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Abstract

This paper considers estimation and inference concerning the autoregressive coef-
ficient (ρ) in a panel autoregression for which the degree of persistence in the time
dimension is unknown. Our main objective is to construct confidence intervals for ρ
that are asymptotically valid, having asymptotic coverage probability at least that of
the nominal level uniformly over the parameter space. The starting point for our confi-
dence procedure is the estimating equation of the Anderson-Hsiao (AH) IV procedure.
It is well known that the AH IV estimation suffers from weak instrumentation when
ρ is near unity. But it is not so well known that AH IV estimation is still consistent
when ρ = 1. In fact, the AH estimating equation is very well-centered and is an un-
biased estimating equation in the sense of Durbin (1960), a feature that is especially
useful in confidence interval construction. We show that a properly normalized statis-
tic based on the AH estimating equation, which we call the M statistic, is uniformly
convergent and can be inverted to obtain asymptotically valid interval estimates. To
further improve the informativeness of our confidence procedure in the unit root and
near unit root regions and to alleviate the problem that the AH procedure has greater
variation in these regions, we use information from unit root pretesting to select among
alternative confidence intervals. Two sequential tests are used to assess how close ρ
is to unity, and different intervals are applied depending on whether the test results
indicate ρ to be near or far away from unity. When ρ is relatively close to unity, our
procedure activates intervals whose width shrinks to zero at a faster rate than that of
the confidence interval based on the M statistic. Only when both of our unit root tests
reject the null hypothesis does our procedure turn to the M statistic interval, whose
width has the optimal N−1/2T−1/2 rate of shrinkage when the underlying process is
stable. Our asymptotic analysis shows this pretest-based confidence procedure to have
coverage probability that is at least the nominal level in large samples uniformly over
the parameter space. Simulations confirm that the proposed interval estimation meth-
ods perform well in finite samples and are easy to implement in practice. A supplement
to the paper provides an extensive set of new results on the asymptotic behavior of
panel IV estimators in weak instrument settings.
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1 Introduction

Due to the many challenges that arise in estimating and conducting statistical inference

for dynamic panel data models, a vast literature has emerged studying these models over the

past three decades. Much has been learnt about the large sample properties and finite sample

performance of various estimation procedures in stable dynamic panel models, not only in

univariate but also in multivariate contexts. Important contributions to this literature began

with Nickell (1981) and Anderson and Hsiao (1981,1982), followed by Arellano and Bond

(1991), Ahn and Schmidt (1995), Arellano and Bover (1995), Kiviet (1995), Blundell and

Bond (1998), Hahn and Kuersteiner (2002), Alvarez and Arellano (2003), amongst many

others. Progress has also been made recently in studying such models when more persistent

behavior, such as unit root or near unit root behavior, is present. Phillips and Moon (1999)

provided methods that opened up the rigorous development of asymptotics in such models

for both stationary and nonstationary cases and with multidimensional joint and sequential

limits. Many subsequent contributions to this nonstationary panel literature have considered

more complex regressions, analyzing the effects of incidental trends, serial dependence and

cross section dependence; e.g., Phillips and Sul (2003), Chang (2002, 2004), Moon and

Phillips (2004), Moon et al (2014a,b), Pesaran (2006), and Pesaran and Tosetti (2011).

While this literature has greatly enhanced our understanding of the panel data sampling

behavior of point estimators and of associated test statistics, such as the Studentized t sta-

tistic or the Wald statistic, what has not been studied are confidence interval procedures

which are asymptotically valid in the sense that asymptotic coverage probabilities are at

least that of the nominal level uniformly over the parameter space. The development of

theoretically justified confidence intervals is especially important in cases where the empir-

ical researcher may not have good prior information about the degree of persistence in the

data, since in such situations interval estimates can serve as indispensible supplements to

point estimates by providing additional information about sampling uncertainty and about

the range of possible values of the autoregressive parameter ρ that are consistent with the

observed data. Moreover, we know from the unit root time series literature that construct-

ing an asymptotically valid confidence interval for the autoregressive parameter of an AR (1)

process is a challenging task when the parameter space is taken to be large enough to include
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both the stable and the unit root cases. This is because the Studentized statistic based on

OLS estimation is not uniformly convergent in this case, so that an asymptotically correct

confidence interval cannot be constructed by inverting the Studentized statistic in the usual

way. To address this problem in the time series literature, Stock (1991) proposed a confi-

dence procedure based on local-to-unity asymptotics, while simulation and bootstrap type

methods have been introduced by Andrews (1993) and Hansen (1999). Recent results by

Mikusheva (2007, 2012) and by Phillips (2014) have shown that the methods of Andrews

(1993) and Hansen (1999) as well as a recentered version of Stock’s method all give the cor-

rect asymptotic coverage probability uniformly over the parameter space. Extending these

procedures to the panel data setting does not seem to be straightforward, and panel data

versions of these methods are currently unavailable.

To address this need, the present paper proposes simple, asymptotically correct confi-

dence procedures for the autoregressive coefficient of a panel autoregression.1 We take as

our starting point the estimating equation of the Anderson-Hsiao (1981, 1982) IV proce-

dure. Although much has been written about the Anderson-Hsiao IV estimator having a

weak instrument problem when ρ is unity or very nearly unity, it should be noted that this

estimator is still consistent even when ρ = 1 and that the weak instrument problem pri-

marily manifests itself in the form of the asymptotic distribution having greater dispersion2.

In fact, the Anderson-Hsiao estimating equation is very well-centered and is an unbiased

estimating equation in the sense of Durbin (1960), a property that is of particular impor-

tance in constructing asymptotically valid confidence intervals. Exploiting this unbiasedness

property, we then show that a properly normalized statistic based on this estimating equa-

tion is uniformly convergent over the parameter space Θρ = (−1, 1]. This statistic, which

we refer to as the M statistic since it is based on the (empirical) IV moment function, can

be easily and analytically inverted to obtain an asymptotically correct confidence interval.

However, because of the weak instrument problem, when the true ρ is unity or very near

unity, confidence intervals obtained by inverting this M statistic may be less informative in

the sense that they may be relatively wide in finite samples and, asymptotically, their width

shrinks toward zero at the slower rate of T−1/2 even when both the cross section (N) and

1We do not consider in this paper issues related to incidental trends, cross section dependence, and slope
parameter heterogeneity discussed earlier. While these complications are important and empirically relevant,
they are beyond the scope of the current paper and considering them here would divert from the main point
of this paper which concerns the development of uniform inference procedures.

2For readers interested in the asymptotic properties of the Anderson-Hsiao IV estimator, we would like to
refer them to Theorem SA-1 in the Technical Supplement to this paper. There, we present a very extensive
set of results on the large sample behavior of this estimator under various parameter sequences both near and
far away from unity. In addition, the proof of Theorem SA-1 is provided in Appendix SB of the Technical
Supplement.
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the time series (T ) sample sizes approach infinity. A similar drawback applies to the GMM

procedure of of Han and Phillips (2010), which achieves uniform inference with shrinkage

rate (NT )−1/2 over the full domain Θρ.

To obtain more informative interval estimates, we introduce a new confidence procedure

which uses information from two different unit root tests, with different power properties,

to assess the proximity of the true autoregressive parameter from the exact unit root null

hypothesis H0 : ρ = 1. More precisely, we infer that the true parameter value is unity or

very close to unity if the more powerful of the two unit root tests fails to reject H0, and we

use, in this case, an interval that is localized at ρ = 1, with width that shrinks at a faster

N−1/2T−1 rate.3 Second, if the more powerful test rejects H0 but the less powerful test

fails to reject, we use another interval that is still localized at ρ = 1 but with greater width

which shrinks at the rate N−1/2T−1/2, a rate that is still faster than that of the width of

the confidence interval based on the M statistic in the vicinity of ρ = 1. Finally, if both

tests reject H0, then we conclude that the true parameter value is far enough away from

unity that we can use the confidence interval based on the M statistic, whose width shrinks

at the optimal N−1/2T−1/2 rate in the stable region of the parameter space. We show that

the asymptotic size of this pretest based procedure can be uniformly controlled, so that this

procedure is asymptotically valid, albeit slightly conservative when the underlying process

is stable. The degree of conservatism under our procedure is also controllable and can be

kept small by carefully controlling the probability of a Type II error under a local-to-unity

parameter sequence. Moreover, in addition to providing informative and asymptotically

correct confidence intervals, our procedure has the further advantage that it is given in

analytical form and, hence, is computationally simple to implement. Simulations confirm

that the proposed method performs well in finite samples.

The remainder of the paper proceeds as follows. Section 2 briefly describes the model,

assumptions, and notation. Section 3 introduces two new ways of constructing uniform

confidence intervals for the parameter ρ. The first is based on inverting the M statistic,

and the second is the pre-test based confidence interval. Results given in this section show

that both confidence procedures are asymptotically valid. Section 4 reports the results of

a Monte Carlo study comparing our proposed confidence procedures with some alternative

procedures. We provide a brief conclusion in section 5. Proofs of the main theorems are given

3Other approaches for achieving uniform inference in estimation have been proposed recently in the time
series literature by Han et al. (2011) using partial aggregation methods and by Gorodnichenko et al. (2012)
using quasi-differencing. In the unit root and very near unit root cases, extending these approaches to
the panel data setting leads to confidence intervals whose width shrinks at a slower rate than the optimal
N−1/2T−1 rate obtained here. Han et al (2014) developed a panel estimator using X-differencing which
has good bias properties and limit theory but has different limit theory in unit root and stationary cases,
complicating uniform inference.
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in the Appendix to this paper. Proofs of additional supporting lemmas as well as additional

Monte Carlo results are reported in an online supplement to this paper (Chao and Phillips,

2019). The supplement provides an extensive set of results for panel estimation limit theory

in unit root and near unit root cases that help deliver the main results in the paper but are

of wider interest regarding asymptotic behavior of panel IV estimators, particularly in weak

instrument settings. The supplement includes additional simulation results concerning the

performance of the estimation procedures considered in the paper.

