and maxi< (. ¢)<mn P(J{‘t),(i‘t) =
Oa.s. (K2,n/n) are given in Lemma OA-20 of the Additional Online Appendix, which can be found at the URL:
http://econweb.umd.edu/~chao/Research/research files/Additional Online Appendix Jackknife Estimation
Cluster Sample IV Model December 20 2022.pdf
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Note that Assumption 7 is similar to a condition given in Assumption 3 of Cattaneo, Jansson,
and Newey (2018). As noted in that paper, this assumption comes close to providing a minimal

condition for the central limit theorem to hold.

Assumption 8: Let p, = F [U’MQE] /E [E/MQE]. Let the limit of p,, exists, so that p,, — p , as

n — oo, for some fixed d x 1 vector p € §,, where §, denotes some compact subset of R4,

To estimate the parameter (vector) of interest § in equation (4), we propose three new jackknife-
type IV estimators. We shall use the acronyms FEJIV, FELIM, and FEFUL to denote, respectively,
the Fixed Effect Jackknife IV, the Fixed Effect LIML, and the Fixed Effect Fuller estimator.

1. FEJIV:
by = (X'AX) " X" Ay,

where 4 = PL — MZQD;MZQ) | with M%@) = I,, — P%Q) and with P+ as previously
defined in Assumption 5. In addition, Dy denotes an my, X m,, diagonal matrix, whose diagonal
elements 9 = ( 51 52 e ﬁmn )/, when stacked into a vector, correspond to the solution
of the system of linear equations dp1 = (M%) o M(Z@) 9, where dp.1 is an my, x 1 vector

containing the diagonal elements of the projection matrix P+.?
2. FELIM: The FELIM estimator gL is the estimator that minimizes the objective function

5 __ (- X0 Ay - X9)
Qreriv (6) = (y— X0) MZQ) (5 — X5) (8)

where A is as defined above in the definition of FEJIV and where M(Z1:@Q) is as defined in

Assumption 3. SL has the explicit representation
~ —~ -1 —~
3r, = (X’ [A - ELM(ZL@} X) (X’ [A - ELM%Q)} y) , 9)
where 7, 1, is the smallest root of the determinantal equation det {YIAY — XM (Zl’Q)Y}
— 0 with X = [ y X ]
3. FEFUL: The FEFUL estimator dz is defined as follows:

op = (X’ [A - ?FM<ZLQ>] X) - (X’ [A - ZFM(ZLQ)} y) :

In Lemma 1 below, we show that, under mild conditions, the system of linear equations, dp. =
(M(Z’Q) o M(Z’Q)) ¥, always has a unique solution.

12



where ZF = [ZL — (1 — ZL) C’/mn] / [1 — (1 — ZL) C’/mn] for some constant C' and WhereZL
is as previously defined in the definition of FELIM given above. For the Monte Carlo results

reported in section 6, we shall take C' = 1.

To help develop some intuition for these new estimators, it is easiest if we focus the discussion
on FEJIV. To proceed, note first that, under our setup, it is not difficult to show that

65— 80 = (X'AX) ' X'Ae = (X'AX) ™! (I, Z3Ae + U' Ae)

where the “numerator” of the right-hand side of this equation is again written in a familiar form
as the sum of a linear form IT/,Z, Ae plus a bilinear form U’Ae. Next, note that an elementary
result from linear algebra states that if A = M DM, where A is a square matrix, D is a diagonal
matrix, and M is a symmetric matrix, then a = (M o M) d, where a = (a11, a2, ..., 4m, m, ) and
d = (di1,daa, ..., dmmmn)/ are vectors whose elements are the diagonal elements of the matrices A
and D, respectively. Put in words, this result states that the vector of diagonal elements of A is
a linear transformation of the vector of diagonal elements of D, with the transformation matrix
given by (M o M). Since in the definition of 3, we have specified 4 = PL — M(Z7Q)D5M(Z7Q),
it follows that by choosing the diagonal elements of Dy to satisfy the system of linear equations
dpi = (M(Z’Q) o M(Z’Q)) ¥, where dp1 = (Pﬁ,Pﬁ, ...,P,f;mmn)/, we would, by construction, end
up with a matrix A whose diagonal elements Aj1, ..., Ay, m, are all zero. This, in turn, leads
to the bilinear form U’ Ae having the characteristics of a degenerate U-statistic, with expectation
that is properly centered at zero. As discussed in the previous section, this proper centering is
important, as it reduces the order of magnitude of the bilinear term U’ Ae and, thus, allows s J to
be both consistent and asymptotically normal under many weak instrument asymptotics so long as
VEz2n/ (ugﬁ“)Q — 0. In addition, write 0, — dp = (X'AX) ' X'A(Z1¢, + Qo + ), and note that

X'A(Zyo, +Qa+e) = (219, + Zoll,, + QE+ U) [PL - M(Z’Q)DﬁM(Z’Q)] (Zrpy, + Qo +¢)

= I,Z,Pe+ U [PL - M(Zv@D@M(ZvQ)} e (10)

Looking at equation (10), we see that the design of the matrix A allows fixed effects and the included
exogenous regressors Z; to be partialed out on both sides of A in the above expression, and this is
done in such a way so that the proper centering of the bilinear form U’ [PJ- — M(Z’Q)D@M(Z’Q)] €
is still preserved. FELIM and FEFUL are a bit more complicated than FEJIV to discuss, but
they share the same basic design as FEJIV; and, in consequence, they will also be consistent and

asymptotically normal under many weak instrument asymptotics, as we will show in the theorems
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below.

In contrast, jackknife IV estimators currently available in the literature do not fully accomplish
the dual goals of being both properly centered and of having all cluster-specific effects and additional
covariates properly partialed out. To be more specific, we will briefly discuss a number of jackknife
IV estimators that have been proposed in the literature. The paper by Angrist, Imbens, and
Krueger (1999) consider the JIVEL and JIVE2 estimators of the parameter vector §, but in a cross-
sectional setup without either fixed effects or included exogenous regressors. Hence, these authors
do not explicitly study the more general version of these estimators that partials out additional
covariates. Hausman et al. (2012) introduce jackknife versions of LIML and Fuller estimators
called HLIM and HFUL, but they do so in a cross-sectional context where there are no fixed effects
and where only a small number of included exogenous regressors is allowed, so that the problem of
having to partial out fixed effects and a potentially large number of included exogenous variables
is not studied in that paper. In addition, the symmetric jackknife IV (SJIVE) estimator proposed
by Bekker and Crudu (2015) is formulated in a setting without fixed effects and with no included
exogenous regressors. Hence, that paper also does not consider issues related to having to partial
out additional covariates.

In a recent paper, Evdokimov and Kolesér (2018) examine a number of interesting jackknife IV
estimators that allow for partialing out of additional covariates. In the previous section, we have
already discussed the IJIVE2 estimator from that paper in the context of a simple cross-sectional IV
model. Here, we shall briefly examine the other estimators considered in Evdokimov and Koleséar
(2018) and provide some discussion about how these estimators might perform under many weak
instruments asymptotics when applied to our more general cluster-sample setting here with fixed
effects. For this purpose, it is easiest to consider the case where there is only one endogenous
regressor. In this case, note that D, = p,, = PR since d = 1, and we shall use z, m,, ¢,,, v, and u
in lieu of X, IL,, ®,, T, and U to emphasize the fact that, in the one endogenous regressor case;
T, Tn, ¢, and u are vectors and not matrices.

Consider first the IJIVE1 estimator studied in that paper. This estimator was originally pro-
posed by Ackerberg and Devereux (2009) and is further analyzed in the grouped data setting by
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Evdokimov and Kolesar (2018)1°. Using our notation, the estimator can be written in the form

Siver = (x/M(Zl’Q) [PL D (PL)} [Imn D (PL)} - M(Zl’Q)x>

x (x'M(Zl’Q) [Pi -D (Pi)} [Imn -D (PL)} - M<Zh%> .
Now, it is easily seen that the deviation of this estimator from the true value dg can be written as

Srarver — 0o = (x,AIJlx)il ' Ar (Zrp, + Qa +¢)
= ({L’,A[ljl.’l,’)il (H%ZéA[leS + U/A[J;[E) , (11)

where A7;; = M(Z1Q) [PL — D (PY)] [I,,, — D (P1)] " M(Z-Q), Straightforward

calculations further show that the (¢, t)th diagonal element of the matrix Ay is given by

3 MR (2.Q)

— j7S ) Zat 1 7 yQ i

ALy, G0, 6i0) = T_ pL [P(i,t),(j7s) - M(z,tl),(j,s)P(j,s),(j,s) £0,
(j7s):1 (j7s)7(j»s)

for (i,t) = 1,...,my, so that /A€, the bilinear form on the right-hand side of equation (11)
above, will not be a degenerate U-statistic and will not be properly centered at the origin. Hence,
similar to what we have pointed out previously about IJIVE2, the problem here is that, although
the matrix [PJ- -D (PJ-)] [Imn -D (PL)]f1 does have a “jackknife form” in the sense that the
elements of its main diagonal are all zero, it defines a bilinear form not with respect to u and ¢
but with respect to the projected vectors u = M(Z1.:Q)y, and € = M(%1:Q)¢. Note, however, that

th element of u but other elements

in general the (i,¢)™ clement of @ will contain not just the (i, ¢)
as well, and similarly for €. In consequence, merely having the diagonal elements zeroed out in
this case is not sufficient for the bilinear form v/ A;j1e = ' [PL - D (PL)] [Imn -D (PJ-)TIE to
have expectation equal to zero. Again, we have a situation where the process of partialing out the
covariates has interfered with the process of jackknife recentering.

