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1 Introduction

In economics, three of the key areas in machine learning that have drawn considerable attention
in recent years include variable selection, dimension reduction and shrinkage. One reason for this
is the availability of new high frequency and high dimensional datasets that are being analyzed in
areas ranging from targeted marketing and customer segmentation to forecasting and maroeconomic
policy making. This has in turn led to numerous theoretical advances in the areas of estimation,
implementation, and inference using techinques such as the least absolute shrinkage operator (lasso)
and principal components analysis (PCA). In this paper, we build on pathbreaking work due to
Bai and Ng (2002), Stock and Watson (2002a,b), Bai (2003), Forni, Hallin, Lippi, and Reichlin
(2005), and Bai and Ng (2008), in which methods for constructing forecasts based on factor-
augmented regression models are developed and analyzed. In particular, we establish that latent
factors that are critical to the estimation of factor augmented vector autoregressions (FAVARs)
can be consistently estimated in cases where factor pervasiveness does not hold, where by factor
pervasivness we mean that (almost) all available predictors load significantly on a set of factors
that we wish to estimate. To do so, we draw on results of Chao, Liu, and Swanson (CLS: 2023a),
where a completely consistent variable selection procedure useful for specifying FAVAR models is
developed. We then establish that the conditional mean of the infeasible h-step ahead forecasting
equation implied by an FAVAR can be consistently estimated.

As discussed above, a key assumption commonly used in the factor analysis literature to show
consistent factor estimation is that of factor pervasiveness. This assumption presupposes that all
available predictor variables in a dataset, with the possible exception of a negligible number of them,
load significantly on the underlying factors. Needless to say, this assumption may not be satisfied
by many datasets that are available for empirical research. Indeed, a likely scenario is that there is
significant underlying heterogeneity, so that some of the available variables are relevant in the sense
that they load significantly on the underlying factors, whereas others are irrelevant, in the sense that
they do not share any common dynamic structure with each other or with the relevant variables in
the dataset. In this paper, we begin by establishing that, under failure of factor pervasiveness in a
stylized model with one factor, consistency cannot be achieved, and indeed ﬁ 2,0, a8 N , ' — o0,
where f; is a latent factor, N is the number of variables in the dataset being modelled, and T is the
number of time series observations. Findings such as this are the impetus for the work of Chao,
Liu, and Swanson (CLS: 2023a), where a variable selection procedure is developed for pre-selecting

relevant predictor variables for use in the consistent estimation of latent factors in an FAVAR model.



Their variable selection procedure is based on the use of easy to construct self normalized statistics
measuring the covariation between target variables to be predicted and possible predictor variables
to be used in factor estimation. CLS (2023a) show that for their procedure, the probability of
Type I and Type II errors goes to zero, asymptotically, implying that the procedure is completely
consistent. This property turns out to be important because if one tries to simply control the
probability of a Type I error at some predetermined level, which is the typical approach used in
multiple hypothesis testing, then one will not in general be able to estimate factors consistently,
even up to an invertible matrix transformation. A main result of the current paper is to show
that factors estimated using predictor variables selected using the procedure of CLS (2023a) are
consistent, up to a rotation. With these results in hand, we then show that by using variables
selected via our pre-screening procedure to estimate the underlying factors, and then inserting
these factor estimates into h-step ahead forecasting equations implied by a FAVAR model, we can
consistently estimate the conditional mean function of the said equations. Importantly, we argue
that this result allows the conditional mean function of a factor-augmented forecasting equation to
be consistently estimable in a wide range of situations, and in particular in situations where there
are violations of factor pervasiveness.

Finally, in order to illustrate the methods discussed in this paper, we analyze a large dataset.
This part of the paper is to be completed.

Some of the research reported here is related to the well-known supervised principal components
method proposed by Bair, Hastie, Paul, and Tibshirani (2006). Additionally, our research is re-
lated to some interesting recent work by Giglio, Xiu, and Zhang (2021), who propose a method for
selecting test assets, with the objective of estimating risk premia in a Fama-MacBeth type frame-
work. A crucial difference between the variable selection procedure proposed in our paper and
those proposed in these papers is that we use a score statistic that is self-nomalized, whereas the
aforementioned papers do not make use of statistics that involve self-normalization. An important
advantage of self-normalized statistics is their ability to accommodate a much wider range of possi-
ble tail behavior in the underlying distributions, relative to their non-self-normalized counterparts.
This makes self-normalized statistics better suited for various types of economic and financial ap-
plications, where the data are known not to exhibit the type of exponentially decaying tail behavior
assumed in much of the statistics literature on high-dimensional models. In addition, the type of
models studied in Bair, Hastie, Paul, and Tibshirani (2006) and Giglio, Xiu, and Zhang (2021) differ
significantly from the FAVAR model studied here. In particular, Bair, Hastie, Paul, and Tibshirani
(2006) study a one-factor model in an i.i.d. Gaussian framework so that complications introduced
by dependence and non-normality of distribution are not considered in their paper. Giglio, Xiu, and

Zhang (2021) do make certain high-level assumptions which may potentially accommodate some



dependence both cross-sectionally and intertemporally, but they do not consider the implications
of variable selection and factor estimation for forecasting, and the model that they consider is very
different from the type of dynamic vector time series model studied here.

Our research is also closely related to the work of Bai and Ng (2021), who provide results
which show that factors can still be estimated consistently in certain situations where the factor
loadings are weaker than that implied by the conventional pervasiveness assumption, although in
such cases the rate of convergence of the factor estimator is slower and additional assumptions are
needed. As discussed in the next section of this paper, their factor consistency result relies on a
key condition, and the appropriateness of this condition depends on how severely the condition of
factor pervasiveness is violated, which is ultimately an empirical issue.!

The rest of the paper is organized as follows. In Section 2 , we provide our counterexample,
stated formally as Theorem 2.1, which shows that a latent factor may be inconsistently estimated
when the standard assumption of factor pervasiveness does not hold. In Section 3, we discuss
the FAVAR model, the variable selection procedure of CLS (2023a), and the assumptions that are
required in the sequel. Section 4 gathers our theoretical results on the consistent estimation of latent
factors, up to an invertible matrix transformation, as well as results on the consistent estimation
of the h-step ahead predictor, based on the FAVAR model. Section 5 presents the results of an
empirical illustration where our forecasting approach is compared with related approaches in the
literature. Finally, Section 6 offers concluding remarks. Proofs of the main theorems and some
supporting lemmas are given in the appendices of this paper.

Before proceeding, we first say a few words about some of the frequently used notation in this
paper. Throughout, let A(j) (A), Amax (A), Amin (A), and tr (4) denote, respectively, the gt largest
eigenvalue, the maximal eigenvalue, the minimal eigenvalue, and the trace of a square matrix A.
Similarly, let o(;) (B), 0max (B), and omin (B) denote, respectively, the 4t largest singular value,
the maximal singular value, and the minimal singular value of a matrix B, which is not restricted to
be a square matrix. In addition, let ||a||, denote the usual Euclidean norm when applied to a (finite-
dimensional) vector a. Also, for a matrix A, ||A||, = max { VA(A’A) : X (A’A) is an eigenvalue of A’ A}
denotes the matrix spectral norm, and ||A||, = /tr {A’A} denotes the Frobenius norm. For two
random variables X and Y, write X ~ Y, if X/Y = O, (1) and Y/X = O, (1). Furthermore, let
|z| denote the absolute value or the modulus of the number z; let |-| denote the floor function, so

that [« gives the integer part of the real number z, and let ¢, = (1,1, ...,1)" denote a p x 1 vector

'Various authors have documented cases in economics-related research where empirical results suggest that the
underlying factors may be quite weak, so that the rate condition given in Bai and Ng (2021) may not be appropriate.
See, for example, the discussions in Jagannathan and Wang (1998), Kan and Zhang (1999), Harding (2008), Kleibergen
(2009), Ontaski (2012), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan, and Robotti (2017), Anatolyev and
Mikusheva (2021), and Freyaldenhoven (2021a,b).



of ones. Finally, the abbreviation w.p.a.l stands for “with probability approaching one”.

2 Inconsistency in High-Dimensional Factor Estimation

To provide some motivation for the problem we will be studying in this paper, consider the following

simple, stylized one-factor model:

Zt = 7 ft + Ut ,tzl,...,T (1)
Nx1 Nx11x1 Nx1

for which we make the following assumption.

Assumption 2-1: (a) {u} =4.9.d.N (0,In);(b) {ft} =4.i.d.N (0,1);and (c) us and f; are inde-
pendent for all ¢, s.

Much of the literature on factor analysis focuses on the case where the factors are pervasive. In
the special case of the simple one factor model given in expression (1) above, pervasiveness means

that: )
13 _,

N 9
for some constant ¢ such that 0 < ¢ < oo, where |||, = v/7"y. In practice, however, one may have a
high-dimensional data vector Z; such that not all of the components of Z; load significantly on the
underlying factor, f;. In particular, let P be a permutation matrix which reorders the components

of Z;, so that PZ; can be partitioned as follows:

Z

PZ — N1><1 ,
t Zt(2)
N2><1

where Zt(l) =~y f + uﬁl) and Zt(2) = u?) and where all components of the Ny x 1 vector (!
are different from zero, so that the components of Zt(l) all load significantly on f;, whereas the
components of Zt(g) do not. Of course, an empirical researcher will not typically have & priori
knowledge as to which components of Z; will load significantly on f; and which will not. The
following result shows that if one proceeds with factor estimation assuming that the factor is
pervasive, then the usual estimator of a factor based on principal component methods may be
inconsistent and may, in fact, behave in a rather pathological manner in large samples. To consider
this possibility, assume the following condition, which implies a violation of the pervasiveness

assumption.



Assumption 2-2: As N,T — oo, let ||y||, — oo such that:

T ||| 20+ vz

for some constant ¢, such that 0 < ¢ < oo, and for some constant k, such that 0 < x < 1. Note

that under Assumption 2-2:

2
12

~ ~ (TN"“)_@ — 0as N,T — o0,

so that the factor does not satisfy the pervasiveness assumption. This can, of course, occur if a
significant proportion of the components of y are zero or are very small. Next, let 71/ ||71]|, denote
the (normalized) eigenvector associated with the largest eigenvalue of the sample covariance matrix,
S, =277 /T, where Z = (Z1, ..., Zr)' . Then, the usual principal component estimator of f; is given

by:
T <%17 Zt>

"IN R

The following theorem characterizes the asymptotic behavior of this estimator under the assump-
tions given above.
Theorem 2.1: Suppose that Assumptions 2-1 and 2-2 hold. Then, for all t: ft 2,0,as N, T — 0.
It is well-known that without further identifying assumptions, such as those given in Assumption F1
of Stock and Watson (2002a), factors can only be estimated consistently up to an invertible matrix
transformation. However, even in cases where we are not willing to specify enough conditions
so as to fully identify the factors, estimating the factors consistently up to an invertible matrix
transformation will often suffice for many purposes. One such case is when we are trying to
forecast using a factor-augmented vector autoregression (FAVAR). As we will show in results given
in Section 4 of this paper, point forecasts constructed using factors which are estimated consistently
up to an invertible matrix transformation will nevertheless converge in probability to the desired
infeasible forecast (i.e., the conditional mean of the FAVAR), that in turn depends on the true
unobserved factors. On the other hand, the problem illustrated by the result given in Theorem 1 is
different and is in some sense more problematic and pathological. The estimated factor in Theorem
1 converges to zero regardless of what happens to be the realized value of the true latent factor. In
this case, one clearly cannot consistently estimate the conditional mean of the FAVAR.

Theorem 1 is related to results previously given in the statistics literature showing the possible
inconsistency of sample eigenvectors as estimators of population eigenvectors in high dimensional

situations. See, for example, Paul (2007), Johnstone and Lu (2009), Shen, Shen, Zhu, and Marron



(2016), and Johnstone and Paul (2018). However, most of the results in the statistics literature
are not explicitly framed in the setting of a factor model, but are instead derived for the related
spiked covariance model. Theorem 1 is intended to give an inconsistency result of this type, but in
a context that may be more familiar to researchers in economics.

It should also be noted that, in an interesting and thought-provoking recent paper, Bai and
Ng (2021) provide results which show that factors can still be estimated consistently in certain
situations where the factor loadings are weaker than that implied by the conventional pervasiveness
assumption, but that in such cases the rate of convergence is slower and additional assumptions are
needed. To understand the relationship between their results and the example given above, note
that a key condition for the consistency result given in their paper, when expressed in terms of our
notation, is the assumption that N/ <T ||’y||%) — 02. On the other hand, if N/ (T ||*y||%> — ¢y, for

some positive constant ¢, or even worse, if N/ (T ||*yH§> — 00, which is essentially what is specified
in Assumption 2-2 above, then consistent factor estimation cannot be achieved®. Hence, whether
or not consistent factor estimation can be attained depends on how nonpervasive the factors are,
which is ultimately an empirical question, and which depends on the application and on the dataset
employed. Moreover, various authors have now documented cases where empirical results suggest
that the underlying factors may be quite weak, so that the rate condition given in Bai and Ng
(2021) may not be appropriate, at least for some of the situations for which factor modeling is
of interest. For example, see Jagannathan and Wang (1998), Kan and Zhang (1999), Harding
(2008), Kleibergen (2009), Ontaski (2012), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan,
and Robotti (2017), Anatolyev and Mikusheva (2021), and Freyaldenhoven (2021a,b). In such
cases, it is of interest to explore the possibility that the weakness in the loadings is not uniform
across all variables, but rather is due to the fact that only a small percentage of the variables loads
significantly on the underlying factors. Furthermore, even if the empirical situation of interest is
one where, strictly speaking, the condition N/ (T nyH%) — 0 does hold, it may still be beneficial
in some such instances to do variable pre-screening. This is particularly true in situations where
the condition N/ (T H’yH%) — 0 is “barely” satisfied, in which case one would expect to pay a
rather hefty finite sample price for not pruning out variables that do not load significantly on the
underlying factors, since these variables will add unwanted noise to the estimation process. For

all these reasons, there is a clear need to develop methods that will enable empirical researchers

?See Assumption A4 of Bai and Ng (2021). Note that Bai and Ng (2021) state this condition in the form
N/ (T'N%) — 0, for some a € (0, 1], but since part (ii) of their Assumption A2, when specialized to the one factor model
studied here, simplifies to the condition that imy_.cc ||7][3 /N® = oa > 0, it is easy to see that their Assumption A4
is equivalent to the condition that N/ (T ||7H§) — 0.

3Note that Assumption 2-2 is actually stronger than required in order to show inconsistency, but that we impose
this condition to highlight the fact that, in this case, not only is the estimator of the factor inconsistent but it actually
converges to zero.



to pre-screen the components of Z;, so that variables which are informative and helpful to the

estimation process can be properly identified.

3 Model, Assumptions, and Variable Selection in High Dimen-

sions

Following CLS (2023a), we begin by considering the following p*-order factor-augmented vec-
tor autoregression (FAVAR):

Wigi =p+ AW+ -+ AWi_pi1 + €41, (2)
where
Y
Yi1 €iq1 y
dx1 dx1 dx1
Wiy = , Et41 = 8 o = , and
(d+K)x1 Fiy (d+K)x1 €41 (d+K)x1 ur
Kx1 Kx1 Kx1

Ayyy Avrg
dxd dx K
g = , forg=1,...,p.
(d+K)x (d+K) Aryy Arrg
Kxd KxK

This system of equations, where Y; denotes the vector of observable economic variables, and F; is
a vector of unobserved (latent) factors can also be written is several alternative ways, the following

two of which are are variously used throughout this paper. Namely:

Vie1 = py +AyyY, + AyrF, +ely, (3)
Fio1 = pp+ApyY, + AprF, +efl4, (4)
where
Ayy = ( Ayya Ayve - Avyp )’ Ayr = ( Avea Avez o Avep >’
dxdp dxKp
Apy = | Aryqp Arve - Apyp ), Arr = ( App1 Arp2 - Arpp )’
Kxdp KxKp
Y; Fy
Yia1 Fi 4
Xt = . ) and Et - ’ (5)
dpx1 : Kpx1
Yi—pt1 Ftp+1



and
W, =a+ AW, +E,

(d+K)px1
/
where W, = ( w) TR t’7p+2 WtLerl ) and where
0 A Ay e Ay 4 £t
0 Iysk 0 - 0 0 0
o= 7A: 0 Id—‘rK 0 , and Ey = : (6)

: 0
0 0 Igyx O

The companion form given in equation (6) is convenient for establishing certain moment conditions
on Y, and F,, given a moment condition on &, and for establishing certain mixing properties of the
FAVAR model, as shown in the proofs of Lemmas C-4 and C5 in Appendix C below. It remains to
define the relationship between the F; and the variables used to extract these factors. To do this,
we assume that:

Zy = I F
N>fl NXKp_t + Ut, (7)

where the properties of u; are given in Assumptions 3-3 and 3-4, below. Following Chao, Liu,
and Swanson (2023a), we assume that not all components of Z; provide useful information for
estimating £, implying that the N x Kp parameter matrix I' may have some rows whose elements
are all zero. More precisely, let the 1 x Kp vector, v}, denote the ith row of T', and assume that the

rows of the matrix I can be divided into two classes:

H = {ke{l,...N}:v,=0} and (8)
H¢ = {ke{l,..,N}:v,#0}. 9)

/
Thus, there exists a permutation matrix P such that PZ; = ( Zt(l)' Zt(Q)' ) , where

Z0 = F, + Y (10)
N1><1
7P = 4@, (11)
N2><1

)

In this way, the components of Zt(1 can be interpreted as “information” variables that are useful

for estimating £;. On the other hand, for the purpose of factor estimation, the components of



the subvector Zt(2) are pure “noise” variables, as they do not load on the underlying factors and
only add noise if they are included in the factor estimation process. Given that an empirical
researcher will often not have prior knowledge as to which variables are elements of Zt(l) and which
are elements of Zt(2), Theorem 2.1 suggests the need for a variable selection procedure which will
allow us to properly identify the components of of Zt(l) and to use only these variables when we

)

try to estimate F; for, if we unknowingly include too many components of Zt(2 in the estimation
process, then inconsistent estimation in the sense described in the previous section can result.* As
discussed in CLS (2023a), there is an important related paper by Bai and Ng (2021) that establishes
factor estimator consistency for cases where N/(T'Ny) — 0. For cases where N/(T'Ny) — ¢, or
N/(T'Ny) — oo, where ¢ is a constant, their result does not hold. In this paper, we establish
that consistency can be achieved in our context even if N/(T'Ny) - 0, if one pre-screens variables
using the self-normalized statistics outlined below. This is important because the degree of factor
pervasiveness is ultimately data dependent, and one way to estimate N invloves utilizing the
variable screening statistic that is discussed in the sequel.

In the sequel, we require the following assumptions.

Assumption 3-1: Suppose that:
det {I(qyg) — A1z — - - — ApzP} = 0, implies that |z| > 1. (12)

Assumption 3-2: Let ¢ satisfy the following set of conditions: (a) {e;} is an independent
sequence of random vectors with E[e;] = 0 V¢; (b) there exists a positive constant C' such
that sup, E|je¢]|S < C < 00; (¢) & admits a density g, such that, for some positive constant
M < oo,sup; [ |ge, (v —u) — ge, (V)| de < M |u], whenever |u| < & for some constant & > 0; and
(d) there exists a constant C' > 0 such that inf; Amin {E [ee}]} > C > 0.

Assumption 3-3: Let u;; be the it element of the error vector wu; in expression (7), and we
assume that it satisfies the following conditions: (a) E [u;:] = 0 for all 4 and ¢; (b) there exists

a positive constant C such that sup, ; F/ |ui,t|7 < C < 00, and there exists a constant C' > 0 such that

: 2 . t _ _
lnfz',t F [ui7t] 2 Q, (C) deﬁne fi,foo =0 (, ui’t_g, ui,t_l, ut), 'E??er =0 (uinm, ui,t+m+1, ui7t+m+2,

and
B; (m) = sng [sup{‘P (B\}"{_OO) — P(B)‘ :B € Fiim ] .

41n statistics, there is a growing literature on the potential inconsistency of sample eigenvectors in high dimensional
problems, as discussed in Paul (2007), Johnstone and Lu (2009), Shen Shen, Zhu, and Marron (2016), and Johnstone
and Paul (2018).

10



Assume that there exist constants a; > 0 and as > 0 such that

Bi (m) < arexp{—azm}, for all 4

and (d) there exists a positive constant C' such that sup, (N% Z Z |E [mmm]!) < C < oo for
icHe keH¢e

every positive integer N, where H¢ is defined in expression (9) above.

Assumption 3-4: ¢; and u; s are independent, for all 4,¢, and s.

Assumption 3-5: There exists a positive constant C, such that sup;cpe ||7;l, < C < oo and

lilly < T < oo, where 1 = (i i)

Assumption 3-6: There exists a positive constant C, such that:

1 I I —

0< =< nin| =) < Amax | = | < C < o0 for all N1, N, sufficiently large,
C N1 N1

where N7 is the number of components of the subvector Zt(l) and Ny is the number of components

of the subvector Zt(Q), as previously defined in expressions (10) and (11).

Assumption 3-7: Let A be as defined in expression (6) above, and let the eigenvalues of the

matrix [(44 i), — A be sorted so that:

My Tarxyw = A)| 2 M) Tarxy —A)| = > [(MNarxw) Tarxp — 4)| = Gmin-

Suppose that there is a constant C' > 0 such that

Omin (La+x)p — A) = Cmin (13)

In addition, there exists a positive constant C' < oo such that, for all positive integer j,
e (A7) < Tma { | Amax (A7), [Punin (A7)} (14)

Assumption 3-1 is the stability condition that one typically assumes for a stationary VAR, process,
although we allow for possible heterogeneity in the distribution of €; across time, so that our FAVAR
process is not necessarily a strictly stationary process. Under Assumption 3-1, there exists a vector
moving average representation for the FAVAR process. Assumption 3-1 is a well known assumption
that is equivalent to the condition that det {I(41x) — Az} = 0 implies that |z > 1.

Since the factor loading matrix I' is an N x Kp matrix, where N = Nj + Ny, the matrix I''T’

will have order of magnitude equal to N if the factors are pervasive. Much of the factor analysis

11



literature in both econometrics and statistics has studied the case where factors are pervasive in
this sense. For example, see Bai and Ng (2002), Stock and Watson (2002a), Bai (2003), and Fan,
Liao, and Mincheva (2011, 2013). Assumption 3-6 allows for possible violations of this conventional
pervasiveness assumption, which will occur in our setup when Ny/N — 0.
Finally, Assumption 3-7 imposes a condition whereby the extreme singular values of the matrices
AJ and I (d+K)p — A have bounds that depend on the extreme eigenvalues of these matrices. For
further discussion of this Assumption, see CLS (2023a).

Note that Assumptions 3-1, 3-2(a)-(c), and 3-7 are sufficient to prove Lemma C-5 in Appendix
(5, which states that the process {W;} generated by the FAVAR model given in expression (2) is

a f-mixing process with -mixing coefficient satisfying:

Bw (m) < ayexp {—agmy},

for some positive constants a; and ag, with
Bw (m) = sup E [sup {|P (B|AL) — P (B)| : B€ A%} ],

and with A _ = o (..., Ws_o, Wy_1, W;) and AR = 0 Wigms Wivma1, Wigma2, ....). Note that
Assumption 3-2 (¢) rules out situations such as that given in the famous counterexample presented
by Andrews (1984) which shows that a first-order autoregression with errors having a discrete
Bernoulli distribution is not a-mixing, even if it satisfies the stability condition. Conditions similar
to Assumption 3-2(c) have also appeared in previous papers, such as Gorodetskii (1977) and Pham
and Tran (1985), which seek to provide sufficient conditions for establishing the « or § mixing
properties of linear time series processes.

Prior to presenting the main theorems of this paper, we first summarize the variable selection
procedure based on self-normalized statistics that is outlined in CLS (2023a), and draws on path-
breaking moderate deviation results from Chen, Shao, Wu, and Xu (2016). To accommodate data
dependence, consider self-nomalized statistics that are constructed from observations which are first
split into blocks in a manner similar to the kind of construction one would employ in implementing
a block bootstrap or in proving a central limit theorem using the blocking technique. One such
statistic has the form of an o, norm and is given by:

S.
max |S; 7| = max LT , (15)
1<e<d' " 1<t<d| [i7
0, T

’For a statement and proof of Lemma C-5, see Appendix C below.

12



where

q (r—1)7+7m1+p—1

T = Z Z Zitye+1 and (16)

t=(r—1)7+p

2

(r—1)7+71+p—1 2

q
Vier = > > Zuyean| (17)
r=1

t=(r—1)7+p
Here, Z;; denotes the " component of Z; , Yet+1 denotes the oth

and 79 = |T?], where 1 > ay > a2 >0, 7 =71 + 72, ¢ = |To/7], and To = T — p + 1. Note that

component of Y1, 71 = [T ],

the statistic given in expression (15) can be interpreted as the maximum of the (self-normalized)
sample covariances between the i*" component of Z; and the components of Y;;1. A second statistic

has the form of a pseudo-L; norm and is given by:

d

LT
Y welSierl = Zw ii»
(=1

Vier

where EM,T and VM,T are as defined in expressions (16) and (17) above and where {ww,: £ =1, ..,d}
denotes pre-specified weights, such that wy > 0, for every ¢ € {1, ...,d} and ijl we = 1. In order
to keep the effects of dependence under control, the construction of these statistics is based only on
observations in every other block. In order to consistently estimate the factors up to an invertible
matrix transformation, the variable selection procedure here must be such that the the probability
of a false positive and the probability of a false negative converge to zero as N1, Ny, T — oo%. This
is different from the typical multiple hypothesis testing approach whereby one tries to control the
familywise error rate (or, alternatively, the false discovery rate), so that it is no greater than 0.05,
say, but does not try to ensure that this probability goes to zero as the sample size grows.

In order to implement this procedure, it reamins only to determine whether the i** component
of Z; is a relevant variable for the purpose of factor estimation. Define i € H¢ to indicate that Z
is a relevant variable and i € H to indicate that Zi is an irrelevant variable, for factor estiamtion.
Now, let S:T denote either the statistic maxj</<q|S; ¢ 7| or the statistic ijl wy|Sier]. The

variable selection procedure is based on the decision rule:

He ifSH.>d 1 (1-2&
i c { o= ( 2N) (18)

H ifSip<et(1-5%)

SHere, a false positive refers to mis-classifying a variable, Zi:, as a relevant variable for the purpose of factor
estimation when its factor loading «; = 0, whereas a false negative refers to the opposite case, where v, # 0, but the
variable Z;; is mistakenly classified as irrelevant.
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where @1 (-) denotes the quantile function or the inverse of the cumulative distribution function
of the standard normal random variable, and where ¢ is a tuning parameter which may depend
on N. Some conditions on ¢ will be given in Assumptions 3-11 and 3-11* below. For a discussion
of the use of the quantile function of the standard normal as the threshold function, refer to CLS
(2023a), and note that the threshold function used here is related to the one employed in Belloni,
Chen, Chernozhukov, and Hansen (2012).

In the sequel, we further require the following assumptions.

Assumption 3-8: There exists a positive constant, ¢, such that for 7" sufficiently large:

1 (r—=1)7+7m14+p—1 2

min min min F e E 0141 Wit >c
1<0<d i€H re{l,....q} 1 Ye, i1t =
t=(r—1)7+p

where, as defined earlier,

T
T1=|T5" ], 72 = |15 for 1> a1 > az >0 and ¢ = L’l‘:TQJ7

and Top =T —p+ 1.
Assumption 3-9: Let i € H¢ = {k € {1,....,N}: v, # 0} .Suppose that there exists a positive
constant, ¢, such that, for all N1, No,and T sufficiently large:

Hi e

qT71

min min
1<(<dicH¢

. q 1 (r—=1)7+11+p—1
= min min |- — Z 7 {E [F] Py + E [Etﬂ] ayyy+ E [Etﬁé] OzyF,Z}
I<(<di€H" |q £ T1 t=(r—1)7+p

> ¢>0,

where py = €) 4y, ayye = Ayyerq, and aype = Ay pegq. Here, eq 4 is a d x 1 elementary vector

eth

whose component is 1 and all other components are 0.

Assumption 3-10: Suppose that, as N1, No, and T" — oo, the following rate conditions hold:

(a)
In N

. l—a1 as
Tmm{ 5 ,2}

where 1 > a1 > ag > 0 and N = Ny + No.

(b)

—0

Ny

WHOWherel>a1>O.
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Assumption 3-11: Let ¢ satisfy the following two conditions: (a) ¢ — 0 as Ny, No — oo, and

L
Na>»

Note that Assumption 3-9 is a fairly mild condition which allows us to differentiate the alterna-

(b) there exists some constant a > 0, such that ¢ > for all Ny, Na sufficiently large.

tive hypothesis, i € H¢ from the null hypothesis, 7 € H. For further discussion of Assumptions 3-8
- 3-11, refer to CLS (2023a). Given the above assumptions, Theorem 1 of CLS (2023a) shows that
the probability of a false positive, i.e., the probability that ¢ € H ¢, even though v, = 0, approaches
zero, as N, T" — oo, and Theorem 2 of the same paper shows that the probability of a false negative,
i.e., the probability that ¢ € H even though v, # 0, also approaches zero, as N,T" — oo. Together,
these two theorems show that our variable selection procedure is (completely) consistent in the
sense that the probability of committing a misclassification error vanishes as N,T — oo. CLS
(2023a) also note that the above variable selection procedure provides us with a consistent estimate
Nj of the unobserved quantity Ny, where the latter, in light of Assumption 3-6, can be interpreted
as giving the order of magnitude of I'T" and is, thus, a measure of the overall pervasiveness of the
factors in a given application. Finally, note that knowledge of the number of factors is not needed to
implement the above variable selection procedure. Hence, in the case where the number of factors
needs to be determined empirically, an applied researcher could first use our procedure to properly
select the relevant variables and then apply an information criterion such as that proposed in Bai
and Ng (2002) to estimate the number of factors.

Before presenting the main theoretical results proven in this paper, it is worth making a final
comment about variable selection. In particualr, note that Bai and Ng (2008) address the important
issue of choosing predictor variables Z;; based on their predictability for Y;4+1. While we agree with
this viewpoint, it is worth stressing that in our setup, whether Z;; helps to predict Y;;; depends on
two things: (i) whether Z;; loads significantly on the underlying factors F, (i.e., whether ~; # 0 or
not) and (ii) whether at least some components of F, are helpful for predicting certain components
of Yi1p. The variable selection procedure which we propose here focuses on the first issue but
not the second. This is because, in our view, it is important to first obtain good factor estimates
with certain desirable asymptotic properties before trying to assess which factor may or may not
be useful for predicting Yiy,. It is important to distinguish between these two things because, if
we try to do too much at the variable selection stage and end up excluding a significant number
of (predictor) variables that load strongly on at least some of the factors, then, this can lead to
the factor vector F, being inconsistently estimated, and this is true even if the variables do not
individually help to predict Y;4 5, but instead are crucial for the consistent estimation of the factor,

which in turn is useful for predicting Y.
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4 Consistent Estimation of Factors and the h-Step Ahead Predic-
tor Based on the FAVAR Model

In this section, we provide our main theoretical results on factor estimation and on the estimation
of the h-step predictor implied by the FAVAR model. To obtain these results, we need to impose
a further rate condition on the tuning parameter, ¢ (see part (c¢) of Assumption 3-11%).