A word on notation. We use ⇒ for convergence in distribution or weak convergence,
p→ for convergence in probability, χ2ν denotes a chi-square random variable with ν degrees

of freedom, Z denotes the standard normal random variable, and Wi (r) is the standard

Brownian motion on the unit interval [0, 1] for each i. For two sequences {XT} and {YT},
we take XT ≪ YT to mean XT/YT = o (1) and XT ∼ YT to mean that XT/YT = O (1)

and YT/XT = O (1), as T → ∞. Similarly, for random variables XT and YT , we take

XT
p∼ YT to mean that XT/YT = Op (1) and YT/XT = Op (1), as T → ∞. In addition,

the notations Pr (·|ρ) and Pr (·|ρT ) denote, respectively, a probability measure indexed by

the fixed parameter ρ and one indexed by the local-to-unity parameter ρT . Finally, we use

wid(C) to denote the width of the confidence interval C.

2 Model and Assumptions

We work with the following dynamic panel data model written in unobserved compo-

nents form

yit = ai + wit, (1)

wit = ρwit−1 + εit, (2)

for i = 1, ...N and t = 1, ..., T . Here, {yit} is the observed data, {wit} is generated by a

latent AR(1) process, ai denotes an (unobserved) individual effect, and ρ denotes the panel

autoregressive parameter, which is assumed to belong in the parameter space Θρ = (−1, 1].
In this paper, we will show that certain properties of our procedure holds uniformly for

ρ ∈ Θρ = (−1, 1]. We do this by making use of a result (Lemma 2.6.2) from Lehmann

(1999) which establishes the equivalence of uniform convergence and convergence for every

parameter sequence belonging to a given parameter space. For this purpose, it is convenient

for us to consider a general class of local-to-unity parameter sequences of the form ρ =

ρT = exp {−1/q (T )}, where q (T ) is a non-negative function of T such that q (T ) → ∞ as
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T →∞4. Moreover, parameter sequences for stable AR processes can also be written in this

general form by considering parameter sequences {ρT} which belong to the collection

GSt =
�
{ρT} : |ρT | = exp

�
− 1

q (T )

�
, q (T ) ≥ 0, and q (T ) = O (1) as T →∞

�
. (3)

Note also that, in the case where such parameter sequences are considered, the AR process

given in expression (2) will depend on an indexed parameter ρT , as opposed to a fixed

autoregressive parameter, so that, strictly speaking, the observed data and the latent process,

in this case, will be strictly triangular indexed arrays {yit,T , wit,T}, which depend additionally

on T . However, for notational ease, we shall suppress this additional dependence and simply

write {yit, wit} in what follows.

It is sometimes convenient to rewrite the model (1)-(2) in the alternate familiar form as

a first-order autoregressive process in yit, viz.,

yit = ai (1− ρ) + ρyit−1 + εit = ηi + ρyit−1 + εit, (4)

where ηi = ai (1− ρ). The following assumptions are made on the model.

Assumption 1 (Errors): (a) {εit} ≡ i.i.d. (0, σ2) across i and t, σ2 > 0; (b) E [ε4it] <∞.

Assumption 2 (Random Effects): (a) {ai} ≡ i.i.d. (µa, σ
2
a) across i, σ2a > 0; (b) E [a4i ] <

∞; (c) εit and aj, are mutually independent for all i, j = 1, 2, ..., N and for all t = 1, 2, ..., T.

Assumption 3 (Initialization): Let yi0 = ai + wi0. Suppose that {wi0} is independent

across i. Suppose also that there exists a positive constant C such that supiE [w2
i0] ≤ C <∞,

and that wi0 and εjt are independent for all i, j = 1, 2, ..., N and for all t = 1, 2, ..., T.

Note that Assumption 3 on the initial condition does not impose mean stationarity, i.e., the

condition that E [yi0|ai] = ηi/ (1− ρ) = ai a.s., which in our setup is equivalent to the

restriction that E [wi0|ai] = 0 a.s. In addition, observe that Assumption 3 allows for the case

where the initial condition is fixed, i.e., wi0 = ci for some sequence of constants {ci} such

that supi |ci| < ∞. It is also general enough so that we may specify wi0 to be fixed in the

unit root case but allow wi0 to be a draw from its unconditional distribution with variance

σ2/ (1− ρ2) when the underlying process is stationary.

In lieu of Assumption 2, we also consider in this paper a fixed-effects specification given

by the following assumption.

4The reason we consider indexed parameter ρT which depends on T only, and not on both N and T , is
because our main results are obtained under a general pathwise asymptotic scheme where N can grow as an
arbitrary positive real-valued power of T . In such a framework, the asymptotics is effectively single-indexed.
Hence, it suffices that we only consider parameter sequences that depend only on T .
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Assumption 2* (Fixed Effects): Let {ai} be a nonrandom sequence. Suppose that there

exists a positive constant C such that sup1≤i≤N |ai| ≤ C <∞ for all N .

All our theoretical results hold under either the random-effects specification given by As-

sumption 2 or the fixed-effects specification given by Assumption 2*.

3 Uniform Asymptotic Confidence Intervals

3.1 Confidence intervals based on the Anderson-Hsiao IV proce-

dure

A primary objective of this paper is to develop confidence procedures with asymptotic

coverage probability that is at least that of the nominal level uniformly over the parameter

space ρ ∈ (−1, 1]. As a first step, we consider a statistic based on the empirical moment

function of the Anderson-Hsiao IV procedure, but properly standardized by an appropriate

estimator of the scale parameter. In particular, let

M (ρ) =
1

�ω
√

NT

N�

i=1

T�

t=3

yit−2 (∆yit − ρ∆yit−1) ,

where �ω2 = �σ2
�
N−1T−1

�N

i=1

�T

t=4
(yit−3 − yit−2)

2 +N−1T−1
�N

i=1
y2iT−2

�
and

�σ2 = N−1T−11
�N

i=1

�T

t=2

�
yit − yi − �ρ

	
yit−1 − yi,−1


�
and where yi = T−11

�T

t=2
yit and

yi,−1 = T−11
�T

t=2
yit−1 with T1 = T − 1. In addition, we let �ρ denote any preliminary

estimator of ρ that satisfies the following conditions

Assumption 4: Let �ρ be an estimator of ρ. Suppose that the following conditions hold for

this estimator as N, T →∞ such that Nκ/T = τ , for κ ∈ (0,∞) and τ ∈ (0,∞).

(a) �ρ− ρT = op
�
T−1/2

�
, if ρT = 1 for all T sufficient large or if ρT = exp {−1/q (T )} such

that T/q (T ) = O (1);

(b) �ρ−ρT = op
�
q (T )−1/2



, if ρT = exp {−1/q (T )} such that q (T )→∞ but q (T ) /T → 0;

(c) �ρ− ρT = op (1) if {ρT} ∈ GSt, where GSt is given in expression (3) above.

The asymptotic properties of M (ρ) under different parameter sequences {ρT} are given

by the following result.

Theorem 3.1:
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Let Assumptions 1, 3, 4 and either 2 or 2* hold. The following statements hold as

N, T →∞ such that Nκ/T = τ , for κ ∈ (0,∞) and τ ∈ (0,∞).

(a) Suppose that {ρT} ∈ GM1 , where GM1 = {{ρT} : ρT = 1 for all T sufficiently large}.
Then,

M (ρT ) = − 1

σ2
√
2
√

NT

N�

i=1

T�

t=4

εit−2εit−1 +
1

σ2
√
2
√

NT

N�

i=1

wiT−2εiT + op (1)

⇒ N (0, 1) .

(b) Suppose that {ρT} ∈ GM2 , where GM2 = {{ρT} : ρT = exp {−1/q (T )} and T/q (T )→ 0}.
Then,

M (ρT ) = − 1

σ2
√
2
√

NT

N�

i=1

T�

t=4

εit−2εit−1 +
1

σ2
√
2
√

NT

N�

i=1

wiT−2εiT + op (1)

⇒ N (0, 1) .

(c) Suppose that {ρT} ∈ GM3 , where GM3 = {{ρT} : ρT = exp {−1/q (T )} and q (T ) ∼ T}.
Then,

M (ρT ) = − 1

ωT
√

NT

N�

i=1

T�

t=4

εit−2εit−1 +
1

ωT
√

NT

N�

i=1

wiT−2εiT + op (1)

⇒ N (0, 1) ,

where ωT = σ2
�

1 + q(T )
2T

�
1− exp

�
− 2T
q(T )

��
.

(d) Suppose that {ρT} ∈ GM4 , where

GM4 = {{ρT} : ρT = exp {−1/q (T )} and q (T )→∞ such that q (T ) /T → 0}. Then,

M (ρT ) = −
1

σ2
√

NT

N�

i=1

T�

t=4

εit−2εit−1 + op (1)⇒ N (0, 1) .

(e) Suppose that {ρT} ∈ GM5 , where
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GM5 = {{ρT} : |ρT | = exp {−1/q (T )} , q (T ) ≥ 0, and q (T ) = O (1) as T →∞}. Then,

M (ρT ) = −
�

1 + ρT
2σ4

1√
NT

N�

i=1

T�

t=4

εit−2εit−1

+

�
1 + ρT
2σ4

(1− ρT )√
NT

N�

i=1

T�

t=4

wit−3εit−1 + op (1)

⇒ N (0, 1) .