Another estimator studied in Evdokimov and Kolesar (2018) is the UJIVE estimator, which

was first introduced in Kolesar (2013) and then further analyzed in the grouped data setting by

97t should be noted that this estimator was originally referred to in Ackerberg and Devereux (2009) as simply
IJIVE. However, since Edokimov and Kolesar (2018) introduced a variant of this estimator in their paper which they
called IJIVE2, they renamed the original IJIVE estimator IJIVE1.
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Evdokimov and Kolesar (2018). This estimator takes the form

— _ -1
Susve = (x’ [ﬁ(Z’Q)D (M@Q)) ' pz@p (M(zl,Q)) 1} x>

X <m' [ﬁ(ZQ)D (M(ZQ))_l _ pZ1.Q) p (M(ZlyQ))_l] y) 7

where Z = [ 7y Zy } pZQ) = pQ) — p (P?#Q)), and P#1@) = p%1.Q) — D (P(719)). Now,

the deviation of the UJIVE estimator from the true value d¢ can be written as

~ x/AUJx -1 w/Aszlcpn + x’AUJQoz + (/J);LZ:/LAUJE -+ W%ZéAUJE + u/AUJE
dujrve — 00 =

2 2
K Hn
<$/AUJHZ> -1 <w/AUJZ1<,0n + 2’ Ay Qo + W%ZéAUJE + u/AUJE>
2 2
K Hn

where Ay = [P(Q) — D (PZQ)] D (MZQ) ™" — [P(21.Q) — p (P#.@)] D (M(ZQ) ™", Note
first that the diagonal elements of the matrix Ay are all equal to zero, so the bilinear term for
this estimator, U’ Ay je, is properly centered. However, this estimator has a bias problem that
arises from the presence of the term 2’ Ay ;Z1¢p,,/p2, which can be nonnegligible and even large

in order of magnitude. To see this, observe first that simple manipulation shows that Ay; =
MR D (M(ZLQ))_]‘ - MZQp (M(Z’Q))_l. Using this identity, we can write

PAvsZig, _ mZMAOD (M) 21,
W M(Z1.Q) D (M(ZlyQ))_l Z1p, W MZRQ) D (M(Z’Q))_l VAT 12
+ (1% - i -

Note that the term on the right-hand side of (12) which can be particularly large in order of
magnitude is 7/, Z, M (?1:@) D (M(Zva))_l Z1p, /pi2. In fact, one can show that

= = Oa.s.

! Z5 M(Z1Q) D (M(ZLQ))’1 Z10,  Tn U’ZéM(ZlyQ)D (M(ZLQ))’1 Z1y Tn
I i n '

Hence, this estimator will be inconsistent as long as p,, = O (75,). This will certainly be true in
weak instrument cases where p,, = o (75,), but can also occur even in strong instrument cases where
Wy, ~ +/n if the included exogenous regressors enter significantly into the structural equation of
interest, in which case 7, ~ /n. Our Monte Carlo results reported in section 6 also confirm that

UJIVE can have a large median bias relative to its competitors when there are included exogenous
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regressors that enter significantly into the structural equation of interest!!.

Since our setup essentially has a panel data structure, one may also wonder if it is possible to
simply first difference away the fixed effects and then do a jackknife-type recentering. A problem
with this strategy occurs if the IV regression contains, in addition to fixed effects, other included
exogenous regressors which cannot be eliminated by first-differencing. In that case, one will have to
do a projection to partial out these included exogenous regressors, leading to the same problem as
we have discussed previously with regard to IJIVE1 and IJIVE2. In fact, the problem will be worse
in this case due to the serial correlation in the errors induced by the first-differencing. Moreover,
even if there are no additional included exogenous regressors, the serial correlation induced by
first differencing causes additional complications. In particular, let P? = Z (Z'Z )_1 Z'" denote the
projection matrix of the instruments'?. Then, to achieve proper jackknife recentering in this case
requires the removal not only of the elements on the main diagonal of PZ but also the elements on
the superdiagonal and the subdiagonal of PZ, so that with serial correlation proper recentering is
attained only at the cost of greater information loss. Finally, the presence of serial correlation also
makes the large sample covariance matrix of a jackknife IV estimator under many weak instrument
asymptotics both more complicated and more difficult to estimate. Hence, we believe that our
approach for removing fixed or cluster-specific effects has certain advantages over any alternative
procedure that is based on first-differencing. It should be noted that a recent panel data paper
by Hsiao and Zhou (2018) does take the approach of constructing a jackknife IV estimator after
first-differencing the data. However, the objective and focus of that paper differs greatly from ours.
First of all, the panel data simultaneous equations model specified in Hsiao and Zhou (2018) does
not allow for the degree of instrument weakness that we consider. In addition, the model that they
consider does not have error heteroskedasticity or included exogenous regressors. If we apply their
estimator to our setting, the estimator will not be consistent in the case where K, ~ (,ug‘in)2 or
in the case where K,/ (uﬁi“)z — 00, but \/E/ (,ufl“in)z — 0. Still, it should be stressed that

in their setting with strong instruments and error homoskedasticity their estimator does have good

1t should be noted, however, that UJIVE may perform well under many weak instrument asymptotics in the
special case where the equation of interest contains no included exogenous regressors and only fixed effects. This is
not only because in this case there is no term of the form
&' Au s 21, /e = T’ Avs Z1v/ (Ha+/n), but also because, in this case,

-1
Ll L MOD (M® -1 M(Z2:Q) p (M(ZQ»Q))
T ZyAusQa 2 (M%) Qe —0

It fin /10

so that, without the contaminating effects of the included exogenous regressors, UJIVE does properly partial out the
fixed effects. We conjecture that, in this setting, UJIVE might be consistent so long as v/ Ka.n/ (u',fi")2 — 0, but we
have yet to obtain a formal proof of this result.

2Here, we let Z denote the matrix of observations on the instruments because we are referring to a case where
there are no included exogenous variables, Z7.
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asymptotic properties.
Turning our attention back to the equation dpi = (M%@ o M(%Q)) 9, note that in order for
this system of linear equations to have a unique solution, we need the matrix (M (2.Q) 6 M (Z’Q)) to

be invertible. The following lemma provides sufficient conditions for the invertibility of (M(%Q) o M (%:Q)).

Lemma 1: Suppose that Assumptions 5 and 6(i) are satisfied. Then, there exists a positive
constant C' such that Apin (M(Z’Q) o M(Z’Q)) > C > 0 a.s., for all n sufficiently large'3.

It should be noted that a more general result on conditions for the invertibility of Hadamard
products has been given previously in Cattaneo, Jansson, and Newey (2018)'*. However, we choose
to present a specialization of their result because it shows that, in the context of our cluster-sampling
setup, a key condition for ensuring the invertibility of (M(Z’Q) o M(ZvQ)) is minj<;<, 1; > 3, which
we explicitly assume in Assumption 6 part (i) above.

A further observation is that, in analyzing estimators that are obtained from minimizing a
variance ratio (e.g., FELIM), it is often convenient to first consider the objective function in the form
QB) = (5’7’/175) / (5’Y’M<Zh@>75), where X = [y, X] and where 8 is a (d + 1) x 1 vector,
not initially normalized to identify the dependent variable from the regressors. In this setting,
one would first minimize the objective function @ () to obtain a minimizer B = ( Bl ﬁ; )/,
with Bl being a scalar and 52 a d X 1 vector and subsequently normalize the last d components
of ;8/ to obtain an estimator 6 = —:32 / Bl for the coefficients of the endogenous regressors X. The
following assumption ensures that this subsequent normalization is well-defined. Moreover, in the
proof of Lemma S2-11 given in the Additional Online Appendix to this paper, we show that, by
following this procedure, we end up with exactly the FELIM estimator SL, that satisfies the first-
order conditions of the objective function given by (8) and that also has explicit representation
given by equation (9) above!®.

Assumption 9: Consider the variance-ratio objective function

Q) = (B’Y'AYB) / (5/7’1\4(217@)75), where 8 € B = {8 € RH1: ||, =1}. Let B be
a (d+1) x 1 vector that minimizes the objective function @ (3), among all 3 € B (i.e., 5 =
arg ming g Q (8)). Partition B = (Bl, B;)/ as defined above and assume that there exists a positive

13 A proof of Lemma 1 is given in section 2 of the Additional Online Appendix for this paper. This online appendix
can be viewed at the URL:
http://econweb.umd.edu/~chao/Research/research files/Additional Online Appendix Jackknife Estimation
Cluster Sample IV Model December 20 2022.pdf

148ee, in particular, the analysis given in Section 3 of their Supplemental Appendix.