Assumption 3-11*: Let ¢ satisfy the following three conditions: (a) ¢ — 0 as N1, Na — oo, (b)

there exists some constant a > 0, such that ¢ > % for all Ny, No sufficiently large, and (c)

2 5 1
N7¢p7 N3
max{ ]7\;1'07, N:T%} — 0 as N1, No, T — o0.

Remark 4.1: Note that the rate condition given in part (¢) of Assumption 3-11* depends on Nj.

However, if we choose ¢ so that:

then

2 5 1
N7p7 1 N3gp 1 < 1 )
=0(— ) =0(1) and =0——+—|=0—].
Ny <N1> (1) NT (NlN%T) N

Hence, with this choice of ¢, Assumption 3-11* part (c) will be satisfied as long as N1 — oo, and
there is no need to impose any further condition on the rate at which N; grows. Requiring that
N; — oo is a minimal condition, since if N7 - oo; then consistent factor estimation, even up to
an invertible matrix transformation, is impossible. Additionally, Monte Carlo results reported in
Section 3 of CLS (2023a) show that the variable selection procedure discussed above performs very
well in finite samples, under the tuning parameter choice ¢ = N *%, both in terms of controlling
the probability of a false positive (or Type I) error and in terms of controlling the probability of a
false negative (or Type II) error.
Next, consider the post-variable-selection principal component estimator
of F, = (F/, F/_4, ...,Ft’fpﬂ) :
7 (H°)
N

Et = ’ (19)

where
—~ —~ — o~ !/
Zin (H) - [ Zlﬁt]l{l S H} Zz,t]l{z e H} ZN¢]I{N € H} ] ,

with -
1[{' A}_{1 ifi € He, e, if ST > @71 (1- %)

0 ifi€H, ie,ifSf; <o (1-5%)
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and where N; = # <fl\c>, i.e., the cardinality of the set He. Here, T denotes the principal com-

ponent estimator of the loading matrix I constructed from taking ]\71 times the matrix whose
columns are the eigenvectors of the post-variable-selection sample covariance matrix ) <I/{\C> asso-

ciated with the Kp largest eigenvalues of this matrix, where, in this case,

—~\/ —~
s ([ T7e z (HC) z (HC) Z !
5 (H°) = L Zin (H) Zi (H°)
N1Tp Nl 0%

with To =T —p+ 1.

Our next result shows that the estimator given in expression (19) consistently estimates the
unobserved factors £,,up to an invertible Kp x Kp matrix transformation.
Theorem 4.1: Suppose that Assumptions 3-1, 8-2, 3-8, 3-4, 3-5, 8-6, 3-7, 3-8, 3-9, and 3-10
hold. Let Et be as defined in expression (19). Assume further that the specification of the tuning

parameter, @, in the decision rule (18) satisfies Assumption 3-11*. Then,
HF O'F H . for all fixed ¢,

where

1
T\ % _
= (=) =v
o= () ="

and where V is the Kp x Kp orthogonal matriz given in Lemma D-14, and = is a Kp X Kp

orthogonal matrix whose columns are the eigenvectors of the matriz
T V2 rT\?  /Tr\"? 1 T /2
M= — M = — E F F’ .
" <N1> FF<N1> <N1> 0; < >

If we examine the proof of Theorem 4.1 in Appendix 1 as well as the supporting arguments
given in the proof of Lemma D-15 in Appendix D below, we see that two of the key components of

the proof involve showing that:

r(ﬁ) T
S VA | A
VN1
2
and that R
Ny —Ny »p
— 5 0.
Ny

This is one of the reasons why we argue that initial variable selection should focus on determining

which variables load strongly on the factors without worrying specifically at that stage about the
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related issues of predictability or, for that matter, any other issue. By contrast, if we make our
initial variable selection based on some more stringent criterion that takes into consideration not
only variable relevance but also other concerns such as predictability, then, we may end up with a
much smaller set H° of selected variables relative to the set H¢ selected under our procedure. In
particular, in this case, it may be possible that even in large samples a significant number of rows
of I' (fﬁ) may contain only zero elements even though the corresponding row of I' is not a zero
vector, so that the result:

r(He) -1

T

2

may not hold. For the same reason, if we let Nl denote the cardinality of the set of selected indices

based on an alternative, more stringent variable selection procedure, then, the result:

N — N 2,

Ny 0

also may not hold, since, by definition, Nj is the number of rows of I' which have at least one
non-zero element.

Although Theorem 4.1 shows that, without further identifying assumptions, we can only esti-
mate the factors F, consistently up to an invertible Kp x Kp matrix transformation, this result
turns out to be sufficient for us to estimate the h-step ahead predictor consistently. More specifi-
cally, in Appendix D below, we show that for h-step ahead forecasts associated with the (infeasible)
forecasting equation implied by the FAVAR model (2), we have the form

Yitn = Bo + B1Y, + BoF, + 1y, (20)

where Y, and F, are as defined in expression (5) above and where:

h—1
By = JaA a, By = JgA"P(y, 10,4, By = JaA" P4, 10,5k and (21)
j=0
h—1 ‘
Mitn = JaA Ty cEin—j.
j=0

Here, o and A are, respectively, the intercept (vector) and the coefficient matrix of the companion

18



form defined in expression (6) above, P44 k), is @ permutation matrix such that:

Iy
and
I 0
Sy = 0 7SK: dpx Kp , Jyq :|:Id o --- 0 7and
Kovdp Ixp dx (d+K)p
Jar K = | lggx O --- O

(d+K)x(d+K)p

See the beginning of Appendix D for a derivation of the equation given in expression (20). The
reason expression (20) is called an infeasible forecasting equation is, of course, because F, is not
observed, so to obtain a feasible version of this forecasting equation, we must replace F; in equation
(20) with the estimate F , given in expression (19). Doing so, we arrive at a feasible h-step ahead

forecasting equation of the form:

p p
Yien = Bo+ Z B gYi-gt1+ Z By gFi-g+1 +Tlein
g=1 g=1

= Bo+BY, + Béit + Nesns (22)

where 7,5, = 10445, — B5 (Et - Et> , with n, ), = Z;:; JaAI T, p€tin—j.

One can interpret expression (22) as a “reduced form” formulation of the forecasting equation
where the reduced form parameters ), Bj, and B are nonlinear functions of the parameters
(p, Ay, ...., Ap) of the FAVAR model, in the case where h > 1. For forecasting purposes, while
it is possible to estimate the conditional mean of the forecasting equation (22) by estimating the
underlying parameters directly by nonlinear least squares, here we choose instead to estimate the
conditional mean by estimating the reduced form parameters 3, B, and By via linear least squares.
An important reason why we choose this latter approach is due to complications that arise both
because we are forecasting with a FAVAR which contains unobserved factors that must first be
estimated and because we do not make enough identifying assumptions so that the factors can only
be estimated consistently up to an invertible Kp x Kp matrix transformation. In fact, it turns out
that estimating the underlying parameters ji, A1, ...., A, by nonlinear least squares and constructing
an estimator of the conditional mean of the forecasting equation based on these estimates will not

lead to a consistently estimated h-step predictor, unless further identifying assumptions are made.
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On the other hand, as we will show in Theorem 5 below, estimating the reduced form parameters
By, B1, and By by linear least squares does allow us to construct a consistent estimator of the
conditional mean, even in the absence of additional identifying assumptions.

More precisely, let Et denotes the factor estimates given in expression (19). Our procedure

minimizes the least squares criterion function:

T—h
~ 1|12
Q (Bo, B1, B2) = Z Yt+h—50—Bizt—B§EtH2
t=p
T—h p p R 2
- Yin —Bo— ZBLQYI‘/*QH - Z BygFi-g+1 (23)
t=p g=1 g=1 9

with respect to the parameters 8y, B, and B, and delivers the OLS estimates Bo» El, and Eg.
We then forecast Yr, using the h-step predictor:

}/}T-l—h = Bo + EiXT + EéET (24)

The following result shows that ?T+h is a consistent estimator of the conditional mean of the

infeasible forecast equation (20).

Theorem 4.2: Let }/}T+h be as defined in expression (24). Suppose that Assumptions 3-1, 3-2,
3-8, 8-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11* hold. Then,

?T+h - (50 +BiKT +BéET) £> 0 as Nl,NQ,T — OQ.

5 Empirical Illustration

To be completed.

6 Conclusion

In this paper, we study the problem of consistently estimating the conditional mean of a factor-
augmented forecasting equation based on the FAVAR model. When the underlying dynamic factor
model generating the latent factors is high-dimensional, we show that it is important to pre-screen
the variables in terms of their association with the underlying factors prior to estimation, particu-

larly in cases where one suspects that the conventional assumption of factor pervasiveness may not
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hold. For this purpose, we utiluize a new variable selection procedure based on a self-normalized
score statistic (see Chao, Liu, and Swanson (CLS: 2023a) that correctly identifies the set of vari-
ables which load significantly on the underlying factors, with probability approaching one, as the
sample sizes go to infinity. Furthermore, CLS(2023a) show that estimating the factors using only
those variables selected by their method allows factors to be consistently estimated, up to an invert-
ible matrix transformation, even in certain situations where the standard pervasiveness assumption
does not hold, provided that the number of relevant variables is sufficiently large. Using the factors
estimated in such a manner, we show that the conditional mean function of a factor-augmented

forecasting equation can be consistently estimated, even for the case of multi-step ahead forecasts.

7 Appendix A: Proofs of Theorems 2.1, 4.1, and 4.2

Proof of Theorem 2.1:
The proof of Theorem 2.1 requires a long series of calculations. Hence, we have divided this

proof into six different steps.

Step 1:

In step 1, we shall transform the simple factor model

Zy = v fir + u,t=1,....,T (25)
Nx1 Nx11lx1l Nxl1
into a more convenient form. Let II denote an N x N orthogonal matrix whose columns are the
eigenvectors of the covariance matrix ¥z = F [Z;Z]]. Without loss of generality, we can partition
IT as

—| m Iy
NxN Nx1 Nx(N-1)
where 71 is the eigenvector associated with the largest eigenvalue of X7 = E[Z;Z]], i.e., A1) (¥z).

By the result of Lemma B-8, we know that

—— and Ay (8) = [} + 1.

T =
[iod
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Next, we define

' Z,
I (v f + )

N
[l TV =

fi + Ty
o {P

IVllg fill'my + 'y (since T = ﬁ)
2

™ /
171l5 fe - T + 1Ty
2

= |, frer,n +ny

(26)

where e; y is an elementary vector whose first component is 1 and all remaining components are
0 and where n, = IT'u;. Moreover, note that {n,} = i.i.d.N (0, Iy) since II is an orthogonal matrix

and 7, = My with {u;} =4.4.d.N (0, In). We can write out the covariance matrix of W as

Yw
= E[W,W]
= E[(Illy frer.n +m0) (7]l frern +n,)']
= W3 E [f2] erwvein + 1V E nefil €l n + [Vl en v E [finf] + E [nin}]

= Inllzervel x +In

IE+1 0 0 - 0
0 1 0 - 0
= 0 0 1
0
0 0 - 0

from which it is easily seen that Ay (Zw) = I7]13 + 1 and Aoy Bw) = Az Ew) = - =
Ay (Bw) = 1, where we let Ay (Xw) denote the 4§ largest eigenvalue of ¥y. In addition, the
eigenvector associated with A; (Xw) is ej N, an elementary vector whose 4t component is 1 and

all other components are 0.
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Note further that we can also write W; in the alternative form

Wit

)

Wat
W, = ,
Wt

||’7H2 Tt M1t

0 N2t
= . + .

0 NNt

”’YHQCl,t
Cot

CNt

N
= Z \/e_jCj,tej,N (27)
j=1

where (1, = fi + 75" 71¢ and Cjt = njy for j = 2,.., N and where {; = |73 and ¢; = 1 for
j=2,...,N. In fact, this is the representation of W; that is given in Lemma B-10. (See Appendix
B below).
Step 2:

Deﬁne]yXVT = (Wi, ..., Wr), where W, is as defined in expression (26) in step 1 above. Partition
W as follows

W) Z
W — 1xT _ 1xT
NXT W), Iz |’
(N—1)xT (N—1)xT

where NZT = (Z1,..., Z7) with Z; as defined in expression (25). Note that the first row of W, i.e.,
X

W/, contains the “signal" observations with the elevated variance A; = ||y]|3 + 1 and where the
remaining N — 1 rows contain the elements of the (N — 1) x T matrix WY which contain only the

noise variables. Now, define the sample covariance matrix

~ 1
Sw=—WW’ =

( T-'W/W;, T W/ W, )
T

T71W/2W1 T71W/2W2
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In this step, we shall further transform iw into the so-called arrowhead matrix. To proceed,

consider the spectral decomposition

WLiW,;  ~ ~~
272 _ B,AB)

where A = diag <X(2), ...,X(N)) with X(Q), ...,X(N) being the N — 1 eigenvalues of W,Wy /T and
B, is an (N —1) x (N — 1) orthogonal matrix whose columns are the eigenvectors of W/Wy /T
Note that, without loss of generality, we can assume that the eigenvalues are ordered so that

A@) = X(3) > 2> X(N). Next, create the modified data matrix

Wi

W _ ~1><T
NxT B’QW’Q
(N-1)xT

The sample covariance matrix based on the modified data matrix is then given by

S WW
NN T
B ( T-'W/W; T 'W,W,B, )

T'B,W,W; T 'B,W,W,B,

S U2 U3 UN
V9 X(g) 0 0
— U3 0 X(3)
' 0
UN 0 0 X(N)
where s = W{W; /T and
1x1 !
v2 B/ /!
= : === - 28
(ijl)xl ’ T ( )
UN

Note that the non-zero entries of iw form the shape of an arrow, and so such matrices have been
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referred to in the linear algebra literature as an “arrowhead matrix".

An advantage of this arrowhead form is that it allows us to obtain a useful representation for
the top eigenvalue of iw. This part of step 2 comes from Johnstone and Paul (2018) following
an approach originally due to Nadler (2008), but for completeness we provide some details of
the argument here. To proceed, let X(l) denote the largest eigenvalue of Sw and let V(1) be the
associated eigenvector, where, following Johnstone and Paul (2018), we will normalize V(1) to have
the form v(;) = ( 1 Ty o Tayw )I, i.e., we normalize v (1) so that its first component is 1.

The eigen-equation Xwv(j) = /):(1)?(1) can then be written out more explicitly as

s vy V3 -+ UN 1 1

vz Ay 0 0 ()2 )2

vi 0 Ag i s | =20 | Tays (29)
A . . .

oy 0 -+ 0 X(N) V(1),N U(1),N

Solving this system of equations, we see that

~ (O .
U(l),j = A—J~ fOI‘ ] = 2, ,N, (30)

Ay = Ag)

where v; is the 4% component of v as defined in expression (28). Hence,

1 1
N U1y va/ (A — M@
va) = (.) = ( . ) (31)
U),N uN/ (Xu) - X(N))

Moreover, since expression (29) implies that
)\(1) =S5+ Uza(1)72 +--+ UN5(1)7N

It follows from substituting the right-hand side of equation (30) for j = 2,..., N into the above

expression that

N N

- , W'W :

)\(1):S+ZA UJ~ = 5., 1+ZA UJ~ . (32)
=AW —AG) =2 A~ AG)

Finally, in this step, we shall relate the eigenvalues and eigenvectors of iw to that of the
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pre-transformed sample covariance matrix of our simple factor model, i.e.,

.77 1
E = = —
2= 7T

T
; ZiZ{ where 7 =(Zy,.... Zr).

Understanding this relationship then allows us to derive asymptotic properties of quantities involv-
ing the leading eigenvector of Sy using the explicit representation of v; and oY given in expres-
sions (31) and (32), respectively. To proceed, we first relate the eigenvalues and eigenvectors of

Sw = WW//T to that of Syw= WW’/T. Define

: (1 s )
B = ~
NxN 0 B

Now, since ]§2 is an orthogonal matrix, it follows that

- 1 0 1 0 1 0
BB = - - | = .
0 B, 0 By 0 B,B,
. 1 0 1 0 1 0 1 0
0 By 0 B, 0 ByB) 0 In

so that B is an orthogonal matrix as well. Next, note that

I
~/
S =
~
< o
L
N——

I

~

=

and

B'WW'B
T

1 0 TIWIW; T-'W{W, 1 0
- ( 0 Bj ) (legwl T-"WHW, > (o B, )
( T-'W\W, T 'W|W,B, )
T-'By,WLW; T 'B,W,W,B,
WW
T

Hence, to relate the eigenvalues and eigenvectors of f]wz WW/'/T to those of iw = BWW'B /T,
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we note that the eigenvalues of the iw are the solutions of the determinantal equation
B'WW'B
0 = det {# — )\[N}

~ WWwW ~~

_ / _ /

~ det{B }det{ —— — BB }det{ }
~ WwW

o I

= det{B }det{ T

WW’
= det — Al
Ty

!

B
- N} det {]~3} <since B is an orthogonal Inatrix>

where the last equality holds because det {]~3’ } = det {ﬁ} = +1 given that B is an orthogonal
matrix. It follows that Syw= WW’ /T and Sw = BWW'B /T have the same set of eigenvalues.
Moreover, let X(j) be the j¥ largest eigenvalue of iw: WW'/T, which is of course also the j**
largest eigenvalue of Sw = ]§'WW’]§/T. Also, let v(;) be an eigenvector of Yw = ]§'WW’]§/T
associated with X(j). Define v(;) = ]§V(j) for j = 1,..., N, and note that, since iWV(j) = /):(jﬁ(j),
we have

o BWW'B ) _
BYwBv() = <—T )V(j)

= Swv()
= AHVy)
which implies that
Swv)=EwBv(;) = A Bv() = AV

so that v(;) = ]§V(]~) is an eigenvector of iw: WW'/T associated with ;\\(j). Note, further that,

previously, we have normalized the first element of V(l) to be 1. This, in turn, implies that the first
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element of v(;) will be 1 as well since

vay = By

~(2 ~ ~ ~ ! 2 o =(2
where we let vElg = ( V12 Yn)3 U(1),N> and VE& :B2V51§: ( V()2 Y(1)3

(N-1)x1 (N—-1)x1
In a similar manner, we can relate the eigenvalues and eigenvectors of X7 = ZZ'/T to those

of Sw= WW’/T and, thus, also to those of Sy = B'WW’B/T. In this case, note that the

eigenvalues of the iw are the solutions of the determinantal equation

WWwW’
0 = det{ T —)\IN}

II'zZZ'11
det { — )\IN} ( since W :H’Z)

/

77
- det{H’}det{ T —)\HH’}det{H}

/

77
- det{H’}det{ 7 —)\IN}det{H}

(since II is an orthogonal matrix whose columns are the eigenvectors of Xz = F [ZtZﬂ)

77
== det{ T —)\IN}

where the last equality holds because det {II'} = det {II} = +1 given that IT is an orthogonal
matrix. It follows that 3, = ZZ/ /T has the same set of eigenvaluses as Sw= WW/ /T and, thus,

also the same set of eigenvalues as iw = B'WW'B /T. Using the same notation as above, we will
then also let X(j) to denote the j*" largest eigenvalue of S 7z = ZZ'/T. Moreover, as before, let v;

denote an eigenvector of EW: WW/'/T associated with X(j). Now, define 7(;) = Ilv(;), and note
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that since iwv(j) = X(j)v(j), we have, for j =1,..., N,

- 'ZZ/M
0l = ( T )V(j)

= Swv(

which implies that

so that
T = v (34)

is an eigenvector of > z associated with the eigenvalue /):(j).
Step 3:

For the simple factor model given in expression (25), i.e.,

Zy = Vitw
= Nllam@fe +ug fort =1,...,T;
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with 71

=7/ ||7ll5; the principal-component estimator of the latent factor f; can be written as

L< Q) Zt>
VN A\ 7w,

Hvllgft< ) m> < Ta >
VN ARl I7a H2

VN [Ty [Tvy]f,
anth wlI'm 1 vill'u

IIv 1 IIv
Il fi < (l)H ,771> + i < W ,ut> (making use of expression (34) in step 2)
2

+
HHV olly VN [[Tvel],

Iyl fe viery | 1 Voll'w

+
Ivell, VA v,

T 1
since II'r(q) = O 1) = = e v given that II is an orthogonal matrix
( ) H/ ( ) 0 ’
(2) (N-1)x1

1)€LN 1 Vi
H7H2 Ji ¥ (1) (since, by definition, n, = IT"us)

HHV nlly - VN vl

wwt< vo) e1N>+i < va) m>
VN Alvol,” ™/ VN vl

where the notation (y,z) = v’z denotes the dot product of the vectors y and = and where the last

equality above follows from the fact that

vl = Vi T Tva) = Vv = Vo l,-
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Next, given expression (33) in step 2, we see that

V() _ vpBew o
<H% > = Tt (e =Fo)

|
=
= =
[Q:
—~
—
/\</\
)
~—
~//
o =
Fo
N~
~
Z
Lo
X
-
N~ —

1 (2) !
= =1 1 v
Hv(l)H2 < W ) ( (N701)><1 )

1
~ TFol, (Vs enw)

V(1)
= 7€ )
<HV<1)H2 1’N>

where the last line follows from the fact that

IFylly = /¥y ¥y = Vi BBV = \/Viyve) = vl

since BB’ = Iy. In addition, let 7, = B'7,, and note that

<—v(1) 77t> = = 7 U
) - 1
vl voll, ™

Since

{(n,} = i.i.d.N (0, Iy)

and B is an orthogonal matrix, we also have

{7,} = i.i.d.N(0,Iy).
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Using these calculations, we can then rewrite the expression for ﬁ in terms of v(;y and 7, as follows.

(Fa): Zr)
VN [[7

_ ol fe ) vy ] Yo,
VN A\llvoll,” "/ VN \vyl, "
Ml Ml
7l /v 1 MONPS
= — = ) == . 35
VN \Faly )" 7R \Fal, ™ e

Given the requirement in Assumption 2-2 that

fi

N 1
mzc—i—o(—Q),as N,T—>OO,
Tz [l

for constants ¢ and k such that 0 < ¢ < oo and 0 < k < 1; it is easily seen that

Iy 1 \T=)
\/NQ =0 ((TNH) ) =o(1). (36)

In the next two steps of this proof, we will show that
v p 1/ Yoy o > P
— ;€1 N —>()and—< = M ) — 0.
<HV<1)|2 > VN [Pl
Step 4:

We will first show that

MY P
=€ — 0.
<||V1||2 1’N>

. To proceed, note that, from expression (31) in step 2, v; has the explicit form

1 1
_ U2 v2/ (M) - A(2))
MO : = .
Uy, v v/ (Nl) - X(N))
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It follows that

Fay.ern)’
~ 2
Ikeen|
N 'U?

= 1+Z—~
j=2

(Xu) - A<j))2

o S 0
since <§(1),917N> = { 1 wvy/ <>\(1) — >\(2)> e/ <>\(1) — >\(N)> } | = 1
. O -
B 1
1472
where
2 N~ Y
T = 5 - 2
= (A =)
Next, write
N 2
2 = o

§=2 (Xu) - X(j))2

_ NI 11T (VInlE)

T TR I T (1) A)
N L1 LT (N3

T S/ B T 5 (1=3g Ag))

Recall from step 2 that X(l) is the largest eigenvalue of the sample covariance matrix

a 1
Yw==WW' =

( T'W,\ W, T 'W/W, )
T

TIWL,W; T 'WLW,

while X(j) (forj =2,...,N)isthe (j — 1)th largest eigenvalue of the submatrix 7-*W5W,. Applying

Lemma B-9 and noting that f]w and T~'W/, W, are positive semidefinite matrices whose elements
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are continuous random variables, we see that

>

) <1la.s. for j=2,...,N.
1)

0<

>)

Note also that, by part (a) of Lemma B-5, X(j) =0 for j =T+ 2,...,N. Hence, we can further

write

3 -2 N 2.2
N 1 A 1 T=v%
7—2 < 2(142k) 2 4(1+k) (1 o 2<m<aj}"(+1 AO)) T Z N J2 (37)
T lvll3 Aay/ Il SIS AQ) i= Nl

To analyze the asymptotic behavior of 72, note first that we can apply the result of Lemma

B-10 in Appendix B below to obtain

~2 ~ 2
Ay [ A ]
Iyl Iyl

2
c p) Op p)
15" 115"
1
110, <_ )] |
115"

1 1 1
= e @ | T (—)] (38)
N/ I[aa e [ ]2

where 0 < 1/¢? < 0o given that 0 < ¢ < oo.

02

from which it follows that

SO -2
Next, consider (1 — MaXo<j<T+1 [)\(j)/ )\(1)]> . To analyze its asymptotic behavior, we make
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use of Assumption 2-2, part (b) of Lemma B-5, and Lemma B-10 to obtain

= A
+ + (
T ”7”2(1 K) Y /\(1 / H’V”ﬂl K) N 1 2<]<l+1

) M o (Wﬂ [+ W%
- C+0<|wu2> TR [”(W) ”O”<\/%)
- C“’(nfyug)

) c||v|| (W) [1 (H B )

1 ] 1
+ ] + 0p (—2R>
c|| [4 712
1
I chII ||v||2 712 ||7||2

)

/%)
|

(5
o

%

)

)

1 1 T
= — 1+0 ~ | +o 1+ o0, —
RRE [ (nvné) (nvn%) [ (wu) N)
1
= ol e i
cllvllz 115
so that
N 1
1-— max ﬁ = 1- 1_—25 1+Op T on
25G<THL () C||7H 71I2
SRR ( )
CH“YH )15
C||V|| H“YH
T 112“[”"p(
and, thus,

~ -2
/s
(1 — __max ﬁ) = |yll5" [1 + 0, (1)].

2T+ Xy
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N
Now, consider 71 Z ) T%?/ <N HvH%) To proceed, note first that
J:
Wie = I7lly £+ me = VIl fo + €] pTTue

so that, given Assumption 2-1 and given the fact that II is an orthogonal matrix, we have that

W} =iid N (0,3 +1)

from which we further deduce that

Wi/ 11vlly
W Wi/ Iy 1
| mable | o L2y,
Y1l : 712
Wir/ 17l
Moreover, note that
Mot eé,NHIut
Wy = : =
NNt eN,NH'Ut

so that, under Assumption 2-1,

{Wgyt} =14.4.d.N (0, IN,1)
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By direct calculation, we have for j = 2,...,T + 1

T2U32' |W2 _ 29971,N—1]§/2W/2E [W1W’1]Wg] W2]§29j—1,N—1
N [y1I3 N2 T2
( . ]§’2W’2W1>
since v - £ £
(N-1)x1 T

Z e;'—lvN—lﬁéwéE (W1 W] W2]§2ej71,N—1
N BT
(by independence of W1 and Wy)

B T . 1 69717N71]§/2W/2W2]§26j_17]\7_1
2
[odlF

N T
T 1 / /B AR T
= N <1 + m) ej—l,N—1B2B2ABIQBer—17N—1

WLW ~ =
<since 2T 2 = BQABIQ)

TX;
_ <1+ 12> ()
Iz N

In addition, by straightforward calculation, we also get for j =2,...,T + 1
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T4U4
——|W
N2 |13

~ ~ 2
T (e;._LN_lB’QW'QWlW’leBer1,N1> W,

N2 BT
4

T T T T
erWISWItWI'U ! T
_ : : : ; |‘A[2:| W, Boej 1 N1
NWZZZZ{MMWMMM (Wb Boey-rv-)

r=1s=1 t=1v=1

(Wz SBzej 1LN—1 (WQtBer 1LN— 1) (W/27U]§2ej71,N71>}

~ ~ 2
- N2T4Z [H’YH ] ( 1,N—1B/2W2,twl2,tB2ejfl,N71)
=1 2

T 2
N2T4 {Z [H 2 ] (e;‘—LN—1B/2W2,tW/2,tB29j—1,N—1)
=1 2

W2 _ _
x> B|—3 (e;fl,NleéWZSWé,sBer—17N—1>
= LI

2 ~ 2
1 €y n_1ByWa W) Boej 1 n_1
= 3|1+ 2 N2T2 Z T

1712

W, _
since —2% — fe+1vlls 17711: ~N10,14—5
715 lly ||2
2 2
1 T~
= 3|1+ (—/\(')>
(H%)NJ

On the other hand, for j =T + 2,.., N — 1, we have

T22 T’)\“
o] (o) e
NI BE
T4v4 1 2 T 2
E|—2LWy| =3[1+— <—>\(~> =0
hmw] (H%)N”

since X(j) =0 for j > T + 1 by part (a) of Lemma B-5.

and
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Next, we show that

{1

To proceed, write

2

N ”’YH2

2

N

DI

j=2

T2 2
NIy ||

1

2] ) 2 W2} -0, (7

)

T

2
N 72 2 2
1 T v T?v
E = E W, |Wa
{ (TJZQ N||’7||2 Z NH“YH D }
2
N 2,2 X
= F lz v Y (14_%)% W,
T | NI hE) N
N 2,2 VNE
1 Tv* 1 T/\(~)
= —Y E 1+ — | =% W,
DD { NhIE ( ||v||§> N
1 T*v? 1\ Thy)
+—> E L1+ — | =%
T {Nllvllg ( ||v||§> N
7203 1\ TX
s (H—z) N(k)] |W2} (40)
Nz 1712
Consider the second term on the right-hand side of expression (40)
T2 2 Y X
L\ Ty || T2 L\ TAw
3t {NII (H 2) N v e v |
Z N RIE RIE RIE
T4U2vi 1 ( 1 )2 (TX(A)) (TX@))
Wyl - = |1+—5 J (41)
2% Nl T\ i ; N N
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For the first term in expression (41), note that

4,22
Tvvk| ]

N2yl

2
171l 72

ek—l,N—1]§/2W/2W1W/1W2]§29k71,N—1
2 9 ‘W2
H7||2 T

d T Wi, Wi Wiy Wi
N2T4ZZZZ{E[ 10 W1 1t W1

|W2} (le E28>1,N71>
e V12 1Yl 1l (11l R

(WztBQGk 1L,N— 1) (szf)’Qkal,Nfl)}

T Wi, ( /

= 7| lei—n 1B2W2tW2tB2e] 1,N— 1)
NPT = {[Hvllé a

X (ek—l,N—l]§,2W2,tW/2,t]§2ek—1,N—1)}
™ [ [wWi, N _
tmmr (S B | —2 (e/A_lN_lBIQWQ,SWé Bgej_LN_1>
Nere {Z [um ! :
x) E

t#s

™ [ [WE] . .
+N2T4 Z E ||’7H2 (ejfl,NflB2W27tW2,tB2ek71,N—1>
t=1 2

XZE

2
- (e;—l,N—lB/2W2,3W,273B29k—1,N—1)
Tz LIz
I Iw? - _
TN {ZE [H’YH’;] (‘%’—LN—IB/2W2,TW/2,TB2ek—1,N—1)
r=1 2

W2 - -
X Z E 1’; (e;—l7N—1B/2W27tW/2,tB26k71,N—1)
iz LIl

T4E {( -1, N—1]§,2W/2W1W'1W2]§2€j1,1v1>

T ] (egsfl,Nf1]§,2W2,tw,2,t]~329k71,N—1)
2

(42)

Calculating the expectation for the first term on the right-hand side of expression (42) above, we
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have

T4 & Wi, - -

) / / !