To provide some intuition about the M (ρ) statistic and about the conditions placed on the

preliminary estimator �ρ (i.e., Assumption 4), we set M∗ (ρ) = �ωM (ρ) to be the unstandard-

ized version of M (ρ) . From the proof of Theorem 3.1, given in the Appendix, it is evident

that M∗ (ρ) can be decomposed into several terms whose orders of magnitude change de-

pending on how close the parameter sequence {ρT} is to unity. In consequence, the lead

term of M∗ (ρ) is not the same in the stable (panel) autoregression case as it is in the case

where ρT is very close to unity. On the other hand, when appropriately normalized, this

statistic will converge to a standard normal distribution in each case, but this requires a

scale estimator that will adapt to variation in the normalization factor under alternative

parameter sequences. The estimator

�ω = �σ2
�
N−1T−1

�N

i=1

�T

t=4
(yit−3 − yit−2)

2 +N−1T−1
�N

i=1
y2iT−2

�

turns out to have these adaptive properties, as shown in Lemma SC-13 and its proof (given

in the supplement). An important component in the construction of a proper normalization

factor is to have a preliminary estimator �ρ with a fast enough rate of convergence, so that

the resulting estimator of σ2 is consistent under every possible parameter sequence {ρT} in

the parameter space Θρ = (−1, 1]. Examination of the proof of Lemma SC-12 reveals that

the conditions needed on �ρ are precisely those given in Assumption 45.

It should be noted that the Anderson-Hsiao IV estimator, which we will denote by �ρIVD

in this paper, does not satisfy the conditions of Assumption 46. This is because, as shown

in Theorem SA-1 of the supplement to this paper, �ρIVD − ρT
p∼ T−1/2 when ρT = 1 for all T

sufficient large or when ρT = exp {−1/q (T )} such that T/q (T ) = O (1), so that its rate of

5The proof of Lemma SC-12 is also given in Appendix SC of the technical supplement.
6We use the notation �ρIVD to denote the Anderson-Hsiao IV estimator because it is a procedure where

IV estimation is performed on a first-differenced equation. Later, we use �ρIVL to denote the IV estimator
introduced by Arellano and Bover (1995) since, in that procedure, IV is performed on the panel autoregression
in levels.
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convergence is not fast enough in the unit root and near unit root regions of the parameter

space. Furthermore, the pooled OLS (POLS) estimator, which we will denote by �ρpols, also
does not satisfy these conditions since it is inconsistent in the stationary region as shown in

Theorem SA-2 of the supplement. Hence, in Appendix SA of the supplement to our paper,

we introduce a new point estimator, �ρAIP, which is an average of �ρIVD and �ρpols where the

average is taken using a data-dependent weight function that, in turn, depends on a unit

root statistic. This estimator turns out to satisfy the conditions of Assumption 4 because it

exploits the differential strengths of �ρIVD and �ρpols in different parts of the parameter space

and can place more or less weight on one or the other of these two estimators, depending

on the information provided by a preliminary unit root test on the true value of ρ. We use

�ρAIP in constructing the scale estimator �ω for the Monte Carlo results reported section 4

of this paper, but we note that �ρAIP is not the only estimator which satisfies Assumption

4, as both the within-group OLS estimator and the bias-corrected within-group estimator

proposed by Hahn and Kuersteiner (2002) could also be used to obtain a scale estimator �ω
with the desired properties, although �ρAIP does have a faster rate of convergence than the

uncorrected within-group estimator in the unit root and near unit root cases. Because the

focus of this paper is on confidence procedures, and not on point estimation, we will not give

technical details of �ρAIP in the body of this paper, but will instead refer interested readers

to Appendix SA of the supplement for more details as well as for formal results on the rate

of convergence of �ρAIP under alternative parameter sequences.

The following theorem shows the uniform convergence of the statistic M (ρ) over the

parameter space Θρ = (−1, 1].

Theorem 3.2:

Let Φ (x) denote the cdf of a standard normal random variable. Suppose that Assumptions

1, 3, 4 and either 2 or 2* hold. Then, for each x ∈ R,

sup
ρ∈(−1,1]

|Pr (M (ρ) ≤ x|ρ)− Φ (x)| → 0,

as N, T →∞ such that Nκ/T = τ for constants κ ∈ (0,∞) and τ ∈ (0,∞).7

Remarks 3.1:

(i) Let zα denote the 1 − α quantile of the standard normal distribution. A level 1 − α

7Note that we use the notation Pr (·|ρ) instead of perhaps the more familiar notation Pρ (·) to denote
a probability measure indexed by the parameter ρ because, in this paper, we will often consider somewhat
complicated local-to-unity parameters and subsequences of such parameters, which are less conveniently
expressed in terms of subscripts.
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confidence interval based on the statistic M (ρ) can be taken to be

C
M

α =
�
ρ ∈ (−1, 1] : −zα/2 ≤M (ρ) ≤ zα/2

�
(5)

It is immediate from Theorem 3.2 that the confidence procedure defined by (5) is

asymptotically valid in the sense that its coverage probability is equal to the nominal

level 1− α in large samples, uniformly over ρ ∈ (−1, 1].

(ii) The uniform limit result given in Theorem 3.2 above is established under a pathwise

asymptotic scheme where we take N, T → ∞ such that Nκ/T = τ for constants κ

∈ (0,∞) and τ ∈ (0,∞). Note that the asymptotic framework employed here does not

restrict N and T to follow a specific diagonal expansion path, but rather allows for a

whole range of possible paths indexed by κ ∈ (0,∞); and, hence, our results do not

require the kind of restrictions on the relative magnitudes of N and T that are often

imposed in other asymptotic analysis of panel data models. Indeed, by allowing T to

grow as any positive (real-valued) power of N , our framework can accommodate a wide

variety of settings where T may be of smaller, larger, or similar order of magnitude as

N .

(iii) As noted earlier and as is evident from the proof of Theorem 3.2 given in the Ap-

pendix, uniform convergence here is established by showing convergence to the same

distribution under every parameter sequence in the parameter space. To the best of

our knowledge, the use of this approach in statistics originated with the book on large

sample theory by Lehmann (1999). Important extensions as well as applications of this

approach to a variety of econometric models and inferential procedures have also been

made more recently in the papers by Andrews and Guggenberger (2009) and Andrews,

Cheng, and Guggenberger (2011).

(iv) As we noted earlier in the Introduction, a primary reason why the M statistic is well-

behaved is that the (empirical) IV moment function is well-centered as an unbiased

estimating equation. In this sense, our approach relates to early work by Durbin (1960)

on unbiased estimating equations which was applied to time series AR (1) regression in

his original study. Importantly, in dynamic panel data models with individual effects,

estimating equations associated with least squares procedures tend not to be as well-

centered as the IV estimating equations explaining the need for IV in this context (c.f.,

Han and Phillips, 2010).

(v) A drawback of CMα is that the rate at which the width of this confidence interval

shrinks toward zero as sample sizes grow is relatively slow for parameter sequences
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that are very close to unity. As also noted in the Introduction, this is due to the

well-known ‘weak instrument’ problem which induces a slow rate of convergence for

the Anderson-Hsiao IV procedure in this case. More precisely, using the results given

in Lemmas SA-1, SC-1, and SC-13 in the supplement to this paper, we can easily show

that wid
�
CMα

�
= Op

�
T−1/2

�
when ρT = exp {−1/q (T )} such that

√
NT/q (T ) = O (1),

so that the rate of shrinkage here does not even depend on N , even as both N and T

go to infinity (see also Phillips, 2015). This slower rate of convergence is also reflected

in the Monte Carlo results reported in section 4 below, as the results there show

that the average interval width of CMα can be a very substantial fraction of the width

of the entire parameter space when ρ = 1. To improve on the performance of CMα ,

the next subsection introduces a pretest-based confidence procedure which is similarly

asymptotically valid but which in addition provides more informative intervals when

the underlying process has a unit root or a near unit root.

3.2 A Pretest-Based Confidence Procedure

To enhance the informativeness of the confidence procedure when there is a unit root, we

use a pretest approach. The idea is to apply two different unit root tests sequentially to assess

the proximity of ρ to unity and then implement different confidence intervals depending on

the information about the location of ρ that emerges from these tests. More precisely, we

propose the following level 1− α confidence interval of the form

Cγ,α,N,T = I
�
T1 ≤ −zγ1

�
I
�
T2 ≤ −zγ2

�
C
M

α1
+ I

�
T1 > −zγ1

�
C

UR1
γ
1
,α2

+I
�
T1 ≤ −zγ1

�
I
�
T2 > −zγ2

�
C

UR2
γ2,α2

, (6)

where CMα1 is as defined in (5) above,

C
UR1
γ1,α2

=

�
ρ ∈ (−1, 1] : 1−

√
2
�
zγ

1
+ zα2

�

T
√

N
≤ ρ ≤ 1

�
, and (7)

C
UR2
γ2,α2

=

�
ρ ∈ (−1, 1] : 1− 2

�
zγ2 + zα2

�
√

NT
≤ ρ ≤ 1

�
(8)

and where γ = (γ1, γ2), α = α1 + α2, I is an indicator function, and we again take zγ1 to be

the 1− γ1 quantile of a standard normal distribution for some γ1 ∈ (0, 0.5], with zγ2, zα1/2,

and zα2 similarly defined. In addition, we take

T1 =
M

1/2
yy

�
�ρpols − 1

�

�σ ,
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with Myy =
�N

i=1

�T
t=2

�
yit−1 − y−1,NT

�2
, to be the unit root test statistic based on the

POLS estimator; and

T2 = �ωIVL (�ρIVL − 1) ,

with �ωIVL = �σ−2N−1/2T−1/2
�N

i=1

�T
t=3∆yit−1yit−1, is a unit root test statistic based on the

IV estimator

�ρIVL =

�
N�

i=1

T�

t=3

∆yit−1yit−1

�−1 N�

i=1

T�

t=3

∆yit−1yit

which was introduced by Arellano and Bover (1995) and further analyzed in Blundell and

Bond (1998). From expression (6), it is apparent that the confidence procedure follows a

sequential tree structure. We first pretest for the presence of a unit root using T1. If the

result of this first test fails to reject the unit root null hypothesis, then we employ the tighter

unit root interval CUR1
γ1,α2

. Otherwise, we conduct a second test of the unit root null hypothesis

using a less powerful test T2. If this second test fails to reject the null hypothesis, we use

the wider unit root interval CUR2
γ2,α2

. On the other hand, if both tests reject the unit root null

hypothesis, we then use the interval CMα1 , which is asymptotically valid but less informative

unless the true value of ρ is sufficiently far away from unity.

