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Abstract

This Supplemental Appendix is comprised of two sub-appendices. Appendix S1 provides proofs
for Theorems 2 and 3 of the main paper. Appendix S2 states additional supporting lemmas used
to prove the main theorems of the paper. Proofs for these additional lemmas are reported in a
separate Online Appendix which can be viewed at the URL:
http://econweb.umd.edu/~chao/Research /research _files/Additional
Online Appendix Jackknife Estimation Cluster Sample IV Model December 20 2022.pdf

Appendix S1: Proof of Theorems 2 and 3

Proof of Theorem 2: Define Y, = Y/ Z,M“@¢/\/n + D;lg’As. Note that, by the result

of Lemma S2-9 given in Appendix S2 below, we have that D;lﬁ (60) = Y ZEMZRQ¢e/\/n +
DU As + 0, (1) = Vi + 0, (1)

We now establish the asymptotic normality of ), upon appropriate standardization, in the case
where K,/ (Mﬁinf = O(1). To proceed, let a € R? such that [la|]l, = 1 and define by, =

£, %0 and by, = /Ko Dy S0 a, where S, = VO (V| FZ) = S0 + San, with S, =
VO (Y ZyMA Qe [\ /n|FZ) and Spp = VC (DU Ae| FZ). Now, let L4,

—1/2 (i,t)—1
= b, Y ZsM A Qe e [V and Ny = K, Z(j =1 A.G.9) [ﬂw,t),ne(j,s) +H2,(j,s>,n5(z‘,t)]’
where uy (; ), = b, U (i,t)s With w ;o) ,, similarly defined, and where e(; ;) denotes an m, x 1 ele-
mentary vector whose (4, t)th component is 1 and all other components are 0. Using these notations,
note that we can write a’2,, ' °Y,, = Lann+ Z(i7t):2 {E(i,t),n + Mi,t),n}' Next, observe that,

2
[alz;zl/Zr/ZéM(Zl yQ)e(l,l)]

E [5%1,1),11‘}—5} = F [5%1,1)‘~7:ﬂ o
Y ZL M7 Qe ?
< FE [5?171)|.7-",ﬂ ¥ ta (H 2 NG (1’1)H2> (by CS inequality)
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a/ 1 1§(i,t)<mn HT/ZéM( 1, )e(i,t) H
< <1<(i,t)<mn |: (i,t)| n } ) En a < — \/’r_l

= op(1)

in light of Assumptions 2(i) and 7 and part (d) of Lemma S2-32. Moreover, under Assumptions 2
and 3(iii), there exists a positive constant C* such that

/ ;1/2T/ 1 H(Z1,Q) 4 ) | nZ 2}
Ez{( [(11 |j:z}>} _ Ez{[aE ZoM 177:(1,1)] (E[g(Ll)j:])

C _ 4 : .
< ﬁE <[a/2n 1/2T/Z§M(Z1’Q)e(171)} ) (by Assumption 2(i))

< OE <a’Zgl/zT’ZéM(Zl’Q)ZQTE;UQG

- ) (by CS inequality)

< CC = C* < oo (by Assumption 3(iii) and Lemma S2-3(d))

Since the upper bound above does not depend on n, we further deduce that

sup,, Bz { ( [ (1.1), W F Z ]) } < oo. It follows by the law of iterated expectations and by Theorem

25.12 of Billingsley (1995) that E (C(l 1), ) Ez (E [E%l,l),n|‘7nz:|> — 0. Application of Markov’s
inequality then allows us to deduce that Ly 1), = b’lnT’ZéM(Zl’Q)e(l,l)s(l,l)/\/ﬁ

= 0p (1), from which we obtain the representation a7 2y, =V, + op (1), where

Y, = Z:’; Viitym With Vi oy n = L t)n + Niig)n- Note we can also write V, = L, + Ny, where

Enzzzz) Liipym and Ny, = Zm" Niisym

Next, define the o-fields F; 1y, = o ({E(kv U, v)}g )) 1’Z) for (i,t) = 1,2,...,my, note

that by construction F; yy_1,, C Fi4)n for (i,t) = 2,...,my and Vi t)m 18 F(i)n-measurable. Note
also that, under Assumption 1, it is easily seen that F [V(Z-’t),n|}"(i¢),17n} = 0. In addition, note
that, by part (d) of Lemma S2-3 and Lemma S2-6, and Assumption 2(i);

E [Uz it), |.7:Z} < ( lznb2n) IS(IZ%?)S(mnE [HQ(”)HZ |‘7:74
< (Ij;%)zalzglaK(rﬁ?i(mnE ["Q(i,t)”i IFNZ} = O, (1) (1)

since, for this theorem, we assume that Ko,/ (1 m‘“) = O (1). It follows then from straightforward
calculations, from applying the triangle and CS inequalities, as well as from expression (1), part

’Lemma S2-3 is stated in Appendix S2 below. A proof of this lemma is provided in section 1 of the Additional
Online Appendix which can be viewed at the URL:
http://econweb.umd.edu/~chao/Research/research files/Additional Online Appendix Jackknife Estimation
Cluster Sample IV Model December 20 2022.pdf



(d) of Lemma S2-1, part (d) of Lemma S2-3, and Assumptions 2(i) and 3(iii) that
Var (Vi nlFY)
_ 2 Z 2 A
=k [E(ivt)yn|fn:| +E |:'/V‘(i,t),n|fn:|

Y Z5Z5%
<1< max F [E?i,t)|fnz:|> a' Y aAmax (2—2>
_(Z:t)gmn n

4 2 7 2
Ko <1sﬁ?§mnE[€(i’“‘f"D <1s<%?§mnE[g2’(” n ”D 1sarflt?§mn<j§—1j4(i’t)’(j’s)

IN

= Ogs (1) +Oq.s. (%) = 0q.s. (1)
(k)"

By the law of iterated expectations and Theorem 16.1 of Billingsley (1995), there exists a constant
C such that Var (V(i,t),n) =F (V(% 9 n) = Fy [E (1)(2Z " n\}'f)] < C < oo for all n sufficiently
large. These results show that {V(i,t),n,}"(i,t)m, 1< (i,t) <mp, n> 1} forms a square-integrable
martingale difference array.

