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1 Introduction

In economics, three of the key areas in machine learning that have drawn considerable attention

in recent years include variable selection, dimension reduction and shrinkage. One reason for this

is the availability of new high frequency and high dimensional datasets that are being analyzed in

areas ranging from targeted marketing and customer segmentation to forecasting and maroeconomic

policy making. This has in turn led to numerous theoretical advances in the areas of estimation,

implementation, and inference using techinques such as the least absolute shrinkage operator (lasso)

and principal components analysis (PCA). In this paper, we build on pathbreaking work due to

Bai and Ng (2002), Stock and Watson (2002a,b), Bai (2003), Forni, Hallin, Lippi, and Reichlin

(2005), and Bai and Ng (2008), in which methods for constructing forecasts based on factor-

augmented regression models are developed and analyzed. In particular, we establish that latent

factors that are critical to the estimation of factor augmented vector autoregressions (FAVARs)

can be consistently estimated in cases where factor pervasiveness does not hold, where by factor

pervasivness we mean that (almost) all available predictors load significantly on a set of factors

that we wish to estimate. To do so, we draw on results of Chao, Liu, and Swanson (CLS: 2023a),

where a completely consistent variable selection procedure useful for specifying FAVAR models is

developed. We then establish that the conditional mean of the infeasible -step ahead forecasting

equation implied by an FAVAR can be consistently estimated.

As discussed above, a key assumption commonly used in the factor analysis literature to show

consistent factor estimation is that of factor pervasiveness. This assumption presupposes that all

available predictor variables in a dataset, with the possible exception of a negligible number of them,

load significantly on the underlying factors. Needless to say, this assumption may not be satisfied

by many datasets that are available for empirical research. Indeed, a likely scenario is that there is

significant underlying heterogeneity, so that some of the available variables are relevant in the sense

that they load significantly on the underlying factors, whereas others are irrelevant, in the sense that

they do not share any common dynamic structure with each other or with the relevant variables in

the dataset. In this paper, we begin by establishing that, under failure of factor pervasiveness in a

stylized model with one factor, consistency cannot be achieved, and indeed b → 0 as  →∞,
where  is a latent factor,  is the number of variables in the dataset being modelled, and  is the

number of time series observations. Findings such as this are the impetus for the work of Chao,

Liu, and Swanson (CLS: 2023a), where a variable selection procedure is developed for pre-selecting

relevant predictor variables for use in the consistent estimation of latent factors in an FAVAR model.
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Their variable selection procedure is based on the use of easy to construct self normalized statistics

measuring the covariation between target variables to be predicted and possible predictor variables

to be used in factor estimation. CLS (2023a) show that for their procedure, the probability of

Type I and Type II errors goes to zero, asymptotically, implying that the procedure is completely

consistent. This property turns out to be important because if one tries to simply control the

probability of a Type I error at some predetermined level, which is the typical approach used in

multiple hypothesis testing, then one will not in general be able to estimate factors consistently,

even up to an invertible matrix transformation. A main result of the current paper is to show

that factors estimated using predictor variables selected using the procedure of CLS (2023a) are

consistent, up to a rotation. With these results in hand, we then show that by using variables

selected via our pre-screening procedure to estimate the underlying factors, and then inserting

these factor estimates into -step ahead forecasting equations implied by a FAVAR model, we can

consistently estimate the conditional mean function of the said equations. Importantly, we argue

that this result allows the conditional mean function of a factor-augmented forecasting equation to

be consistently estimable in a wide range of situations, and in particular in situations where there

are violations of factor pervasiveness.

Finally, in order to illustrate the methods discussed in this paper, we analyze a large dataset.

This part of the paper is to be completed.

Some of the research reported here is related to the well-known supervised principal components

method proposed by Bair, Hastie, Paul, and Tibshirani (2006). Additionally, our research is re-

lated to some interesting recent work by Giglio, Xiu, and Zhang (2021), who propose a method for

selecting test assets, with the objective of estimating risk premia in a Fama-MacBeth type frame-

work. A crucial difference between the variable selection procedure proposed in our paper and

those proposed in these papers is that we use a score statistic that is self-nomalized, whereas the

aforementioned papers do not make use of statistics that involve self-normalization. An important

advantage of self-normalized statistics is their ability to accommodate a much wider range of possi-

ble tail behavior in the underlying distributions, relative to their non-self-normalized counterparts.

This makes self-normalized statistics better suited for various types of economic and financial ap-

plications, where the data are known not to exhibit the type of exponentially decaying tail behavior

assumed in much of the statistics literature on high-dimensional models. In addition, the type of

models studied in Bair, Hastie, Paul, and Tibshirani (2006) and Giglio, Xiu, and Zhang (2021) differ

significantly from the FAVAR model studied here. In particular, Bair, Hastie, Paul, and Tibshirani

(2006) study a one-factor model in an  Gaussian framework so that complications introduced

by dependence and non-normality of distribution are not considered in their paper. Giglio, Xiu, and

Zhang (2021) do make certain high-level assumptions which may potentially accommodate some
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dependence both cross-sectionally and intertemporally, but they do not consider the implications

of variable selection and factor estimation for forecasting, and the model that they consider is very

different from the type of dynamic vector time series model studied here.

Our research is also closely related to the work of Bai and Ng (2021), who provide results

which show that factors can still be estimated consistently in certain situations where the factor

loadings are weaker than that implied by the conventional pervasiveness assumption, although in

such cases the rate of convergence of the factor estimator is slower and additional assumptions are

needed. As discussed in the next section of this paper, their factor consistency result relies on a

key condition, and the appropriateness of this condition depends on how severely the condition of

factor pervasiveness is violated, which is ultimately an empirical issue.1

The rest of the paper is organized as follows. In Section 2 , we provide our counterexample,

stated formally as Theorem 2.1, which shows that a latent factor may be inconsistently estimated

when the standard assumption of factor pervasiveness does not hold. In Section 3, we discuss

the FAVAR model, the variable selection procedure of CLS (2023a), and the assumptions that are

required in the sequel. Section 4 gathers our theoretical results on the consistent estimation of latent

factors, up to an invertible matrix transformation, as well as results on the consistent estimation

of the -step ahead predictor, based on the FAVAR model. Section 5 presents the results of an

empirical illustration where our forecasting approach is compared with related approaches in the

literature. Finally, Section 6 offers concluding remarks. Proofs of the main theorems and some

supporting lemmas are given in the appendices of this paper.

Before proceeding, we first say a few words about some of the frequently used notation in this

paper. Throughout, let () (), max (), min (), and  () denote, respectively, the 
 largest

eigenvalue, the maximal eigenvalue, the minimal eigenvalue, and the trace of a square matrix .

Similarly, let () (), max (), and min () denote, respectively, the 
 largest singular value,

the maximal singular value, and the minimal singular value of a matrix , which is not restricted to

be a square matrix. In addition, let kk2 denote the usual Euclidean norm when applied to a (finite-
dimensional) vector . Also, for a matrix, kk2 ≡ max

np
 (0) :  (0) is an eigenvalue of 0

o
denotes the matrix spectral norm, and kk ≡

p
 {0} denotes the Frobenius norm. For two

random variables  and  , write  ∼  if  =  (1) and  =  (1). Furthermore, let

|| denote the absolute value or the modulus of the number ; let b·c denote the floor function, so
that bc gives the integer part of the real number , and let  = (1 1  1)0 denote a × 1 vector

1Various authors have documented cases in economics-related research where empirical results suggest that the

underlying factors may be quite weak, so that the rate condition given in Bai and Ng (2021) may not be appropriate.

See, for example, the discussions in Jagannathan and Wang (1998), Kan and Zhang (1999), Harding (2008), Kleibergen

(2009), Ontaski (2012), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan, and Robotti (2017), Anatolyev and

Mikusheva (2021), and Freyaldenhoven (2021a,b).
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of ones. Finally, the abbreviation w.p.a.1 stands for “with probability approaching one”.

2 Inconsistency in High-Dimensional Factor Estimation

To provide some motivation for the problem we will be studying in this paper, consider the following

simple, stylized one-factor model:


×1

= 
×1


1×1

+ 
×1

,  = 1   (1)

for which we make the following assumption.

Assumption 2-1: (a) {} ≡  (0 ) ;(b) {} ≡  (0 1) ;and (c)  and  are inde-

pendent for all  

Much of the literature on factor analysis focuses on the case where the factors are pervasive. In

the special case of the simple one factor model given in expression (1) above, pervasiveness means

that:
kk22

→ 

for some constant  such that 0   ∞ where kk2 =
√
0. In practice, however, one may have a

high-dimensional data vector  such that not all of the components of  load significantly on the

underlying factor, . In particular, let P be a permutation matrix which reorders the components
of , so that P can be partitioned as follows:

P =

⎛⎜⎝ 
(1)


1×1

(2)


2×1

⎞⎟⎠ 

where 
(1)
 = (1) + 

(1)
 and 

(2)
 = 

(2)
 and where all components of the 1 × 1 vector (1)

are different from zero, so that the components of 
(1)
 all load significantly on , whereas the

components of 
(2)
 do not. Of course, an empirical researcher will not typically have à priori

knowledge as to which components of  will load significantly on  and which will not. The

following result shows that if one proceeds with factor estimation assuming that the factor is

pervasive, then the usual estimator of a factor based on principal component methods may be

inconsistent and may, in fact, behave in a rather pathological manner in large samples. To consider

this possibility, assume the following condition, which implies a violation of the pervasiveness

assumption.
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Assumption 2-2: As  →∞, let kk2 →∞ such that:



 kk2(1+)2

= + 

Ã
1

kk22

!
,

for some constant  such that 0    ∞ and for some constant  such that 0    1. Note

that under Assumption 2-2:

kk22

∼ ()

− 1
(1+) → 0 as  →∞

so that the factor does not satisfy the pervasiveness assumption. This can, of course, occur if a

significant proportion of the components of  are zero or are very small. Next, let b1 kb1k2 denote
the (normalized) eigenvector associated with the largest eigenvalue of the sample covariance matrix,bΣ = Z0Z , where Z = (1   )

0  Then, the usual principal component estimator of  is given

by: b = hb1 i√
 kb1k2 .

The following theorem characterizes the asymptotic behavior of this estimator under the assump-

tions given above.

Theorem 2.1: Suppose that Assumptions 2-1 and 2-2 hold. Then, for all : b → 0 as  →∞

It is well-known that without further identifying assumptions, such as those given in Assumption F1

of Stock and Watson (2002a), factors can only be estimated consistently up to an invertible matrix

transformation. However, even in cases where we are not willing to specify enough conditions

so as to fully identify the factors, estimating the factors consistently up to an invertible matrix

transformation will often suffice for many purposes. One such case is when we are trying to

forecast using a factor-augmented vector autoregression (FAVAR). As we will show in results given

in Section 4 of this paper, point forecasts constructed using factors which are estimated consistently

up to an invertible matrix transformation will nevertheless converge in probability to the desired

infeasible forecast (i.e., the conditional mean of the FAVAR), that in turn depends on the true

unobserved factors. On the other hand, the problem illustrated by the result given in Theorem 1 is

different and is in some sense more problematic and pathological. The estimated factor in Theorem

1 converges to zero regardless of what happens to be the realized value of the true latent factor. In

this case, one clearly cannot consistently estimate the conditional mean of the FAVAR.

Theorem 1 is related to results previously given in the statistics literature showing the possible

inconsistency of sample eigenvectors as estimators of population eigenvectors in high dimensional

situations. See, for example, Paul (2007), Johnstone and Lu (2009), Shen, Shen, Zhu, and Marron
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(2016), and Johnstone and Paul (2018). However, most of the results in the statistics literature

are not explicitly framed in the setting of a factor model, but are instead derived for the related

spiked covariance model. Theorem 1 is intended to give an inconsistency result of this type, but in

a context that may be more familiar to researchers in economics.

It should also be noted that, in an interesting and thought-provoking recent paper, Bai and

Ng (2021) provide results which show that factors can still be estimated consistently in certain

situations where the factor loadings are weaker than that implied by the conventional pervasiveness

assumption, but that in such cases the rate of convergence is slower and additional assumptions are

needed. To understand the relationship between their results and the example given above, note

that a key condition for the consistency result given in their paper, when expressed in terms of our

notation, is the assumption that 
³
 kk22

´
→ 02. On the other hand, if 

³
 kk22

´
→ 1 for

some positive constant 1 or even worse, if 
³
 kk22

´
→∞, which is essentially what is specified

in Assumption 2-2 above, then consistent factor estimation cannot be achieved3. Hence, whether

or not consistent factor estimation can be attained depends on how nonpervasive the factors are,

which is ultimately an empirical question, and which depends on the application and on the dataset

employed. Moreover, various authors have now documented cases where empirical results suggest

that the underlying factors may be quite weak, so that the rate condition given in Bai and Ng

(2021) may not be appropriate, at least for some of the situations for which factor modeling is

of interest. For example, see Jagannathan and Wang (1998), Kan and Zhang (1999), Harding

(2008), Kleibergen (2009), Ontaski (2012), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan,

and Robotti (2017), Anatolyev and Mikusheva (2021), and Freyaldenhoven (2021a,b). In such

cases, it is of interest to explore the possibility that the weakness in the loadings is not uniform

across all variables, but rather is due to the fact that only a small percentage of the variables loads

significantly on the underlying factors. Furthermore, even if the empirical situation of interest is

one where, strictly speaking, the condition 
³
 kk22

´
→ 0 does hold, it may still be beneficial

in some such instances to do variable pre-screening. This is particularly true in situations where

the condition 
³
 kk22

´
→ 0 is “barely” satisfied, in which case one would expect to pay a

rather hefty finite sample price for not pruning out variables that do not load significantly on the

underlying factors, since these variables will add unwanted noise to the estimation process. For

all these reasons, there is a clear need to develop methods that will enable empirical researchers

2See Assumption A4 of Bai and Ng (2021). Note that Bai and Ng (2021) state this condition in the form

 ()→ 0 for some  ∈ (0 1], but since part (ii) of their Assumption A2, when specialized to the one factor model
studied here, simplifies to the condition that lim→∞ kk22  = Λ  0, it is easy to see that their Assumption A4

is equivalent to the condition that 

 kk22

→ 0.
3Note that Assumption 2-2 is actually stronger than required in order to show inconsistency, but that we impose

this condition to highlight the fact that, in this case, not only is the estimator of the factor inconsistent but it actually

converges to zero.
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to pre-screen the components of  so that variables which are informative and helpful to the

estimation process can be properly identified.

3 Model, Assumptions, and Variable Selection in High Dimen-

sions

Following CLS (2023a), we begin by considering the following -order factor-augmented vec-

tor autoregression (FAVAR):

+1 = +1 + · · ·+−+1 + +1, (2)

where

+1
(+)×1

=

⎛⎜⎝ +1
×1
+1
×1

⎞⎟⎠ , +1
(+)×1

=

⎛⎜⎝ +1
×1
+1
×1

⎞⎟⎠ , 
(+)×1

=

⎛⎜⎝ 
×1

×1

⎞⎟⎠  and



(+)×(+)
=

⎛⎜⎝  
×

 
×


×


×

⎞⎟⎠  for  = 1  

This system of equations, where  denotes the vector of observable economic variables, and  is

a vector of unobserved (latent) factors can also be written is several alternative ways, the following

two of which are are variously used throughout this paper. Namely:

+1 =  +    +   + +1 (3)

+1 =  +   +  + +1 (4)

where

 
×

=
³
 1  2 · · ·  

´
  
×

=
³
 1  2 · · ·  

´



×

=
³
1 2 · · · 

´
 
×

=
³
1 2 · · · 

´


 
×1

=

⎛⎜⎜⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎟⎟⎠ , and  
×1

=

⎛⎜⎜⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎟⎟⎠ , (5)
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and

 
(+)×1

= + −1 +,

where   =
³
 0

  0
−1 · · ·  0

−+2  0
−+1

´0
and where

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · −1 

+ 0 · · · 0 0

0 +
. . .

... 0
...

. . .
. . . 0

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

The companion form given in equation (6) is convenient for establishing certain moment conditions

on   and   given a moment condition on  and for establishing certain mixing properties of the

FAVAR model, as shown in the proofs of Lemmas C-4 and C5 in Appendix C below. It remains to

define the relationship between the  and the variables used to extract these factors. To do this,

we assume that:


×1

= Γ
×

  + , (7)

where the properties of  are given in Assumptions 3-3 and 3-4, below. Following Chao, Liu,

and Swanson (2023a), we assume that not all components of  provide useful information for

estimating  , implying that the  × parameter matrix Γ may have some rows whose elements

are all zero. More precisely, let the 1× vector, 0 denote the 
 row of Γ, and assume that the

rows of the matrix Γ can be divided into two classes:

 = { ∈ {1  } :  = 0} and (8)

 = { ∈ {1  } :  6= 0} . (9)

Thus, there exists a permutation matrix P such that P =
³

(1)0
 

(2)0


´0
 where


(1)


1×1
= Γ1  + 

(1)
 (10)


(2)


2×1
= 

(2)
 . (11)

In this way, the components of 
(1)
 can be interpreted as “information” variables that are useful

for estimating  . On the other hand, for the purpose of factor estimation, the components of
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the subvector 
(2)
 are pure “noise” variables, as they do not load on the underlying factors and

only add noise if they are included in the factor estimation process. Given that an empirical

researcher will often not have prior knowledge as to which variables are elements of 
(1)
 and which

are elements of 
(2)
 , Theorem 2.1 suggests the need for a variable selection procedure which will

allow us to properly identify the components of of 
(1)
 and to use only these variables when we

try to estimate  ; for, if we unknowingly include too many components of 
(2)
 in the estimation

process, then inconsistent estimation in the sense described in the previous section can result.4 As

discussed in CLS (2023a), there is an important related paper by Bai and Ng (2021) that establishes

factor estimator consistency for cases where (1) → 0. For cases where (1) → , or

(1) → ∞, where  is a constant, their result does not hold. In this paper, we establish

that consistency can be achieved in our context even if (1)9 0, if one pre-screens variables

using the self-normalized statistics outlined below. This is important because the degree of factor

pervasiveness is ultimately data dependent, and one way to estimate 1 invloves utilizing the

variable screening statistic that is discussed in the sequel.

In the sequel, we require the following assumptions.

Assumption 3-1: Suppose that:

det
©
(+) −1 − · · ·−


ª
= 0 implies that ||  1. (12)

Assumption 3-2: Let  satisfy the following set of conditions: (a) {} is an independent
sequence of random vectors with  [] = 0 ∀; (b) there exists a positive constant  such

that sup kk62 ≤   ∞; (c)  admits a density  such that, for some positive constant

  ∞ sup

Z
| ( − )−  ()|  ≤  ||, whenever || ≤  for some constant   0; and

(d) there exists a constant   0 such that inf min { [0]} ≥   0.

Assumption 3-3: Let  be the  element of the error vector  in expression (7), and we

assume that it satisfies the following conditions: (a)  [] = 0 for all  and ; (b) there exists

a positive constant  such that sup ||7 ≤  ∞, and there exists a constant   0 such that

inf
h
2

i
≥ ; (c) define F 

−∞ =  ( −2 −1 ), F∞+ =  (+ ++1 ++2 ),

and

 () = sup


£
sup

©¯̄

¡
|F 

−∞
¢−  ()

¯̄
:  ∈ F∞+

ª¤
.

4 In statistics, there is a growing literature on the potential inconsistency of sample eigenvectors in high dimensional

problems, as discussed in Paul (2007), Johnstone and Lu (2009), Shen Shen, Zhu, and Marron (2016), and Johnstone

and Paul (2018).
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Assume that there exist constants 1  0 and 2  0 such that

 () ≤ 1 exp {−2}  for all ;

and (d) there exists a positive constant  such that sup

Ã
1
1

X
∈

X
∈

| []|
!
≤  ∞ for

every positive integer 1, where 
 is defined in expression (9) above.

Assumption 3-4:  and  are independent, for all   and .

Assumption 3-5: There exists a positive constant  such that sup∈ kk2 ≤   ∞ and

kk2 ≤  ∞, where  = (0  0 )0.
Assumption 3-6: There exists a positive constant  such that:

0 
1


≤ min

µ
Γ0Γ
1

¶
≤ max

µ
Γ0Γ
1

¶
≤  ∞ for all 1, 2 sufficiently large,

where 1 is the number of components of the subvector 
(1)
 and 2 is the number of components

of the subvector 
(2)
 , as previously defined in expressions (10) and (11).

Assumption 3-7: Let  be as defined in expression (6) above, and let the eigenvalues of the

matrix (+) − be sorted so that:

¯̄
(1)

¡
(+) −

¢¯̄ ≥ ¯̄(2) ¡(+) −
¢¯̄ ≥ · · · ≥ ¯̄((+)) ¡(+) −

¢¯̄
= min.

Suppose that there is a constant   0 such that

min
¡
(+) −

¢ ≥ min (13)

In addition, there exists a positive constant  ∞ such that, for all positive integer ,

max
¡

¢ ≤ max

©¯̄
max

¡

¢¯̄

¯̄
min

¡

¢¯̄ª

 (14)

Assumption 3-1 is the stability condition that one typically assumes for a stationary VAR process,

although we allow for possible heterogeneity in the distribution of  across time, so that our FAVAR

process is not necessarily a strictly stationary process. Under Assumption 3-1, there exists a vector

moving average representation for the FAVAR process. Assumption 3-1 is a well known assumption

that is equivalent to the condition that det
©
(+) −

ª
= 0 implies that ||  1

Since the factor loading matrix Γ is an  × matrix, where  = 1 +2, the matrix Γ
0Γ

will have order of magnitude equal to  if the factors are pervasive. Much of the factor analysis
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literature in both econometrics and statistics has studied the case where factors are pervasive in

this sense. For example, see Bai and Ng (2002), Stock and Watson (2002a), Bai (2003), and Fan,

Liao, and Mincheva (2011, 2013). Assumption 3-6 allows for possible violations of this conventional

pervasiveness assumption, which will occur in our setup when 1 → 0.

Finally, Assumption 3-7 imposes a condition whereby the extreme singular values of the matrices

 and (+) −  have bounds that depend on the extreme eigenvalues of these matrices. For

further discussion of this Assumption, see CLS (2023a).

Note that Assumptions 3-1, 3-2(a)-(c), and 3-7 are sufficient to prove Lemma C-5 in Appendix

C5, which states that the process {} generated by the FAVAR model given in expression (2) is
a -mixing process with -mixing coefficient satisfying:

 () ≤ 1 exp {−2} 

for some positive constants 1 and 2, with

 () = sup


£
sup

©¯̄

¡
|A

−∞
¢−  ()

¯̄
:  ∈ A∞+

ª¤


and with A−∞ =  (−2−1) and A∞+ =  (+++1++2 ). Note that

Assumption 3-2 (c) rules out situations such as that given in the famous counterexample presented

by Andrews (1984) which shows that a first-order autoregression with errors having a discrete

Bernoulli distribution is not -mixing, even if it satisfies the stability condition. Conditions similar

to Assumption 3-2(c) have also appeared in previous papers, such as Gorodetskii (1977) and Pham

and Tran (1985), which seek to provide sufficient conditions for establishing the  or  mixing

properties of linear time series processes.

Prior to presenting the main theorems of this paper, we first summarize the variable selection

procedure based on self-normalized statistics that is outlined in CLS (2023a), and draws on path-

breaking moderate deviation results from Chen, Shao, Wu, and Xu (2016). To accommodate data

dependence, consider self-nomalized statistics that are constructed from observations which are first

split into blocks in a manner similar to the kind of construction one would employ in implementing

a block bootstrap or in proving a central limit theorem using the blocking technique. One such

statistic has the form of an ∞ norm and is given by:

max
1≤≤

| | = max
1≤≤

¯̄̄̄
¯̄ q

 

¯̄̄̄
¯̄  (15)

5For a statement and proof of Lemma C-5, see Appendix C below.
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where

 =

X
=1

(−1)+1+−1X
=(−1)+

+1 and (16)

  =

X
=1

⎡⎣(−1)+1+−1X
=(−1)+

+1

⎤⎦2 . (17)

Here,  denotes the 
 component of  , +1 denotes the 

 component of +1, 1 = b1
0 c,

and 2 = b2
0 c, where 1  1 ≥ 2  0,  = 1 + 2,  = b0c, and 0 =  − + 1. Note that

the statistic given in expression (15) can be interpreted as the maximum of the (self-normalized)

sample covariances between the  component of  and the components of +1. A second statistic

has the form of a pseudo-1 norm and is given by:

X
=1

 | | =
X

=1



¯̄̄̄
¯̄ q

 

¯̄̄̄
¯̄ 

where  and   are as defined in expressions (16) and (17) above and where { :  = 1  }
denotes pre-specified weights, such that  ≥ 0 for every  ∈ {1  } and

X

=1
 = 1. In order

to keep the effects of dependence under control, the construction of these statistics is based only on

observations in every other block. In order to consistently estimate the factors up to an invertible

matrix transformation, the variable selection procedure here must be such that the the probability

of a false positive and the probability of a false negative converge to zero as 1, 2,  →∞6. This

is different from the typical multiple hypothesis testing approach whereby one tries to control the

familywise error rate (or, alternatively, the false discovery rate), so that it is no greater than 005

say, but does not try to ensure that this probability goes to zero as the sample size grows.

In order to implement this procedure, it reamins only to determine whether the  component

of  is a relevant variable for the purpose of factor estimation. Define  ∈ b to indicate that 

is a relevant variable and  ∈ b to indicate that  is an irrelevant variable, for factor estiamtion.

Now, let S+ denote either the statistic max1≤≤ | | or the statistic
X

=1
 | |. The

variable selection procedure is based on the decision rule:

 ∈
( b if S+ ≥ Φ−1

¡
1− 

2

¢
b if S+  Φ−1

¡
1− 

2

¢  (18)

6Here, a false positive refers to mis-classifying a variable,  as a relevant variable for the purpose of factor

estimation when its factor loading 0 = 0, whereas a false negative refers to the opposite case, where 
0
 6= 0 but the

variable  is mistakenly classified as irrelevant.
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where Φ−1 (·) denotes the quantile function or the inverse of the cumulative distribution function
of the standard normal random variable, and where  is a tuning parameter which may depend

on  . Some conditions on  will be given in Assumptions 3-11 and 3-11* below. For a discussion

of the use of the quantile function of the standard normal as the threshold function, refer to CLS

(2023a), and note that the threshold function used here is related to the one employed in Belloni,

Chen, Chernozhukov, and Hansen (2012).

In the sequel, we further require the following assumptions.

Assumption 3-8: There exists a positive constant,  such that for  sufficiently large:

min
1≤≤

min
∈

min
∈{1}



⎧⎨⎩
⎡⎣ 1√

1

(−1)+1+−1X
=(−1)+

+1

⎤⎦2⎫⎬⎭ ≥ 

where, as defined earlier,

1 = b1
0 c , 2 = b2

0 c for 1  1 ≥ 2  0 and  =

¹
0

1 + 2

º


and 0 =  − + 1.

Assumption 3-9: Let  ∈  = { ∈ {1 } :  6= 0} Suppose that there exists a positive
constant,  such that, for all 1 2and  sufficiently large:

min
1≤≤

min
∈

¯̄̄̄


1

¯̄̄̄

= min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

1

(−1)+1+−1X
=(−1)+

0
©
 [ ] +

£
 

0


¤
  +

£
 

0


¤
 

ª¯̄̄̄¯̄
≥   0

where  = 0 ,   = 0  , and   = 0   Here,  is a × 1 elementary vector
whose  component is 1 and all other components are 0.

Assumption 3-10: Suppose that, as 1, 2, and  →∞, the following rate conditions hold:

(a) √
ln


min


1−1
6


2
2

 → 0

where 1  1 ≥ 2  0 and  = 1 +2.

(b)
1

 31
→ 0 where 1  1  0.
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Assumption 3-11: Let  satisfy the following two conditions: (a)  → 0 as 1 2 → ∞, and
(b) there exists some constant   0 such that  ≥ 1

  for all 12 sufficiently large.

Note that Assumption 3-9 is a fairly mild condition which allows us to differentiate the alterna-

tive hypothesis,  ∈  from the null hypothesis,  ∈  For further discussion of Assumptions 3-8

- 3-11, refer to CLS (2023a). Given the above assumptions, Theorem 1 of CLS (2023a) shows that

the probability of a false positive, i.e., the probability that  ∈ b even though  = 0, approaches

zero, as  →∞, and Theorem 2 of the same paper shows that the probability of a false negative,
i.e., the probability that  ∈ b even though  6= 0, also approaches zero, as  →∞. Together,
these two theorems show that our variable selection procedure is (completely) consistent in the

sense that the probability of committing a misclassification error vanishes as  → ∞. CLS
(2023a) also note that the above variable selection procedure provides us with a consistent estimateb1 of the unobserved quantity 1, where the latter, in light of Assumption 3-6, can be interpreted
as giving the order of magnitude of Γ0Γ and is, thus, a measure of the overall pervasiveness of the

factors in a given application. Finally, note that knowledge of the number of factors is not needed to

implement the above variable selection procedure. Hence, in the case where the number of factors

needs to be determined empirically, an applied researcher could first use our procedure to properly

select the relevant variables and then apply an information criterion such as that proposed in Bai

and Ng (2002) to estimate the number of factors.

Before presenting the main theoretical results proven in this paper, it is worth making a final

comment about variable selection. In particualr, note that Bai and Ng (2008) address the important

issue of choosing predictor variables  based on their predictability for +1. While we agree with

this viewpoint, it is worth stressing that in our setup, whether  helps to predict + depends on

two things: (i) whether  loads significantly on the underlying factors   (i.e., whether  6= 0 or
not) and (ii) whether at least some components of   are helpful for predicting certain components

of +. The variable selection procedure which we propose here focuses on the first issue but

not the second. This is because, in our view, it is important to first obtain good factor estimates

with certain desirable asymptotic properties before trying to assess which factor may or may not

be useful for predicting +. It is important to distinguish between these two things because, if

we try to do too much at the variable selection stage and end up excluding a significant number

of (predictor) variables that load strongly on at least some of the factors, then, this can lead to

the factor vector   being inconsistently estimated, and this is true even if the variables do not

individually help to predict +, but instead are crucial for the consistent estimation of the factor,

which in turn is useful for predicting +.
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4 Consistent Estimation of Factors and the h-Step Ahead Predic-

tor Based on the FAVAR Model

In this section, we provide our main theoretical results on factor estimation and on the estimation

of the -step predictor implied by the FAVAR model. To obtain these results, we need to impose

a further rate condition on the tuning parameter,  (see part (c) of Assumption 3-11*).

Assumption 3-11*: Let  satisfy the following three conditions: (a) → 0 as 1 2 →∞, (b)
there exists some constant   0 such that  ≥ 1

 for all 1 2 sufficiently large, and (c)

max

(


2
7

5
7

1



1
3

1

)
→ 0 as 1 2  →∞

Remark 4.1: Note that the rate condition given in part (c) of Assumption 3-11* depends on 1.

However, if we choose  so that:


2
5 =  (1) ,

then


2
7

5
7

1
= 

µ
1

1

¶
=  (1) and


1
3

1
= 

Ã
1

1
1
15

!
= 

µ
1

1

¶
.

Hence, with this choice of , Assumption 3-11* part (c) will be satisfied as long as 1 → ∞, and
there is no need to impose any further condition on the rate at which 1 grows. Requiring that

1 → ∞ is a minimal condition, since if 1 9 ∞; then consistent factor estimation, even up to
an invertible matrix transformation, is impossible. Additionally, Monte Carlo results reported in

Section 3 of CLS (2023a) show that the variable selection procedure discussed above performs very

well in finite samples, under the tuning parameter choice  = −2
5 , both in terms of controlling

the probability of a false positive (or Type I) error and in terms of controlling the probability of a

false negative (or Type II) error.

Next, consider the post-variable-selection principal component estimator

of   =
¡
 0   0−1  

0
−+1

¢
:

b  =

bΓ0

³c
´

b1 , (19)

where



³c
´
=
h
1I

n
1 ∈ c

o
2I

n
2 ∈ c

o
· · · I

n
 ∈ c

o i0


with

I
n
 ∈ c

o
=

(
1 if  ∈ c, i.e., if S+  Φ−1

¡
1− 

2

¢
0 if  ∈ b, i.e., if S+ ≤ Φ−1 ¡1− 

2

¢ 
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and where b1 = #
³c

´
, i.e., the cardinality of the set c. Here, bΓ denotes the principal com-

ponent estimator of the loading matrix Γ constructed from taking

q b1 times the matrix whose
columns are the eigenvectors of the post-variable-selection sample covariance matrix bΣ³c

´
asso-

ciated with the  largest eigenvalues of this matrix, where, in this case,

bΣ³c
´
=


³c

´0

³c

´
b10 =

1b10
X
=



³c
´


³c
´0


with 0 =  − + 1.