The next theorem shows that this confidence procedure is asymptotically valid in the

sense that its non-converage probability is at most the nominal significance level α uniformly

over the parameter space under pathwise asymptotics.

Theorem 3.3:

Let α ∈ (0, 0.5] be the specified significance level and let N, T →∞ such that Nκ/T = τ

for constants κ ∈ (0,∞) and τ ∈ (0,∞). Set N = N (T ) = (τT )1/κ and Cγ,α,N,T =

Cγ,α,N(T ),T = Cα,T . Suppose that Assumptions 1, 3, 4 and either 2 or 2* hold. Then,

lim sup
T→∞

sup
ρ∈(−1,1]

Pr
�
ρ /∈ Cγ,α,T |ρ



≤ α.

Remarks 3.2:

(i) The pre-test based confidence procedure proposed here is inspired by the work of

Lepski (1999) who used information from a test procedure to increase the accuracy of

confidence sets. The original Lepski paper and subsequent extensions of that paper

focused on problems of nonparametric function estimation and canonical versions of

such problems, as represented by the many normal means model. Because we deal

with a model that differs from the one studied in Lepski (1999) and because we use

a dual pre-test framework, the construction and analysis of our procedure also differ,
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even though we use the same idea to improve set estimation accuracy.

(ii) Since

lim sup
T→∞

sup
ρ∈(−1,1]

Pr (ρ /∈ Cγ,α,T |ρ) = lim sup
T→∞

�
1− inf

ρ∈(−1,1]
Pr (ρ ∈ Cγ,α,T |ρ)

�

= 1− lim inf
T→∞

inf
ρ∈(−1,1]

Pr (ρ ∈ Cγ,α,T |ρ) ,

it follows that the result obtained in Theorem 3.3, i.e.,

lim supT→∞ supρ∈(−1,1] Pr (ρ /∈ Cγ,α,T |ρ) ≤ α, is equivalent to

lim infT→∞ inf
ρ∈(−1,1]

Pr (ρ ∈ Cγ,α,T |ρ) ≥ 1 − α, so that the proposed confidence interval

has asymptotic coverage probability that is at least the nominal level 1− α uniformly

over ρ ∈ (−1, 1].

(iii) In the procedure given by (6), α1 is the significance level for the confidence interval

CMα1 . It is, of course, also the asymptotic non-coverage probability of CMα1 , since C
M

α1
is

asymptotically valid.

(iv) As noted in the Introduction and in Remark 3.1 (v) above, a drawback of CMα1 is that

its width shrinks slowly for parameter sequences that are very close to unity. The

pre-test confidence procedure seeks to improve on this rate by applying two different

unit root tests sequentially and by using the information from these tests to deter-

mine whether to use local-to-unity intervals whose width shrinks at a faster rate than

CMα1 when the autoregressive parameter value is in close proximity of unity. To see

how this improvement is achieved, note that when the true parameter value is within

an N−1/2T−1 neighborhood of unity then, aside from the relatively small probability

event of a Type I error, the first unit root test T1 will fail to reject H0 : ρ = 1, re-

sulting in the use of the interval CUR1
γ1,α2

. When the parameter is this close to unity,

wid
�
CUR1
γ1,α2



= Op

�
N−1/2T−1

�
whereas wid

�
CMα1

�
= Op

�
T−1/2

�
, so that the use of

CUR1
γ1,α2

leads to significant improvement over CMα1 . The reason for a second unit root

test using the statistic T2 is that for parameter sequences ρT = exp {−1/q {T}} such

that max
�
T,
√

NT
�
≪ q (T ) ≪

√
NT , the first unit root test T1 will reject H0 with

probability approaching one as sample sizes grow, but the less powerful unit root test

based on T2 will not, subject again to the relatively small probability event of a Type

I error. For parameter sequences in this region, wid
�
CMα1

�
= Op

�
N−1/2T−3/2q (T )

�
.

The result is that we can make further improvement by using the interval CUR2
γ2,α2

which

has width wid
�
CUR2
γ2,α2



= Op

�
N−1/2T−1/2

�
= op

�
N−1/2T−3/2q (T )

�
. Finally, if both
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these unit root tests reject H0, then our procedure will infer that the parameter is far

enough away from unity to use CMα1 . Of course, the two unit root tests are subject to

Type II errors; but, as explained in Remark 3.2(vi) below, the probability of Type II

errors could also be properly controlled under our procedure.8

(v) γ1 and γ2, on the other hand, are the significance levels for the unit root tests based

on T1 and T2. Note that, especially in large samples, the specification of γ1 and γ2

really has more of an impact on the width of the resulting interval than it does on

the coverage probability, so that γ1 and γ2 are not significance levels in the traditional

sense. For example, consider the choice of γ1. Observe that a smaller value of γ1 leads

to a wider CUR1
γ1,α2

. However, the effect of γ1 on the width of the interval adopted by

the overall procedure could be ambiguous, since, if the null hypothesis of an exact unit

root is true, an increase in γ1 would reduce the width of CUR1
γ1,α2

but could also lead to a

greater chance that T1 will falsely reject the null hypothesis and switch to either CUR2
γ2,α2

or CMα1 , both of which are wider than CUR1
γ1,α2

in large samples. A similar argument shows

that it is also difficult to predict a priori the effect of varying γ2 on the width of the

resulting interval. On the other hand, note that, except for pathological specifications

where γ1 = 0 and/or γ2 = 0 (ruled out by our assumption), varying either γ1 or γ2 or

both does not lead to a material distortion in the (asymptotic) coverage probability of

the proposed procedure. To see why this is so, consider the case where the unit root

specification is true. Then, even when both γ1 and γ2 are set to be large so that the

null hypothesis is falsely rejected with high probability leading to the use of CMα1 , we

will still end up with asymptotic coverage probability greater than the nominal level

1−α since CMα1 is asymptotically valid and, by design, α1 < α = α1+α2. On the other

hand, if the underlying process is stable then, both of the unit root tests will reject the

null hypothesis with probability approaching one asymptotically, as long as neither γ1
nor γ2 is set equal to zero, and our procedure will switch to CMα1 which controls the

asymptotic coverage probability properly.

8A recent paper by Bun and Kleibergen (2014) also considers, amongst other things, combining elements
of the approach of Anderson and Hsiao (1981, 1982) and Arellano and Bond (1991), which uses lagged levels
of yit as instruments for equations in first differences, with the approach by Arellano and Bover (1995)
and Blundell and Bond (1998) which uses lagged differences of yit as instruments for equations in levels.
The focus of the Bun and Kleibergen (2014) paper differs substantially from that of the present paper.
In particular, they consider test procedures which attain the maximal attainable power curve under worst
case setting of the variance of the initial conditions, whereas our procedure uses pretest based information
to aggressively increase the power of our inferential procedure in certain regions of the parameter space.
Moreover, unlike our paper, they do not provide results on confidence procedures whose asymptotic coverage
probability is explicitly shown to be at least that of the nominal level uniformly over the parameter space;
and their analysis is conducted within a fixed T framework.
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(vi) Pre-testing leads to the possibility of errors whose probability needs to be controlled.

In particular, there may be parameter sequences which lie just outside of CUR1
γ1,α2

, for

which T1 may fail to reject H0 : ρ = 1 even in large samples. In addition, there

may be parameter sequences which lie just outside of CUR2
γ
2
,α2

, for which H0 is rejected

by T1 but for which T2 may not reject H0 even in large samples. In both of these

scenarios, there is the possibility that none of our intervals will cover the true parameter

sequence. However, in the proof of Lemma A1 given in the Appendix SB of the technical

supplement, we show that, under our procedure, the probability of committing such

Type II errors can be no greater than α2 asymptotically9. Hence, by constructing CUR1
γ1,α2

and CUR2
γ2,α2

in the manner suggested above, we can properly control the probability of

not switching to CMα1 when it is preferable to make that switch. In consequence, the

asymptotic non-coverage probability under our procedure is always less than or equal

to α = α1+α2. Given a particular significance level α, different combinations of α1 and

α2 involve trade-offs where a smaller α2 leads to a smaller probability of commtting a

Type II error but also leads to a larger α1 and, thus, to C
M

α1
having a smaller asymptotic

coverage probability.

(vii) An advantage of our pretest based confidence procedure is its computational simplicity,

as it is given in analytical form and, thus, does not require the use of bootstrap or other

types of simulation-based methods for its computation. Moreover, the fact that CMα1 ,

the interval used under our procedure in the stable case, is based on the Anderson-

Hsiao procedure has the further benefit that its validity does not depend on imposing

the assumption of mean stationarity of the initial condition. Hence, the design of our

procedure has taken into consideration certain trade-offs on the competing goals of

interval accuracy, computational simplicity, and the relaxation of the assumption of

initial condition stationarity.