To show the asymptotic normality of V,,, we verify the conditions of the central limit theorem
for martingale difference arrays given in Lemma S2-15. To proceed, first consider condition (22),
which, as noted in the remark following Lemma S2-15, is a sufficient condition for condition (20) of
Lemma S2-15. We shall verify (22) for the case where 6 = 2. Note first that, by applying Loéve’s
¢ inequality, we get

Mn

(i‘ B Via] = D B |(Lenn+Nana)'| <8 Z E[ﬁ(m ]+8 Z E[ 4ty
it)=2

(i,t)=2 (i,t)=

Hence, to verify condition (22), it suffices to show that Zzn:) ) E {E‘(li " n] =o0(1) and
1,t)= b )

ZT:Z) L [./\/'(” } = 0(1). To do this, we first focus on a conditional expectation analogue of
27

Z::) 2 [Ez(lz 0, } Note that

Z B [ £ FE]

(i,t)=2

- mz [a'z;l/zr'z;M%@)e(,,t)]4E[s;g,tﬂfﬂ
(3,6)=2

IN

mn, Y' 7! M(Z1.Q) ¢, 2
a/z;la% Z [alzgl/z'x‘/zéM(Zl7Q)e(i7t):|2 <H 2 \/ﬁ e(Z,t)H2> E |:€4(127t)|f‘nZ]
(i.0)=2

(by CS inequality)
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(i,t)=1

2
4 A MaX] < (4,t)<my, HT/ZQM(ZLQ)Q(M) Hz
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> P\ 7 Oy

IN
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S12 Maxy<(i.n<m, || T ZM 7 e || Y752,
(a'S; " a) < max F [sé(li7t)|fnz]> < NG 2 ) Amax | —2—

n

1<(it)<mn n

C(maxl<<zt<mn v 25 M= e, H) = 0, (1)

Jn

where the last line above follows from Assumptions 2(i), 3(iii), and 7 and by Lemma S2-3(d). Next,
note that, under Assumptions 2 and 3(iii), there exists a positive constant C* such that

IN

<

2
By | Y B|chyalF]
(i.t)=2
= = Z Z <[a'zgl/QT'ZéM(Zl,Q)e(i7t):4{a'Z;l/QT’ZéM(Zl7Q)e(j78)}4
(3,t)=2 (j,s)=

xFE [El(li,tﬂ]'—nz} E [El(ljvs)‘ff:)

C Mnp Mnp B 14 _ 4
— Z Z E, <|:a12n 1/2T/ZéM(Z1,Q)e(i7t)- [alzn 1/2T,ZéM(Zl7Q)€(j,8):| )
(ivt):2 (j7s):

%EZ {Q’Enl/TI‘/ZéM(ZpQ) Z e(z‘,t)el(m)M(Zl’Q)Z2TZ;1/2aa/Z;1/2T’ZéM(ZlvQ)
(i0)=1
mn )
X Z e(j,s)e/(j,s)M(Zl’Q) ZQTZ;LI/QCL (alzgl/QT/ZéM(Zl7Q)Z2TZ;LI/2CL) }
(j,s):l
4
CE, <a/2nl/2T/ZéM(Zl’Q)ZQTZn1/2a>
n

CC = C* < 0o (by Assumption 3(iii) and Lemma S2-3(d))

where the second inequality above follows from applying the CS inequality. Since the upper bound
above does not depend on n, we further deduce that
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sup,, Bz <27:)—2 E {E‘(ll. " n|]-"nZ D < oo. It follows by the law of iterated expectations and by

Theorem 25.12 of Billingsley (1995) that ZZ:):zE [ﬁ‘(li7t)7n] - ZZ’Z)Zz Ey (E [%,t),nlffb -

0.
Turning our attention to the bilinear term, note that by Loéve’s ¢, inequality we have

Z::):Q [ (i,t), “7'—2] < R1+ Ra, where

4
Mn (3,t)—
Ry = Z(i7t):2 (8/K3,) E [(Z(m_l A(i,t),(j,s)uz,(i,t)ﬁ(j,s)) |7nZ] and

. 4
Mn i,t)—1
Ry = E 0 2(8/K§H)E[<E E,t)) LA, L2,(7,5)E( ) |.7:Z] Focusing first on the term R4,
= ’ Jys)= *

i,t)

note that, by straightforward calculations as well as by making use of Assumptions 2(i) and 5(ii),
parts (b) and (c) of Lemma S2-1, part (d) of Lemma 52-3, and Lemma S2-6; we deduce that, there

exists a positive constant C such that

(/‘glin)4n 1132 Yz 4 7
TRl < 24n (d'S;a) (K(ir%z);mi(mnE MQ(MHJ}"”]) <1<(r2%2);m§mnE [€(i7t)|fn]>

X | Dl A(i,t),(as R Z > Ali0),6,9 400, k.0)
21 (i,t),(j,s)= Kon (021 oo
(ke (G200 (k) (1.0
< Oz Z) Ao T g7 ; Z) A6 A0, (k)
M (i,t),(5,8)=1 M (3,4)=1 (4,8),(k,v)=1
(L0£0.s) (G20, (k) £ (0.)

— Ous <K2> +Ous (1) = O (1),

Applying the law of iterated expectations and Theorem 16.1 of Billingsley (1995), we then have

(™)', (R)
K22yn Z 1
al 1 o 4 1 o — 2 2
S OnBz 53 > A(z‘7t>7<j,s>+—Kz > > A, A1), (k)
B (i,1), (Gys)= 2N (=1 (j,s),(kw)=1
ey ()20 (k) (i)
= 0(1)

from which we further deduce that

Jnoog (it)—1 4
Z 2 [(Z(Ls):l A(i,t),(j,S)QQ,(i,t)g(jJ)>

2

K3
=0 ((Mmin7)4n> = 0(1)




In a similar way, we can also show that

mn (i,t)—1 4
EZ (RQ) (8/K2 n) Z(z =2 <Z(] =1 A(j78)7(i,t)ﬂ2,(j,s)8(i7t)> ] =0 (1) It follows that

272)72 E [/\/(4Z " n} < Ez(R1)+ Ez(R2) = o0(1). This verifies condition (22).

Next, we verify condition (21) of Lemma S2-15. To proceed, first let s% = Var [Vﬂfﬂ =

Var (Z(L:):Q V(ijt)yn|ff>, and note that

s3, = Var W X MO + 2l Ac
\/7_7’ AV KZ,n

On the other hand, by straightforward calculation, we can write

|72 ) top (1) = 'S 28,5 2ato, (1) = 140, (1) (2)

sy = %(:;:2 [ X ZE M (ZQ )e(m)rE [E%ijt)‘ff}
i (i0)—1
+Ki,” (-;2(4 ) 1A%i’t)’(j’s) {E [ﬂg,(i,t)\fﬂ E {E%ﬂ'ﬁ)u—f] B [ﬂg,(j,s)\fﬂ E [E%z‘,tﬂfﬂ}
i,t)=2 (j,5)=
my  (i,t)—1
+Kin Z ‘t Al b .o E [ﬂz,(i,t)g(i7t)|ff] E [ugy(%s)e(jvsﬂfﬂ (3)

Making use of expression (3), we obtain, after some further calculations,

% E [V?i,t),n|F(i,t)—17n:| — 82Z

(i,t)=2

- % Z [ ’MT/ZQM(ZLQ)@(LH] M {5(j’s)E [€(i,t)22,(¢,t)|f5] +uy () F {€%i7t)|fnz]}

(zt =2(j,8)= \/KQy”

mMn (Z, —1
¢ 50y Raun ([ 172)) B[00
(i,)=2 (4,5)=1
my  (5,t) 1A
5 e sl
7,8

DY %<s<j7s>uz,w—E[@m%mf])E[um ]