Our next result shows that the estimator given in expression (19) consistently estimates the

unobserved factors  up to an invertible × matrix transformation.

Theorem 4.1: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, and 3-10

hold. Let b  be as defined in expression (19). Assume further that the specification of the tuning

parameter,  in the decision rule (18) satisfies Assumption 3-11*. Then,°°°b  −0 

°°°
2
=  (1)  for all fixed ,

where

 =

µ
Γ0Γ
1

¶ 1
2

Ξb ,
and where b is the  ×  orthogonal matrix given in Lemma D-14, and Ξ is a  × 

orthogonal matrix whose columns are the eigenvectors of the matrix

∗
 =

µ
Γ0Γ
1

¶12


µ
Γ0Γ
1

¶12
=

µ
Γ0Γ
1

¶12
1

0

X
=


£
 

0


¤µΓ0Γ
1

¶12
.

If we examine the proof of Theorem 4.1 in Appendix 1 as well as the supporting arguments

given in the proof of Lemma D-15 in Appendix D below, we see that two of the key components of

the proof involve showing that: °°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°
2

→ 0

and that b1 −1

1

→ 0.

This is one of the reasons why we argue that initial variable selection should focus on determining

which variables load strongly on the factors without worrying specifically at that stage about the
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related issues of predictability or, for that matter, any other issue. By contrast, if we make our

initial variable selection based on some more stringent criterion that takes into consideration not

only variable relevance but also other concerns such as predictability, then, we may end up with a

much smaller set e of selected variables relative to the set c selected under our procedure. In

particular, in this case, it may be possible that even in large samples a significant number of rows

of Γ
³f

´
may contain only zero elements even though the corresponding row of Γ is not a zero

vector, so that the result: °°°°°°
Γ
³f

´
− Γ

√
1

°°°°°°
2

→ 0

may not hold. For the same reason, if we let e1 denote the cardinality of the set of selected indices
based on an alternative, more stringent variable selection procedure, then, the result:

e1 −1

1

→ 0

also may not hold, since, by definition, 1 is the number of rows of Γ which have at least one

non-zero element.

Although Theorem 4.1 shows that, without further identifying assumptions, we can only esti-

mate the factors   consistently up to an invertible  ×  matrix transformation, this result

turns out to be sufficient for us to estimate the -step ahead predictor consistently. More specifi-

cally, in Appendix D below, we show that for -step ahead forecasts associated with the (infeasible)

forecasting equation implied by the FAVAR model (2), we have the form

+ = 0 +01  +02  + + (20)

where   and   are as defined in expression (5) above and where:

0 =

−1X
=0


, 01 = 

P 0(+), 02 = 
P 0(+) and (21)

+ =

−1X
=0


 0++− .

Here,  and  are, respectively, the intercept (vector) and the coefficient matrix of the companion

18



form defined in expression (6) above, P(+) is a permutation matrix such that:

P(+)  =

Ã
 

 

!
,

and

 =

⎛⎝ 

0
×

⎞⎠ ,  =
⎛⎝ 0

×



⎞⎠ , 
×(+)

=
h
 0 · · · 0

i
, and

+
(+)×(+)

=
h
+ 0 · · · 0

i
.

See the beginning of Appendix D for a derivation of the equation given in expression (20). The

reason expression (20) is called an infeasible forecasting equation is, of course, because   is not

observed, so to obtain a feasible version of this forecasting equation, we must replace   in equation

(20) with the estimate b  given in expression (19). Doing so, we arrive at a feasible -step ahead

forecasting equation of the form:

+ = 0 +

X
=1

01−+1 +
X

=1

02 b−+1 + b+
= 0 +01  +02 b  + b+, (22)

where b+ = + −02
³ b  −  

´
 with + =

X−1
=0


 0++− .

One can interpret expression (22) as a “reduced form” formulation of the forecasting equation

where the reduced form parameters 0, 1, and 2 are nonlinear functions of the parameters

(1  ) of the FAVAR model, in the case where   1. For forecasting purposes, while

it is possible to estimate the conditional mean of the forecasting equation (22) by estimating the

underlying parameters directly by nonlinear least squares, here we choose instead to estimate the

conditional mean by estimating the reduced form parameters 0, 1, and 2 via linear least squares.

An important reason why we choose this latter approach is due to complications that arise both

because we are forecasting with a FAVAR which contains unobserved factors that must first be

estimated and because we do not make enough identifying assumptions so that the factors can only

be estimated consistently up to an invertible × matrix transformation. In fact, it turns out

that estimating the underlying parameters 1   by nonlinear least squares and constructing

an estimator of the conditional mean of the forecasting equation based on these estimates will not

lead to a consistently estimated -step predictor, unless further identifying assumptions are made.
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On the other hand, as we will show in Theorem 5 below, estimating the reduced form parameters

0, 1, and 2 by linear least squares does allow us to construct a consistent estimator of the

conditional mean, even in the absence of additional identifying assumptions.

More precisely, let b  denotes the factor estimates given in expression (19). Our procedure

minimizes the least squares criterion function:

 (0 1 2) =

−X
=

°°°+ − 0 −01  −02 b 

°°°2
2

=

−X
=

°°°°°°+ − 0 −
X

=1

01−+1 −
X

=1

02 b−+1
°°°°°°
2

2

(23)

with respect to the parameters 0, 1, and 2 and delivers the OLS estimates b0, b1, and b2.
We then forecast + using the -step predictor:

b+ = b0 + b01  +
b02 b  . (24)

The following result shows that b+ is a consistent estimator of the conditional mean of the
infeasible forecast equation (20).

Theorem 4.2: Let b+ be as defined in expression (24). Suppose that Assumptions 3-1, 3-2,
3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11* hold. Then,

b+ − ¡0 +01  +02

¢ → 0 as 1 2  →∞.

5 Empirical Illustration

To be completed.

6 Conclusion

In this paper, we study the problem of consistently estimating the conditional mean of a factor-

augmented forecasting equation based on the FAVAR model. When the underlying dynamic factor

model generating the latent factors is high-dimensional, we show that it is important to pre-screen

the variables in terms of their association with the underlying factors prior to estimation, particu-

larly in cases where one suspects that the conventional assumption of factor pervasiveness may not
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hold. For this purpose, we utiluize a new variable selection procedure based on a self-normalized

score statistic (see Chao, Liu, and Swanson (CLS: 2023a) that correctly identifies the set of vari-

ables which load significantly on the underlying factors, with probability approaching one, as the

sample sizes go to infinity. Furthermore, CLS(2023a) show that estimating the factors using only

those variables selected by their method allows factors to be consistently estimated, up to an invert-

ible matrix transformation, even in certain situations where the standard pervasiveness assumption

does not hold, provided that the number of relevant variables is sufficiently large. Using the factors

estimated in such a manner, we show that the conditional mean function of a factor-augmented

forecasting equation can be consistently estimated, even for the case of multi-step ahead forecasts.

7 Appendix A: Proofs of Theorems 2.1, 4.1, and 4.2

Proof of Theorem 2.1:

The proof of Theorem 2.1 requires a long series of calculations. Hence, we have divided this

proof into six different steps.

Step 1:

In step 1, we shall transform the simple factor model


×1

= 
×1


1×1

+ 
×1

,  = 1   (25)

into a more convenient form. Let Π denote an  ×  orthogonal matrix whose columns are the

eigenvectors of the covariance matrix Σ =  [
0
]. Without loss of generality, we can partition

Π as

Π
×

=

∙
1
×1

Π2
×(−1)

¸
where 1 is the eigenvector associated with the largest eigenvalue of Σ =  [

0
], i.e., (1) (Σ).

By the result of Lemma B-8, we know that

1 =


kk2
and (1) (Σ) = kk22 + 1.
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Next, we define

 = Π0

= Π0 ( + )

= kk2Π0


kk2
 +Π

0

= kk2 Π01 +Π0
µ
since 1 =



kk2

¶
= kk2 

Ã
01
Π02

!
1 +Π

0

= kk2 e1 +  (26)

where e1 is an elementary vector whose first component is 1 and all remaining components are

0 and where  = Π
0. Moreover, note that {} ≡  (0  ) since Π is an orthogonal matrix

and  = Π
0 with {} ≡  (0  ). We can write out the covariance matrix of  as

Σ

= 
£


0


¤
= 

£
(kk2 e1 + ) (kk2 e1 + )

0¤
= kk22

£
2
¤
e1e

0
1 + kk2 [] e01 + kk2 e1

£


0


¤
+

£


0


¤
= kk22 e1e01 + 

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

kk22 + 1 0 0 · · · 0

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0

0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
from which it is easily seen that (1) (Σ ) = kk22 + 1 and (2) (Σ ) = (3) (Σ ) = · · · =
() (Σ ) = 1, where we let () (Σ ) denote the 

 largest eigenvalue of Σ . In addition, the

eigenvector associated with () (Σ ) is e , an elementary vector whose 
 component is 1 and

all other components are 0.
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Note further that we can also write  in the alternative form

 =

⎛⎜⎜⎜⎜⎜⎝
1

2

...



⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
kk2 
0
...

0

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

1

2
...



⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
kk2 1

2
...



⎞⎟⎟⎟⎟⎟⎠
=

X
=1

p
e (27)

where 1 =  + kk−12 1 and  =  for  = 2   and where 1 = kk22 and  = 1 for

 = 2   . In fact, this is the representation of  that is given in Lemma B-10. (See Appendix

B below).

Step 2:

DefineW
×

= (1  ), where  is as defined in expression (26) in step 1 above. Partition

W as follows

W
×

=

⎡⎢⎣ W0
1

1×
W0

2
(−1)×

⎤⎥⎦ =
⎡⎢⎣ 01Z

1×
Π02Z

(−1)×

⎤⎥⎦ ,
where Z

×
= (1   ) with  as defined in expression (25). Note that the first row ofW, i.e.,

W0
1, contains the “signal" observations with the elevated variance 1 = kk22 + 1 and where the

remaining  − 1 rows contain the elements of the ( − 1)×  matrixW0
2 which contain only the

noise variables. Now, define the sample covariance matrix

bΣW= 1

WW0 =

Ã
−1W0

1W1 −1W0
1W2

−1W0
2W1 −1W0

2W2

!
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In this step, we shall further transform bΣW into the so-called arrowhead matrix. To proceed,

consider the spectral decomposition

W0
2W2


= eB2eΛeB02

where eΛ = 
³e(2)  e()´ with e(2)  e() being the  − 1 eigenvalues of W0

2W2 andeB2 is an ( − 1) × ( − 1) orthogonal matrix whose columns are the eigenvectors of W0
2W2 .

Note that, without loss of generality, we can assume that the eigenvalues are ordered so thate(2) ≥ e(3) ≥ · · · ≥ e(). Next, create the modified data matrix
fW

×
=

⎡⎢⎣ W0
1

1×eB02W0
2

(−1)×

⎤⎥⎦
The sample covariance matrix based on the modified data matrix is then given by

eΣW
×

=
fWfW0



=

Ã
−1W0

1W1 −1W0
1W2

eB2
−1 eB02W0

2W1 −1 eB02W0
2W2

eB2
!

=

Ã
 0

 eΛ
!

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

 2 3 · · · 

2 e(2) 0 · · · 0

3 0 e(3) . . .
...

...
...

. . .
. . . 0

 0 · · · 0 e()

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 

1×1
=W0

1W1 and


(−1)×1

=

⎛⎜⎜⎝
2
...



⎞⎟⎟⎠ =
eB02W0

2W1


. (28)

Note that the non-zero entries of eΣW form the shape of an arrow, and so such matrices have been
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referred to in the linear algebra literature as an “arrowhead matrix".

An advantage of this arrowhead form is that it allows us to obtain a useful representation for

the top eigenvalue of eΣW. This part of step 2 comes from Johnstone and Paul (2018) following

an approach originally due to Nadler (2008), but for completeness we provide some details of

the argument here. To proceed, let b(1) denote the largest eigenvalue of eΣW and let ev(1) be the
associated eigenvector, where, following Johnstone and Paul (2018), we will normalize ev(1) to have
the form ev(1) = ³ 1 e(1)2 · · · e(1) ´0

, i.e., we normalize ev(1) so that its first component is 1.
The eigen-equation eΣWev(1) = b(1)ev(1) can then be written out more explicitly as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

 2 3 · · · 

2 e(2) 0 · · · 0

3 0 e(3) . . .
...

...
...

. . .
. . . 0

 0 · · · 0 e()

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1e(1)2e(1)3
...e(1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= b(1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1e(1)2e(1)3
...e(1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(29)

Solving this system of equations, we see that

e(1) = b(1) − e() for  = 2  ; (30)

where  is the 
 component of  as defined in expression (28). Hence,

ev(1) =
⎛⎜⎜⎜⎜⎜⎝

1e(1)2
...e(1)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

2
³b(1) − e(2)´

...


³b(1) − e()´

⎞⎟⎟⎟⎟⎟⎟⎠ (31)

Moreover, since expression (29) implies that

b(1) = + 2e(1)2 + · · ·+ e(1)
It follows from substituting the right-hand side of equation (30) for  = 2   into the above

expression that b(1) = +

X
=2

b(1) − e() = W0
1W1


+

X
=2

b(1) − e() . (32)

Finally, in this step, we shall relate the eigenvalues and eigenvectors of eΣW to that of the
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pre-transformed sample covariance matrix of our simple factor model, i.e.,

bΣ = ZZ0


=
1



X
=1


0
 where Z

×
= (1   ) .

Understanding this relationship then allows us to derive asymptotic properties of quantities involv-

ing the leading eigenvector of bΣ using the explicit representation of ev1 and b1 given in expres-
sions (31) and (32), respectively. To proceed, we first relate the eigenvalues and eigenvectors ofeΣW = fWfW0 to that of bΣW=WW0 . Define

eB
×

=

Ã
1 0

0 eB2
!

Now, since eB2 is an orthogonal matrix, it follows that
eB0 eB = Ã 1 0

0 eB02
!Ã

1 0

0 eB2
!
=

Ã
1 0

0 eB02 eB2
!
=

Ã
1 0

0 −1

!
= 

and eBeB0 = Ã 1 0

0 eB2
!Ã

1 0

0 eB02
!
=

Ã
1 0

0 eB2 eB02
!
=

Ã
1 0

0 −1

!
= 

so that eB is an orthogonal matrix as well. Next, note that

eB0WW0 eB


=

Ã
1 0

0 eB02
!Ã

−1W0
1W1 −1W0

1W2

−1W0
2W1 −1W0

2W2

!Ã
1 0

0 eB2
!

=

Ã
−1W0

1W1 −1W0
1W2

eB2
−1 eB02W0

2W1 −1 eB02W0
2W2

eB2
!

=
fWfW0



= eΣW
Hence, to relate the eigenvalues and eigenvectors of bΣW=WW0 to those of eΣW = eB0WW0 eB ,
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we note that the eigenvalues of the eΣW are the solutions of the determinantal equation

0 = det

( eB0WW0 eB


− 

)

= det
neB0odet½WW0


− eBeB0¾detneBo

= det
neB0odet½WW0


− 

¾
det

neBo ³
since eB is an orthogonal matrix

´
= det

½
WW0


− 

¾

where the last equality holds because det
neB0o = det

neBo = ±1 given that eB is an orthogonal

matrix. It follows that bΣW=WW0 and eΣW = eB0WW0 eB have the same set of eigenvalues.
Moreover, let b() be the  largest eigenvalue of bΣW=WW0 , which is of course also the 

largest eigenvalue of eΣW = eB0WW0 eB . Also, let ev() be an eigenvector of eΣW = eB0WW0 eB
associated with b(). Define v() ≡ eBev() for  = 1  , and note that, since eΣWev() = b()ev(),
we have

eB0bΣW eBev() =

Ã eB0WW0 eB


!ev()
= eΣWev()
= b()ev()

which implies that bΣWv()=bΣW eBev() = b() eBev() = b()v()
so that v() = eBev() is an eigenvector of bΣW=WW0 associated with b(). Note, further that,
previously, we have normalized the first element of ev(1) to be 1. This, in turn, implies that the first
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element of v(1) will be 1 as well since

v(1) = eBev(1)
=

Ã
1 0

0 eB2
!Ã

1ev(2)
(1)

!

=

Ã
1eB2ev(2)(1)

!

=

Ã
1

v
(2)

(1)

!
(33)

where we let ev(2)
(1)

(−1)×1
=
³ e(1)2 e(1)3 · · · e(1) ´0

and v
(2)

(1)

(−1)×1
= eB2ev(2)(1) = ³ (1)2 (1)3 · · · (1)

´0
.

In a similar manner, we can relate the eigenvalues and eigenvectors of bΣ = ZZ0 to those

of bΣW=WW0 and, thus, also to those of eΣW = eB0WW0 eB . In this case, note that the
eigenvalues of the bΣW are the solutions of the determinantal equation

0 = det

½
WW0


− 

¾
= det

½
Π0ZZ0Π


− 

¾ ¡
sinceW =Π0Z

¢
= det

©
Π0
ª
det

½
ZZ0


− ΠΠ0

¾
det {Π}

= det
©
Π0
ª
det

½
ZZ0


− 

¾
det {Π}¡

since Π is an orthogonal matrix whose columns are the eigenvectors of Σ = 
£


0


¤¢
= det

½
ZZ0


− 

¾
where the last equality holds because det {Π0} = det {Π} = ±1 given that Π is an orthogonal

matrix. It follows that bΣ = ZZ0 has the same set of eigenvaluses as bΣW=WW0 and, thus,

also the same set of eigenvalues as eΣW = eB0WW0 eB . Using the same notation as above, we will
then also let b() to denote the  largest eigenvalue of bΣ = ZZ0 . Moreover, as before, let v
denote an eigenvector of bΣW=WW0 associated with b(). Now, define b() ≡ Πv(), and note
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that since bΣWv() = b()v(), we have, for  = 1   ,
Π0bΣΠv() =

µ
Π0ZZ0Π



¶
v()

= bΣWv()
= b()v()

which implies that bΣb() = bΣΠv() = b()Πv() = b()b()
so that b() = Πv() (34)

is an eigenvector of bΣ associated with the eigenvalue b().
Step 3:

For the simple factor model given in expression (25), i.e.,

 =  + 

= kk2 (1) +  for  = 1   ;
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with 1 =  kk2; the principal-component estimator of the latent factor  can be written as

b =
1√


* b(1)°°b(1)°°2  

+

=
kk2 √



* b(1)°°b(1)°°2  1
+
+

1√


* b(1)°°b(1)°°2  
+

=
kk2 √



*
Πv(1)°°Πv(1)°°2  1

+
+

1√


*
Πv(1)°°Πv(1)°°2  

+
(making use of expression (34) in step 2)

=
kk2 √



v0
(1)
Π01°°Πv(1)°°2 + 1√



v0
(1)
Π0°°Πv(1)°°2

=
kk2 √



v01e1°°Πv(1)°°2 + 1√


v0
(1)
Π0°°Πv(1)°°2⎛⎝since Π0(1) =

Ã
0
(1)

Π0
(2)

!
(1) =

⎛⎝ 1

0
(−1)×1

⎞⎠ = e1 given that Π is an orthogonal matrix

⎞⎠
=

kk2 √


v0
(1)
e1°°Πv(1)°°2 + 1√



v0
(1)


kΠv1k2
¡
since, by definition,  = Π

0
¢

=
kk2 √



*
v(1)°°v(1)°°2  e1

+
+

1√


*
v(1)°°v(1)°°2 

+

where the notation h i = 0 denotes the dot product of the vectors  and  and where the last

equality above follows from the fact that

°°Πv(1)°°2 =qv0(1)Π0Πv(1) =qv0(1)v(1) = °°v(1)°°2 .
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Next, given expression (33) in step 2, we see that* ev(1)°°ev(1)°°2  e1
+

=
v0
(1)
eBe1°°ev(1)°°2

³
since ev(1) = eB0v(1)´

=
1°°ev(1)°°2

³
1 v

(2)0
(1)

´Ã 1 0

0 eB2
!⎛⎝ 1

0
(−1)×1

⎞⎠
=

1°°ev(1)°°2
³
1 v

(2)

(1)

´⎛⎝ 1

0
(−1)×1

⎞⎠
=

1°°ev(1)°°2

v(1) e1

®
=

*
v(1)°°v(1)°°2  e1

+


where the last line follows from the fact that

°°ev(1)°°2 =qev0(1)ev(1) =qv0(1) eBeB0v(1) =qv0(1)v(1) = °°v(1)°°2
since eBeB0 =  . In addition, let e = eB0, and note that*

v(1)°°v(1)°°2 
+

=
1°°v(1)°°2v0(1)

=
1°°v(1)°°2v0(1) eBeB0

=
1°°v(1)°°2 ev0(1)e

=

* ev(1)°°ev(1)°°2 e
+ ³

given that
°°ev(1)°°2 = °°v(1)°°2´ 

Since

{} ≡  (0 )

and eB is an orthogonal matrix, we also have

{e} ≡  (0  ) .
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Using these calculations, we can then rewrite the expression for b in terms of ev(1) and e as follows.
b =

b(1) 

®
√

°°b(1)°°2

=
kk2 √



*
v(1)°°v(1)°°2  e1

+
+

1√


*
v(1)°°v(1)°°2 

+

=
kk2√


* ev(1)°°ev(1)°°2  e1
+
 +

1√


* ev(1)°°ev(1)°°2 e
+
. (35)

Given the requirement in Assumption 2-2 that



 kk2(1+)2

= + 

Ã
1

kk22

!
, as  →∞,

for constants  and  such that 0   ∞ and 0    1; it is easily seen that

kk2√

= 

Ãµ
1



¶ 1
2(1+)

!
=  (1) . (36)

In the next two steps of this proof, we will show that* ev(1)°°ev(1)°°2  e1
+

→ 0 and
1√


* ev(1)°°ev(1)°°2 e
+

→ 0.

Step 4:

We will first show that ¿ ev(1)
kev1k2  e1

À
→ 0.

. To proceed, note that, from expression (31) in step 2, ev1 has the explicit form

ev(1) =
⎛⎜⎜⎜⎜⎜⎝

1e(1)2
...e(1)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

2
³b(1) − e(2)´

...


³b(1) − e()´

⎞⎟⎟⎟⎟⎟⎟⎠
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It follows thatev(1) e1®2°°ev(1)°°2
=

⎡⎢⎣1 + X
=2

2³b(1) − e()´2
⎤⎥⎦
−1

⎛⎜⎜⎜⎜⎜⎝since
ev(1) e1® = h 1 2

³b(1) − e(2)´ · · · 
³b(1) − e()´ i

⎡⎢⎢⎢⎢⎢⎣
1

0
...

0

⎤⎥⎥⎥⎥⎥⎦ = 1
⎞⎟⎟⎟⎟⎟⎠

=
1

1 + 2

where

2 =

X
=2

2³b(1) − e()´2 .
Next, write

2 =

X
=2

2³b(1) − e()´2
=

 kk22


1

kk4(1+)2

1b2(1) kk4(1+)2

1



X
=2

 22
³
 kk22

´
³
1− e()b(1)´2

=


 kk2(1+2)2

1b2(1) kk4(1+)2

1



X
=2

 22
³
 kk22

´
³
1− e()b(1)´2

Recall from step 2 that b(1) is the largest eigenvalue of the sample covariance matrix
bΣW= 1


WW0 =

Ã
−1W0

1W1 −1W0
1W2

−1W0
2W1 −1W0

2W2

!

while e() (for  = 2 ) is the ( − 1) largest eigenvalue of the submatrix −1W0
2W2. Applying

Lemma B-9 and noting that bΣW and −1W0
2W2 are positive semidefinite matrices whose elements
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are continuous random variables, we see that

0 ≤
e()b(1)  1  for  = 2   .

Note also that, by part (a) of Lemma B-5, e() = 0 for  =  + 2   . Hence, we can further

write

2 ≤ 

 kk2(1+2)2

1b2(1) kk4(1+)2

Ã
1− max

2≤≤+1

e()b(1)
!−2

1



X
=2

 22

 kk22
(37)

To analyze the asymptotic behavior of 2, note first that we can apply the result of Lemma

B-10 in Appendix B below to obtain

b2(1)
kk4(1+)2

=

" b(1)
kk2(1+)2

#2

=

"
+

1

kk22
+ 

Ã
1

kk22

!#2

= 2

"
1 +

Ã
1

kk22

!#


from which it follows that

1b2(1) kk4(1+)2

=
1

2

"
1 +

Ã
1

kk22

!#
(38)

where 0  12 ∞ given that 0   ∞.
Next, consider

³
1−max2≤≤+1

he()b(1)i´−2. To analyze its asymptotic behavior, we make
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use of Assumption 2-2, part (b) of Lemma B-5, and Lemma B-10 to obtain

max
2≤≤+1

e()b(1)
=

 − 1
 kk2(1+)2

1b(1) kk2(1+)2



 − 1 max
2≤≤+1

e()
=

"
+ 

Ã
1

kk22

!#"
+

1

kk22
+ 

Ã
1

kk22

!#−1 "
1 +

Ãr




!#

=

"
+ 

Ã
1

kk22

!#"
+

1

kk22

#−1 "
1 + 

Ã
1

kk22

!#"
1 +

Ãr




!#

=

"
+ 

Ã
1

kk22

!#
1



"
1 +

1

 kk22

#−1 "
1 + 

Ã
1

kk22

!#"
1 +

Ãr




!#

=

"
1 + 

Ã
1

kk22

!#"
1− 1

 kk22
+

Ã
1

kk42

!#"
1 + 

Ã
1

kk22

!#"
1 +

Ãr




!#

=

"
1− 1

 kk22
+

Ã
1

kk42

!
+ 

Ã
1

kk22

!#"
1 + 

Ã
1

kk22

!#"
1 +

Ãr




!#

=

"
1− 1

 kk22

#"
1 +

Ã
1

kk42

!
+ 

Ã
1

kk22

!#"
1 + 

Ã
1

kk22

!#"
1 +

Ãr




!#

=

"
1− 1

 kk22

#"
1 + 

Ã
1

kk22

!#

so that

1− max
2≤≤+1

e()b(1) = 1−
"
1− 1

 kk22

#"
1 + 

Ã
1

kk22

!#

= 1− 1 + 1

 kk22
+ 

Ã
1

kk22

!

=
1

 kk22
+ 

Ã
1

kk22

!
=

1

 kk22
[1 +  (1)]

and, thus, Ã
1− max

2≤≤+1

e()b(1)
!−2

= 2 kk42 [1 +  (1)] . (39)

35



Now, consider −1
X

=2
 22

³
 kk22

´
. To proceed, note first that

1 = kk2  + 1 = kk2  + e01Π0

so that, given Assumption 2-1 and given the fact that Π is an orthogonal matrix, we have that

{1} ≡  
³
0 kk22 + 1

´
from which we further deduce that

W1

kk2
=

⎛⎜⎜⎜⎜⎜⎝
11 kk2
12 kk2

...

1 kk2

⎞⎟⎟⎟⎟⎟⎠ ∼ 

Ã
0

(
1 +

1

kk22

)


!

Moreover, note that

W2 =

⎛⎜⎜⎝
2
...



⎞⎟⎟⎠ =

⎛⎜⎜⎝
e02Π

0
...

e0Π
0

⎞⎟⎟⎠
so that, under Assumption 2-1,

{W2} ≡  (0 −1)
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By direct calculation, we have for  = 2   + 1



"
 22

 kk22
|W2

#
=  2

e0−1−1 eB02W0
2 [W1W

0
1|W2]W2

eB2e−1−1
 kk22  2Ã

since 
(−1)×1

=
eB02W0

2W1



!

=




e0−1−1 eB02W0
2 [W1W

0
1]W2

eB2e−1−1
kk22 

(by independence ofW1 andW2)

=




Ã
1 +

1

kk22

!
e0−1−1 eB02W0

2W2
eB2e−1−1



=




Ã
1 +

1

kk22

!
e0−1−1 eB02 eB2eΛeB02 eB2e−1−1µ

since
W0

2W2


= eB2eΛeB02¶

=

Ã
1 +

1

kk22

!
e()


In addition, by straightforward calculation, we also get for  = 2   + 1
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"
 44

2 kk42
|W2

#

=
 4

2


⎧⎨⎩
Ã
e0−1−1 eB02W0

2W1W
0
1W2

eB2e−1−1
kk22  2

!2
|W2

⎫⎬⎭
=

 4

2 4

X
=1

X
=1

X
=1

X
=1

½


∙
1

kk2
1

kk2
1

kk2
1

kk2
|W2

¸³
W0

2
eB2e−1−1´

×
³
W0

2
eB2e−1−1´³W0

2
eB2e−1−1´³W0

2
eB2e−1−1´o

=
 4

2 4

X
=1



"
 4
1

kk42

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´2

+
3 4

2 4

(
X
=1



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
X
6=



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

⎫⎬⎭
= 3

Ã
1 +

1

kk22

!2
 4

2 2

Ã
X
=1

e0−1−1 eB02W2W
0
2
eB2e−1−1



!2
Ã
since

1

kk2
=  + kk−12 1 ∼ 

Ã
0 1 +

1

kk22

!!

= 3

Ã
1 +

1

kk22

!2µ



e()¶2

On the other hand, for  =  + 2   − 1, we have



"
 22

 kk22
|W2

#
=

Ã
1 +

1

kk22

!
e()


= 0

and



"
 44

2 kk42
|W2

#
= 3

Ã
1 +

1

kk22

!2µ



e()¶2 = 0

since e() = 0 for    + 1 by part (a) of Lemma B-5.
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Next, we show that



⎧⎨⎩
⎛⎝ 1


X
=2

 22

 kk22
− 1



X
=2



"
 22

 kk22
|W2

#⎞⎠2

|W2

⎫⎬⎭ = 

µ
1



¶

To proceed, write



⎧⎨⎩
⎛⎝ 1


X
=2

 22

 kk22
− 1



X
=2



"
 22

 kk22
|W2

#⎞⎠2 |W2

⎫⎬⎭
= 

⎧⎨⎩
⎛⎝ 1


X
=2

"
 22

 kk22
−
Ã
1 +

1

kk22

!
e()


#⎞⎠2 |W2

⎫⎬⎭
=

1

 2

X
=2



⎧⎨⎩
"

 22

 kk22
−
Ã
1 +

1

kk22

!
e()


#2
|W2

⎫⎬⎭
+
1

 2

X
 6=



("
 22

 kk22
−
Ã
1 +

1

kk22

!
e()


#

×
"

 22

 kk22
−
Ã
1 +

1

kk22

!
e()


#
|W2

)
(40)

Consider the second term on the right-hand side of expression (40)

1

 2

X
 6=



("
 22

 kk22
−
Ã
1 +

1

kk22

!
e()


#"
 22

 kk22
−
Ã
1 +

1

kk22

!
e()


#
|W2

)

=
1

 2

X
 6=



"
 42

2


2 kk42
|W2

#
− 1

 2

Ã
1 +

1

kk22

!2X
 6=

Ã
e()


!Ã
e()


!
(41)
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For the first term in expression (41), note that



"
 42

2


2 kk42
|W2

#

=
 4

2


(Ã
e0−1−1 eB02W0

2W1W
0
1W2

eB2e−1−1
kk22  2

!

×
Ã
e0−1−1 eB02W0

2W1W
0
1W2

eB2e−1−1
kk22  2

!
|W2

)

=
 4

2 4

X
=1

X
=1

X
=1

X
=1

½


∙
1

kk2
1

kk2
1

kk2
1

kk2
|W2

¸³
W0

2
eB2e−1−1´

×
³
W0

2
eB2e−1−1´³W0

2
eB2e−1−1´³W0

2
eB2e−1−1´o

=
 4

2 4

X
=1



("
 4
1

kk42

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
³
e0−1−1 eB02W2W

0
2
eB2e−1−1´o

+
 4

2 4

(
X
=1



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
X
6=



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

⎫⎬⎭
+

 4

2 4

(
X
=1



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
X
6=



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

⎫⎬⎭
+

 4

2 4

(
X
=1



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
X
6=



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

⎫⎬⎭ (42)

Calculating the expectation for the first term on the right-hand side of expression (42) above, we
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have

 4

2 4

X
=1

(


"
 4
1

kk42

#³
e0−1−1 eB02W2W
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Moreover, using the fact that
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we further obtain

 4

2 4

(
X
=1



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
X
6=



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

⎫⎬⎭
=

 4

2 2

Ã
1 +

1

kk22

!2(Ã
e0−1−1 eB02 X

=1

W2W
0
2


eB2e−1−1!