4 Monte Carlo Study

This section reports the results of a Monte Carlo study comparing the finite sample

performance of alternative confidence procedures. For the simulation study, we consider

data generating processes of the form

yit = ai + wit,

wit = ρwit−1 + εit, for i = 1, ..., N and t = 1, ..., T ;

9The statement of Lemma A1 is given in the Appendix of the paper. Its proof is lengthy and, it is
therefore placed in the technical supplement.
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where {εit} ≡ i.i.d.N (0, 1) and {ai} ≡ i.i.d. N (2, 1). We vary ρ = 1.00, 0.99, 0.95, 0.90,

0.80, and 0.60 and wi0 = 0, 2. In addition, we let N = 100, 200. When N = 100, we take

T = 50, 100; and when N = 200, we consider T = 100, 200. We take α = 0.05 throughout,

so that the (nominal) confidence level is always kept at 95%. Four versions of the pre-test

based confidence interval (PCI) given by expression (6) above are considered, with different

specifications of γ1, γ2, α1, and α2, as summarized in the following table:

γ1 γ2 α1 α2

CPCI1 0.01 0.01 0.025 0.025

CPCI2 0.01 0.01 0.049 0.001

CPCI3 0.05 0.05 0.025 0.025

CPCI4 0.05 0.05 0.049 0.001

Tables 1-12 below provide simulation results comparing the four PCI procedures de-

scribed above with the CM0.05 procedure given in (5) and with confidence intervals obtained

by inverting Studentized statistics associated with the POLS and IVD estimators. More

specifically, Tables 1-4 give the empirical coverage probabilities while Tables 5, 7, 9, and

11 report the average width of the confidence intervals under each of forty-eight experimen-

tal settings, obtained by varying ρ, N , T , and wi0. In addition, in Tables 6, 8, 10, and

12; we report of number of instances out of 10,000 simulation repetitions that a particular

confidence procedure leads to an empty interval, which occurs when the intersection of the

(unrestricted) interval and the parameter space is the null set. For example, in the case of

the CM0.05 procedure, an empty interval would arise if

�
ρ ∈ (−1, 1] : −zα/2 ≤M (ρ) ≤ zα/2

�
= (−1, 1] ∩

�
ρ ∈ R : −zα/2 ≤M (ρ) ≤ zα/2

�

= ∅.

Glancing at Tables 1-4, we see that, consistent with our theory, the empirical coverage

probabilities of the the CM0.05 procedure show the greatest degree of uniformity across different

experiments. On the other hand, all four PCIs have empirical coverage probabilities that are

uniformly better than the CM0.05 procedure across all forty-eight experiments. An intuitive

explanation for this result can be given as follows. When the unit root null hypothesis is

true, application of the pre-test procedure will lead to the use of either CUR1
γ1,α2

or CUR2
γ2,α2

,

except in the small probability event where a Type I error is committed by both of the unit

root tests T1 and T2. Since both of these intervals cover the point ρ = 1 by construction,

the overall procedure in this case should cover this point with very high probability. On the

other hand, when the unit root hypothesis is false, the pre-test procedure switches to the
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interval CMα1 but with α1 set at a level strictly less than 0.05, resulting again in coverage

probabilities which are greater than that of the CM0.05 procedure.

A possible deficiency of the CM0.05 procedure as shown in Tables 5, 7, 9, and 11 is that

the average widths of intervals obtained from this procedure are substantially wider than

that of the other procedures when ρ = 1. Moreover, in the ρ = 1 case, the use of the

C
M

0.05 procedure results in empty intervals in roughly 2.61% of the times, ranging from a

low of 215 empty intervals (out of 10, 000 repetitions) in the case with N = 100, T = 50,

and wi0 = 0 to a high of 295 empty intervals (out of 10, 000 repetitions) in the case where

N = 100, T = 100, and wi0 = 2.10 In contrast, no empty interval is observed for any of

the pre-test procedures in any of the 48 experiments, including experiments where ρ = 1.

It should also be noted that, outside of the unit root case, the results of Tables 5-12 do

show CM0.05 to provide informative intervals with average widths that are much smaller than

those in the ρ = 1 case. In addition, as the true value of ρ moves significantly away from

unity, such as in the cases where ρ = 0.95, 0.9, 0.8, and 0.6; empty intervals were no longer

observed for CM0.05.

For the four alternative specifications of PCI, there does not seem to be a great deal

of differences in their performance across the different experiments, although some minor

trade-offs in coverage probability vis-à-vis average interval width can be discerned. For

example, looking at PCI1, we see that this procedure provides very tight intervals in the

case where ρ = 1. In fact, the average interval width for this procedure in the unit root

case is ≤ 0.0070, except in the smaller sample size case with N = 100 and T = 50, where

it is still around 0.0133. Moreover, amongst the seven procedures examined in our study,

the empirical coverage probability of PCI1 is the highest, or is at least tied for the highest,

almost across the board, for the 48 experiments whose results are reported in Tables 1-4.

Although the higher coverage probability of PCI1 in the stable region is due at least in part

to the fact that it is designed to be conservative with α1 = 0.025 when the true process

is stable, it should be noted that the informativeness of PCI1, as measured by its average

width, does not seem to have suffered significantly as a result. Note, in particular, that, over

the 48 experiments, the widest average interval width recorded for PCI1 was only 0.1446,

or approximately 7% of the width of the entire parameter space (−1, 1]; and this occurred

with the smaller sample sizes of N = 100 and T = 50. In addition, PCI1 has average width

10It might initially seem strange in Tables 6 and 8 that in the cases where ρ = 1 and N = 100, the
number of empty intervals for CM0.05 actually increased as the sample size in the time dimension increased
from T = 50 to T = 100. However, there is an intuitive explanation for this result. As noted earlier, in the
unit root case, the rate of concentration of the width of the CM0.05 interval is Op

�
T−1/2

�
, so that intervals

obtained under this procedure are wider in the T = 50 case than in the T = 100 case, leading to a higher
chance of a non-null intersection with the parameter space.
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strictly less than 0.1 in 38 of the experiments. On the other hand, PCI2 sets α1 = 0.049 and

is, thus, less conservative relative to PCI1, particularly in the stable region. In consequence,

PCI2 tends to have not only smaller interval widths but also lower coverage probabilities

relative to PCI1 when the underlying process is stable. The results for PCI1 and PCI2

are illustrative of how the pre-test procedures can greatly improve upon CM0.05 in terms of

accuracy in the unit root and near unit root cases while maintaining coverage probability at

a high level throughout the parameter space, with the only downside being that they yield

slightly wider intervals when the true process is stable.

Tables 1-4 also show that confidence intervals constructed by inverting Studentized sta-

tistics associated with �ρPOLS and �ρIVD are decidedly inferior to the pre-test based confidence

procedures. Consistent with our theory, Tables 1-4 show that these confidence intervals have

highly non-uniform coverage probabilities across different (true) parameter values ρ. More

specifically, the coverage probabilities of the IV-based confidence intervals are especially poor

when ρ is unity or near-unity, whereas the coverage probabilities for the POLS-based confi-

dence intervals begin to deviate dramatically from the nominal level when ρ = 0.95 or less.

Moreover, from the results reported in Tables 6, 8, 10, and 12, we note that CIIVD, the

confidence procedure based on inverting the Studentized statistic associated with �ρIVD, leads

to an empty interval in more than 40% of the simulation runs when ρ = 1. This is perhaps

not surprising since, as shown in Theorem SA-1 in Appendix SA of the supplement to this

paper, �ρIVD is not uniformly convergent over the parameter space and does not have an

asymptotic normal distribution when the true ρ equals unity. Hence, when ρ = 1, the CIIVD

procedure, which is designed to achieve the correct asymptotic coverage in the stationary

case, will not only exhibit poor coverage probabilities but will often deliver intervals that

lie entirely outside the parameter space. Interestingly, even though the CIPOLS procedure is

based on the correct asymptotics when ρ = 1, it nevertheless produces some empty intervals

in the unit root case as shown in Tables 6, 8, 10, and 12. This suggests a need to modify

the usual t-ratio based confidence procedure in cases where there is interest in a point on

the boundary of a bounded parameter space, such as ρ = 1.
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Table 1: Coverage Probabilities (nominal level=0.95)

N = 100, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 0.9490 0.1229 0.9430 1.0000 1.0000 0.9999 0.9996

1.00 100 0.9518 0.1251 0.9411 1.0000 1.0000 0.9999 0.9999

0.99 50 0.9476 0.3874 0.9385 0.9957 0.9934 0.9891 0.9828

0.99 100 0.9443 0.6239 0.9448 0.9918 0.9850 0.9872 0.9752

0.95 50 0.7995 0.8046 0.9369 0.9839 0.9678 0.9839 0.9678

0.95 100 0.6816 0.8911 0.9445 0.9874 0.9749 0.9874 0.9743

0.90 50 0.2384 0.8738 0.9376 0.9833 0.9649 0.9758 0.9491

0.90 100 0.0507 0.9223 0.9465 0.9715 0.9489 0.9715 0.9476

0.80 50 0.0002 0.9055 0.9378 0.9677 0.9386 0.9677 0.9386

0.80 100 0.0000 0.9254 0.9421 0.9705 0.9432 0.9705 0.9432

0.60 50 0.0000 0.9162 0.9351 0.9650 0.9361 0.9650 0.9361

0.60 100 0.0000 0.9335 0.9425 0.9700 0.9435 0.9700 0.9435

Results based on 10,000 simulations

Table 2: Coverage Probabilities (nominal level=0.95)