7 s A 3 v
+2 Z Z Z ( ,t)y(%[g (@.1),(kv) [m,(z,t)é‘(z’,t)\ff] {QQ,(J'7S)5(]¢7U) + E(J’,s)%,(k,v)}
(1,)=3 (j,8)=2 (k,v)=1 2n



.77

+2 Z Z Z = M) (”) (M)E(j,s)ﬁ(mE o3 .1

(i,t)= ( ) 2(l<:'u

22 Z Z S :t)’(k’v)ﬂz,u,s)ﬂz(k,v)E L

(i,t)=3 (j,5)=2 (k,v)=1
= T+ DL+T+T+T5+ T+ T, (say)

Note first that, by applying parts (a)-(c) of Lemma S2-14, we have 7; 20,7520, and T3 2 0.
Consider next the term

Ti=2 mZ Z — 22 (s e — F (126260 77 | ) B 16260 72
(3,1)=2 (j,5)=1

In this case, we apply part (a) of Lemma S2-8 with u(;s) = Uy (j o) EUM =F [g27(j75)5(j73)\.7:nz},
and ¢y = F [uQ i DE (i) | F } Note that, in this case, {(gz’(i’t)’g(i’t))}?‘l;ﬂ is independent
‘(li tﬂfﬂ < C a.s. by Assumptions 1 and 2(i), re-
spectively. Moreover, note that Assumption 2, part (d) of Lemma S2-3, Lemma S2-6, and the
fact that Ko,/ ( mi“)2 = O(1) in this case together imply that there exists a constant C' > 1

4
such that F {u2 |.7:Z] < [K%n/( min) }E [HQ(”)‘ 2|‘7:nZ] (a’E;la)2 < C < o0 a.s. for all
(i,t) € {1,2,...,m,} and for all n sufficiently large, so that

conditional on F7Z, and maxi<(j t)<mn, & [s

maxi<(;,t)<m, & gi(i’t)\}'ﬂ < C a.s.n. Finally, using the upper bound derived in expression (29)
in the proof of part (a) of Lemma S2-143, we obtain

maxlg(i’t)gmn (/J)(Lt)‘ S maxlg(l-7t)§mn E HQQ,(i,t)E(i,t)‘ ‘fnZ:| S C a.s.n. and ma)(lg(j7s)gmn

V(jis)
Maxi < (; 1) <m, & Hﬂz,(ggs)ff(j,s)‘ |.7:nZ} < C a.s.n. It follows by part (a) of Lemma S2-8 that 73 2 0.
Now, consider 75. Here, we apply part (b) of Lemma S2-8 with UGjs) = Up (j,s) A0 Qi p) =

E |:ﬂ27(i,t)€(i,t)‘f7? } Note again that {(@2,(2‘715)7 E(i,t)) }::):1 is independent conditional on FZ, and

Maxi < (; 1) <m, & [s‘(li t)|.7-'nZ } < C a.s. by Assumptions 1 and 2(i), respectively. Moreover, previously,
we have shown that [@%,(i,t) |,7:nZ] < C a.s.n. and maxi<(; 1)<m,

part (b) of Lemma $2-8, we deduce that 75 2 0.
Turning our attention to 7g, we note that, for this term, we can apply part (c) of Lemma S2-8
with ¢(;4) = B [uQ |fZ] From (1), there exists a positive constant C' such that F [uQ |fZ]

C < oo a.s. for all (z t) € {1,2,...,my} and for all n sufficiently large, so that

d)(i,t)‘ < C a.s.n. Hence, applying

MAX| < (5,1)<m, gb(i7t)‘ = maxi<(j)<m, & [gg,(i7t)|ff] < C a.s.n. Hence, applying part (c) of Lemma

3A proof of Lemma S2-14 is given in section 1 of the Additional Online Appendix which can be viewed at the
URL:
http://econweb.umd.edu/~chao/Research/research files/Additional Online Appendix Jackknife Estimation
Cluster_Sample IV_Model December_20_2022.pdf



S2-8, we obtain 7g 20.
Finally, consider 7;. In this case, we apply part (d) of Lemma S2-8 with UGjs) = Yo (j,s)s

Ukw) = Yo (ko) a0d @y = B [E%i,t)|‘¢7? ] Using a conditional version of Liapounov’s inequality
and Assumption 2(i), we obtain F [5?i’t)|fnz} < ( { €6it) |]:Z]> i < C < oo a.s. forall (i,t) €
{1,2,...,;my,} and for all n, so that max;<(; s)<m, Pi )
= MaX|<(j t)<m, & [5@ ol Fi 4 } < C a.s. Moreover, as noted previously, Assumption 2, part (d) of
Lemma S2-3, Lemma S2-6, and the fact that Ko,/ (1 mm)2 = O (1) together imply that
max; < (i ¢)<m,, & [gz(i’t) |.7-"n} < C a.s.n. Tt follows by applying part (d) of Lemma S2-8 that 77 = 0.
The above argument shows that Z::)ﬁ E [V(2i7t)7n|f(i,t),17n} — 5% = Zzzl T = 0p(1). On
the other hand, expression (2) above implies that s%2 —1 = o0, (1). Putting these two results together,
we obtain ZZ:):Q E {V(Zi,t)7n|f(,~,t)_1yn} — 1 = 0, (1), which establishes condition (21) of Lemma

S2-15.
It now follows from Lemma S2-15 that

Mn it)— d
Vn = Z(i,t)zz { Y ZM e e/ Vi + Z AGin),(G.5) [ﬂzw%,s) +ﬂ2,(j,s>€<zut>]} = N (0,1),
Since, previously, we have shown that a'%,, 1/ 237” = Vn—i-op (1), this further implies that a’>,, 1 2yn 4,
N (0,1). Given that this result holds for all @ € R? such that [lal|, = 1, we can then apply the

Cramér-Wold device to obtain

o o T/Z/M(ZI’Q)(C: _ d
12y, =512 <2T +D,'U'Ae | 5 N (0, I) (4)
Next, let Hy,, = Y ZyM#Q ZoX /n, App = Hy 'S Hy b, and Y = T/ Z5M AR [\ /n+ DU Ae,
as given above. Consider first gL,n- Theorem 1 has already shown that EL’n 2 59. To show
asymptotic normality of dr,, note first that, by Lemma S2-11, 6y, ,, satisfies the set of (normalized)

first-order conditions A (gLn> = 0, where
A@©) = —[(y— X8) MZQ) (y — X6) /2] [a@FEUM (8) /88 |. Applying the mean-value theorem
to each component of A (§) and expanding it around the point § = §g, we obtain 0 = A (gLn) =

A (00) + (83 (6n) /86’) (gLn - 50>, with &, lying on the line segment between gL,n and dp. Mul-
tiplying both sides of this equation by D;l, we further obtain