N2T4Z E I (ej—1,N—1B2W2,tw2,tB29j—1,N—l>
t=1 2

! / ! T
X (ek—l,N—1B2W27tW2,tB2ek71,N71)}

37! N, s -
= No74 1+ e Z { (ejfl,Nf1B2W27tW2,tB2ej—l,N—1)
=1

/ / ! T
X (ek—1,N—1B2W2,tW2,thek—1,N—1>}

Moreover, using the fact that

By W L o,y \ByB.ABYB
€;_1.N-1D2 T 2€j—1,N-1 = €;_1 Ny_1DobaADbobo€; 1 N1
s=1
. -
= €j gy 1Aej1 N1
= AG)
and, for j # k,
Ty e Whag _ ¢ BUB.ABLD
€ _1,N-1VY2 7 2€k—1,N-1 = €1 N_1Dab2ADbyboep_1 N1
s=1

, ~
= ej—l,N—lAek:—l,N—l

=0
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we further obtain

™ (L [wi, ~ N

’ / !/ !

N2T4 ZE H,YH2 (ej—17N—1B2W275W278B28j—171\7—1>
s=1 2

W2 ~ ~
X ZE [||’7_1||7;] (ekf1,NflB,2W2,tWI2,tB29k71,N—1>
t#s 2
2 T )
T4 1 ~ Wy W),
= N2p2 <1 + _2> { (eg'l,NlBIQ Z T’SB293‘—1,N—1
17112 =
T ’
I Wy, W, -
X <92—1,N—1Bl2 Z TMB2ek1,N1> }
=1

T4 1\’ Z - _
() Sl )
t=1

2 ~ -
RS N N
712

T 1\ & - _
Ve (1 ’ ||7||2) (v BaWa Wi Bey 1)
2 t=1

/ / !
X (ek—LN—1BQW2,tW2,tB29k—1,N_1)}

/ / ! T»
X (ekf1,Nf1B2W2,tw2,tB29k71,N71> } ,
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W2
1,t / ]"é/ / f’,
€;_1,N-1D2 W2t W 2,tP2€k—1,N-1

T4 T
W{ZE

2
= LI
W1278 / o/ !
XZE H7||2- <ej—1,N—1B2W2,8W275B2ek71,N—1)
s#t 2
2 T
1! 1 ~ Wy Wh, ~
R <1+H u2> (eg“LN‘lB'QZTBzeMNl
T2 t=1
T ’
LW W
X (eg‘l,NlBé —ST ’SB2ek1,N1>
s=1

T 1\ & - _

/ / !

T N2T4 1+ 2 E :{(ej—LN—lBZ W W 2,tB2ej—17N—1>
t=1

/ o/ !
X (ek—1,N—1Bzwz,th,thek—1,N—1>}

T4 1\ Z ~ N
= 1 {(93'71,N71B/2W27tW/2,tB2ej71,N71>
t

- +
24 2
NeT Iz ) =
X (e;zfl,NflB/QWQ,tWIQ,tBQek—LN—l>} ,

and

™ (& [wWE ], . .
N2T4 Z E HVHE <ejf1,N71B2W27TW2,rB29k71,N—l)
r=1 ]

W3 - _
X Z B S (e;'fl,NflB/2W2,twl2,tB2ek—1,N—1>
ol [T

2 T ,
T ! B, Wo, Wa, =
R <1+||'7H2> (egl’NlBIQ T B2ek1N
2

r=1

LWy W,
/ 'V'/ ’ 2,tV
X | €-1,N-1 2E 7 2€L 1 N—1

t=1

2

T4 1 - _

T N2TR (1 + H,YHQ) E :{(e;'fl,NflB/2W2,twl2,tB29jfl,N71)
2 t=1

/ / ! T
X (ekfl,NflB2W2,tw2,tB2ek—1,N—1)}

2

T 1 - -

K (1 + ||7H2) Z{(e;—17N—1BIQWQ,tWé,tBQijl,N—l)
2 t=1

/ / ! T
x <e,H, N1 ByWo, WY Boey 1, N,1>}
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It follows from these calculations that, for j # k

N[yl

4,2 2
Tvvk’ ]

374 1\’
~ N2TH I+ HVH2 Z{( €j-1,N- 1B2W2tW2tB2e] 1,N— 1)
t=1

X (ekfl,NflB2W2,tw27tB2ek—17N—1)}

(romm) (”“)(“ )

o ( ) =
- NPT | 7”2 t=1
X (e;c—l,N—lB~/2 W, W /2,tB2ek:—1,N—1>}

2T
T4 ~ ~
E B,W,, W, .Boe; 1 n_ )
“N2T i—1,N—1D2 V¥V 2t V¥ 2;D2€; -1 N—-1
T ( ||'7||2) t=1 ]

-, L~
]—LN—1B2W27tW2,tB2ej—17N—1)

M’ﬂ

/ >/ !
X (ek—l N-1BaW2, W, thek—l,N—1> }

2T
T
14 1,N— 1B W2tW2tB29] 1L,N— 1)
N2T4< ||7Hz) ; %

X (ekfl,NflB2W2,tW2,tB29k71,N—1>}

2 ~ ~
- e N N
17112

2 2 3¢
Lo L TG || T2 Aw)
2
NH'YHQ 3] NN H’YH2

(o) 2 (5 >( )

so that

=A%

i7k

- Tzz

i#k

T4U2’Uz

N2 |ly]l3 H

W

™)

A B () B

=0
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Hence,

TX)

N 2,,2 N
1 T v 1
Eq|=)D : > 2| Wy
(T N |ly1I3 ( o] ”2) N

7j=2
T202 1 Th:
N[z 7115
Tzvz (s 1 TX(k)
2 2
N[z ) N

T202 1 Th;
J2 _ <1+ 5 ]\;J)
N vz 7113
|Wo

~ 2
% 1\ T
2 L+ 2 N
N {73 V15

.

N 4,4 2 N oY 2
1 Tt 1 1 TA(-)>
= e E J 2 - 1+ J
T?Zz N2 |y T2< M;) Z( N
2 2 ~ 2
_ 3,2 ) i(ia)li(H ! ) i(w)
2\ hE) N U T RhE) N
2 N 2
2 1 T~
= —[1+ <—)\(-)>
T?( rwu%) ; N
2741 2
2 1 T~ .~ :
= = (1+—2> <N>\(j)> (smce Ai) =0 for j >T+1>
”’YH2 =2
2 2 2
2 1 N -1 T ~
< = - .
Nk (”M%) () (7o)

(since X(j) >0forj=2,..T+ 1)

2
_ 2 14 1 N—-1\?/ T N 2
T 17113 N N —1a2<j98, "0)

1
= Ogs. <T> (by Lemma B-7 and by the fact that H’yHg — oo under Assumption 2—2)

= Og.s. (1)

Applying the law of iterated expectations as well as part (i) of Theorem 16.1 of Billingsley (1995),
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we see that there exists a constant C' < oo such that for all n sufficiently large

2

N 2,,2 N N
1 Ve 1 T/\()
ElTI| = J J
T;NHVIIS ( H7H2> g N
. 2
_ 2l i T2 ( ) f:T)\(j
\/TjZQ NH'YH; H ”2 ]: N
2
N 2,,2 N N
1 T=v 1 TX
p e B v B < _> TN
Z NIk WE) VT &
< C.

Now, for any € > 0, set C. =
sufficiently large,

N 2,,2 N
1 Tv* 1 T)\( )
Pri VT |= J — D>,
TN ( uvu)T; N
2
b \/Ti T%?2 ( ) VT & T)\(])
= T —_— —_—
T j:gNH’V“g H H2 T =2 N
2
N 2 N
< 1 LZ T*; (1 )LZT)‘(J')
— 2
C? T 2 N} M) VT & N
2
N 2.2 N N
1 T v 1 1 T
- 2l (e ()
c T2 N2 WE) VT =
< €

which shows that

N T22 NTA
_Z _Z (4)

1+ —1 =
2
I3

W2

\/ 6/ €, and the Markov’s inequality then implies that, for all n

N 2,,2 T+1 iy
1 Tv 1 1 TA; ~
= = Y <1+ )— ) (since )\(j):0forj>T+1>
T < Nyl Nz T = N

1
\/_
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In addition, note that

T+1 | T T
N _ L3
( H7||2> ;( > ( H’Y||2> Tg N
1 T~
< 1+ max —)\( ) — 1l %30
713 ) 25571 [N
(by Lemma B-7)
Making use of this result and the Slutsky’s theorem, we obtain
+
( H7||2> JXZ:
T
= ( > —-14+1
17113
T+1 Y
"YH2 j:2 N
T+1
1 (T~ > a.s.
( I ||2> ( Hvlb) ; N7
(since [[7]l, — oc)

from which we further deduce, in light of expression (43), that

N U T41 )
— ) %1 as N, T — . 45
2; NI ( wu) - (ﬁ) (45)

Putting together the results given in expressions (37), (38), (39), and (45); we see that as
N,T — oo such that T/N — 0
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-2 N 2,2
N 1 T=v

< (1+2k) (1+k) ( 2<m<a%<+ # ? Z N j2

T [|y]3 1/||v||2 J (1) = NIz

1 N TN

- ¢ Il ( )T 2 L0, (1)]

VN3 T ||y )| 20 € i) T =

X

140, (1)]

< e () T
Tk e ) T =
N
= Ol me
<T||7||2> )
+
since( ) ion (44)
Nz ) T =

Moreover, since Assumption 2-2 implies that N/ <T H'y||g> — 00 as N, T — oo such that T'/N — 0,
we further deduce that

7% — oo w.p.a.l. (47)

Finally, we note that expression (47) further implies that

oo 1 7 (48)
vyl 1+

as N,T — oo such that T/N — 0.

Step 5:
In this step, we will show that

L<_v<1> ﬁt>£>0.
VN A\ [[Fwl,

To proceed, write
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L< V() ,ﬁ> _ 1 ()
VN A [Fll,™ VN [Vl
1 N 2

V%

- |1 J Vit
VN +JZ2 <X<1)—X(j)>2 mt+z( Ay — (a))

-1/2

From the result given in expression (46) of Step 4 above, we have

al U? 2 N
D SRR U
7=2 (Nl) - A(j)) 2

where N/ (T HvH%) — 00 under our Assumption 2-2. This implies that

N 2
T”'Y”% Yj _ Op (1) (49)
N — 2 :

j=2 (Nl) - A(j))

Next, note that

N T+1
> Vil = ijmﬂ-ijvwﬂ
j=2 J=T+2
T 1 N ™ ~
B el N B} WQWmJt €1 y_1BYWLWiij,
= Z + > - (50)

J=T+2

Recall that {7;} = i.i.d.N (0, Iy) so that {7;,} = .i.d.N (0,1) across both j and ¢. Recall also
that {f;} =4.i.d.N (0,1) and f; and 7, are independent for all s and ¢. In addition, since

-1
||’Y||2 fi+ ”’YH2 M1

M21 M31 - TIN-11
1Vl ( f2 + 171l2 1o _
W, = 2 2 , and W, — 772‘,2 773',,2 77N.1,2 ,
Tx1 : Tx(N-1) : : :
Il (fr+ Iz r) Mo Mar v Noir

T+1
it follows that W1 and Wy are independent. Now, focusing first on the term Z _, Vjllje on the
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right-hand side of expression (50) above, note that

2
T+1

K Z v | [Wo

T+1T+1
= T2 Z Z njtﬁkte;—l,N—lBéwéE [WIW/1|W2] WsoBoey_1.nv-1

7=2 k=2

T+1T+1

- T2 Z Z n]tnkteg 1,N— 1B WLE [Wlwll] WZﬁZekfl,Nfl
7j=2 k=2

(||v|r2 +1) 1

+

1T+1
hs W, W

M

5\ ~
T4t —1 N — B, < >Bzek—1,1v—1

2 k=

Jj=
(Il +1) Tazan

= — Tkee)1.n_1BsB2AB,Boey 1 v 1

l\)

<||W||§ + 1) TH1T+L

_ ~ e
= 7 njtnktej—l,N—lAek*LN*l

(||7|!§+ 1) TH
A N

This implies that

T4+1 2
MQV —1Z villie | W2

(M3 +1)1a , o

= 77t
T3 2.7

=2
<||7”§ 4 1) T+1 | T+ 2
Mg \T Z”ﬁ T Z ( )
= Ogs. (1)
given that, as N,T — oo,
| T
T2
j=2
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and, by Lemma B-7,

T+1 2 T 2 ~
< (v : i ) > =2,..
T Z ( > < (N —3 2§1;n£a%<+1 )\(j)> (blnce Ay = 0forj=2,..T+ 1)

T ~ 2as

Applying the law of iterated expectations as well as part (i) of Theorem 16.1 of Billingsley (1995),

we see that there exists a constant C' < oo such that for all n sufficiently large

T+1 T+1
= F w
TR —12“”7” w PRV —12””7” ’ ’

< C.

Now, for any ¢ > 0, set C. = y/C/e¢, and the Markov’s inequality then implies that, for all n
sufficiently large,

T+1 T+1
ERE —12“”7” S RS TR G —12”““ o
T+1
"\ | FeVF= EW
6 T+1
A LR E —1Z i

€

1 T T+1
‘|7||2 \/ 1 Zvjnjt =0p (1). (51)
7j=2

Next, consider the second term on the right-hand side of expression (50). Define

IN

IN

which shows that

Tx(N—1) TXT Tx(N-T-1)
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where

Xy 0 - 0
~ 0 X
A = ®)
‘ 0
0 -+ 0 Arpn

Given that N —1 > T for N, T sufficiently large and given that X(j) =0 for j > T+ 1, we have the

following singular-value decomposition of Wy:
W, = ODB),

where Q is a T' X T" orthogonal matrix and B, is as defined previously. Making use of this decom-

position, we see that

al ~ al egfl,Nleéwéwlﬁjt
D vl = Y =

J=T+2 J=T+2
N ~ ; B~
Njt WiW; 2€; 1 N—-1

S -

j=T+2
N ~ IOV R T

S 2

j=T+2
N o5 W'OD
Nyt YW1V L€5 1 N—1

S -

J=T+2
=0
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Putting things together, we have

= T~ 1 ot
VN |\ [Foll,
_ L)
VN | [Vl
- S -1/2
N 2
1 V4 v
- VN 1+ — ’71t+z i
i J=2 ()\(1) — )\(])> ] ( O A(J))
- q-1/2
N 2 T+1 ~ N
1 V4 . Vi 1 -
- JUN 1+Z' — mﬁA—Z ~]n]tA T Z illjt
= (A =) My 17 (1-20Aw)  Aw e
( noting that Xj =0forj>T+ 1)
- 4 -1/2
! 1+§: % e+ = !
= e - 2 1T = = =
VWIS (=) Ay 5= (1= Aa)
N
since Z vn; =0
J=T+2
- —1/2
— 1 1+ iv: U? ',,;]' 1 1 jf:l Uj,ﬁjt
- T~ ~ 2 1T~ 2(1+k) (1+k) oy N
VN | o (R —A(j)) S/ I I 5= (1= 3 Aw)
—1/2
e
< —=< |1+
N
vy (Au) - A(y))
£V —1i741
1 1 AG) -
[714] + ) i) (1 —, nax A—]> > villje
{ )‘(1)/H’Y||2 ) |30 PETH A =2
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—-1/2

714 1 1 -1 I CHVH% T+1
1t 9 5 _
——= Tt |lct——= 1t P Vit (1+0p(1))
VN ( I (llvii% )) VN Tl 2T |25
Aa) 1 ( 1 >
giventhat—K:C_F e ) for0< k<1,
( 1153 =\l
5N -1
mnd (1 g 20 = c|lylI37 [1 + 0p (1)]
2<j<T+1 1) 2 P
—1/2
N U2-
= 1+ ——
i=2 (Au) - A(j))
n K T+1
714 \/m IvlI3* vl 1 \/T N
. + vin| (1 +o0p (1
|:\/N T H,}/Hg(lﬂf) \/N ||r}/H2 N—1 ; gt ( p( ))
—1/2
N ’U2-
= [1+) ——
j=2 (Au) - A(j))
n T+1
714 N—-1 |l 1 T _
+ VNl (14 o0p (1
VT Ve TRV =T |2 ] (e (1)
—-1/2
_ T\Ivllg T”’YH
= N Z -
( (1)~ (g))
n 1
T |13 [771¢] N—1 1 T+
VN (1
S mwru N-1 Z%t 1+, (1)
= Op(1)7 (52)

where the last line follows from the fact that

||’Y”2 V N — 1

TH’YH Z = O, (1) (by expression (49))

(<> m)

T+1

Z VTl

= Op (1) ( by expression (51))
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and the fact that

2
Tl
N

HW’H% — o0 and — 0 (by Assumption 2-2).

Step 6:

Finally, in this last step, we bring everything together. Combining the results given in expres-
sions (36) of step 3, (48) of step 4, and (52) of step 5 and noting the fact that f; = Op (1), we can
apply the Slutsky’s theorem to deduce that

1 (Va)m
ft+ <(1)nt>£>0asN,T—>oo

VN [Vl

7 Il (Vay e n)
t

VN vl

which is the required result. [

Proof of Theorem 4.1:
To proceed, note first that the principal component estimator of F, can be written as
Tz (ﬁ)
LIt — ]/\\7,1
where ' = Nlﬁ and where the columns of the matrix B are the eigenvectors associated with the

Kp largest eigenvalues of the (post-variable-selection) sample covariance matrix

g(ﬁ)_z<ﬁ>z(ﬁ>

N Ty

Moreover, by the result of part (d) of Lemma D-14, the matrix B has the representation

~ ~

B=G,V

where Gy is an N x K p matrix, whose columns define an orthonormal basis for an invariant subspace
of & <I/-I\C) and where V is a Kp x Kp orthogonal matrix as defined in expression (116) in part (c)

of Lemma D-14. (See Lemma D-14 and also Lemma D-13 for additional discussion on the origin of
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this representation). Making use of this representation, we can further write

~ M@@@N@ﬂ
Et - Q,Et = = - Q,Et
1
v () B Ve, ()
= + - Q,Et

Next, note that

V'G'T V'G'T
/:\l _Ql — 1 QI
vV V1 VN (Nl—N1+N1> /N1
1
_ (4 Ni— N\ *V'GT o
Ny VN1
° -1 L
N — M Ve
= |[1+ 141 -
( Ny ) VvV Ny ?
- N T L
Ni—Np\ G Ve Ve,
= {1+ 1 + —
( Ny ) VN1 VIV @
and
r@ﬁ)—r I(HQ—F
Nl \/Nl (Nl—Nl-l-Nl /Nl
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so that

_1 R
V'G'T Ny — Ny 2 V'G'T
— OF, + L Q' |F+ |1+ ~1 L F
Q_t \/]TI Q =t Nl m =t
-3 me) —
+ 1+N1_N1 ? ‘716/1 F(H> i F
Nl \/Nl =
It follows that
~ véhr (Ae) VG U (H°)
F,-QF, = |——=——+-Q|E+ —
N1 \/ Nl
_1 A
V'Gir Ni—=M\ ° V'GiD
= - F.+ |1+ 1| == F
< VN, @) £ N VN,

V'GY F,+

L Tvl

Hence, applying the triangle inequality as well as parts (a)-(c), (g), and (i) of Lemma D-15 along

. (r () - r) VG (H°)
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with the Slutsky’s theorem, we obtain

£ -ax],
1 o~
VG, Ny —Np\ 2 V'G\T
< — Q| IS+ |1+ ) -1 E
m Q 2” t||2 ( Nl m 2” t||2
1 — A~ N —
NN\ 2 D () -1 V'G\Uy y (H®
+[1+ =) ||7es & 122 + f< )
2 2
1 o~
V'G\T Ny —Np\ 2 V'GT
= |FAE Q| B+ |1+ ) -1 F
w ~ @) 1=k N, ||,

5o\ BT <H> -T VG U (H)
+ 1+T1 N [ E]lo + =
1 ) \/ Ny ,
(since H‘A/'(A;’l = Amax (@117‘7/@0 = Amax (17'@’1@117) = Amax (Ukp) = 1)
op (1) Op (1) + Op (1) Op (1) Op(1) +0p (1) 0p (1) Op (1) + op (1)
= o,(1). 0O

Proof of Theorem 4.2:

To proceed, note that for any a € R? such that ||a, = 1, we have
a'Yrgp —d (Bo + BiYp + BQET)‘
— |0/ (Bo+ BiXer + ByEr) — o (8o + BiY + B4Ey)|

= |d (30 - 60) +d (El - Bl)IKT

+a (EQ ~Q By + Q7132>, <ET - QFr+ QIET> —d' ByFr

IN

a’ (Bo - 50)‘ + |d’ <§1 - Bl>/XT +|d <§2 - Q_]"B2>/ (ET - Q/ET)

~ /
- o (B2~ @' Ba) QEr|+|a'BYQ T QEy — o BYEy

a/BéQfll (ET _ Q/ETM +

= ‘a’ (Bo — 5())‘ + |’ <§1 — Bl>/XT + |a’ <§2 — Q7132>/ (ET — Q'ET)

~ /!
+ o (B:—Q7'B:) Q'Ey

(B (Er - Q)|+
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Lemma D-18 and Slutsky’s theorem directly imply that

a <Bo - 50)’ =op (1)

Now, applying the CS inequality, we obtain

~ ! s~
< \/a/ (Bi-B1) (B - B) ay/Yhyy

~ /
o (31 - B1> Y,

and

o (B2-Q7'Ba) QFy
<32 _ 132) (B2 _ 132) a\/FLQQ Ey

a/< 2)'( 1B2> a\/ , <111“>1/2

(32 - 132)' (32 - 132) ay [ EL <E

IN

T /2
(%) &
Ny

Er
1

< [ <FTN By~ Q'B2) (B - Q'B2) al|Ey 3

6\/@’ <§2 - Q_lB2>/ (EQ - Q_IBQ) allErl

N———

IN

Moreover, note that

wl—

E [HXTHg} < (E HXTHS> (by Liapunov’s inequality)

W=

< C?*=(C< oo (by Lemma C-4)
and
1
E [HETHg} < (E ||ETHS> ° (by Liapunov’s inequality)
—1
< (C®=(C< oo (by Lemma C-4)
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Hence, for any € > 0, set Cc = 1/C/€, and Markov’s inequality then implies that, for all T > p — 1,

Prlely > G = Pe {1l > 7} < E [ch;rr%] o [HCXTH%} ..

from which it follows that

HXTHQ = Op (1) .

In a similar way, we can also show that
IE7]ly = Op (1) -

Application of the result given in Lemma D-18 then allows us to deduce that

<\ (Bi= ) (B B) alYsl = 0, 1)

o (§1 . Bl>,XT

and

A
Q
VS
)
|
33
VS
)
|
55
IS
'11
@
Q
[
S

A
«
—
)
)
|
w
~— ~— |~
—
)
)
|
w
IS
>~
T
)
B
=
i
o

1
—, (T'T"\?2
= () }HET||2

W{(FT)
W

N

since V' = I, and S5/ = IKp)

< ﬁ\/a’ (Eg - Q*1B2>/ (Eg — Q*132> alEr|ly (by Assumption 3-6)

= op(1)



In addition, we can apply the CS inequality to get
~ VN
(P m) (- )

o (B8 (Bi- By (Br — @Ex) (Br - @)

- A ~
"(Bi-B1) (Bi-Bi)a|Er - QEx|
\/@(1 1)(1 1)a_T QEyp||,
= o0p(1) (by Lemma D-18 and part (j) of Lemma D-15 in Appendix D)

IN

IN

and

G/BéQ_ll (ET - Q,ET) ‘

< \/Q/BéQllQlea\/<ET - Q/ET>/ (ET - Q’ET>
VaBQ Q" Baa By — QFa

\/ i (50)] A (325320 [ B~ @,
Ve

expression (135) in Appendix D. See the proof of part (d) of Lemma D-17)

IN

IN

Fr—QF TH2 (for some positive constant C* as shown in

= op(1) (by part (j) of Lemma D-15)
Putting everything together and applying Slutsky’s theorem, we then obtain
‘a/i}T-‘rh —d' (By + BiYy + ByFy) ‘

o (=) +

IN

—~ / —~ / —~
d (31 - Bl) Yol + |a (Bz - Q‘le> (ET - Q’ET)

+ o (B2~ Q7'B:) QEy

a/BéQfll (ET B Q/ET)) 4

= o0p(1).

Since the above argument holds for all a € R? such that ||a||, = 1, we further deduce that
Yrin— (Bo + BiYp + BoEr) = 0, (1) .

as required. [
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8 Appendix B: Supporting Lemmas Used in the Proof of Theorem
2.1

In this appendix, we first state and prove a number of lemmas which are used in the proof of
Theorem 2.1.

Lemma B-1 (Weyl’s inequality): Let A, B be real, symmetric 7' x T" matrices and let the
eigenvalues ;) (A4), A (B), and ;) (A + B) be arranged in decreasing (or, more generally, non-

increasing) order, so that

Ay (A)

Ay (B)
)\(1)(A+B) > )\(2) (A+B) > "‘ZA(T) (A+B).

(AVARNLV
> >
»
CRES
(AVARRAVS

V
> >
5 =
& =

Then, for each j =1,2,...,T, we have
>‘(j) (A) + >‘(T) (B) < )‘(j) (A + B) < )‘(j) (A) + )\(1) (B) .

Proof of Lemma B-1: This inequality is well-known, and its proof can be found in many linear
algebra textbooks. See, for example, Theorem 4.3.1 and its proof on pages 181-182 of Horn and
Johnson (1985). Hence, we shall not provide an explicit proof here. [J

Lemma B-2: Suppose that H’YH% — 00 as N — oo, and suppose that, given N,

1
{Cl,t,N} =ii.d.N (07 1+ W) fort=1,...,T.
72

/
Let ¢y v = ( Cian Cion 0 CirN ) and TéT =7T! ||’7H§<1,NC/1,N . Then, as N,T — oo
such that T'/N — 0, we have

M =1 + L + Op (L)
7113 7115 VT

where A(;) (4) denotes the largest eigenvalue of the matrix A.

Proof of Lemma B-2:

Note that, since 4 = |3 C1,nC1 N /T, we can write its dual ap as
1 2 -
ap = —
15 T H’YHzCLNCl,N
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Next, write

1 1 T T -1
Tc/l,NCLN =7 ZC%,t,N = ( ) Z ( > (Gin
=1 I3 71k

t=1

where, by assumption,

1
{CltN}—“dN<0 1+” H ) for each N.
0

This implies that

~1/2

1

(1 + —2> Cien ¢ = 44.d.N(0,1) and
Y1l

(XN} = iidyd

where
2

) ~1/2 . -1
Xn=1|1+ 3 Cian| =|1+—= C%,t,N
7113 7113

and where x? denotes a chi-square random variable with one degree of freedom. Hence, by direct

||’Y”2

calculation, we get

1

E (TCII-,NCL,N
1

E Gin—

( ||7||2> T Z ( H’YHz) .

2 1 T T —1 1 —1
I+-—3 ) QZZE <1+ ) C%,t,N_l <1+—2> C%,S,N_
7115 =1 =1 [4(E o[

(
T 1 -1 , 2
- (“wr?) TZ:E (1+!M\2> Chon
2
T
0]

1

(1 + ™ H2>2 (since E [x7] =1 and Var (x3) = 2)
(7)
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Applying Markov’s inequality, we then obtain

1 1 1
NGy =1+ —5+0p <_>
r Iv113 VT

Hence, as N,T —

Aq) (4) _ ap
113 V113
1\ 1,
= = ||7||2 C’L,NCL,N
(\\7\\3) T
1
= TC’L,NCL,N

— 1440, ()
= —— 40, —=
7113 VT
where the first equality above follows from the fact that A1) (A) = Amax (A) = Amax (ap) = ap

given that ap is a scalar. This proves Lemma B-2. [J

Lemma B-3: Let X1, Xs,..., Xy be N independent 7" dimensional sub-Gaussian random vectors
with zero mean vector and identity covariance matrix and the sub-Gaussian norms bounded by a

constant Cy. Then, for every 7 > 0, with probability at least

1-— 2exp{—c7'2} ,

one has
| N
E—max{é,éQ} < A (NZWXZ)Q/)
i=1
N
< Ay (NzwiXin{>
i=1
= W+ max {J,6%}
where

T T
5:0\/—4-—
N /N

for constants C, ¢ > 0, depending on Cy. Here, |w;| is bounded for all ¢ and

1 N
w=— w;.
N; !
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Remark: Lemma B-3 is Lemma A.1 given in Appendix A of Wang and Fan (2017), and so we
state this result here without proof. As discussed there, this lemma is an extension of the classical
Davidson-Szarek bound. See Davidson and Szarek (2001) and Vershynin (2010) for additional

discussion.

Lemma B-4: Suppose that

{¢i1} =iidN(0,1) fori=2,..,N;t=1,...,T

!/
Let ¢; = ( Gin Cia o Gir ) . Also, let
1
B =— G
8= 6
and let

Ay (B) = A2y (B) > -+ = A\ (B)

denote the eigenvalues of B. Then, for k =1,...,T;

NjilA(k)(B):lJrOp (\/%) =1+0,(1),

as N,T — oo such that T/N — 0.

Proof of Lemma B-4:
Applying Lemma B-3 above for the case where 7 = v/T and where w; = 1 for all i, we see that,

with probability at least
1—2exp {—07'2} =1-2exp{—cT},

the following inequality holds for any k € {1,...,T'}

1 N

Ay (N — ;QC}

1 — max {5,52}

IN

1
-1

M-

[|
N

IN

Atk (¢

=

J

1
-1

IN

A1)

L
X

Il
I\

=

j
= 1+ max {5,52

——

65



Since in this case
T T T
=N TRV

the above inequality relationship simplifies to

N
1—(1+C)\/%§A(k) (ﬁZQC}) §1+(1+0)\/%
j=2

N

T T 1 T /T

1-(14+0C) WSN—I/\(M (fE cj,gg.) =N_1A(k)(3)§1+(1+0) ~
=2

This shows that, as N,T"— oo such that T/N — 0,
T T
N_lA(k)(B):1+Op (\/ N) =1+0,(1)
fork=1,...,7. 0

Lemma B-5: Suppose that {Wy,} =4.4.d.N (0,Inx_1). Now, let

or

w, =( W21 Wiy - Warp
(N-1)xT (N-1)x1 (N-1)x1 (N—1)x1

and let

Moy Z A = = Ay

be the N — 1 eigenvalues of

- W,W, 1<
Sw, = 2T 2 _ » 3 Wa W,
t=1

Then, the following results hold as N,T — oo such that T/N — 0.

(a)
)\(J) :()forj:T—i-Q,...,N

T 3 /T
N_12§I;l§a%+1)‘(j) _1"‘01)( N) =1+0,(1).

(b)
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Proof of Lemma B-5:

To show part (a), note that, by assumption, for N, T sufficiently large, we have N —1 > T,
so that Sw, = W4LWy /T is a (N — 1) x (N — 1) matrix with rank less than or equal to T', from
which it follows trivially that

A =0for j=T+2,.,N.