N = 100, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 0.9490 0.1345 0.9311 1.0000 1.0000 0.9998 0.9996

1.00 100 0.9518 0.1285 0.9339 1.0000 1.0000 0.9999 0.9999

0.99 50 0.9493 0.4537 0.9226 0.9947 0.9929 0.9878 0.9792

0.99 100 0.9449 0.6648 0.9370 0.9910 0.9859 0.9856 0.9750

0.95 50 0.8056 0.8720 0.9164 0.9752 0.9595 0.9748 0.9578

0.95 100 0.6864 0.9172 0.9326 0.9842 0.9706 0.9839 0.9682

0.90 50 0.2498 0.9227 0.9150 0.9715 0.9490 0.9624 0.9322

0.90 100 0.0546 0.9376 0.9359 0.9632 0.9397 0.9634 0.9372

0.80 50 0.0002 0.9353 0.9198 0.9567 0.9213 0.9567 0.9213

0.80 100 0.0000 0.9393 0.9313 0.9644 0.9331 0.9644 0.9331

0.60 50 0.0000 0.9357 0.9225 0.9563 0.9250 0.9563 0.9250

0.60 100 0.0000 0.9414 0.9358 0.9657 0.9376 0.9657 0.9376

Results based on 10,000 simulations
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Table 3: Coverage Probabilities (nominal level=0.95)

N = 200, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.9494 0.0921 0.9455 1.0000 1.0000 0.9998 0.9997

1.00 200 0.9458 0.0879 0.9499 0.9999 0.9999 0.9998 0.9998

0.99 100 0.9468 0.6346 0.9482 0.9875 0.9786 0.9856 0.9742

0.99 200 0.9409 0.8101 0.9483 0.9867 0.9759 0.9863 0.9748

0.95 100 0.4377 0.8949 0.9436 0.9844 0.9696 0.9782 0.9558

0.95 200 0.1796 0.9243 0.9444 0.9736 0.9467 0.9736 0.9461

0.90 100 0.0010 0.9186 0.9451 0.9705 0.9462 0.9705 0.9462

0.90 200 0.0000 0.9349 0.9475 0.9742 0.9481 0.9742 0.9481

0.80 100 0.0000 0.9320 0.9447 0.9740 0.9457 0.9740 0.9457

0.80 200 0.0000 0.9353 0.9422 0.9715 0.9433 0.9715 0.9433

0.60 100 0.0000 0.9368 0.9452 0.9707 0.9466 0.9707 0.9466

0.60 200 0.0000 0.9439 0.9482 0.9732 0.9490 0.9732 0.9490

Results based on 10,000 simulations

Table 4: Coverage Probabilities (nominal level=0.95)

N = 200, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.9494 0.0958 0.9370 1.0000 1.0000 1.0000 0.9996

1.00 200 0.9458 0.0911 0.9468 0.9999 0.9999 0.9998 0.9998

0.99 100 0.9471 0.6731 0.9398 0.9850 0.9773 0.9824 0.9712

0.99 200 0.9421 0.8297 0.9441 0.9857 0.9755 0.9847 0.9728

0.95 100 0.4475 0.9167 0.9327 0.9802 0.9614 0.9725 0.9473

0.95 200 0.1850 0.9325 0.9401 0.9702 0.9423 0.9702 0.9413

0.90 100 0.0009 0.9351 0.9341 0.9622 0.9354 0.9622 0.9354

0.90 200 0.0000 0.9420 0.9411 0.9703 0.9431 0.9703 0.9431

0.80 100 0.0000 0.9436 0.9364 0.9683 0.9372 0.9683 0.9372

0.80 200 0.0000 0.9433 0.9398 0.9678 0.9407 0.9678 0.9407

0.60 100 0.0000 0.9419 0.9374 0.9669 0.9392 0.9669 0.9392

0.60 200 0.0000 0.9469 0.9447 0.9710 0.9456 0.9710 0.9456

Results based on 10,000 simulations
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Table 5: Average Width of Confidence Intervals

N = 100, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 0.0059 0.0493 0.9810 0.0133 0.0168 0.0161 0.0204

1.00 100 0.0030 0.0361 0.7866 0.0070 0.0088 0.0090 0.0114

0.99 50 0.0126 0.0576 0.2362 0.1001 0.1233 0.1235 0.1456

0.99 100 0.0073 0.0452 0.0947 0.0898 0.1105 0.0866 0.1029

0.95 50 0.0184 0.0902 0.1215 0.1385 0.1504 0.1357 0.1367

0.95 100 0.0123 0.0721 0.0838 0.0963 0.0967 0.0944 0.0889

0.90 50 0.0234 0.1063 0.1273 0.1446 0.1311 0.1442 0.1285

0.90 100 0.0161 0.0764 0.0838 0.0958 0.0842 0.0958 0.0842

0.80 50 0.0297 0.1052 0.1171 0.1339 0.1177 0.1339 0.1177

0.80 100 0.0207 0.0744 0.0784 0.0897 0.0788 0.0897 0.0788

0.60 50 0.0369 0.0992 0.1057 0.1209 0.1062 0.1209 0.1062

0.60 100 0.0259 0.0701 0.0724 0.0828 0.0727 0.0828 0.0727

Results based on 10,000 simulations

Table 6: Number of Empty Intervals (out of 10,000)

N = 100, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 185 4400 215 0 0 0 0

1.00 100 169 4339 263 0 0 0 0

0.99 50 0 2768 243 0 0 0 0

0.99 100 0 1347 164 0 0 0 0

0.95 50 0 62 9 0 0 0 0

0.95 100 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.
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Table 7: Average Width of Confidence Intervals

N = 100, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 0.0059 0.0491 0.9114 0.0132 0.0166 0.0152 0.0195

1.00 100 0.0030 0.0360 0.7521 0.0069 0.0087 0.0091 0.0112

0.99 50 0.0126 0.0576 0.1821 0.1005 0.1242 0.1172 0.1402

0.99 100 0.0073 0.0457 0.0844 0.0888 0.1096 0.0831 0.0999

0.95 50 0.0182 0.0925 0.1025 0.1260 0.1409 0.1182 0.1220

0.95 100 0.0122 0.0728 0.0764 0.0896 0.0914 0.0867 0.0823

0.90 50 0.0230 0.1071 0.1054 0.1210 0.1109 0.1200 0.1069

0.90 100 0.0160 0.0764 0.0757 0.0866 0.0761 0.0866 0.0761

0.80 50 0.0292 0.1052 0.0995 0.1137 0.0999 0.1137 0.0999

0.80 100 0.0206 0.0744 0.0722 0.0826 0.0726 0.0826 0.0726

0.60 50 0.0366 0.0992 0.0954 0.1091 0.0958 0.1091 0.0958

0.60 100 0.0258 0.0701 0.0688 0.0786 0.0691 0.0786 0.0691

Results based on 10,000 simulations

Table 8: Number of Empty Intervals (out of 10,000)

N = 100, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 50 185 4360 270 0 0 0 0

1.00 100 169 4363 295 0 0 0 0

0.99 50 0 2411 275 0 0 0 0

0.99 100 0 1144 184 0 0 0 0

0.95 50 0 12 6 0 0 0 0

0.95 100 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.
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Table 9: Average Width of Confidence Intervals

N = 200, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.0021 0.0253 0.7838 0.0048 0.0060 0.0066 0.0083

1.00 200 0.0010 0.0178 0.6377 0.0027 0.0033 0.0037 0.0047

0.99 100 0.0051 0.0340 0.0696 0.0662 0.0796 0.0657 0.0751

0.99 200 0.0032 0.0272 0.0384 0.0454 0.0544 0.0429 0.0487

0.95 100 0.0087 0.0540 0.0635 0.0722 0.0654 0.0720 0.0641

0.95 200 0.0060 0.0387 0.0421 0.0481 0.0423 0.0481 0.0423

0.90 100 0.0114 0.0540 0.0592 0.0677 0.0595 0.0677 0.0595

0.90 200 0.0080 0.0382 0.0400 0.0457 0.0402 0.0457 0.0402

0.80 100 0.0147 0.0526 0.0554 0.0634 0.0557 0.0634 0.0557

0.80 200 0.0103 0.0372 0.0382 0.0437 0.0384 0.0437 0.0384

0.60 100 0.0183 0.0496 0.0512 0.0585 0.0514 0.0585 0.0514

0.60 200 0.0129 0.0351 0.0356 0.0407 0.0358 0.0407 0.0358

Results based on 10,000 simulations

Table 10: Number of Empty Intervals (out of 10,000)

N = 200, wi0 = 0

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 208 4538 256 0 0 0 0

1.00 200 241 4685 247 0 0 0 0

0.99 100 0 1108 114 0 0 0 0

0.99 200 0 252 51 0 0 0 0

0.95 100 0 0 0 0 0 0 0

0.95 200 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.
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Table 11: Average Width of Confidence Intervals

N = 200, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 0.0021 0.0252 0.7507 0.0048 0.0060 0.0064 0.0081

1.00 200 0.0010 0.0179 0.6201 0.0027 0.0033 0.0037 0.0047

0.99 100 0.0051 0.0344 0.0623 0.0647 0.0783 0.0622 0.0720

0.99 200 0.0031 0.0274 0.0365 0.0448 0.0539 0.0417 0.0477

0.95 100 0.0086 0.0542 0.0571 0.0653 0.0594 0.0650 0.0578

0.95 200 0.0060 0.0387 0.0398 0.0455 0.0400 0.0455 0.0400

0.90 100 0.0113 0.0540 0.0535 0.0612 0.0538 0.0612 0.0538

0.90 200 0.0079 0.0382 0.0380 0.0435 0.0382 0.0435 0.0382

0.80 100 0.0145 0.0526 0.0511 0.0584 0.0513 0.0584 0.0513

0.80 200 0.0103 0.0372 0.0366 0.0419 0.0368 0.0419 0.0368

0.60 100 0.0182 0.0496 0.0486 0.0556 0.0488 0.0556 0.0488

0.60 200 0.0129 0.0351 0.0347 0.0397 0.0349 0.0397 0.0349

Results based on 10,000 simulations

Table 12: Number of Empty Intervals (out of 10,000)

N = 200, wi0 = 2

ρ T CIPOLS CIIVD CIM CIPCI1 CIPCI2 CIPCI3 CIPCI4

1.00 100 208 4552 280 0 0 0 0

1.00 200 241 4608 261 0 0 0 0

0.99 100 0 906 127 0 0 0 0

0.99 200 0 209 52 0 0 0 0

0.95 100 0 0 0 0 0 0 0

0.95 200 0 0 0 0 0 0 0

There are no empty intervals for any of the procedures in the cases ρ = 0.9, 0.8, and 0.6.