- 0A (5,) 1~ ~ 9A (3, -
0=D;'A(60) + D' afs' ) (3.0 —d0) = DA (680) + D;! afs' )D;1Du (O —d0) (5)

From the result of Lemma S2-10, we have —D/jl (83 (6n) /85’) D;l = H,, + 0, (1), where H,, =
Y 74 M (Z1:Q) ZQT /nis a positive definite matrix a.s.n. by Assumption 3(iii), which, in turn, implies
that D;l ( ( n) /08 ) ! is nonsingular and, thus, invertible w.p.a.1. It follows that, for all n



sufficiently large, we can solve for D, (gLn - (50) in (5) above to get

~ = -1
~ oA (3,)\ a
D, (5L7n - 50) - [D,;l (%) D,}] DA (50)

e Y/ Zh M (4@ ¢
= |

where the last equality follows by applying Lemma S2-9. By part (d) of Lemma S2-3, ¥,
1/2
d

~—

- D;lg’Ag> [1+ 0, (1)], (6

positive definite a.s.n., so that X! is well-defined for all n sufficiently large, and both X

3 1/2 can be taken to be symmetric matrices. Since H,, is also symmetric, it further follows that
Arp = H_lEan_l is symmetric and positive definite a.s.n., and both A;}L = (H;lEnH,jl)_l and

Al_j‘/ 2 (H -1y, H *1) 12 are well-defined for all sufficiently large. Multiplying both sides of the
equation above by A} / , we then get A 1/2Du <Z5\L,n - (5()) = (H,'%, H*1)71/2 H, 'Y, [1+ 0, (1)],

where Y, = Y/ Z,M Zh 5/\/H+Du U’ Ae. Let Ry, = (H,'SnHyt) ™ 12 g 1271/2, and note that
RWnR{,V = I, for all n sufficiently large. It, thus, follows from the result given in (4) above and

the continuous mapping theorem that A, 1/2Du (ngn - (5()) 4 N (0,1;), as n — oo, as required.

Turning our attention now to 5 Fn, Dote that we can write this estimator, appropriately stan-
dardized, as

D, (SF,n - 50) - (D;IX’ [A - ?FmM(Zl’Q)] XD;1> o DX’ [A - ZF,nM%Q)] (y — X80) (7)

1/2 = (]'17,;12711'1751)71/2 and applying Lemmas S2-12 and S2-13, we

obtain A n/ D, (5F,n —5()) = (HglEanl)_l/z H, 'V [1+ 0, (1)]. Tt follows from the result

so that, multiplying by A,

given in (4) above and the continuous mapping theorem that A 1/ 2 D, (gpn - 5()) 4N (0,14), as
n — 00, as required. [

Proof of Theorem 3: To proceed, note that, in this case, ( mm) /v/Kapn =o0(1)but /Ks,/ ( mm)
— 0, so that, by the result given in Lemma S2-9, we have

min min
Hn D;lA (50) — Hn
K2 n KQ,n

)

DU Ae + 0, (1) (8)

where U = U — gp/. Again, let H, = Y Z,M70@ 2, /n, and Sy, = VC (D, 'U’ Ae| FZ)

= D;]"VC (Q 'Ae|FZ ) D;l. Now, by assumption, L, can be any sequence of bounded (I x d) non-
random matrices such that Apin (( gﬂn) Ijan 122 nH 1L’ Ko n) > (C a.s.n. for some constant
C > 0. It follows that ( min)2L Hilﬂgn *IZ;/KQW is positive definite a.s.n., so that, with

—1/2
probability one, (( mm) L H, 122n ~17/ Ko n) is well-defined for all n sufficiently large.

Hence, we can let
~ —1/2 ~ .
N, = (( min)2 7 H 1%, H, ;1L;/K2,n> LpHyt (™ /\/K2,) D, 'U' Ae and construct the



linear combination J, = a’A, for any a € R? such that lall; = 1. Next, define u ),

o (( min)? 7 H-1% , H *1f§l/K2n) ”7 H*ID*IUW), with wj,),, similarly defined, and we
: min Mn (i.0)
can write J, = (" //Ka,n) Z ZUS CORCS ) [“(i £)mE(.9) +M(j,s>,n€<z',t>]
—1
_ Z(Zt zt Yo where ‘7(” — ( mm/1 /KQ n) Z —1 (z t),(4,s) [ﬂ(i,t),ng(j,s) +Q(j,s),n€(i,t):| .

Again, define the o-fields F; ), = o ({E(lw ’U(kvv)}&i);):l ,Z) for (i,t) = 1,2,...,my, noting

that by construction Fg 1, € Fipn for (4,t) = 2,...,my and Jip)pn i Fiy),,—measurable.

In addition, note that, using Assumption 1, it is easily seen that F [ﬂ(i7t),n|f(i,t)—1,n} = 0 and
[E(Z 01 F ) 1) =0, from which it follows that E [-7(i,t),n‘~7:(z‘7t)—1,n] =

(/) /Ka.n) Z(Js 50,69 {669 B [Wi nl P10 + 5.0 B [0 | Fs2)-1] | = 0. More-

over, applying the CS mequality and making use of the fact that

Max1 < (i t)<m, & [HQ(i,t) H2 |774

2
E {u(zt IJCZ] Ammin ((Mr‘?i“f LoHi 'S0, Hi L /KQn) A m:(Hn)]z <Mnj‘m> = Og.s. <(Mgllin)2>
and that E { |fZ] < T a.s. by Assumption 2(i), we see that ¥
Var (T nlFr)
< L2055 o (8 i) £ i) 2[5 2 ]
+2\/ B )7 B [0 2] B [, 77] £ [e?j,s)lﬂzD
(/j%i; (l;iijl)z ((:))_11 A = (i)_ 0);(Gs) @51 (10)

Hence, applying the law of iterated expectations, part (d) of Lemma S2-1, and Theorem 16.1 of
Billingsley (1995), we further deduce that Var (ﬁzt)n) =FEy [E (Jg " n|]-"nZ )}
< (4@2 / K2,n> ZZZ))— { A%@ .G S)] < C for some positive constant C' for all n sufficiently

large. These results show that {j (i,6)m F(it)mr L < (1,t) <mp, n > 1} forms a square-integrable
martingale difference array.
Next, we verify condition (22) of the central limit theorem for martingale difference arrays given

10



in Lemma S2-15 below. By Loéve’s ¢, inequality we have

S

4
( /KZn Z A(zt ),(4,8) [U(zt) (.,s)+u(jﬁs),ne(m}) |]-“nZ

mn (Mmm)4 (i,t)—1 4
n 7
< 8 Z K2 E Z Azt ,(4,8) ),n€(5,s) |fn
(i,t)=2 2,n (j,5)=1
s (! 2
+8 Z K2 E Z A(zt (4,8)(5,5),n€ (i,t) ‘fn
=2 ~ 2n (3,s)=
46 (say). (11)