Next, to show part (b), first write

Wy = ( Wor W -+ Wony )
Tx(N-1)

so that W, ; denotes the ith column of Wy, for i = 1,..., N — 1. Note that, by Sylvester’s determi-
nantal identity, the non-zero eigenvalues of EWZ = W,i,W,y/T (ie., X(g), vees X(T+1)) are the same

as those of the dual matrix

N WQW, 1
Yw, D = Wy W5,
T><2T T Z ! !

Now, under our assumptions, {Ws;;} = i.9.d.N{0,1} for t = 1,...,7 and ¢ = 1,..., N — 1 where
W3 ; denotes the (¢, i)th element of Wy. Applying Lemma B-3 above with 7 = /T, we see that,

with probability at least
1—2exp {—07'2} =1-—2exp{—cT},

the following inequality holds for any j € {2,...,7 + 1}

N-1
1-max{6,6°} < X (ﬁ > Emﬂéz)

IA
>
<
|
=
‘H
—_
=
L
=
(V)
=S
=
~_

where



Moreover, by our definition,

N
M) = J1>< Z%z_m),

so that, by multiplying and dividing by 7', we see that

[T T T ~
1-— (1+C) N N ( Z W22W21) = m)\(])

: ng

Furthermore, since the above inequality relationship above holds for any j € {2,...,T + 1}, it must

be that
T T ~ T
— [ N < —
1 (1+C)VN_ N—lzgrj%%Jrl)\(J)_l—i_(l—i_C)”N

It follows that, as N, T — oo such that T'/N — 0,

T ~ T
No1248%, 20 =10 (\/ N) =1+op(1).

Lemma B-6: Let X be a N x T random matrix, and let X;; be the (4, t)th element of X. Suppose
that

VAN

{X;} =i..d.(0,1)

and suppose that E [X;ﬂ < 00. Moreover, let

Amax (B) = (1++/0)".

Remark: Lemma B-6 is a special case of Lemma 1 given in Shen, Shen, Zhu, and Marron (2016)
and is a slightly extended version of Theorem 2 of Bai and Yin (1993). Hence, we state this result

here without proof.
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Lemma B-7: Suppose that {Wy,} =4.4.d.N (0,Inx_1). Let
Aoy = Mg = = Aw)

be the N — 1 eigenvalues of

T
& WLW, 1 ,
EWZ = T = T ; W27tW27t.
!/
where Wy = ( Wa Wao - Wyr > . Then, as N,T — oo such that T/N — 0,
Tx(N—1) (N-1)x1 (N-1)x1 (N-1)x1
T

ﬁXO) a.—s>. 1 fOI' anyj € {2,,T+ 1}

In particular,
— ) 51
N -1 2§I}1§a:/)"(+1 @ =

and
N 1

a.Ss.
ma; = 0.

X
2<j<T+1

Proof of Lemma B-7:
To proceed, first define the dual matrix of §w2 given by

N-1
S “2-“/2 1 /
Xwy,D = == Y Wy Wh;
T><2T T T i=1 " "

where W, ; denotes the it" column of Wy for i = 1,..., N — 1. Now, since T/ (N — 1) — 0 and since
{Wys;} =i4dN{0,1} fort =1,...,T and i = 1,..., N — 1; it follows from applying Lemma B-6
that

d p— o1 (Bwan)
N—12§I}1§a%+1 2 N—lgg?ga%{ﬂ (-1 \=W2,D

T | N
/
= N1 AG-1) (T Z WQ,z’Mzi)

N—-1
1 a.s.
=, max Ao (— > W, im’m) “$las N, T —oo  (53)
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and

- n X = g1 (Swan)
N—1agjer @ = N_12<§I§IT1H (G- 1) W2,D

T 1 ,
T N_1a2dern AG-1) (T —~ W2”_2’i>

N—

a.s.
- 2<J<T+1 )‘(3 1) ( ] Z 2,zW21> — 1as N,T — oo.

1=1
Expressions (53) and (54) then imply that, for any j € {2,...,7 + 1},

T < a.s.
m)\(j) —'1 as N,T—>OO,

so that

N-—-1 2§?§a7¥+1 )\(j) - N-—-1

X(Q) Y 1as N, T — .
In addition, note that, for any 5 € {2,...,7 + 1},

T~ N-1 T ~ s

from which it further follows that

T~ T~ a.s.

max
2<j<T+1
Lemma B-8: Consider the simple factor model

Zt = 7 ft + ug 7t:17"'7T;
Nx1 Nx11x1 Nx1

where we assume that {u;} = i.i.d.N (0, In), {fi} = i.1.d.N (0,1), and us and f; are independent

for all ¢,s. Let ¥z = E [Z;Z]]; then, the eigenvalues of ¥, are given by

= ||7||§ +1land Ay =1forj=2,...,N.

Moreover, let () (N x 1) be the eigenvector assocated with the top eigenvalue A(1); then,

Ty = T
71l

70



Proof of Lemma B-8: To show part (a), note first that

Ny = E[%7]
= E[(vfi+uw) (Y fi+up)]

= 7' +1In
Consider the determinantal equation

0 = det{My— (v +1n)}
= det{()\—l)IN—fyfy’}
= det {kIn —7'} (where k =X —1)
= kN det {IN — K,_l’}/’}/}
= gV (1- KLy 7) (by Sylvester’s determinantal theorem)

— RNfl (Ii', —’Y/’}/)
so the roots of this equation are
K(1) = Yy = H'yHg, Ky =0,..., k) =0

and, thus,

Next, note that

I3+
= (Ihl3+1)~

(v +1In)
so that v is an (unnormalized) eigenvector of the matrix v9' + Iy associated with the eigenvalue
Ay = |7]12 4 1. Tt follows that we can take

Ty =7/ 17l

to be the (normalized) eigenvector of X7 = F [Z,Z]] = vy + In associated with the eigenvalue

Ay =l +1. 0
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Lemma B-9: Let A € M,, be a Hermetian matrix, let » be an integer with 1 <7 < n, and let A,
denote any r x r principal submatrix of A (obtained by deleting n — r rows and the corresponding

columns of A). Let the eigenvalues of A and A, be ordered as follows

>
=
1V

Ay (Ar) = Ag)(Ar) = -+ = A (4r).

Then, for each integer k such that 1 < k < r, we have

Ay (A) = Ay (Ar) = An—r—r)) (4)
so that for r = n — 1, we have

Ay (A) 2 Ay (An-1) = A2) (A) 2 A2) (An—1) =+ 2 A1) (A) 2 A1) (An—1) = Ay (A)

Proof of Lemma B-9: This result is essentially Theorem 4.3.15 in Horn and Johnson (1985),
except that we use different notations here. A proof of this lemma can be obtained by a slight
adaptation of the proof given in Horn and Johnson (1985) for Theorem 4.3.15 using our notations

here.

Lemma B-10: Let

Nx1

N
W, =Y V¢ ein
j=1

where (1, = fi + 7113 71, and Cjt+ = mj for j = 2,..,N; where {1 = |73 and ¢; = 1 for
J = 2,..,N; and where e; y is an N x 1 elementary vector whose 4t component is 1 and all
remaining components are 0. Suppose that {n,} =i...d.N (0, In), {f¢} =i.i.d.N (0,1), and f; and

71, are independent for all ¢,s. In addition, suppose that the following assumptions hold.

(i) As N - 0

171l = oo

(ii)) As N,T — oo
N

1
— _—¢4o|l—= ], with0O<e< o0
T [|y|| 20+ (llvH%)

for some k such that 0 < x < 1.
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Moreover, let X(l) denote the largest eigenvalue of the sample covariance matrix

T
a 1
Sw = > W,
t=1
where ]\YVT = (Wh,..., Wrp). Then, as N,T — oo such that T/N — 0; the largest sample eigenvalue
X
;\\(1) satisfy

~

A1) 1 1
——rry =Ct—5-top | —= | for0<r <1
y[|5) 7112 112"

Proof of Lemma B-10:
Following Shen, Shen, Zhu, and Marron (2016), we shall study the sample eigenvalue properties

via the dual matrix

PN 1
Swp = =WW
TxT T

which shares the same nonzero eigenvalues with the sample covariance matrix

-~ 1
Sw = —WW.
Nxn T

/ N
Define ¢;. = < Cia G2 o G ) . Since W = ijl \/E_jgﬂejw, we can write

N N N

1 2,1/2

th’Ws => Zﬁllc/ 0/ CriCosehneeny = Y lCriCrs
k=1 (=1 k=1

where

6= a3, ==ty =1

)

1
Cip = ft+w771ta Cot = Moty -y CNE = NNt
2
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so that

Sw,p
Wi
1, 1| W3
N szxvmnyif ; (Wl Wa - WT)
Wr
Wiwy WiWw, - WiWr G Ckalrz - ChakT
1| WoWwy WoWy - WolWrp 1 ie Cr,2Ck1 C%,Q o CralrT
= el . . . =T k N .
T . . . T k=1 . .
WeWy WipWa - WipWp Crrlra1 Cralr2 - Cin
Cra
N N
1 Ch,2 1
= fzek : ( Cha Ck2 0 Cur ) = ?Eﬁka.C;.
k=1 : k=1
Crr

which can be decomposed into sum of two matrices as follows

EW,D =A+B
TxT

where

N
1 1 1
A ==/ == 2 ! d B=— E L.
e T 1TC§11<X1T T ||7||2 ¢1.¢7. an T 2 Cr.Ch.

Next, we apply Weyl’s inequality (given in Lemma B-1 above) to obtain

My () A (B) A An@+B) A () A (B)
7113 Iz I iz T Il 713

Moreover, as N, T — oo, ||7]|3 — co under Assumption (i); whereas Assumption (ii) states that

N 1 .
m20+0<—2>,W1th0<C<OO
Tv|l5 7115
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from which it follows that

N-1 N +0< 1 )
2(14-K - 2(14+k 2(14+-k
Ty Tyt T ||y |30+

+0(1)+o< 1 )
= C _—
1113 T ||| 20+
1
7112

In addition, recall that the result of Lemma B-4 shows that, as N, T — oo,

T>‘(l) (B) _ T T)‘(T) (B) o T
m-l—i—Op( N) andﬁ—l—FOp(\/;)

Hence, applying Lemma B-4 and Assumpton (ii); we obtain, as N,T — oo

1 Ay (B) (N—1) TAq(B)
BTENELE T 4|5 (V= 1)

()] 0+ (%))

1 An(B) _  (N-1) TAx)(B)
IVIZ [lyI12 Ty (N =1)

o ()] (000 (V)
— ¢+ 0, (\/%) +O<H71H§)

which, together with the inequality relationship

Ay (4) N Ay (B) - X(n - A (A4) N Ay (B)
4B [ 1 17 [B1E

and the fact that, by Lemma B-2,
Ay (A 1 1
03
17115 17112 VT
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imply that

1 A | 1 Ap(B) 1 ( 1 ) ( 1 )
K + K = H+O T 2(1+k) +O 1126 +C
V2 Il e e 17113 y[|20+) "\ VT
T 1
+0p (A | to
( N) (nvn%)
1 1
=t mE T O <—2H>
7112 17112
1 Ay (4) 1 Ay (B) 1 ( 1 ) ( 1 >
K K = K T 2(1+R) +O —/1 +C
V2 E T I 2 1112 Iy 130+ "\ VT

o <\/§> v (nvln%)

1 1
=t e T o | e
171l Y1l

so that

/):(1) 1 X(l) 1 1
=z 3 =Ct o Top | 7 |-
[ i 7 e [[¥112" 712"

9 Appendix C: Lemmas Used in the Proofs of the Key Supporting

Lemmas Given in Appendix D.

Lemmas C-1, C-2, C-3, C-4, and C-5 correspond, respectively, to Lemmas OA-1, OA-2, OA-3,
OA-5, and OA-11 in Chao, Liu, and Swanson (2023b). However, since these lemmas are used to
prove key supporting lemmas given in Appendix D below, for readers’ convenience, we restate these

results here.

Lemma C-1: Let a and 6 be real numbers such that ¢ > 0 and 8 > 1. Also, let G be a finite

non-negative integer. Then,
(e.9]

Z mGexp {—ame} < 00

m=1

Proof of Lemma C-1: By the integral test,

o0
Z m& exp {—ame} < oo for finite non-negative integer G
m=1
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if
[e.e]
/ 2% exp {—ame} dx < oo for finite non-negative integer G
1

In addition, note that since, by assumption, a > 0 and 6 > 1, we have

/ xGexp{—axe}dw S/ 2% exp {—az} dzx
1 1

We will first consider the case where G = 0. In this case, note that

/xoexp{—aaz}dx:/ exp {—az} dx
1 1

Let u = —ax, so that —%“ = dx; and we have
o0 1 —0o0
/ exp{—az}dx = —E/ exp {u} du

1 —a
= l/ae {u}du
 epi-a)
B a
< oo for any a > 0. (56)

Next, consider the case where G is an integer such that G > 1. Here, we will show that

o RN (=
/ 2% exp{—aztde = |~ + E - | | =) exp{—a} < o0
1 a a | a

k=1 7=0

using mathematical induction. To proceed, first consider the case where G = 1. Let

w = x, du=dz

1
dv = exp{—az}dzr, v= — exp{—ax};
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and making use of integration-by-parts, we have

o 001
/ zexp{—azx}dr = —Eexp{—aa:}’oo +/ —exp {—ax}dx
1 a 1 1 a

[e.9]

1 1
= Eexp{—a} - ?exp{—a:ﬁ} 1

1 1
= - exp{—a} + 3 XD {—a}

1 1

== (a—FE)eXp{—CL}
RN R

prm— —_ —_— —_— —_ <
a—i— % jl_lo , exp{—a} < o0

Next, for G = 2, let

w = 22, du=2zxdx

1
dv = exp{—az}dzr, v= - exp{—ax};

and we again make use of integration-by-parts to obtain

2
x
— exp {- a;n}

o) oo 9 [
/ 22 exp {—az} dz + —/ rexp{—azx}dz
1

- %exp{ a} + = (i %) exp {—a}

_ iexp{ a}+2<a12 a3>exp{ a}

1 + 2 n 2 { }
= [-+5+ = |exp{—a
a? a3 P

a
2 k—1 .
1 1 2—
= ot g (=) evt-al
k=1 7=0
< o0
Now, suppose that, for some G > 2,
G-1 k—1
° 1 1 G-1
/ e Lexp{—az}de = |-+ - J exp{—a};
1 a a a
k=1 7=0
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then, let

v = 29 du=Ga®ldx

1
dv = exp{—azx}dz, v= - exp {—az};

and, using integration-by-parts, we have

0 G 0 G [ o
/ 2%exp{—aztder = —"—exp{—az}| + —/ 2% texp {—ax} dx
1 a 1 a1
G-1 k—1 .
G |1 1 G-1—j
= —exp{—a}+ — E+ZE (HT exp {—a}

J=0

Il

|
@
)
ge!
T
IS
-
+

a

1 G 1G(G-1\ 1G(G-1\[(G-2
= -+ +-= +-=
a a a a a a a a
G -2

k
G-1 k—1 .
G 1G G-(j+1)
-+ E 7a ( —— | | exp{—a}

< 0. (57)
In view of expressions (56) and (57), it then follows by the integral test for series convergence
that
(o @]
Z m% exp {—amg} < 00
m=1

for any finite non-negative integer G and for any constants a and # such that a > 0 and 6 > 1. [J
Lemma C-2: Let {V}} be a sequence of random variables (or random vectors) defined on some
probability space (£2, F, P), and let

Xt =g (V;fv ‘/;‘,717 ceny ‘/;‘/7%)

be a measurable function for some finite positive integer ». In addition, defne G . = o (...., X¢—1, X3),
Q,?_ﬁm =0 (Xt—|—m7Xt+m—|—17 ), .7:1_00 = O'(...., ‘/t_l, V%), and

ez = 0 (Vigm—se, Vigm41-s, -...). Under this setting, the following results hold.
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(a) Let

BYm—s = Sgpﬂ (Foes Fiom—s) = sup I [sup {|P (B|F' ) —P(B)|: Be F¥p .}

Bxm = supf (G o, G5m) = sup £ [sup {|P (H|G" ) — P(H)|: H € G, }] -

If {V;} is f-mixing with
B\/’,mf% < 61 exXp {_02 (m - %)}

for all m > s and for some positive constants C; and Co; then X; is also S-mixing with

[-mixing coefficient satisfying
BX,m < Chrexp{—Com} for all m > ,

where Cj is a positive constant such that C; > C7 exp {Casc}.

(b) Let
Wz = supa (Flo, Fiim_s) = Sup sup |P(GNH)—-P(G)P(H),
t t Geftfoo’HG}—toimfx
axm = sgpa(gt_oo,gf_im) = sup sup |P(GNH)—P(G)P(H)|

t Gegt  HeG®,,

If {V;} is a-mixing with
Vim—s < Crexp{—Ca (m — )}

for all m > s and for some positive constants C; and Cs; then X, is also a-mixing with
a-mixing coefficient satisfying
axm < Crexp{—Com} for all m > s,

where Cj is a positive constant such that C; > C7 exp {Casc}.

Proof of Lemma C-2:

To show part (a), note first that it is well known that

Bxm = sng [sup{!P(H|gt_oo) —P(H)‘ :H e Gt

I J

1
= sup §SUPZZ\P(GmHj)—P(Gi)P(Hj)!
i=1 j=1
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where the second supremum on the last line above is taken over all pairs of finite partitions
{Gi,...,Gr} and {Hy,...,H;} of Q such that G; € G- for ¢ = 1,...,I and H; € G, for
j=1,....,J. See, for example, Borovkova, Burton, and Dehling (2001). Similarly,

Bvim—s = sng [sup {}P (B]]:t_oo) - P(B)‘ :Be ff_ﬁm_%}]

where, similar to the definition of Sy ,,, the second supremum on the last line above is taken over
all pairs of finite partitions {4y, ..., Az} and {By, ..., By} of Q such that A4; € F£ _fori=1,....1
and B; € F¥,,_,, for j = 1,...., M. Moreover, since X; is measurable on any o-field on which

Vi, Vi_1, ..., Vi, are measurable, we also have
G o=0(, Xi 1, X)) Co(,Vii, Vi) = Fh o

and
) (0. ]

oo __ _
gt+m =0 (Xt+m7Xt+m+17 ) Co (W«#mf%a ‘/t+m+lf%7 ceer) — Yt m—ac

It, thus, follows that, for all m > s,

I J
Sxm = s 55w S|P (G Hy) — P (G) P (H))

i=1 j=1
1 L M
< sup Esup;;]P(AiﬂBj)—P(AZ-)P(Bj)]
= Bvm—x
< 61exp{—02(m—%)}
= C1exp{Cyx}exp{—Com}
< Crexp{—Cym}

for some positive constant C; > C; exp {C3sc} which exists given that s is fixed. Moreover, we
have

Bxm < Crexp{—Cam} — 0 as m — oo,

which establishes the required result for part (a).

Part (b) can be shown in a manner similar to part (a), so to avoid redundancy, we do not
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include an explicit proof here. [J

Lemma C-3: Let {X;} be a sequence of random variables that is a-mixing. Let p > 1 and

r >p/(p—1), and let ¢ = max {p,r}. Suppose that, for all ¢,
1
[Xell, = (B X|") s < o0

Then,
[Cov (Xt Xeam)| <2 (2774 1) ol 77 X0, | X,

where

o =supa (FL o, FiXm) = sup |P(GNH)—P(G)P(H).
t GeFt HEFXE,,

Remark: This is Corollary 14.3 of Davidson (1994). For a proof, see pages 212-213 of Davidson
(1994).

Lemma C-4: Suppose that Assumptions 3-1, 3-2(a)-(b), 3-5, and 3-7 hold. Then, there exists a
positve constant C such that
E|W, S <C < oo forall t

and, thus,
E|Y,|S <T < oo and E||F,||S < T < oo for all t,
where
Y F
Y1 Fi
Y, = . ,and Fy = .
dpx1 : Kpx1
Yipt1 Frpi1

Proof of Lemma C-4:

To proceed, note that, given Assumption 3-1, we can write the vector moving-average (VMA)

82



representation of the companion form of the FAVAR model as

W, = (larxp—A4) a+y AE
=0

= Tarryp— A Tiprcdasxo+ Y ATh edok B

j=0
-1 > ;
= (I(d+K)p - A) Jc/l+KM + ZAJ JC’Hth,j,
j=0
where
Wi Et 1%
Wi 1 0 0
W, = : , By = : y = )
Wtfp+2 0 0
Wt—p+1
Ay A Ap1
Ijvxk O
Ja+ K = |Ingx 0 -~ 0 0|,and A= 0
(d+K)x(d+K)p
0 - 0 Inxk

By the triangle inequality,

Iy < || (arrr = A) " Tiesen|, + | D2 A Taekeets
J=0 2

. . . m
Moreover, using the inequality ’ E i
1=

r m
<mr1 Zi:l la;|" for r > 1, we get

6

1 6 o
Il < 2° || (Fasrop = A) ™ Tarct]|, + || D2 A resiy
=0 )

so that
6

1 6 o
E(|W,[I <32 H L+ — A) Jc/1+KMH2 + 328 |y AT e
Jj=0

2
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Focusing first on the first term on the right-hand side of the inequality (59), we note that

_ 6 _
| Faszop = A Toaken|, = (Warx Tarrop = )7 (arrp — 4

)
! =t ’
= <N Jarx [(I @+ —A) (Tarrp = 4) ] Jd+KN>

3
1 3
< (W Jarr Jar k)
Amin {(I(d+K)p — A) (Larryp — A)})
3
1
- (1'n)
Amin {(I(d+K)p — A) (Lagx0yp — A),})

Now, by Assumption 3-7, there exists a constant C' > 0 such that

Amin { (Tassp = A) (Harrp = A)'} = min { (arrop = A)' (arrop — A) }

01211in (I(dJrK)p - A)

> CAa (7 ([d+K)p — A)
2 Q [1 - ¢max]2
> 0

where ¢ .. = max {|Amax (4)|, [ Amin (4)|} and where 0 < ¢, < 1 since, by Assumption 3-1, all
eigenvalues of A have modulus less than 1. It follows by Assumption 3-5 that, there exists a positive

constant C'; such that

3
1

_ 6 3
(Iasrrp — A) " Thyren| < (W)
| ! Amin { (Tas10p = A) (Iarxyp = A)'}
w < 61 < 0.
Qs [1 - ¢max]6 B

To show the boundedness of the second term on the right-hand side of the inequality (59), let

€g,(d+K)p D€ a (d+ K)p x 1 elementary vector whose ¢g*" component is 1 and all other components
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are 0 for g € {1,2,...,(d+ K) p}, and note that

2 2

o0 o0
i i - / i ,
D Ay = D | D CoarrpA i ke
=0 ) =1 \j=0
(d+K)p o

= Y S AT ke gt darx (A eg v

" r—1 m r
a;| <m g ' 1|(LZ'| forr>1
1=

from which we obtain, by applying the inequality ‘Zm .
1=

- 6
Z AV TG e
=0 )
_(d+K)p 00 ' 293
= Z Z e,g,(dJrK)pAJ Jcll+KEt—j
| o=l §=0
6
(d+K)p 00 .
< [(d+K)p? Z Z eq (d+K)p A Jariei—j
g=1 7=0

k
e, g,(d+K)p Al Jd+K5t JEt pdd+ K (A) €g,(d+K)p

9,

Mg

@R X AYESSY

g=1 7=0 k=0 =0 ¢=0 r=0 s

I
=)

14

><6/97(d+K)pAiJc,lft—z‘ggngcHK (AI) eg,(dJ’,K)pe./g,(dJrK)pArJé+KEt_T€£78Jd (A,)S 697(d+K)p}
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Hence,

6
E Z AjJ(/HK@t—j

=0 )
(d+K P oo
< [(d+K)p Z ZE‘ (i i et J‘
(d+K)p 2\
+(d+EK)p? > < ) (kA Ty e ]‘
g=1
R 2\ °
2
Hd+ K Y ()() s A s
g=1
(d+K)p
+ld+K)p” > < ) €y (a1 )pA T ket J) (@A Tas ek
g=1
(d+K P oo

00 S
g=1

k)
G

(d+

=
5

+20[(d + K) p)?

(]

Q
Il
—

) 00 3
ZE’ (@ Tar e J’

7=0
(d+K)p %) 9
+90[(d+ K)pl* > (ZE €y (a1 )pA Tkt j) )
g=1 \;j=0
(d+K)p oo 4
+15[(d+ K) p]® ZE’ ig,(d—&-K)ijJc/Hth*j‘ Y Eley arrpAt i iein
g=1 j= k=0
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Next, applying the Cauchy-Schwarz inequality, we further obtain

6

E Z AjJ(/HK@t—j
j=0

[\

(d+Kp [e’s) '
< [(d+K)p 2 Z Z (d+K)p A Jd+KJd+K (A) €g,(d+K) } Ele;- J||2
g=1 =

(d+K)p
+20[(d + K) p)?
g

MS

=1

I
)

2
-3
. . g ,
o arrpA T Jari (A) eg | B €tj2>
J
3

12
Mg

(S
Il
o

. . / T
€y (ar A JariJari (A7) Cg.(d+K)p| B m%)

(d

_|_
N

Mg

. N 12
+15[(d + K) p]? ,g,(d+K)pA]J(I1+KJd+K (A7) €g,(d+K)p| E |let—jl;

(d+K)p
+90[(d + K) p? (

Q
Il
_

<.
Il
o

00
XZ |:6 (d+K)p AF Jd+KJd+K (Ak> €g,(d+K) :|E||5t k||2}
k=0

=
N
M
M

asind (@) eqanin] Bl

9=
2 (d+K)p [ 0o _ . - _% 3 2
+20[d+E)p” Y (D _6;7(d+K)PA] (47) ega+iyp| el
g=1 7=0
(d+K)p 159 _ 5
2 (A7) 2
+90[(d+ K)pl> Y (D el arpd’ (A7) eg.a+x0p| B llerll2
g=1 7=0
(d+K)p oo -9
+15 [(d + K Z _6/97(d+K)pAJ (Aj) eg,(dJrK)p_ E Hgt—jHQ
g=1 7=0

XZ[ (@ iypA” (A )l 0, (d+K) ]EH@ k”g}
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In addition, observe that, for every g € {1,2, ..., (d + K)p}

i N
ey @+ pA’ (A7) eq(ar

< AmaX{Aj (Aj)'}
= Amax { (47) 47}
= Opax (A7)

C max { ‘)\max (Aj) ‘2 , !Amin (Aj) !2} (by Assumption 3-7)
= Cmax { Amax (A, PAin (A}
Ol

where ¢, = max {|Amax (4)|, | min (4)|} and where 0 < ¢, < 1 given that Assumption 3-1
implies that all eigenvalues of A have modulus less than 1. Now, in light of Assumption 3-2(b), we

can set C' > 1 to be a constant such that ||6t,j||g < C < o0, so that, by Liapunov’s inequality,

CIEwhE
(B ller—513)

2
Ellerjll3

IN

1
1 2 1
5 Bllegl} < (Bllesll)® < €3,

Y
Y

win

<C
<C

win

4
Ellerjll

IN
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and, thus,

6
ZA T KkEt—j
Jj=0 2
(d+K)p oo
< L+ B 3 Y [fharont (4 eqiaeno 0] Bl
g=1 j=0

(]

(d+K)p 0o ) -3 2
+20[(d + K) p] D A (A7) egarrp|” Elesls
g=1 0 ’
3

j=
oo , _

o )
Z /g,(d—l—K)pA] (A]) eg,(d+K)p| E el
J=0 '

(d+K)p [ oo 12
o,
+15[(d + K) p)* { g '97(d+K)ij (A7) eq (dsr)p E||€t—ng
i=0 )

<.

xZ[e (d+K)p Ak Ak>/€g(d+K ]EHEt k||2}
k=0
d+K)p oo (d+K)p d+K)p [ oo 3
Cld+K)p { Z Z¢max+20 Z ( max) +90 Z (Z )
9= 7=0
(d+K)p oo
+15 ) ( max>
g=1
< Cld+K)p)
1 1 2 1 3 1 1
X{1_¢§nax+20<1_ ?nax) +90<1_¢1%1ax> +15<1_ ﬁlax) <1_¢12nax>}

< 62<OO

IN

for some constant such that

p3
1 1 2 1 3 1 1
XS ——F— 420 ——— ) +90( —5— ) +15 .
{1_ glax <1_ ilax) <1_¢3nax> (1_ fnax) <1_¢r2nax>}
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Putting everything together, we see that

6

1 6 o
EIWNS < 32| (Tassop = A) 7 Taaxcn||, + 328 | A Tpgeer
=0 5
< 32 (614—62)

< C< o

for a constant C such that 0 < 32 (61 + 62) <C < 0.
In addition, defineP 4 k), to be the (d+K)p x (d+K) p permutation matrix such that

Plar k)W, = LI (60)

dpx1
SaParxypWs = <Idp dp>(<)Kp> e | =L

dpx1
SkParrpWs = <Kp(>)<dp IKp) b =L,

so that

IXilly < |[Sally 1Pasrywlly 1920

= e (5385) P (Pl P o) I

= \/)\max (S&Sd) \/)\max (I(d+K)p) ||th2

= \/)\max (Idp)\/Amax (I(d+K)p) Hmt||2
= I,
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and

IE Ny < [[Sklly 1Pasrymlly 17240

= v\ Amax (SKS}() \/Amax (Péd+K)pP(d+K)p) ||mt||2

= \/Amax (S}(SK) \/Amax (I(dJrK)p) HMtH2

= \/Amax (IKp) \/)‘max (I(d+K)p) ||wt”2
= Hwt”2

It further follows that

E|Y,|S<E|W,|5<T < ooand E|ES < E[W,]|S <C < oo. O

Lemma C-5: Let W; = (Y/, F})’ be generated by the factor-augmented VAR process
Wipi=p+ AW+ -+ AW pi1 + 41

described in section 3 of the main paper. Under Assumptions 3-1, 3-2(a)-(c), and 3-7; {W;} is a

B-mixing process with S-mixing coefficient Sy (m) such that
Bw (m) < Crexp{—Com}
for some positive constants C; and C5. Here,
Bw (m) = sup E [sup {| P (BlALy,) — P (B)| : B € A, }]

with Atfoo =0 (, Wt_g, Wt_l, Wt) and Atoim =0 (Wt+m7 Wt—‘rm—i—l’ VVt+m+2, )
Proof of Lemma C-5:
To prove this lemma, we shall verify the conditions of Lemma OA-8 of Chao, Liu, and Swanson

(2023b) for the vector moving-average representation of W, i.e.,

oo oo
-1 .
W= Jarx (Larrp —A) " Jiexcn+ Y Jarw A Ty ey = o+ Y Uyerj,
j=0 §=0
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where

71 .
e = Jarx (Larp —A) Jaegts Vi = Jarx A T
A Ay o Ay A,
Ik O o oo 0
Jik = | Ik 0 - 0 0|, andA=] o0
(d+K)x(d+K)p
0 - 0 Ipx O

To proceed, set

&= Ve (61)
§=0

and note first that, setting 6 = 5 in Lemma OA-8 of Chao, Liu, and Swanson (2023b), and we see
that Assumptions (i) and (ii) of this lemma are the same as the conditions specified in Assumption

3-2 (a)-(c). Next, note that, since in this case ¥; = Jy1x A7 J}, x, we have

”\IIjHQ < ”JdJrKHQHAjHQHJ(;l—i—KHQ

\/)\max (s i Jat ) <\/)‘max {(a7) Aj}) \/)‘max (Jarr s i)
>\max (Jd—&—KJC/[_A,_K) (\/)\max {(AJ)/ AJ})

_ \/Amax {(A7) AT}

Omax (Aj)

C [max{})\max (Aj)} , })\min (Aj)}}] (by Assumption 3-7)

= C[max {| Amax (A)], [Amin (4)]})7

Chax

IN

IN

where ¢, = max {|Amax (A)|, [Amin (4)|} and where 0 < ¢, < 1 since, by Assumption 3-1, all

eigenvalues of A have modulus less than 1. It follows that

D ITlly <CD 7 G = T <>
=0 =0 max
Moreover, by Assumption 3-1,
det {I(qs i) — A1z — - - — ApzP} # 0 for all z such that |z| <1
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and, by definition,
Z\Iszj =V (2) = (layr)y — A1z — - — Apzp)_1 for all z such that |z| <1
j=0

so that
U (2) (Tarryp — A1z — - -+ — ApzP) = I gy k), for all z such that |z <1

In addition, since

det {W (2)} det {I(gy )y — A1z — - - — Ap2P}
= det {V (2) (Lgrr)yp — A1z — - — Ap2P) }
= det {Zayrp}
= 1,
and since
|det {I(grryp — A1z — -+ — Ap2P}| < oo for all z such that |z <1,

it follows that

det {i \pjzj} = det{¥(2)}
j=0

1
det {I(d+K)p - Alz — Apzp}
# 0 for all z such that |z] <1.
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Finally, note that, setting § = 5,

)
1+6

It

<
Il
o

o0
> 1l
k=j

ol

[
NE

&
=

<
Il

o

i
<

oot

<
Il

o

ol
Il
<

IA
NE
INg
Q
o
B

A I

S S
(e L[M]e
Me =T

Sk o

2 E
S~—

- oo

T

o0
D ai

(by the inequality

o0
< Z la;|" for r < 1)

i=1 i=1
5 5 J
= Cs) (j+1) <¢&ax>
j=0
5 5 172
= (s [1 - qﬁl%ax} (by Lemma OA-10 of Chao, Liu, and Swanson (2023b))

5
< 00 <since 0 < phax < 1 given that 0 < ¢, < 1) .