×
Ã
e0−1−1 eB02 X

=1

W2W
0
2


eB2e−1−1!)

−  4

2 4

Ã
1 +

1

kk22

!2 X
=1

n³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
³
e0−1−1 eB02W2W

0
2
eB2e−1−1´o

=

Ã
1 +

1

kk22

!2Ã
e()


!Ã
e()


!

−  4

2 4

Ã
1 +

1

kk22

!2 X
=1

n³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
³
e0−1−1 eB02W2W

0
2
eB2e−1−1´o ,

42



 4

2 4

(
X
=1



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
X
 6=



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

⎫⎬⎭
=

 4

2 2

Ã
1 +

1

kk22

!2Ã
e0−1−1 eB02 X

=1

W2W
0
2


eB2e−1−1!

×
Ã
e0−1−1 eB02 X

=1

W2W
0
2


eB2e−1−1!

−  4

2 4

Ã
1 +

1

kk22

!2 X
=1

n³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
³
e0−1−1 eB02W2W

0
2
eB2e−1−1´o

= −  4

2 4

Ã
1 +

1

kk22

!2 X
=1

n³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
³
e0−1−1 eB02W2W

0
2
eB2e−1−1´o ,

and

 4

2 4

(
X
=1



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
X
6=



"
 2
1

kk22

#³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

⎫⎬⎭
=

 4

2 2

Ã
1 +

1

kk22

!2Ã
e0−1−1 eB02 X

=1

W2W
0
2


eB2e−1−1!

×
Ã
e0−1−1 eV0

2

X
=1

W2W
0
2


eV2e−1−1!

−  4

2 4

Ã
1 +

1

kk22

!2 X
=1

n³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
³
e0−1−1 eB02W2W

0
2
eB2e−1−1´o

= −  4

2 4

Ã
1 +

1

kk22

!2 X
=1

n³
e0−1−1 eB02W2W

0
2
eB2e−1−1´

×
³
e0−1−1 eB02W2W

0
2
eB2e−1−1´o

43



It follows from these calculations that, for  6= 
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Hence,
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by Lemma B-7 and by the fact that kk22 →∞ under Assumption 2-2

´
=  (1)

Applying the law of iterated expectations as well as part (i) of Theorem 16.1 of Billingsley (1995),
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we see that there exists a constant  ∞ such that for all  sufficiently large
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In addition, note that¯̄̄̄
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Making use of this result and the Slutsky’s theorem, we obtainÃ
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from which we further deduce, in light of expression (43), that
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Putting together the results given in expressions (37), (38), (39), and (45); we see that as

 →∞ such that  → 0
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Moreover, since Assumption 2-2 implies that 

³
 kk22

´
→∞ as  →∞ such that  → 0,

we further deduce that

2 →∞ w.p.a.1. (47)

Finally, we note that expression (47) further implies thatev(1) e1®2°°ev(1)°°2 =
1

1 + 2
→ 0 (48)

as  →∞ such that  → 0.

Step 5:

In this step, we will show that

1√


* ev(1)°°ev(1)°°2 e
+

→ 0.

To proceed, write

48



1√


* ev(1)°°ev(1)°°2 e
+

=
1√


ev(1)e®°°ev(1)°°2
=

1√


⎡⎢⎣1 + X
=2

2³b(1) − e()´2
⎤⎥⎦
−12 ⎡⎣e1 + X

=2

e³b(1) − e()´
⎤⎦

From the result given in expression (46) of Step 4 above, we have

X
=2

2³b(1) − e()´2 = 2 = 

Ã


 kk22

!

where 
³
 kk22

´
→∞ under our Assumption 2-2. This implies that

 kk22


X
=2

2³b(1) − e()´2 =  (1)  (49)

Next, note that

X
=2

e =

+1X
=2

e + X
=+2

e
=

+1X
=2

e0−1−1 eB02W0
2W1e


+

X
=+2

e0−1−1 eB02W0
2W1e


(50)
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it follows thatW1 andW2 are independent. Now, focusing first on the term
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e on the
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right-hand side of expression (50) above, note that
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and, by Lemma B-7,
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Applying the law of iterated expectations as well as part (i) of Theorem 16.1 of Billingsley (1995),

we see that there exists a constant  ∞ such that for all  sufficiently large
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Next, consider the second term on the right-hand side of expression (50). Define
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where
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Given that  − 1   for  sufficiently large and given that e() = 0 for    +1, we have the

following singular-value decomposition ofW2:
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Putting things together, we have
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¯̄+1X
=2

e
¯̄̄̄
¯̄ (1 +  (1))

⎤⎦
Ã
given that

b(1)
kk2(1+)2

= +
1

kk22
+ 

Ã
1

kk22

!
for 0    1,

and

Ã
1− max

2≤≤+1

e()b(1)
!−1

=  kk22 [1 +  (1)]

⎞⎠

=

⎡⎢⎣1 + X
=2

2³b(1) − e()´2
⎤⎥⎦
−12

×
⎡⎣ |e1|√


+

r
 − 1


kk22
kk2(1+)2

kk2√


1

kk2

r


 − 1

¯̄̄̄
¯̄+1X
=2

e
¯̄̄̄
¯̄ (1 +  (1))

⎤⎦

=

⎡⎢⎣1 + X
=2

2³b(1) − e()´2
⎤⎥⎦
−12

×
⎡⎣ |e1|√


+

r
 − 1


kk2
kk22

√


1

kk2

r


 − 1

¯̄̄̄
¯̄+1X
=2

e
¯̄̄̄
¯̄ (1 +  (1))

⎤⎦

=

⎡⎢⎣ kk22


+
 kk22


X
=2

2³b(1) − e()´2
⎤⎥⎦
−12

×
⎡⎣s kk22



|e1|


+

r
 − 1


1√


1

kk2

r


 − 1

¯̄̄̄
¯̄+1X
=2

e
¯̄̄̄
¯̄ (1 +  (1))

⎤⎦
=  (1)  (52)

where the last line follows from the fact that

1

kk2

r


 − 1

¯̄̄̄
¯̄+1X
=2

e
¯̄̄̄
¯̄ =  (1) ( by expression (51))

 kk22


X
=2

2³b(1) − e()´2 =  (1) (by expression (49))
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and the fact that

kk22 →∞ and
 kk22


→ 0 (by Assumption 2-2) .

Step 6:

Finally, in this last step, we bring everything together. Combining the results given in expres-

sions (36) of step 3, (48) of step 4, and (52) of step 5 and noting the fact that  =  (1), we can

apply the Slutsky’s theorem to deduce that

b = kk2√


ev(1) e1®°°ev(1)°°2  +
1√


ev(1)e®°°ev(1)°°2 → 0 as  →∞

which is the required result. ¤

Proof of Theorem 4.1:

To proceed, note first that the principal component estimator of   can be written as

b  =

bΓ0

³c
´

b1
where bΓ =q b1 b and where the columns of the matrix b are the eigenvectors associated with the

 largest eigenvalues of the (post-variable-selection) sample covariance matrix

bΣ³c
´
=


³c

´0

³c

´
b10 

Moreover, by the result of part (d) of Lemma D-14, the matrix b has the representation

b = b1b
where b1 is an ×matrix, whose columns define an orthonormal basis for an invariant subspace

of bΣ³c
´
and where b is a × orthogonal matrix as defined in expression (116) in part (c)

of Lemma D-14. (See Lemma D-14 and also Lemma D-13 for additional discussion on the origin of
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this representation). Making use of this representation, we can further write

b  −0  =

q b1 b 0 b01

³c
´

b1 −0 

=

b 0 b01Γ³c
´
 q b1 +

b 0 b01

³c
´

q b1 −0 

=

b 0 b01Γ³c
´
 q b1 −0  +

b 0 b01

³c
´

q b1
=

⎛⎝ b 0 b01Γ
³c

´
q b1 −0

⎞⎠  +

b 0 b01

³c
´

q b1
Next, note that

b 0 b01Γq b1 −0 =
b 0 b01Γ

√
1

r³ b1 −1 +1

´
1

−0

=

Ã
1 +

b1 −1

1

!−1
2 b 0 b01Γ√

1
−0

=

⎡⎣Ã1 + b1 −1

1

!− 1
2

− 1 + 1
⎤⎦ b 0 b01Γ√

1
−0

=

⎡⎣Ã1 + b1 −1

1

!− 1
2

− 1
⎤⎦ b 0 b01Γ√

1
+
b 0 b01Γ√

1
−0

and

Γ
³c

´
− Γq b1 =

Γ
³c

´
− Γ

√
1

r³ b1 −1 +1

´
1

=

Ã
1 +

b1 −1

1

!−1
2

⎛⎝Γ
³c

´
− Γ

√
1

⎞⎠
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so that

b 0 b01Γ³c
´
 q b1

= 0  +

⎛⎝ b 0 b01Γq b1 −0

⎞⎠  +
b 0 b01

⎛⎝Γ
³c

´
− Γq b1

⎞⎠ 

= 0  +

Ã b 0 b01Γ√
1
−0

!
  +

⎡⎣Ã1 + b1 −1

1

!−1
2

− 1
⎤⎦ b 0 b01Γ√

1
 

+

⎡⎣Ã1 + b1 −1

1

!−1
2

⎤⎦ b 0 b01
⎛⎝Γ

³c
´
− Γ

√
1

⎞⎠ 

It follows that

b  −0  =

⎛⎝ b 0 b01Γ
³c

´
q b1 −0

⎞⎠  +

b 0 b01

³c
´

q b1
=

Ã b 0 b01Γ√
1
−0

!
  +

⎡⎣Ã1 + b1 −1

1

!− 1
2

− 1
⎤⎦ b 0 b01Γ√

1
 

+

⎡⎣Ã1 + b1 −1

1

!− 1
2

⎤⎦ b 0 b01
⎛⎝Γ

³c
´
− Γ

√
1

⎞⎠  +

b 0 b01

³c
´

q b1
Hence, applying the triangle inequality as well as parts (a)-(c), (g), and (i) of Lemma D-15 along
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with the Slutsky’s theorem, we obtain°°°b  −0 

°°°
2

≤
°°°°° b 0 b01Γ√

1
−0

°°°°°
2

k k2 +
¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!−1
2

− 1
¯̄̄̄
¯̄
°°°°° b 0 b01Γ√

1

°°°°°
2

k k2

+

¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!− 1
2

¯̄̄̄
¯̄ °°°b 0 b01°°°

2

°°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°
2

k k2 +
°°°°°°
b 0 b01

³c
´

q b1
°°°°°°
2

=

°°°°° b 0 b01Γ√
1
−0

°°°°°
2

k k2 +
¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!−1
2

− 1
¯̄̄̄
¯̄
°°°°° b 0 b01Γ√

1

°°°°°
2

k k2

+

¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!− 1
2

¯̄̄̄
¯̄
°°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°
2

k k2 +
°°°°°°
b 0 b01

³c
´

q b1
°°°°°°
2³

since
°°°b 0 b01°°°

2
= max

³ b1b b 0 b01´ = max

³b 0 b01 b1b ´ = max () = 1
´

=  (1) (1) +  (1) (1) (1) + (1)  (1) (1) +  (1)

=  (1) . ¤

Proof of Theorem 4.2:

To proceed, note that for any  ∈ R such that kk2 = 1, we have¯̄̄
0 b+ − 0

¡
0 +01  +02

¢¯̄̄
=

¯̄̄
0
³b0 + b01  +

b02 b

´
− 0

¡
0 +01  +02 

¢¯̄̄
=

¯̄̄̄
0
³b0 − 0

´
+ 0

³ b1 −1

´0
 

+0
³ b2 −−12 +−12

´0 ³b −0  +0

´
− 002

¯̄̄̄
≤

¯̄̄
0
³b0 − 0

´¯̄̄
+

¯̄̄̄
0
³ b1 −1

´0
 

¯̄̄̄
+

¯̄̄̄
0
³ b2 −−12

´0 ³b −0

´¯̄̄̄
+
¯̄̄
002

−10
³b −0

´¯̄̄
+

¯̄̄̄
0
³ b2 −−12

´0
0

¯̄̄̄
+
¯̄
002

−100 − 002

¯̄
=

¯̄̄
0
³b0 − 0

´¯̄̄
+

¯̄̄̄
0
³ b1 −1

´0
 

¯̄̄̄
+

¯̄̄̄
0
³ b2 −−12

´0 ³b −0

´¯̄̄̄
+
¯̄̄
002

−10
³b −0

´¯̄̄
+

¯̄̄̄
0
³ b2 −−12

´0
0

¯̄̄̄
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Lemma D-18 and Slutsky’s theorem directly imply that¯̄̄
0
³b0 − 0

´¯̄̄
=  (1)

Now, applying the CS inequality, we obtain¯̄̄̄
0
³ b1 −1

´0
 

¯̄̄̄
≤

r
0
³ b1 −1

´0 ³ b1 −1

´


q
 0 

=

r
0
³ b1 −1

´0 ³ b1 −1

´
 k k22 

and ¯̄̄̄
0
³ b2 −−12

´0
0

¯̄̄̄
≤

r
0
³ b2 −−12

´0 ³ b2 −−12
´


q
 00

=

r
0
³ b2 −−12

´0 ³ b2 −−12
´


s
 0

µ
Γ0Γ
1

¶12
Ξb b 0Ξ0µΓ0Γ

1

¶12


=

r
0
³ b2 −−12

´0 ³ b2 −−12
´


s
 0

µ
Γ0Γ
1

¶


≤
s
max

µ
Γ0Γ
1

¶r
0
³ b2 −−12

´0 ³ b2 −−12
´
 k k22

≤ 

r
0
³ b2 −−12

´0 ³ b2 −−12
´
 kk22

Moreover, note that


h
k k22

i
≤

³
 k k62

´ 1
3
(by Liapunov’s inequality)

≤ 
1
3 =  ∞ (by Lemma C-4)

and


h
kk22

i
≤

³
 k k62

´ 1
3
(by Liapunov’s inequality)

≤ 
1
3 =  ∞ (by Lemma C-4)
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Hence, for any   0, set  =
p
, and Markov’s inequality then implies that, for all   − 1,

Pr {k k2 ≥ } = Pr
n
k k22 ≥ 2

o
≤


h
k k22

i
2

=

h
k k22

i


≤ 

from which it follows that

k k2 =  (1) .

In a similar way, we can also show that

kk2 =  (1) .

Application of the result given in Lemma D-18 then allows us to deduce that¯̄̄̄
0
³ b1 −1

´0
 

¯̄̄̄
≤
r
0
³ b1 −1

´0 ³ b1 −1

´
 k k22 =  (1)

and ¯̄̄̄
0
³ b2 −−12

´0
0

¯̄̄̄
≤

r
0
³ b2 −−12

´0 ³ b2 −−12
´


q
 00 

≤
r
0
³ b2 −−12

´0 ³ b2 −−12
´

p
max (0) kk2

=

r
0
³ b2 −−12

´0 ³ b2 −−12
´


vuutmax

(µ
Γ0Γ
1

¶1
2

Ξb b 0Ξ0µΓ0Γ
1

¶ 1
2

)
kk2

=

r
0
³ b2 −−12

´0 ³ b2 −−12
´


s
max

½µ
Γ0Γ
1

¶¾
kk2³

since b b 0 =  and ΞΞ
0 = 

´
≤

p


r
0
³ b2 −−12

´0 ³ b2 −−12
´
 k k2 (by Assumption 3-6)

=  (1)
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In addition, we can apply the CS inequality to get¯̄̄̄
0
³ b2 −−12

´0 ³b  −0

´¯̄̄̄
≤

r
0
³ b1 −1

´0 ³ b1 −1

´


r³b  −0

´0 ³b −0 

´
≤

r
0
³ b1 −1

´0 ³ b1 −1

´

°°°b  −0

°°°
2

=  (1) (by Lemma D-18 and part (j) of Lemma D-15 in Appendix D)

and ¯̄̄
002

−10
³b −0 

´¯̄̄
≤

q
002−10−12

r³b −0 

´0 ³b −0

´
=

q
002−10−12

°°°b −0 

°°°
2

≤
s∙

min

µ
Γ0Γ
1

¶¸−1
max (

0
22)

°°°b −0 

°°°
2

≤
√
∗
°°°b −0 

°°°
2
(for some positive constant ∗ as shown in

expression (135) in Appendix D. See the proof of part (d) of Lemma D-17)

=  (1) (by part (j) of Lemma D-15)

Putting everything together and applying Slutsky’s theorem, we then obtain¯̄̄
0 b+ − 0

¡
0 +01  +02

¢¯̄̄
≤

¯̄̄
0
³b0 − 0

´¯̄̄
+

¯̄̄̄
0
³ b1 −1

´0
 

¯̄̄̄
+

¯̄̄̄
0
³ b2 −−12

´0 ³b −0

´¯̄̄̄
+
¯̄̄
002

−10
³b −0

´¯̄̄
+

¯̄̄̄
0
³ b2 −−12

´0
0

¯̄̄̄
=  (1) .

Since the above argument holds for all  ∈ R such that kk2 = 1, we further deduce that

b+ − ¡0 +01  +02 

¢
=  (1) .

as required. ¤
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8 Appendix B: Supporting Lemmas Used in the Proof of Theorem

2.1

In this appendix, we first state and prove a number of lemmas which are used in the proof of

Theorem 2.1.

Lemma B-1 (Weyl’s inequality): Let   be real, symmetric  ×  matrices and let the

eigenvalues () (), () (), and () (+) be arranged in decreasing (or, more generally, non-

increasing) order, so that

(1) () ≥ (2) () ≥ · · · ≥ ( ) () ,

(1) () ≥ (2) () ≥ · · · ≥ ( ) () ,

(1) (+) ≥ (2) (+) ≥ · · · ≥ ( ) (+) .

Then, for each  = 1 2   , we have

() () + ( ) () ≤ () (+) ≤ () () + (1) () .

Proof of Lemma B-1: This inequality is well-known, and its proof can be found in many linear

algebra textbooks. See, for example, Theorem 4.3.1 and its proof on pages 181-182 of Horn and

Johnson (1985). Hence, we shall not provide an explicit proof here. ¤
Lemma B-2: Suppose that kk22 →∞ as  →∞, and suppose that, given  ,

©
1

ª ≡ 

Ã
0 1 +

1

kk22

!
for  = 1   .

Let 1 =
³
11 12 · · · 1

´0
and 

×
= −1 kk22 1 01 . Then, as  → ∞

such that  → 0, we have

(1) ()

kk22
= 1 +

1

kk22
+

µ
1√


¶
where (1) () denotes the largest eigenvalue of the matrix .

Proof of Lemma B-2:

Note that, since  = kk22 1 01 , we can write its dual  as


1×1

=
1


kk22  011
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Next, write

1


 011 =

1



X
=1

21 =

Ã
1 +

1

kk22

!
1



X
=1

Ã
1 +

1

kk22

!−1
21

where, by assumption,

©
1

ª ≡ 

Ã
0 1 +

1

kk22

!
for each  .

This implies that ⎧⎨⎩
Ã
1 +

1

kk22

!−12
1

⎫⎬⎭ ≡  (0 1) and

©X ∗ª ≡ 21

where

X ∗ =
⎡⎣Ã1 + 1

kk22

!−12
1

⎤⎦2 = Ã1 + 1

kk22

!−1
21

and where 21 denotes a chi-square random variable with one degree of freedom. Hence, by direct

calculation, we get



Ã
1


 01·1· −

"
1 +

1

kk22

#!2

= 

⎡⎣Ã1 + 1

kk22

!
1



X
=1

⎛⎝Ã1 + 1

kk22

!−1
21 − 1

⎞⎠⎤⎦2

=

Ã
1 +

1

kk22

!2
1

 2

X
=1

X
=1



⎧⎨⎩
⎡⎣Ã1 + 1

kk22

!−1
21 − 1

⎤⎦⎡⎣Ã1 + 1

kk22

!−1
21 − 1

⎤⎦⎫⎬⎭
=

Ã
1 +

1

kk22

!2
1

 2

X
=1



⎧⎨⎩
⎡⎣Ã1 + 1

kk22

!−1
21 − 1

⎤⎦2⎫⎬⎭
=

2



Ã
1 +

1

kk22

!2 ¡
since 

£
21
¤
= 1 and  

¡
21
¢
= 2

¢
= 

µ
1



¶
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Applying Markov’s inequality, we then obtain

1


 01·1· = 1 +

1

kk22
+

µ
1√


¶
Hence, as  →∞

(1) ()

kk22
=



kk22

=

Ã
1

kk22

!
1


kk22  01·1·

=
1


 01·1·

= 1 +
1

kk22
+

µ
1√


¶
where the first equality above follows from the fact that (1) () = max () = max () = 

given that  is a scalar. This proves Lemma B-2. ¤

Lemma B-3: Let 12   be  independent  dimensional sub-Gaussian random vectors

with zero mean vector and identity covariance matrix and the sub-Gaussian norms bounded by a

constant 0. Then, for every  ≥ 0, with probability at least

1− 2 exp©−2ª ,
one has

 −max© 2ª ≤ ( )

Ã
1



X
=1


0


!

≤ (1)

Ã
1



X
=1


0


!
=  +max

©
 2

ª
where

 = 

r



+

√


for constants    0, depending on 0. Here, || is bounded for all  and

 =
1



X
=1

.
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Remark: Lemma B-3 is Lemma A.1 given in Appendix A of Wang and Fan (2017), and so we

state this result here without proof. As discussed there, this lemma is an extension of the classical

Davidson-Szarek bound. See Davidson and Szarek (2001) and Vershynin (2010) for additional

discussion.

Lemma B-4: Suppose that

©

ª ≡  (0 1) for  = 2   ;  = 1  

Let  =
³
1 2 · · · 

´0
. Also, let


×

=
1



X
=2


0


and let

(1) () ≥ (2) () ≥ · · ·· ≥ ( ) ()

denote the eigenvalues of . Then, for  = 1   ;



 − 1() () = 1 +

Ãr




!
= 1 +  (1) ,

as  →∞ such that  → 0.

Proof of Lemma B-4:

Applying Lemma B-3 above for the case where  =
√
 and where  = 1 for all , we see that,

with probability at least

1− 2 exp©−2ª = 1− 2 exp {−} ,
the following inequality holds for any  ∈ {1  }

1−max© 2ª ≤ ( )

⎛⎝ 1

 − 1
X
=2


0


⎞⎠
≤ ()

⎛⎝ 1

 − 1
X
=2


0


⎞⎠
≤ (1)

⎛⎝ 1

 − 1
X
=2


0


⎞⎠
= 1 +max

©
 2

ª
.
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Since in this case

 = 

r



+

√

= (1 + )

r



,

the above inequality relationship simplifies to

1− (1 + )

r



≤ ()

⎛⎝ 1

 − 1
X
=2


0


⎞⎠ ≤ 1 + (1 + )

r




or

1− (1 + )

r



≤ 

 − 1()

⎛⎝ 1


X
=2

·
0
·

⎞⎠ =


 − 1() () ≤ 1 + (1 + )

r




This shows that, as  →∞ such that  → 0,



 − 1() () = 1 +

Ãr




!
= 1 +  (1)

for  = 1   . ¤
Lemma B-5: Suppose that {W2} ≡  (0 −1). Now, let

W0
2

(−1)×
=

µ
W21

(−1)×1
W22

(−1)×1
· · · W2

(−1)×1

¶

and let e(2) ≥ e(3) ≥ · · · ≥ e()
be the  − 1 eigenvalues of

bΣW2
=
W0

2W2


=
1



X
=1

W2W
0
2.

Then, the following results hold as  →∞ such that  → 0.

(a) e() = 0 for  =  + 2  

(b)



 − 1 max
2≤≤+1

e() = 1 +

Ãr




!
= 1 +  (1) .
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Proof of Lemma B-5:

To show part (a), note that, by assumption, for  sufficiently large, we have  − 1   ,

so that bΣW2
=W0

2W2 is a ( − 1) × ( − 1) matrix with rank less than or equal to  , from
which it follows trivially that e() = 0 for  =  + 2   .

Next, to show part (b), first write

W2
×(−1)

=
³
 21  22 · · ·  2−1

´
so that  2 denotes the 

 column ofW2 for  = 1   − 1. Note that, by Sylvester’s determi-
nantal identity, the non-zero eigenvalues of bΣW2

=W0
2W2 (i.e., e(2)  e(+1)) are the same

as those of the dual matrix

bΣW2
×

=
W2W

0
2


=
1



−1X
=1

 2
0
2

Now, under our assumptions, {W2} ≡  {0 1} for  = 1   and  = 1   − 1 where
W2 denotes the ( )

 element ofW2. Applying Lemma B-3 above with  =
√
 , we see that,

with probability at least

1− 2 exp©−2ª = 1− 2 exp {−} ,
the following inequality holds for any  ∈ {2   + 1}

1−max© 2ª ≤ ( )

Ã
1

 − 1
−1X
=1

 2
0
2

!

≤ (−1)

Ã
1

 − 1
−1X
=1

 2
0
2

!

≤ (1)

Ã
1

 − 1
−1X
=1

 2
0
2

!
= 1 +max

©
 2

ª
where

 = 

r



+

√

= (1 +)

r
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Moreover, by our definition,

e() = (−1)

Ã
1



−1X
=1

 2
0
2

!
,

so that, by multiplying and dividing by  , we see that

1− (1 +)

r



≤ 

 − 1(−1)
Ã
1



−1X
=1

 2
0
2

!
=



 − 1
e()

≤ 1 + (1 +)

r




Furthermore, since the above inequality relationship above holds for any  ∈ {2   + 1}, it must
be that

1− (1 +)

r



≤ 

 − 1 max
2≤≤+1

e() ≤ 1 + (1 + )

r




It follows that, as  →∞ such that  → 0,



 − 1 max
2≤≤+1

e() = 1 +

Ãr




!
= 1 +  (1) . ¤

Lemma B-6: Let  be a  × random matrix, and let  be the ( )
 element of . Suppose

that

{} ≡  (0 1)

and suppose that 
£
4


¤
∞. Moreover, let

 =
1


 0

Then, as  →∞ such that  →  ∈ [0 1),

min ()
→ ¡

1−√¢2 ,
max ()

→ ¡
1 +
√

¢2
.

Remark: Lemma B-6 is a special case of Lemma 1 given in Shen, Shen, Zhu, and Marron (2016)

and is a slightly extended version of Theorem 2 of Bai and Yin (1993). Hence, we state this result

here without proof.
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Lemma B-7: Suppose that {W2} ≡  (0 −1). Let

e(2) ≥ e(3) ≥ · · · ≥ e()
be the  − 1 eigenvalues of

bΣW2
=
W0

2W2


=
1



X
=1

W2W
0
2.

where W2
×(−1)

=

µ
W21

(−1)×1
W22

(−1)×1
· · · W2

(−1)×1

¶0
. Then, as  →∞ such that  → 0,



 − 1
e() → 1 for any  ∈ {2   + 1} .

In particular,


 − 1 max
2≤≤+1

e() → 1

and

max
2≤≤+1

¯̄̄̄



e() − 1¯̄̄̄ → 0.

Proof of Lemma B-7:

To proceed, first define the dual matrix of bΣW2
given by

bΣW2
×

=
W2W

0
2


=
1



−1X
=1

 2
0
2

where  2 denotes the 
 column ofW2 for  = 1   −1. Now, since  ( − 1)→ 0 and since

{W2} ≡  {0 1} for  = 1   and  = 1   − 1; it follows from applying Lemma B-6

that



 − 1 max
2≤≤+1

e() =


 − 1 max
2≤≤+1

(−1)
³bΣW2

´
=



 − 1 max
2≤≤+1

(−1)

Ã
1



−1X
=1

 2
0
2

!

= max
2≤≤+1

(−1)

Ã
1

 − 1
−1X
=1

 2
0
2

!
→ 1 as  →∞ (53)
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and



 − 1 min
2≤≤+1

e() =


 − 1 min
2≤≤+1

(−1)
³bΣW2

´
=



 − 1 min
2≤≤+1

(−1)

Ã
1



−1X
=1

 2
0
2

!

= min
2≤≤+1

(−1)

Ã
1

 − 1
−1X
=1

 2
0
2

!
→ 1 as  →∞. (54)

Expressions (53) and (54) then imply that, for any  ∈ {2   + 1},



 − 1
e() → 1 as  →∞,

so that


 − 1 max
2≤≤+1

e() = 

 − 1
e(2) → 1 as  →∞.

In addition, note that, for any  ∈ {2   + 1},




e() =  − 1





 − 1
e() → 1 as  →∞

from which it further follows that

max
2≤≤+1

¯̄̄̄



e() − 1¯̄̄̄ ≤ ¯̄̄̄ 


e(1) − 1¯̄̄̄+ ¯̄̄̄ 


e(+1) − 1¯̄̄̄ → 0. ¤

Lemma B-8: Consider the simple factor model


×1

= 
×1


1×1

+ 
×1

,  = 1   ;

where we assume that {} ≡  (0 ), {} ≡  (0 1), and  and  are independent

for all  . Let Σ =  [
0
]; then, the eigenvalues of Σ are given by

(1) = kk22 + 1 and () = 1 for  = 2   .

Moreover, let (1) ( × 1) be the eigenvector assocated with the top eigenvalue (1); then,

(1) =


kk2
.
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Proof of Lemma B-8: To show part (a), note first that

Σ = 
£


0


¤
= 

£
( + )

¡
0 + 0

¢¤
= 0 + 

Consider the determinantal equation

0 = det
©
 −

¡
0 + 

¢ª
= det

©
(− 1)  − 0

ª
= det

©
 − 0

ª
(where  = − 1)

=  det
©
 − −10

ª
= 

¡
1− −10

¢
(by Sylvester’s determinantal theorem)

= −1
¡
− 0

¢
so the roots of this equation are

(1) = 0 = kk22  (2) = 0  () = 0

and, thus,

(1) = 0 + 1 = kk22 + 1 (2) = 1  () = 1.

Next, note that

¡
0 + 

¢
 = kk22  + 

=
³
kk22 + 1

´


so that  is an (unnormalized) eigenvector of the matrix 0 +  associated with the eigenvalue

(1) = kk22 + 1. It follows that we can take

(1) =  kk2

to be the (normalized) eigenvector of Σ =  [
0
] = 0 +  associated with the eigenvalue

(1) = kk22 + 1. ¤
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Lemma B-9: Let  ∈ be a Hermetian matrix, let  be an integer with 1 ≤  ≤ , and let 

denote any ×  principal submatrix of  (obtained by deleting −  rows and the corresponding

columns of ). Let the eigenvalues of  and  be ordered as follows

(1) () ≥ (2) () ≥ · · · ≥ () () 

(1) () ≥ (2) () ≥ · · · ≥ () () .

Then, for each integer  such that 1 ≤  ≤ , we have

() () ≥ () () ≥ (−[−]) ()

so that for  = − 1, we have

(1) () ≥ (1) (−1) ≥ (2) () ≥ (2) (−1) ≥ · · · ≥ (−1) () ≥ (−1) (−1) ≥ () ()

Proof of Lemma B-9: This result is essentially Theorem 4.3.15 in Horn and Johnson (1985),

except that we use different notations here. A proof of this lemma can be obtained by a slight

adaptation of the proof given in Horn and Johnson (1985) for Theorem 4.3.15 using our notations

here.

Lemma B-10: Let


×1

=

X
=1

p
e

where 1 =  + kk−12 1 and  =  for  = 2   ; where 1 = kk22 and  = 1 for

 = 2   ; and where e is an  × 1 elementary vector whose  component is 1 and all

remaining components are 0. Suppose that {} ≡  (0 ), {} ≡  (0 1), and  and

 are independent for all  . In addition, suppose that the following assumptions hold.

(i) As  →∞
kk2 →∞.