Focusing first on &1, it is easy to see that there exists some positive constant C' such that

&
4 mMn Z,t) 1 4
8 (™
(72) Z (Z AM(L Y(it)n (J»)) |JTnZ
2n (i,t)=2 \(j,s)=1
mln 4 mp
S Z Z zt ),(4,8) [ A(lz,t),n|fnz} E {E?j,s)‘fnz}
Ko (it)=1 (j,8)=1
(a s>¢(z t)
min\4 mn mn
+24(Mn ) Z Z A2 A2 E[4 |f'Z:|E|:2 |fZ:|E|:2 |f'Z:|
K2 e (6,6),3,) (0.0, (k) = [ LGt n | B G Y n | B k)
n it kow)=1
(a §)(i,8),(k,0) (i)
(5.8)# (k)
C 1 ULl 1 = el
o | 2 Ao TR 2 > Al Ae) (1)
’ " (i), (55)=1 =1 (Gs), (k)=
(7,) 2(i:1) (7.)#(int), (kv#( t)

where the second inequality above follows from Assumption 2(i) and from an upper bound on the
conditional fourth moment of

_ /2
Yiipyn = @ (( mm) L,Hy, 'S, EIL%/Kzn) LoH,'D'Uy; ) given by

st < G e, # (ol =) ) ot

2
o4 1
X ‘ L,
F \ i () L i i T K )
C*
< ()] a.s.n., for some constant C* > 0. (12)
B

11



Note also that, in deriving the upper bound given in (12), we have applied Assumption 3(iii),
2

, and the assumption that

Amin (( mm) Ly, H, 1% . H 1Ln/Kg n) > C >0 a.s.n. Moreover, by parts (b) and (c) of Lemma

S2-1, we have that K{i Z 9= (0%(e) A(i’t)(j’s) = Og.s. (Kzn/n ) and

mn 2 2 . . .

(zt Z(J, oL (Gue) i) (ki) 000G ), (o) = Oacs. (Kzn/m). - from which it

follows that nEl = Ogs. (1) in light of Assumption 5(ii). Hence, by applying the law of iterated
expectations and Theorem 16.1 of Billingsley (1995), we obtain, for all n sufficiently large,

nEyz [&1]

4
Sn (M;Lnin)‘l my (i) ~1 .
= K22 EZ E E E A (3,8),(7,s) ),ng(j7s) |fn

Cn N R u
S VB | 2 Al YT 2 > Aty Al (k)
" "), Gs)=1 =1 (). (k)=1
()%, (G:5)74(0.) (k) £(.0)

= 0,
which shows that Ez [£1] = O (1/n) = o(1). In a similar way, we can also show that

(i1 ! .
Ez[&)] = 8[( mn)’ /Kgn} b [Z(zt (Z(j,s):l Aus),a,t)M(zut),nE(z,t)) ] = o(1). Condition

(22) of Lemma S2-15 then follows from these calculations since

. 4
M min (Gt)—1
Y. E M;( > A [ﬂ(m),né“(m) +Q(j7s),n5(i7t):| S Ez[&]+ Ez[&] =o(1)
(i,)=2 V2 s)=1

Next, we verify condition (21) of Lemma S2-15. Note first that, by construction, Var (Jn|.7-" z )
~ ~N—1/2 ~ ~ ~ N\ —1/2
=o' (Lahrrnlh) " LadsrnLly (EnhrraLh) o =1, with Arp = | (u)? /K| Hy ' SonH
This, in turn, implies that Var (J,) = Ez [E (J2|F7)| = Ez [Var (Ju|FZ)] = 1. On the other

hand, by direct calculation, we obtain

1 = Var (jn\}"z)

mln mp (3
LS > AP Eob77] B ]
1,t)=2 (j,5)=

mm2 mn ()=

Kzn 2 Z 0B (W) nl P2 B || 77

(4,6)=2 (4,s)=1

12



Alin.GoE [ﬂu,s),n%,s)lff] [u(m Ztlf] (13)

Making use of expression (13), we obtain, after some further calculations,

Mmn

Z 2 [‘Z%,t),n|f(i,t)—1yni| -1

(i,t)=2

min\2 Mmn (3,t)
(™) 2o

- K > z Ay tio (b = B iV 7]) B [0l 7]

(i,t)=2 (37 )

mln 2 ma 3t

KQn 2 Z A0 (Wi — B [ alFT]) B | 7Y

(4,6)=2 (4,5)=1
2 (urm)® L O, z z
K, (z’;—w;— Ay G (2600560 = B (16590260 FL |) B .00 00| |
mln my  (6t)—1 (j,8)—1

K2n Z > Z Axi,),3G,9) A, (e0) E [ﬂ(i,t),n€(i¢)|ff] {Q(j,s),ng(k,'u) + €(j,s)u(k,v),n}

(Z t)=3 (4,5)=2 (k,v)=
mln Mn (7' t -1 (4, 5)
A
Kz Z Z Z A(Zt (.8) A0,0), (k) (Go) E (ko) B |:u(zt nl }
o (zt =3 (j,5)=2 (k)=
mln my (4 t) 1 (4, 5)

K2n Z > Z A(i.0),9) AG0.0),000) )0 Lk o) m [€?¢¢>|fﬂ

M (=3 (j.5)=2 (bv)=
= TT1+TTo+TT3+TT4+ 775 +T7T¢ (14)

To analyze the terms 77 (k = 1,..,6), note first that, by applying parts (b) and (a) of Lemma
S2-16, we obtain 774 Lo0and 77, 2 0, respectively. Consider now the term

2 (“min)z o (! 2 z z
o e A 0.6 (Wt = B (19086 FE | ) B | nsi |
’ i,t)=2 (4,5)=1

In this case, we apply part (a) of Lemma S2-8 with wu; o), = (Mgﬂn) Uj.6) .m0
E(m) =F [(Mﬁin) M(j,s),nff(j,s)‘}—ﬂv and ¢ = F [(un )u(zt a0 |1 Fn ] Note that, in this case,
{(U(i ), EG, t)) }?7;):1 is independent conditional on F? = ¢ (Z), and

Maxi < (j 1) <m, & [s |.7-' } < C a.s. by Assumptions 1(i) and 2(i), respectively. Moreover, the
upper bound given by (12) implies that there exists a constant C* > 0 such that

ki< sy, B [ 7] = 51y, (157 E [, 7] < (7)€ (i)
a.s.n. Finally, note that, by using the fact that

Yipyn = @ (( mm) L.H; o nH ,jllj;L/K27n>7 i L,H D> 1U(Z # and by applying Assumption

4 _ o

13



2(i), Lemma S2-6, and the assumption that
Amin (( mm) L H; 1%, anlig/ngn) > C >0 a.s.n.; we can show that there exists a constant
C > 0 such that

B (| ™) wsnscen | 177]

~ \ —1/2
L H; Iy anlL/
2nTn n) al | F?