15The proof of Lemma S2-11 is given in section 1 of the Additional Online Appendix, which, in turn, can be found
at the URL:
http://econweb.umd.edu/~ chao/Research/research files/Additional Online Appendix Jackknife Estimation
Cluster Sample IV Model December 20 2022.pdf
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constant C such that
‘Bl‘ >C >0 a.s. for all n sufficiently large. (13)

Note that constraining 3 (so that |||, = 1) is not restrictive since we are dealing with an objective
function @ () that is a ratio of quadratic forms in 3. More precisely, let 3 = arg mingega+1 Q (8),
where B # 0, and let = B/ [[B]], so that |3 = 1. Then, Q (B) = (FX'AXB) / (F X M#QXp)

= (I8ll, " Bx axB[3ll,") / (3], X MADXB|B],") = Q (B), so any minimal value of
Q (B) obtained by minimizing § over all 3 € R can also be achieved by some 5 such that
o), =

2

4 Consistency and Asymptotic Normality

of Point Estimators

Theorem 1: Let 6, = (X’ [A —an(Zl’Q)] X) ! (X’ [A — ZnM(Zl’Q)] y), for some sequence ¢,
such that ¢, = o, ([ﬂgﬁnf /n) = 0p (1). Then, under Assumptions 1-6, || Dy, (3, — o) /,u;L]“inH2 2o

and Hgn — (50H2 2, 0, asn —

Special cases of the class of estimators that satisfy the conditions of Theorem 1, and are
thus consistent in the sense described in the theorem, include FEJIV 5 Jn, FELIM gL,n, and
FEFUL gFm- Evidently, the main difference between these estimators is the different specifi-
cations of £,,. gjm takes ¢, = 0, for all n; gL,n takes ¢, = ZL,n, where ZL,n is the smallest

root of the determinantal equation det {Y/AY — EYIM(ZLQ)Y} = 0; and ;S\Fm takes 0, = ZFm
= [ZL — (1 - ZL) C’/mn} / [1 — (1 - ZL) C’/mn], as described earlier. Hence, by verifying that, in

n

consistency result of Theorem 1 to establish the consistency of FEJIV, FELIM, and FEFUL. These

results are given in the following corollary.

all three cases, /,, satisfies the condition ¢, = Op ([,umi“] 2 /n) = 0p (1), we can easily specialize the

Corollary 1: Under Assumptions 1-6 and 9, the following results hold as n — oc.
(a) HDM <3J7n — (50) //Lglm 9 i 0 and H/&Ln — (50”2 & 0. (b) HDM (gL,n —50) /,u,glin
HZS\L,,L - 50H2 0. (c) HD“ (gF,n - 50) /Mlﬁlin‘
The next two results establish asymptotic normality for the FELIM and FEFUL estimators,
under two different cases: (i) Case I: Ka,/ (Mﬁinf = O (1) and (ii) Case II: Ky ,/ (,umin)2 — 00,

n

but /Ka ./ (ugﬁ“)2 — 0. The FEJIV estimator can also be shown to have an asymptotic normal

2,0 and

2,0 and HSF” - 50H 2.
2 2

distribution under both Cases I and II. However, we choose to focus our theoretical analysis on
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FELIM and FEFUL because, as noted previously, the results of our Monte Carlo study indicate
that FELIM and FEFUL have better finite sample properties than FEJIV.

To facilitate the statement of the next two results, define

Arp = H'(S1p+ Y0, H' =H 'S, H L (14)
(,U,mm)z
Arrn = I? H 'Sy H, L (15)
2,n

)

where H,, = ' ZyM%Q 7, /n, $1,, = VC (Y Z4M (Zl’Q’s/ V| FY)
=Y ZyMZQ) D s M P @ 7, /n, and Sy = D155, D1, with

2n 7
S5, = VC(U'Ae|F))
= > A?@t)«ms)E[E?Zut)V nZ]E[Q(j,s)Q?j,s) n]

(i.6),Gr9)=

© t)#(] S)
+ Z A%@t)«j,s)E UeneanlF] B[00l 77| (16)
(i.6).Go5)=

(B

In addition, ¥, = X1, + Y2, and Uy = Uy — pegy for (i,t) = 1,...,my. Here, for any
random vector x, VC (sc|fnZ ) denotes the conditional variance-covariance matrix of x given FZ.
Moreover, let D, 2 = diag (U%m), ....,U%n’Tn)) = diag (0%, ....,J?nn), where a%i’t) = |:€%i7t)|f5:| , for
(i,t) = 1,...,my and where, for notational convenience, we suppress the dependence of O’%L 4 on .7-"5 .

As evident from the results given below, Ay, and Ajr,, are the (conditional) covariance matrices

of FELIM (and also of FEFUL) in large samples under Cases I and II, respectively.

Theorem 2: Let Assumptions 1-9 be satisfied. Then, under Case I where Ka,,/ (@ mm)2 =0(1),
the following results hold: Ar,, is positive definite a.s. for all n sufficiently large; and, as n — oo,
A0y (81 = 80) 4 N (0, 12) and Ay /> Dy (8 — 60 ) 4 N (0, ).

Theorem 3: Let Assumptions 1-9 be satisfied, let En be a ¢ x d matrix with 1 < ¢ < d, and let
Lu|, < € < o0 and A (~ Amﬁn) >1/C >0
a.s.n. Then, under Case II where ( g“n) /K2, = 0(1), but w/Kg n/( mm) — 0, the follow-

. ~ /
ing results hold: as n — oo, (un™/\/Kan) (LnAHm n) D, <5L7n — 50) LA N (0,1,) and
. ~ ~\N-1/2 < = d
(uin/ /K (LnAlmL;L) D, (5F’n - 50) 4 N (0,1,).
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5 Covariance Matrix Estimation and Hypothesis

Testing

To consistently estimate the asymptotic covariance matrix of FELIM and FEFUL, we propose

the following estimators

‘7[, = ﬁ;liLﬁgl and ‘7F = ﬁ;lip’ﬁil, (17)

i, = X [A - ZL,nM@hQ)} X, Hp=X [A - ZF,nM%Q)} X
S, = X'AD(J[ELo2L)) AX — Py (BLo2L) J (Ao A)J (Eugl o M(Z’Q)X)
~ (Budho MEDX) T (Ao A) T (B 020) Pl + il (Br 0B0) T (Ao A) J (Er 0Er)
+ (ELL& OQL)/ J(AoA)J (ELLQ OQL>
Sp = X'AD (J Er o8p)) AX — pp Erotr) J J( LdOMZQX)
— (Bt M@Q’X) J (Ao A)J (Ep oEr) pp + Ppiw Er oEr) J (Ao A)J (Ep o Ep)
+ (EFL& OQF)/ J(AoA)J (/E\FL& OQF) .
and where J = [MQ o MQTI, 2L = MZQ) (y — X3L>, 2p = MZQ) (y — XES\F),
U, =MEZIX —2p,, and Up = MZQX —Zpp. In addition, let
= [0 (3= X52)] /| (3- X5.) M7 (y- X3, | and
Pr = [X’M(Z Q) (y — Xgpﬂ / (y — XES\F)/ M(ZQ) (y X5F> denote estimators of the parameter
p=1lim, .o F [U’MQE] /E [E/MQ ] based on (5L and 5F, respectively.

Our next result shows the consistency of the covariance matrix estimators given in equation
(17) under both Cases I and IT*S.

Theorem 4: If Assumptions 1-6 and 8-9 are satisfied; then, the following statements are true:

161t can be shown that an estimator of the asymptotic covariance matrix of FEJIV, which will be consistent under
both Case I and II, is given by

~ ~ — = /! = —
Vi = H'S4 7" = (X'AX) ™! [X'AD, AX + (250 0) J (A0 4)J (2500)] (X'4X) 7",
where Dz, = diag (?(]7(171)7 ST 5 S (n1)s .«76(],(114,Tn))7 Sugie) = e'(i’t)J(EJ ©0Ey), €5 = MZQ) (y — XSJ), and

U = M%) X. Note also that the standard error used for FEJIV in our Monte Carlo study given in section 6 is
based on the above formula.
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(a) For Case I, where K3 ,,/ (,uﬁin)z =0(1), D“YA/LDN = Arn+o, (1) and DH‘A/FDu = Arntop (1),

where Ay ,, is as defined in equation (14).

(b) For Case II, where Kz / ()" — 00 but /Kon/ (u3®)* = 0, | (u®)* / Kz | DuV2D, =
Arrn + 0p (1) and [(uﬁin)Q/KZn] DuXA/FD“ = A1 + 0p (1), where Ay, is as defined in
equation (15).

Theorem 5 below provides results on the asymptotic properties of t-statistics associated with the
FELIM and FEFUL estimators when testing a general linear hypothesis of the form Hy : ¢/0g = 7.
We show that the t-ratio based on our estimators has an asymptotic standard normal distribution
under the null hypothesis, as long as \/m / (Mgﬂn)z — (0. Moreover, our results show that, under
the same rate condition, the tests are also consistent, as our test statistics diverge with probability
approaching one under fixed alternatives. Some additional conditions are needed to obtain these
results if we were to allow for general heterogeneity in instrument weakness where the diagonal
elements i, , (9=1,..,d) of D, can diverge at different rates. These conditions are given in

Assumption 10.

Assumption 10: Consider testing the null hypothesis Hy : ¢dg = r. Let

piy, (¢) = min {1, g € {1,...,d}, ¢g # 0}

-1
I

that ¢, Arrce > C a.s. for all n sufficiently large for some positive constant C.

where ¢, is the g'* component of the vector ¢, and let p (¢) D lc — ¢ # 0 as n — oo. Assume

Theorem 5: If Assumptions 1-10 are satisfied; then, the following statements are true for the
t-statistics Tr, = (C/EL — 7’) /A Ve and Tp = (C/EF — r) /¢ Vpe.

a. For Case I, where Ky ,,/ (,uﬁin)z =0 (1):

(i) Under Hy: ¢do = r, T, % N (0,1) and Tr % N (0,1) .

(ii) Under H; : ¢§g # r, with probability approaching one, as n — oo, the following results
hold: T, — +oc if ddg > 7; Ty — —oo if ddg < r; Tp — +oo if ¢'dp > r; and
Tp — —cc if C,(S() <r.
b. For Case II, where K»,/ (Mﬁin)Z — oo but \/Ka,/ (Mmin)z —0:

n

(i) Under Hy: 0o =r, T, % N (0,1) and Tr % N (0,1) .
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(ii) Under Hj : ¢dg # r, with probability approaching one, as n — oo, the following results
hold: T; — +oco if ddg > r; T, — —oco if ddg < r; T — +oo if ddy > r; and

Tr — —oo if ddy < 7.