(ii) As  →∞


 kk2(1+)2

= + 

Ã
1

kk22

!
, with 0   ∞

for some  such that 0    1.
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Moreover, let b(1) denote the largest eigenvalue of the sample covariance matrix
bΣW =

1



X
=1


0
 ,

where W
×

= (1  ). Then, as  →∞ such that  → 0; the largest sample eigenvalueb(1) satisfy b(1)
kk2(1+)2

= +
1

kk22
+ 

Ã
1

kk22

!
for 0    1.

Proof of Lemma B-10:

Following Shen, Shen, Zhu, and Marron (2016), we shall study the sample eigenvalue properties

via the dual matrix bΣW
×

=
1


W0W

which shares the same nonzero eigenvalues with the sample covariance matrix

bΣW
×

=
1


WW0.

Define · =
³
1 2 · · · 

´0
. Since  =

X

=1

p
e , we can write

1


 0

 =

X
=1

X
=1


12

 
12

 

 =

X
=1



where

1 = kk22  2 = · · · =  = 1

1 =  +
1

kk2
1 2 = 2   = .
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so that

bΣW

=
1


W0
×

W
×

=
1



⎛⎜⎜⎜⎜⎜⎝
 0
1

 0
2

...

 0


⎞⎟⎟⎟⎟⎟⎠
³
1 2 · · · 

´

=
1



⎛⎜⎜⎜⎜⎜⎝
 0
11  0

12 · · ·  0
1

 0
21  0

22 · · ·  0
2

...
...

...

 0
1  0

2 · · ·  0


⎞⎟⎟⎟⎟⎟⎠ =
1



X
=1



⎛⎜⎜⎜⎜⎜⎝
21 12 · · · 1

21 22 · · · 2
...

...
...

 1  2 · · · 2

⎞⎟⎟⎟⎟⎟⎠

=
1



X
=1



⎛⎜⎜⎜⎜⎜⎝
1

2
...



⎞⎟⎟⎟⎟⎟⎠
³
1 2 · · · 

´
=
1



X
=1

·
0
·

which can be decomposed into sum of two matrices as follows

bΣW
×

= +

where


×

=
1


1 1·
×1

 01·
1×

=
1


kk22 1· 01· and  =

1



X
=2

·
0
·.

Next, we apply Weyl’s inequality (given in Lemma B-1 above) to obtain

(1) ()

kk22
+

( ) ()

kk22
≤
b(1)
kk22

=
(1) (+)

kk22
≤ (1) ()

kk22
+

(1) ()

kk22

Moreover, as  →∞, kk22 →∞ under Assumption (i); whereas Assumption (ii) states that



 kk2(1+)2

= + 

Ã
1

kk22

!
, with 0   ∞
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from which it follows that

 − 1
 kk2(1+)2

=


 kk2(1+)2

+

Ã
1

 kk2(1+)2

!

= + 

Ã
1

kk22

!
+

Ã
1

 kk2(1+)2

!

= + 

Ã
1

kk22

!
(55)

In addition, recall that the result of Lemma B-4 shows that, as  →∞,

(1) ()

( − 1) = 1 +

Ãr




!
and

( ) ()

 − 1 = 1 +

Ãr




!
Hence, applying Lemma B-4 and Assumpton (ii); we obtain, as  →∞

1

kk22
(1) ()

kk22
=

( − 1)
 kk2(1+)2

(1) ()

( − 1)

=

"
+ 

Ã
1

kk22

!#Ã
1 +

Ãr




!!

= +

Ãr




!
+ 

Ã
1

kk22

!
1

kk22
( ) ()

kk22
=

( − 1)
 kk2(1+)2

( ) ()

( − 1)

=

"
+ 

Ã
1

kk22

!#Ã
1 +

Ãr




!!

= +

Ãr




!
+ 

Ã
1

kk22

!

which, together with the inequality relationship

(1) ()

kk22
+

( ) ()

kk22
≤
b(1)
kk22

≤ (1) ()

kk22
+

(1) ()

kk22
and the fact that, by Lemma B-2,

(1) ()

kk22
= 1 +

1

kk22
+

µ
1√


¶
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imply that

1

kk22
(1) ()

kk22
+

1

kk22
( ) ()

kk22
=

1

kk22
+

Ã
1

kk2(1+)2

!
+

Ã
1

kk22
√


!
+ 

+

Ãr




!
+ 

Ã
1

kk22

!

= +
1

kk22
+ 

Ã
1

kk22

!
1

kk22
(1) ()

kk22
+

1

kk22
(1) ()

kk22
=

1

kk22
+

Ã
1

kk2(1+)2

!
+

Ã
1

kk22
√


!
+ 

+

Ãr




!
+ 

Ã
1

kk22

!

= +
1

kk22
+ 

Ã
1

kk22

!

so that b(1)
kk2(1+)2

=
1

kk22

b(1)
kk22

= +
1

kk22
+ 

Ã
1

kk22

!
.

9 Appendix C: Lemmas Used in the Proofs of the Key Supporting

Lemmas Given in Appendix D.

Lemmas C-1, C-2, C-3, C-4, and C-5 correspond, respectively, to Lemmas OA-1, OA-2, OA-3,

OA-5, and OA-11 in Chao, Liu, and Swanson (2023b). However, since these lemmas are used to

prove key supporting lemmas given in Appendix D below, for readers’ convenience, we restate these

results here.

Lemma C-1: Let  and  be real numbers such that   0 and  ≥ 1. Also, let  be a finite

non-negative integer. Then,
∞X

=1

 exp
n
−

o
∞

Proof of Lemma C-1: By the integral test,

∞X
=1

 exp
n
−

o
∞ for finite non-negative integer 
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if Z ∞

1

 exp
n
−

o
 ∞ for finite non-negative integer 

In addition, note that since, by assumption,   0 and  ≥ 1, we haveZ ∞

1

 exp
n
−

o
 ≤

Z ∞

1

 exp {−} 

We will first consider the case where  = 0. In this case, note thatZ ∞

1

0 exp {−}  =
Z ∞

1

exp {−} 

Let  = −, so that −

= ; and we have

Z ∞

1

exp {−}  = −1


Z −∞

−
exp {} 

=
1



Z −

−∞
exp {} 

=
exp {−}



 ∞ for any   0. (56)

Next, consider the case where  is an integer such that  ≥ 1. Here, we will show that

Z ∞

1

 exp {−}  =
⎡⎣1

+

X
=1

1



⎛⎝−1Y
=0

− 



⎞⎠⎤⎦ exp {−} ∞
using mathematical induction. To proceed, first consider the case where  = 1. Let

 =   = 

 = exp {−}   = −1

exp {−} ;
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and making use of integration-by-parts, we haveZ ∞

1

 exp {−}  = −

exp {−}

¯̄̄∞
1
+

Z ∞

1

1


exp {−} 

=
1


exp {−}− 1

2
exp {−}

¯̄̄̄∞
1

=
1


exp {−}+ 1

2
exp {−}

=

µ
1


+
1

2

¶
exp {−}

=

⎧⎨⎩1 +
1X

=1

1



⎛⎝−1Y
=0

1− 



⎞⎠⎫⎬⎭ exp {−} ∞
Next, for  = 2, let

 = 2  = 2

 = exp {−}   = −1

exp {−} ;

and we again make use of integration-by-parts to obtainZ ∞

1

2 exp {−}  = −
2


exp {−}

¯̄̄̄∞
1

+
2



Z ∞

1

 exp {−} 

=
1


exp {−}+ 2



µ
1


+
1

2

¶
exp {−}

=
1


exp {−}+ 2

µ
1

2
+
1

3

¶
exp {−}

=

µ
1


+
2

2
+
2

3

¶
exp {−}

=

⎡⎣1

+

2X
=1

1



⎛⎝−1Y
=0

2− 



⎞⎠⎤⎦ exp {−}
 ∞

Now, suppose that, for some  ≥ 2,

Z ∞

1

−1 exp {−}  =
⎡⎣1

+

−1X
=1

1



⎛⎝−1Y
=0

− 1− 



⎞⎠⎤⎦ exp {−} ;
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then, let

 =   = −1

 = exp {−}   = −1

exp {−} ;

and, using integration-by-parts, we haveZ ∞

1

 exp {−}  = −



exp {−}

¯̄̄̄∞
1

+




Z ∞

1

−1 exp {−} 

=
1


exp {−}+ 



⎡⎣1

+

−1X
=1

1



⎛⎝−1Y
=0

− 1− 



⎞⎠⎤⎦ exp {−}
=

1


exp {−}+

⎡⎣
2
+

−1X
=1

1







⎛⎝−1Y
=0

− ( + 1)


⎞⎠⎤⎦ exp {−}
=

½
1


+



2
+
1







µ
− 1


¶
+
1







µ
− 1


¶µ
− 2


¶
+ · · ·+1







µ
− 1


¶µ
− 2


¶
× · · · ×

µ
1



¶¾
exp {−}

=

⎧⎨⎩1 +
X
=1

1



⎛⎝−1Y
=0

− 



⎞⎠⎫⎬⎭ exp {−}
 ∞. (57)

In view of expressions (56) and (57), it then follows by the integral test for series convergence

that ∞X
=1

 exp
n
−

o
∞

for any finite non-negative integer  and for any constants  and  such that   0 and  ≥ 1. ¤

Lemma C-2: Let {} be a sequence of random variables (or random vectors) defined on some

probability space (ΩF   ), and let

 =  ( −1  −κ)

be a measurable function for some finite positive integer κ. In addition, defne G−∞ =  (−1),

G∞+ =  (+++1 ), F −∞ =  ( −1 ), and

F∞+−κ =  (+−κ  ++1−κ  ). Under this setting, the following results hold.
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(a) Let

−κ = sup


¡F 
−∞F∞+−κ

¢
= sup



£
sup

©¯̄

¡
|F 

−∞
¢−  ()

¯̄
:  ∈ F∞+−κ

ª¤


 = sup


¡G−∞G∞+¢ = sup



£
sup

©¯̄

¡
|G−∞

¢−  ()
¯̄
:  ∈ G∞+

ª¤
.

If {} is -mixing with
−κ ≤ 1 exp {−2 (− κ)}

for all  ≥ κ and for some positive constants 1 and 2; then  is also -mixing with

-mixing coefficient satisfying

 ≤ 1 exp {−2} for all  ≥ κ,

where 1 is a positive constant such that 1 ≥ 1 exp {2κ}.

(b) Let

−κ = sup


¡F 
−∞F∞+−κ

¢
= sup


sup

∈F
−∞∈F∞+−κ

| ( ∩)−  () ()| 

 = sup


¡G−∞G∞+¢ = sup


sup

∈G−∞∈G∞+
| ( ∩)−  () ()|

If {} is -mixing with
−κ ≤ 1 exp {−2 (− κ)}

for all  ≥ κ and for some positive constants 1 and 2; then  is also -mixing with

-mixing coefficient satisfying

 ≤ 1 exp {−2} for all  ≥ κ,

where 1 is a positive constant such that 1 ≥ 1 exp {2κ}.

Proof of Lemma C-2:

To show part (a), note first that it is well known that

 = sup


£
sup

©¯̄

¡
|G−∞

¢−  ()
¯̄
:  ∈ G∞+

ª¤
= sup



⎧⎨⎩12 sup
X

=1

X
=1

| ( ∩)−  () ()|
⎫⎬⎭
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where the second supremum on the last line above is taken over all pairs of finite partitions

{1  } and {1 } of Ω such that  ∈ G−∞ for  = 1   and  ∈ G∞+ for

 = 1   . See, for example, Borovkova, Burton, and Dehling (2001). Similarly,

−κ = sup


£
sup

©¯̄

¡
|F 

−∞
¢−  ()

¯̄
:  ∈ F∞+−κ

ª¤
= sup



⎧⎨⎩12 sup
X
=1

X
=1

| ( ∩)−  () ()|
⎫⎬⎭

where, similar to the definition of , the second supremum on the last line above is taken over

all pairs of finite partitions {1  } and {1  } of Ω such that  ∈ F −∞ for  = 1  

and  ∈ F∞+−κ for  = 1  . Moreover, since  is measurable on any -field on which

 −1  −κ are measurable, we also have

G−∞ =  (−1) ⊆  ( −1 ) = F 
−∞

and

G∞+ =  (+++1 ) ⊆  (+−κ  ++1−κ  ) = F∞+−κ .

It, thus, follows that, for all  ≥ κ,

 = sup


⎧⎨⎩12 sup
X

=1

X
=1

| ( ∩)−  () ()|
⎫⎬⎭

≤ sup


⎧⎨⎩12 sup
X
=1

X
=1

| ( ∩)−  () ()|
⎫⎬⎭

= −κ

≤ 1 exp {−2 (− κ)}
= 1 exp {2κ} exp {−2}
≤ 1 exp {−2}

for some positive constant 1 ≥ 1 exp {2κ} which exists given that κ is fixed. Moreover, we
have

 ≤ 1 exp {−2}→ 0 as →∞,

which establishes the required result for part (a).

Part (b) can be shown in a manner similar to part (a), so to avoid redundancy, we do not
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include an explicit proof here. ¤

Lemma C-3: Let {} be a sequence of random variables that is -mixing. Let   1 and

 ≥  (− 1), and let  = max { }. Suppose that, for all ,

kk = ( ||)
1
 ∞

Then,

| (+)| ≤ 2
³
21−1 + 1

´
1−1−1 kk k+k

where

 = sup


¡F 
−∞F∞+

¢
= sup

∈F
−∞∈F∞+

| ( ∩)−  () ()| .

Remark: This is Corollary 14.3 of Davidson (1994). For a proof, see pages 212-213 of Davidson

(1994).

Lemma C-4: Suppose that Assumptions 3-1, 3-2(a)-(b), 3-5, and 3-7 hold. Then, there exists a

positve constant  such that

 k k62 ≤  ∞ for all 

and, thus,

 k k62 ≤  ∞ and  k k62 ≤  ∞ for all ,

where

 
×1

=

⎛⎜⎜⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎟⎟⎠ , and  
×1

=

⎛⎜⎜⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎟⎟⎠ .
Proof of Lemma C-4:

To proceed, note that, given Assumption 3-1, we can write the vector moving-average (VMA)
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representation of the companion form of the FAVAR model as

  =
¡
(+) −

¢−1
+

∞X
=0

−

=
¡
(+) −

¢−1
 0+++

∞X
=0

 0++−

=
¡
(+) −

¢−1
 0++

∞X
=0

 0+− , (58)

where

  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



−1
...

−+2
−+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

+
(+)×(+)

=
h
+ 0 · · · 0 0

i
, and  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · −1 

+ 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By the triangle inequality,

k k2 ≤
°°°¡(+) −

¢−1
 0+

°°°
2
+

°°°°°°
∞X
=0

 0+−

°°°°°°
2

Moreover, using the inequality
¯̄̄X

=1


¯̄̄
≤ −1X

=1
|| for  ≥ 1, we get

k k62 ≤ 25
⎛⎝°°°¡(+) −

¢−1
 0+

°°°6
2
+

°°°°°°
∞X
=0

 0+−

°°°°°°
6

2

⎞⎠
so that

 k k62 ≤ 32
°°°¡(+) −

¢−1
 0+

°°°6
2
+ 32

°°°°°°
∞X
=0

 0+−

°°°°°°
6

2

(59)
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Focusing first on the first term on the right-hand side of the inequality (59), we note that°°°¡(+) −
¢−1

 0+
°°°6
2
=

³
0+

¡
(+) −

¢−10 ¡
(+) −

¢−1
 0+

´3
=

µ
0+

h¡
(+) −

¢ ¡
(+) −

¢0i−1
 0+

¶3

≤
⎛⎝ 1

min

n¡
(+) −

¢ ¡
(+) −

¢0o
⎞⎠3 ¡0+ 0+¢3

=

⎛⎝ 1

min

n¡
(+) −

¢ ¡
(+) −

¢0o
⎞⎠3 ¡0¢3

Now, by Assumption 3-7, there exists a constant   0 such that

min

n¡
(+) −

¢ ¡
(+) −

¢0o
= min

n¡
(+) −

¢0 ¡
(+) −

¢o
= 2min

¡
(+) −

¢
≥ 2min

¡
(+) −

¢
≥  [1− max]

2

 0

where max = max {|max ()|  |min ()|} and where 0  max  1 since, by Assumption 3-1, all

eigenvalues of  have modulus less than 1. It follows by Assumption 3-5 that, there exists a positive

constant 1 such that

°°°¡(+) −
¢−1

 0+
°°°6
2
≤

⎛⎝ 1

min

n¡
(+) −

¢ ¡
(+) −

¢0o
⎞⎠3 ¡0¢3

≤ kk62
3 [1− max]

6
≤ 1 ∞.

To show the boundedness of the second term on the right-hand side of the inequality (59), let

(+) be a (+) × 1 elementary vector whose  component is 1 and all other components
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are 0 for  ∈ {1 2  (+) }, and note that°°°°°°
∞X
=0

 0+−

°°°°°°
2

2

=

(+)X
=1

⎛⎝ ∞X
=0

0(+)
 0+−

⎞⎠2

=

(+)X
=1

∞X
=0

∞X
=0

0(+)
 0+−

0
−+

¡
0
¢

(+)

from which we obtain, by applying the inequality
¯̄̄X

=1


¯̄̄
≤ −1X

=1
|| for  ≥ 1

°°°°°°
∞X
=0

 0+−

°°°°°°
6

2

=

⎡⎣(+)X
=1

⎛⎝ ∞X
=0

0(+)
 0+−

⎞⎠2⎤⎦3

≤ [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0

0(+)
 0+−

⎞⎠6

= [(+) ]2
(+)X
=1

⎧⎨⎩
∞X
=0

∞X
=0

∞X
=0

∞X
=0

∞X
=0

∞X
=0

0(+)
 0+−

0
−+

¡
0
¢

(+)

×0(+) 0−
0
−+

¡
0
¢
(+)

0
(+)

 0+−
0
−

¡
0
¢
(+)

o
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Hence,



°°°°°°
∞X
=0

 0+−

°°°°°°
6

2

≤ [(+) ]2
(+)X
=1

∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄6

+ [(+) ]2
(+)X
=1

µ
6

3

¶⎛⎝ ∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄3⎞⎠2

+ [(+) ]2
(+)X
=1

µ
6

2

¶µ
4

2

¶⎛⎝ ∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄2⎞⎠3

+ [(+) ]2
(+)X
=1

µ
6

4

¶ ∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄4 ∞X

=0


¯̄̄
0(+)

 0+−
¯̄̄2

= [(+) ]2
(+)X
=1

∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄6

+20 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄3⎞⎠2

+90 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄2⎞⎠3

+15 [(+) ]2
(+)X
=1

∞X
=0


¯̄̄
0(+)

 0+−
¯̄̄4 ∞X

=0


¯̄̄
0(+)

 0+−
¯̄̄2
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Next, applying the Cauchy-Schwarz inequality, we further obtain



°°°°°°
∞X
=0

 0+−

°°°°°°
6

2

≤ [(+) ]2
(+)X
=1

∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i3
 k−k62

+20 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i 3
2
 k−k32

⎞⎠2

+90 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i
 k−k22

⎞⎠3

+15 [(+) ]2
(+)X
=1

⎧⎨⎩
∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i2
 k−k42

×
∞X
=0

∙
0(+)

 0++
³

´0
(+)

¸
 k−k22

)

≤ [(+) ]2
(+)X
=1

∞X
=0

h
0(+)


¡

¢0
(+)

i3
 k−k62

+20 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0

h
0(+)


¡

¢0
(+)

i 3
2
 k−k32

⎞⎠2

+90 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0

h
0(+)


¡

¢0
(+)

i
 k−k22

⎞⎠3

+15 [(+) ]2
(+)X
=1

⎧⎨⎩
∞X
=0

h
0(+)


¡

¢0
(+)

i2
 k−k42

×
∞X
=0

∙
0(+)


³

´0
(+)

¸
 k−k22

)
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In addition, observe that, for every  ∈ {1 2  (+) }

0(+)

¡

¢0
(+)

≤ max

n

¡

¢0o

= max

n¡

¢0

o

= 2max
¡

¢

≤ max
n¯̄
max

¡

¢¯̄2


¯̄
min

¡

¢¯̄2o

(by Assumption 3-7)

= max
n
|max ()|2  |min ()|2

o
= 2max

where max = max {|max ()|  |min ()|} and where 0  max  1 given that Assumption 3-1

implies that all eigenvalues of  have modulus less than 1. Now, in light of Assumption 3-2(b), we

can set  ≥ 1 to be a constant such that  k−k62 ≤  ∞, so that, by Liapunov’s inequality,

 k−k22 ≤
³
 k−k62

´ 1
3 ≤ 

1
3 ,  k−k32 ≤

³
 k−k62

´ 1
2 ≤ 

1
2 ,

 k−k42 ≤
³
 k−k62

´ 2
3 ≤ 

2
3 ,
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and, thus,



°°°°°°
∞X
=0

 0+−

°°°°°°
6

2

≤ [(+) ]2
(+)X
=1

∞X
=0

h
0(+)


¡

¢0
(+)

i3
 k−k62

+20 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0

h
0(+)


¡

¢0
(+)

i 3
2
 k−k32

⎞⎠2

+90 [(+) ]2
(+)X
=1

⎛⎝ ∞X
=0

h
0(+)


¡

¢0
(+)

i
 k−k22

⎞⎠3

+15 [(+) ]2
(+)X
=1

⎧⎨⎩
∞X
=0

h
0(+)


¡

¢0
(+)

i2
 k−k42

×
∞X
=0

∙
0(+)


³

´0
(+)

¸
 k−k22

)

≤  [(+) ]2

⎧⎨⎩
(+)X
=1

∞X
=0

6max + 20

(+)X
=1

⎛⎝ ∞X
=0

3max

⎞⎠2 + 90 (+)X
=1

⎛⎝ ∞X
=0

2max

⎞⎠3

+15

(+)X
=1

⎛⎝ ∞X
=0

4max

⎞⎠Ã ∞X
=0

2max

!⎫⎬⎭
≤  [(+) ]3

×
(

1

1− 6max
+ 20

µ
1

1− 3max

¶2
+ 90

µ
1

1− 2max

¶3
+ 15

µ
1

1− 4max

¶µ
1

1− 2max

¶)
≤ 2 ∞

for some constant such that

2

≥  [(+) ]3

×
(

1

1− 6max
+ 20

µ
1

1− 3max

¶2
+ 90

µ
1

1− 2max

¶3
+ 15

µ
1

1− 4max

¶µ
1

1− 2max

¶)
.
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Putting everything together, we see that

 k k62 ≤ 32
°°°¡(+) −

¢−1
 0+

°°°6
2
+ 32

°°°°°°
∞X
=0

 0+−

°°°°°°
6

2

≤ 32
¡
1 +2

¢
≤  ∞

for a constant  such that 0  32
¡
1 + 2

¢ ≤  ∞.
In addition, defineP(+) to be the (+) × (+)  permutation matrix such that

P(+)  =

⎛⎜⎝  
×1
 

×1

⎞⎟⎠ ; (60)

and let 0 =
µ

 0
×

¶
and 0 =

µ
0

×


¶
. Note that

0P(+)  =

µ
 0

×

¶⎛⎜⎝  
×1
 

×1

⎞⎟⎠ =  

0P(+)  =

µ
0

×


¶⎛⎜⎝  
×1
 

×1

⎞⎟⎠ =  .

so that

k k2 ≤
°°0°°2 °°P(+)°°2 k k2

=

q
max

¡


0


¢r
max

³
P 0
(+)

P(+)
´
k k2

=

q
max

¡
0

¢q
max

¡
(+)

¢ k k2
=

q
max ()

q
max

¡
(+)

¢ k k2
= k k2
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and

k k2 ≤
°°0°°2 °°P(+)°°2 k k2

=

q
max

¡


0


¢r
max

³
P 0
(+)

P(+)
´
k k2

=

q
max

¡
0

¢q
max

¡
(+)

¢ k k2
=

q
max ()

q
max

¡
(+)

¢ k k2
= k k2

It further follows that

 k k62 ≤  k k62 ≤  ∞ and  k k62 ≤  k k62 ≤  ∞. ¤

Lemma C-5: Let  = (
0
  

0
)
0
be generated by the factor-augmented VAR process

+1 = +1 + · · ·+−+1 + +1

described in section 3 of the main paper. Under Assumptions 3-1, 3-2(a)-(c), and 3-7; {} is a
-mixing process with -mixing coefficient  () such that

 () ≤ 1 exp {−2}

for some positive constants 1 and 2. Here,

 () = sup


£
sup

©¯̄

¡
|A

−∞
¢−  ()

¯̄
:  ∈ A∞+

ª¤
with A−∞ =  (−2−1) and A∞+ =  (+++1++2 ).

Proof of Lemma C-5:

To prove this lemma, we shall verify the conditions of Lemma OA-8 of Chao, Liu, and Swanson

(2023b) for the vector moving-average representation of , i.e.,

 = +
¡
(+) −

¢−1
 0++

∞X
=0

+
 0+− = ∗ +

∞X
=0

Ψ− ,
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where

∗ = +
¡
(+) −

¢−1
 0+, Ψ = +

 0+ ,

+
(+)×(+)

=
h
+ 0 · · · 0 0

i
, and  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · −1 

+ 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
To proceed, set

 =

∞X
=0

Ψ− (61)

and note first that, setting  = 5 in Lemma OA-8 of Chao, Liu, and Swanson (2023b), and we see

that Assumptions (i) and (ii) of this lemma are the same as the conditions specified in Assumption

3-2 (a)-(c). Next, note that, since in this case Ψ = +
 0+ , we have

kΨk2 ≤ k+k2
°°

°°
2

°° 0+°°2
≤

q
max

¡
 0++

¢µq
max

©
()

0

ª¶q

max
¡
+

0
+

¢
= max

¡
+

0
+

¢µq
max

©
()

0

ª¶

=

q
max

©
()

0

ª

= max
¡

¢

≤ 
£
max

©¯̄
max

¡

¢¯̄

¯̄
min

¡

¢¯̄ª¤

(by Assumption 3-7)

=  [max {|max ()|  |min ()|}]

= max

where max = max {|max ()|  |min ()|} and where 0  max  1 since, by Assumption 3-1, all

eigenvalues of  have modulus less than 1. It follows that

∞X
=0

kΨk2 ≤ 

∞X
=0

max =


1− max
∞.

Moreover, by Assumption 3-1,

det
©
(+) −1 − · · ·−


ª 6= 0 for all  such that || ≤ 1
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and, by definition,

∞X
=0

Ψ
 = Ψ () =

¡
(+) −1 − · · ·−


¢−1

for all  such that || ≤ 1

so that

Ψ ()
¡
(+) −1 − · · ·−


¢
= (+) for all  such that || ≤ 1

In addition, since

det {Ψ ()}det©(+) −1 − · · ·−

ª

= det
©
Ψ ()

¡
(+) −1 − · · ·−


¢ª

= det
©
(+)

ª
= 1,

and since ¯̄
det

©
(+) −1 − · · ·−


ª¯̄

∞ for all  such that || ≤ 1,

it follows that

det

⎧⎨⎩
∞X
=0

Ψ


⎫⎬⎭ = det {Ψ ()}

=
1

det
©
(+) −1 − · · ·−

ª
6= 0 for all  such that || ≤ 1.
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Finally, note that, setting  = 5,

∞X
=0

⎛⎝ ∞X
=

kΨk2

⎞⎠ 
1+

=

∞X
=0

⎛⎝ ∞X
=

kΨk2

⎞⎠ 5
6

≤
∞X
=0

⎛⎝ ∞X
=

max

⎞⎠ 5
6

= 
5
6

∞X
=0

⎛⎝ ∞X
=

max

⎞⎠ 5
6

≤ 
5
6

∞X
=0

∞X
=

µ

5
6
max

¶

Ã
by the inequality

¯̄̄̄
¯
∞X
=1



¯̄̄̄
¯


≤
∞X
=1

|| for  ≤ 1
!

= 
5
6

∞X
=0

( + 1)

µ

5
6
max

¶

= 
5
6

∙
1− 

5
6
max

¸−2
(by Lemma OA-10 of Chao, Liu, and Swanson (2023b))

 ∞
µ
since 0  

5
6
max  1 given that 0  max  1

¶
.

Hence, all conditions of Lemma OA-8 of Chao, Liu, and Swanson (2023b) are fulfilled. Applying
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this lemma, we then obtain that there exists a constant  such that

 () ≤ 

∞X
=

⎛⎝ ∞X
=

kΨk2

⎞⎠ 5
6

≤ 

∞X
=

⎛⎝ ∞X
=

max

⎞⎠ 5
6

= 
5
6

∞X
=

⎛⎝ ∞X
=

max

⎞⎠ 5
6

≤ 
5
6

∞X
=

∞X
=

µ

5
6
max

¶

= 
5
6

µ

5
6
max

¶ ∞X
=0

( + 1)

µ

5
6
max

¶

= 
5
6

µ

5
6
max

¶ ∙
1− 

5
6
max

¸−2
= 

5
6

∙
1− 

5
6
max

¸−2
exp

½
−
∙
5

6
|lnmax|

¸


¾
(since 0  max  1)

≤ 1 exp {−2}→ 0 as →∞.

for some positive constants 1 and 2 such that

1 ≥ 
5
6

∙
1− 

5
6
max

¸−2
and 2 ≤ 5

6
|lnmax|

It follows that the process {} (as defined in expression (61)) is  mixing with beta coefficient
 () satisfying

 () ≤ 1 exp {−2} .

Since

 = ∗ +
∞X
=0

Ψ− = ∗ + 

and since ∗ is a nonrandom parameter, we can then apply part (a) of Lemma C-2 to deduce that

{} is a  mixing process with  coefficient  () satisfying the inequality

 () ≤ 1 exp {−2} . ¤
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.

10 Appendix D: Key Supporting Lemmas Used in the Proofs of

Theorems 4.1 and 4.2

Derivation of the -step Ahead Forecasting Equation Given in Expression (22) of the

Main Paper:

Consider the FAVAR process

+1 = +1 + · · ·+−+1 + +1, (62)

where  = ( 0   0)
0
. Suppose that equation (62) satisfies Assumptions 3-1 and 3-2 of the main

paper. Then, similar to a VAR process, we can rewrite this model in the companion form

  = + −1 +

where

  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



−1
...

−+2
−+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
  =

Ã




!
  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · −1 

+ 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (63)

Successive substitution for the lagged   ’s gives

 + =

−1X
=0

+  +

−1X
=0

+−
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Let


×(+)

=
h
 0 · · · 0

i
and +

(+)×(+)
=
h
+ 0 · · · 0

i
and note that

 + = +, ++− = +− ,

and

 0+++− =

⎛⎜⎜⎜⎜⎜⎝
+ 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+−
0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+−
0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hence,

+ =  +

=

−1X
=0


+ 

  +

−1X
=0


 0+++−

=

−1X
=0


+ 

  +

−1X
=0


 0++− (64)

Furthermore, let P(+) be a permutation matrix such that

P(+)  =

Ã
 

 

!
, where   =

⎛⎜⎜⎝

...

−+1

⎞⎟⎟⎠ and   =

⎛⎜⎜⎝

...

−+1

⎞⎟⎟⎠ . (65)

and note that P(+) is an orthogonal matrix, so that P 0(+)P(+) = (+) = P(+)P 0(+).
Next, for  = 1  , let  be a × 1 elementary vector whose  component is 1 and all other
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components are 0; and define


(+)×

=

⎛⎝  ⊗ 

0
×

⎞⎠ , 

(+)×
=

⎛⎝ 0
×

 ⊗ 

⎞⎠ ,


(+)×
=

³
1 2 · · · 

´

=

⎛⎝ 1 ⊗  2 ⊗  · · ·  ⊗ 

0
×

0
×

· · · 0
×

⎞⎠
=

⎛⎝  ⊗ 

0
×

⎞⎠ =

⎛⎝ 

0
×

⎞⎠


(+)×

=
³
1 2 · · · 

´

=

⎛⎝ 0
×

0
×

· · · 0
×

1 ⊗  2 ⊗  · · ·  ⊗ 

⎞⎠
=

⎛⎝ 0
×

 ⊗ 

⎞⎠ =

⎛⎝ 0
×



⎞⎠
It follows that


(+)×(+)

=

µ


(+)×


(+)×

¶
=

⎛⎜⎝  0
×

0
×



⎞⎟⎠ = (+) (66)

In addition, using these notations, it is easy to see that

0P(+)  = −+1 for  = 1   (67)

and, similarly,

0P(+)  = −+1 for  = 1  . (68)

Hence, making use of expressions (64) and (66) and the fact that P(+) is an orthogonal matrix,
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we can write

+ =  +

=

−1X
=0


+ 

P 0(+)P(+)  +

−1X
=0


 0++−

=

−1X
=0


+ 

P 0(+)0P(+)  +

−1X
=0


 0++−

=

−1X
=0


+

X
=1


P 0(+)

¡


0
 + 

0


¢P(+)  +

−1X
=0


 0++−

so that, in light of expressions (67) and (68), we further deduce that

+ =  +

=

−1X
=0


+

X
=1


P 0(+)

¡


0
 + 

0


¢P(+)  +

−1X
=0


 0++−

=

−1X
=0


+

X
=1


P 0(+)0P(+)  +

X
=1


P 0(+)

0
P(+) 

+

−1X
=0


 0++−

=

−1X
=0


+

X
=1


P 0(+)−+1 +

X
=1


P 0(+)−+1

+

−1X
=0


 0++−

= 0 +

X
=1

01−+1 +
X

=1

02−+1 + +

where

0 =

−1X
=0


, + =

−1X
=0


 0++− ,

01 = 
P 0(+) and 02 = 

P 0(+) for  = 1  . (69)

Next, define 01 =
³
011 012 · · · 01

´
and 02 =

³
021 022 · · · 02

´
, and note that,
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by expression (69) above,

01 = 
P 0(+)

³
1 2 · · · 

´
= 

P 0(+)
02 = 

P 0(+)
³
1 2 · · · 

´
= 

P 0(+) .