min ~1g—-17 ( mm)
= (Nn ) E €(i7t)Q,(z‘7t)Du 1Hn 1L;z < KQ,n

min 2 7 ! ( mln) L H 12271H;1E/n 71/2“’ —-1n-1
< (u) B e 1 F7] |a o L.H;'D,
~ ~ o\ —1/2 Y2
. min LnH_lE nH—lLl
xE [Q(Zt (Zt \FZ} 1]'1771_114Z <('u" ) n ZAnn n) a (by CS inequality)
KZ,n
< min E 2 A 1 E U 2 A
S [8(i7t)|‘7:"} ((puin) 1géﬁ?§mn [H_(i’t)HQ |f”}
1 ~ 1
STz zTm |l — -
’ \/Amm (Gupiny? L S H Ly Ko
< C< oo as. forall (i,t) € {1,2,...,my} and for all n sufficiently large (15)

from which we further deduce that max ‘gb(m ‘ < max(y B H(,um )u(” (it ‘ | F- ] < C

V| < max B [| (i

plying part (a) of Lemma S2-8, we have 77 3 2.
Next, consider the term

a.s.n.and also that max; ) )g( $)mE(,5) ‘|.7:n] < C a.s.n. Hence, ap-

Mn (th) 1 (va) 1

2 ;Lnin 2
774_% DY Y A9t 1ol FL ] {8hamsen + 6t |
(4,6)=3 (4,8)=2 (k,v)=1

( min

Here, we apply part (b) of Lemma S2-8 with u; 5 , = (15 ) Yj,s)n 20d

bun = E [(,uﬁm) Uity mE i) [ T ] Note that { (w0, €, t))}?:;):l is independent conditional on
FZ =0(Z2), and

Max;| <(; 1) <m, & [5‘(1Z.7t)|fﬂ < C a.s. by Assumptions 1 and 2(i), respectively. Moreover, from

calculations given previously, we have max;<; 1)<m,, (ﬂgun) E { Ui 1), W F 4 ] <C a.s.n.and

max; ;) ‘¢(i7t)‘ < C a.s.n. Hence, by applying part (b) of Lemma S2-8, we deduce that 774 0.

14



Turning our attention to the term

Q(Mglin)z my,  (65t)—1 (4,8)—1

TTs = — Y A9 A0 0G0 k) E [ﬂ |7:Z}
T (6,6)=3 (j,s)=2 (k,v)=1
For this term, we apply part (c) of Lemma S2-8 with ¢, = E[ \FZ} and () pn

(1™) (i g - From (9), there exists a positive constant C' such that E [ Ui, |.7:Z]
= (Mﬁm)QE [Q?Z t)n|.7-“,ﬂ < C < o as. for all (i,t) € {1,2,...,m,} and for all n sufficiently

large, so that max(; ;)

d)(i’t)‘ = maxi<(;)<m, £ [u%zt)nu-"nz} < C a.s.n. Hence, applying part (c) of

Lemma S2-8, we obtain 77 5 2.
Finally, consider the term

2 7z
TT6 = TRy Z Ai,),6,8) A,), (ko) L, 8) mY(k,0)m [E(i,t)‘fn}

In this case, we apply part (d) of Lemma S2-8 with u(; s = (ua™) U(js)mr Ukw) = (puiim) U(kv) s
and ¢; = E [E%M)\}"f ] Using a conditional version of Liapounov’s inequality and Assumption
2(i), we obtain E { 2 |fZ] ( [ 1 |.7-“ZD1/2 <C < oo as. forall (4,t) € {1,2,...,m,} and for
all n sufficiently large, so that max; ;) ‘d)(z y| = maxy E [5 |]-" Z } < C' a.s.n. Moreover, the up-
per bound in (12) implies that max;<(; 4y<m,, F [u(Z Al Fa ] = max;<(; y<m, (L™ )4 E { Ui, |.7:Z]
< C a.s.n. It follows by applying part (d) of Lemma S2-8 that 77 = 0.

It follows from the above calculations that the terms 77 = 0 for each k € {1, ...,6}, which
in light of equation (14) implies that Y~ P (T2 alFiiay1n] =1 = 0, (1). This establishes
condition (21) of Lemma S2-15. It now follows from Lemma S2-15 that 7,
= () /Rom) @ (1) Loy Sy Ly Ko ) VLD A= % N (0,1). Since this
result holds for all @ € R? such that ||a||, = 1, applying the Cramér-Wold device, we further deduce

that

(N?in/\/ K2,n> <LnAII,nL;Z)
where Arr, = (p20)° Hy'So, H /Ky, with H, = Y'ZbMZ1Q)Z,Y/n. Next, recall that
A@) = — [(y — X6) MZQ) (y — X) /2] {8@FEL1M (0) /06|; and note that, by Lemma S2-10,

we have —D ! <8A ( n) /85') D, '= H, + 0, (1), with H,, being positive definite in light of As-
sumption 3(111), so that upon inverting the expansion given in expression (5) above and multiplying

y (wrim) /\/Kzn, we obtain
(12 /B ) Dy (3 = 00) = (k™ /y/ Koz ) Hi DB (80) [L + 0, (1)

Y2 g d
L,H, D, U Ae = N (0,1y), (16)
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( min / /Kgn) H,'D,;'U' Ac [1 + 0, (1)],
where the last equality comes from applying expression (8). It follows by multiplying both sides of

~ ~\N—-1/2 o
the equation above by (LnA I I,nLn) L,, and applying the result given in expression (16) that

(um/ /Ko) (L Arral ) 1/2 EA"D“ (EL,n —50) 4N (0, I).

Turning our attention now to dr,,, note that, using expression (7) above, we can write

(u™) Dy (EF,n - 50)
K>,

)

(k™) (D,;1X' [A - ZF’RM(Zl,Q)} XD;l)
Koy,

—1 ~
DX [A - zF,nM%Q)] (y — X30)

It follows by applying Lemmas S2-12 and S2-13 that

\/K2,n \/K2,n

noting that, in this case, (up™) /v/K2n = 0 (1) but \/Kan/ (1 mm)2 — 0. It follows by multiplying
1/ 2 ~

both sides of equation (17) above by ( L, Ajr nNn) » and applying the result given in expression
(16) that

(/o) (LadrrnLn)  LaDy (B —d0) N (0.15). O

min

H,'D;'U' Az + 0, (1), (17)

Appendix S2: Key Lemmas Used in Proving the Main Theorems

In this appendix, we state a number of lemmas that are used in the proofs of the main theorems
of the paper. Proofs for these lemmas are available in a separate online appendix which can be
viewed at the URL: http://econweb.umd.edu/~chao/Research /research _files/Additional Online
Appendix Jackknife Estimation Cluster Sample IV Model December 20 2022.pdf

Lemma S2-1: Let A = P+ — M(ZQ)D@M(Z’Q). Then, under Assumptions 2-6, the following
statements hold as K» ,, n — oo.