Hence, all conditions of Lemma OA-8 of Chao, Liu, and Swanson (2023b) are fulfilled. Applying
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this lemma, we then obtain that there exists a constant C such that

oot

55 (m)

IN
Ql
M

> 1kl
b=y

IA
qQl
NE
o~
[M]8
Q
e
z
oot

Jj=m \k=j
5
L &> ) 6
e P k
= 008 3 | > O
j=m \k=j

IN

Ql

(]
s
S -/~
Solo

&

N——
E

lot

-2
= CCs [1 - qﬁl%ax} exp {— [g In (bmax\] m} (since 0 < Ppax < 1)

Crexp{—Com} — 0 as m — .

IN

for some positive constants C; and Cy such that
— 5 5 —2 5
Ci,>CCs [1 - qbﬁlax} and Cy < 6 IIn @ ax|

It follows that the process {¢;} (as defined in expression (61)) is 5 mixing with beta coefficient
Be (m) satisfying
Be (m) < Crexp{—Cam}.

Since

o0
Wi = p, + Z\I/jéftfj = py + &
=0

and since p, is a nonrandom parameter, we can then apply part (a) of Lemma C-2 to deduce that

{W;} is a B mixing process with [ coefficient By, (m) satisfying the inequality

Bw (m) < Crexp{—Com}. O
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10 Appendix D: Key Supporting Lemmas Used in the Proofs of
Theorems 4.1 and 4.2

Derivation of the h-step Ahead Forecasting Equation Given in Expression (22) of the

Main Paper:
Consider the FAVAR process

Witpi =p+ AW+ -+ AWi_pi1 + €441, (62)

where W, = (Y/, F})'. Suppose that equation (62) satisfies Assumptions 3-1 and 3-2 of the main

paper. Then, similar to a VAR process, we can rewrite this model in the companion form

mt = a_._Awt—l +Et

where

WQ €t
Wi_1 0 0

EZt = . ) M%:: 5 l%:: . , = : 7and

Fy

Wt—p+2
I/thp+1
A Ay o Ay A,
Iisk 0 oo oo 0

A = 0 : (63)
0 0 Isgpvx O

Successive substitution for the lagged W, ’s gives

h—1 h—1
=0 =0
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Let

Jd :[Id 0O --- 0 and Jd+K = Id+K 0O --- 0
dx(d+K)p (d+K)x (d+K)p

and note that
JiWi i, = Yirn, JarkEirh—j = Et4h—j,

and
Et+h—j Et+h—j
d+K 0 0
JirJarx Evyn—j = S : =
0 0 - 0
Hence,
Yieh = JdW,yy
h—1 A h—1 .
= > JaNa+ J AW+ JaA Ty e Jask Erne;
7=0 j=0
h—1 ' h—1 ‘
= JaA o+ AW, + 3 JaA Ty peerinj (64)
3=0 7=0

Furthermore, let Py i), be a permutation matrix such that

Yi I
Y, : :
PatrrypW, = , where Y, = : and F, = : . (65)

Ly
Yipt1 Fip+1

and note that P4, ), is an orthogonal matrix, so that Péd—‘,—K)pP(dJrK)P = lgtr)p = P(d+K)pPéd+K)p’

Next, for g = 1,...,p, let ¢4, be a p x 1 elementary vector whose g"" component is 1 and all other
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components are 0; and define

egp @ I
Suy B 9.p . Sk = dpx K ,
(d+K)p><d prd (CH—K)])XK eg’p ® IK
So = (Sux Siz - Sap)
(d+K)pxdp
€1p®fd e2p@Ig - epp @Iy
- 0 .. 0
Kp><d Kpxd Kpxd
I ®Id Idp
Kp><dp Kpxdp
Sk = (SK,l Sk2 - SK,p)
(d+K)pxKp
0 ... 0
— dp><K dpx K dpx K
e1p DIk ep @Ik -+ epp® Ik
0
= dprp = dpxKp
( I (] IK IKp
It follows that
Iy 0
S = Sd SK = WEP N = Tk
(d+K)px (d+K)p (d+K)pxdp (d+K)pxKp 0 Iy i
Kpxdp

In addition, using these notations, it is easy to see that
S!/LgP(fHK)pwt =Y g1 forg=1,....p

and, similarly,

S}(,gp(dJrK)pmt =F _gpforg=1,..p.

(67)

(68)

Hence, making use of expressions (64) and (66) and the fact that P44 ), is an orthogonal matrix,
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we can write

Yien = JaWyp

h—1 h—1
= Z JaAl o+ JdAhPfdJrK)pP(dJrK Wy + Z Ja A Jc/l+K5t+h—j
j=0 §=0
h—1 h—1
_ 7 hp! ! i
== ZJdA -+ JdA P(dJrK)pSS P(d+K)pwt + ZJdA Jd+K€t+h*j
7=0 7=0
h—1 ‘ D h—1 ‘
= Z JaA o + Z JdAhP(,d-‘rK)p (Sd,gsél,g + SKygS}{,g) 73(d+K)pEt + Z Ja A Jc,l+K5t+h—j
§=0 g=1 =0

so that, in light of expressions (67) and (68), we further deduce that

Yieh = JdW,yy,
h—1 ' P h—1 ‘
= Y Jala+ Y TaAPly e, (SagShy + SkgSicg) PlaripWe + Y JaA Thy erin—
§=0 g=1 §=0
h—1 ‘ P p
= D JaAa+ Y JaA"Plg, 0,SagSagPlarpWe + Y JaA Py i)y SK oSk g PlariopWa
7=0 g=1 g=1
h—1 '
+ Z JaA Ty ketin—j
§=0
h—1 ‘ P P
= Y Jala+ Y JaA Pl 0y SaaYi-gi + Y JaA Pl k), Sk g Fiog i1
7=0 g=1 g=1
h—1 '
+ Z JaA T3y kEtin—j
§=0
P P
= /80 + Z Bi,gn*g+1 + Z Bé,gFt*Q%*l + Nevn
g=1 g=1
where
h—1 ‘ h—1 A
Bo = Y JaANa,m =Y JaA Ji gerin,
§=0 §=0
h
Big = J;A P(,d+K)de,g and Béy = JdAhPEd+K)pSK,g forg=1,...,p. (69)
Next, define B} = ( By, Biy - Bip ) and Bf = ( B§71 B§72 Bé,p ), and note that,
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by expression (69) above,

Bi - JdAhpEd+K)p ( Sd71 Sd72 e Sd,p ) - JdAhPZd+K)de
B, = JdAhPEd+K)p( Ska Sk2 - Skp ) = JdAhPédJrK)PSK‘

Finally, let Y, and F, be as defined in expression (65), and we can write the h-step ahead forecast

equation more succinctly as

p p
Bo + Z By Yi g1+ Z By gFi—gt1 + My
g=1 g=1

= Bo+BY,+ByF, +n. O

Yien

Lemma D-1: Let T, =T — h — p + 1 where h is a (fixed) non-negative integer and p is a (fixed)
positive integer. Suppose that Assumptions 3-1, 3-2(a)-(b), 3-2(d), 3-5, and 3-7 hold. Then, the

following statements are true.

(a) There exists a positive constant ¢ such that

1Tfhoo

Amin § 7 D D Ao kB [er-jel ] Javx (41) 3 >e>0,
t=p j7=0

where A is the coefficient matrix of the companion form given in expression (63) and where

Jirx =[1d+K 0 - 0}. (70)
(d+K)x(d+K)p

(b) The matrix
v 1 EXY B
=Y | Elv) ElYY) ElY.F)

"\ EIE] E[EY] E[EF)

is non-singular for all T'> h +p — 1.

Proof of Lemma D-1:

For part (a), we prove by contradiction. To proceed, let

Jd+K,r = e',r,p ® Lo+ K for r € {1, ....,p}

100



where e, is a p X 1 elementary vector whose rth

component is equal to 1 and all other components
are equal to 0. Note that, under this definition, Jy1 k1 = Jy+ i, where Jyy i is as defined previously

in expression (70). Suppose that the matrix

o0
N AT i daika (A7)
=0

is singular; then, there exists b € R(+5P\ {0} such that

o0
S VAT erJarka (A1) b=0
=0

This, in turn, implies that Jy4 1 (Aj )/ b =0 for all j. Now, partition

by
(d+K)x1

bo
b= (d+K)x1

bp
(d+K)x1

Note that, for j =0, let Lo = I+, and it is easily seen that

0 = Jurk (AO)/b

= Jayk,1b
b1
bo
= | Ik 0 -~ 00
by 1
bp
= b1 (= Lob1)

101



Now, for j = 1, define A = [ Ay Ay -+ A, 4 A, |, and note that

0 = Jayr1A'D

A Iyx O 0 by
Al 0 Ik : ba
=[x 0 00| 2 g :
A 0 v Ink bp—1
A0 e 0 by
= Jd+K’1[Z/ Jarky Jike 0 Jirp |

= [Jd+K,1ZIJd+K,1 + Jark2| b
= [LiJagka + LoJar k2] b
= Liby + Lobs

where Ly = Jgt KJZ’ = A]. Since previously we have shown that b; = 0, it follows that
bog = L1b1 4+ Lgby = 0.

Moreover, for j = 2, using the fact that Jyix,J), g, = larx and Jay i Jy, g, = 0 for v # s, we

obtain
0 = Jaxa (A)%
—/
= Jarka [ A J&+K,1 Jc/l+K,2 T Jc/lJrK,pfl c/lJrK,p } b
= [LiJark + Lodayk 2] { A Jr,1+K,1 Jr,i+K,2 J(’HK’IF1 J(’HK’p ] b
= ([Lle+K,1 + Lodus o) Adarxcn + LiJasxa + Lon+K,3> b
= (LoJayxa + LnJark2+ LoJark,3) b
= Loby + Liba + Lobs
where

Ly = [L1Jayr + Lon+K,2]ZI

Given that by = 0 and b = 0, as we have previously shown, it then follows that

bs = Laby + L1by + Lobs =0 (since Lo = Id+K)
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We will show by mathematical induction that, in fact, b, = 0 for every r € {1,...,p}. To proceed,
suppose that by = by =--- =bj =0 and 0 = Jgyx1 (A )j b. By straightforward calculations, one
can show (in a manner similar to the case where j = 0, 1, or 2 given earlier) that Jyi 51 (4’ )7 b has
the representation

Jitr 1 (A')j b= Ljbi + Lj_1by+---L1b; + Lobj11

for coefficients Lj, L;j_1,..., L1, and Lo where Lo = I k. It follows from the induction hypotheses
that

bj+1 = ijl + Ljflbg + - 'lej + Lobj+1
= Jayra (4) 0
= 0.

Hence, by mathematical induction, we conclude that b, = 0 for every r € {1, ..., p}, but this implies
that

by
b2

b=| : |= o
(d+K)px1
by

by

which contradicts our initial assumption that b # 0. It then follows that the matrix
o0
; N
S AT g daria (A7)
§=0

is positive definite and, thus, also non-singular, so that there exists a positive constant C, such

that

Amin ZAjJé+K,1Jd+K,1 (Aj), >Cy>0
=0
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Moreover, in light of Assumption 3-2(d), this further implies that

T—h oo
)\min Th Z ZA Jd+KE [€t ]5t ,]:| Jd+K (Aj)
t=p j=0
00 1 T—h
= Amin EA]Jd+K1 ZE e1—j€i—j] Jarxa (A7) ¢ (since Jarrca = Jarx)
j=0 t=p
> )\min{ZA Jd+K1Jd+K1 (A] mln{ ZE 515 Jat —Jj }
7=0
> A iAjJ’ J (Aj/ inf Apin {F [e1—i€)_
= min d+K,1Yd+K,1 ) p mm{ [t J t*]]}
j=0
> C.C

> ¢>0 (by choosing ¢ < C,C).
where the second inequality above follows from the fact that

— !
r-h [st_]et_]}

Th

ZA —[St =

T,

1 I=
= ?h tX_}:} Amin {E [Et—j‘(;;ﬁ*j} }

> lrtlf Amin {E [Et—jgl/ffj} } :

>\min

v

t=p

Now, to show part (b), note first that expression (58) in the proof of Lemma C-4 in Appendix

C above gives a vector moving-average representation for W, of the form

1 > ;
W= (Iarryp = A) " Tipuct+ Y A Ty e,

=0
where Jyyx = Jarkx1 = [ Iiyyg 0 -+ 0 0 } Now, let
1 0
Sy = ? and Sk = dpxKp | |
(d+K)pxdp Kpxdp (d+K)pxKp IKp
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and let P4 g, be a permutation matrix such that

It follows that

and

Moreover,

I~

t = Sélp(d-‘rK)pEt

o0
-1 .
= SyPuasryp Ly —A) " Joswti+ Y SiPariopX Jiswer—
=0

F, = S}(P(d+K)pwt

- S%P(dJrK)p (I(d+K)p - A)il J(,HKN + Z Skp(d—f—K)ij Jc/l+K€t—j-
§=0

E Y, Y]]

E { (5&P(d+x)p (Lasmyp — A) " Thgn+ > SiParrp A’ J(/HKEtj)
=0

0o
X (,U,/Jd-i—K (I(d+K)p — A’)*l ,Péd—l—K)de + ZE;?de_;'_K (Aj)lpéd_’_K)PSd) }
k=0
—1
PE«HK)de

+ Z Z S&P((HK)ij Jé—&-KE [5t—j52—k] Jav i (Aj)/ 7DédﬂLK )de
=0 k=0

—1
SaPa+iy (Tarxy — A) " Japriid Jarx (Tarrp — A)

—1 -1
SaPasyp Tarxy —A) " Japxi' Jarkx (Tarxyp —A) " PlayrpS

+> SuPar kA Tk E [eo-jetj] Jaric (A7) Play seypSas
=0
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and

E [F,F}]

E { (Skp(dJrK)p (Tarrp — A) " Thixn+ Y SkParrpA’ J(I1+K5tj)
=0

X (;/J(HK (Layrcrp — A) Plasx)pSK + is;_deH( (A7) Py K)pSK> }
k=0
SiPariop Tarop — A~ Tirmi Jaskx (Tasrp — A) "~ PlayropSk
+ i i Sk Pl A Thy i B [er—jei] Jari (A7) PlyyropSi
=0 k=0
SiPariop Tarop — A~ T Jaskx (Tasrp — A) "~ PlayropSk

+ 3 SkPlariopd ik E [er-jet ;] Javr (A7) Plas Sk,
=0

E[Y,F}]

1 e .
E{(%PMK (Iarry — A) J@Kﬂ+§:%mewAU@K&j)
=0

(MJdH<1w+K)'—A) P@+KWSK*‘§:5;kLHK(A”IP@+KmSK>}
k=0

-1
SiPasrop Tarip — A~ Taremi Jas i (Tarrp — A) " PlayropSk

o olNe o)
/

+3 ) SiPar A Tk B [ee-jetoi] Jark (A7) PlassoypSic
=0 k=0

~1 -1
SaPasy Tarry —A) " Japxii Jarr (Larryp —A) " PlasrpSK

o
. N\
+ > SiParrpA Ji ik E [er-jet ] Javic (A1) Play xSk,
=0

In addition, since

EWy = (Iarryp — A)il Jarxci and
EW W] = (Iarxp —A) " Joprcntd Jarx Lapryy — A)
o0
+3 ATy kB [eiel ) Jark (A7)
7=0
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and since

s

it is easy to see that

E[Y,Y)] E[Y,F)
E[EY) EI[EF)

S/

s - -
= ( \ ) Plaryp (Larxp — A) ' Jar bt Jarxe (Lasryp — A') 1 Plat iy ( Sa Sk )

Sl >
+ ( ) Zp(dJrK Al Jd+KE [Et j‘st ]] Jd+K (A ),,PEd+K)p< Sd SK )

SK 7=0

Lap

Kpxdp

dpxKp
Ixp

= Py Larrw — A Thpcmi! Jarxe (Lasryp — A)

+ Z P(d+K)ijJfli+KE [Et—jg;ﬁfj] Jarx (Aj), pEdJrK)p

§=0
= Plarpl [Etﬂ;r] P(,d+K)p

and

(B EIE])
= </~LJd+K (Hasryp — A')
1

= pJarrx (Lgerop — A

)
/)1

1

IL

= ' Jarrx (gsrop
= b [EQ] P(,d+K)p

-1

= Ly x)p

PEd+K)p

-1
Pd+K Sa W Jari ([(d+K)p - A/) ,PEdJrK)pSK >

Plariop ( Sq
PlatK)p

Making use of these expressions, we can then write

—_

ElYi  E[E]
ElY,Y] EY,F) | =
[FY! EI|EF

ff] f+]

& =

= 1<

~+

[
[

1
Plarxypl Wyl Playi)pl
1 0 )(
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E [mg] Péd—&-K)p )

1

W,

E Wi

W, Wi

)

1 0

0 ,PngrK )p

) |



Next, note that

G v Fm
EW,) BWW)

= det(1)det { F [W,W}] — B [W,] E [W;]}
= det {E [W,W;| - E[W,] E [W;]}
— det {(I(d+K)p ~ A T et Jark (Lasryp — A) 7
+ Z AjJCIHKE [Et_jééfj] Ja+ K (Aj)/
j=0
— (Tasrp = A~ T Jar (Tasacp — A) '}

= det {ZAJ’JC’HKE [et—jet ;] Jark (AJ’)’}

=0

Now, by Assumption 3-2(d) and by the same argument as that used to prove part (a) above, we

see that there exists a constant ¢ such that

=0

Amin {ZAjJ(Ii+KE let—jer—j] Jark (Aj)/}

v

Amin {Z Ach/1+KJd+K (Aj)/} ig;f Amin {E [515—]’5273‘]}

J=0

v

c>0

for all ¢, which, in turn, implies that in this case

J=0

ot ( 1 E W} ) — det iAch/l E [gt & ] Ja+ K (Aj)/
— + —J<t—
E[W, E[W,W} ]
cldHE)P -

for all t. Furthermore, since the matrix

0 P(d—l—K)p
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is nonsingular, it follows that the matrix

T h 1 ElY;  EI[F]
EY,Y;] E[Y,F}
P\ E[E] E[EY]] E[EF]]

_(1 0 )1%( 1 E[M])(l 0 )
0 Ptk Th = \ B, BEW,W 0 77éd+K)p

will be nonsingular and, thus, positive definite as required. [

Lemma D-2: Let 7), =T — h — p + 1 where h is a (fixed) non-negative integer and p is a (fixed)
positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-5, and 3-7 hold. Then, the following

statements are true.

(a)

where

Wt—p+1
1 T—h 1 T—h
— Y, Y, — — ElY, Y] = O < )
T, t_p Lty T ; [—t—t] 2

=p

1
VT
—h 1 T—h 1
F tEQ—T—h;E[EtE;] = Op<ﬁ>,and
—h T—h 1
Z”’ 7 2 EILE) - o (77

where Y, and F, are as defined in expression (65).

(c)
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T—h
1 1 1
?h Z y, = Sélp(d+K)p (I(d+K)p - A) Jc,i+K# +Op <_T> )
t=p
| T=h , ]
?ﬁ;i:ig - S%Pw+KW(IM+KW“A) {%+Ku4—0p<—75>.
t=p
e
© . 1 .
— Z Wynyn = Op (—) , where 1, ), = Z JaA Ty, getin—j
Th t=p \/T j=0
with  Jy :{[d 0o - O}and Jat+ K :[Id+K 0o --- 0]'
dx(d+K)p (d+K)x (d+K)p
f
v 1 = 1 1 = 1
r_ 1o
Th ;tht-‘rh =0p (ﬁ) and Th Z;Etnwh =0Op <_T> )

where 7, is as defined in part (e) above.

(2)

—h
S, 1 TE ( 1 >
= — = O —— = O 1 .
Th Th = 77t+h p \/T P( )

1 T—h 1 T—h 1
et St )
T, tZ:; Nt+n"Mt+h T tz:; [7715+h77t+h] P \/T

where 7, is as defined in part (e) above.

Proof of Lemma D-2:
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To show part (a), we note that for a,b € RUTEIP such that ||a||, = ||b]|y = 1, we can write

2

T—h

E Tih > (W Wb — E [o/ W, W10
t=

_ 1N, [(a’WtWQb B [a’WtWQb]f]
Tn = — —
2 T—h—1T—h—t

Z > E{(dWWib— E [d WD) (/W Wiy b — E [ Wy, W00 )
t=p m=1

Note first that

1 T=h 1 T—h 1 T—h
= Y B|((wwip - B [dw,wp)’| = Z (W W) — = S (B [ W, W)
h t=p h t= Th t=p
1 T—
< Z (W Wia) (YW, W5b)]
h t=p
T—h
: T,f S VE @W Wiy B @, winy?
t=p
<

1
2 Z E|W,[3

£
where the fourth inequality above follows from applying Liapunov’s inequality and the result given
in Lemma C-4.
Next, note that, by Lemma C-5, {W;} is f-mixing with 5 mixing coefficient satisfying Sy (m) <
Ciexp{—Coym}. Since aw,, < By (m), it follows that W is c-mixing as well, with o mixing
coefficient satisfying aw., < Cjexp{—Cym}. Moreover, by applying part (b) of Lemma C-2, we

further deduce that X; = o'W, W}b is also a-mixing with « mixing coefficient satisfying

IN

Crexp{-Cy(m —p+1)}
Cy exp {—Cym}

axX m

IN

for some positive constant C;} > Cj exp {Cs (p — 1)}. Hence, we can apply Lemma C-3 with p = 2
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and r = 3 to obtain

|E{(a W Wb — E [a' W, Wib]) (/W Wiy b — E [/ Wy, Wb )
1 1 9 , , 3 1/3
< 2 (22 + 1) o o\ B (W, Wb) (E |0/ W Wb )

where ax ,, denotes the a mixing coefficient for the process X; = a'W,Wib and where, by our

previous calculations,

o=

m < (C7)

ol

a

)

exp {_C’ng} for all m sufficiently large.

It further follows that there exists a positive constant C3 such that

S, < @F Y en{-2)

m=1 m=1

A
8
e
[]¢

@

”

T

|

o[
3
——

IN
—~
9
*
N~—
N
| — |
—_
|
@
>
ko]
—
|
cn|[g)
——
| S
L

< C3

where the last inequality stems from the fact that Zoo o &XP {=(Cam/6)} is a convergent geometric
m=
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series given that 0 < exp {— (C2/6)} < 1 for Cy > 0. Hence,

E { (a/wtwgb - LK [alwtmgb]) (alwt+mw;+mb - B [alwtmw;mb] ) } '

IN

E { (a/wtwgb - F [alwtwgb]) (a/wt-&—mw:ﬁ—&-mb - F [a/wt-&—mwg—kmb] ) H

IA
:%| =~
—
™
+
—_
N—
™M
Q
X@lH
3
=
B
=
=
=
[\]
—
=
BN
[F
+
3
=
+
3
Sl
N—
B

o=

IN
B
—

=

+

—
~—

Ti}?T_h_ —h—t {a)%(,m {E (a'm)ﬂ 1/4 [E (blﬂt)ﬂ 1/4 [E (alﬂtm)ﬁ}
1

X {E (blwtw)ﬂ %}
1 L T-h-1 oo

V1) (s [lweld] ) (swr [lwf] ) 75 3 Yo

t—p m=1

Va+1) (s B[] ) (sup [nmn%])% L3 203
)

IA
i
><c>|»—-

,m

IN
W

/N VS
|

2
h t=

[ 1 — 4
?h =0 <T> (Where C>4 (\/§+ 1) (Slsz [\thllz

1

" (s [lzg] ) 03>

=

IN

It follows that

T—h 2
3 - )

b

E

IN

i ;E[ (W Wip — B o'W, w3p])°]

T—h—1T—h—t
2

T2 Z Z ‘E{ a WtW/b E [a WtW/b]) (a/wt+mw£+mb - B [a/wﬂrm—gﬂrmb])}‘

t=p m=1
1
- 0=
()
so that, applying Markov’s inequality, we get

T—h

ZE o' W, W3b] = 0p<

S5l
SN—

T—h
/
ThZ“WtW
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Since this result holds for every a € RHEP and b € REHEP such that ||a||, = ||b]|, = 1, we further
deduce that

1 T—h 1 T—h 1
R / —_ — / f— JR—
i ;mm T ;E (W, W] = O, < ﬁ)

To show part (b), note first that

Sélp(d-‘rK)pEt = < Idp 0 ) dpx1 _ Xt,

By the result given in part (a) above, it follows from applying Slutsky’s theorem that

1 «— 1
— E — E EY.Y!
Th — T, = [_t_t}
= SP L Tihj W~ Tihj E[wWwW,|P S
d (d+K)p Th —~tt Th ——trt (d+K)p d
t=p t=p

o)

—ZFF’——ZE F,F})
htp

= SkPla+r)p ( ZWtW/ T ZE (W, ) Pla+K)pSK

o)
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and
1 T—h 1 T—h
n Z LE -7 Z E[Y,F]
T—h
= SdP d+K ( Z WtW/ h Z E [Wtwé]) P(d+K)pSK
t=p

~o(L)

To show part (c), let a € REFEIP such that ||al|, = 1, and write

T—h T—h 0o
1 1 _ .
T Z dW, = T, Z a ([(d+K)p - A) ' Jarcht + Z a' AV Jy gcer-
L — L — =0
L 1 T—h oo '
= (Iarrp —A) Jarxp+ T Z ZG/AJ Jay KcEt—j
t=p j=0
Next, note that
T—h oo 2 T—hT—h oo o0 ,
T ZZG’,A]Jd+K€t —j = T2 Z ZZZG’,AJJd+KE Et ]Es k?] Jd+K (A > a
h t=p j=0 t=p s=p j=0k=0
T—h oo
T 12 o S S AT B [e el ] Jaek (4) a
h t=p 7=0

2 T—h—1T—h—t oo

t= > Y N dA T kB [aiel ] Jak (A" a

t=p m=1 j=0

1 T—h oo
) N
= T o/ ATy, E [er—jei_j] Jarr (A7) a
h t=p j=0
2 T—h—1 oo T—h—t
/
Z aAJJd+KE [Et ]Et —j Jd+K A'] Z
t=p j=0 m=1
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Now,

1 T—h oo

T2 Z Za’AjJC’HKE [ét_jfs;,j] Ja+ i (Aj)/a
h t=p =0
T—h oo
T2 Z EE lee—jll3 @’ A Th e Jas e (A7) a
h t=p j7=0
T—h oo

TQZZ(EHeun) A1 (4 a

h t=p j=0

IN

VAN

(b Liapunov’s inequality and Apax (Jc'l L xJdt K) = 1)

IA
A 3
3=
g
Ing
S8
=
=
=

/N
=
=
@}
=
¢}
Ql
Vv
—_
7
<
Q
Q
=}
w0
=+
Q
=
w0
o
@)
=
=+
=
Q
=+
&=
o
=
52
A
Q
A
on
<
g
»n
w0
o
=
ol
.
o
=}
w
s
=)
N~—
N—

INA
A
:%| =
>~
=
%
——
s
B
==
Q\
S

IA
CBIL

Z C max { ‘)\max (Aj) ‘2 , |)\min (Aj) ‘2} (by Assumption 3-7)

t=p j=
T—h

0
= g 33 max { e (O i (A}

7=0

- Z ¢max

wl»—t

where ¢, .. = max {|Amax (4)|, [ Amin (A)]} and where 0 < ¢, < 1 since Assumption 3-1 implies

116



that all eigenvalues of A have modulus less than 1. It follows that

1 T—h oo ' ., 1 T—h oo
= Y S AT B [y ] e () 0 < THOZ Y S o
h t=p j=0 Ty t=p j=0
-1 T—h-— 1 1
= C°C 2 Al 2
T3 1 — ¢ ax
—1 1 1
_ 030_—2
Th1 = Pax

Moreover, write

g Toho1 o 4 Tht
— Z Ea'AJJC’HKE [Et,jsgfj] Javi (A7) Z (A™ a
h  t=p j=0 m=1
2 T—h—1| oo [ Tht
< Z ZGIA Jark E [er-jei_;] Jarx (A7) (A™'a
l=p |j= m=1
2 T—h—1 [e%S)
< Z Z ad AV, B [st_jegfj] E {Et—jgé—j} Jirx (A a
t=p 7=0
00 Tf - T—h—t
D> ’AmlAJJd+KJd+K (A1) > (A™) a
7=0 m1=1 mo=1
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Observe that

Za’AjJ(’HKE [51‘,7]'527]‘] E [&,je;,j] Jai Kk (Aj),a

§=0
< Z Amax (E [et_js;,j] FE [5t_j5£,j]) a’AjJ(’HKJdJrK (Aj)/ a
§=0
< D dmax (B [e et ] B [eret;]) Coflax
j=0
= CZ )\12118,)( (E [Et*jgg—j]) ¢121{ax
§=0
< O (tr{E e ,]})” ol
j=0
e 2 .
= O (Elletsll})” 6
§=0
o0 2
< Cz (E ||5t_j|]g> * ¢2  (by Liapunov’s inequality)
=0
IO
< CC—F5—
- ¢max
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and

oo T—h—t T—h—t
> d A AT e daiw (A7) (A

j:O m1=1 mo=1

—h—
Z a A AT (A) (A™2) q

Mg
MD‘

I
Q
8 L[V]s
-
S

&

|a’ A (A™2) a

7=0 m1=1 mo=1
T—h—tT—h—t
ON TS VaAms (Am ayfaamz (Am2) o
7=0 mi=1 meo=1
0o T—h—
< O o S Y ooy oo
=0 mi1=1 mo=1
T—h—t T—h—t
< max (bmax Z max
7=0 mi1=1 mao=1
1 1 2
e
1_¢max 1_¢max
It follows that
9 T—h—1 oo T—h—t
!/
ﬁ Z ZCL/A Jd+KE [Et ]Et —j Jd+K AJ Z
h t=p j=0 m=1
9 T—h-—1 [e's)
< T—E Za’AﬂJd+K [st €L ]]E[st € ]} Jatrr (A7)
t=p j=0
oo T—h—t T—h—t
S S WA AT e (AT S (Ama)
j=0 mi1=1 ma=1
T—h—1 2
< 2SS e o L ()
Th t=p 1- max 1- max ('bmaX
e () ()
h \1 max 1_¢ma.x
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Putting these results together, we obtain

2
T—h oo

T Z Z“,A]Jd%ft —J
t=p 7=0
1 T—h oo ) .,
= —}% Z ZCLIAJJZHKE [515—]‘5;_3'] Jd+K (AJ) a
t=p =0
T—h—1 oo

2 Z Za,AJJd+KE [Et jEt —j Jd+K AJ ' Z

m=

T—h—t

—

t=p ;=0
1
- ¢ (;)
so that, upon applying Markov’s inequality, we get
T—h oo , 1
—;jZOaA Jyixet—j = Op (ﬁ)

from which we further deduce, upon applying Slutsky’s theorem, that

T—h oo

T h
1 1
EE AW, = d (Iaixy—A) Jd+KN+T > Y A AT ke
t=p j=0

1 1

Since the above result holds for all a € RHE)P such that ||a, = 1, we further deduce that

T—h
1 B . 1
i tE_p W, = (Iarry — A) Jagxh+Op <_’_T> :

To show part (d), note again that
dpx1
SaPlarropWe = ( It ) th =L
dpx1
SkPuar Wy — ( WO Ik ) | -E
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By the result given in part (c¢) above, it follows by Slutsky’s theorem that

1 T—h 1 T—h
Y = SiPusiorg W
t=p t=p
) 1 T—h oo ‘
= SiPasiop Larip = A) " Jirxn+ SiParkpg YN AJjker
t=p 7=0
. 1
= Sélp(dJrK)p (I(d+K)p - A) ‘]c,i—&-K:“ +Op <ﬁ> )
1 T—h 1 T—h
T ; E, = SiPakny, tz_; W,
) 1 T—h oo A
= SkPuarryp Larxyp —A) Jopxn+ Skp(d%)pT—h o> Ak
t=p j=0

-1 1
- S}fp(d-*-K)p (I(d+K)p - A) J(,HKM +0p (ﬁ) .