In looking over the proof of Theorem 5, one can see that the condition stipulating ¢, Ass ¢ >
C a.s.n. for some constant C > 0, given in Assumption 10, is only needed in Case II where
K,/ (,ug‘in)2 — 00 but \/ﬁ / (,ug‘in)2 — 0. This is because in this case the covariance matrix
estimator is dominated by the contribution of the bilinear term and, when appropriately normalized,

this matrix takes the form

Arrn

(/Lrl?m) 171 3 r(Z1,Q) 1 1 3 r(Z1,Q) -1
= ) p, (HnZQM 1 Zgnn) i (HnZQM b Z2Hn) D,

KQ,n
1
(Mgun) 71DMT,ZQM(ZLQ)ZZTDM 1 —1y -1
- Koy, Du n Du D“ 22’”D“

-1
) (D‘l DY ZyM(7:Q) 2,1 D, D‘1>
7 n 7

H [(“" ()" s, DL HY! (18)

" KQ,n

where H,, = Y'Z,M (%19 Z,Y /n and 33, 18 as defined in expression (16) above. Now, the ma-
trix Ay is singular in large sample when heterogeneity in instrument weakness of a general form
is allowed because, even though K 122n can be shown to be positive definite almost surely as

Ky, n — oo'”: the matrix (u?m

)Dul converges to a singular diagonal matrix where some of
the diagonal elements are zero, except in the special case where D, = ( mm) 1;. It follows
that the matrix [( mm) /K> n} E Dy lin expression (18) will in general be a singular ma-
trix asymptotically. By following through the derivation given in expression (18), we see that
this problem occurs because, under Case II, the covariance matrix has a “denominator" term,
Le., DuT’ZéM(ZhQ)ZgTD“/n, which depends on D), but the “numerator" term X3, does not.
Due to this asymmetry, in trying to properly standardize D,Y’'ZjM (21,Q) Z3Y D, /n so that its

inverse will exist asymptotically, we end up, in some sense, transferring the singularity to the

17 A proof of the asymptotically positive definiteness of K;;Z;n is given in Lemma S2-3 part (b) of the Additional
Online Appendix to this paper, which can be found at the URL:
http://econweb.umd.edu/~ chao/Research/research files/Additional Online Appendix Jackknife Estimation
Cluster Sample IV Model December 20 2022.pdf
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“numerator". This also explains why this same problem does not arise under Case I, where
Ko,/ (,uffi“)Q = O (1), since in that case the covariance matrix is dominated in the “numerator"
by DMT/ZQM(Zl’Q)DJz M(Z1.Q) Z3Y D, /n, the contribution of the linear term, which is affected by
heterogeneity in instrument weakness in the same way as the “denominator", so that, upon proper
normalization, the ill effect of this heterogeneity is removed via cancellation.

It should be pointed out that there are important special cases of interest where Assumption
10 either holds automatically or can be shown to hold under mild additional conditions. One such
special case is where instrument weakness is homogeneous, i.e., the case where p; , ==y, =
pin - In this case, the asymptotic singularity of A7 does not arise, so that Assumption 10 is
fulfilled without additional side conditions, allowing us to easily obtain the following corollary to

Theorem 5.

Corollary 2: Let Assumptions 1-9 be satisfied. Assume further that the diagonal matrix D, in
Assumption 3 takes the form D, = p™n - I, (ie., Pip = " = Hgn = p2im) . Then, the following
statements are true for the t-statistics Tj, = (c’gL — r) / c’XA/Lc and Tp = (c’gF — r) / c"A/Fc.

a. For Case I, where K3,/ (Mgﬂn)Q =0 (1):

(i) Under Hy : ¢do =r, T, % N (0,1) and Tp -% N (0,1) .
(ii) Under H; : ¢0g # r, with probability approaching one as n — oo, the following results
hold: T; — +oo if ddg > r; Ty, — —oo if ddg < r; Tp — +oo if dg > r; and

Trp — —oo if ddy < 7.
b. For Case II, where Ks,,/ (pgﬁ“)Z — 00 but \/Ka,,/ (,uglin)z = 0:

(i) Under Hy: ¢/dg =7, T, % N (0,1) and Ty % N (0,1).
(ii) Under Hy : d6p # r, with probability approaching one as n — oo, the following results
hold: T; — +oo if ddg > r; Ty, — —oo if ddg < r; Tp — +oo if 69 > r; and

Tr — —oco if ¢dg < 7.

Corollary 2 is of interest because the case where the degree of instrument weakness is homo-
geneous and does not vary across the different first-stage equations is one which is often assumed
in previous papers on weak and/or many instruments. This includes the well-known papers by
Bekker (1994), Staiger and Stock (1997) and Kleibergen (2002). In addition, note that the case
where there is only one endogenous regressor is also obviously a special case of the setup considered

in Corollary 2.
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Another special case of interest is where we test a null hypothesis involving only one coefficient,
such as testing the significance of a particular parameter. This case is important because it is the
most frequent use of the t-statistic by empirical researchers. In this case, we show in the corollary
below that, under mild additional conditions, the t-test based on our proposed estimators will be
robust to many weak instruments, even if there is heterogeneity in instrument weakness of a general

form.

Assumption 10*: Let e, denote a d x 1 elementary vector whose ¢ component is 1 and all other

components are 0, and write D, in the form

D, 0
D“ = d1xdy 5 (19)

0 (N?in) : Id2

where Dy = diag (Nl,m ~-7ﬂd1,n)v where d; and ds are positive integers such that dy + do = d,

and where (u™) /p,, — 0, as n — oo, for g € {1,...,d1}. Partition H,' as H, ' = H, =
— — N\ — _

( H'1 H'2 ) , where H1. is di X d and Hs. is do X d. Assume that there exists a positive constant

C, such that e}ﬁ;,ﬁg.eg > C, > 0 a.s.for all n sufficiently large.
Corollary 3: Let Assumptions 1-9 and 10* be satisfied; and let ey be as defined in Assumption

10* above. Consider testing the null hypothesis Hy : €,09 = r, using either the t-statistic, T;, =
(623L - 7“) / 62‘7[,65 or the t-statistic, Ty = (62/5\[7 - 7“) / e}‘A/Feg.

2

a. For Case I, where Ks,,/ (™) = O (1), the following results hold for ¢ € {1, ..., d}.

(i) Under Hy : €460 = r, Ty % N (0,1) and Tp > N (0, 1).

(i) Under H; : ejdp # r, with probability approaching one as n — oo, the following results
hold: Ty, — 4oo if €9 > r; Tr, — —oo if €dg < r; Tp — +o0 if €09 > r; and

Tp — —cc if 6250 <r.

b. For Case II, where K3,/ (,ug‘in)z — 00 but /Ka,/ (Mﬁin)z — 0, the following results hold,
for ¢ € {1,...,d}.
(i) Under Hy : €,60 = r, T, % N (0,1) and Tp -5 N (0, 1).

(i) Under H; : €)00 # r, with probability approaching one as n — oo, the following results
hold: Ty — 400 if €09 > 7; Ty, — —oo if €00 < 7; Tp — +oo if €,dp > r; and

Tr — —oco if )00 < 7.
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Note that writing D,, in the way specified in equation (19) does not really lead to any loss of
generality. In fact, a seemingly more general D, matrix, where not all of the diagonal elements

grow at the same rate, as n — oo, can always be rewritten in the form given in equation (19), via
repermutation of the rows and columns of D,,. To see this, suppose that iy, .., g, P are not

*
/j,’

are i1y, -+ iy s P2 hut in some other order. Then, there exists some permutation matrix P

ordered as in equation (19), so that we have some diagonal matrix D, whose diagonal elements

such that D, = PD;P', where D,, is the diagonal matrix given in equation (19). Moreover, let
* and V* be ordered in a way that is conformable with D}, and let 57 60,
¢, and V be the corresponding vectors and matrix but with elements ordered conformably with
D,. Then, it is easy to see that 5 = Pg*, 0o = Pog, ¢ = Pc*, V = PVp. Hence, by making
use of these relations and of the fact that P is an orthogonal matrix, we further obtain that

T; =c¢¥ (3\* - 58) /N e Viex = ¢ P'P (S* - 58) /\/c*/P’PXA/*P/PC* = (3— 50) /\/m =Ty.

It follows that the value of the t-statistic is invariant to repermutation of the order of the elements

the elements of ;5\*7 dg, €

of 3, do, ¢, and YA/, so that the asymptotic distribution which we derive for T, under an assumed
ordering of the elements of g, do, ¢, and V that is conformable with equation (19) will still apply,
even if the t-statistic computed by the empirical researcher is based on some other ordering.

Given that the representation of D, given in equation (19) does not result in any loss of
generality, the only real restriction imposed by Assumption 10* is the condition that e’gﬁ;_ﬁg.eg >
Cy > 0 a.s.n. for some positive constant C,. We show in the proof of Corollary 3 that this latter
condition implies the more general conditions given in Assumption 10 if the null hypothesis we are
testing involves only one coefficient. It follows that hypotheses involving only one coefficient can
be tested under very general assumptions about the heterogeneity of instrument weakness since the
violation of the condition e}ﬁé,ﬁg.eg > Cy > 0 a.s.n will only occur if the 0" column of Hy. does
not have a single nonzero entry, which seems unlikely in most practical applications.

To date, papers in the weak instrument literature have focused primarily on size control, with
little attention paid to test consistency under weak identification. One exception is a recent paper
by Mikusheva and Sun (2021), which shows that a condition similar to /K3 / (uglinf — 01is both
necessary and sufficient for the existence of a consistent test. Interpreted in light of their result,
the results presented in Theorems 5 as well as Corollaries 2 and 3 above prove that t-tests based on
FELIM and FEFUL are consistent as long as instruments are strong enough so that consistency in
hypothesis testing is possible. In contrast, t-tests based on estimators such as the 2SLS estimator
will only be consistent if Ko,/ (;@““)2 — 0 (i.e., under stronger instruments). Test statistics
based on LIML also have undesirable properties under many weak instrument asymptotics, when
there is error heteroskedasticity. In addition, note that one advantage of t-tests is that they are

particularly easy to apply if one is interested in testing against one-sided alternatives. The results
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of Theorems 5 as well as Corollaries 2 and 3 show that, when the null hypothesis is incorrect, t-
tests based on FELIM and FEFUL diverge in the direction of the true alternative, with probability
approaching one, even in situations where identification is weaker than that typically assumed
under standard large sample theory, provided of course that \/m / ( mm) — 0. Hence, the test
statistics proposed in this paper should be particularly useful to empirical researchers interested in

testing whether an effect in a particular direction is statistically significant.