5 Conclusion

The uniform inference procedure proposed here utilizes information from pretesting the

unit root hypothesis to aid the construction of confidence intervals in panel autoregression by

means of data-based selection among intervals that are well suited to particular regions of the

parameter space. The construction is asymptotically valid in the sense that the large sample

coverage probability is at least that of the nominal level uniformly over a wide parameter

space that includes unity. The method is particularly simple to implement in practical work
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and simulations provide encouraging evidence that the method produces confidence intervals

with good finite sample accuracy, as measured by the combination of empirical coverage

probability and average interval width. The panel AR model considered here is a simple

model. But it is the kernel of all dynamic panel models and embodies all the characteristics

that make uniform inference and confidence interval construction difficult. Even in the time

series case these problems are well known to be challenging. In the panel case, the challenges

are accentuated by additional issues arising from the presence of incidental effects and multi-

index limit theory. The pre-test confidence interval solution proposed here addresses these

challenges and has potential for application in more complex models.
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Appendix: Proofs of the Main Results

The proofs given here rely on a large number of technical results that are established in the

Online Supplement (Chao and Phillips, 2019). These results are designated in the derivations

that follow by use of the prefix S. Lemmas A1 and A2 are stated in this Appendix and their

proofs are given in the Online Supplement.

Proof of Theorem 3.1:

Let ∆εit (ρT ) = ∆yit − ρT∆yit−1, and note that

M (ρT ) =
1
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Applying partial summation, we have
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so that
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We turn first to part (a). In this case, by assumption, ρT = 1 for all T sufficiently large.

Under the random-effects specification given by Assumption 2, we can apply parts (g) and
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(i) of Lemma SD-11, part (a) of Lemma SD-25, and part (a) of Lemma SC-13 to obtain
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It follows from applying Lemma SD-24 that M (ρT ) ⇒ N (0, 1), as required. Moreover, it

is easily seen that, by applying part (b) of Lemma SE-1 in lieu of part (g) of Lemma SD-

11 in the argument given above, the same result can be obtained under the fixed-effects

specification given by Assumption 2*.

Next consider part (b), where we take ρT = exp {−1/q (T )} such that T/q (T ) → 0. In

the case of the random-effects specification given by Assumption 2, we can use the results in

parts (g) and (i) of Lemma SD-11, part (b) of Lemma SD-25, and part (b) of Lemma SC-13

to deduce that
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It follows from part (a) of Lemma SD-22 that M (ρT ) ⇒ N (0, 1). Moreover, it is easily

seen that, by applying part (b) of Lemma SE-1 in lieu of part (g) of Lemma SD-11 in the

argument given above, the same result can be obtained under the fixed-effects specification

given by Assumption 2*.

Consider part (c), where we take ρT = exp {−1/q (T )} such that q (T ) ∼ T . Under the

random-effects specification given by Assumption 2, we can apply parts (g) and (i) of Lemma

29



SD-11, part (c) of Lemma SD-25, and part (c) of Lemma SC-13 to deduce that
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where ωT = σ2 {1 + [q (T ) /2T ] [1− exp {−2T/q (T )}]}1/2. It follows from part (b) of Lemma

SD-22 that M (ρT ) ⇒ N (0, 1). Moreover, it is easily seen that, by applying part (b) of

Lemma SE-1 in lieu of part (g) of Lemma SD-11 in the argument given above, the same

result can be obtained under the fixed-effects specification given by Assumption 2*.

For part (d), we consider the case where ρT = exp {−1/q (T )} such that q (T )→∞ but

q (T ) /T → 0. Here, we first apply part (d) of Lemma SC-13 and part (d) of Lemma SD-21

to obtain
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Under the random-effects specification given by Assumption 2, we further apply parts (g)

and (i) of Lemma SD-11 and part (d) of Lemma SD-25 to obtain
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By part (c) of Lemma SD-22, we then deduce that M (ρT ) ⇒ N(0, 1), as required for (d).

Moreover, it is easily seen that, by applying part (b) of Lemma SE-1 in lieu of part (g)

of Lemma SD-11 in the argument given above, the same result can be obtained under the

fixed-effects specification given by Assumption 2*.

Finally, to show part (e), we first consider the random-effects specification given by

Assumption 2. In this case, note that, by applying parts (g) and (i) of Lemma SD-11, part
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(e) of Lemma SD-21, and part (e) of Lemma SC-13, we obtain
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N (0, 1). Moreover, it is easily seen that, by applying part (b) of Lemma SE-1 in lieu of part

(g) of Lemma SD-11 in the argument given above, the same result can be obtained under

the fixed-effects specification given by Assumption 2*. �

Proof of Theorem 3.2:

To proceed, note that, in the pathwise asymptotics considered here, N grows as a

monotonically increasing function of T , so that the asymptotics can be taken to be single-

indexed with T → ∞. Now, let
�
GMj : j = 1, 2, 3, 4, 5

�
be the collections of parameter se-

quences defined in the statement of Theorem 3.1. Moreover, let
�
ρk,T

�
∈ GMsk (for k =

1, 2, ..., 5), i.e.,
�
ρk,T

�
is a sequence belonging to the collection GMsk .11 Define Tk = fk (T )

(k = 1, ..., d), with d ≤ 5, where fk (·) : N→ N is an increasing function in its argument,

and let
�
ρk,Tk

�
denote a subsequence of

�
ρk,T

�
. Note that every parameter sequence ρT ∈

(−1, 1] can be represented as {ρT} =
�d

j=1

�
ρj,Tj

�
, where

�
ρ1,T1

�
∈ GMs1 , ...,

�
ρd,Td

�
∈ GMsd,

with GMsk �= GMsℓ for k �= ℓ and where N =
�d

k=1
{Tk = fk (T ) : T ∈ N}, with N denoting the

set of natural numbers.

Next, note that Pr
�
ρk,T /∈ CMα1,T |ρk,T

�
= Pr

�  MT

�
ρk,T

�  > zα1/2|ρk,T
�
. Theorem 3.1 im-

plies that, for any ε > 0 and for each k ∈ {1, .., d}, there exists positive integer Mk such that

for every positive integer T ≥Mk,

  Pr
�  M

�
ρk,T

�  > zα1/2|ρk,T
�
− Pr

�
|Z| > zα1/2

�  < ε,

where Z ∼ N (0, 1). Moreover, for any positive integer T ≥Mk, we have Tk = fk (T ) ≥ T ≥
Mk by Lemma SD-33 (given in Appendix SD in the technical supplement to this paper),

11The reason for using the notation GMsk , as opposed to GMk , is so that we can refer to a particular collection

of sequences amongst
�
GMj : j = 1, 2, ..., 5

�
without GMs1 necessarily being GM

1
, for example.
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from which we further deduce that

  Pr
�  M

�
ρk,Tk

�  > zα1/2|ρk,Tk
�
− Pr

�
|Z| > zα1/2

�  < ε.

Next, let M = max {f1 (M1) , ..., fk (Md)}. Consider any positive integer T ≥ M ; we must

have T = fk (T
∗) for some k = 1, ..., d and for some T ∗ ∈ N. Given that T = fk (T

∗) ≥M ≥
fk (Mk), we also deduce that T ≥ T ∗ ≥ Mk by Lemma SD-33 since fk (·) is an increasing

function of its argument. It follows that for every sequence {ρT} and for all T ≥M

  Pr
�
|M (ρT )| > zα1/2|ρT

�
− Pr

�
|Z| > zα1/2

�  

=
  Pr

�  M
�
ρk,fk(T∗)

�  > zα1/2|ρk,fk(T ∗)
�
− Pr

�
|Z| > zα1/2

�  < ε.

The desired result then follows from Lehmann (1999) Lemma 2.6.2. �

Lemma A1:

Let ρT = exp {−1/q (T )}, and suppose that Assumptions 1, 3, 4, and either 2 or 2* hold.

Then, the following statements are true as N, T → ∞ such that Nκ/T = τ , for constants

κ ∈ (0,∞) and τ ∈ (0,∞).

(a) Let GP
1 = {{ρT} : ρT = 1 for all T sufficiently large}, and set N = N (T ) = (τT )1/κ

and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
1 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(b) Let GP
2 =

�
{ρT} : ρT = exp

�
1

q(T )

�
,
√

NT ≪ q (T )
�
, and set N = N (T ) = (τT )1/κ

and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
2 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(c) Let

GP
3

=

�
{ρT} : ρT = exp

�
1

q (T )

�
,
√

NT ∼ q (T ) , and ρT ≥ 1−
�
zγ1 + zα2

�√
2√

NT
eventually

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
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GP
3 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(d) Let

GP
4

=

�
{ρT} : ρT = exp

�
1

q (T )

�
,
√

NT ∼ q (T ) , and ρT < 1−
�
zγ1 + zα2

�√
2√

NT
eventually

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
4 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 + α2 = α.