Turning our attention to part (e), let a € RTKIP and b € R? such that ||a||, = 1 and [|b, = 1;

and, by direct calculation, we obtain

| T=h 2
E ?h tz:; a’wtni+hb]
= ) ) g Th1T—h-t
= T_if Z B [(a/ﬁt) (77§t+hb) } + T_,f E Z b {(G'Etni+hb) (Q/Etern:H—m—i—hb)}
t=p t=p m=1

Let omax (A7) denotes the max singular value of A7 and let @, = max {[Amax (4)]; [Amin (A)|},
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and note first that

4
h—1
E (blnt+h)4 E Zb/JdAjJ@K&“tJrhfj
=0
h—1 .
< B Z E [(b'JdAJ J£I+K6t+h—j)4} (by Loéve’s ¢, inequality)
=0
h—1
, , 2
< By B [(b/JdAJ Tracder (XY T)” (i seeens)?
=0
_ 3 - / it N 7 2 4
> (b T AT e dasr (A7) Jdb> Ellevinjl
=0
h-l o, 2 .
< 1wy (b'JdAJ (A7) ng) Ellein il
=0
h—1
< W3S ok (A7) (VIaip)? B levin—ills
j=0
_ 13 -— 4 j 4
= h Zama.x (A ) Ellet+n—jlly
=0
h—1
< m Z? [max { [Amax (Aj)| , | Amin (Aj) ‘}]4 E HEHh,jH;L (by Assumption 3-7)

— .
= 1°) CouxE lerin—il;

T
- O

<
Il

h—1
< CIOR*Y bt

j=0
< c* (71)
2 2
where the next to last inequality follows from the fact that £ HaHh,jH;l < (supt E ||€tH6> <03
by Liapunov’s inequality and by application of Assumption 3-2(b) and where the last inequality
follows from the fact that & is a fixed integer and 0 < ¢, < 1 in light of Assumption 3-1. Applying

the Cauchy-Schwarz inequality and the existence of moment result given in Lemma C-4, it then
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follows that

1 T—h

/ 2/ 2 1 (= 1 N2 4
7 2 B[ (hb)’] < g VB @i B ()
t=p t=p
T—h
Ti,f Z \/E HMIIE\/E (b’m+h)4
t=p

c__ ¢ (L
T, T—-h—p+1 T

IN

IN

Next, observe that

E{ (' W 1b) (W i minb) }
= F { (C’/th:f-&-hb) ( Et+mnt+m+hb)}

—1 h—1
= {a W, Wi\ ma Z V JaA Jg ceein—j p b JaA Ji getimin- k}
7=0 k=0

h—1h—1
= F {a/wtw2+ma Z Z b/JdAj J3+K5t+h—j5;+m+h_kjd+l( (Aj), J&b} s
7=0 k=0

so that, for m > h, we have

E { a tht+hb a Wt+mn:f+m+hb)}

h—1h-—1
= E{aWtWHmaZEdeA T kEtthiEhpmanpdri (A7) Jdb}
7=0 k=0

h—1h—1
a WtWHmaZZb’JdA T k€tin—i B [ehimannl FEI] Jas i (Aj)/JC’lb}

e 5
oy

h—1h-1
W Wy a0 0 JaA T werin B (el min—i]) vk (47’ Jflib}
=0 k=0

= B

E
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Hence, defining Z (a W,n,,1b) (a’wt+mn;+m+hb)’ = 0, we have

VAN

VAN

IN

IN

IN

T—h—1T—h—t '

2
T2 Z E E{(a'Wy ) (/W ymsnd) }
t=p m=1

T—h—1min{h—1,T—h—t}

T2 Z Z E{(d'Wyninb) (' Wy imnb) }
T—h—1min{h—1,T—h—t}

T2 Z Z E (W) (0'We i m i)

T—h—1min{h—1,T—h—t}

T2 Z Z \/E /WtW;f+m \/E b77t+h77t+m+hb)

T—h—1min{h—1,T—h—t}

T2 > X VE (W Whad Wy, WS, 0) ¢E{<b'nt+h>2<b'm+m+h>2}

T—h—1min{h—1,T—h—t}
T2 > X V(2 1822 { 0000)? )}
T—h—1min{h—1,T—h—t}

2 DY (B 1l8) " (5 12 2)

2(T=h—-p)(h-1)

Ty

2(h—1)C
Th

1

< (b/nt+h)4> ’

=

<E (b/ﬁt+m+h)4> '

C  (applying Lemma C-4 and expression (71) above)

(since T, =T —h—p+1)

It follows that

T—h 2
Th Z a tht+hb]
| T=h ) ) g Th-1T—h—t
T_,f Z E [(a’m) (744 1b) } + T_,% Z Z E{(a'Winb) (Wit ymind) }
t=p t=p m=1
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so that, applying Markov’s inequality, we get

Since this result holds for every a € R@+5P and b € R? such that |lall, = 1 and |||, = 1, we
further deduce that

1= 1
=3 W =0,(—=)-
Ty, &t h T <ﬁ>

Now, for part (f), note that

S&P(d+K)pwt = ( Idp 0 ) dpx1 = Xt’

dpx1
S}<P(d+K)pwt = ( Kp(>)<dp Iy ) px _F,
Hence, it follows by applying the result given in part (e) above and the Slutsky’s theorem that

1 T—h 1 T—h 1
- Y / = S, _— W 4 = O — d
T z‘Z:; X Mh dp(d-l—K)pTh tZ:; WMt P (\/T) an

1 T—h 1 T—h 1
— F.n = S — W, =0, —=
T, tz:; L4 Mevn Kp(d+K)pTh tZ:; W Tt h P (\/T)
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To show part (g), let b € R? such that [|b]|, = 1 and write

2
VS ur )2 1 =
E(Z=22) = BE(—=Y ¥
( VT VI Z Teth
T—hT—hh—1h-1

- T, Z Z ZZbIJdAJJdJrKE [5t+h FAT k] Jar K (A"’),Jéb

t=p s=p j=0 k=0

T—h h—1
1 , .
- STV IA Ty o E [evin—setin_ ;) Jark (A7) Tjb
t=p j=0
T—h—1T—h—t max{0,h—2} ‘ .
Z > Z VJa A7 Ty kB [evin—ictin_j) Javr (A™H) Jb
t=p =1
1 T—hh—1
T, Z Zb/JdAJJdJrKE let+n—i€tin—j] Jark (A]) b
t=p j=0
T—h—1 max{0,h—2} ,T h—t
Z Z Vg Ty 1B [erin—icipn—j] Jarr (A7) D (A™) Jib
t=p m=1
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Now,

IN

IN

IN

IN

IN

T—hh—1
1

n STV IA T (B levin—setin_ ] Jark (A7) Tib
t=p j=0

T—hh—1
Ti SN Ellerin—jlla V' JaA Ty e Jari (A7) Tib
7ot
T ; Z (B letsncslS) Var? (4 T30
(by Liapunov’s inequality and the fact that Amax (Ji g Jarx) = 1)
1 T—hh—-1 , ; AJ J )
3 — T ; ]ZO b Jg A ]

(where C > 1 is a constant such that HEt—ng < C < oo by Assumption 3—2(b)>
1 T—hh—1
3 Z > Amax {47 (A7)} Tu T3

t=p j=0

T—hh—1

ZZAW{ (49) AJ}

=p j=0
(smce /\max{ A]) } = Amax {(Aj)/Aj} , Amax (JdJC'l) =1, and b'b = 1>
T—hh—1

T Y e (4)
t=p j=0

1 T—hh—1

5Thz:X:C’max{}/\max )} ,‘ min (Aj)‘Q} (by Assumption 3-7)
t=p j=0

Ql
’ﬂl

Zﬁ

= |

Ql
H|

T—hh—1

% Th Z ZmaX{P\max | 7| min (A)|2j}

t=p j=0
T—h h—1

%c DI

t=p j=0

where ¢, .. = max {|Amax (4)|, [ Amin (A)]} and where 0 < ¢, < 1 since Assumption 3-1 implies
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that all eigenvalues of A have modulus less than 1. It follows that

| T=hh-1 ' N _1 q T=hhor
D D VI Ty kB [eronejehin ) Jaex (A1) b < TR0 >
i h v=p j=0
-1 T —h- 1 1
< Tio—= 12 —
h max
—1 1
- 0301 - r2nax
(since Tp, =T —h—p+1)
= 0(1)

Moreover, write

9 T—h—1max{0,h—2} . ‘ /T—h—t
T S Y VIAI T KE [ern—ician ) Jarx (A7) D (AT b
t=p 7=0 m=1
9 T—h—1 |max{0,h—2} T—h—t
. N m
< 7 > > VI Ty kE [eeinjetin ) Jarx (A7) (A™) Jhb
t= §=0 m=1
9 T—h—1 max{0,h—2}
T > S VAT B erineih ] B Eenoishi ] Javr (A7) b
t= §=0

max{0,h—2} T—h—t T—h—t
X S>> VIAMALT, Tk (AT) (Am2) Thb

j:O mi=1 mo=1
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Similar to the argument given previously, we have

IN

IN

IN

IN

IN

max{0,h—2}
ST VI T B [evinieiin ) B [eein—ieiin ) Jarr (A7) Jib
=0
max{0,h—2}
; N
> max (B [ern—seton—] B [evrn—seiinj]) VIaA Ty e Jas i (A7) Thb
j=0

max{0,h—2} ‘
D max (B [errn—jehin—g) B [renjeiin-]) Coflax
=0
max{0,h—2}

C Z )‘gnax (E [Et+h*j€:€+h*j]) ?r{ax
=0

max{0,h—2}

2 .
C Z (tr {E [etsn—jetin—j]}) -
=0
max{0,h—2} 9
C Y (Bllewnil}) 0¥
=0
max{0,h—2} 2
6 .
C Y (Bllewnsll)” o
=0
_2 1
35 C———
1- max
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and

max{0,h—2} T—h—t T—h—t ‘ 4
SN DT VI A™ AT e daik (A7) (A™2) Thb
7=0 mi=1 mao=1

max{0,h—2} T—h—t T—h—t

< Z SN vaaAm AT (A7) (A2 Tb
mi1=1 mao=1
max{O,h 2} T—h—tT—h—t
S CY XD pAm A gy
7=0 mi1=1 meo=1
max{0,h—2} T—h—t T—h—t
< COY Y ST daAm (am) Ty 1 ggAme (Ama) T
7=0 mi=1 mo=1
max{0,h—2} T—h—tT—h—t
< c Z e S S oo Jcem
mi1=1 mo=1
max{Oh 2} T—h—t T—h—t
< Z Grax D, Pmkx Y Dz
mi1=1 mo=1

1 1 2
< C?
B 1_¢I2nax (1_¢max>

It follows that

2 T—h—1h—-2 T—h—t
!/
T, Z Zb,JdA]Jd+KE etrh—jetiny] Jarx (A7) Z
h t=p j=0 m=1
9 T—h—1 max{0,h—2}
< 7 2 > VA B e B |ty Jar (49) T
t=p 7=0

max{0,h—2} T—h—t T—h—t
X Z DD VIAMALTL Ty (AT) (Am2) Jib

mi=1 mo=1

T—h—1 2
—2 1 1
— E C*0——— x/ >
t=p 1 — Pnax max — Pmax

1 gT—h—p—i—l( 1 )( )
= 203C?
Th 1_¢max _¢max

(1)

IN

|
Q
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Putting these results together, we obtain

| Th 2
El — b'n
( o )
_ Tﬁhhilb’J AT, E / J AN T
= EZZ dJa1 K [5t+h—j5t+h—j} d+K( ) d
t=p j=0
9 T—h—1 max{0,h—2} , i , ; ,T—h—t .
+= > VJGA Ty 1B [erin—icionj] Jarr (A7) D (A™) Jgb
hoi= =0 —
= 0(1)

so that, upon applying Markov’s inequality, we get

1 T—h
— Uneen = O, (1).
\/Th ; t+h p

Since the above result holds for all b € R? such that [|b]|, = 1, we further deduce that

| T=h
—= 2 htn = Op(1)

and that
1 T—h 1 1 T—h 1
JE— = — —_— = O — = O 1 .
T, ?_p Ni+h T, ( T, ;_p 77t+h> p( /—T> p( )

Lastly, to show part (h), let a,b € R? such that ||a||, = ||b]|, = 1; and write

T—h 2
1
b T, D (st nb— B [a/”t+h772+hb])]
t=p
1 T=h / / / / ;
- T_i% Z b |:(a nt-l—hnt—l—hb -k [a 77t+h77t+hb]) i|
l=p
T—h—1T—h—t

2
+T_,§ Z Z E{(a' M nmtnd — E [0 00])
t=p m=1

X (a’nt+m+hn2+m+hb —FE [a’nt+m+h772+m+hb] )}
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Making use of the Cauchy-Schwarz inequality, we then have

T—h
1
T2 Z E {(alnwh?ﬁmb - E [alnt+h77£+hb] )2}
1 Th 2
7 t=p h t—p
1 T—h

ﬁ Z E (a'm+hni+hb)2
h t=p

T—h

1
T2 Z \/E (a,nt+h)4\/E (b'nt+h)4
h t=p

IN

IN

In the proof of part (e) of this lemma, we have shown that, given Assumptions 3-2(b) and 3-7,
there exists positive constants C and C such that
h—1
4 =
(b nt+h < h’3 Zc¢maxE HEtJrh*jHQ < C < oco.

7=0

where ¢, = max {|Amax (A)], [Amin (4)|} and where h is a fixed integer and 0 < ¢, < 1 in light

of Assumption 3-1. In a similar manner, we can also show that

FE (a nt+h < h3 Zc¢maxE Hgt+h*jH§ < 6 < 0.

7=0
It follows that
T—h
1 2
T2 Z E [(a’m+h772+hb — E [a'nntnb]) } S Z \/E (a'nep) \/E v 77t+h
h t=p h t=p
1 T—h
< 5> C
h t=p
T —-h—-p+1
= C T}?
C
= — (sinceTp=T—-h—p+1)
Ty
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Next, observe that

a'nt+h772+hb - E [a'nt+hn2+hb]

h—1h—1 . ,
= D > ATl Tk (rrnsEtin—k — B [errn—seiini]) Jark (Ak> Jab

j=0 k=0

h—1h-1 ‘
= 3 (VA Tk © 0 aA o ) {vee (sein-setini) = vee (B [etrnsetoni]) }
0k
1h

> <.
Il
= O

= (bIJdAch,HK ® ' Jg A Jc,l+K) {(et+n—k @ €tn—j) = E ettt ® €151}
=0 k=0

<.

and

/ / / /
a 77t+m+h77t+m+hb ) [a nt+m+hnt+m+hb}
h—1h—1

_ ! L7 ! / N 7/
= D> dJaA Tk (eremih—tEtminr — B [EttmintEtimin—r]) Jark (A7) Jib
£=0 r=0
h—1h—1

- Yy <b’JdATJC’l+K ® a'JdAfJg+K) {vee (Stsmin—tZhimin_y) — vee (B [erimenrichimini])}
¢=0 r=0
h—1h—1

- Z Z <b,JdAch/z+K ® a/JdAZJc,lJrK) {(et4m+n—t @ Etomin—r) — E [Et4mth—k ® Ermn—r]}
=0 r=0

Moreover, note that, for m > h

E{(annmipnb — E [aneminb]) (@0 s nepmand — E (00 nMipmind]) }
h—1h—1h—1h-1

= L33 {(Hat i i)

=0 k=0 =0 r=0
XE ([(et+h—k @ etrn—j) — E(et4h—k @ €t1n—j)]

X [(Et4mth—t @ Etgmth—r) — E (Et4man—t ® 5t+m+h77")],)
/
X <Jd+K (AT)/ Jéb & Jd+K (Az> Jéa) }
=0

Note further that, when h = 1, we will always have m > h, given that by definition m is an integer

> 1. This implies we need to distinguish between the case where h = 1 from the case where h > 2.
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Consider first the case where h = 1. In this case, we have, for all m > 1

E { (a'm+m£+1b - F [a'm+1n£+1b]) (alnt+m+177;s+m+1b - K [alnt+m+177;£+m+1b] )}
= (V1A Tk ©d JaA T}, k)
XE ([(et11 ® et41) — B (et11 @ e041)] [(Etrma1 © etvmy1) — E (etrme1 ® etpmyr)]’)
% (Jarr (A T3 @ Jasie (A°)' Tja)
=0

so that, in this case, we have

T—1 2
1
E T Z (a/nt+177:t+1b —F [a’mﬂniﬂb])]
t=p
= )
- 72 Z b [(a/ntﬂ%ﬂb — E [a'n417m110]) }
1=
g T-1T—1-t
+ﬁ Z E{(a"M31mt11b — E [a'ny1m1410])
1 t=p m=1
% (a/nt+m+1nl/ﬁ+m+1b - B [a/nt+m+177;+m+1b} )}
T—1
1
= = S B [(@nanhanb — F [ niab))’]
1 t=p
= 0O <%> (as shown previously in expression (72)) (73)

Consider next the case where A > 2. In this case,

E { (a/nt+177;+1b ) [a’mﬂnéﬂb]) (a/m+m+1172+m+1b - F [a/m+m+1ni+m+1b] )} =0
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for all m > h as previously shown; however, for 1 < m < h — 1, we have

‘E {(alnt+h77;t+hb -E [alnt+h77§+hb]) (alnt+m+h77:t+m+hb - E [alnt+m+hn;+m+hb] ) }‘
h—1h—1h—1h—1

- YY Y Y { <b’JdAkJC’l+K ® a’JdAjJU’l+K>

=0 k=0 (=0 r=0
XE ([(et4h—k ® €t4n—j) — E (Et4h—k @ Et4n—j)]

[(Etrmrh—t ® Etrmih—r) — B (Et4minh—t ® 5t+m+h—r>],)
!/
X <Jd+K (A™Y T @ Jai i <A€> Jga> }

1h—1h—1h—-1

= Z Z Z { (bedAkJC’HK ® a/JdAJ'JC'HK) E (et4h—kEhpman—t © Eth—iC€tamihr)
7=0 k=0 ¢=0 r=0

/
X (Jd+K (Ar)/ Jcllb ® Jit K <A€> Jc’la> }
h—1h—1h-1h—1 4
Z Z Z Z { <b/JdAkJ(/1+K ® a' JgA? J(/HK) E (et1h—k @ €tih—j) E (Etmth—1t @ Ettmih—r)
j=

0 k=0 ¢=0 r=0
’ 2\’
X (Jd+K (A™Y Tb® Jox (A ) Jga> H
h—1

S NV TaA Th g ® a JaA Ty i) B (ersni€iin—j @ Eten—iCiin—j)
=0

x (Jasw (A7) Tib @ Jurxc (A7) Ta)|

IN

h—1h—-1

> > ’ <b,JdAk‘]c,i+K ® a' Jg A Jc,i+K> E (et+h—kEtrh—k @ Etth—jEtsh—j)
7=0 k=0
k#j

x <Jd+K (A’“)l Tib @ Jayx (A7) Jc’la>

+ ‘ (b/JdAkJ(/HK ® a/JdAkJ(/HK) E (Et+h*k€;+m+h76 ® 5t+hfk5£+m+hfe)

(s (4) T3 g (4) )

+ ‘ <b,JdAch,l+K ® a,JdAZ‘]c/HK) B (et+h—kE1mih—t @ Ettm+h—tEt1hk)

x <Jd+K (Af)' T @ Jusw (A’“)l J;la> ‘
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h—1h—-1

AN (VT A T g ® d/ TaA T ) B (g @ Erghes) B (Etpmih—t ® Erpminr)
7=0 ¢=0

x (J(HK (Af)' T & Jasx (Af)' Jga>

Analyzing each term on the majorant side of the function above, we have

h—1
| (V' JaA? T i ® @ JaA? T ) B (Sein—jtin—j © Evvh—iCiin—y)
=0
A Ny
x (Jasx (A7) Jib @ Jurxc (A7) Tia)|
h—1
< T (b’JdAjJ(’HKJd+K (47’ ng) <CL/JdAjJ(I1+KJd+K (47’ Jga)
=0
h—1
= UZ b J A (AJ')/J(’ib} {a'JdAJ' (Aj)'JC'ia] (since Amax (Jos g Jari) = 1)
j=0 ~
bt S 12
< TY A {47 (40)'}] 0030 [ JaT ]
j=0 i
h=1 . Y12
= UZ Amax {AJ (AJ),} (since JgJy =15 and a’'a = b'b = 1)
j=0 " ’
hol 12
= T [ { (49)" A
j=0 i
h—1 ‘
= UZ o (A7)
=0
h—1
< 62 C* max { ‘)\max (Aj) }4, Amin (Aj) ‘4} (by Assumption 3-7)
=0
h—1 . A
~ 0Y C"max {|Am (AY ), Amin (A)r*f}
=0
h—1
= C C*gbﬁ{ax (where 0 < ¢ = max {[Amax (A)[ , [Amin (A)[} < 1)
=0

IA

ChC*  (since 0 < oy < 1 and @2, = 1)
< C (forahC*§C<oo),
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IN

IN

IN

IN

h—1h—-1

> ‘ <b,JdAch,l+K ® G,JdAch,erK) E (€t4h—kEprn—k © Et+h—jCtin—j)
J=0 Q;Q
J

Ql
™7

T
L

S
g

B
I

T
L

S
N

B
I

T
L

S
N

=~
Il

T
L

Ql

x (Jd+K (Ak)' Tib @ Jay i (A7) Jéa)

—_
>
[y

o
> TS
Il
= .0

o
> FE
Y
= .0

o
& I
Y
— SO

o
& T
It
— SO

s (9]

s (#9)]

max {

k)l
k)’

Ak

(b’JdAng ke ask (Ak)/ ng) <a’JdAj Ty redasrc (A7) Jga>

-/ k K\ g / i A3\ 7t n / _
b J4A (A ) Jgb [a Ja A (A7) Jda} (since Amax (g g Jari) = 1)

[/ JaJyb] [ JaTal

(since JdJ(; =J;and d'a =b'b= 1)

o L A7 (A
N {Ak (A
A\ (A’“)l

f
|
e () 4

k#j
h—1h-1
62 Z (C*)2 ¢I2I{ax¢12fax (Where ¢max = max {‘)\max (A)‘ ’ ‘)\min (A)‘})
k=0 k=0
k#j
Ch2 (C*)? (since 0 < ¢y, < 1 given Assumption 3-1)

C <f0r Ch2(C*)? <C < oo) :
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IN

IN

IN

h—1 h-1
’ (b’JdAkJ(’HK ® a’JdAkJ(’HK> E (St4h—kEhrmah—t @ Etth—kEppmih—t)
=0 Ll
« <Jd+K (Af)' T ® Jurx (Af)' nga>
h—1 h-1
3 { [(b’JdAkJC’l k@ d T AR T, K) E (€orh kEhpn @ Eren kErinr)
W= it

/ / 1/2
x <Jd+K (A’“) Th @ Jasr (A’“) Jc’laﬂ

/ I / N ! /
X [(b JaA Jg g @ a’JaA Jd+K> E (t+mth—tEtmih—t @ Etbm+h—Et4m+h—r)

/ / 1/2
e (sovsc (2 70 s (4) i) }

oy ¥ VY TLAR T e Taie (AR Tip) (! JuAR T e daiie (AF) Tha)
=0 et
$ (VAT e Tarc (AYY T3D) (' TaALT) e Taie (AY) Tha)
53> V [V TaAR (AR T] [ Ja A (AR) Jha]\/ [0 JaAY (A8 J1] [ JaAl (AY) Jha]
k=0 (=0
LF#k+m
(since Amax (Jc,i+KJd+K) = 1)

Ql
>
L
=
L

:Am {A’f <A€>I}: [/ Ja ) [a! JaTha]
)

o (1) 4

{0}
{0}
(e}

i
S
T
=1
el
3

ST
TOIMT
I IMI

3
> ~ >
LIIME
3

i
S
T
=1
o]
3
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IN

IN

ral 2 k 2 ¢
Ckz:: O max (A ) Oinax (A )

o (4] e s (1)

c (C*)? S P (s10CE Pryaye = max {[Amax (A)] s [Amin (A)]})

Ch? (C*)? (since 0 < Py < 1 and PO o = 1)
C (for Ch2(C*)? < C < oo) :
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IN

IN

IN

h—1 h-1
’ (b’JdAkJ(’HK ® a’JdAfJ(’HK> E (St4h—kEfpmah—t @ Etdm+h—tErth_i)
=0 Ll
« <Jd+K (Af)' T ® Jar (A’“)l nga>
h—1 h-1
3 { [(b’JdAkJC’l k@ d T AT, K) E (Sosh kEhpnts @ Etsmth 1 smint)
W=

!/ !/ 1/2
X (Jd+ x (Ak) Jh @ Jasr (A’f) Jéaﬂ

X [(b,JdAZJc/l+K ® a/JdAch/HK) E (ettm+h—tEtsmih—t ® Et-+h—kEtrh—k)

!/ / 1/2
(e (4 0 s (47 230)] }

h—1 h-—1
C V VTLAR T e Taie (AR Tip) (! JaALT e agxc (A Tha)
=0 hitm
X\ (VAT e Taerc (AYY T3D) (! TaAR Ty g T (AR) Tha)
h—1 h-—1
C V [V TaAR (A% T] [ JaA (A% Jha] /[0 TaAC (A T3] [a JaA* (AF) Jhal
kzoféffm
(since Amax (Jc,i+KJd+K) = 1)

Ql
>
L
=
L

:Am {A’f <A€>I}: [/ Ja ) [a! JaTha]
)

o (1) 4

{0}
{0}
(e}

i
S
T
=1
el
3

Ql
>
L
=
L

(since JgJy =1z and d'a = Vb= 1)

i
S
T
=1
el
3

Ql
>
R
>
R

i
S
T
=1
o]
3
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IN

IN

ral 2 k 2 ¢
Ckz:: O max (A ) Oinax (A )

o (4] e s (1)

c (C*)? S P (s10CE Pryaye = max {[Amax (A)] s [Amin (A)]})

Ch? (C*)? (since 0 < Py < 1 and PO o = 1)
C (for Ch2(C*)? < C < oo) :
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and

IN

IN

IN

S
N

h—1h—1

SN NV I Ty i ® a JaA T i) B (Erin—j @ erin—s) E (Eramin—t @ erpmin—re)’
7=0 ¢=0

X <Jd+K (AZ>/ Jib @ Jark (AZ>/ Jéa)

h—1h—1
S AV T Tj g @ a JaA T i) B (etrnj @ errnj) B (Erpnj @ erpnj)
j=0 (=0
-, o, 1/2
% (Jark (A7) Jib @ Jaric (A7) Jia)|

X [(bIJdAZJc,HK ® a,JdAEJc,lJrK) E (et4mth—t @ Etymin—) E (Etymin—t @ Etrmin—t)
, . 1/2
(e (2 T D (4 230 }

\/ (0 Jg AT T} e Jarrc (AT) Jib) (0 JaAI Ty, o Jav i (A7) J)a)

?‘
—_
;l"
=

Ql
<
Il
o
o~
Il
=)

x ) (W TAC T g T s (AYY T4D) (! TuALT) e Tavic (AY) Tha)

h—1h—1

C Z\/ [/ Jg AT (A7) Jhp] @/ T4 AT (AT Jgia]\/ b/ T4 AL (AL J'b] [al JyAL (ALY Thal
7=0 £=0

(since Amax (J&+KJd+K) = 1)

‘3‘
—_
;"‘
—_

e {49 (47"} :)\max {Af <A€>/}: (b J0J3p) [/ Tl
e (0} P o (0
e 0 ) e {0

A
o () o2 (1)

> .
[l
- O
7T
|

— O

S
N

(since JgJy =I5 and d'a = b'b = 1)

Il
- o
T T
|
_ O

> .
|

Ql Ql
LM
T T

5[\3

ag

<

I
<)
o~

Il
=)
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_h—l h—1 9
C’ZZ(C’*)2max{|)\max (A7)]7,
§=0¢=0
(by Assumption 3-7)
_h—l h—1 ) )
= T3 (€ max { P (AN, in ()} mae { A (D i () }

7=0 ¢=0

2

)

VAN

Auin (47) [} max { uma ()

o (1))

S 6 Z (C*)2 ¢?r{ax¢3rfax (Since (bmax = max {’)\max (A)‘ ’ |>\min (A)|})

=0
= Ch*(C*)? (since 0 < oy < 1 and P = 1)
< C (for Ch2(C*)? < C < oo) ,

where upper bounds given above have made use of the fact that for all £ and s

E [ese; ® £5€%]

Ellet®es) (et ®es) ]

t/’ﬂ {E [(Et ® 53) (Et ® 53),]} ° I(d+K)2

(where the inequality holds in positive semi-definite sense)
Eltr{(et®es)(e1®es)'}] - Ly iy

= F [tr {(515 ® 55)1 (Et X 58)}] : I(d+[()2

= Elgeeies] Ly

= B [lleell3 s3] - T s

4
< SlipE [H%?t’b] LKy

IN

< C-1Ip (by Assumption 3-2(b))
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and

Ee®e)E(g®e) < tr {E (et ®@et) E (et ® 5t),} : [(d+K)2
(where the inequality holds in positive semi-definite sense)

= E(&t ®€t)/E(6t ®5t) . I(d+K)2

I
B

Q

I

1§
Q o~ o~ o~
HM@. ] a0 a0 a
— —_ —_ —

(B [egeen])? - Ly

Q
Il
—

M=~

(E legicu])® Ly

]~

E [e3] B [f,] Lty

Q
Il
—

Z 5&] "+ K)?