6 Monte Carlo Results

In this section, we report some Monte Carlo results based on the following data generating process:

Yiy = 5 Zan T ¢ Zy g + i + g,
L1l 1x10 109x1

Z (i) oZuan T I 2o+ &t ).
K2><1

)

1X10° 1657

where we specify ¢ = 119, ® = 110, and II = (1x, ® 7) with 119 and ¢, being, respectively, a 10 x 1
and a K9 X 1 vector of ones. Here, 7 is taken to be a scalar parameter, and we choose 7 so that the
concentration parameter > = 25, 35, 45, and 55. Moreover, in our experiments, we consider two
choices of Ks: Ky = 10,30. Additionally, we set n = 200 and T; = 3, for each i € {1,2,...,200}, so
that m,, = 600. The (%, t)th observation of the vector of included exogenous regressors, or CO\;ariates,
is taken to be Z; (Z- ) = ( 21, (i 1) 22 (i) 23 (i) 7 an AanPana o 260 Dan e ) , where
{=, (i,t) }?00) | = 44.d.N (0,1) and where D; 4, € {0,1} for k € {1,2,..,6} is a binary variable such
that Pr (D( k= ) = 1/2, with {D(“ &} specified to be independent across both (¢,t) and k. We
also take {Zy (i }foo) = dN (0, Ing), {ug, }6002 = i4.d.N(0,1), {2;}?%i.i.d.N (0,1), and
{&}?22 i.0.d.N (0, 1); with 21 .1y, D)k Z2,3i,t)> U(irt), @ and §; all specified to be independent of
each other. We allow the structural disturbance, ¢(; ;), to exhibit conditional heteroskedasticity in

a manner similar to the design given in Hausman et al. (2012). In particular, we let

1 — p?

7+ (086 (¢v1,3i,0) +0.86v2 i) » (20)

Eit) = PG T

2
where vy (54| 21,(i,0), Z2,66) ~ NV (0#’” [1 + (10 Z1,i0) + Vicy Z2,i1)) D and vy, ;¢ ~ N (0,1). Both
of these distributions are specified to be independent across the index (7,t), and  is a normalization
constant chosen so that the unconditional variance, Var (UL(M)), is equal to 1. For all experiments

reported below, we set p = 0.3 and choose the parameter ¢, so that the R-squared for the regression
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of €2 on the instruments and the included exogenous variables take the values 0, 0.1, and 0.2.

Our simulation study examines the finite sample properties of our three estimators (FEJIV,
FELIM, and FEFUL) and their associated t-statistics. Additionally, we compare the performance
of our estimators with the 2SLS estimator, the IJIVE1 estimator originally proposed in Ackerberg
and Devereux (2009), the IJIVE2 estimator introduced in Evdokimov and Kolesér (2018), and
the UJIVE estimator originally proposed in Kolesdr (2013) and further studied in Evdokimov and
Kolesér (2018). The comparison of these point estimators is made on the basis of median bias and
nine decile range. We also evaluate the associated t-statistics for these estimators on the basis of
size control, as measured by their rejection frequencies under the null hypothesis Hp : 6 = 0.

The results of our Monte Carlo study are reported in Tables 1-6 below.
Table 1: Median Bias, Ko = 10
©? Rz%% 2SLS | JIVEL | JIVE2 | UJIVE | FEJIV | FELIM | FEFUL

0 0.1092 | 0.0440 | 0.0441 | 0.3811 | -0.0058 | 0.0042 | 0.0161
25 0.1 | 0.1080 [ 0.0429 | 0.0427 | 0.3719 | -0.0071 | 0.0052 | 0.0167
0.2 | 0.1125 | 0.0475 | 0.0480 | 0.3982 | -0.0053 | 0.0051 | 0.0170

0 0.0857 | 0.0290 | 0.0290 | 0.2562 [ -0.0167 | -0.0003 | 0.0090
35| 0.1 |0.0860 | 0.0300 | 0.0301 | 0.2617 [ -0.0127 | 0.0018 | 0.0107
0.2 | 0.0879 | 0.0328 | 0.0327 | 0.2486 | -0.0105 | -0.0002 | 0.0083

0 0.0733 | 0.0263 | 0.0263 | 0.1943 | -0.0095 [ 0.0009 | 0.0079
451 0.1 |0.0738 | 0.0280 | 0.0281 | 0.1984 | -0.0072 | 0.0025 | 0.0094
0.2 ] 0.0690 | 0.0213 | 0.0216 | 0.1908 | -0.0130 | -0.0007 | 0.0057

0 0.0629 | 0.0210 | 0.0212 | 0.1586 [ -0.0074 [ 0.0009 | 0.0068
55 | 0.1 | 0.0627 | 0.0205 | 0.0206 | 0.1415 | -0.0084 | 0.0017 | 0.0071
0.2 | 0.0583 | 0.0167 | 0.0165 | 0.1429 | -0.0136 | -0.0041 | 0.0017

Results based on 10,000 simulations
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Table 2: Nine Decile Range 0.05 to 0.9518, Ky =10
u? | R%, . | 2SLS IJIVELl | IJIVE2 | UJIVE | FEJIV | FELIM | FEFUL

€252
0 0.6638 | 1.0286 | 1.0247 | 5.9842 | 1.5849 | 1.2900 [ 1.1543
25 0.1 0.6590 | 1.0475 | 1.0468 | 6.0422 | 1.6538 | 1.2810 1.1442
0.2 0.6491 | 1.0235 | 1.0253 | 6.1624 | 1.6218 | 1.2788 1.1216

0 0.5936 | 0.8214 | 0.8200 | 5.6334 | 1.0861 | 0.9554 | 0.8921
35 0.1 0.5952 | 0.8286 | 0.8288 [ 5.8319 | 1.1026 | 0.9430 | 0.8876
0.2 0.5755 | 0.7955 | 0.7939 [ 5.7128 | 1.0402 | 0.9068 | 0.8561

0 0.5362 | 0.6960 | 0.6960 | 5.1587 | 0.8458 | 0.7769 [ 0.7433
45 0.1 0.5332 | 0.6876 | 0.6883 | 5.2225 | 0.8378 | 0.7665 [ 0.7392
0.2 0.5244 | 0.6751 | 0.6753 [ 5.2851 | 0.8210 | 0.7542 | 0.7229

0 0.4929 | 0.6109 | 0.6114 | 4.8115 | 0.7132 | 0.6620 | 0.6418
95 0.1 0.4929 | 0.6068 | 0.6069 | 4.7546 | 0.7076 | 0.6564 | 0.6387
0.2 0.4857 | 0.6039 | 0.6029 | 4.8027 | 0,6972 | 0.6465 | 0.6279

Results based on 10,000 simulations

8By nine decile range we mean the range between the 0.05 and the 0.95 quantiles. It should also be noted that the
reason we compare the estimators based on median bias and nine decile range instead of the usual criteria of (mean)
bias and variance is because it is well-known that the exact finite sample (mean) bias and variance of LIML-type
estimators do not exist under the assumption that errors are normally distributed. However, it is also well-known
that LIML-type estimators tend to be better centered than the 2SLS estimator in terms of median bias and, in many
ways, have better finite sample properties, in spite of the fact that they have fatter tails. Hence, the use of median
bias and nine decile range allow us to conduct a broader based Monte Carlo comparison without restricting ourselves
to only those estimators whose positive integer moments are known to exist.
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Table 3: 0.05 Rejection Frequencies'”, Ky = 10
2 R22‘Z2 2SLS | JIVEL | IJIVE2 | UJIVE | FEJIV | FELIM | FEFUL
1

£

0 0.1784 | 0.0951 | 0.0884 | 0.5215 [ 0.0253 | 0.0518 | 0.0535
25 01 |0.1842 | 0.0997 | 0.0937 | 0.5181 | 0.0326 | 0.0555 | 0.0561
0.2 | 0.1797 | 0.0958 | 0.0896 | 0.5334 | 0.0275 | 0.0538 | 0.0547

0 0.1659 | 0.1064 | 0.0999 | 0.5347 [ 0.0319 | 0.0481 | 0.0506
35 0.1 |[0.1668 | 0.1017 | 0.0951 | 0.5345 | 0.0340 | 0.0489 | 0.0508
0.2 |0.1677 | 0.1021 | 0.0951 | 0.5369 | 0.0326 | 0.0484 | 0.0511

0 0.1584 | 0.1098 | 0.1034 | 0.5601 [ 0.0354 | 0.0503 | 0.0528
451 0.1 | 0.1592 | 0.1087 | 0.1023 | 0.5555 | 0.0351 | 0.0469 | 0.0493
0.2 | 0.1611 | 0.1100 | 0.1042 | 0.5606 | 0.0350 | 0.0483 | 0.0504

0 0.1544 | 0.1127 | 0.1053 | 0.5853 | 0.0398 | 0.0476 | 0.0496
55 | 0.1 | 0.1583 | 0.1157 | 0.1098 | 0.5835 | 0.0400 | 0.0547 [ 0.0561
0.2 | 0.1510 | 0.1123 | 0.1048 | 0.5881 | 0.0401 | 0.0524 | 0.0550

Results based on 10,000 simulations
Table 4: Median Bias, Ko = 30
u? R§2\22 25LS 1JIVE1 | IJIVE2 | UJIVE | FEJIV | FELIM | FEFUL

0 0.1907 | 0.1105 | 0.1106 | 0.5648 [ 0.0157 | 0.0042 | 0.0150
25 01 |0.1916 | 0.1136 | 0.1138 | 0.5828 | 0.0197 | 0.0085 | 0.0217
0.2 |0.1933 | 0.1159 | 0.1160 | 0.5890 | 0.0287 | 0.0076 | 0.0191