Finally, let   and   be as defined in expression (65), and we can write the -step ahead forecast

equation more succinctly as

+ = 0 +

X
=1

01−+1 +
X

=1

02−+1 + +

= 0 +01  +02  + +. ¤

Lemma D-1: Let  =  − − + 1 where  is a (fixed) non-negative integer and  is a (fixed)

positive integer. Suppose that Assumptions 3-1, 3-2(a)-(b), 3-2(d), 3-5, and 3-7 hold. Then, the

following statements are true.

(a) There exists a positive constant  such that

min

⎧⎨⎩ 1



−X
=

∞X
=0

 0+
£
−0−

¤
+

¡

¢0⎫⎬⎭ ≥   0,

where  is the coefficient matrix of the companion form given in expression (63) and where

+
(+)×(+)

=
h
+ 0 · · · 0

i
. (70)

(b) The matrix

1



−X
=

⎛⎜⎜⎝
1  [ 0]  [ 0]

 [ ]  [ 
0
]  [ 

0
]

 [ ]  [ 
0
]  [ 

0
]

⎞⎟⎟⎠
is non-singular for all   + − 1.

Proof of Lemma D-1:

For part (a), we prove by contradiction. To proceed, let

+ = 0 ⊗ + for  ∈ {1  }
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where  is a ×1 elementary vector whose  component is equal to 1 and all other components
are equal to 0. Note that, under this definition, +1 = + , where + is as defined previously

in expression (70). Suppose that the matrix

∞X
=0

 0+1+1

¡

¢0

is singular; then, there exists  ∈ R(+)\ {0} such that
∞X
=0

0 0+1+1

¡

¢0
 = 0

This, in turn, implies that +1

¡

¢0
 = 0 for all . Now, partition

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(+)×1

2
(+)×1

...


(+)×1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that, for  = 0, let 0 = + , and it is easily seen that

0 = +1

¡
0
¢0


= +1

=
h
+ 0 · · · 0 0

i
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
...

−1


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1 (= 01)
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Now, for  = 1, define  =
h
1 2 · · · −1 

i
, and note that

0 = +1
0

=
h
+ 0 · · · 0 0

i
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

01 + 0 · · · 0

02 0 +
...

...
...

. . .
. . . 0

0−1
... 0

. . . +

0 0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
...

−1


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= +1

h

0

 0+1  0+2 · · ·  0+−1
i


=
h
+1

0
+1 + +2

i


= [1+1 + 0+2] 

= 11 + 02

where 1 = +1
0
= 01. Since previously we have shown that 1 = 0, it follows that

2 = 11 + 02 = 0.

Moreover, for  = 2, using the fact that +
0
+ = + and +

0
+ = 0 for  6= , we

obtain

0 = +1

¡
0
¢2


= +1

h

0

 0+1  0+2 · · ·  0+−1  0+

i2


= [1+1 + 0+2]
h

0

 0+1  0+2 · · ·  0+−1  0+

i


=
³
[1+1 + 0+2]

0
+1 + 1+2 + 0+3

´


= (2+1 + 1+2 + 0+3) 

= 21 + 12 + 03

where

2 = [1+1 + 0+2]
0

Given that 1 = 0 and 2 = 0, as we have previously shown, it then follows that

3 = 21 + 12 + 03 = 0 (since 0 = +)
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We will show by mathematical induction that, in fact,  = 0 for every  ∈ {1  }. To proceed,
suppose that 1 = 2 = · · · =  = 0 and 0 = +1 (

0) . By straightforward calculations, one

can show (in a manner similar to the case where  = 0 1 or 2 given earlier) that +1 (
0)  has

the representation

+1

¡
0
¢
 = 1 + −12 + · · ·1 + 0+1

for coefficients   −1  1, and 0 where 0 = + . It follows from the induction hypotheses

that

+1 = 1 + −12 + · · ·1 + 0+1

= +1

¡
0
¢


= 0.

Hence, by mathematical induction, we conclude that  = 0 for every  ∈ {1  }, but this implies
that

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
...

−1


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0
(+)×1

which contradicts our initial assumption that  6= 0. It then follows that the matrix
∞X
=0

 0+1+1

¡

¢0

is positive definite and, thus, also non-singular, so that there exists a positive constant ∗ such

that

min

⎧⎨⎩
∞X
=0

 0+1+1

¡

¢0⎫⎬⎭ ≥ ∗  0
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Moreover, in light of Assumption 3-2(d), this further implies that

min

⎧⎨⎩ 1



−X
=

∞X
=0

 0+
£
−0−

¤
+

¡

¢0⎫⎬⎭

= min

⎧⎨⎩
∞X
=0

 0+1

1



−X
=


£
−0−

¤
+1

¡

¢0⎫⎬⎭ (since +1 = +)

≥ min

⎧⎨⎩
∞X
=0

 0+1+1

¡

¢0⎫⎬⎭min

(
1



−X
=


£
−0−

¤)

≥ min

⎧⎨⎩
∞X
=0

 0+1+1

¡

¢0⎫⎬⎭ inf min

©

£
−0−

¤ª
≥ ∗

≥   0 (by choosing  ≤ ∗) .

where the second inequality above follows from the fact that

min

⎧⎨⎩
−X
=


h
−0−

i


⎫⎬⎭ ≥
−X
=

min

⎧⎨⎩
h
−0−

i


⎫⎬⎭
=

1



−X
=

min
©

£
−0−

¤ª
≥ inf


min

©

£
−0−

¤ª
.

Now, to show part (b), note first that expression (58) in the proof of Lemma C-4 in Appendix

C above gives a vector moving-average representation for   of the form

  =
¡
(+) −

¢−1
 0++

∞X
=0

 0+− ,

where + = +1 =
h
+ 0 · · · 0 0

i
. Now, let


(+)×

=

⎛⎝ 

0
×

⎞⎠ and 
(+)×

=

⎛⎝ 0
×



⎞⎠ ,

104



and let P(+) be a permutation matrix such that

P(+)  =

Ã
 

 

!
.

It follows that

  = 0P(+) 

= 0P(+)
¡
(+) −

¢−1
 0++

∞X
=0

0P(+) 0+−

and

  = 0P(+) 

= 0P(+)
¡
(+) −

¢−1
 0++

∞X
=0

0P(+) 0+− .

Moreover,


£
 

0


¤
= 

⎧⎨⎩
⎛⎝0P(+)

¡
(+) −

¢−1
 0++

∞X
=0

0P(+) 0+−

⎞⎠
×
Ã
0+

¡
(+) −0

¢−1P 0(+) + ∞X
=0

0−+
¡

¢0 P 0(+)

!)
= 0P(+)

¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1P 0(+)
+

∞X
=0

∞X
=0

0P(+) 0+
£
−0−

¤
+

¡

¢0 P 0(+)

= 0P(+)
¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1P 0(+)
+

∞X
=0

0P(+) 0+
£
−0−

¤
+

¡

¢0 P 0(+),
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£
 

0


¤
= 

⎧⎨⎩
⎛⎝0P(+)

¡
(+) −

¢−1
 0++

∞X
=0

0P(+) 0+−

⎞⎠
×
Ã
0+

¡
(+) −0

¢−1 P 0(+) + ∞X
=0

0−+
¡

¢0 P 0(+)

!)
= 0P(+)

¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1P 0(+)
+

∞X
=0

∞X
=0

0P(+) 0+
£
−0−

¤
+

¡

¢0 P 0(+)

= 0P(+)
¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1P 0(+)
+

∞X
=0

0P(+) 0+
£
−0−

¤
+

¡

¢0 P 0(+) ,

and


£
 

0


¤
= 

⎧⎨⎩
⎛⎝0P(+)

¡
(+) −

¢−1
 0++

∞X
=0

0P(+) 0+−

⎞⎠
×
Ã
0+

¡
(+) −0

¢−1 P 0(+) + ∞X
=0

0−+
¡

¢0 P 0(+)

!)
= 0P(+)

¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1 P 0(+)
+

∞X
=0

∞X
=0

0P(+) 0+
£
−0−

¤
+

¡

¢0 P 0(+)

= 0P(+)
¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1 P 0(+)
+

∞X
=0

0P(+) 0+
£
−0−

¤
+

¡

¢0 P 0(+) ,

In addition, since

 [ ] =
¡
(+) −

¢−1
 0+ and


£
 

0


¤
=

¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1
+

∞X
=0

 0+
£
−0−

¤
+

¡

¢0
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and since h
 

i
=

⎛⎜⎝  0
×

0
×



⎞⎟⎠ = (+)

it is easy to see thatÃ
 [ 

0
]  [ 

0
]

 [ 
0
]  [ 

0
]

!

=

Ã
0
0

!
P(+)

¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1P 0(+) ³  

´

+

Ã
0
0

! ∞X
=0

P(+) 0+
£
−0−

¤
+

¡

¢0P 0(+) ³  

´
= P(+)

¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1P 0(+)
+

∞X
=0

P(+) 0+
£
−0−

¤
+

¡

¢0 P 0(+)

= P(+)
£
 

0


¤P 0(+)
and ³

 [ 0]  [ 0]
´

=
³
0+

¡
(+) −0

¢−1P 0
(+)

 0+
¡
(+) −0

¢−1P 0
(+)



´
= 0+

¡
(+) −0

¢−1P 0(+) ³  

´
= 0+

¡
(+) −0

¢−1P 0(+)
= 

£
 0



¤P 0(+)
Making use of these expressions, we can then write⎛⎜⎜⎝

1  [ 0]  [ 0]

 [ ]  [ 
0
]  [ 

0
]

 [ ]  [ 
0
]  [ 

0
]

⎞⎟⎟⎠ =

Ã
1  [ 0

]P 0(+)
P(+) [ ] P(+) [ 

0
]P 0(+)

!

=

Ã
1 0

0 P(+)

!Ã
1  [ 0

]

 [ ]  [ 
0
]

!Ã
1 0

0 P 0
(+)

!
.
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Next, note that

det

Ã
1  [ 0

]

 [ ]  [ 
0
]

!
= det (1) det

©

£
 

0


¤− [ ]
£
 0



¤ª
= det

©

£
 

0


¤− [ ]
£
 0



¤ª
= det

n¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1
+

∞X
=0

 0+
£
−0−

¤
+

¡

¢0

− ¡(+) −
¢−1

 0+
0+

¡
(+) −0

¢−1o
= det

⎧⎨⎩
∞X
=0

 0+
£
−0−

¤
+

¡

¢0⎫⎬⎭

Now, by Assumption 3-2(d) and by the same argument as that used to prove part (a) above, we

see that there exists a constant  such that

min

⎧⎨⎩
∞X
=0

 0+
£
−0−

¤
+

¡

¢0⎫⎬⎭

≥ min

⎧⎨⎩
∞X
=0

 0++
¡

¢0⎫⎬⎭ inf min

©

£
−0−

¤ª
≥   0

for all , which, in turn, implies that in this case

det

Ã
1  [ 0

]

 [ ]  [ 
0
]

!
= det

⎧⎨⎩
∞X
=0

 0+
£
−0−

¤
+

¡

¢0⎫⎬⎭

≥ (+)  0

for all . Furthermore, since the matrix Ã
1 0

0 P(+)

!
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is nonsingular, it follows that the matrix

1



−X
=

⎛⎜⎜⎝
1  [ 0]  [ 0]

 [ ]  [ 
0
]  [ 

0
]

 [ ]  [ 
0
]  [ 

0
]

⎞⎟⎟⎠
=

Ã
1 0

0 P(+)

!
1



−X
=

Ã
1  [ 0

]

 [ ]  [ 
0
]

!Ã
1 0

0 P 0
(+)

!

will be nonsingular and, thus, positive definite as required. ¤

Lemma D-2: Let  =  − − + 1 where  is a (fixed) non-negative integer and  is a (fixed)

positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-5, and 3-7 hold. Then, the following

statements are true.

(a)

1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 

µ
1√


¶
where

  =

⎛⎜⎜⎝


...

−+1

⎞⎟⎟⎠ and  =

"




#
.

(b)

1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 

µ
1√


¶
1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 

µ
1√


¶
, and

1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 

µ
1√


¶

where   and   are as defined in expression (65).

(c)

1



−X
=

  =
¡
(+) −

¢−1
 0++

µ
1√


¶
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(d)

1



−X
=

  = 0P(+)
¡
(+) −

¢−1
 0++

µ
1√


¶
,

1



−X
=

  = 0P(+)
¡
(+) −

¢−1
 0++

µ
1√


¶
.

(e)

1



−X
=

 
0
+ = 

µ
1√


¶
, where + =

−1X
=0


 0++−

with 
×(+)

=
h
 0 · · · 0

i
and +

(+)×(+)
=
h
+ 0 · · · 0

i
.

(f)

1



−X
=

 
0
+ = 

µ
1√


¶
and

1



−X
=

 
0
+ = 

µ
1√


¶
,

where + is as defined in part (e) above.

(g)

H0


=
1



−X
=

+ = 

µ
1√


¶
=  (1) .

(h)

1



−X
=

+
0
+ −

1



−X
=


£
+

0
+

¤
= 

µ
1√


¶
,

where + is as defined in part (e) above.

Proof of Lemma D-2:
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To show part (a), we note that for   ∈ R(+) such that kk2 = kk2 = 1, we can write



"
1



−X
=

¡
0 

0
−

£
0 

0

¤¢#2

=
1



−X
=


h¡
0 

0
−

£
0 

0

¤¢2i

+
2



−−1X
=

−−X
=1


©¡
0 

0
−

£
0 

0

¤¢ ¡

0 +
0
+−

£
0 +

0
+

¤¢ª
Note first that

1

 2

−X
=


h¡
0 

0
−

£
0 

0

¤¢2i

=
1

 2

−X
=


¡
0 

0

¢2 − 1

 2

−X
=

¡

£
0 

0

¤¢2

≤ 1

 2

−X
=


£¡
0 

0

¢ ¡
0 

0

¢¤

≤ 1

 2

−X
=

q
 (0 

0
)

2
q
 (0 

0
)

2

≤ 1

 2

−X
=

 k k42

≤ 


= 

µ
1



¶
where the fourth inequality above follows from applying Liapunov’s inequality and the result given

in Lemma C-4.

Next, note that, by Lemma C-5, {} is -mixing with  mixing coefficient satisfying  () ≤
1 exp {−2}. Since  ≤  (), it follows that  is -mixing as well, with  mixing

coefficient satisfying  ≤ 1 exp {−2}. Moreover, by applying part (b) of Lemma C-2, we
further deduce that  = 0 

0
 is also -mixing with  mixing coefficient satisfying

 ≤ 1 exp {−2 (− + 1)}
≤ ∗1 exp {−2}

for some positive constant ∗1 ≥ 1 exp {2 (− 1)}. Hence, we can apply Lemma C-3 with  = 2
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and  = 3 to obtain

¯̄

©¡
0 

0
−

£
0 

0

¤¢ ¡

0 +
0
+−

£
0 +

0
+

¤¢ª¯̄
≤ 2

³
2
1
2 + 1

´

1
6



q
 (0 

0
)

2
³

¯̄
0 +

0
+

¯̄3´13
where  denotes the  mixing coefficient for the process  = 0 

0
 and where, by our

previous calculations,


1
6

 ≤ (∗1)
1
6 exp

½
−2

6

¾
for all  sufficiently large.

It further follows that there exists a positive constant 3 such that

∞X
=1


1
6

 ≤ (∗1)
1
6

∞X
=1

exp

½
−2

6

¾

≤ (∗1)
1
6

∞X
=0

exp

½
−2

6

¾

≤ (∗1)
1
6

∙
1− exp

½
−2
6

¾¸−1
≤ 3

where the last inequality stems from the fact that
X∞

=0
exp {− (26)} is a convergent geometric
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series given that 0  exp {− (26)}  1 for 2  0. Hence,¯̄̄̄
¯ 2 2

−−1X
=

−−X
=1


©¡
0 

0
−

£
0 

0

¤¢ ¡

0 +
0
+−

£
0 +

0
+

¤¢ª¯̄̄̄¯
≤ 2

 2

−−1X
=

−−X
=1

¯̄

©¡
0 

0
−

£
0 

0

¤¢ ¡

0 +
0
+−

£
0 +

0
+

¤¢ª¯̄
≤ 4

 2

³
2
1
2 + 1

´ −−1X
=

−−X
=1


1
6



q
 (0 

0
)

2
³

¯̄
0 +

0
+

¯̄3´13
≤ 4

³√
2 + 1

´ 1

 2

−−1X
=

−−X
=1

½

1
6



h

¡
0 

¢4i14 h

¡
0 

¢4i14 h

¡
0 +

¢6i 16
×
h

¡
0 +

¢6i 16¾
≤ 4

³√
2 + 1

´µ
sup


h
k k42

i¶ 1
2
µ
sup


h
k k62

i¶1
3 1

 2

−−1X
=

∞X
=1


1
6



≤ 4
³√
2 + 1

´µ
sup


h
k k42

i¶ 1
2
µ
sup


h
k k62

i¶1
3 1

 2

−X
=

3

≤ 


= 

µ
1



¶ Ã
where  ≥ 4

³√
2 + 1

´µ
sup


h
k k42

i¶ 1
2
µ
sup


h
k k62

i¶1
3

3

!

It follows that



"
1



−X
=

¡
0 

0
−

£
0 

0

¤¢#2

≤ 1

 2

−X
=


h¡
0 

0
−

£
0 

0

¤¢2i

+
2

 2

−−1X
=

−−X
=1

¯̄

©¡
0 

0
−

£
0 

0

¤¢ ¡

0 +
0
+−

£
0 +

0
+

¤¢ª¯̄
= 

µ
1



¶
so that, applying Markov’s inequality, we get

1



−X
=

0 
0
−

1



−X
=


£
0 

0

¤
= 

µ
1√


¶

113



Since this result holds for every  ∈ R(+) and  ∈ R(+) such that kk2 = kk2 = 1, we further
deduce that

1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 

µ
1√


¶
.

To show part (b), note first that

0P(+)  =

µ
 0

×

¶⎛⎜⎝  
×1
 

×1

⎞⎟⎠ =  

0P(+)  =

µ
0

×


¶⎛⎜⎝  
×1
 

×1

⎞⎟⎠ =  

By the result given in part (a) above, it follows from applying Slutsky’s theorem that

1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 0P(+)

Ã
1



−X
=

 
0
 −

1



−X
=


£
 

0


¤!P(+)
= 

µ
1√


¶
,

1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 0P(+)

Ã
1



−X
=

 
0
 −

1



−X
=


£
 

0


¤!P(+)
= 

µ
1√


¶
,
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and

1



−X
=

 
0
 −

1



−X
=


£
 

0


¤
= 0P(+)

Ã
1



−X
=

 
0
 −

1



−X
=


£
 

0


¤!P(+)
= 

µ
1√


¶
.

To show part (c), let  ∈ R(+) such that kk2 = 1, and write

1



−X
=

0  =
1



−X
=

⎧⎨⎩0
¡
(+) −

¢−1
 0++

∞X
=0

0 0+−

⎫⎬⎭
= 0

¡
(+) −

¢−1
 0++

1



−X
=

∞X
=0

0 0+−

Next, note that



⎡⎣ 1


−X
=

∞X
=0

0 0+−

⎤⎦2 =
1

 2

−X
=

−X
=

∞X
=0

∞X
=0

0 0+
£
−0−

¤
+

³

´0


=
1

 2

−X
=

∞X
=0

0 0+
£
−0−

¤
+

¡

¢0


+
2

 2

−−1X
=

−−X
=1

∞X
=0

0 0+
£
−0−

¤
+

¡
+

¢0


=
1

 2

−X
=

∞X
=0

0 0+
£
−0−

¤
+
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Now,
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where max = max {|max ()|  |min ()|} and where 0  max  1 since Assumption 3-1 implies
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that all eigenvalues of  have modulus less than 1. It follows that
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Observe that
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and
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Putting these results together, we obtain
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¶
so that, upon applying Markov’s inequality, we get

1



−X
=

∞X
=0

0 0+− = 

µ
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¶
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from which we further deduce, upon applying Slutsky’s theorem, that
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Since the above result holds for all  ∈ R(+) such that kk2 = 1, we further deduce that
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To show part (d), note again that
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µ
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By the result given in part (c) above, it follows by Slutsky’s theorem that
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¶
.

Turning our attention to part (e), let  ∈ R(+) and  ∈ R such that kk2 = 1 and kk2 = 1;
and, by direct calculation, we obtain
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and note first that
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≤ ∗ (71)

where the next to last inequality follows from the fact that  k+−k42 ≤
³
sup kk6

´ 2
3 ≤ 

2
3

by Liapunov’s inequality and by application of Assumption 3-2(b) and where the last inequality

follows from the fact that  is a fixed integer and 0  max  1 in light of Assumption 3-1. Applying

the Cauchy-Schwarz inequality and the existence of moment result given in Lemma C-4, it then
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follows that
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Next, observe that


©¡
0 

0
+

¢ ¡
0 +

0
++

¢ª
= 

©¡
0 

0
+

¢ ¡
0 +

0
++

¢ª
= 

⎧⎨⎩0 
0
+

−1X
=0

0 0++−
−1X
=0

0 0+++−

⎫⎬⎭
= 

⎧⎨⎩0 
0
+

−1X
=0

−1X
=0

0 0++−
0
++−+

¡

¢0
 0

⎫⎬⎭ ,
so that, for  ≥ , we have


©¡
0 

0
+

¢ ¡
0 +

0
++

¢ª
= 

⎧⎨⎩0 
0
+

−1X
=0

−1X
=0

0 0++−
0
++−+

¡

¢0
 0

⎫⎬⎭
= 

⎧⎨⎩0 
0
+

−1X
=0

−1X
=0

0 0++−
£
0++−|F +

−∞
¤
+

¡

¢0
 0

⎫⎬⎭
= 

⎧⎨⎩0 
0
+

−1X
=0

−1X
=0

0 0++−
£
0++−

¤
+

¡

¢0
 0

⎫⎬⎭
= 0

123



Hence, defining
X0

=1

¯̄¡
0 

0
+

¢ ¡
0 +

0
++

¢¯̄
= 0, we have

¯̄̄̄
¯ 2 2

−−1X
=

−−X
=1


©¡
0 

0
+

¢ ¡
0 +

0
++

¢ª¯̄̄̄¯
=

¯̄̄̄
¯̄ 2 2

−−1X
=

min{−1−−}X
=1


©¡
0 

0
+

¢ ¡
0 +

0
++

¢ª¯̄̄̄¯̄
≤ 2

 2

−−1X
=

min{−1−−}X
=1


¯̄¡
0 

0
+

¢ ¡
0 +

0
++

¢¯̄
≤ 2

 2

−−1X
=

min{−1−−}X
=1

q

¡
0 

0
+

¢2q

¡
0+0++

¢2
=

2

 2

−−1X
=

min{−1−−}X
=1

q

¡
0 

0


0 +
0
+

¢r

n¡

0+
¢2 ¡

0++
¢2o

≤ 2

 2

−−1X
=

min{−1−−}X
=1

r

³
k k22

°° +

°°2
2

´r

n¡

0+
¢2 ¡

0++
¢2o

≤ 2

 2

−−1X
=

min{−1−−}X
=1

³
 k k42

´ 1
4
³

°° +

°°4
2

´ 1
4
³

¡
0+

¢4´ 14 ³

¡
0++

¢4´ 1
4

≤ 2 ( − − ) (− 1)
 2

 (applying Lemma C-4 and expression (71) above)


2 (− 1)


(since  =  − − + 1)

= 

µ
1



¶
It follows that



"
1



−X
=

0 
0
+

#2

=
1

 2

−X
=


h¡
0 

¢2 ¡
0+

¢2i
+
2

 2

−−1X
=

−−X
=1


©¡
0 

0
+

¢ ¡
0 +

0
++

¢ª
= 

µ
1



¶

124



so that, applying Markov’s inequality, we get
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Since this result holds for every  ∈ R(+) and  ∈ R such that kk2 = 1 and kk2 = 1, we

further deduce that
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To show part (g), let  ∈ R such that kk2 = 1 and write
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Now,
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that all eigenvalues of  have modulus less than 1. It follows that
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Similar to the argument given previously, we have

max{0−2}X
=0

0 0+
£
+−0+−

¤

£
+−0+−

¤
+

¡

¢0
 0

≤
max{0−2}X

=0

max
¡

£
+−0+−

¤

£
+−0+−

¤¢
0 0++

¡

¢0
 0

≤
max{0−2}X

=0

max
¡

£
+−0+−

¤

£
+−0+−

¤¢
2max

= 

max{0−2}X
=0

2max
¡

£
+−0+−

¤¢
2max

≤ 

max{0−2}X
=0

¡

©

£
+−0+−

¤ª¢2
2max

= 

max{0−2}X
=0

³
 k+−k22

´2
2max

≤ 

max{0−2}X
=0

³
 k+−k62

´ 2
3
2max

≤ 
2
3

1

1− 2max

129



and

max{0−2}X
=0

−−X
1=1

−−X
2=1

01 0++
¡

¢0
(2)0  0

≤
max{0−2}X

=0

−−X
1=1

−−X
2=1

01
¡

¢0
(2)0  0

≤ 

max{0−2}X
=0

2max

−−X
1=1

−−X
2=1

¯̄
01 (2)0  0

¯̄
≤ 

max{0−2}X
=0

2max

−−X
1=1

−−X
2=1

q
01 (1)0  0

q
02 (2)0  0

≤ 

max{0−2}X
=0

2max

−−X
1=1

−−X
2=1

q
21

max

q
22

max

≤ 2
max{0−2}X

=0

2max

−−X
1=1

1
max

−−X
2=1

2
max

≤ 2
1

1− 2max

µ
1

1− max

¶2
It follows that¯̄̄̄

¯̄ 2
−−1X
=

−2X
=0

0 0+
£
+−0+−

¤
+

¡

¢0 −−X

=1

()0  0

¯̄̄̄
¯̄

≤ 2



−−1X
=

⎧⎪⎨⎪⎩
vuuutmax{0−2}X

=0

0 0+
h
+−0+−

i

h
+−0+−

i
+ ()

0
 0

×

vuuutmax{0−2}X
=0

−−X
1=1

−−X
2=1

01 0++ ()
0
(2)0  0

⎫⎪⎬⎪⎭
≤ 2



−−1X
=

s


2
3

1

1− 2max

s
2

1

1− 2max

µ
1

1− max

¶2
= 2

1
3

3
2
 − − + 1



µ
1

1− 2max

¶µ
1

1− max

¶
=  (1)

130



Putting these results together, we obtain
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Making use of the Cauchy-Schwarz inequality, we then have
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Note further that, when  = 1, we will always have  ≥ , given that by definition  is an integer

≥ 1. This implies we need to distinguish between the case where  = 1 from the case where  ≥ 2.
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Consider first the case where  = 1. In this case, we have, for all  ≥ 1
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(as shown previously in expression (72)) (73)

Consider next the case where  ≥ 2. In this case,
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for all  ≥  as previously shown; however, for 1 ≤  ≤ − 1, we have
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Analyzing each term on the majorant side of the function above, we have
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for some positive constant . It follows from these calculations that, for 1 ≤  ≤  − 1 where
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 − − 


(− 1) 5


10 (− 1)


( since  =  − − + 1)

= 

µ
1



¶
Putting everything together for the case where  ≥ 2, we see that



"
1



−X
=

¡
0+

0
+−

£
0+

0
+

¤¢#2

=
1

 2

−X
=


h¡
0+

0
+−

£
0+

0
+

¤¢2i

+
2

 2

−−1X
=

−−X
=1


©¡
0+

0
+−

£
0+

0
+

¤¢ ¡
0++

0
++−

£
0++

0
++

¤¢ª
= 

µ
1



¶
+

µ
1



¶
= 

µ
1



¶
(74)

In light of the results given in expressions (73) and (74), we can apply Markov’s inequality to

show that regardless of whether  = 1 or  ≥ 2

1



−X
=

0+
0
+−

1



−X
=


£
0+

0
+

¤
= 

µ
1√


¶
.

Moreover, since the above result holds for all   ∈ R such that kk2 = kk2 = 1, we further
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deduce that for all (fixed) positive integer 

1



−X
=

+
0
+ −

1



−X
=


£
+

0
+

¤
= 

µ
1√


¶
. ¤

Lemma D-3: Suppose that  is an  × symmetric matrix which we can partition as

 =

⎛⎜⎝ 11
×

12
×(−)

21
(−)×

22
(−)×(−)

⎞⎟⎠
Then,

k21k2 ≤ kk2 .

Proof of Lemma D-3: Define

1
×

=

Ã


0

!
.

Let  ∈ R be such that kk2 = 1 and

002121 = max
kk2=1

002121

It follows that

k21k2 =

q
002121

≤
q
001111 + 002121

=

q
00101

≤
r
max
kk2=1

00
µ
noting that k1k2 =

q
0011 =

√
0 = 1

¶
= kk2 . ¤

Remark: This is a well-known linear algebraic result. A similar result has also been given in the

beginning of section 6 of Johnstone and Lu (2009).

Lemma D-4: Let

 =
1

0

X
=


£
 

0


¤
(75)

where 0 =  − + 1. Then, under Assumptions 3-1, 3-2(a)-(b), 3-2(d), 3-5, and 3-7; there exists
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a positive constant  such that

min {} ≥   0

for all   − 1.

Proof of Lemma D-4:

To proceed, note that we can write

1

0

X
=

Ã
 [ 

0
]  [ 

0
]

 [ 
0
]  [ 

0
]

!
= P(+)

1

0

X
=


£
 

0


¤P 0(+)
from which it follows that

min

(
1

0

X
=

Ã
 [ 

0
]  [ 

0
]

 [ 
0
]  [ 

0
]

!)
= min

(
P(+)

1

0

X
=


£
 

0


¤P 0(+)
)

≥ min

(
1

0

X
=


£
 

0


¤)
min

n
P(+)P 0(+)

o

= min

(
1

0

X
=


£
 

0


¤)
min

©
(+)

ª
¡
since P(+) is an orthogonal matrix

¢
= min

(
1

0

X
=


£
 

0


¤)

Next, note that

1

0

X
=


£
 

0


¤
=

1

0

X
=

¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1
+
1

0

X
=

∞X
=0

 0+
£
−0−

¤
+

¡

¢0

=
¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1
+

∞X
=0

 0+
1

0

X
=


£
−0−

¤
+

¡

¢0
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so that there exists a positive constant  such that

min

(
1

0

X
=


£
 

0


¤)
≥ min

n¡
(+) −

¢−1
 0+

0+
¡
(+) −0

¢−1o
+min

⎧⎨⎩
∞X
=0

 0+
1

0

X
=


£
−0−

¤
+

¡

¢0⎫⎬⎭

(by Weyl’s Theorem (see Theorem 4.3.1 of Horn and Johnson, 1985))

≥ min

⎧⎨⎩
∞X
=0

 0+
1

0

X
=


£
−0−

¤
+

¡

¢0⎫⎬⎭

≥   0 for all   − 1 (by the result given in part (a) of Lemma D-1)

It then follows that

min {}

= min

(
1

0

X
=


£
 

0


¤)

≥ min

(
1

0

X
=

Ã
 [ 

0
]  [ 

0
]

 [ 
0
]  [ 

0
]

!)
( by the Poincaré separation theorem (see Corollary 4.3.16 of Horn and Johnson, 1985) )

≥ min

(
1

0

X
=


£
 

0


¤)
≥   0 for all   − 1,

as required. ¤

Lemma D-5: Let  =  − − + 1 where  is a (fixed) non-negative integer and  is a (fixed)

positive integer. Suppose that Assumption 3-3 hold. Then,

(a)

1



−X
=
≤

| []| =  (1)
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(b)

1



−X
=
≤≤

| ()| =  (1)

(c)

1

 2

−X
=
≤≤≤

| ()| =  (1)

Proof of Lemma D-5:

To show part (a), first write

1



−X
=
≤

| []| = 1



−X
=


£
2
¤
+
1



−X
=


| []| (76)

Consider now the first term on the right-hand side of expression (76). Note that, trivially, by

Assumption 3-3(b),

1



−X
=


£
2
¤ ≤  =  (1) (77)

For the second term on the right-hand side of expression (76), note that by Assumption 3-3(c),

{}∞=−∞ is -mixing with  mixing coefficient satisfying

 () ≤ 1 exp {−2} .

for every . Since  ≤  (), it follows that {}∞=−∞ is -mixing as well, with  mixing

coefficient satisfying

 ≤ 1 exp {−2} for every .