M 9
(@) Z(W)7(j78):1,(i,t);£(j7s) AGi).Gs) = Oas. (Kan).
mn 4 B 5 5
(b) Zw () =LA, )A(it)(; ) = Ous. (K3,/n%).
n ) ) B )
Z“ Z =1,(i,t)#(5,5),(k,0)#(5:5) AL 0.9 ATy = Oas. (K3 ,/m).-

Mn

(d) max;<(t)<m, (Z(J s)= A%i t),(4,8 )) = Ou.s. (Ko /).

T,
(e) Zu Ji2=1 Z] 1,j7#i1,i2 Zh 1 th 1 ZSZ So= 1 %il,tl) (s Sl)A%i2vt2)v(j732) - Oa's‘ (Kgyn/n) and
ZZ 1 Zjl 1,514 ij 1,527 Ztl ta=1 Zsl 1 Zsz 1770 t1 J1,81)A%i¢2),(j2,82) = Ous. (K22,n/n)
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Zz 1Zt 125 1 zt (@3 = Ouy.s. (Kgyn/n)
ZZ 1 Zsl t1=1,51#1 282,t2=1,327&t2 A%i7t1)y(i781)A?i7t2),(i7sg) = Oq.s. (Kin/n?’).

Lemma S2-2: Let Assumptions 1-6 be satisfied. Then, the following statements are true:
(a) D'X'M#AQXDL = 0, ( (pmin) ~ 2); (b) D*X'AXD;' = H, + o, (1), where H, =
Y/ ZL MA@ ZyY In = O, (1).

Lemma S2-3: Let U = U — ¢p/ and Uiy = Uiy — pe(y and let VC (X|,7-'nZ) denote the
conditional covariance matrix of the random vector X given .7-"nZ . Under Assumptions 1-2, 5-6, and
8; there exists positive constants 0 < C < C' < oo such that the following statements are true.

(2) Amax [VC (Y Z4M %1/ \/n|FE)] < C  a.s. and Ay [VC (Y Z4M %19/ \/n|FZ)] > C
a.s. for all n sufficiently large.

(b) VC (U'Ae/\/Kan|FZ) = CI; > d(X)d a.s., for all n sufficiently large.

(¢) Amax (VC [U'Ae/ /K2 FZ]) < C a.s., Amax (VC [U'Ae/\/K2,]) < C,

Amax (VC [U’As/w /K27n|fnz]) < C a.s., and Amax (VC [U’A»s/w /Kgm]) < C, for all n sufficiently
large.

(d) For any a € R? with ||a], = 1 and for all n sufficiently large, Amin (Xn) > C > 0 a.s. and
a'y; lg <C < a.s., where ¥, = VC (yn|,7:Z) Y10+ Xan, as defined in section 4 of the main
paper, and where Y, = Y/ Z,M(“1:@¢/\/n + DU Ae.

Lemma S2-4: Under Assumptions 1-6, D' X' Ae = Y/ Zy M(“1:Q)c /\/n + D 1U’ Ae

= Op (max {1, /Kzn/ (13™) })

Lemma S2-5: Under Assumptions 1-6, D;lX’M(Zl’Q)e = Oy (n/pin).

Lemma S2-6: If Assumptions 2 and 8 are satisfied; then, for 1 < p < 8 and for all n, there exists
a positive constant C' such that maxi<(; )<m, E[ n} < C < 00 as., where Uy =
Utit) = PE(it)-

Lemma S2-7: Under Assumptions 1-6, the following results hold: (a) 7, Lin = 0p ([ mm] / n) (b)

an — Op ([ mln] /n)
Lemma S2-8: Let A be as defined above. Assume that i) (u<171)7n,e(171)) ey (U(l,Tl),n,5(1,T1)) ,

(U(Z,l),na 8(2y1)yn) 7t (u(27T2)7n’ 6(27T2)yn) [ (u(nvl)yn’ s(nvl)yn) e u(n7T7l)yn’ S(an’fl)yn are lndependent
conditional on FZ = o (Z); ii) there exists a constant C such that, almost surely for all n sufficiently

large, maxlg(i,t)gmn FE ( (Zt |fZ) < C maX1<(l t)<mp, FE ( (Zt |fZ) < C and

Max| < (i t)<mn ‘gb(m,n‘ < C. In addition, define w(j,s),n =F [U(j,s),ns(jﬁ),ﬂfn] for (j,8)=1,...,m
Then, under Assumptions 5 and 6, the following statements are true:

-1 2 P n.
() Ko 3y ctinrom A 00600 {2000 G00m = P} 5 0

Uiy

-1 P n.
(b) KZ,n 1< (k)< (j,s) <(i,8)< mn A(i,t),(j,s)A(z t),(k,v) d)(z t {u(j, nE(k,v),n + E(j,s),nu(k,v),n} = 0;
1 .
(C) KQ,TL 1< (k,v)<(j,s)<(i,t)§ M A(i,t),(j,s)A(i,t),(k,v)gb(i,t),ng(j,s),ng(k,v),n _> 07
-1 p
(D) Kon Qi (hor<ioy< i< my Ai0G9 A0, 060) P6.0).0 UG ) k) — O-
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Lemma S2-9: Let

A (6g) = — W= X0 MAD (y = Xoo) O { (y - X0) Ay - X3) }
o 2 95 \ (y — X0) M7 @ (y — X0)

6=do

If Assumptions 1-6 and 8 are satisfied; then, D;lﬁ (60) = Y ZLM Q¢ / /i + D/le’Ae + oy (1),
where U = U — gp/ and where p = lim,, o F [U’MQS] /E [S’MQs].

Lemma S2-10: Let Assumptions 1-6 be satisfied, and let §,, be any estimator such that, as
n — oo, D, (Sn —60) /pi® = o, (1). Then, —D/jl (33 (En) /85’) D;l = H, + o0,(1), where
H, = T’ZQM(Zl’Q)ZgT/n and where

A0) =~ [(y— X0) M*AQ (y - X3) /2] |0Qrrra (9) /0]

= X'A(y — X6) — 1 (8) X' M#Q) (y — X0), with
C(6)=(y—X6) Aly—X6)/[(y— X6) M(ZQ) (yy — X6)]. In addition, we also have

DX’ [A —7(3,) M(Zl’Q)] XDt = Hy + 0, (1). (18)

Lemma S2-11: Let ZL =Q (E) = minBEEQ(ﬁ), where @ (f) is as defined in Assumption 9.
Then, 7, 1, is also the smallest root of the determinantal equation det [Y,AY —X'M (Zl’Q)Y] =0,

where X = [y, X]. Assume in addition that condition (13) in Assumption 9 is satisfied; then, ’
has the representation

_ (v-x8) A(y-x3)
- (y - XSL)' M(Z1.Q) (y - XSL) ’

where SL denotes the FELIM estimator. Moreover, X A (y — XSL> — ZLYIM(ZLQ) (y — X?S\L)

(19)

= 0. In particular, this implies that A (gL) = 0, where

A@5) =— [(y — X&) M(Z1Q) (y — X§) /2] (GQFELIM (0) /85), so that 01, satisfies the set of (nor-
malized) first-order conditions for minimizing the variance ratio objective function @ rELIM (0) =
(y — X8) Ay — X6) / [(y — X8) MPQ) (y — X§)].