0 0.1702 | 0.0954 | 0.0954 | 0.4059 | 0.0069 | 0.0067 | 0.0150
351 0.1 |0.1666 | 0.0900 | 0.0901 | 0.4075 | -0.0097 | -0.0023 | 0.0061
0.2 |0.1699 | 0.0946 | 0.0941 | 0.4190 | -0.0025 | 0.0032 | 0.0124

0 0.1501 | 0.0764 | 0.0763 | 0.2939 | -0.0050 [ 0.0010 | 0.0079
451 0.1 | 0.1501 | 0.0789 | 0.0788 | 0.2928 | -0.0079 | -0.0017 | 0.0051
0.2 | 0.1502 | 0.0775 | 0.0778 | 0.2820 | -0.0065 | -0.0001 | 0.0057

0 0.1357 | 0.0670 | 0.0672 | 0.2420 | -0.0100 | -0.0006 | 0.0051
55 | 0.1 | 0.1335 | 0.0641 | 0.0642 | 0.2202 | -0.0141 | -0.0078 | -0.0026
0.2 ]0.1365 | 0.0679 | 0.0682 | 0.2246 | -0.0031 | 0.0034 | 0.0092

Results based on 10,000 simulations

Y9See Ackerberg and Devereux (2009), Kolesar (2013), and Evdokimov and Kolesar (2018) for formulae for the
estimators IJIVE1, IJIVE2, and UJIVE as well as for the standard errors used in constructing the t-statistics for
these estimators.
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Table 5: Nine Decile Range 0.05 to 0.95, Ko = 30
u? R22‘Z2 2SLS | IJIVEL | IJIVE2 | UJIVE | FEJIV | FELIM | FEFUL
1

£

0 0.4785 | 0.9885 | 0.9909 | 5.7669 | 3.0848 | 2.1434 | 1.7483
25 0.1 | 0.4760 | 09629 | 0.9634 | 6.2210 | 3.0543 | 2.1265 | 1.7549
0.2 |0.4693 | 09735 | 0.9764 | 6.0341 | 2.9121 | 2.1675 | 1.7602

0 0.4501 | 0.8155 | 0.8175 | 6.4148 | 1.7734 | 1.4271 | 1.2895
35 0.1 |04513 | 0.8083 | 0.8109 | 6.2439 | 1.8113 | 1.4544 | 1.3066
0.2 | 04427 | 0.7871 | 0.7899 | 6.1090 | 1.7457 | 1.3613 | 1.2405

0 0.4186 | 0.6941 | 0.6939 | 5.8258 [ 1.2562 | 1.0510 | 0.9935
451 0.1 | 0.4254 | 0.6958 | 0.6969 | 5.9272 | 1.2409 | 1.0471 | 0.9948
0.2 | 04186 | 0.6771 | 0.6779 | 5.9727 | 1.2126 | 1.0306 | 0.9764

0 0.4008 | 0.6206 | 0.6211 | 5.7132 | 0.9825 | 0.8625 | 0.8287
55 | 0.1 ] 0.3985 | 0.6087 | 0.6109 | 5.5675 | 0.9513 | 0.8614 | 0.8299
0.2 |0.4028 | 0.6196 | 0.6214 | 5.4996 | 0.9661 | 0.8661 | 0.8354

Results based on 10,000 simulations

Table 6: 0.05 Rejection Frequencies, Ko = 30
2 Rgz\z2 2SLS | JIVEL | IJIVE2 | UJIVE | FEJIV | FELIM | FEFUL

0 0.4113 | 0.1387 | 0.1214 | 0.5461 [ 0.0249 | 0.0519 | 0.0534
25| 0.1 |0.4242 | 0.1425 | 0.1226 | 0.5489 | 0.0220 | 0.0518 | 0.0545
0.2 | 04350 | 0.1466 | 0.1266 | 0.5527 | 0.0251 | 0.0546 | 0.0565

0 0.3919 | 0.1526 | 0.1310 | 0.5387 | 0.0315 | 0.0531 | 0.0553
351 0.1 |0.3901 | 0.1527 | 0.1333 | 0.5355 | 0.0298 | 0.0577 | 0.0601
0.2 | 04015 | 0.1535 | 0.1338 | 0.5489 | 0.0329 | 0.0572 | 0.0604

0 0.3624 | 0.1563 | 0.1362 | 0.5516 | 0.0339 | 0.0539 | 0.0559
451 0.1 | 0.3639 | 0.1542 | 0.1339 | 0.5396 | 0.0357 | 0.0542 | 0.0564
0.2 03764 | 0.1551 | 0.1344 | 0.5459 | 0.0370 | 0.0579 | 0.0601

0 0.3376 | 0.1485 | 0.1294 | 0.5676 | 0.0385 | 0.0514 [ 0.0541
95 | 0.1 ] 0.3332 | 0.1455 | 0.1277 | 0.5638 | 0.0371 | 0.0534 | 0.0558
0.2 |0.3530 | 0.1638 | 0.1421 | 0.5686 [ 0.0417 | 0.0593 | 0.0605

Results based on 10,000 simulations

Looking over the results reported in Tables 1-6, note first that, in terms of median bias, the
performance of FEJIV, FELIM, and FEFUL are uniformly better across our experiments when
compared to 2SLS, IJIVE1, IJIVE2, and UJIVE; although our experiments do show 2SLS, IJIVEL,
and IJIVE2 to be less dispersed than the three estimators proposed in this paper. Comparing
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FELIM and FEFUL in terms of nine decile range, we see that FEFUL tends to be less dispersed
than FELIM, which is in accord with the motivation behind the original Fuller (1977) modification.
Perhaps the most notable difference in performance is that t-statistics based on FELIM and FEFUL
have much less size distortion than t-statistics constructed from any of the other five estimators.
Finally, note that t-statistics based on the FEJIV estimator tend to be undersized, but the empirical
rejection frequencies are still closer to the nominal level than t-statistics based on 2SLS, IJIVEL,
TJIVE2, or UJIVE.

7 Conclusion

This paper considers an IV regression model with many weak instruments, cluster specific effects,
error heteroskedasticity, and possibly many included exogenous regressors. To carry out point
estimation in this setup, we propose three new jackknife-type IV estimators, which we refer to by
the acronyms FEJIV, FELIM, and FEFUL. All three of these estimators are shown to be robust
to the effects of many weak instruments, in the sense that they are consistent estimators within
a framework broad enough to include both the standard situation with strong instruments and
situations with many weak instruments. To the best of our knowledge, the estimators proposed in
this paper are the first consistent estimators which have been developed in a many weak instrument
framework when the IV regression under consideration has both cluster specific effects and possibly
many included exogenous regressors. We establish asymptotic normality for FELIM and FEFUL
under both strong instrument and many weak instrument asymptotics. In addition, we provide
consistent standard errors for our estimators and show that, when the null hypothesis is true, t-
statistics based on these standard errors are asymptotically normal under both strong instrument
and many weak instrument asymptotics. Finally, we show that under both strong instrument and
many weak instrument asymptotics, the t-statistics based on these standard errors are consistent
under fixed alternatives. Thus, we underscore an interesting aspect of the many weak instrument
setup. Namely, test consistency is still possible under this framework, as has been pointed out in a
recent paper by Mikusheva and Sun (2021). In a series of Monte Carlo experiments, we find that
t-statistics based on FELIM and FEFUL control size better in finite samples than t-statistics based
on alternative jackknife-type IV estimators that have previously been proposed in the literature.
Hence, based on the findings of this paper, we recommend that either FELIM or FEFUL be used in
settings where there are many weak instruments, cluster specific effects, and possibly many included

€xX0ogenous regressors.
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8 Appendix: Proofs of Main Theorems and Other Key Results

This appendix provides the proofs for Theorem 1, Corollary 1, Theorems 4-5, and Corollaries 2-3
of the paper. The proofs of Theorems 2 and 3 are longer and, thus, are given in Appendix S1 of a
Supplemental Appendix to this paper. This Supplemental Appendix can be viewed at the URL:

http://econweb.umd.edu/~chao/Research /research _files/Supplemental Appendix to Jackknife
_ Estimation Cluster Sample IV Model December 20 2022.pdf. In addition, the proofs pro-
vided below rely on a number of technical results that are stated without proof in Appendix S2
of the Supplemental Appendix. These results are designated in the derivations that follow by the
use of the prefix S. So, for example, Lemma S2-2 will refer to the second lemma in Appendix S2

of the Supplemental Appendix. Proofs for these additional supporting lemmas (more specifically,

Lemmas S2-1 to S2-18) are available in a separate online appendix which can be viewed at the
URL:
http://econweb.umd.edu/~chao/Research /research _files/Additional Online  Appendix
Jackknife Estimation Cluster Sample IV Model December 20 2022.pdf
Proof of Theorem 1:

To proceed, note first that, by parts (a) and (b) of Lemma S2-2 and by the assumption on ¢,
we have D1 X' [A =0, M9 XDV = DAX'AX Dt — 0, D, ' X' MZ@ XDl = Hy + 0, (1),
where H,, = T'Z,M (%@ Z,Y /n = O, (1). By Assumption 3(iii), we also have that H,, is positive
definite almost surely for n sufficiently large, so that D/le ! [A — M (Zl’Q)] X D;l is invertible
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w.p.a.l. Hence, w.p.a.l., we can write

1

min
n

1 —_ — -1 _
i D (6n = o) = (DﬁlX' [A - ﬁnM(Zl’Q)] XD;l) DX |A~ gnM(ZLQ)] .
Applying Lemma S2-4 and Lemma S2-5, we get

1

min
Koy

D;lX/ [A—an(Zl’Q)}E — 1 D;lX/AE—Zn 1 D;lX/M(Zl’Q)E

min min
Hn Hn

Kon
= 0, <max {%, (ugli;z }) +0,(1) =0,(1).