Hence, in this case, we can apply Lemma C-3 with  = 6 and  = 54 to obtain

1



−X
=


| []|

≤ 1



−X
=


2
³
21−

1
6 + 1

´
[1 exp {−2 ( − )}]1− 1

6
− 4
5

³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5

150



Application of Liapunov’s inequality then gives us

³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5 ≤

³
 ||6

´ 1
6
³
 ||6

´ 1
6

≤
µ
sup

 ||6

¶ 1
3

= 
1
3 ∞ (by Assumption 3-3(b))

Moreover, let  =  − , so that  =  + . Using these notations and the boundedness of³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5
as shown above, we can further write

1



−X
=


| []|

1



−X
=


2
³
21−

1
6 + 1

´
[1 exp {−2 ( − )}]1−1

6
− 4
5

³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5

≤ 
1
3



−X
=


2
³
2
5
6 + 1

´
[1 exp {−2 ( − )}] 130

≤ ∗



−X
=


exp
n
−2
30


o

µ
for some constant ∗ such that 2

³
2
5
6 + 1

´


1
3

1
30
1 ≤ ∗ ∞

¶
≤ ∗



−X
=

∞X
=1

exp
n
−2
30


o

= ∗
∞X

1=1

exp
n
−2
30


o

=  (1) (given Lemma C-1) (78)

It follows from expressions (76), (77), and (78) that

1



−X
=
≤

| []| =
1



−X
=


£
2
¤
+
1



−X
=


| []|

=  (1) + (1)

=  (1) .
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To show part (b), first write

1



−X
=
≤≤

| ()| =
1



−X
=

 ||3 + 1



−X
=
≤≤

−−−0

| ()|

+
1



−X
=
≤≤

−≥− −0

| ()| (79)

For the first term on the right-hand side of expression (79) above, note that, trivially, we can apply

Assumption 3-3(b) to obtain

1



−X
=

 ||3 ≤  =  (1) . (80)

Next, note that, for the second term on the right-hand side of expression (79) above, we can

apply Lemma C-3 with  = 6 and  = 54 to obtain

1



−X
=
≤≤

−−−0

| ()|

≤ 1



−X
=
≤≤

−−−0

2
³
21−

1
6 + 1

´
[1 exp {−2 (− )}]1− 1

6
−4
5

³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5

Next, applying Hölder’s inequality, we have

³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5 ≤

³
 ||6

´ 1
6

µ³
 ||

5
2

´ 1
2
³
 ||

5
2

´ 1
2

¶ 4
5

=
³
 ||6

´ 1
6
³
 ||

5
2

´ 2
5
³
 ||

5
2

´ 2
5

≤
³
 ||6

´ 1
6
³
 ||6

´ 1
6
³
 ||6

´ 1
6

(by Liapunov’s inequality)

= 
1
2 ∞ (by Assumption 3-3(b))

Moreover, let 1 = −  and 2 = − , so that  = +1 and  = + 2 = +1+ 2. Using these
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notations and the boundedness of
³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5
as shown above, we can further write

1



−X
=
≤≤

−−−0

| ()|

≤ 1



−X
=
≤≤

−−−0

2
³
21−

1
6 + 1

´
[1 exp {−2 (− )}]1− 1

6
−4
5

³
 ||6

´ 1
6
³
 ||

5
4

´ 4
5

≤ 
1
2



−X
=
≤≤

−−−0

2
³
2
5
6 + 1

´
[1 exp {−2 (− )}] 130

≤ ∗



−X
=
≤≤

−−−0

exp
n
−2
30

1

o
µ
for some constant ∗ such that 2

³
2
5
6 + 1

´


1
2

1
30
1 ≤ ∗ ∞

¶
≤ ∗



−X
=

∞X
1=1

1−1X
2=0

exp
n
−2
30

1

o

≤ ∗



−X
=

∞X
1=1

1 exp
n
−2
30

1

o
= ∗

∞X
1=1

1 exp
n
−2
30


\
1

o
=  (1) (given Lemma C-1) (81)

Similarly, for the third term on the right-hand side of expression (79), we can apply Lemma

C-3 with  = 6 and  = 54, we have

1



−X
=
≤≤

−≥− −0

| ()|

≤ 1



−X
=
≤≤

−≥− −0

2
³
21−

1
6 + 1

´
[1 exp {−2 ( − )}]1− 4

5
−1
6

³
 ||

5
4

´ 4
5
³
 ||6

´ 1
6
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Next, applying Hölder’s inequality, we have

³
 ||

5
4

´ 4
5
³
 ||6

´ 1
6 ≤

µ³
 ||

5
2

´ 1
2
³
 ||

5
2

´ 1
2

¶ 4
5 ³

 ||6
´ 1
6

=
³
 ||

5
2

´ 2
5
³
 ||

5
2

´ 2
5
³
 ||6

´ 1
6

≤
³
 ||6

´ 1
6
³
 ||6

´ 1
6
³
 ||6

´ 1
6

(by Liapunov’s inequality)

= 
1
2 ∞ (by Assumption 3-3(b))

Moreover, let 1 = −  and 2 = − , so that  = +1 and  = + 2 = +1+ 2. Using these

notations and the boundedness of
³
 ||

5
4

´ 4
5
³
 ||6

´ 1
6
as shown above, we can further write

1



−X
=
≤≤

−≥− −0

| ()|

≤ 1



−X
=
≤≤

−≥− −0

2
³
21−

1
6 + 1

´
[1 exp {−2 ( − )}]1− 4

5
− 1
6

³
 ||

5
4

´ 4
5
³
 ||6

´ 1
6

≤ 
1
2



−X
=
≤≤

−≥− −0

2
³
2
5
6 + 1

´
[1 exp {−2 ( − )}] 130

≤ ∗



−X
=
≤≤

−≥− −0

exp
n
−2
30

2

o
µ
for some constant ∗ such that 2

³
2
5
6 + 1

´


1
2

1
30

1 ≤ ∗ ∞
¶

≤ ∗



−X
=

∞X
2=1

2X
1=0

exp
n
−2
30

2

o

=
∗



−X
=

∞X
2=1

(2 + 1) exp
n
−2
30

2

o

= ∗

⎡⎣ ∞X
2=1

2 exp
n
−2
30

2

o
+

∞X
2=1

exp
n
−2
30

2

o⎤⎦
=  (1) (given Lemma C-1) (82)
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It follows from expressions (??), (??), (??), and (??) that

1



−X
=
≤≤

| ()| =
1



−X
=

 ||3 + 1



−X
=
≤≤

−−−0

| ()|

+
1



−X
=
≤≤

−≥− −0

| ()|

=  (1) + (1) + (1)

=  (1) .

Finally, to show part (c), we first write

1

 2

−X
=
≤≤≤

| ()|

=
1

 2

−X
=
≤

¯̄

£


3


¤¯̄
+
1

 2

−X
=
≤≤≤

−− −0

| ()|+ 1

 2

−X
=
≤≤≤

−≤− −0

| ()|

=
1

 2

−X
=
≤

¯̄

£


3


¤¯̄
+
1

 2

−X
=
≤≤≤

−− −0

| [{ − () + ()}]|

+
1

 2

−X
=
≤≤≤

−≤− −0

| [{ − () + ()}]|

≤ 1

 2

−X
=
≤

¯̄

£


3


¤¯̄
+
1

 2

−X
=
≤≤≤

−− −0

| [{ − ()}]|

+
1

 2

−X
=
≤≤≤

−≤− −0

| [{ − ()}]|+ 1

 2

−X
=
≤≤≤
−0

| ()| | ()| (83)

For the first term on the right-hand side of expression (83) above, note that, by Jensen’s inequality,
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the Cauchy-Schwarz inequality, and Assumption 3-3(b); we have

1

 2

−X
=
≤

¯̄

£


3


¤¯̄ ≤ 1

 2

−X
=
≤


£¯̄


3


¯̄¤

≤ 1

 2

−X
=
≤

q
 ||2

q
 ||6

≤ 1

 2

−X
=
≤

³
 ||6

´ 1
6

q
 ||6

(by Liapunov’s inequality)

≤ 
2
3 2
 2

(by Assumption 3-3(b))

=  (1) (84)

Next, for the second term on the right-hand side of expression (83), we can apply Lemma C-3

with  = 43 and  = 6 to obtain

1

 2

−X
=
≤≤≤

−− −0

| [{ − ()}]|

≤ 1

 2

−X
=
≤≤≤

−− −0

n
2
³
21−

3
4 + 1

´
[1 exp {−2 ( − )}]1− 3

4
−1
6

×
³
 |{ − ()}|

4
3

´ 3
4
³
 ||6

´ 1
6

¾
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Next, by repeated application of Hölder’s inequality,

 |{ − ()}|
4
3 ≤

h
 ( − ())

12
7

i 7
9
h
 ||6

i 2
9

≤
h
2
5
7

³
 ||

12
7 + | []|

12
7

´i 7
9
h
 ||6

i 2
9

(by Loève’s  inequality)

≤
h
2
5
7

³
 ||

12
7 + ||

12
7

´i 7
9
h
 ||6

i 2
9

(by Jensen’s inequality)

=
h
2
12
7  ||

12
7

i 7
9
h
 ||6

i 2
9

≤ 2
4
3

∙³
 ||

24
7

´ 1
2
³
 ||

24
7

´ 1
2

¸ 7
9 h

 ||6
i 2
9

= 2
4
3

∙³
 ||

24
7

´ 7
24
³
 ||

24
7

´ 7
24

¸ 4
3 h

 ||6
i 2
9

≤ 2
4
3

∙³
 ||6

´ 1
6
³
 ||6

´ 1
6

¸ 4
3 h

 ||6
i 2
9

≤ 2
4
3 ()

2
9 ()

2
9 ()

2
9 (by Assumption 3-3(b) )

= 2
4
3

2
3

Moreover, let 1 =  −  and 2 =  −  so that  = + 1 and  =  + 2 =  + 1 + 2.

Using these notations and the boundedness of  |{ − ()}|
4
3 as shown above, we can
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further write

1

 2

−X
=
≤≤≤

−− −0

| [{ − ()}]|

≤ 1

 2

−X
=
≤≤≤

−− −0

n
2
³
21−

3
4 + 1

´
[1 exp {−2 ( − )}]1− 3

4
−1
6

×
³
 |{ − ()}|

4
3

´ 3
4
³
 ||6

´ 1
6

¾
≤ 1

 2

−X
=
≤≤≤

−− −0

2
³
2
1
4 + 1

´
[1 exp {−2 ( − )}] 112

³
2
4
3

2
3

´ 3
4
()

1
6

≤ ∗

 2

−X
=
≤≤≤

−− −0

exp
n
−2
12

2

o
µ
for some constant ∗ such that 4

³
2
1
4 + 1

´


2
3

1
12
1 ≤ ∗ ∞

¶
≤ ∗

 2

−X
=

−X
=

∞X
2=1

2−1X
1=0

exp
n
−2
12

2

o
= ∗

∞X
2=1

2 exp
n
−2
12

2

o
=  (1) (given Lemma C-1) (85)

Similarly, for the third term on the right-hand side of expression (83) above, we can apply

Lemma C-3 with  = 2 and  = 3 to obtain

1

 2

−X
=
≤≤≤

−≤− −0

| [{ − ()}]|

≤ 1

 2

−X
=
≤≤≤

−≤− −0

n
2
³
21−

1
2 + 1

´
[1 exp {−2 ( − )}]1− 1

2
−1
3

×
³
 |{ − ()}|2

´ 1
2
³
 ||3

´ 1
3

¾
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Next, applications of Hölder’s inequality yield

 ||3 ≤
³
 ||6

´ 1
2
³
 ||6

´ 1
2

≤ ()
1
2 ()

1
2 (by Assumption 3-3(b))

=  ∞

and

 |{ − ()}|2 ≤ 2
³
 ||2 + | []|2

´
(by Loève’s  inequality)

≤ 2
³
 ||2 + ||2

´
(by Jensen’s inequality)

= 4 ||2

≤ 4

∙³
 ||4

´ 1
4
³
 ||4

´ 1
4

¸2
≤ 4

∙³
 ||6

´ 1
6
³
 ||6

´ 1
6

¸2
(by Liapunov’s inequality)

≤ 4

µ
sup

 ||6

¶2
3

≤ 4 ()
2
3 ∞ (by Assumption 3-3(b) )

Moreover, let 1 =  −  and 2 =  −  so that  = + 1 and  =  + 2 =  + 1 + 2. Using

these notations and the boundedness of  ||3 and  |{ − ()}|2 as shown above,
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we can further write

1

 2

−X
=
≤≤≤

−≤− −0

| [{ − ()}]|

≤ 1

 2

−X
=
≤≤≤

−≤− −0

n
2
³
21−

1
2 + 1

´
[1 exp {−2 ( − )}]1− 1

2
− 1
3

×
³
 |{ − ()}|2

´ 1
2
³
 ||3

´ 1
3

¾
≤ 1

 2

−X
=
≤≤≤

−≤− −0

2
³
2
1
2 + 1

´
[1 exp {−2 ( − )}] 16

³
4

2
3

´ 1
2
()

1
3

≤ ∗

 2

−X
=
≤≤≤

−≤− −0

exp
n
−2
6
1

o
µ
for some constant ∗ such that 4

³
2
1
2 + 1

´


2
3

1
6
1 ≤ ∗ ∞

¶
≤ ∗

 2

−X
=

−X
=

∞X
1=1

1X
2=0

exp
n
−2
6
1

o
= ∗

∞X
1=1

(1 + 1) exp
n
−2
6
1

o
=  (1) (given Lemma C-1) (86)

Finally, consider the fourth term on the right-hand side of expression (83) above. For this term,

we apply the result given in part (a) to obtain

1

 2

−X
=
≤≤≤
−0

| ()| | ()| ≤

⎛⎜⎜⎝ 1



−X
=
≤

| ()|

⎞⎟⎟⎠
⎛⎜⎝ 1



−X
=
≤

| ()|

⎞⎟⎠
=  (1) . (87)
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It follows from expressions (83)-(87) that

1

 2

−X
=
≤≤≤

| ()|

≤ 1

 2

−X
=
≤

¯̄

£


3


¤¯̄
+
1

 2

−X
=
≤≤≤

−− −0

| [{ − ()}]|

+
1

 2

−X
=
≤≤≤

−≤− −0

| [{ − ()}]|+ 1

 2

−X
=
≤≤≤
−0

| ()| | ()|

=  (1) . ¤

Lemma D-6: Let  =  −  −  + 1 where  is a (fixed) non-negative integer and  is a

(fixed) positive integer. Suppose that Assumptions 3-1, 3-2(a)-(b), 3-5, and 3-7 hold. Then, as

1 2  →∞,

max
∈

1

1

X
∈

µ
0

0·√
1

¶2
= 

⎛⎝ 
1
3
2

1

⎞⎠ .
Proof of Lemma D-6:

To proceed, we first show the boundedness of the quantity

1

1

X
∈

X
∈

1

2
3




Ã
−X
=

0 

!6

Note first that there exist a constant 1  1 such that

1

1

X
∈

X
∈

1

2
3




Ã
−X
=

0 

!6

≤ 1

12
3


X
∈

X
∈

−X
=

≤≤≤≤≤

{| []|

×
¯̄

£¡
0 

¢ ¡
0 

¢ ¡
0 

¢ ¡
0 

¢ ¡
0 

¢ ¡
0

¢¤¯̄ª
Next, note that, by repeated application of Hölder’s inequality, we have by Assumption 3-5 and
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Lemma C-4 that there exists a positive constant  such that

¯̄

£¡
0 

¢ ¡
0 

¢ ¡
0 

¢ ¡
0 

¢ ¡
0 
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Hence, we can write
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+
1

12
3


X
∈

X
∈

−X
=

≤≤≤≤≤
−≥max{−−}−0

| [{ − ()}]|

+
1

12
3


X
∈

X
∈

−X
=

≤≤≤≤≤
−≥max{−−}−0

| ()| | ()|

= T T 1 + T T 2 + T T 3 + T T 4 + T T 5 + T T 6 () .

Consider first T T 1. Note that

T T 1 =
1

12
3


X
∈

X
∈

−X
=
≤≤

¯̄

£


4


¤¯̄

≤ 1

12
3


X
∈

X
∈

−X
=
≤≤


£¯̄


4


¯̄¤

≤ 1

12
3


X
∈

X
∈

−X
=
≤≤

³

h
||3

i´ 1
3
³

h
||6

i´ 2
3
(by Hölder’s inequality)

≤ 1

12
3


X
∈

X
∈

−X
=
≤≤

µh

n
||6

oi 1
2
h

n
||6

oi 1
2

¶1
3 ³


h
||6

i´ 2
3

(by further application of Hölder’s inequality)

=
1

12
3


X
∈

X
∈

−X
=
≤≤

³

n
||6

o´ 1
6
³

n
||6

o´ 1
6
³

h
||6

i´ 2
3

≤ 1

12
3


X
∈

X
∈

−X
=
≤≤

µ
sup


n
||7

o¶6
7

(using Liapunov’s inequality)

≤ 1

12
3


X
∈

X
∈

−X
=
≤≤


6
7 (by Assumption 3-3(b))

≤ 1
6
7
12

3


12
3


= 1
6
7 =  (1) (88)
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Next, consider T T 2. For this term, note first that by Assumption 3-3(c), {}∞=−∞ is -mixing

with  mixing coefficient satisfying

 () ≤ 1 exp {−2}

for every . Since  ≤  (), it follows that {}∞=−∞ is -mixing as well, with  mixing

coefficient satisfying

 ≤ 1 exp {−2} for every .

Hence, in this case, we can apply Lemma C-3 with  = 54 and  = 6 to obtain
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Next, by repeated application of Hölder’s inequality, we have

 ||
5
4

≤
h
 ||

25
12

i 3
5
h
 ||

25
8

i 2
5

≤
∙³

 ||
150
47

´ 47
72
³
 ||6

´ 25
72

¸ 3
5
∙³

 ||
25
4

´ 1
2
³
 ||

25
4

´ 1
2

¸ 2
5

≤
"µq

 ||
300
47

q
 ||

300
47

¶ 47
72 ³

 ||6
´ 25
72

# 3
5 ∙³

 ||
25
4

´ 1
2
³
 ||

25
4

´ 1
2

¸ 2
5

≤
³
 ||

300
47

´ 141
720
³
 ||

300
47

´ 141
720
³
 ||6

´ 15
72
³
 ||

25
4

´ 1
5
³
 ||

25
4

´ 1
5

=

∙³
 ||

300
47

´ 47
300
³
 ||

300
47

´ 47
300

¸ 5
4
∙³

 ||6
´ 1
6

¸ 5
4
∙³

 ||
25
4

´ 4
25

¸ 5
4
∙³

 ||
25
4

´ 4
25

¸ 5
4

≤
∙³

 ||7
´ 1
7
³
 ||7

´ 1
7

¸ 5
4
∙³

 ||7
´ 1
7

¸ 5
4
∙³

 ||7
´ 1
7

¸ 5
4
∙³

 ||7
´ 1
7

¸ 5
4

(by Liapunov’s inequality)

≤ ¡

¢ 5
28
¡

¢ 5
28
¡

¢ 5
28
¡

¢ 5
28
¡

¢ 5
28 (by Assumption 3-3(b))

= 
25
28

By Liapunov’s inequality and Assumption 3-3(b), we also obtain
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Moreover, let 1 = − , 2 =  − , and 3 =  − , so that  =  + 1,  = + 2 =  + 1+ 2,

 =  + 3 =  + 1+ 2 + 3.. Using these notations and the boundedness of  ||
5
4
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as shown above, we can further write
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which exists in light of Lemma C-1.
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Now, consider T T 3. Here, we apply Lemma C-3 with  = 32 and  = 72 to obtain
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Next, observe that by applying of Hölder’s inequality, we have
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and
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Again, let 1 =  − , 2 =  − , and 3 =  − , so that  =  + 1,  = + 2 =  + 1+ 2,

 =  + 3 =  + 1+ 2 + 3. Using these notations and the boundedness of  ||
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which exists in light of Lemma C-1.

Turning our attention to the term T T 4, note that, from the upper bounds given in the proofs
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of parts (a) and (c) of Lemma D-5, it is clear that there exists a positive constant ∗∗ such that,

for all  and for all  sufficiently large,
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Consider now T T 5. In this case, we apply Lemma C-3 with  = 2 and  = 94 to obtain
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Next, by repeated application of Hölder’s inequality, we obtain
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and
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Define again 1 = − , 2 =  − , and 3 =  − , so that  =  + 1,  = + 2 =  + 1+ 2,

 =  + 3 =  + 1+ 2 + 3. Using these notations and the boundedness of  ||
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which exists in light of Lemma C-1.

Finally, consider T T 6. Note that, from the upper bounds given in the proofs of part (b) of

Lemma D-5, it is clear that there exists a positive constant ∗∗2 such that, for all  and for all 
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sufficiently large,
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It follows from expressions (88)-(93) that, for all 1 2, and  sufficiently large,
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Hence, for any   0, set  =
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1

X
∈

X
∈
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1
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2

√


−X
=
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⎫⎬⎭
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1

1

X
∈

X
∈

1

2
3




Ã
−X
=

0 

!6
≤ e e
= 

This shows that

max
∈

1

1

X
∈

µ
0

0·√
1

¶2
= 

⎛⎝ 
1
3
2

1

⎞⎠ = 

⎛⎝ 
1
3
2

1

⎞⎠ . ¤
Before stating the next lemma, we first introduce some more notations. Let S+ denote either
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the statistic
X

=1
 | | or the statistic max1≤≤ | |, and define

c =
n
 ∈ {1  } : S+ ≥ Φ−1

³
1− 

2

´o
, (94)

b =
n
 ∈ {1  } : S+  Φ−1

³
1− 

2

´o
, (95)

b1 = #
³c

´
, i.e., the cardinality of the set c, (96)

Γ
³c

´
=

⎛⎜⎜⎜⎜⎜⎜⎝
1

³c
´0

2

³c
´0

...



³c
´0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
I
n
1 ∈ c

o
01

I
n
2 ∈ c

o
02

...

I
n
 ∈ c

o
0

⎞⎟⎟⎟⎟⎟⎟⎠ , and


³c

´
=

⎛⎜⎜⎜⎜⎜⎜⎝
1·
³c

´0
2·
³c

´0
...

 ·
³c

´0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
I
n
1 ∈ c

o
01·

I
n
2 ∈ c

o
02·

...

I
n
 ∈ c

o
0 ·

⎞⎟⎟⎟⎟⎟⎟⎠ , (97)

where · = ( +1  −)
0 for  = 1   .

Lemma D-7: Let  =  − − + 1 where  is a (fixed) non-negative integer and  is a (fixed)

positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3(a)-(c), 3-4, 3-5, 3-7, 3-8, 3-10(a)

and 3-11 hold. Then, as 1 2  →∞, the following statements are true.

(a) X
∈

I
n
 ∈ c

o
=  ()

(b) X
∈

I
n
 ∈ c

o 1

1

X
∈

µ
0

0·√
1

¶2
= 

⎛⎝
1
3
2 

1

⎞⎠ 

(c)

1

1

X
∈

I
n
 ∈ c

o X
∈

µ
0

0·√
1

¶2
= 

µ
1



¶

Proof of Lemma D-7:

To show part (a), let S+ denote either the statistic
X

=1
 | | or the statisticmax1≤≤ | |.

Following arguments similar to that given in the proof of part (a) of Theorem 1 (see Chao, Qiu,

177



and and Swanson (2023b)), we see that there exists a constant   2 such that

X
∈


h
I
n
 ∈ c

oi
=

X
∈

Pr
³
 ∈ c

´
=

X
∈

Pr
n
S+ ≥ Φ−1

³
1− 

2

´o
≤ 

2



≤ 

for all 12, and  sufficiently large. Hence, for any   0, set  = , and note that
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(
1



X
∈

I
n
 ∈ c

o
≥ 

)
≤ 1



X
∈


h
I
n
 ∈ c

oi
(by Markov’s inequality)

≤ 




= 

which shows that X
∈

I
n
 ∈ c

o
=  ()

Next, to show part (b), we combine the result given in part (a) of this lemma with the result

of Lemma D-6 to obtain

X
∈

I
n
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o 1

1

X
∈

µ
0

0·√
1

¶2
≤ max

∈
1

1

X
∈

µ
0

0·√
1

¶2 "X
∈

I
n
 ∈ c

o#
(by Hölder’s inequality)

= 

⎛⎝ 
1
3

2

1

⎞⎠ ()

= 

⎛⎝
1
3
2 

1

⎞⎠ .
Finally, to show part (c), note first that

1

1

X
∈

I
n
 ∈ c

o X
∈

µ
0

0·√
1

¶2
≤ 1

2
1

X
∈

X
∈

µ
0

0·


¶2
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Moreover, write

0 ≤ 1
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X
∈

X
∈



µ
0
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X
∈

X
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2
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X
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∈

X
∈
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=
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©
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X
∈

X
∈

−X
=

0
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¡
2
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2
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∈

X
∈

−−1X
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−−X
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£
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0
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2
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X
∈
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¡
2
¢
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2
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X
∈
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2
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X
∈

X
∈
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¡
2
¢
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+
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2
1

2


X
∈

X
∈

−−1X
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| (+)|
¯̄
0

£
 

0
+

¤

¯̄

Note that by Assumption 3-3(c), {}∞=−∞ is -mixing with  mixing coefficient satisfying

 () ≤ 1 exp {−2}

for every . Since  ≤  (), it follows that {}∞=−∞ is -mixing as well, with  mixing

coefficient satisfying

 ≤ 1 exp {−2} for every .

Hence, applying Lemma C-3 with  = 3 and  = 3 as well as Assumptions 3-3(b) and 3-5 and
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Lemma C-4; we get

1

2
1

2


X
∈

X
∈



⎡⎣Ã−X
=

0 

!2⎤⎦
≤ 1

2
1

2


X
∈

X
∈

−X
=

0

£
 

¡
2
¢
 0
¤


+
2

2
1

2


X
∈

X
∈

−−1X
=

−−X
=1

| (+)|
¯̄
0

£
 

0
+

¤

¯̄

≤ 1

2
1

2


X
∈

X
∈

−X
=

0

£
 

¡
2
¢
 0
¤


+
2

2
1

2


X
∈

X
∈

−−1X
=

−−X
=1

| (+)|
¯̄
0 

0
+

¯̄
≤ 1

2
1

2


X
∈

X
∈

−X
=


¡
2
¢ kk22 hk k22

i

+
1

2
1

2


X
∈

X
∈

2
³
2
2
3 + 1

´
2

−−1X
=

−−X
=1

½

1
3


³
 ||3

´ 1
3
³
 |+|3

´ 1
3

×
q
0 [ 

0
] 

q
0

£
 +

0
+

¤


¾
≤ 1

2
1

2


X
∈

X
∈

−X
=


¡
2
¢ kk22 hk k22

i

+
1

2
1

2


X
∈

X
∈

4
³
2
2
3 + 1

´ −−1X
=

−−X
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1
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=

−−X
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1
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n
−2
3
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≤ 1


+ 2

1
3

1

1



∞X
=1
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for some positive constant

 ≥ 1 + 2
1
3
1

∞X
=1

exp
n
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3

o
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which exists in light of Lemma C-1. Hence, for any   0, set  = , and note that

Pr

(


1

X
∈

I
n
 ∈ c

o X
∈

µ
0

0·√
1

¶2
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)
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(


2
1

X
∈

X
∈

µ
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¶2
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2
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X
∈

X
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⎡⎣Ã−X
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= 

which shows that

1

1

X
∈

I
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∈

µ
0

0·√
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¶2
= 

µ
1



¶
= 

µ
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¶
. ¤

Lemma D-8: Let  =  − − + 1 where  is a (fixed) non-negative integer and  is a (fixed)

positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3(a)-(c), 3-4, 3-5, 3-7, 3-8, 3-10(a)

and 3-11* hold. Then, the following statements are true.

(a)
1

1

X
∈

I
n
 ∈ c

oµ0··


¶
=  (1) .

(b)

1

1

X
∈

I
n
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oµ0··


¶
= 

Ã


2
7

5
7

1

!
=  (1) .

Proof of Lemma D-8:
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To show part (a), note first that

1

1

X
∈



∙
I
n
 ∈ c

oµ0··


¶¸
≤ 1

1

X
∈



∙µ
0··


¶¸

=
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#

≤ 1

1
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∈
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−X
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sup



£
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≤ 1

1

X
∈
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−X
=



= 

for some positive constant  ≥ sup
h
2

i
which exists in light of Assumption 3-3(b). Hence,

for any   0, set  = , and note that
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(
1

1

X
∈

I
n
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¶
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1

1
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∈



∙
I
n
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(by Markov’s inequality)

≤ 




= 

which shows that
1

1

X
∈

I
n
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oµ0··


¶
=  (1) .
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Next, to show part (b), note that

1

1

X
∈



∙
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n
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oµ0··


¶¸
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∈

³
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(by Hölder’s inequality)
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³
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for some positive constant 1 ≥ sup
h
||7

i
which exists in light of Assumption 3-3(b). Now,

let S+ denote either the statistic
X

=1
 | | or the statistic max1≤≤ | |; and, following

arguments similar to that given in the proof of part (a) of Theorem 1 (see Chao, Liu, and Swanson

(2023b)), we see that, for any  ∈ , there exists a constant 2  2 such that

Pr
n
S+ ≥ Φ−1

³
1− 

2

´o
≤ 2





for all 12, and  sufficiently large, from which it follows that
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∙
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2
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1

for all 1 2, and  sufficiently large and for some positive constant 3 ≥ 
2
7

1 
5
7

2 . Hence, for any
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  0, set  = 3, and note that
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2
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which shows that
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5
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=  (1) . ¤

Lemma D-9: Let  =  − − + 1 where  is a (fixed) non-negative integer and  is a (fixed)

positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3, 3-4, 3-5, 3-7, 3-8, 3-10(a) and 3-11*

hold. Then, the following statements are true.

(a)

T1 = 1

1
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∈

I
n
 ∈ c

o 1

1
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∈
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n
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(b)
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(c)
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(d)
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Proof of Lemma D-9:
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To show part (a), note that

0 ≤ T1
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1

1
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I
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From the non-negativity of T1, we get
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for some positive constant 1 ≥ sup
h
4

i
which exists in light of Assumption 3-3(b). Moreover,
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Consider the first term on the right-hand side above. Note that by Assumption 3-3(c), {}∞=−∞
is -mixing with  mixing coefficient satisfying

 () ≤ 1 exp {−2}

for every . Since  ≤  (), it follows that {}∞=−∞ is -mixing as well, with  mixing

coefficient satisfying

 ≤ 1 exp {−2} for every .
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Hence, we can apply Lemma C-3 with  = 2 and  = 3 to obtain
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Moreover,
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which exists in light of Assumptions 3-3(b) and 3-3(d). It follows from these results that
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for some positive constant  ≥ 1 + 2 + 3. Hence, for any   0, set  = , and applying

Markov’s inequality, we obtain
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Next, to show part (b), we apply parts (a) and (b) of Lemma D-8 to obtain
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Part (c) can be shown in the same way as part (b) above. Hence, to avoid redundancy, we do

not give an explicit proof here.
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Finally, to show part (d), we apply part (b) of Lemma D-8 to obtain
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Lemma D-10: Let

bΣ³c
´
=


³c

´0

³c

´
b10 (98)

where 0 =  − + 1, where c and b1 are as defined, respectively, in expressions (94) and (96)
above, and where


³c

´
0×

=
h
1·I

n
1 ∈ c

o
2·I

n
2 ∈ c

o
· · ·  ·I

n
 ∈ c

o i
(99)

with · = ( +1   )
0 for  = 1   . Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3,

3-4, 3-5, 3-7, 3-8, 3-10, and 3-11* hold.