(e) Let GP
5 =

�
{ρT} : ρT = exp {1/q (T )} ,

√
NT ≪ q (T ) , and T ≪ q (T )≪

√
NT

�
, and

set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
5 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(f) Let

GP
6

=

�
{ρT} : ρT = exp

�
1

q (T )

�
, T ≪ q (T ) ∼

√
NT , and ρT ≥ 1− 2

�
zγ2 + zα2

�
√

NT
eventually

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
6 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(g) Let

GP
7

=

�
{ρT} : ρT = exp

�
1

q (T )

�
, T ≪ q (T ) ∼

√
NT , and ρT < 1− 2

�
zγ2 + zα2

�
√

NT
eventually

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
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GP
7 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 + α2 = α.

(h) Let GP
8 =

�
{ρT} : ρT = exp

�
1

q(T )

�
,
√

NT ≪ q (T ) ∼ T
�
, and set N = N (T ) =

(τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
8 ,

lim sup
T→∞

Pr
�
ρT /∈ Cγ,α,T |ρT ∈ GP

8

�
≤ α1 < α.

(i) Let GP
9 =

�
{ρT} : ρT = exp {1/q (T )} ,

√
NT ≪ q (T )≪ T

�
, and set N = N (T ) =

(τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
9 ,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(j) Let

GP
10

=

�
{ρT} : ρT = exp

�
1

q (T )

�
, q (T ) ∼

√
NT ∼ T , and ρT ≥ 1− 2

�
zγ2 + zα2

�
√

NT
eventually

�
,

and set N = N (T ) = τT and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
10,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(k) Let

GP
11

=

�
{ρT} : ρT = exp

�
1

q (T )

�
, q (T ) ∼

√
NT ∼ T, and ρT < 1− 2

�
zγ2 + zα2

�
√

NT
eventually

�
,

and set N = N (T ) = τT and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
11,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 + α2 = α.
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(l) Let

GP
12

=

�
{ρT} : ρT = exp

�
1

q (T )

�
, q (T ) ∼

√
NT ≪ T , and ρT ≥ 1− 2

�
zγ2 + zα3

�
√

NT
eventually

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
12,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(m) Let

GP
13

=

�
{ρT} : ρT = exp

�
1

q (T )

�
, q (T ) ∼

√
NT ≪ T , and ρT < 1− 2

�
zγ2 + zα2

�
√

NT
eventually

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for ρT ∈ GP
13,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 + α2 = α.

(n) Let

GP
14 =

�
{ρT} : ρT = exp

�
1

q (T )

�
, T ≪ q (T )≪

√
NT and

√
N ≪ q (T )

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
14,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(o) Let

GP
15 =

�
{ρT} : ρT = exp

�
1

q (T )

�
, T ≪ q (T ) , N1/4T 1/4 ≪ q (T ) , and q (T ) /

√
N = O (1)

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
15,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.
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(p) Let GP
16 =

�
{ρT} : (T ≪ q (T )) ∩

�
q (T ) /N1/4T 1/4 = O (1)

��
, and set N = N (T ) =

(τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
16,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(q) Let GP
17 =

�
{ρT} : ρT = exp {1/q (T )} , N1/3T 1/3 ≪ q (T ) ∼ T ≪

√
NT

�
, and set N =

N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
17,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(r) Let

GP
18 =

�
{ρT} : ρT = exp

�
1

q (T )

�
, N1/4T 1/4 ≪ q (T ) ∼ T , and

q (T )

N 1/3T 1/3
= O (1)

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
18,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(s) Let GP
19 =

�
{ρT} : ρT = exp {1/q (T )} , q (T ) ∼ T , and q (T ) /

�
N1/4T 1/4

�
= O (1)

�
, and

set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
19,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(t) Let

GP
20 =

�
{ρT} : ρT = exp

�
1

q (T )

�
, N 1/3T 1/3 ≪ q (T )≪

√
NT , and (q (T )≪ T )

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
20,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

(u) Let GP
21 =

�
{ρT} : ρT = exp {1/q (T )} , q (T )≪ T , and q (T ) ∼ N 1/3T 1/3

�
, and setN =

N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈ GP
17,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

36



(v) Let

GP
22 =

�
{ρT} : ρT = exp

�
1

q (T )

�
, q (T )→∞, q (T )≪ T, and q (T ) /N1/3T 1/3 → 0

�
,

and set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then, for {ρT} ∈
GP
22,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α.

The proof of Lemma A1 is given in Appendix SB of the technical supplement.

Lemma A2:

Suppose that Assumptions 1, 3, 4, and either 2 or 2* hold, and let

GP
23 =

�
{ρT} : |ρT | = exp

�
− 1

q (T )

�
, q (T ) ≥ 0, and q (T ) = O (1) as T →∞

�
,

Also, let N, T → ∞ such that Nκ/T = τ , for constants κ ∈ (0,∞) and τ ∈ (0,∞), so that

we can set N = N (T ) = (τT )1/κ and Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T . Then,

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α1 < α,

for {ρT} ∈ GP
19.

The proof of Lemma A2 is also given in Appendix SB of the technical supplement.
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Proof of Theorem 3.3:

In the pathwise asymptotics considered here, N grows as a monotonically increasing

function of T , so that the asymptotics can be taken to be single-indexed with T →∞. Hence,

we can set N = (τT )1/κ and simplify notation by writing Cγ,α,N,T = Cγ,α,N(T ),T = Cγ,α,T .

To proceed, note that, by property of a supremum, there exists a sequence

{ρT ∈ (−1, 1] : T ≥ 1} such that

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) = lim sup
T→∞

sup
ρ∈(−1,1]

Pr (ρ /∈ Cγ,α,T |ρ)

Thus, for some fixed significance level α ∈ (0, 0.5], to show that

lim sup
T→∞

sup
ρ∈(−1,1]

Pr (ρ /∈ Cγ,α,T |ρ) ≤ α,

it suffices to show that

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α

for every sequence {ρT ∈ (−1, 1] : T ≥ 1}. To proceed, let
�
GP
j : j = 1, 2, ..., 23

�
be the col-

lections of parameter sequences defined in Lemmas A1 and A2 given above. Moreover,

let
�
ρk,T

�
∈ GP

sk
(for k = 1, ..., 23), i.e.,

�
ρk,T

�
is a sequence belonging to the collection

GP
sk
. Define Tk = fk (T ) (k = 1, ..., d), with d ≤ 23, where fk (·) : N→ N is an increas-

ing function in its argument, and let
�
ρk,Tk

�
denote a subsequence of

�
ρk,T

�
. Note that

every parameter sequence ρT ∈ (−1, 1] can be represented as {ρT} =
�d

j=1

�
ρj,Tj

�
, where

�
ρ1,T1

�
∈ GP

s1
, ...,

�
ρd,Td

�
∈ GP

sd
, with GP

sk
�= GP

sℓ
for k �= ℓ and where

N =
d�

k=1

{Tk = fk (T ) : T ∈ N} (9)

with N denoting the set of natural numbers {1, 2, ....}. Moreover, define

υk,T = supm≥T Pr
�
ρk,m /∈ Cγ,α,m|ρk,m ∈ GP

sk

�
and pk = lim supT→∞ Pr

�
ρk,T /∈ Cγ,α,T |ρk,T ∈ GP

sk

�
.

It is clear from the definition of υk,T and pk that limT→∞ υk,T = pk for each k ∈ {1, 2, ..., d};
or, more formally, for any ε > 0, there exists positive integer Lk such that, for all T ≥ Lk,

|υk,T − pk| < ε, from which it follows, using the results of Lemma A1, that, for any ε > 0

and for each k ∈ {1, 2, ..., d}, there exists a positive integer Lk such that, for all T ≥ Lk,

υk,T < pk + ε ≤ α + ε. Now, for any k ∈ {1, ..., d} and for any positive integer T ≥ Lk,

we have, by Lemma SD-33 given in Appendix SD of the technical supplement to this paper,

that Tk = fk (T ) ≥ Lk, so that |υk,Tk − pk| < ε, for any subsequence {υk,Tk} of {υk,T}, from

38



which we further deduce that

υk,Tk = sup
m≥Tk

Pr
�
ρk,m /∈ Cγ,α,m|ρk,m ∈ GP

sk

�
< pk + ε ≤ α + ε.

Next, let Lmax = max {f1 (L1) , ..., fd (Ld)}. Consider any positive integer T ≥ Lmax; then,

(9) implies that T = fk (T
∗) for some k = 1, ..., d and for some T ∗ ∈ N. By the fact that fk (·)

is an increasing function of its argument, we have that T = fk (T
∗) ≥ Lmax ≥ fk (Lk) ≥ Lk,

from which it follows that for every positive integer T ≥ Lmax

sup
m≥T

Pr (ρm /∈ Cγ,α,m|ρm) = sup
m≥fk(T ∗)

Pr (ρm /∈ Cγ,α,m|ρm)

≤ sup
m≥Lmax

Pr (ρm /∈ Cγ,α,m|ρm) < α + ε

Hence, for any sequence {ρT} ∈ (−1, 1],

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) = inf
T≥1

sup
m≥T

Pr (ρm /∈ Cγ,α,m|ρm) < α + ε.

Since ε is arbitrary, we deduce that

lim sup
T→∞

Pr (ρT /∈ Cγ,α,T |ρT ) ≤ α

for any sequence {ρT} ∈ (−1, 1], which gives the desired conclusion. �
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