Lemma S2-12: If Assumptions 1-6 are satisfied; then,

DX’ [A - £F7nM(Zva)] XDt = Hy + 0y (1), where H, = ' ZyMZQ Z,Y /n,

zF,n = [?Ln - (1 - ZLH) (C’/mn)] / [1 - (1 - an) (C/mn)}, and ?L,n is smallest root of the de-
terminantal equation det {YIAY - EY/M(ZLQ)Y} =0,withX=[y X ]

Lemma S2-13: If Assumptions 1-6 and 8-9 are satisfied; then, D;lX’ [A — ZF,nM(ZhQ)} (y — X o)
= YV [1+ 0, (1)], where Y, = Y ZyMZ1@e /\/n + D, 'U’ Ae with U = U — gp’ and

p =lim, o E [U'M@e] /E [¢M©e].

Lemma S2-14: For any a € R? such that ||a|| = 1, define by,, = E;lﬂa, bop = KgynD!le;l/Qa,
U (i) = 02U i)
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1 -
Ko/ Dy Uiy, 0%, = E[ | F } Diitym = E[uQ(” e | F ] and @% ) =
E [u 4 |,7-"f } If Assumptions 1-2 and 5-6 are satisfied; then, the followmg statements are true.

(i,6)—1
Z(Zt 2 D yeyr W T ZM O Dei [\/a] (A .9/ v/ 2n){ ot U (550 ?m,n}

=0, (K%éi‘/umm) =0, (1),
) ( " /KM) (E?-,g _ agj’s),n) &% n = Oy (Kz,n (pmin) 2 *1/2) =0, (1).

(@
(4,5)=1 J
Z(” ZEJ:S)) 11( (i,2),(5,9) /K2 ”) ( 37(3 8),m a%j,s)vn) U%@',t),n = 0Op (Kz,n (u%‘i“)ﬂ n71/2) —

p

Lemma S2-15 (Génsler and Stute, 1977): Let {X;,,Fi,,1 <i<k,,n>1} be a square
integrable martingale difference array. Suppose that for all € > 0

kn,
Y E[X7I{|Xin| > €} Fi-1n] >0 and (20)
=1
kn,

Y E[X7,|Fiin] 1. (21)

1=1

kn,
Then, Y~ " Xip < N (0,1).

Remark: Note that a sufficient condition for condition (20), which we will verify in lieu of (20) in
the proof of Theorems 2 and 3 in Appendix S1, is the following

kn
S E [|Xi,n|2+5] 2,0, for some § > 0. (22)
i=1

Lemma S2-16: Let L, be a sequence of | X d nonrandom matrices (with [ < d) such that
~ 2

‘ L,|| < C < oo for some constant C, and let Yon = VC’( 1U'A€\.7:Z)

=D, 1VC (U 'Ae|F7) D, . Assume that there exists a positive constant C such that

Amin (( mm) Ly H, YS9, H,, an/KQ n) > C > 0 a.s.n. Furthermore, let a € RY such that [|al|, = 1
-1/2 ~

and let w, (s, = @ () Lol S0 B L Ko )

5-6 be satisfied and assume that (uﬁ“n) /K2, =0(1) but
K2/ ( mm) — 0. Under these conditions the following statements are true:

(@) [y e 32, 32 Ao (8 o= B [ iyl 2] ) B [0 ]

= 0, (/%) = 0, (1);

(b) | (uz)* /K| S0 Z(” Ao (o = B[] ) B [ 6007

(4,8)=
=0y (n71/?) = 0, (1).

L.D; Ui r)- Let Assumptions 1-2 and
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Lemma S2-17 Under Assumptions 1-6, Dle’AD (eoe) AXD;1 =X1n

mMn — J— Z 3 Z )
JFZ(i,t),(j,s):l,(z‘,zt) G, )A%it) G976 P VG, S)Du1+0p (1), where 1, = 1 Zy M Do M QD 2,

D2 = diag ( % 1y a%n’Tn)>, and ¥ ) = E [U(jys)U(’j,s)|ff].

2 _ g2
Tiny = E [5(z,t)|]:n

Lemma S2-18 Let Assumptions 1-6 and 8 be satisfied, and let {;5\”} be any sequence of esti-
H2 20 as n — oo, as long as VEan/ (Mgﬂn)z — 0. Also, define the
following notations: let € = M(4Q) (y — Xén), J=[M%o MQ]_l, S1 = X'AD (J[E0?]) AX,
Sy =(€08) J(AoA)J (B0 MZIX),

Sy = (Fod) J(AoA)J (a;i oﬁ) with U = MZQX 25, S3 = (F02) J(Ao A)J (Fo?),

mators such that

~\/ -

Sy, =Y Z,MZQ D, QM(ZLQ)ZQT/TZ. In addition, define a?i =L [€?Z t)|fnz}a

D,> = diag (0%1,» (n,T) ) Sin = B UaneanlFi ], Yoy = B [UW) U{ivtﬂf”z}’

Q(i,t) _E [Q(i,t)€(i,t)|fn]a and ¥, ) = [Q(i’t)g’(i,tﬂfﬂ where Uy; 1y = Uiy — pe(ir) and where
for notational convenience we suppress the dependence of o %Z t)’ d’(i,t)’ \Il(ivt)7 9(1‘ t)’ and g(”) on

FZ =0 (Z). Then, under the above conditions, the following statements are true.
—1 1 2 2 -1 -1
(a) D S1D, =10 + Z(” 602G NG9 o P Y Di
+op (max {1, Kz, (i) 2})

-1\ """ 2 2 2 _
(0) S5/ Kain = Koin 2 i1y =1, 60 0.0) ittt Ty = O (1)

1 1 mn min) —2

(©) DtSaD! = 300 ot NG P a8 Dt = op (K (%) 7).
min -1 min mn 2 2 -1 _

(d) (un™/Ka2n) SaDy; = (1™ Ka) Z(m),(j,s):1,(z‘,t)¢(j,s) A(Lt),(ms)a(i,t)¢(j7s)Du = 0p (1)-

(&) D% = Op (™)) and D1 (B, —p) = o, (™) "), where p = limy e, =
limy, o0 (E [U'M@e] /n) / (E [¢M@] /n).

- - mn — — min -2
©) DiSDy _Z(m(j,s):w,t);é(j,s) AP L@y P’ = o (sz”( i) )

(&) (k™ EKan) = (™ Kam) Z(i,t),(j,s):l,(i,t);é(j,s) A?z‘,t)y(jvs)U?i,t)?,(j,s)Dll = op(1)-
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