Under the assumed conditions,°°°°bΣ³c
´
− ΓΓ

0

1

°°°°
2

=  (1) as 1 2  →∞,

where

 =
1

0

X
=


£
 

0


¤
.

Proof of Lemma D-10:

To proceed, note that we can write


³c

´
= Γ

³c
´0
+ 

³c
´
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so that
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+
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1
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0
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´
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where  is as defined in (75), where Γ
³c

´
and 

³c
´
are as defined in (97), and where


³c

´
is as defined in expression (99).

Consider first the term −
h³ b1 −1

´
 b1i (ΓΓ

01). Note that, for some positive con-
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stant  such that
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(by the homogeneity of matrix norm and the triangle inequality)
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(by Liapunov’s inequality)
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1
3 (by Lemma C-4) (101)

 ∞

from which it follows that°°°°ΓΓ
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≤ ∗
1
3 ∞ for all 1, 2 sufficiently large,
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since, by Assumption 3-6, there exists some positive constant ∗ such that max (Γ0Γ1) ≤ ∗ 

∞ for all 1, 2 sufficiently large. Moreover, applying part (a) of Lemma D-15 and the Slutsky’s

theorem, we have

¯̄̄̄
¯−
Ã b1 −1b1

!¯̄̄̄
¯ =
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¯ b1 −1b1

¯̄̄̄
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¯ b1 −1

1

¯̄̄̄
¯
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¯̄ 1³ b1 −1

´
1 + 1
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¯̄ → 0

so that by a further application of the Slutsky’s theorem, we can deduce that°°°°°−
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¯
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0

1

°°°°


→ 0. (102)

Consider now the other terms on the right-hand side of expression (100). To proceed, we first

note that, by applying part (a) of Lemma D-15 and the Slutsky’s theorem, we have¯̄̄̄
¯̄
Ã
1 +

b1 −1

1
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³
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so that, for any   0,⎧⎪⎨⎪⎩
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Hence, applying either part (a) or part (b) of Theorem 2 in Chao, Liu, and Swanson (2023a)
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Now, consider the term Γ
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´ h
 0
0
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i
Γ
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´0
1. For this term, note first that, by

sub-multiplicativity of matrix norms, we have that°°°°°°°
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For the first term on the right-hand side of expression (104) above, we can apply part (a) of Lemma

D-7 to obtain
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With regard to the second term on the right-hand side of expression (104), note that
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X
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h
I
n
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since, by definition, 1 is the cardinality of the set{ ∈ {1  } :  ∈ }. Hence, for any   0,
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set  =  for any positive constant  ≥ 1, and note that
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Turning our attention to the term 
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´0
Γ
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´0
 (10), we first write
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Applying parts (b) and (c) of Lemma D-7, we obtain°°°°°°°
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where the order of magnitude in probability of the terms T1, T2, T3, and T4 are given in parts
(a)-(d) of Lemma D-9. It, thus, follows by applying parts (a)-(d) of Lemma D-9 with  = 0 that

°°°°°°°

³c

´0

³c

´
10

°°°°°°°
2



=
1

2
1

2
0

X
=1

X
=1

I
n
 ∈ c

o
I
n
 ∈ c

o¡
0··

¢2
= T1 + T2 + T3 + T4

= 

µ
max

½
1

1

1



¾¶
+

Ã


2
7

5
7

1

!
+

Ã


2
7

5
7

1

!
+

Ã


4
7

10
7

2
1

!

= 

Ã
max

(
1

1

1





2
7

5
7

1

)!
=  (1) .

199



from which we further deduce that°°°°°°°
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¯1 + b1 −1

1

¯̄̄̄
¯
−1 °°°°°°

Γ
³c

´
 0

³c
´

10

°°°°°°


+

¯̄̄̄
¯1 + b1 −1

1

¯̄̄̄
¯
−1
°°°°°°°

³c

´0

³c

´
10

°°°°°°°


=  (1) as 1 2  →∞. ¤

Lemma D-11: Let


×

=
ΓΓ

0

1
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where

 =
1

0

X
=


£
 

0


¤
with 0 =  − + 1.

Suppose that Assumptions 3-1, 3-2(a)-(b), 3-2(d), 3-5, 3-6 and 3-7 hold; and let  be an  × 

orthogonal matrix whose columns are the eigenvectors of . Under the assumed conditions, the

following statements are true.

(a)  () =  for all 1, 2 sufficiently large, and, hence, 0 is an eigenvlaue of  with

algebraic multiplicity equaling  −.

(b) Partition  as follows:


×

=

∙
1

×
2

×(−)

¸
Without loss of generality, suppose that the columns of 1 are eigenvectors associated with

the non-zero eigenvalues of , whereas 2 contains the eigenvectors associated with the zero

eigenvalue. Then, the matrix 0 can be partitioned as follows:

0 =

⎛⎜⎝ Λ1
×

0
×(−)

0
(−)×

Λ2
(−)×(−)

⎞⎟⎠ =

⎛⎜⎝ Λ1
×

0
×(−)

0
(−)×

0
(−)×(−)

⎞⎟⎠ . (109)

where Λ1 is a diagonal matrix whose diagonal elements are the non-zero eigenvalues of  and

where Λ2 = 0.

(c) Define the separation measure

sep (Λ1Λ2) = min
 6=0

kΛ1 −Λ2k
kk

;

then, there exists a positive constant  such that

sep (Λ1Λ2) = sep (Λ1 0) = min
 6=0

kΛ1k
kk

≥ min

Ã

12

 Γ
0Γ12



1

!
≥   0.

Proof of Lemma D-11: To show part (a), note first that, by the result of Lemma D-4 above,

there exists a positive constant  such that

min {} ≥   0
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for all   − 1; and, by Assumption 3-6, we have,

min

µ
Γ0Γ
1

¶
≥ 1


for 12 sufficiently large

for some constant  such that 0   ∞. Combining these two inequalities, we see that

min

(

12
 Γ

0Γ12


1

)
≥ min

µ
Γ0Γ
1

¶
min {}

≥ 


 0 for all 1, 2, and  sufficiently large.

This implies that the × matrix


12
 Γ

0Γ12


1

is a positive definite (and, therefore, also non-singular) for 1, 2, and  sufficiently large. More-

over, observe that

det

½
 − ΓΓ

0

1

¾
=  det

½
 − −1

ΓΓ
0

1

¾
=  det

(
 − −1


12
 Γ

0Γ12


1

)
(by Sylvester’s determinantal theorem)

= − det

(
 −


12

 Γ
0Γ12



1

)
(110)

Hence, the non-zero eigenvalues of the matrix ΓΓ
01 correspond exactly to the eigenvalues

of the positive definite matrix 
12
 Γ

0Γ12
 1, from which we further deduce that the matrix

 =
ΓΓ

0

1

must be of rank  for 1, 2,  sufficiently large. Since  is an × matrix with  = 1+2,

it follows immediately that 0 is an eigenvalue of  with algebraic multiplicity equaling  − for

1, 2,  sufficiently large.

To show part (b), let Λ1 =  (11  1), whose diagonal elements 1  0, for  ∈
{1 }, denote the non-zero eigenvalues of  (which must all be positive given that they

correspond to the eigenvalues of the positive definite matrix 
12
 Γ

0Γ12
 1 as shown in the
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proof of part (a)). Moreover, let

Λ2 = 0
(−)×(−)

whose diagonal elements are the  − zero eigenvalues of Since  is a symmetric matrix, the

representation given in expression (109) follows immediately from the usual spectral decomposition.

Finally, to show part (c), note that for any × ( −) matrix  6= 0, we have

kΛ1 −Λ2k = kΛ1k (since Λ2 = 0)

=

q
 { 0Λ01Λ1}

≥ min (Λ1)
p
 { 0}

= min (Λ1) kk

It follows that

sep (Λ1Λ2) = min
 6=0

kΛ1 −Λ2k
kk

= min
 6=0

kΛ1k
kk

(since Λ2 = 0 in this case)

≥ min (Λ1) kk
kk

= min (Λ1)

Furthermore, in light of expression (110), the diagonal elements of Λ1, being the non-zero eigenval-

ues of , must all be the solutions of the determinantal equation

det

(
 −


12
 Γ

0Γ12


1

)
= 0

so that, as noted in the proof of part (a) above, they are also the eigenvalues of the dual matrix


12
 Γ

0Γ12
 1. It follows from the proof of part (a) that there exists a positive constant  such

that for all 1, 2, and  sufficiently large.

sep (Λ1Λ2) = sep (Λ1 0)

≥ min (Λ1)

= min

Ã

12
 Γ

0Γ12


1

!
≥   0. ¤
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Lemma D-12: Suppose that  and  are both ×  symmetric matrices and that

 =

∙
1
×

2
×(−)

¸
is an orthogonal matrix such that

ran (1) = { ∈ R :  = 1 for some  ∈ R}

is an invariant subspace for , i.e., for any e ∈ ran(1) and let ∗ = e; then ∗ ∈ ran(1).
Partition the matrices 0 and 0 as follows:

0 =

⎛⎜⎝ Λ1
×

0
×(−)

0
(−)×

Λ2
(−)×(−)

⎞⎟⎠ and 0 =

⎛⎜⎜⎝ 11
×

021
×(−)

21
(−)×

22
(−)×(−)

⎞⎟⎟⎠ .
If

sep (Λ1Λ2) = min
 6=0

kΛ1 −Λ2k
kk

 0 (111)

and if

kk2 ≤
sep (Λ1Λ2)

5

=
1

5
min
 6=0

kΛ1 −Λ2k
kk

, (112)

then, there exists a matrix  ∈ R(−)× satisfying

kk2 ≤
4

sep (Λ1Λ2)
k21k2

= 4

µ
min
 6=0

kΛ1 −Λ2k
kk

¶−1
k21k2

such that the columns of b1 = (1 +2)
¡
 +0

¢−12
define an orthonormal basis for a subspace that is invariant for +.

Remark: Lemma D-12 is a well-known result in linear algebra restated here in our notations. It is

given in Golub and van Loan (1996) as Theorem 8.1.10. As noted in Golub and van Loan (1996),

this result is also a slight adaptation of Theorem 4.11 in Stewart (1973), which could be consulted
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for proof details.

Lemma D-13: Let X be an invariant subspace of , and let the columns of  form a basis for

X . Then, there is a unique matrix  such that

 = .

The matrix  is the representation of  on X with respect to the basis . In particular, ( ) is

an eigenpair of  if and only if ( ) is an eigenpair of .

Proof of Lemma D-13: This is Theorem 3.9 of Stewart and Sun (1990). For a proof of this

theorem, see Stewart and Sun (1990).

A straightforward application of Lemma D-12 (or Theorem 8.1.10 of Golub and van Loan, 1996)

to our setting here leads to the following lemma.

Lemma D-14: Let bΣ³c
´
be the post-variable-selection sample covariance matrix as defined in

expression (98) in Lemma D-10. Decompose bΣ³c
´
as follows:

bΣ³c
´
= +,

where

 =
ΓΓ

0

1
(113)

and where

 = bΣ³c
´
− ΓΓ

0

1

=

⎛⎜⎝Γ
³c

´
Γ

³c
´0

b1 − ΓΓ
0

1

⎞⎟⎠+ 1b1Γ
³c

´ ∙ 0
0
−

¸
Γ
³c

´0

+

³c

´0
Γ

³c
´0

b10 +
Γ
³c

´
 0

³c
´

b10 +

³c

´0

³c

´
b10  (114)

with 0 =  − + 1 and

 =
1

0

X
=


£
 

0


¤
.

Suppose that Assumptions 3-1, 3-2, 3-3, 3-4 3-5, 3-6, 3-7, 3-8, 3-10, and 3-11* hold, and define


×

=

∙
1

×
2

×(−)

¸
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to be an orthogonal matrix whose columns are the eigenvectors of the matrix . Without loss

of generality, suppose that the columns of 1 are the eigenvectors associated with the non-zero

eigenvalues of , whereas 2 contains the eigenvectors associated with the zero eigenvalue which

has an algebraic multiplicity of  − in this case7. Partition the matrices 0 and 0 as

follows:

0 =

⎛⎜⎝ Λ1
×

0
×(−)

0
(−)×

Λ2
(−)×(−)

⎞⎟⎠ =

⎛⎜⎝ Λ1
×

0
×(−)

0
(−)×

0
(−)×(−)

⎞⎟⎠ and

0 =

⎛⎜⎜⎝ 11
×

021
×(−)

21
(−)×

22
(−)×(−)

⎞⎟⎟⎠ ,
where Λ1 is a diagonal matrix whose diagonal elements are the  largest eigevalues of the matrix

.8

Under the assumed conditions, the following statements are true.

(a) There exists a ( −)× matrix  such that the columns of the matrix

b1 = (1 +2)
¡
 +0

¢−12
define an orthonormal basis for a subspace that is invariant for bΣ³c

´
= +. Moreover,

kk2 =  (1) as 1 2 and →∞

(b)
°°° b1 −1

°°°
2
=  (1) as 1 2, and  →∞

(c) The exists a unique symmetric matrix  such that

(+) b1 = b1.
Moreover, let bΛ = 

³b1  b

´
(115)

7That 0 is an eigenvalue of the matrix

 =
ΓΓ

0

1

with algebraic multiplicity equaling  − has already been shown previously in Lemma D-11.
8We have also previously shown in Lemma D-11 that 0 can be partitioned in the manner given here.
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denote a diagonal matrix whose diagonal elements are the eigenvalues of the matrix , and

let b =
³ b1 b2 · · · b

´
(116)

be a  ×  matrix whose  column (i.e., b) is an eigenvector of  associated with

the eigenvalue b for  = 1 . Then, b is an orthogonal matrix and
³ b1b b´ is an

eigenpair for the matrix + for  = 1 .

(d) The columns of the matrix

b1 b = b1 ³ b1 b2 · · · b

´
=
³ b1b1 b1b2 · · · b1b

´
are the eigenvectors associated with the  largest eigenvalues of the post-variable-selection

sample covariance matrix

+ = bΣ³c
´
.

Proof of Lemm D-14:

To show part (a), we first verify that the conditions (111) and (112) of Lemma D-12 are satisfied

here. To proceed, let ran(1) denote the range space of 1, i.e.,

ran (1) =
©
 ∈ R :  = 1 for some  ∈ R

ª
and, by definition, Λ1 is a  ×  diagonal matrix whose diagonal elements are the non-zero

eigenvalues of the matrix  = ΓΓ
01. Now, for any e ∈ ran(1), note that

∗ = e
=

µ
ΓΓ

0

1

¶
1

= 1Λ1

= 1
∗ where ∗ = Λ1.

from which it follows that ∗ ∈ ran(1), so that ran(1) is an invariant subspace of . Next, by
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applying the result of Lemma D-11, we have

sep (Λ1Λ2) = sep (Λ1 0)

= min
 6=0

kΛ1k
kk

≥ min (Λ1)

= min

Ã

12
 Γ

0Γ12


1

!
≥   0 for 1 and 2 sufficiently large,

so that condition (111) of Lemma D-12 is fulfilled. Next, note that, from the result of Lemma D-10,

we have

kk2 =
°°°°bΣ³c

´
− ΓΓ

0

1

°°°°
2

=  (1) as 1, 2, and  → 0;

from which it follows that

kk2 ≤
sep (Λ1 0)

5
w.p.a.1 as 1, 2, and  → 0.

so that condition (112) of Lemma D-12 is also satisfied here w.p.a.1. Hence, application of Lemma

D-12 allows us to conclude that there exists a ( −)× matrix  such that the columns of

the matrix b1 = (1 +2)
¡
 +0

¢−12
define an orthonormal basis for a subspace that is invariant for +. In addition,

kk2 ≤
4

sep (Λ1 0)
kk2

= 4

"
min

Ã

12
 Γ

0Γ12


1

!#−1
kk2

≤ 4


kk2 (for some   0 by Assumption 3-6 and Lemma D-4)

=  (1) ,

which shows result (a).

To show that
°°° b1 −1

°°°
2
=  (1), we first show that an explicit representation for 1 can be

given as

1 =
Γ√
1

µ
Γ0Γ
1

¶−12
Ξ = Γ

¡
Γ0Γ
¢−12

Ξ
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where Ξ is an orthogonal matrix whose columns are eigenvectors of the matrix

∗


×

=

µ
Γ0Γ
1

¶12


µ
Γ0Γ
1

¶12
To see that this representation satisfies the various properties we require of 1, note first that

011 = Ξ
0
µ
Γ0Γ
1

¶−12
Γ0Γ
1

µ
Γ0Γ
1

¶−12
Ξ = ;

hence, 1 so represented does have orthonormal columns. Moreover, note that

ΓΓ
0

1
1 =

Γ√
1


Γ0Γ√
1

¡
Γ0Γ
¢−12

Ξ

=
Γ√
1


Γ0Γ
1

µ
Γ0Γ
1

¶−12
Ξ

=
Γ√
1

µ
Γ0Γ
1

¶−12µ
Γ0Γ
1

¶12


µ
Γ0Γ
1

¶12µ
Γ0Γ
1

¶−12
Γ0Γ
1

µ
Γ0Γ
1

¶−12
Ξ

=
Γ√
1

µ
Γ0Γ
1

¶−12
∗

Ξ

= Γ
¡
Γ0Γ
¢−12

ΞΛ1

= 1Λ1 (117)

where Λ1 is a × diagonal matrix whose diagonal elements are the eigenvalues of the matrix

∗
 , which also happen to be the non-zero eigenvalues of the matrix  = ΓΓ

01. Pre-

multiplying the above equation by 01, we obtain

01
ΓΓ

0

1
1 = 011Λ1 = Λ1.

Since equation (117) shows that the columns of Γ (Γ0Γ)−12 Ξ are indeed the eigenvectors of the

matrix  = ΓΓ
01, by the argument given previously in the proof of part (a) above, we can

then deduce that ran(1), the range space of 1 with 1 = Γ (Γ
0Γ)−12 Ξ, is an invariant subspace

of . It follows that setting

1 = Γ
¡
Γ0Γ
¢−12

Ξ

fulfills all the required properties of 1 specified in Lemma D-12 above.
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Next, write

b1 −1 = (1 +2)
¡
 +0

¢−12 −1

= 1

h¡
 +0

¢−12 − 

i
+2

¡
 +0

¢−12
=

Γ√
1

µ
Γ0Γ
1

¶−12
Ξ
h¡
 +0

¢−12 − 

i
+2

¡
 +0

¢−12
Applying the submultiplicative property of matrix norms and the triangle inequality, we obtain°°° b1 −1

°°°
2

≤
°°°°° Γ√

1

µ
Γ0Γ
1

¶−12°°°°°
2

kΞk2
°°°¡ +0

¢−12 − 

°°°
2

+ k2k2 kk2
°°°¡ +0

¢−12°°°
2

=
°°°¡ +0

¢−12 − 

°°°
2
+ kk2

°°°¡ +0
¢−12°°°

2

where the last equality follows from the fact that

kΞk2 =
p
max (Ξ0Ξ) =

q
max () = 1,°°02°°2 =

q
max (2

0
2) =

q
max (

0
22) =

q
max (−) = 1, and°°°°° Γ√

1

µ
Γ0Γ
1

¶−12°°°°°
2

=

vuutmax

(µ
Γ0Γ
1

¶−12
Γ0Γ
1

µ
Γ0Γ
1

¶−12)
=

q
max {} = 1.

Now, if ( ) is an eigen-pair of 0 so that

0 =  with  ≥ 0 given that 0 is positive semidefinite;

then,

¡
 +0

¢
 = (1 + ) ¡

 +0
¢−12

 =
1

\√1 + 
, andh

 −
¡
 +0

¢−12i
 =

µ
 − 1

\√1 + 


¶


=

√
1 + − 1
\√1 + 
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since
1

\√1 + 
is an eigenvalue of

¡
 +0

¢−12
associated with the eigenvector 

and

√
1 + − 1
\√1 + 

is an eigenvalue of  −
¡
 +0

¢−12
associated with the eigenvector 

Moreover, let

 () =

√
1 + − 1
\√1 + 

and note that

0 () =
1

2

1

1 + 
− 1
2

√
1 + − 1
(1 + )32

=
1

2

√
1 + −√1 + + 1

(1 + )32

=
1

2 (1 + )32
 0

so that, in particular,  () is an increasing function of  for  ≥ 0. It follows that°°° b1 −1

°°°
2

≤
°°°¡ +0

¢−12 − 

°°°
2
+ kk2

°°°¡ +0
¢−12°°°

2

=
°°° −

¡
 +0

¢−12°°°
2
+ kk2

°°°¡ +0
¢−12°°°

2

=

s
max

µh
 − ( +0)−12

i0 h
 − ( +0)−12

i¶
+ kk2

r
max

³
( +0)−120 ( +0)−12

´
= max

h
 −

¡
 +0

¢−12i
+ kk2 max

h¡
 +0

¢−12i³
since  −

¡
 +0

¢−12
and

¡
 +0

¢−12
are both symmetric and positive semidefinite

´
≤

p
1 + max (0)− 1
\
p
1 + min (0)

+
kk2

\
p
1 + min (0)

≤
q
1 + kk22 − 1 + kk2

¡
since min

¡
0

¢ ≥ 0 given that 0 is positive semi-definite
¢

=  (1) as 1 2, and  →∞ (since kk2 =  (1)) .

This shows result (b).
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To show part (c), note that, by the result given in part (a) above, the columns of b1 =
(1 +2) ( +0)−12 form an orthonormal basis for a subspace that is invariant for  + .

It then follows immediately from Lemma D-13 that there exists a unique matrix  such that

(+) b1 = (+) (1 +2)
¡
 +0

¢−12
= (1 +2)

¡
 +0

¢−12


= b1.
Note further that

b01 b1 =
¡
 +0

¢−12 ¡
01 +002

¢
(1 +2)

¡
 +0

¢−12
=

¡
 +0

¢−12 ¡
011 +0021 +012+0022

¢ ¡
 +0

¢−12
=

¡
 +0

¢−12 ¡
 +0

¢ ¡
 +0

¢−12³
since by assumption  =

h
1 2

i
is an orthogonal matrix

´
= 

which, in turn, implies that

b01 (+) b1 = b01µΓΓ
0

1
+

¶ b1 = b01 b1
= 

so that  must be symmetric since, in our situation here,

+ =
ΓΓ

0

1
+ bΣ³c

´
− ΓΓ

0

1
= bΣ³c

´
=


³c

´0

³c

´
10

is a symmetric matrix. Now, let bΛ = 
³b1  b

´
and

b =
³ b1 b2 · · · b

´
be as defined in expressions (115) and (116). The fact that  is symmetric implies that b is an

orthogonal matrix. In addition, further application of Lemma D-13 shows that
³ b1b b´ is an

eigenpair for the matrix + for  = 1 .
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Finally, to show part (d), let  =
³
1 2

´
, and note that, by assumption,

0 =

Ã
011 012
021 022

!
=

Ã
Λ1 0

0 0

!
= Λ

where Λ1 =  (11  1) contains the  largest eigenvalues of . Without loss of gener-

ality, we can further assume that 11  1 are ordered, so that 1 = () (), i.e., 1 is the

 largest eigenvalue of .9 Given that, 0 = 0 =  , we have³
1 2

´
=  = Λ =

³
1Λ1 0

´
from which it follows that

1
0
1
b1b = 1Λ1

0
1
b1b, for  ∈ {1 } . (118)

Now, the result of part (c) above shows
³ b1b b´ to be an eigenpair of the matrix  +  for

 ∈ {1 }, so that
(+) b1b = b b1b for  ∈ {1 } (119)

where b1 = (1 +2) ( +0)−12 as given in the result for part (a). Multiplying both sides

of expression (119) by b0 b01101, we get
bb0 b01101 b1b = b0 b01101 (+) b1b

= b0 b01101 b1b + b0 b01101 b1b (120)

Since  = ΓΓ
01 is symmetric, it further follows by expression (118) that

b0 b01101 = b0 b011010 = b0 b011Λ101 (121)

9 If this is not the case; then, we can always define a permutation matrix P such that

Λ
∗
= P0ΛP

results in a diagonal matrix whose diagonal elements are repermutated in such a way, so that the required ordering

of the eigenvalues is satisfied. Moreover, since P is an orthogonal matrix, it further follows that

 = PP0ΛPP00
= PΛ∗P 00

.

Now, define  = P, and note that  is an orthogonal matrix whose columns are just the columns of  repermutated.
Hence, we can simply proceed with our analysis using  in lieu of , and the associated eigenvalues will be in the

order which we have assumed.
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Moreover, note that

0 ≤
³b0 b01101 b1b´2

≤
³b0 b01101101 b1b´³b0 b010 b1b´ (by CS inequality)

=
³b0 b01101 b1b´³b0 b010 b1b´ ¡

since 011 = 

¢
=

hb0 ¡ +0
¢−12 ¡

01 +002
¢
1

0
1 (1 +2)

¡
 +0

¢−12 bi ³b0 b010 b1b´
=

hb0 ¡ +0
¢−1 bi ³b0 b010 b1b´

≤
hb0 ¡ +0

¢−1 bimax ¡0¢
from which it follows that

−
qb0 ( +0)−1 b kk2 = −

qb0 ( +0)−1 bpmax (0)

≤ −
r³b0 b01101 b1b´2

≤ −
¯̄̄b0 b01101 b1b ¯̄̄

≤ b0 b01101 b1b (122)

where the last inequality follows from the fact that

b0 b01101 b1b  − ¯̄̄b0 b01101 b1b ¯̄̄ if b0 b01101 b1b  0
whereas b0 b01101 b1b = − ¯̄̄b0 b01101 b1b ¯̄̄ if b0 b01101 b1b ≤ 0
Combining expressions (120), (121), and (122), we see that

bb0 b01101 b1b = b0 b01101 b1b + b0 b01101 b1b
≥ b0 b011Λ101 b1b −qb0 ( +0)−1 b kk2 (123)
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for  ∈ {1 }. In addition, note that

b0 b01101 b1b = b0 b01101 (1 +2)
¡
 +0

¢−12 b
= b0 b011 ¡ +0

¢−12 b
= b0 ¡ +0

¢−12 ¡
01 +002

¢
1
¡
 +0

¢−12 b
= b0 ¡ +0

¢−1 b
 0

Hence, dividing both sides of expression (123) by b0 b01101 b1b, we obtain
b ≥ b0 b011Λ101 b1bb0 b01101 b1b −

qb0 ( +0)−1 b kk2b0 b01101 b1b
= e0Λ1e −

qb0 ( +0)−1 b kk2b0 ( +0)−1 b
= e0Λ1e − kk2qb0 ( +0)−1 b
=

X
=1

e21 − kk2qb0 ( +0)−1 b
where

e = 01 b1bb0 b01101 b1b so that kek22 =
X
=1

e2 = 1.
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Note also that

b0 ¡ +0
¢−1 b ≥ min

n¡
 +0

¢−1ob0b
= min

n¡
 +0

¢−1o ³
since kbk22 = 1´

=
1

max ( +0)

≥ 1

1 + max (0)

=
1

1 + kk22

≥
"
1 +

16 k21k22
(sep (Λ1Λ2))

2

#−1
(by Lemma D-12)

≥
"
1 +

16 kk22
(sep (Λ1Λ2))

2

#−1
(by Lemma D-3 )

≥
"
1 +

16 (sep (Λ1Λ2))
2 25

(sep (Λ1Λ2))
2

#−1
(by Lemma D-12)

=
25

41

Making use of this lower bound, we obtain

b ≥ X
=1

e21 − kk2qb0 ( +0)−1 b
=

X
=1

e21 − 2541 kk2 .
Next, recall the notations we have introduced previously on the ordering of the eigenvalues of the

matrices + and , i.e.,

(1) (+) ≥ · · · ≥ () (+) ≥ (+1) (+) ≥ · · · ≥ () (+) ,

(1) () ≥ · · · ≥ () () ≥ (+1) () ≥ · · · ≥ () ()

Since  = ΓΓ
0 /1 and since part (a) of Lemma D-11 shows that  () =  for all 1,

2, and  sufficiently large; it follows that

(+1) () = · · · = () () = 0. (124)
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In addition, by Corollary 8.1.6 of Golub and van Loan (1996), we have the inequality.

(+1) (+) ≤ (+1) () + kk2 . (125)

Making use of expressions (124) and (125); we see that, for any  ∈ {1 },

b − (+1) (+) ≥
X
=1

e21 − 2541 kk2 − ©(+1) () + kk2
ª

=

X
=1

e21 − 6641 kk2 ¡
since (+1) () = 0 here

¢
=

X
=1

e2() ()− 6641 kk2¡
since 1 = () () as discussed previously

¢
≥

X
=1

e2() ()− 6641 sep (Λ1Λ2)5
(by Lemma D-12)

=

X
=1

e2() ()− 66

205
sep (Λ1 0) (since Λ2 = 0 here)

≥ min (Λ1)−− 66
205

sep (Λ1 0)
¡
since Λ1 = 

¡
(1) ()   () ()

¢¢
=

139

205
sep (Λ1 0)

(since sep (Λ1 0) = min (Λ1) by Theorem 3.1 of Stewart and Sun (1990))

≥ 139

205
  0 (by part (c) of Lemma D-11) .

This shows that the set
nb1  b

o
contains the  largest eigenvalues of the matrix +. It

further follows from the result given in part (c) that the columns of the matrix

b1 b = b1 ³ b1 b2 · · · b

´
=
³ b1b1 b1b2 · · · b1b

´
are the eigenvectors associated with the  largest eigenvalues of the matrix +. ¤

Lemma D-15: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*

hold. Then, the following statements are true.

(a) b1 −1

1

→ 0
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(b) °°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°
2

→ 0

(c) Let b1 = (1 +2)
¡
 +0

¢−12
where 1, 2, and  are as defined in Lemma D-14 above. Also, let b be the  × 

orthogonal matrix given in expression (116) of Lemma D-14. Then, there exists some positive

constant  such that °°°°° b 0 b01Γ√
1

°°°°°
2

≤
s
max

µ
Γ0Γ
1

¶
≤  ∞

for 1 2, and  sufficiently large. In addition,°°°°° b 0 b01Γ√
1
−0

°°°°°
2

→ 0

where

 =

µ
Γ0Γ
1

¶ 1
2

Ξb ,
with Ξ being the  ×  orthogonal matrix whose columns are the eigenvectors of the

matrix

∗
 =

µ
Γ0Γ
1

¶12


µ
Γ0Γ
1

¶12
=

µ
Γ0Γ
1

¶12
1

 − + 1

X
=


£
 

0


¤µΓ0Γ
1

¶12
.

(d) For all fixed index  °°°°°°
01

³c
´

√
1

°°°°°°
2

=  (1) .

(e) For all fixed index  °°°°°°


³c
´

√
1

°°°°°°
2

2

=  (1) .

(f) For all fixed index , °°°°°°
02

³c
´

√
1

°°°°°°
2

=  (1) .
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(g) Let b1 = (1 +2)
¡
 +0

¢−12
where 1, 2, and  are as defined in Lemma D-14 above. Also, let b be the  × 

orthogonal matrix given in expression (116) of Lemma D-14. Then, for all fixed index ,°°°°°°
b 0 b01

³c
´

q b1
°°°°°°
2

→ 0 as 1, 2, and  →∞.

(h) °°°°°°°
Γ
³c

´0 b1 bq b1 −

°°°°°°°
2

=

°°°°°°
b 0 b01Γ³c

´
q b1 −0

°°°°°°
2

=  (1) as 1 2  →∞.

where  is as defined in part (c) above.

(i)

k k2 =  (1) for all .