2
E el ) Ty
gy 5y (by Assumption 3-2(b))

Il
Q| /-\

IN

for some positive constant C. It follows from these calculations that, for 1 < m < h — 1 where
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h > 2, we have

|E{(dnmh”%hb“E[dnmh”@hﬂ)(dnmmu%nﬁthb“E[dnumwh%+m+hﬂ)ﬂ

h—1
< DT Ty © 0 e Ty i) B (Sein-jeiin- @ etvh-ichin )
=0
% (Jaric (A7) Tgp @ Jasic (A7) Tya)|
h—1h—1 ‘
+ Z Z ‘ (b’JdAkJC'HK ® a' Jg A JC’lJrK) E (et4h—k€tin—k @ Etrh—j€tsn_j)
7=0 k=0
k#j
!/ .
X (Jd+K (Ak> J(/ib ® Jd+K (Aj), Jéa)
h-1 h-1
+ Z Z ‘ <b,JdAch,l+K ® a,JdAch,H-K) E (€t+h—k62+m+h—z ® 6t+h—k6;+m+h—ﬁ)
h=0 E;flfzJ(r)m
!/ /
i (asse () T g () )
h—1 h-—1
+ Z Z ‘ <b’JdAkJC'l+K ® a'JdAeJ(’HK> E (et4h—k€tmih—t @ Etym+h—tEtin_t)
h=0 K;fk:—l(-)m
/ /
x <Jd+K (Af) T @ Jari (Ak) Jéa) ‘
h—1h—1 ‘
+ Y Y NV Ty © d JaA T ) E (Ein @ erng) E (Stamin—t @ etpmin—e)
=0 (=0
/ !/
X <Jd+K (A4> T @ Jasx <A£> Jéa)‘
< 5C
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so that, when h > 2,

T—h—1T—h—t

2

T2 Z Z E{ a77t+h77t+hb E [a 77t+h77t+hb]) (a 77t+m+h77t+m+hb E [a 77t+m+h77t+m+hb])}
t=p m=1

T—h—1min{h—1,T—h—t}
= T2 Z Z E{(a/m+h77;+hb—E [alﬂt+h77;+hb])

X @ N n Mot mand = B [0 M mnmnD]) H
T—h—1min{h—1,T—h—t}

< Z Z }E { (a/nt+h771,t+hb - E [a’nt+hn2+hb])
X (a/nt+m+h77;+m+hb -FE [a,nt+m+h77;5+m+hb] ) H
2T—h-—p
< Wk-1C (since T, =T —h—p+1)
Ty

o)

Putting everything together for the case where h > 2, we see that

T—h 2
1
E T, Z (@ Npnnind — E [a’m+h77£+hb])]
t=p
T—h
- T,f Z E [ (@M nnb — E [a" 0w nb]) }
t=p
2 T—h—1T—h—t
Z E {(a" 0y nmsnb — E [0 4]) (@M gmsniemnd = B [N ngmand]) }
t=p m=1
1 1
- <?> +o(z)
1

= 0 (T) (74)

In light of the results given in expressions (73) and (74), we can apply Markov’s inequality to
show that regardless of whether h =1 or h > 2

T—h | T=h 1
a b— Ed tanbl =0 <—> .
T, Z Mg W4 T, Z [0y 1 nb] P\ YT

t=p

Moreover, since the above result holds for all a,b € R? such that [lall, = ||b], = 1, we further
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deduce that for all (fixed) positive integer h

1 T—h 1 T—h 1
T > Mesnllian — T > E[nenien] = Op <ﬁ> -0

t=p t=p

Lemma D-3: Suppose that A is an N x N symmetric matrix which we can partition as

An Aro
A= rXT rX(N—r)
Ag1 Az

(N=r)xr (N—r)xX(N-r)

Then,
[Az1]ly < [IA]l5 -

Proof of Lemma D-3: Define

Let T € R" be such that ||T]|, =1 and
v A AT = max v’ A Agv
l[vll;=1

It follows that

[A21lly = /0" A5 AT

IA
<

U,A/HAH@ + ﬁ/Aél AT
= U’Bi A’ABT

max v'A’Av <n0ting that | B10|y = /T B{B1T = VT'T = 1)

[[vll;=1

= (4], O

Remark: This is a well-known linear algebraic result. A similar result has also been given in the

beginning of section 6 of Johnstone and Lu (2009).

Lemma D-4: Let .

1
Mpp = T E [F,F}] (75)
0=

where Tp = T' — p + 1. Then, under Assumptions 3-1, 3-2(a)-(b), 3-2(d), 3-5, and 3-7; there exists
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a positive constant C' such that
Amin {Mrr} > C >0
forall T >p—1.

Proof of Lemma D-4:

To proceed, note that we can write

T / / T
| ElY,Y!| E[Y,F) 1 o
=5 — Paskp 3 B [WW}] P
TO = ( E [nyi] E [FfF;] (d-l—K)p TO = [ t t] (d+K)p

from which it follows that

T T
1 EY,Y}] E[Y,F} 1 1y
Amin T = Amin P = E MW P

{T0;< BIEY( EEE] aesony 2 P WA Pl

T
1
> Amin {To ;p E (W, W] } Amin {P(d+K)p7’fd+K>p}
1 I
i {7 > F v } T
t=p
(since Pa+r)p is an orthogonal matrix)
T
)L /
)\mm {TO ;p E [wtwt] }
Next, note that
1 d / . 1 d -1 4 / n—1
7 2 B = ) (e = A) " Japxmnl Jaek (Tarxyp = A)
t=p t=p
1 T oo ‘ o,
+?0 Z Z AJJ(/1+KE [Et_]‘fgfj} Jd+K (A])
t=p j=0

= (Tarryp — A)_1 Joe it Jay e (Lav k) — A/)_1

o) T

, 1 4

+ E :AJJC/HKFO E E [erjei ;] Jark (Aj),
Jj=0 t=p
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so that there exists a positive constant C such that

Amm{ ZE WtW’]}

0= =p

v

Amin {(I @i = A) " i Jarre (Lo — A/)il}
mm ZA JdJrK ZE Et JEt J] Jd+K (Aj)
0
(by Weylj’s Theorem (see T heorem 4.3.1 of Horn and Johnson, 1985))
> Amin ZA i we ZE erjer_i] Jarr (A7)
0
> c>0 fcj)r allT >p—1 (by the result given in part (a) of Lemma D-1)

It then follows that

min {MFF}

= mm{ ZE FF’}

N ET: EY,Y! E[Y,F)
"\ Tz \ EIEY)) E[EF)
( by the Poincaré¢ separation theorem (see Corollary 4.3.16 of Horn and Johnson, 1985) )

T
)L /
Z )\mln {TO ; E [tht] }

> C>0forall T>p—1,

v

as required. [

Lemma D-5: Let T, =T — h — p+ 1 where h is a (fixed) non-negative integer and p is a (fixed)
positive integer. Suppose that Assumption 3-3 hold. Then,

(a)
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1 T—h
= 3 1B (uiisuig)| = O 1)
" ts.9=p
t<s<g
()
1 T—h
72 Z |E (uiuistuiguiy)| = O (1)
h t,s,9,0=p
t<s<g<w
Proof of Lemma D-5:
To show part (a), first write
| T=h | T=h | T=h
= > 1B [uivuiw]| = = Y Eu] + T > B [uivtin]| (76)
h V,W=p h v=p h vV, W=p
v<w v<w

Consider now the first term on the right-hand side of expression (76). Note that, trivially, by
Assumption 3-3(b),

| T=h
T Z Eui] <C=0(1) (77)
v=p

For the second term on the right-hand side of expression (76), note that by Assumption 3-3(c),

{uit}i2 o is B-mixing with § mixing coefficient satisfying
B; (m) < ajexp{—agm}.

for every i. Since a;m < B;(m), it follows that {u;};o . is a-mixing as well, with o mixing

o0

coefficient satisfying

aim < a1 exp{—aym} for every i.
Hence, in this case, we can apply Lemma C-3 with p = 6 and r» = 5/4 to obtain

1 T—h
T_h Z | B [tintin]|

v, W=p
v<w

T—h 1
1 _1_4 s 5
o Z 2 (21_% + 1) [a1 exp {—az (w —v)}] 7575 <E |uw|6> ¢ (E |uiw|4>
h vw=p
v<w

IA
Ot
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Application of Liapunov’s inequality then gives us
6 % 3 % 6 % 6 %
(Blual®)” (Bluwl?)® < (Blual®)” (Bluwl)

o) 3
< <supE!uit\>
t

= 03 <o (by Assumption 3-3(b))

Moreover, let ¢ = w — v, so that w = v + p. Using these notations and the boundedness of

1 4
6 5\ 35 .
<E |uw|6> (E |Uiw| 4) as shown above, we can further write

1 4
— > 2(27 1) fmrexp {—az (w— )55 (Blual®) " (Blusli)’

IN
[N]
/N
[\]
oo
+
—_
N—
B
[
D
»
e}
—~=
|
S
[\
—~~
S
|
<
~—
-
w
o

IA
519
|M'

D

ks

I
|
N

v<w

1
<f0r some constant C* such that 2 (2% + 1) C%afo <C*< oo>

A
=19
g

s}

g
[©]
=

o

|

N

o0
_ o _22
= ¢ ZleXp{ 309}
= O(1) (given Lemma C-1) (78)

It follows from expressions (76), (77), and (78) that

1 T 1 T=h | T
— E |ujyu; = — Eu?] + = E uj u;p
7 2 VBl = 3 B+ 3 1 gl
v<w v<w
= 0(1)+0()
= 0(1).
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To show part (b), first write

T—h T—h T—h

1 1 1
T Z |E uztuzsuzg)| = ? Z E |Uit|3 + T Z |E (Uituisuig)|

1,8,9=p h t=p h t,8,9=p

t<s<g t1<s<g

s—t>g—s,s—t>0
1 T—h
+?h Z |E (uiruistig)| (79)
t,s,9=p

t<s<g
g—s>s—t, g—s>0
For the first term on the right-hand side of expression (79) above, note that, trivially, we can apply
Assumption 3-3(b) to obtain

1 T—h
3
- . < — .
T tE_p E |u| C=0(1) (80)

Next, note that, for the second term on the right-hand side of expression (79) above, we can

apply Lemma C-3 with p = 6 and r = 5/4 to obtain

T—h

1
E Z |E (wiristig)|

t,8,9=p
1<s<g
s—t>g—s,5—1>0

T—h 1 4

1 4 G 5\ §

<= Y 2(21—%+1> a1 exp {—az (s — £)}]* 8 3<E]ult\ )6(E\uisuig]1>5
h t,5,9=p

t1<s<g
s—t>g—s,5—t>0

@

Next, applying Holder’s inequality, we have

1 N 1 ! sy L\ 5
() (ern) = (mat)? ((e10af)? (2t
3 5\ 2 5\ %
- (E|Uzt|> (Bluisl?)" (2 usgl?)
1 1
< (Blal)” (Blual)® (Blul)?

(by Liapunov’s inequality)
= (2 < (by Assumption 3-3(b))

Moreover, let p; = s—t and g = g— s, so that s =t+p; and g = s+ 95 =t + 0;+ 0. Using these
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SIS

1
3 5
notations and the boundedness of (E |uit|6) ¢ (E ]uisuigﬁ) as shown above, we can further write

IN

IN

IN

IN

IN

T—h

1
o E | E (wittisig)|
h t,s,9=p
t<s<g
s—t>g—s,5—t>0

T—h 1
1 =
— E 2 <217% + 1) [ag exp {—ag (s — t)}]'~ 5 (E |wi] )6 (E ]uisuigﬁ)
T t,s,9=p

t<s<g
s—t>g—s,5—1>0

C’% T=h 5 1
— E 2 (26 +1> [a1 exp {—a2 (s —t)}]30
T,
t,5,9=p
t<s<g
s—t>g—s,5—t>0

C* T—h as
T_h Z exp {—%m}
t,s,9=p

1<s<g
s—t>g—s,5—1>0

4
5

1
(for some constant C* such that 2 (2% + 1) C%afo <C*< oo)

T—h oo 011

ThZZZeXp{ }

t=p ;=1 =0
« I'—h oo

Z > o eXp{ 3091}

t=p 0,=1

c Z QleXp{ 0}}
0,=1
O (1) (given Lemma C-1) (81)

Similarly, for the third term on the right-hand side of expression (79), we can apply Lemma
C-3 with p = 6 and r = 5/4, we have

1 T—h
?h Z |E (wiristig)|

t,8,9=p
t<s<g
g—s>s—t, g—s>0

T—h

1 1 4_1
- 3 2(21 s+1) a1 exp {—az (g — 5)}] 576 (Eyunuwy )
1y,
t,s,9=p
t<s<g
g—s>s—t, g—s>0

Ot
N[

(E fusgl°)
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Next, applying Holder’s inequality, we have

4 1 1 1 4 1
(E‘uituis‘%>5 <E\uig]6>6 < < E‘Uzt’%>2 (E ’uis’%>2>5 <E‘Uig’6>6
5 % 5 % 6 %
(EW) (B luisl?)" (2 iyl
1 1
(i) () (et

(by Liapunov’s inequality)
= (%<0 (by Assumption 3-3(b))

Moreover, let p; = s—t and g = g— s, so that s =t+p; and g = s+ 9y =t + 07+ 0. Using these
1

4
N 1
notations and the boundedness of <E |uitu¢s|1> > (E |uig|6> ° as shown above, we can further write

1 T—h
ﬁ Z |E (uittistig)|

t,8,9=p
1<s<g
g—s>s—t, g—s>0

T—h

4 1
E 2 <217% + 1) [a1exp{—ag (g —s)}]' 757F (E |uiruis|4 )
t,8,9=p
1<s<g
g—s>s—t, g—s>0

C T—h 5 N
T Z 2 <26 +1> [a1 exp {—a2 (g — 5)}]30
t7s7g:p
t<s<g
g—s>s—t, g—s>0

T—h

C*

= 2 en{-ge
t,s,g=p
t<s<g

g—s>s—t, g—s>0

N
S

(S

N[

(E !uz‘g|6>

Nl

IN

IN

1
<for some constant C* such that 2 (2% + 1) C%af’o <C* < oo)

« I'—h oo

Z > Z exp{——&}
t=p 0,=10,=0
T—h oo

- EFS e 30}

t=p g,=1

i 02 €Xp {——QQ} + i eXP{—%QQ}
1

02= 02=

= O(1) (given Lemma C-1) (82)

IN

*

= C
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It follows from expressions (?7), (??), (??), and (?7?) that

| T=h | T=h 1 T—h
— E |E (ituistig)| = —§ Euyl® + = E |E (wittistig)|
Ty Ty Ty
t,s,9=p t=p t,s,9=p
t<s<g t1<s<g
s—t>g—s,s—t>0
1 T—h
+? E |E (uituistig)|
h
t,s,9=p

t<s<g
g—s>s—t, g—s>0

— 0()+0(1)+0(1)
- 0().

Finally, to show part (c), we first write

IN

1 T—h
72 > B (wiruistiiguay)|
h ¢ D

»$,9,V=

t<s<g<v
T—h T—h T—h
1 3 1 1
72 > B [wid] | + 72 > B (wittistisguan)| + 75 > |E (uizwisuigtiv) |
h ts=p h t,8,9,0=p h t,s,9,v=p
t<s t<s<g<w t<s<g<w
v—g>g—s, v—g>0 v—g<g—s, g—s>0
| T=h 1 T—h
F Z ’E [Uitugs] ’ + ﬁ Z |E [{uituis —F (uituis) + E (uituis)} uiguivﬂ
h t,s=p h t,5,9,u=p
t<s t<s<g<v
v—g>g—s, v—g>0
1 T—h
t0s > |E [{uituis — B (wirtis) + E (uittiis) } tigiv|
h £,5,9,0=p
t<s<g<wv
v—g<g—s, g—s>0
| T=h 1 T—h
= > | [wnid] |+ = > | B {uiruis — E (uipwis) } vigtiio] |
h t,s=p h t,s,9,u=p
t<s t<s<g<wv
v—g>g—s, v—g>0
1 T—h 1 T—h
+7 > B [{uiruis = B (uiruis) b uiguan]| + =5 > B (uipis)| | E (uiguin)]  (83)
h t,5,9,0=p h t,s,g,0=p
t<s<g<wv t<s<g<v
v—g<g—s, g—s>0 v—s5>0

For the first term on the right-hand side of expression (83) above, note that, by Jensen’s inequality,
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the Cauchy-Schwarz inequality, and Assumption 3-3(b); we have

1 T—h

h t,s=p t,s=p
t<s t<s

1 T—h
= 3 VB i\ B i
t,s=p

\/ E |uis|®

t<s
(by Liapunov’s inequality)

T—h
2
C3T}

1 6
7z > (Bluil’)
<

= 0(1) (84)

IN

IN
o

ol

IN

t<s

(by Assumption 3-3(b))

Next, for the second term on the right-hand side of expression (83), we can apply Lemma C-3

with p = 4/3 and r = 6 to obtain

T—h
1
= D B s — B (uivnis)} uigui|
h t,5,9,0=p
t<s<g<w
v—g>g—s, v—g>0
1 =h 3 3_1
< T2 Z {2 (21_Z + 1> [ay exp {—ag (v —g)}]' 7176
h t7 39, V=
13g<y

v—g>g—s, v—g>0

LY

4
X (E H{uiruis — E (uiruis) } u¢g|3>

<E|uw|6>%}
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Next, by repeated application of Holder’s inequality,

][V}

z
12179

. ]
E {uituis — E (uipis) F uigl? < | E (uipuis — E (uirtsis)) ™ ] [E |Uig|6}

- s 1 PN 2
< |27 (E [wittis| ™ 4 | B [witis]| 7 )} ? [E |uig|6] ?
(by Loéve’s ¢, inequality)
[ .5 12 12 g 2
< |27 (E |witis| T + E |uipwis| 7 )] ’ [E ’uig‘ﬂ ’

(by Jensen’s inequality)

ol

12 12 T
— (2% Euguss| 7}9 [E yuig|6}

M 1 1 2
< 23 <E\uit]2_;l>2(E]uiS]2_#>2 [E\uigyﬂg

4 3 g
< o (E\ulty)G(EruisyG)] |5 i ]
< 93 (C)% (C’)% (C)% (by Assumption 3-3(b) )
— 2303

Moreover, let oy = g —s and g9 = v — g so that g = s+ p; and v = g+ 09 = s+ 0; + 0o.

4
Using these notations and the boundedness of E [{u;tuis — E (ujuis)} uig|® as shown above, we can

157



further write

T—h
1
= D B i — B (uiis) } uiguin)]
h tsgu=p
t<s<g<w
v—g>g—s, v—g>0
1 T=h 3 3 1
<= Y ) menla@-gy i
h t,5,97”:p
t<s<g<v
v—g>g—s, v—g>0
4\ 3
(E |{uztuzs E (uztuzs)} uig|3> (E |uw| )
1 = 1 1 4 2 3 1
= —_ =3 = 4 =
<oy 2241 mep{—a -9 (2i05) (O
h t,5,9,0=p
t<s<g<v
v—g>g—s, v—g>0
T—h
C* (Z2
< T_;f Z exp {—592}
t,s,9,v=p
t<s<g<w
v—g>g—s, v—g>0
1
<for some constant C* such that 4 <24 + 1) C% ai? <C* < oo>
« T—hT—h oo 02—1
< CY S S en{-t)

t=p $=P 05=10,=0

= C" Z %) eXP{——Qz}

p2=1
= O(1) (given Lemma C-1) (85)

Similarly, for the third term on the right-hand side of expression (83) above, we can apply
Lemma C-3 with p =2 and r = 3 to obtain

T—h
1
T2 Z |E {uituis — E (uittis) } wigtiy]|
h t,5,9,0=p
t<s<g<u
v—g<g—s, g—5>0
1 T=h 1 1 1
<= > {2 men (a9
h tysygyv:p
t<s<g<wv

v—g<g—s, g—s>0

o=
Wl

X (E Huguis — E (Uituis)}’2)

}

<E |uz~guw|3>
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Next, applications of Holder’s inequality yield

Bl < (2hl’)? (Bt
(0)% (C)*

C<x

IN

(by Assumption 3-3(b))

and

E [{uiuis — E (uiuis) }]?

IN

2 (E |uituis|2 +|E [uituis]lz) (by Loéve’s ¢, inequality)

IN

2 (E ]uituisF + F ‘uituisF) (by Jensen’s inequality)

4F |uituis|2

1 12
4[<E|uit|4> E|uis|4)]

IN

1792
‘ 6) 6] (by Liapunov’s inequality)

VAN
N
A~
=
&
o
~
[
~——— —~
t
B
»

< 4 <SUPE |t |

t
< 4 (C)% < oo (by Assumption 3-3(b) )

Moreover, let 9 = g — s and g = v — g so that g = s+ ¢; and v = g+ 09y = s+ 07 + 05. Using

these notations and the boundedness of E |ul~guw|3 and F [{uju;s — E (uituis)}|2 as shown above,
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we can further write

T—h

1
= >, B
T,
h £,5,9,0=p
t<s<g<v
v—g<g—s, g—s>0

T—h

1
DY
Th t757g7v:p

t<s<g<v
v—g<g—s, g—s>0

{uituis —

IN
|

% (E Huituis — F (Uztuzs)}|2>% (

T—h

1
DY
T t,5,9,0=p

1<s<g<v
v—g<g—s, g—s>0

o T—h
= 2.
Th t757g7U:p

t<s<g<v
v—g<g-—s, g—s>0

IN
|

IN

ag
oo {20}

<for some constant C* such that 4 (22 + 1> C%

x+ I'—hT—h oo

T2 2 Z e {-Fof

t=p S=P p;=1 py=

IN

= ") (o + 1)exp{—%@1}
p1=1

= O(1) (given Lemma C-1)

E (uirwis) } igiy]|

>—‘m|>~

{2 (21—% + 1) (a1 exp {—asz (g — 5)}]1,%,%

2 (2% + 1) a1 exp {—az (g — )} (4c%>% (©)3

(86)

Finally, consider the fourth term on the right-hand side of expression (83) above. For this term,

we apply the result given in part (a) to obtain

T—h
1
T2 Z ’E(uztuzs)’ |E(uzguw)| < Z |E uztuzs
h — _
g tt8<sp
v—s>0
_ 00).
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It follows from expressions (83)-(87) that

2 Z uztuisuiguiv)|

h
t<s<g<v
| T=h T—h
= T2 Z }E u”uw” + T2 Z |E [{uituis — E (uituiS)}uiguiv”
h t,s=p t,5,9,0=p
t<s t<s<g<v
v—g>g—s, v—g>0
1 T—h 1 T—h
+ﬁ > | [uitwis — B (wiris) } wiguin]| + 75 D 1B (wiwis)| |E (wiguin)|
t,8,9,0=p h t,s,9,0=p
t<s<g<wv t<s<g<w
v—g<g—s, g—s>0 v—5>0
= 0(1).0O

Lemma D-6: Let 1), = T'— h — p + 1 where h is a (fixed) non-negative integer and p is a
(fixed) positive integer. Suppose that Assumptions 3-1, 3-2(a)-(b), 3-5, and 3-7 hold. Then, as
Nl7 N27 T — 00,

1 Vi u;. N3
- -0, | ==
S N sz; <mTh P\ T

Proof of Lemma D-6:

To proceed, we first show the boundedness of the quantity

3 ke (o)

kGHC ZEH

Note first that there exist a constant Cy; > 1 such that

Ly (ZF)

keH¢ ZGH

DI Z {IE [wiuistuiguiotivtii]|
N1N2 h keHcieH t,s,9,4,0,w=p

B [(Er) (L) (ViEg) (iEe) (L) (iEw)] [}

Next, note that, by repeated application of Hélder’s inequality, we have by Assumption 3-5 and
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Lemma C-4 that there exists a positive constant C such that

|E [(ViEr) (Es) (VeEy) (VieEe) (Vo) (VeEow)]|
E [|Ee| [VEs| VoL | [VeEe| [ViEs| [VeEw]]
el  [I1El WElly £ 1 Eelly 1E, 12l

Il (BRI NEE 2, ) (B IR IE 1))
el ({2 i)} (2 [z e 1)) )
<({E [z} (2l iz])° )

el ({2 [ue] b {2 28]} {2 [, ”H)é
<({eleag]y (= lizag]} {2 iz ) )

ls {E (120} {2 [IE, ||S}}6 {EIE ]}
{e fueag]y {2 ]} {e ey

Il sup 2 L2415
C<x

INIA

IA

IN

IN VAN

IN A
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Hence, we can write

Nl Z Z Z’YkFtUzt

keH¢ ZGH

ciC
< NN, T3 Z E : E | B [t Uis WigUipUiv Ui |
LN T h keHeicH t,s,9,4,v,w=p
tSSSySZSUSw
C.C —
_ 4
< N:N-T3 Z Z Z |E [uituisuig”
VN2 e ieH ts,g=p
t<s<g
T—h
CiC
N Ny N-T3 Z Z E : |E[uituisuiguiéuivuiw”
1V21 h keHeicH t,5,9,0,v,w=p
t<s<g<l<v<w
w—v>max{v—~,L—g},w—v>0
T—h
ciC
TN NS Z Z E : | B [titUistigioWin Ui |
VY250 eHeicH t,s,9,0,v,w=p
1<s<g<t<v<w
v—{>max{w—v,f—g},v—£>0
T—h
c.C
TN NS Z Z E | B (w1 UisUigUip Ui Ui )|
172 h keHcicH t,8,9,4,v,w=p
t<s<g<l<v<w
ng>max{w v,v—L} L—g>0
<

cC
N 2 S 1 ]|

T, keH< icH t,s,g=p

t<s<g
C.C T—h
e N
N NoT Z Z § : | B [ tistigUiptin Ui |
14¥2 h keHci€cH t,8,9,0,v,Ww=p
1<s<g<t<v<w
w—v>max{v—{,l—g},w—v>0
T—h
cC
TN NS > > |E [{uiuisuiguir — B (wirlisigtie) } Wintiw) |
VY250 keneien t,s,9,4,v,w=p
t<s<g<t<v<w
v—>max{w—v,l—g},v—€>0
T—h
c,C
TNNGTE > > |E (witwistiiguie)| | E (wivtiw)|
V250 keHe icH t,8,9,4,v,w=p
t<s<g<f<v<w

v—>max{w—v,l—g},v—€>0
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T—h

32222 Z: |E {uiuiswig — B (wigistig) } UirtivWin|
N1N2Th keHe i t,5,9,0,0,w=p
1<s<g<t<v<w
{—g>max{w—v,v—L} €—g>0
T—h
c.C
N Ny N-T3 Z E Z |E (uitUistig)| | E (wietivttiw)|
1EY25h keHeicH t,8,9,0,0,w=p
t<s<g<t<v<w

{—g>max{w—v,v—L},—g>0
= TT1+TT2+TT3+TT4s+TT5+7TTs, (say).

Consider first 77 1. Note that

Cc.C
£ U< L D) D S LIt

keHci€H t,s,g=p
t<s<g

CiC
ToNeTS 2 S {fuend ]

keHci€cH t,s,g=p
t<s<g

Nlcji[f T3 Z Z Z < |:|Uztuzs|3}>% <E |:’uig|6i|>% (by Holder’s inequality)

keHc i€H t,s,g=p
t<s<g

o 5 S () e {ml)) (o)

keHci€cH t,s,g=p
1<s<g

IN

IN

IN

(by further application of Holder’s inequality)

- Y S S () (5 {r))

keHci€H t,s,g=p
t<s<g

[

(5 ]’

PSS Y (swr{ur})

keHc i€H t,s,g=p
t<s<g

IN

(using Liapunov’s inequality)

ciC —8 .
3 g g E C7 (by Assumption 3-3(b))
NNT) keHe icH bs,9=p
<s<g

IN

§ Ny NoT3
C,CC7T—=*h
Y NINGTR

= 01(16g =0(1) (88)

IN
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Next, consider 77 5. For this term, note first that by Assumption 3-3(c), {uit},o . is f-mixing

with S mixing coefficient satisfying
B; (m) < ay exp{—aam}

for every . Since aj,, < B;(m), it follows that {u;},o . is a-mixing as well, with o mixing
coefficient satisfying

aim < ayexp{—aaym} for every i.