It follows by the Slutsky’s Theorem that ||D,, (8, — do) / (1p™)||, = 0p (1), which gives the first

result. To show the second result, note that, by straightforward calculations, we obtain

| Dy (50 — do) /( wm) (], > Wzmnf/(uzmnw (52— 00)' (6 — 60) = [|8n — J0||» which implies
that Hgn — (50H2 = 0, as required. [J

Proof of Corollary 1:

In light of the results given in Theorem 1, it suffices that we verify the condition ¢, =
op ([ min] /n) = op (1) for all three estimators. For the FEJIV estimator considered in part
(a), €, = 0 for all n, so this condition is trivially satisfied. Now, part (b) considers the FE-

LIM estimator. For this estimator, the result of Lemma S2-11 has shown that we can take
Ty =l = ming (5’7@475) / (B’Y’M%Q)Yﬁ)

= (y - XSL)/A (y — XZS\L) / [(y — X3L>/M(ZLQ) (y — XZS\L)} By part (a) of Lemma S2-7, we
then have £, n=0p ([ mm] / n), so FELIM also satisfies the needed condition. Finally, part (c)
considers the FEFUL estimator, which takes 7, = 7, Fn

= [ZL,L — (1 — 7 n) (C’/mn)} / [1 — (1 —ZL,n) (C’/mn)] By part (b) of Lemma S2-7, we have
that ﬁpn = 0p [ mm] /n), so the needed condition is satisfied again. The consistency results

given in parts (a)-(c) of this corollary then follow as a consequence of Theorem 1. [

Proof of Theorem 4:

We shall prove this theorem for the FELIM case since the proof for FEFUL is similar. To
proceed, first define Sy = X’AD (J €[, 0EL]) AX, Spo = (L 0EL) J (Ao A)J (Bpdyo M(ZvQ)X)7
Sps=(Erogn) J(AoA)J(ELoBL), Sy = (gugl o QL)’ J(AoA)J (gLL;l o QL),

PIL - f[A—ZL,nM%Q)] X, S = YZ,MEQD 2 M7 2, /n. In addition, also define
el Z} bun = EUinean|FL], Yoy =E [U(i,t)U(/@t)‘fr?] Bun=F [Q(i7t)5(i7t)‘frzz}7

—

and \IJ(Z n=F [U(i7t)Q'(i7t)\.7:nZ } where Uy; y = Ui ) — pe(ir) and where for notational convenience
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we suppress the dependence of U%i 1 Pty Vi, qﬁ( " and ¥ ; ) on FZ =0(Z).

Using these notations, to show part (a), we first write D VLDu = VL 1+ VL2 + VL 3+ VL 4,

. N -1 1

where Vi = (D YHLD; ) DytSuaD;t (D HLDY)
N N -1 . -1
Vio=— (D D) Dt (puSue + Sy00y) Dyt (D HeD;Y)
N N 1 N -1 ~ . -1
Vig= (D HLDY) DL Suap, Dyt (D HLD, ) and Via = (D HLD,Y)

. ~1 .
xD;lﬁLAD;l (D;lHLD;1> . Now, consider Vy ; first. Note that, by Lemma S2-17,

D, 'X'AD (e o) AXD, ' = %y, + Z A(Z .. 60 Dp WDyt + o0, (1),
(i.,t),(4,5)=
(ivt)7é(j7$)
from which we deduce that D, 'X'AD (¢ o€) AXD,! = O, (1) using Assumptions 2(i) and 3(iii),
Lemma S2-1 part (a), and the assumption that Ks,,/ (,ug‘in)2 = O (1) under Case L.
Next, note that by Lemma S2-11,
ZL = (y — XSL)/A (y — XSL) / (y — XSL)/M(ZLQ) (y — XSL). Moreover, by the result given
in Lemma S2-10, we have that D;lﬁLDljl = H, + oy (1), where, by Assumption 3(iii), H, =
Y/ 7, M(%1.Q) 7y /n is positive definite a.s.n. In addition, we can apply part (a) of Lemma S2-18
and Slutsky’s theorem to deduce that

~ ~ -1 ~ -1
Ver = (D ELD;Y) DtSeany (Dp HLDLY)

- H;lanHn_l +Hn_1 Z A(Z t) (J S)U(Z t)D \II( )D;l H;l +0p (1) . (21)
(i,t),(4,8)=1
(i:t)#(4,9)
Next, consider VLQ. Here, note that we can further decompose ‘7[/72 as VLQ = ‘7[/7271 + ‘7[/722, where
~ ~ —1 ~ -1
Vion == (D HLDLY) D 5,820, (D DY) and
~ ~ -1 ~ ~1
Viao = — (D HLDLY) DSy op, Dt (D HLD, ) . Noting that Ka/ () = O (1)
under Case I and applying the result of Lemma S2-10, as well as parts (d) and (e) of Lemma S2-18
and Slutsky’s theorem, we get

> K n — -1 /= Mglin — —
Va1 = —H, 1(,un2“n) {Dulp—i-DMl (pr. —p) MlHn1 (1+0p(1))
_ —-1p-—1 ~ 2 2 —1r7—1
= —H.'D'p Y Al G990 Du Hat Hop (1)
(i,8),7,5)=1
(1,8)7#(J,s)
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Moreover, since YA/L 22 = YA/L’ 9.1 We also have
U — -1 y y—117—1 . =5 .
Vipz = —H' 30 o st .07 D e D Hy oy (1). Given that V=

VL’QJ + VL,272, it follows from these calculations that

i —1 S 2 —1 2 2 —1r7r—1

VL72 = —Hn Z A(i,t),(j,S)D,u (Ioa(z,t)d)/(],s) + O-(i,t)¢(j78)p/) Dﬂ Hn + Op (].) (22)
(4,8),(4,8)=
(4,6)#(, S)

Turning our attention to ‘7ng, note that, in this case, we can apply Lemma S2-10, parts (b) and

(e) of Lemma S2-18, and Slutsky’s theorem to obtain

BN S
Vig = KouH, ' [D'p+ D, (5, —p)] = /D YH (140, (1))

+ Kol ' (D) p+ D

pr—p) D H (140, (1))

= H;lDljlp Z A%’i7t)7(j7s)a?’i,t)J%j,s)p,D}len_l + Op (1) . (23)

(5,t),(4,5)=
(4,6)#(, S)

Lastly, we consider XA/LA. Here, we can apply Lemma S2-10, part (f) of Lemma S2-18, the fact that
K,/ (,ug‘in)2 = O (1) under Case I, as well as Slutsky’s theorem to obtain

Via = H,'D;'S; D H' (1+0,(1))
mn

= H,' Y A() 1¢Zt¢’(j’s)D;1Hgl+op(l). (24)
(i.6),(5:5)=
(Bt

It follows from equations (21), (22), (23), and (24) that

V —1 —1 —1 o2 -1 —1p7-1
DuVeDy = Hy Yoty + Hy Z A(zt) G970 Pu LoD H
(i,t),(4,8)=
(iyt)75(j75)

-1 D! / —1y7—1
+H, Z A(zt) (o) P Q(i,t)Q(LS)Du H," 40, (1)

(i,1),(4:5)=
(i0)#0. S)

= H,' (S1n+S20) Hy ' +op(1) = A + 0, (1)

To show the same result for FEFUL, note that gp satisfies the conditions of both Lemma

S52-12 and Lemma S2-18. Hence, we can make the same argument as given above for FELIM,
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except that we use the result of Lemma S2-12 in lieu of Lemma S2-10 to obtain DM‘A/FDM =
Hy (B0 + Do) Hy' +0p (1) = Ap +0p (1)

To show part (b), we again only provide an explicit argument for ‘7L since the proof of ‘71:
follows in a similar way. To proceed, write [( mm) /Ko n] D VLDM = [( mm /K2 n] Zz ) VL £
where V1,1, V2, Vi3, and Vi 4 are as defined in the proof of part (a).

Considering VL1 first, note that, since Ko,/ (1 mm) — 00 but /Ky ./ (1 mm) — 0 under Case
II, we have, upon applying the result of Lemma S2-10, part (a) of Lemma S2-18, and Slutsky’s

theorem,
(“?m)zf/ - H- ) 5 e 2 p-lw. DU H(1 1
I Ve = e it > Ay enDn Vs Dt | Het (140, (1))
’ ’ (5,1),(5,8)=
(i)?’f(JS)
~1 (/‘gun)2 - -1 —1ypy-1
= > A(zt) G970 P YD Ha ' +0p (1) (25)
" (i8),3G.9)=
(i,t);é(j,s)

Now, consider ‘7[/,2. Here, we write [( mm) /Ko, n] Vio = [( mm) /Ko n} Vio2a

+ [(uﬁ“n) / Kgyn} ‘7[/7272, where ‘/}L’Q,l and VL’Q,Q are again as defined in the proof of part (a). Making
use of the results of Lemma S2-10, parts (d) and (e) of Lemma 52-18, and Slutsky’s theorem while
noting that K,/ (Mgﬂn)Q — oo under Case II, we get

min\ 2 min

(122 ) Vigr = —Hy' (u™) {Dy p+ Dyt (5L —p)} ? SpaDy Hy (14 0p (1))
_ g (i) A2 o L 1
T Ky, Z (i5t),(4,9) pU(Zt ¢(JS o top(l)

) ~ Y
Moreover, since Vi, 29 = VL 9, 1, we also have

258 o = 53] s 50 251554,
Z? ]
It follows from these calculations that
~ 2
min) "V & (M) A s L
(1 K)Qn L2 gy 2 7(1 0.0:) )= ( 0078l + B3y pl> DI HT 4oy (1).