(j) °°°b −0

°°°
2
=  (1) as 1, 2, and  →∞

where b denotes the principal component estimator of the factor vector  obtained after

the variables have been pre-screened based on the decision rule

 ∈
( b if S+  Φ−1

¡
1− 

2

¢
b if S+ ≤ Φ−1

¡
1− 

2

¢ ,

as described in section 3. Here, S+ may be either the statistic
X

=1
 | |or the statistic

max1≤≤ | |.

Proof of Lemma D-15:
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To show part (a), note first that, for any   0,(¯̄̄̄
¯ b1 −1

1

¯̄̄̄
¯ ≥ 

)
=

(¯̄̄̄
¯ 11

X
=1

I
n
 ∈ c

o
− 1
¯̄̄̄
¯ ≥ 

)

=

(¯̄̄̄
¯ 11 X

∈

I
n
 ∈ c

o
+
1

1

X
∈

I
n
 ∈ c

o
− 1
¯̄̄̄
¯ ≥ 

)

⊆
(¯̄̄̄
¯ 11 X

∈

I
n
 ∈ c

o
− 1
¯̄̄̄
¯+

¯̄̄̄
¯ 11 X

∈
I
n
 ∈ c

o¯̄̄̄¯ ≥ 

)

⊆
(¯̄̄̄
¯ 11 X

∈

I
n
 ∈ c

o
− 1
¯̄̄̄
¯ ≥ 

2

)
∪
(¯̄̄̄
¯ 11 X

∈
I
n
 ∈ c

o¯̄̄̄¯ ≥ 

2

)

=

(¯̄̄̄
¯ 11 X

∈

³
I
n
 ∈ c

o
− 1
´¯̄̄̄¯ ≥ 

2

)
∪
(¯̄̄̄
¯ 11 X

∈
I
n
 ∈ c

o¯̄̄̄¯ ≥ 

2

)

By Markov’s inequality, we have

Pr

Ã¯̄̄̄
¯ 11 X

∈

³
I
n
 ∈ c

o
− 1
´¯̄̄̄¯ ≥ 

2

!

= Pr

⎛⎝¯̄̄̄¯ 11 X
∈

³
I
n
 ∈ c

o
− 1
´¯̄̄̄¯
2

≥ 2

4

⎞⎠
≤ 4

2


⎧⎨⎩
¯̄̄̄
¯ 11 X

∈

³
I
n
 ∈ c

o
− 1
´¯̄̄̄¯
2
⎫⎬⎭

=
4

2
1

2
1

X
∈

X
∈


h³
I
n
 ∈ c

o
− 1
´³
I
n
 ∈ c

o
− 1
´i

=
4

2
1

2
1

X
∈

X
∈

³

h
I
n
 ∈ c

o
I
n
 ∈ c

oi
−

h
I
n
 ∈ c

oi
−

h
I
n
 ∈ c

oi
+ 1
´

=
4

2
1

2
1

X
∈

X
∈

n
Pr
³n

 ∈ c
o
∩
n
 ∈ c

o´
− Pr

³
 ∈ c

´o
+
4

2
1

2
1

X
∈

X
∈

n
1− Pr

³
 ∈ c

´o
≤ 4

2
1

2
1

X
∈

X
∈

n
Pr
³
 ∈ c

´
− Pr

³
 ∈ c

´o
+
4

2
1

1

X
∈

n
1− Pr

³
 ∈ c

´o
≤ 4

2
1

1

X
∈

½
1− min

∈
Pr
³
 ∈ c

´¾
→ 0 as 1 2, and  →∞.

where the last line above follows from the fact that, for  ∈  and for either the case where
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S+ =
X

=1
 | | or the case where S+ = max1≤≤ | |, we can apply the results of

Theorem 2 in Chao, Liu, and Swanson (2023a) to obtain

min
∈

Pr
³
 ∈ c

´
≥ Pr

Ã \
∈

n
S+  Φ−1

³
1− 

2

´o!

= 

µ
min
∈

S+  Φ−1
³
1− 

2

´¶
→ 1

Also, making use of Markov’s inequality, we obtain, for either the case where S+ =
X

=1
 | |

or the case where S+ = max1≤≤ | |,

Pr

Ã¯̄̄̄
¯ 11 X

∈
I
n
 ∈ c

o¯̄̄̄¯ ≥ 

2

!

= Pr

Ã
1

1

X
∈

I
n
 ∈ c

o
≥ 

2

!

≤ 2




"
1

1

X
∈

I
n
 ∈ c

o#

=
2



1

1

X
∈

Pr
³
 ∈ c

´
=

2



1

1

X
∈

Pr
³
S+  Φ−1

³
1− 

2

´´
≤ 2



2

1
[1 +  (1)]

(following an argument similar to that given in the proof of Theorem 1 in

Chao, Liu, and Swanson (2023a)10
¢

→ 0

µ
since



1
→ 0 and

2


=  (1)

¶
.
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Combining these results, we have that

Pr

Ã¯̄̄̄
¯ b1 −1

1

¯̄̄̄
¯ ≥ 

!

≤ Pr

Ã(¯̄̄̄
¯ 11 X

∈

³
I
n
 ∈ c

o
− 1
´¯̄̄̄¯ ≥ 

2

)
∪
(¯̄̄̄
¯ 11 X

∈
I
n
 ∈ c

o¯̄̄̄¯ ≥ 

2

)!

≤ Pr

Ã¯̄̄̄
¯ 11 X

∈

³
I
n
 ∈ c

o
− 1
´¯̄̄̄¯ ≥ 

2

!
+Pr

Ã¯̄̄̄
¯ 11 X

∈
I
n
 ∈ c

o¯̄̄̄¯ ≥ 

2

!
(by the union bound)

→ 0

For part (b), note that

°°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°
2



=
1

1


½³
Γ
³c

´
− Γ

´0 ³
Γ
³c

´
− Γ

´¾

=
1

1

X
=1



½³
I
n
 ∈ c

o
 − 

´³
I
n
 ∈ c

o
 − 

´0¾

=
1

1

X
=1

³
I
n
 ∈ c

o
 − 

´0 ³
I
n
 ∈ c

o
 − 

´
=

1

1

X
=1

0
h
1− I

n
 ∈ c

oi
=

1

1

X
∈

0
h
1− I

n
 ∈ c

oi
(since  = 0 for  ∈ )
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Applying Markov’s inequality, we have, for any   0,

Pr

⎛⎜⎝
°°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°
2



≥ 

⎞⎟⎠
≤ 1




(
1

1

X
∈

0
h
1− I

n
 ∈ c

oi)

=
1



1

1

X
∈

0
h
1− Pr

³
 ∈ c

´i
≤ 1



∙
1− min

∈
Pr
³
 ∈ c

´¸ 1

1

X
∈

0

≤ 1



∙
1− min

∈
Pr
³
 ∈ c

´¸µ
sup
∈

kk2
¶2

≤ 1



∙
1− min

∈
Pr
³
 ∈ c

´¸

2
(by Assumption 3-5)

→ 0

µ
since min

∈
Pr
³
 ∈ c

´
→ 1 for  ∈  by Theorem 2 in Chao, Liu, and Swanson (2023a)

¶
from which we further deduce that°°°°°°

Γ
³c

´
− Γ

√
1

°°°°°°
2

≤
°°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°


→ 0.

Turning our attention to part (c), note that since, by definition,

b1 = (1 +2)
¡
 +0

¢−12
where 011 = , 

0
22 = −, and 012 = 0; it follows that

b01 b1 =
¡
 +0

¢−12 ¡
01 +002

¢
(1 +2)

¡
 +0

¢−12
=

¡
 +0

¢−12 ¡
 +0

¢ ¡
 +0

¢−12
= 
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Hence, by Assumption 3-6,°°°°° b 0 b01Γ√
1

°°°°°
2

≤
°°°b 0 b01°°°

2

°°°° Γ√
1

°°°°
2

=

r
max

³ b1 b b 0 b01´
s
max

µ
Γ0Γ
1

¶

=

r
max

³b 0 b01 b1 b ´
s
max

µ
Γ0Γ
1

¶

=

q
max ()

s
max

µ
Γ0Γ
1

¶ ³
since b is an orthogonal matrix

´
=

s
max

µ
Γ0Γ
1

¶
≤  ∞ for 12 sufficiently large

Now, to show the second result in part (c), note that, since

 =

µ
Γ0Γ
1

¶ 1
2

Ξb and 1 =
Γ√
1

µ
Γ0Γ
1

¶−12
Ξ = Γ

¡
Γ0Γ
¢−12

Ξ ,

we can write

b 0 b01Γ√
1
−0 =

b 0 b01Γ√
1
− b 0Ξ0µΓ0Γ

1

¶ 1
2

=
b 0 b01Γ√

1
− b 0Ξ0µΓ0Γ

1

¶−12
Γ0Γ
1

=
b 0 b01Γ√

1
−
b 001Γ√

1

= b 0 ³ b1 −1

´0 Γ√
1
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from which it follows that°°°°° b 0 b01Γ√
1
−0

°°°°°
2

≤
°°°b 0°°°

2

°°°°³ b1 −1

´0°°°°
2

°°°° Γ√
1

°°°°
2

=

r
max

³b b 0´smax

½³ b1 −1

´³ b1 −1

´0¾s
max

µ
Γ0Γ
1

¶

=

q
max ()

s
max

½³ b1 −1

´0 ³ b1 −1

´¾s
max

µ
Γ0Γ
1

¶
³
since b is an orthogonal matrix and since max

¡
0

¢
= max

¡
0

¢´
≤

p

°°° b1 −1

°°°
2
(by Assumption 3-6)

=  (1) as 1 2, and  →∞ (by part (b) of Lemma D-14) .

Next, to show part (d), we first write

°°°°°°
01

³c
´

√
1

°°°°°°
2

2

=

X
=1

Ã
X
=1

I
n
 ∈ c

o 1√
1

!2

=

X
=1

ÃX
∈

I
n
 ∈ c

o 1√
1

+
X
∈

I
n
 ∈ c

o 1√
1

!2

≤ 2

X
=1

ÃX
∈

I
n
 ∈ c

o 1√
1

!2
+ 2

X
=1

ÃX
∈

I
n
 ∈ c

o 1√
1

!2

=
2

1

X
=1

X
∈

X
∈

I
n
 ∈ c

o
I
n
 ∈ c

o
11

+
2

1

X
=1

X
∈

X
∈

I
n
 ∈ c

o
I
n
 ∈ c

o
11 (126)

where 1 denotes the ( )
 element of 1. Now, consider the first term on the right-hand side
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of expression (126). Write

2

1

X
=1

X
∈

X
∈

I
n
 ∈ c

o
I
n
 ∈ c

o
11

=
2

1

X
=1

X
∈

X
∈

³
I
n
 ∈ c

o
− 1 + 1

´³
I
n
 ∈ c

o
− 1 + 1

´
11

=
2

1

X
=1

X
∈

³
I
n
 ∈ c

o
− 1
´
1

X
∈

³
I
n
 ∈ c

o
− 1
´
1

+
2

1

X
=1

X
∈

X
∈

11

+
2

1

X
=1

X
∈

³
I
n
 ∈ c

o
− 1
´
1

X
∈

1

+
2

1

X
=1

X
∈

1
X
∈

³
I
n
 ∈ c

o
− 1
´
1

= E11 + E12 + E13 + E14

Focusing first on the term E11, we have

2

1

X
=1

X
∈

³
I
n
 ∈ c

o
− 1
´
1

X
∈

³
I
n
 ∈ c

o
− 1
´
1

=
2

1

X
=1

ÃX
∈

³
I
n
 ∈ c

o
− 1
´
1

!2

≤ 2

1

X
=1

Ã¯̄̄̄
¯X
∈

³
I
n
 ∈ c

o
− 1
´
1

¯̄̄̄
¯
!2

≤ 2

X
=1

Ã
1

1

X
∈

³
I
n
 ∈ c

o
− 1
´2!ÃX

∈

21
2


!

= 2

X
=1

"
1

1

X
∈

³
I
n
 ∈ c

o
− 2I

n
 ∈ c

o
+ 1
´#ÃX

∈

21
2


!

= 2

X
=1

"
1

1

X
∈

³
1− I

n
 ∈ c

o´#ÃX
∈

21
2


!

Now, for either the case where S+ =
X

=1
 | | or the case where S+ = max1≤≤ | |,
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we have

0 ≤ 

"
1

1

X
∈

³
1− I

n
 ∈ c

o´#

=
1

1

X
∈

h
1− Pr

³
 ∈ c

´i
=

1

1

X
∈

h
1− 

³
S+ ≥ Φ−1

³
1− 

2

´´i
≤ 1− 

µ
min
∈

S+ ≥ Φ−1
³
1− 

2

´¶
(given that 1 = # {} , where # {} denotes the cardinality of the set )

→ 0 ,

since, by Theorem 2 in Chao, Liu, and Swanson (2023a), 
³
min∈ S+ ≥ Φ−1

¡
1− 

2

¢´ → 1.

Moreover, by part (b) of Assumption 3-3, we have



"X
∈

21
2


#
=
X
∈

21
£
2
¤ ≤ 

X
=1

21 ≤ 

It follows by Markov’s inequality that

1

1

X
∈

³
1− I

n
 ∈ c

o´
=  (1) and

X
∈

21
2
 =  (1)

from which we deduce that

E11 =
2

1

X
=1

ÃX
∈

³
I
n
 ∈ c

o
− 1
´
1

!2

≤ 2

X
=1

"
1

1

X
∈

³
1− I

n
 ∈ c

o´#ÃX
∈

21
2


!
=  (1)

Consider next the term E12. To proceed, let  (
) denote an  × 1 vector whose 

component  (
) is given by

 (
) =

(
 if  ∈ 

0 if  ∈ 
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and we can write

E12 =
2

1

X
=1

X
∈

X
∈

11

= 2

°°°°01 (
)√

1

°°°°2
2

≤ 2

½
01 (

) (
)01

1

¾
= 2

(
Ξ0
µ
Γ0Γ
1

¶−12
Γ0√
1

 (
) (

)0

1

Γ√
1

µ
Γ0Γ
1

¶−12
Ξ

)

= 2

(µ
Γ0Γ
1

¶−12
Γ0√
1

 (
) (

)0

1

Γ√
1

µ
Γ0Γ
1

¶−12)

= 2

½
Γ0∗ (

) (
)0 Γ∗

2
1

¾ Ã
where Γ∗ = Γ

µ
Γ0Γ
1

¶−12!
=

2

2
1

 (
)0 Γ∗Γ0∗ (

)

=
2

2
1

X
∈

X
∈

0∗∗
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where 0∗ denotes the 
 row of Γ∗ = Γ (Γ0Γ1)

−12
. Hence,

0 ≤  [E12]

=
2

1

X
=1

X
∈

X
∈

11 []

=
2

2
1

X
∈

X
∈

0∗∗ []

=
2

2
1

X
∈

X
∈

0

µ
Γ0Γ
1

¶−12µ
Γ0Γ
1

¶−12
 []

≤ 2

2
1

X
∈

X
∈

¯̄̄̄
¯0
µ
Γ0Γ
1

¶−12µ
Γ0Γ
1

¶−12


¯̄̄̄
¯ | []|

≤ 2

2
1

X
∈

X
∈

s
0

µ
Γ0Γ
1

¶−1


s
0

µ
Γ0Γ
1

¶−1
 | []|

≤ 2



1

2
1

X
∈

X
∈

| []|

(since, under Assumptions 3-5 and 3-6, there exist positive constants  and  such that

sup
∈

kk2 ≤  ∞ and min

µ
Γ0Γ
1

¶
≥   0

¶
≤ 2





1
→ 0 as 1 →∞.

¡
since, under Assumption 3-3(d), there exists a positive constant 

such that sup


1

1

X
∈

X
∈

| []| ≤  ∞
⎞⎠

It follows by Markov’s inequality that

E1 =  (1) .

Now, for E13, write
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|E13|

=

¯̄̄̄
¯̄ 21

X
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X
∈

³
I
n
 ∈ c
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− 1
´
1

X
∈

1

¯̄̄̄
¯̄

=

¯̄̄̄
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X
=1

X
∈

1
X
∈

³
I
n
 ∈ c

o
− 1
´
1
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1

X
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¯̄X
∈

1
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¯̄
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¯X
∈

³
I
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o
− 1
´
1
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¯
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Observe that
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Applying the triangle and Cauchy-Schwarz inequalities, we further obtain
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from which we further deduce, upon applying Markov’s inequality, that
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it follows from these calculations that
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In a similar way, we can also show that
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Finally, application of the Slutsky’s theorem then allows us to deduce that
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Next, consider the second term on the right-hand side of expression (126). In this case, write
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Note that, for either the case where S+ =
X

=1
 | | or the case where S+ = max1≤≤ | |,

we have, by applying an argument similar to that given in the proof of Theorem 1 in Chao, Liu,
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and Swanson (2023b),
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Moreover, making use of part (b) of Assumption 3-3, we have
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It follows by Markov’s inequality that
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Combining these results and using the inequality
√
1 + 2 ≤ √1+√2, we further obtain, for
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Note that, by Assumption 3-3(b),
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so that by DeMorgan’s law(
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we have, by applying an argument similar to that given in the proof of Theorem 1 as shown in

Chao, Liu, and Swanson (2023b),
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Turning our attention to part (f), note first that since  =
h
1 2

i
is an orthogonal matrix,

237



we have  = 0 = 1
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0
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Applying the results from parts (d) and (e) above, we then obtain
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as shown in part (a) in Lemma D-14 and in parts (a), (d), and (f) of this lemma.
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Turning our attention to part (h), we write
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so that, by the triangle inequality°°°°°°°
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To show part (i), let  be the positive constant given in Lemma C-4 such that

 k k62 ≤  ∞ for all ;

and, for any   0, we let  = 
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. Applying Markov’s inequality, we see that
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from which it follows that k k2 =  (1) for all .

Lastly, to show part (j), note that, similar to the derivation given in the proof of Theorem 4.1,
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except that we replace the fixed index  with the sample size  , we can write

b −0 =

⎛⎝ b 0 b01Γ
³c

´
q b1 −0

⎞⎠ +

b 0 b01

³c
´

q b1
=

Ã b 0 b01Γ√
1
−0

!
  +

⎡⎣Ã1 + b1 −1

1

!− 1
2

− 1
⎤⎦ b 0 b01Γ√

1


+

⎡⎣Ã1 + b1 −1

1

!− 1
2

⎤⎦ b 0 b01
⎛⎝Γ

³c
´
− Γ

√
1

⎞⎠  +

b 0 b01

³c
´

q b1
Next, note that, by following the same derivation as that given for the proof of part (g), we can

show that °°°°°°
b 0 b01

³c
´

q b1
°°°°°°
2

≤
¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!−1
2

¯̄̄̄
¯̄
⎧⎨⎩
°°°°°°
01

³c
´

√
1

°°°°°°
2

+ kk2

°°°°°°
02

³c
´

√
1

°°°°°°
2

⎫⎬⎭
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It follows from applying expressions (127) and (128), part (a) of this lemma, and part (a) of Lemma
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In addition, note that by applying Lemma C-4 and the Markov’s inequality in a way similar to the

argument given for the proof of part (i) above, we can show that
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Making use of the results given in expressions (129) and (130) and applying the triangle inequality

as well as parts (a)-(c) of this lemma, expression (130), and the Slutsky’s theorem; we then obtain,

as 1 2 and  →∞;°°°b −0
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1
−0

°°°°°
2

kk2 +
¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!−1
2

− 1
¯̄̄̄
¯̄
°°°°° b 0 b01Γ√

1

°°°°°
2

kk2

+

¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!− 1
2

¯̄̄̄
¯̄ °°°b 0 b01°°°

2

°°°°°°
Γ
³c

´
− Γ

√
1

°°°°°°
2

kk2 +
°°°°°°
b 0 b01

³c
´

q b1
°°°°°°
2

=

°°°°° b 0 b01Γ√
1
−0

°°°°°
2

kk2 +
¯̄̄̄
¯̄
Ã
1 +

b1 −1

1

!−1
2

− 1
¯̄̄̄
¯̄
°°°°° b 0 b01Γ√

1

°°°°°
2

kk2

+
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Ã
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Γ
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´
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√
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again since
°°°b 0 b01°°°

2
= max

³ b1b b 0 b01´ = max

³b 0 b01 b1b ´ = max () = 1
´

=  (1) (1) +  (1) (1) (1) + (1)  (1) (1) +  (1)

=  (1) . ¤

Lemma D-16: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*

hold. Then, the following statements are true as 1 2  →∞.

(a)
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√
1
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2

=  (1) , where  =  − − + 1.
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=
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√
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√
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(d)
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=
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Proof of Lemma D-16:

For part (a), first write
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where 1 denotes the ( )
 element of

1 =
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1
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Γ√
1

µ
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Focusing first on the term E11, we have
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Now, for either the case where S+ =
X
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 | | or the case where S+ = max1≤≤ | |,

we have, by applying Theorem 2 in Chao, Liu, and Swanson (2023a),
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Moreover, making use of part (b) of Assumption 3-3, we have
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Next, consider the term E12. To proceed, write¯̄
E12

¯̄
=

¯̄̄̄
¯̄ 2

1

−X
=

X
=1

X
∈

³
I
n
 ∈ c

o
− 1
´
1

X
∈

1

¯̄̄̄
¯̄

=

¯̄̄̄
¯̄ 2

1

−X
=

X
=1

X
∈

1
X
∈

³
I
n
 ∈ c

o
− 1
´
1

¯̄̄̄
¯̄

≤ 2

1

−X
=

X
=1

¯̄̄̄
¯̄X
∈

1

¯̄̄̄
¯̄
¯̄̄̄
¯X
∈

³
I
n
 ∈ c

o
− 1
´
1

¯̄̄̄
¯

≤ 2

1

X
=1

sX
∈

³
I
n
 ∈ c

o
− 1
´2 1



−X
=

sX
∈

21
2


¯̄̄̄
¯̄X
∈

1

¯̄̄̄
¯̄

≤ 1

1

X
=1

sX
∈

³
I
n
 ∈ c

o
− 1
´2 1



−X
=

X
∈

21
2


+
1

1

X
=1

sX
∈

³
I
n
 ∈ c

o
− 1
´2 1



−X
=

⎛⎝X
∈

1

⎞⎠2
µ
by the inequality | | ≤ 1

2
2 +

1

2
 2
¶

=
1√
1

X
=1

s
1

1

X
∈

³
1− I

n
 ∈ c

o´ 1


−X
=

X
∈

21
2


+

s
1

1

X
∈

³
1− I

n
 ∈ c

o´ 1


−X
=

1√
1

X
=1

⎛⎝X
∈

1

⎞⎠2

250



Observe that
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 . Applying the triangle and Cauchy-Schwarz inequalities, we further
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obtain
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from which we further deduce, upon applying Markov’s inequality, that

1



−X
=

1√
1

X
=1

⎛⎝X
∈

1

⎞⎠2 =  (1)

Moreover, since we have previously shown that

1

1

X
∈

³
1− I

n
 ∈ c

o´
=  (1) and

1



−X
=

X
∈

21
2
 =  (1) ,

252



it follows from these calculations that
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In a similar way, we can also show that
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Finally, let  (
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and we can write
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where 0∗ denotes the 
 row of Γ∗ = Γ (Γ0Γ1)

−12
. Taking expectation, we then obtain

0 ≤ 
£E14¤

=
2

1

−X
=

X
=1

X
∈

X
∈

11 []

=
2


2
1

−X
=

X
∈

X
∈

0∗∗ []

=
2


2
1

−X
=

X
∈

X
∈

0

µ
Γ0Γ
1

¶−12µ
Γ0Γ
1

¶−12
 []

≤ 2


2
1

−X
=

X
∈

X
∈

¯̄̄̄
¯0
µ
Γ0Γ
1

¶−12µ
Γ0Γ
1

¶−12


¯̄̄̄
¯ | []|

≤ 2


2
1

−X
=

X
∈

X
∈

s
0

µ
Γ0Γ
1

¶−1


s
0

µ
Γ0Γ
1

¶−1
 | []|

≤ 2



1


2
1

−X
=

X
∈

X
∈

| []|

(since, under Assumptions 3-5 and 3-6, there exist positive constants  and  such that

sup
∈

kk2 ≤  ∞ and min

µ
Γ0Γ
1

¶
≥   0

¶
≤ 2





1

 − − + 1


=
2





1
→ 0 as 1  →∞.¡

since, under Assumption 3-3(d), there exist a positive constant 

such that sup


1

1

X
∈

X
∈

| []| ≤  ∞
⎞⎠

It follows by Markov’s inequality that
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Application of the Slutsky’s theorem then allows us to deduce that
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Consider now the second term on the extreme right-hand side of expression (131)
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Moreover, making use of part (b) of Assumption 3-3, we have
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To show part (b), write
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where S+ = max1≤≤ | |, we have
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Now, for part (c), note first that since  =
h
1 2

i
is an orthogonal matrix, we have
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0
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Applying the results from parts (a) and (b) of this lemma, we then obtain
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Next, to show part (d), let  be the constant given in Lemma C-4 such that

 k k62 ≤  ∞ for all .

Now, for any   0, let ∗ = 
1
3 ; then, upon application of Markov’s inequality, we have
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so that
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Turning our attention to part (e), write
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To analyze the four terms on the right-hand side of the expression above, note first that, by the

homogeneity of matrix norm and the triangle inequality,
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Similarly, we obtain°°°°°01 1
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Hence,°°°°°°°
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It follows that
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=  (1) (applying part (a) of Lemma D-14, part (a) of Lemma D-15,

parts (a) and (c) of this lemma, and Slutsky’s theorem)
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To show part (f), first write°°°°°°
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Next, note that
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from which we obtain
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parts (a) and (c) of this lemma, and Slutsky’s theorem)

It then follows from part (d) of this lemma and the Slutsky’s theorem that
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Lastly, to show part (g), first write
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Applying part (h) of Lemma D-15 and parts (d), (e), and (f) of this lemma and the Slutsky’s
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Lemma D-17: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*

hold. Then, the following statements are true.

(a) b 0b
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0
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¤
 =  (1) , where  =  − − + 1.
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(b) b 0
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0 is a  × 1 vector.
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Proof of Lemma D-17:
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To show part (a), first write
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Now, by Assumption 3-6, there exists a positive constant  such that
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while, applying the triangle inequality and part (d) of Lemma D-16 allow us to show that°°°°° 1
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Combining this result with part (g) of Lemma D-16 and the Slutsky’s Theorem, we deduce that¯̄̄̄
¯00 1

−X
=

 

³b  −0 

´0


¯̄̄̄
¯

≤
vuut00

°°°°° 1
−X
=

 
0


°°°°°
2

vuut 1



−X
=

0
³b  −0 

´³b  −0 

´0


=  (1)

274



Since this argument holds for all   ∈ R such that kk2 = kk2 = 1, we further obtain
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Putting these results together and apply Slutsky’s theorem, we then obtain
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To show part (b), first write, for any  ∈ R and  ∈ R such that kk2 = 1 and kk2 = 1,
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Focusing first on the first term on last line above, we note that,¯̄̄̄
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by part (b) of Lemma D-2 and parts (d) and (g) of Lemma D-16. In addition, note that, by making
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use of part (b) of Lemma D-2, Assumption 3-6, and Slutsky’s theorem; we obtain¯̄̄̄
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Combining these results, we then get¯̄̄̄
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Since the above argument holds for all  ∈ R and  ∈ R such that kk2 = 1 and kk2 = 1; we
further deduce that b 0
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To show part (c), first write, for any  ∈ R such that kk2 = 1,
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Focusing first on the first term on last line above, we note that,¯̄̄̄
¯ 1

−X
=

0
³b  −0 

´¯̄̄̄¯ ≤ 1



−X
=

¯̄̄
0
³b  −0 

´¯̄̄
(by triangle inequality)

≤
vuut0

1



−X
=

³b  −0 

´³b  −0 

´0
 (by Liapunov’s inequality)

≤
vuut°°°°° 1

−X
=

³b  −0 

´³b  −0 

´0°°°°°
2

=  (1)
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Since the above argument holds for all  ∈ R such that kk2 = 1; we further deduce that

b 0


−00P(+)
¡
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Turning our attention to part (d), note that for any  ∈ R and  ∈ R such that kk2 = 1
and kk2 = 1, we can write
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In addition, note that, by Assumption 3-7, there exists a positive constant  such that
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for some positive constant ∗ in light of Assumption 3-6. It follows by applying expression (132) in

the proof for part (a), expressions (133)-(135) here, as well as the result given in part (g) of Lemma
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To show part (e), note that for any  ∈ R and  ∈ R such that kk2 = 1 and kk2 = 1, we
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It follows by applying expressions (135), (136), and (137) as well as the result given in part (g) of
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Lemma D-16 and the Slutsky’ theorem that¯̄̄̄
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It follows by applying expression (135), the result given in part (g) of Lemma D-16, and the Slutsky’

theorem that¯̄̄̄
¯̄ 0

³ b − 
´
−12



¯̄̄̄
¯̄ ≤

vuut°°°°° 1
−X
=

³b  −0 

´³b  −0 

´0°°°°°
2

0020−1−12

=  (1) .

Since the above argument holds for all  ∈ R such that kk2 = 1, we further deduce that

0

³ b − 
´
−12


=  (1) .

For part (g), note that, for any  ∈ R and  ∈ R such that kk2 = 1 and kk2 = 1, we have,
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by direct calculation,
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Focusing first on the first term on last line above, we note that¯̄̄̄
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by the inequality

√
1 + 2 ≤ √1 +√2 for 1 ≥ 0 and 2 ≥ 0

¢
Note that, by part (g) of Lemma D-16, we have
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and, by part (h) of Lemma D-2,
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µ
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¶
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Moreover, note that

+ =

−1X
=0


 0++−

and, using expression (71) given in the proof of part (e) of Lemma D-2 and Assumption 3-2(b), we

see that there exists a positive constant ∗ such that
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Making use of these calculations and applying Slutsky’s theorem, we deduce that¯̄̄̄
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Next, note that, by part (f) of Lemma D-2 and Slutsky’s theorem, we see that
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Putting everything together and applying Slutsky’s theorem once more, we then obtain
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Since the above argument holds for all  ∈ R and  ∈ R such that kk2 = 1 and kk2 = 1; we
further deduce that b 0H


=
1



−X
=

b 
0
+ =  (1) . ¤

Lemma D-18: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*

hold. Then, ⎛⎜⎜⎝
b00 − 00b1 −1b2 −−12

⎞⎟⎟⎠ =  (1) 

Here, b0, b1, and b2 denote the OLS estimators of the coefficient parameters in the (feasible)
-step ahead forecast equation

+ = 0 +

X
=1

01−+1 +
X

=1

02 b−+1 + b+
= 0 +01  +02 b  + b+,

for  =    −, where the unobserved factor vector   is replaced by the estimate
b  and whereb+ = + −02

³ b  −  

´
with + =

X−1
=0


 0++− as previously defined.
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Proof of Lemma D-18: To proceed, we first stack the observations to obtain the representation
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×

= 
×1

00
1×

+ 
×

1
×

+ b
×

2
×

+ bH
×

(138)

where  =  − − + 1 and where

 ()
×

=

⎛⎜⎜⎝
 0+
...

 0

⎞⎟⎟⎠ , 
×

=

⎛⎜⎜⎝
 0
...

 0−

⎞⎟⎟⎠ , b
×

=

⎛⎜⎜⎝
b 0
...b 0−

⎞⎟⎟⎠ , and bH
×

=

⎛⎜⎜⎝
b0+
...b0

⎞⎟⎟⎠ .
It is easily seen from expression (138) that the OLS estimators of the coefficients 0, 1, and 2

are given by ⎛⎜⎜⎝
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Now, rewrite expression (138) as
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and it follows that⎛⎜⎜⎝
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Next, applying parts (b) and (d) of Lemma D-2 and parts (a), (b), (c), and (d) of Lemma D-17,
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we obtain ⎛⎜⎜⎝
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Moreover, note that⎛⎜⎜⎜⎜⎝
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which is non-singular and, therefore, also positive definite for all  sufficiently large in light of the

result given in part (b) of Lemma D-1.

In addition, applying parts (f) and (g) of Lemma D-2 and parts (d), (e), (f), and (g) of Lemma

D-17, we have
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and
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Putting everything together and applying the Slutsky’s theorem⎛⎜⎜⎝
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