(i,8),(5,)=1
(1) £(:5)
(26)

Next, consider VLQ,. Given that K,/ (Mg‘in)2 — oo under Case II, we get, upon applying the result
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given in Lemma 52-10, as well as parts (b) and (e) of Lemma S2-18 and Slutsky’s theorem,

(/’l’;lnin)2 - ( min\2 rr— _ 1~ SL3

Fn ) Hnl[Du1p+Du1(pL_ )]K p'D 1H (1+0p(1))

min\2 zr— — -1~ S? -~ - —
+ (™) H, U [D o+ D (o — )] o (pr —p) D" H (140, (1))
Mn (Mmln)2 2
— n i,t),(7,8 — — —
= omp > LI g dD e 0) (D
(i,t),(j,8)=1 "
(GD(7,9)

Finally, we consider VL4 Again, noting that K,/ ( mm) — oo under Case II, we have, upon

applying the result given in Lemma S2-10, as well as part (f) of Lemma S2-18 and Slutsky’s theorem,

min 2 min 2
(i )VLA = H, )" L p S aD T H (14 0p (1)

KQ,n " K2n ,u
) Z A3y D0, 8 DIUH o, (1), (28)
T Ko, (i),(4,8) 71 L(it)L(j,s) K 0 PSS

(3,t),(4,5)=1
(7)7&(]5)

It follows from equations (25), (26), (27), and (28) that

( mln) D VLD (Iuglln)2 B B B
o = Hy'Sp Z Ay oD (TR 2ig) + 6308 sy) D Hi 4 0p (1)
’ ’ (3,t),(4,5)=1
(4 )75(] s)
min\ 2
(™)

= TH,;leHgl +0p (1) =Arzn+0,(1).
2.n

)

To show the same result for FEFUL, note again that S\F satisfies the conditions of Lemmas S2-12
and S2-18. Hence, we can make the same argument as given above for FELIM, except using Lemma
S2-12 in lieu of Lemma S2-10 to obtain [( mm) /K> n} D VFDM =

[( min) /KM} n SonH,t +op (1) = A +0p (1), O

Proof of Theorem 5:
To show part (a), first note that, by part (d) of Lemma S2-3 and Assumption 3(iii), Ay, is

positive definite a.s.n. In addition, making use of part (a) of Theorem 4, we have DMYA/LDM =
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Arn+0, (1), so that DMYA/LDM is positive definite w.p.a.1. Hence, under Hy : ¢/d¢ = r, we can write

o C/ng —r d (gLn - 5()) B (Dt (¢) A}/j [A;ﬂipD“ (gLn - 50)}
SV eme J@Din©) Dby (w0 Do)

Applying Theorem 2, we have A;imDM (gLn — (50) 4N (0,1y). It follows by the definition of c,
given in Assumption 10, as well as by applying part (a) of Theorem 4 and the continuous mapping
theorem that

A2 INTY2D, (610 — 80
Ty = — A0 ) [1 40, (1)] % N (0,1). (29)

On the other hand, under H;, we have ¢/dp = r + h for some h € R\ {0}, and we can write
Ty = (c’ng — r) / Vic=1< (gLn — (50) /\/C"A/Lc—l—h/\/c"A/Lc. The first term above is O, (1) , as
shown in (29) above, whereas application of part (a) of Theorem 4, Assumption 10, and the Slutsky’s
theorem shows that (uf (c))?¢Vie = (D s () DMYA/LDM (15 () Dte) = dlnes + 0p (1),

where ¢, A ¢ > 0since Ag, is positive definite in light of part (d) of Lemma S2-3 and Assumption

3(iii) and since ¢, # 0 by construction. In addition, by parts (a) and (c¢) of Lemma S2-3; Assumption
3(iii); and the fact that, under Case I, Ky ,,/ (Mmin)2 = O (1); there exists a positive constant C' < co

n

such that, almost surely for all n sufficiently large,

Amax [VC (Y Z4M P Qe | /) |FZ] + 2220\ o [VC (U'Ae/ \/Kop) | FZ]

(pmin)?
P‘min (Hn)] 2

Amax (A1) <
(30)

It follows that, in this case, h/ Ve = 1 (e) h/A/ (us (¢)? Ve = (13, (€) h/ /A1 nee) 1+ 0p (1)].
So, w.p.a.1l, h/ Ve — +oo if h > 0, whereas h/ Ve — —oo if h < 0, from which the stated
result follows. Finally, note that the results for Ty can be shown in the same way, so to avoid

redundancy, we omit the proof.

To show part (b), we first let L, = wh (c) c’D;l; and note that, by Assumption 10, there
exist a constant vector ¢, # 0 and a positive constant C' such L, = wr (c) D;l — ¢, and
d A1 e > C >0 a.s.n. It follows that, in this case, the conditions for En given in Theorem 3 are

trivially satisfied. Applying Theorem 3, we then obtain
(uiin /\/Rzm) (115 () € Dy Arpn Dy egisy ()] 7% i (¢) ¢ D! [Du (3L,n - 50)}

— (umin//Ko) [ 11 ncd Y2, [D“ (EL,,L - 50)} [1+ o0, (1)] 5 N (0,1). Moreover,
[(Ngﬁn)z /Kgyn} DM‘A/LDM = Ar1. + 0p (1) by part (b) of Theorem 4. Now, under Hy : ¢dg = r, we
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can write

Bpnor ) Ra) 5 (€ Dt [ Dy (3 =)

N \/(M; (@ D) [{(uzin)? /5, } DV, (D e )

from which it follows that

. (Mgin/\/ﬁﬂ c, [Du <3Ln - 50)] [1+o0,(1)] LN N(0,1). (31)

\/ C;All,nc*

Under Hy, we again write ¢/dg = r+ h for some h € R\ {0}, and note that, in this case, by applying

Ty =

Assumption 10, part (b) of Theorem 4, and Slutsky’s theorem; we have

(1, () { () Ko} Ve = (s () DY) [ (i) /Kzn} DLV D] (Dyeri (0))

= A1 nee + 0p (1). Moreover, there exists a positive constant C such that <A pc > C > 0
a.s.n. by Assumption 10. In addition, by part (c¢) of Lemma S2-3 and Assumption 3(iii), there

exists a positive constant C' such that, almost surely for all n sufficiently large

!
Ve <Q—A€) |ff] <C<oo  (32)

\ K2,n

(pmim)? 1 Kop
Koy [)\min (Hn)]Q (N?in)

)\max (AII,n) S

2 Amax

It follows that, for this case,

C ( mln/ /KQn) * ( mln/ /K. ) 1+Op(1)]

T W i ot VA

Hence, w.p.a.1, h/ Ve — +oo if h > 0 whereas h/ Ve — —oo ifh < 0, given the condition
that (,uﬁm) /\/Ka2.n — 00 and given that, by construction, p™®/u* (¢) = O (1). Finally, write

c/ng —r d (SLH - 50) N h
\/ C/VLC \/ CW/}LC \/ C/VLC

Since the first term on the right-hand side above is Oy, (1) as shown in (31), we deduce that w.p.a.1,

Ty =

T; — 400 if h>0and Ty, — —oo if h < 0. The results for Tr can be shown in the same way,

so to avoid redundancy, we omit the proof. [J

Proof of Corollary 2: Note that the assumptions and setup of Corollary 2 is essentially the same

as that of Theorem 5, except that we do not assume the more general conditions given in Assumption
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10 but rather we assume the specialized structure where D, = pin . 7, Hence, to prove this
corollary, we need to show that D, = p2in. 1) implies that Assumption 10 is satisfied. To proceed,
note that, trivially in this case, u5, (¢) = pp™ so that u, (¢) Dy te = pp™ [(u?in)fl . Id] ¢ = cfor all
n. Thus, ¢, = ¢ # 0 in this case. Moreover, there exists a positive constant C such that ¢, Ay ¢ =
e = (L) CH g 0 Hy e/ Ko = (1) ¢H, D,V C (U Ae/ /Ko n| FZ) Dy Hyy le =
JH'VC (U Ae/ /K| FZ) Hy'e > C > 0 a.s.n. for all ¢ # 0, by the almost sure positive
definiteness of VC (U'Ae/\/K2,|F7) as shown in part (b) of Lemma S2-3, which completes the

proof. [

Proof of Corollary 3: Note that the assumptions and setup of Corollary 3 is essentially the
same as that of Theorem 5, except that we do not assume the more general conditions given in
Assumption 10. Instead, we consider the special case where ¢ = ¢; for £ € {1,...,d}; and, in lieu
of Assumption 10, we assume the condition that there exists a positive constant C, such that
e’gﬁé,ﬁg.eg > Cy > 0 a.s.n. Hence, to prove this corollary, we need to show that, in the case
where the problem of interest is testing the null hypothesis Hy : 09 = €j09 = r, the condition
that e’éﬁg,ﬁg.eg > Cy > 0 a.s.n. implies the conditions given in Assumption 10. To proceed, note
first that since ¢ = e, here, we have p (¢) = min {1, ,|g € {1,...,d} and ¢y # 0} = p,,,, so that

wr () D;lc = W,nD;leg = U, (u&n)_l er = eg. Thus, ¢, = ey # 0 in this case. Moreover, note

that
. : D7t 0 0 0
pmmy Dol — (g min 1 o — = Dy, (say).
o 0= ) (7 )= (0 )

It follows that, in this case, c,Arrnce = €A1 ner = (,u?inf e’gHng;jlZ;ynD;le,jleg/KZn

= ¢,H, " DoV C (U'Ae//Kou|FZ) DoHy  er [1 + 045, (1)] > CeyHy Haer > CC = C > 0 a.s.n.,
by the fact that VC (U'Ae/\/Ky4|F7) > Clq a.s.n. for some positive constant C, as shown in
part (b) of Lemma S2-3, and by the assumption that GZﬁlzﬁg.eg > Cy > 0 a.s.n.. This completes

the proof. I
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