Hence, in this case, we can apply Lemma C-3 with p =5/4 and r = 6 to obtain

1T
CC T—h
1
N N1 No T Z Z Z |E [t Wis WigUipWin Winy ||
h keheicH t,5,9,0,0,W=p
t<s<g<t<v<w
w—v>max{v—~{,f—g},w—v>0
T—h
ClC 4 4 1
1-4 141
N NoT? 5 - — 5 6
Ny NoT3 Z Z Z {2 <2 + 1) [a1 exp {—az (w — v)}]
h keHeicH t,8,9,6,0,W=p
t<s<g<tl<v<w
w—v>max{v—{,l—g}w—v>0
5\ 5 1
2\ 5 6\ 6
X (E ’Uz’tuisuiguiguwM) (E\in\ ) }
T—h
CcCiC L N
N 5 - —_ 30
Ny NoT3 Z Z Z {2 <2 + 1) [a1 exp {—az (w — v)}]
h keheicH t,5,9,6,0,W=p
t<s<g<tl<v<w

w—v>max{v—{,{—g},w—v>0

il
S

(e1l)

5
X (E | Wi Uis UigUipUip| 2 )

|
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Next, by repeated application of Holder’s inequality, we have

5
E ’Uituisuiguiéuiv E

([N

IN

25
E |Uztuzsuzg| 12:| [E |uz€Uw| 8 }

I 150 z 5
(E]uztuzslﬂ) <E|uzg]>

IN

IN
/Q
s
£
L

= 5B
s
<
&
0.7
8
v
VS |_|
&
&
Q
o
—
J8

(oS om0 e
_ [(Eruztw)%(Eruzsr“)”“} [(Eru,jw)%] [(E‘uw‘z)ﬂ [(E,um,;;)%r
< [l o) (o) (o)) )]

(by Liapunov’s inequality)
< ©F @)% ©F©F )

Bl

(by Assumption 3-3(b))

By Liapunov’s inequality and Assumption 3-3(b), we also obtain

L _1
<E\uiw\6>6 < (E\uiwﬁ) <7,

Moreover, let py =4 — g, pp =v — ¥, and p3 = w — v, so that £ = g+ py, v =40+ py = g+ p;+ pa,

5
w = v+ pg = g+ p;+ py + ps.. Using these notations and the boundedness of E |wj1tistigtistiy|?
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as shown above, we can further write

TTo
T—h
ciC 1
7 DIPD > {228 +1) fmnexp {02 (w - )}
1442 h keHcicH t,s,9,0,v,w=p
t<s<g<l<v<w
w—v>max{v—~{L—g},w—v>0
N 1
X (E | Ui iU g Uio Wiy | 4> ’ <E |in|6> ’ }
T—h 4
cC A (=2\5 =1
< w2 o > 2 (2% +1) [ar exp {—az (w — 0)}) (CF )" T7
1 2 h keHcieH t,s,9,0,v,w=p
t<s<g<t<v<w
w—v>max{v—~{L—g},w—v>0
10T = s 1
< m Z Z Z 2 (23 + 1) [a1 exp {—ag (w — v)}]30
14¥2 h keHeicH t,8,9,4,0,w=p
t<s<g<t<v<w
w—v>max{v—~,L—g},w—v>0
T—h a
< Y Y -2
— N N-T3
NlN?Th keHcieH t,8,9,0,0,w=p 30
t<s<g<l<v<w
w—v>max{v—{,{—g},w—v>0
1
(for some constant C7 such that 2 (25 + 1) C’lCC7 0 <CF < oo)
T—hT—hT—h oo p3 P3
< N1N2T3 )IDIDIDIDIDIDIPMETEE1Y
h keHcicH t=p s=p g=p p3=1p;=0 py=0
T—-hT—hT—h oo
< NNTs )IDIDIDIDID MRS
14¥2 h keHcicH t=p s=p 9=p py=1
o NN | = ay
= O] NN T? Z P3\ eXP{ 0/’3} + 2;: P3\ eXP{ 30P3} + pz_:l exp {—%Pg}
3=1 3=
< G, (89)

for some positive constant

Cr > i p3\ exp {—;—épg} +2 i p3\ XD {—;—épg} + i exp {—g—éps} :
p3=1 ps=1 ps=1

which exists in light of Lemma C-1.
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Now, consider 77 3. Here, we apply Lemma C-3 with p = 3/2 and r = 7/2 to obtain

T—h

_GC
TTs = w73 DI > |E {uituistuiguic — E (wigtisuigtie) } wivtiv]|
14¥2 thHCzGH t,8,9,0,0,w=p
t<s<g<f<v<w
v—{>max{w—v,f—g},v—€>0
o] — 2 2 2
A EPIPD > 2275 1) e (a0 - )
142 h keHcicH t,s,9,0,v,w=p
t<s<g<l<v<w
v—C>max{w—v,l—g},v—£>0
3\ 3 7\ 2
X (E Hustwiswiguie — E (uitistiguie) } 2) ’ (E |uwum|2> 7}
T—h
cC L
R >0 S S C1CL P8\ [T
1 2 h keHc¢icH t,s,9,0,v,w=p
t<s<g<t<v<w

v—>max{w—v,l—g},v—£>0

Wl
~o

3 T
X (E Huiruisuiguie — E (uituisuiguié)Hz) (E |uivuiw|2)

|

Next, observe that by applying of Holder’s inequality, we have

(2l ) (Bl )

(6)% (6)% (by Assumption 3-3(b))

IN

7
E ’uivuiw‘ 2

IA

C < oo,
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and

3 1 3 3
E H{uituisuiguie — E (upuisuiguig) }2 < 22 (E |uirtiswiguie|2 + | E [uituisuz‘guié]|2>
(by Loéve’s ¢, inequality)

1 3 3
2 <E Uit Uistigtio]? + B |wipthistigtg| 2)

IN
~ N

by Jensen’s inequality)

IA
[\]
wleo

3
E |uiruwiswiguip]?

1 1
2 (E \uituis\3> 2 (E \uiguidg’) 2

<<E|Uit|6>% (E IUisyﬁ)%>% <<E|ui9’6>% (E|Uz'z|6>%>%

- ; ; ; ok
(B ual®) (1l (Eluol®)” (Ell’)’]
A : :
(B lual’) (Elud")" (Eluol”)” (Eluel”)]

(by Liapunov’s inequality)

IA IN
[\]
Wl ol

I
[\]
wleo

==

IA
[\]
wleo

(VAN
[\
wlw
~loy /\I
0
+ S
T
=
S
SN
=
N————
IS
IN]

Again, let py =0 —g, pp =v—¥, and p3 = w — v, so that £ = g+ p;, v =0+ py = g+ p1+ po,
w = v+ p3 =g+ p+ py + p3. Using these notations and the boundedness of E |uwuiw|% and
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3 .
E H{uituisuiguie — E (uipuisuiguie) 2 as shown above, we can further write

TT3
T—h
C.C
= % ]if Z Z |E [{uiuiswiguir — E (Uittistigie) } tinvUiw) |
1 2 thHCZEH t,s,9,0,v,w=p
t<s<g<t<v<w
v—>max{w—v,l—g},v—£>0
ClC =h 1 1
< NNgE o O > {2(28+1) e exp{—a2 (v — O}
1442 thchEH t,s,9,0,v,w=p
t<s<g<t<v<w
v—>max{w—v,l—g},v—£>0
3\ 3 7\ 2
X (E Huiwisuiguir — E (wigtistiguie) } 2> ° <E |Win Wiy | 2) ! }
T—h 2
C.C 1 —6\3 —. 2
S NN 2 2 > 2 (24 +1) [ exp {—az (v — O})7 (23T7)” (@)
LN T thHc 1€H t,s,9,0,v,w=p
t<s<g<t<v<w
v—>max{w—v,l—g},v—£>0
T—h “
< > 2 > exp {570}
= N NT3
NlN?Th keHcicH t,s,9,0,v,w=p 21
tSSSySKSUSw
v—L>max{w—v,l—g},v—€>0
(for some constant C5 such that 4 (23 + 1) 01007a <(5 < oo)
T—hT—hT—h oo 02 02
< N1N2T3 )IDIDIDIDIDIDIP IR VY
h keHeicH t=p s=P 9=p gy=1 p;=0 g3=0
- D exp{~Fie}
CNNTS 3 Z 0+ 1) exp {570
a o0
az
- G| Y goo{-ga}t+2 Y aoo{-gab+ 3 oo {-e)
92_1 92—1 92:1
< €30, (90)
for some positive constant
o0
Co> ZQQGXP{ }+22926Xp{ Q}+ZGXP{ 2192}
0o=1 02=1 02=1

which exists in light of Lemma C-1.

Turning our attention to the term 774, note that, from the upper bounds given in the proofs
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of parts (a) and (c) of Lemma D-5, it is clear that there exists a positive constant C** such that,

for all ¢ and for all T sufficiently large,

1 T—h
|E (wipuiy)| < CFF
T2,
vgw
and
1 _
_2 Z uztuisuiguif)| < Cf*
h t,s,
t§8§g§€
from which it follows that
O T—h
1
TT4 = m Z Z Z |E(Uituisuigui€)| |E(uwuzw)|
15¥25p keHecicH t,s,9,0,v,Ww=p
t<s<g<t<v<w

v—{>max{w—v,f—g},v—€>0

T—h

< 13;1]62 Z Z Z |E (wirwiswiguie)| T_hvz |E (wiptiin)|

keHecicH h t,s,9,=p

t<s<g</t v<w
ClC 2
< >y
NNy e iem
_ *%\ 2 N1No
= ooy IR
= GiC(CF)
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Consider now 77 5. In this case, we apply Lemma C-3 with p = 2 and » = 9/4 to obtain

T—h
_GC
TTs = Ny N-T3 Z Z Z |E {uiuiswig — E (witistig) } UieUivUiw)|
1542 h keHeicH t,8,9,0,0,w=p
t<s<g<U<v<w
{—g>max{w—v,v—L},—g>0
01C « : L
< NI 2 2 > {2(27F+1) e {—ar (1)}
VY228 keneien t,s,9,0,0,w=p
t<s<g<t<v<w

L—g>max{w—v,v—{}L—g>0

X <E Huiwisuig — E (Uituisuig)}|2)

NI
ol

9
(E |uiéuivuiw| 4 )

|

Cc.C ) N
= N1N2T}? kgc Z ts,g;w {2 <22 + 1) [a1 exp{—az2 ({ — g)}]T8

L—g>max{w—v,v—L}L—g>0

[V
Ol

9
X (E Huswisuig — E (Uituisuig)}|2> (E |Ui£Uivin|4>

|

Next, by repeated application of Holder’s inequality, we obtain

9
E |uiﬁuivuiw | 4

< Bl [Bluuiel ]
r 7] % 126\ 3 1o\ 3]
< Bl | (B il ) (5| )
- Y 1 19
= Bl [T (Blual ™)™ (Bluwl ™)™
[ 7_2_98 126 % 126\ 736 | 4
= Bl | | (Bl ) (E il )
] .y 1 111
< | B * [<E|uw| )7 (E|uzw| ) } (by Liapunov’s inequality)

AN
—
n
=1

e}

&
£
3

~_
]
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and

E H{uiuisuig — E (Uituisuig)}‘z <

IN

IN

IN

IN

IN

<

<

2 (E |uituisuig|2 +|E [uituisui9]|2>
(by Loéve’s ¢, inequality)

2 <E |uituisuig|2 +FE |Uituisuig|2>
(by Jensen’s inequality)

4F ]uituisuigF

4<E|uitl> <E|uzsuzg|>
% 5
4 (BJual) (E|u¢s|6¢E|uig|6>
1
T

172
4 E |u7,t’ |: E "th’ (E |uig’6) 6:|

) (EW,) ] {(E’“U <E|uigy7)%]2

(by Liapunov’s inequality)

6
(o)
é
7

4C7 (by Assumption 3-3(b))

Define again p; = ¢ — g, py =v —{, and p3 = w — v, so that £ = g+ py, v =0+ py = g+ p;+ po,

w = v+ p3 =g+ p;+ py + p3. Using these notations and the boundedness of £ ]uiguwuml% and

173



E {uituisuig — E (uituisuig)}P as shown above, we can further write

IN

IN

VAN

IN

IN

IN

TTs
T—h
c.C 1
wn oY 2 {2 ) cae-gn
14¥2 h keHeic t,s,9,0,v,w=p
t<s<g<t<v<w
L—g>max{w—v,v—L}L—g>0
2 % 9 %
X (E Huitwiswig — B (wirtistig) }| ) (E |ui£Uivuiw|4>
T—h 4
C,C 1/ —6\T /—2T\%
—N ]\1] T3 Z Z Z 2 (2% + 1> [al exp{_a2 (ﬁ _ g)}] 118 (407) 2 (Czs) 9
1EV2+5p keHci€H t,s,9,0,v,w=p
t<s<g<t<v<w
L—g>max{w—v,v—L}L—g>0
T—h
s Y Y > exp {501}
1542 thHCzeH t,s,9,0,v,w=p
t<s<g<t<v<w

L—g>max{w—v,v—L}L—g>0
_6 1
<f0r some constant C3 such that 4 (2% + 1) CiCC7ai® <C3 < oo)

T—hT—hT—h oo 01 01

Y Yy YT Y Y -2

h keHeicH t=p $=P 9=P g;=1 0,=0 93=0

CsNIN, T}
G X e on {2

Zglexp{ }—i-QZglexp{ }—i—ilexp{ }

01=1 01=1 01=

CiCsy (92)

for some positive constant

— (0.] ) o0
03ZglgleXp{—l—Sgl}Jr?;laleXp{ 15 }+g§_:le><p{ 18@1}
1— 1— 1—

which exists in light of Lemma C-1.

Finally, consider 77¢. Note that, from the upper bounds given in the proofs of part (b) of

Lemma D-5, it is clear that there exists a positive constant C3* such that, for all 7 and for all T’
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sufficiently large,

1 T—h
T Z |E (uipuisuig)| < C5F
t,s,g=p
t<s<g
and
1 T—h .
T_ Z ’E(uzluwuzw)’ S 02
Lv,w=p
(<v<w
from which it follows that
C.C T—h
1
TTe = m Z Z Z |E(uztuzsulg)| |E (uiéuivuiw”
1EV25p keHc¢icH t,s,9,0,v,w=p
t<s<g<t<v<w
{—g>max{w—v,v—L},—g>0
T—h
C.C 1
< Z Z Z ‘E Uit Us s Uig ’ e Z |E (uiéuivuiw)‘
NN T, keHcicH ts7y—p Th £,v,w=p
t<s<g L<v<w
c,C
< C**
N N
*x\ 2 1 2
= aoE) NN T,
_ Goer)” (L
T T)"

It follows from expressions (88)-(93) that, for all N1, No, and T sufficiently large,

o3 b (S

kEHc ZGH
TT1+T7T5+ TT3 +TT4+TT5+7T7Tg

IN

CiC (C5)?

_Q = = —
C1CCT + CfC1 + C35Cy 4+ CLC (CF)? + CiC3 + T
h

C

IN

IN

for some positive constant C such that

C1C (C5")?
T,

~lo

C > C1CC7 + CC + CiCa + C1C (CF)? + C3C5 +
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Wl

Hence, for any € > 0, set C, = (5’/6) , and note that

N1 T, 1 1 Fu
Pr L max — Z (%ﬂ_uz> > Ce

NQg icH N; heTle \/NlTh
2
1
= Pr< max— Z Z%Ftuzt > Ce

icH -
! L ycHe N2 VIh t=p

1
= Pr{max [— Z Z'kutu” >3
et N N2 VT t=p

6
1
< Pr{ max A Z YiFuis | > C3 5 (by Jensen’s inequality)
e N ehe N2 VIh t=p
6
< Pr{— Z 3 kaFtun > C?
! keHeicH N VT t=p
_ 6
< % X (zﬂ)
C Nl kEHe i N2 t=p
6 ~
<

=C
C

= €

This shows that

1 vy F . N3 N3
max — — = =0 O
et Ny g}; <w/_N1Th NiT, P\ NT

Before stating the next lemma, we first introduce some more notations. Let SjT denote either
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d
the statistic Zz—l wy |Sier| or the statistic max<¢<q|S; 7|, and define

o = {z'e{1,....,N}:S;sz<1r1 (1—%)}, (94)
d = {z'e{1,....,N}:S;fT<<1>*1 (1—%)}, (95)
N o= # (f{\) i.e., the cardinality of the set H¢, (96)
" (HC>/ 1{1 te{:C +
NN I GO T B SRl S
. (H)' {N eﬁf} e
us. <H0>: 1{1 effiu’l_
v(@) - | " <Hc> N “l (97)
. (Hc>’ {N e H}ul,

/ .
where u;. = (Ui p, Uipi1, o, Wir—p) fori=1,...,N.

Lemma D-7: Let T, =T — h — p+ 1 where h is a (fixed) non-negative integer and p is a (fixed)
positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3(a)-(c), 3-4, 3-5, 3-7, 3-8, 3-10(a)
and 3-11 hold. Then, as Ni, No, T — o0, the following statements are true.

(a)
Yo i{ic B} =0, ()
i€H
(b) l
;{I{{z e ﬁ} ikeZHC (%%) -0, %
(c)

%51 0em s () -o ()

i€H¢ keH¢

Proof of Lemma D-7:
d
To show part (a), let S;rT denote either the statistic Zg_l @y |S; ¢ 7| or the statistic maxy<¢<q |S; 7|

Following arguments similar to that given in the proof of part (a) of Theorem 1 (see Chao, Qiu,
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and and Swanson (2023b)), we see that there exists a constant C' > 2d such that

;{E{H{ieHCH - ;Pr(ieﬂc)
Seefsi = (- %)
< Cp

IN

for all N1, Na, and T sufficiently large. Hence, for any € > 0, set C. = C'/¢, and note that

Pr {%;{I{ {z € I/-l-'\c} > C’e} < C'igo ;{E []I {2 € I/-I\CH (by Markov’s inequality )
€
Cyp

= €

Cep

which shows that

ZI[{Z’ eﬁfc} =0, ()

1€H
Next, to show part (b), we combine the result given in part (a) of this lemma with the result

of Lemma D-6 to obtain

1§ c 7 1 Vi F . 2
Z {Ze }EZ <\/]T1Th>

icH keHe
1 ' E i\ 2 _
< I}é%}f{ﬁlkz <z/kﬁ;€;> ZH{iGHC}] (by Holder’s inequality)
€H¢e 1€eH
1
NG
- 0|35 |0
N3
— 2 P
= O NT

Finally, to show part (c), note first that

1 o v Elu;. 2 1 v Elu;. 2
w2ifiem Y (U5r) <m 2 X (%57)

i€H¢ keH¢ i€HC keH¢
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Moreover, write

0 < 1 ’ku’uZ
< -
1 T—h 2
= N_ ( Z’%Etuu)
2
- w2 X k(S e

i€H¢ keH®
T—hT—h

= 7 SN E{viFausuiEy )

h jeHe keHe t=p s=p

T—h
- N2T2 Do D D B [EE (uf) Ei] vy,
17h jeHe keHe t=p
T—h—1T—h—t

Z Z Z Z Erp '7k:FE(ultuzt+m)Et+m7k]

h jeHe keHe t—p m=1

= Z Z Z%EF E z,t)Eﬂ Tk

h jeHe keHe t=p
T—h—1T—h—t

Z Z Z Z E (uigtitsm) Er [ViE Fh i)

h jeHe keHe t—p m=1

TR 2 D S (£ 02 ]

h jeHe keHe t=p
T—h—1T—h—t

N2 2 Z Z Z Z Uz,tui,t+m)’ "Y%EF [Etﬂ%—f—m} 'Yk‘

h jeHekecHe t=p m=1

IN

Note that by Assumption 3-3(c), {u},o . is f-mixing with S mixing coefficient satisfying

Bi(m) < ayexp{—agm}

for every . Since aj,, < B;(m), it follows that {u;},o . is a-mixing as well, with @ mixing
coefficient satisfying

aim < ayexp{—aaym} for every i.

Hence, applying Lemma C-3 with p = 3 and » = 3 as well as Assumptions 3-3(b) and 3-5 and
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Lemma C-4; we get

IN

IN

IN

IN

IN

IN

<

+ﬁz Z2<2§+1>2 Eh:

1 h Z’eHckeHc t:p m=1

Z > E (Tivﬁtui,tf

h jeHe keHe

ZZZMM}@MW

h jeHec keHe t=p
T—h—1T—h—t

Z Z Z Z | E (it pm)| [V EF [EeEfym] Vi|
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which exists in light of Lemma C-1. Hence, for any € > 0, set C. = C/¢, and note that

{ Silicm) Yy <3/§T>zo}

i€He keHe
'ku U;.
< Pele > > s
1 jcHe keHe
T—h 2
< >y (ZF)
— N2T2 k=t ™",
C N T h jeHe keHe® t=p
e C
< =T,—
= o',

= €

which shows that

c Vgﬂﬁlul 2— i = l
w5 tem 5 G -olm)-olr) o

Lemma D-8: Let 7, =T — h — p+ 1 where h is a (fixed) non-negative integer and p is a (fixed)
positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3(a)-(c), 3-4, 3-5, 3-7, 3-8, 3-10(a)

and 3-11* hold. Then, the following statements are true.

(a)

Proof of Lemma D-8:

181



To show part (a), note first that

w2 efiem) (50)] < w2 e

1€He

for some positive constant C' > sup, , £ [u?t} which exists in light of Assumption 3-3(b). Hence,
for any € > 0, set Ce = C/e, and note that

icHe¢
11 ulbu
< == Bl {Z € HC} ( vt ﬂ by Markov’s inequality
Ce My zeZH [ Ty ( )
€
< =C
C
= €

which shows that
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Next, to show part (b), note that

(by Holder’s inequality)
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for some positive constant Cy > sup; , ¥ [|u”|7} which exists in light of Assumption 3-3(b). Now,

d
let S;rT denote either the statistic Ze—l @y |Sier| or the statistic maxi</<q |S; ¢ 7|; and, following
arguments similar to that given in the proof of part (a) of Theorem 1 (see Chao, Liu, and Swanson

(2023Db)), we see that, for any ¢ € H, there exists a constant C2 > 2d such that

reliy 207 (1- )} <5

for all N1, No, and T sufficiently large, from which it follows that

(VAN
’_‘C)Iw
2| -
/N
)
=
—
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=7
vV
<
/N
—_
Sle
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N—

icH icH
< C?LZC% (ﬁ)%
= 71N 2\N
i€H
5
2 5 Nop7
= 0705 2905
1N7
2 5
N?(p?
< C
< 3 Ny

2 5
for all N1, Na, and T sufficiently large and for some positive constant C3 > C[ Cy . Hence, for any
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e > 0, set C. = C3/e, and note that

i€H
N 1 ulu;
< — E € He by Mark lit
= 32 $CNZEXI:{ [{z }<Th )} (by Markov’s inequality)
Ny € N?(p
= N2oE Cs N-
7 7 1

which shows that

!/

1 . wpug\ N%gﬂ B
EZH{ZGH}< T, )—Op<—N1 )-%(U-D

1€H

Lemma D-9: Let 7, =T — h — p+ 1 where h is a (fixed) non-negative integer and p is a (fixed)
positive integer. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3, 3-4, 3-5, 3-7, 3-8, 3-10(a) and 3-11*

hold. Then, the following statements are true.

Proof of Lemma D-9:
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To show part (a), note that
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N
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1 icHe keHe t=
From the non-negativity of 77, we get
EITL| = E[T]
1
P> Z B[
N e e Th =
1 g T—h-1T—h—t
_2 Z Z 2 Z Z E uZ UL Wi t+m Uk, t+m]
NT ereme Tn = —1
Now,
1
T T BT k] < 3
L iere kere Th 1= 1 ckGHc
< |su E il
< (el ) .
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- Ty
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for some positive constant Cy > sup; ; F [u‘i{t} which exists in light of Assumption 3-3(b). Moreover,

T—h—1T—h—t
Z Z Z Z E [ g 10 p4m Uk, -]
'LGHC kEHE t=p m=1
o Toh-1T—h—i
= Z Z T2 Z B [(upur s — B [uigug ) (Wi tmUk trm — B [0 tmUk t4m)])]
1 jcHe keHe h t=p m=1

T—h—1T—h—t
PP

= Z E [u; gup t] E [ t4m Uk t4-m)
1 jeHe keHe h m=1
T

IN

1 2
e Z Z = | B [(wigun,e — B wigugd]) (WitrmUetrm — B [WigrmUk,tm))]|

1
Z Z N7 | (i 10t g] | | 10 ot g ]|
1

Consider the first term on the right-hand side above. Note that by Assumption 3-3(c), {wit}pe_ o

is B-mixing with 8 mixing coefficient satisfying
Bi(m) < ay exp{—agm}

for every . Since aj,, < B;(m), it follows that {u;},o . is a-mixing as well, with o mixing
coefficient satisfying

aim < ayexp{—aaym} for every i.
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Hence, we can apply Lemma C-3 with p = 2 and r = 3 to obtain

1 2
N2 Z Z T2 |E [(Uz‘,tuk,t - F [Uztukt]) (ui,t+muk,t+m - E [ui,t+muk,t+m])”
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1 2 1 1
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1 I 1 s
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= > eXp{ 6 } NPT?
icH°keHe t=p m=1 L

1 1 1 g

s 6 6 6

T—h-1 oo a 4af (\/5 +1) (E {uftD (E [ugtb <E [u?,t—&-m] E [ui,HmD
<y > exp {~gm} NPT
—1

Wl

IN

Ty
> a
(for some positive constant C' such that C > Z exp {—gg })
m=1
_ 1,
_ AC(V2+1)aiCh
< T
(by Assumption 3-3(b), there exists positive constant C' such that sup E |ui,t|6 <C< oo)
it
Co . — 12
< T setting Cy > 4C (\/§+ 1) ay C'3
h

o)
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Moreover,
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2 1
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b 4=p m=1 "'l jcHekeHe
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(supE [47,] 7 DI A|

t=p m=1 ~ 1 jcHeckcHe
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L icHe keHe

for some positive constant C5 such that

2<supE[uZ2’t]>sup< Z Z |E [wi pug ] ) < (O3 <0
it Ny

i€HC keH¢e

which exists in light of Assumptions 3-3(b) and 3-3(d). It follows from these results that
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E
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i icrerene Th 1= —p
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1 jeHc keHe
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for some positive constant C > Cy + Co + C3. Hence, for any € > 0, set C. = C/e, and applying

Markov’s inequality, we obtain

IN

AN

so that

Pr (min {Ny, T3} | 71| > C)

Pr (min {N1,T},}

Nil Zﬂ{ieﬁc} 3 ]I{k:eHc} (T—>2

1€He kEHC

%E{]\%Zﬂ{zeﬁ} ZH{’“GH}<—h> }

min {Ny,T),} =

€

T

i€H¢ kEHC

N
len {Nl,Th}

= ¥ Z]I{zEHC} S H{keﬂc} (w>2

i€cH¢ keHC

- om0 ) - e l5)

Next, to show part (b), we apply parts (a) and (b) of Lemma D-8 to obtain

Ty

IN

Nil EZ]I{Z GI?C} Zﬂ{k c ') (%)2
w5 Slempleem) ()

W >3 ]I{z’ c I/{\}I[{k c f{\} <“/TZ’> (“%Fz"f> (by CS inequality)

1 jeHe ken
1 —~ uh u;. 1 —~ u), U
L . - . Ug L o k. Wk
[NlieZHCH{ZGH}< i ) [leez;iﬂ{keH}<—Th )]
2 5
N?(p?
o0 ()

Part (c) can be shown in the same way as part (b) above. Hence, to avoid redundancy, we do

not give an explicit proof here.
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Finally, to show part (d), we apply part (b) of Lemma D-8 to obtain

7 - Nilzn{ieﬁz}]vizﬂ{keﬁ}(%)?

icH U ken "
1 _ —~ o\ 2
_ ]I{zéH}I[{kGH}(—k>
V22 z
X /
< o (e mhi{ee i) (%) (%) ov s meawiey
1€H keH
2
= E;{H{l cH } <T—h>
4 10
_— (%) — 0, (1). O
Lemma D-10: Let PN .
. <ﬁc> 7 (H) Z (H) .
N Tp

where Ty = T — p + 1, where H¢ and Nj are as defined, respectively, in expressions (94) and (96)

above, and where

A (f{\) - [ 21.11{1 € f{\} 22.11{2 € f{\} ZN.]I{N € f{\} } (99)
Tox N
with Zi. = (Zip, Zipt1, -, Zir) for i = 1,...,N. Suppose that Assumptions 3-1, 3-2(a)-(c), 3-3,
3-4, 3-5, 3-7, 3-8, 3-10, and 3-11* hold.

Under the assumed conditions,

=o0p (1) as N1, Na, T — o0,

S <A> _ FMFFF,
2

Y He¢
N

where

T
1
Mpr = 7 ; E[F,F].

Proof of Lemma D-10:

To proceed, note that we can write
—~ ! —~
7 (He) = Er (B°) +U (H°),
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so that

$ (ﬁ) _ FM]\};fF/
2(1) 2 () pagpr
- NiTp M
B <1 Nl_N1>1 Z<I/{\C) Z<H) I'MppIY
B i N1 N1To N
Mon) T (ﬁc> F'FT (ﬁ\), U(HC>/EF (H )’
v(a) v () U (F) U (F))| paper
+ NiTo + NiTo N
~ ~ —1
- (PR e (1 PR (o () [ BE - ] ()
/ o~
+Ni1 (F () Merr (1?)' - rMFFp/> U (H%TUO )
v(me) rr(me) 1 () ru (e
* ( )NlTo( ) + < )NlTo( >} (100)

where Mpp is as defined in (75), where I' (I/{\C) and U (@) are as defined in (97), and where
Z <I/'J\—C> is as defined in expression (99).
Consider first the term — [(Nl - N1> /Nl] (TMppI”/Ny). Note that, for some positive con-

191



stant C such that

|Mpr|l g
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<

<

1 T
7 2B EE]|,
t=p

(by the homogeneity of matrix norm and the triangle inequality)

1 T
T > E[EF}
t:p F

T
Ti Z E HEI‘/E;HF (by the Jensen’s inequality)
0

t=p
1 T
N E [\/ tr {EtE:fEtE;S}]
Ty
t=p
T
1 4
= Z ENJ N Eql
t=p

1 T
2
7 2 2 [IE3]
t=p
1

T
1 =
— E (E [HEtngg (by Liapunov’s inequality)
Ty &

Wl

C* (by Lemma C-4) (101)

oo

from which it follows that

IT'MppI”

- o {FMFFF’ FMFFF’}
. N M
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M M

_ rr y MppIl'I'Mpp
= max N, r N,

N
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1
C*C? < o for all Ny, N» sufficiently large,

IA
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since, by Assumption 3-6, there exists some positive constant C* such that Apax (I'T/N7) < C* <
oo for all Ny, Ny sufficiently large. Moreover, applying part (a) of Lemma D-15 and the Slutsky’s

theorem, we have

Ni — N B Ni— N
M M
so that by a further application of the Slutsky’s theorem, we can deduce that

Ny — Ny \ TMppI!
]/\\71 Nl

Consider now the other terms on the right-hand side of expression (100). To proceed, we first

1 p
P =0
(N1 —Nl) /N1 +1

Ny -V
Ny

0. (102)
F

_ Ni— N
Ny

TMppI!
Ny

F

note that, by applying part (a) of Lemma D-15 and the Slutsky’s theorem, we have

-1

~ —1 -~
N1 — Ny Ny — Ny P
it Bt B I U PR e 1.
( + N1 ) + Nl -
Next, note that
T (H°) Mgl (H°) DMl
N1 Nl
F
N N - 2
= 3 (t{ie B} u{k € B} yiMpry, — i Mrry)
i=1 k=1

o~ 2
- ( {z c H} I {k c H} A Mppy, — fy;Mka)
6 ckEHs

m

where H® = {k € {1,.., N} : v # 0}, where H¢ = {z €{l,, N}:S§fp 2071 (1- %)}, and

d
where ST denotes either the statistic wy |S;.e1| or the statistic maxj<y<q|S; ¢ 7|. Note that
Z,T £:1 "ty =t "y

— — 2 —
S <]I{z e Hc} i {k e Hc} Vi Mppy, — W;Mpmo = 0ifI {z e Hc} = 1 for every i € H°,
i€HC keH¢
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so that, for any € > 0,

P () Merl (F°) P
N TN | T
F

N

{z’ ¢ He for at least one i € HC}

= U {ier}

i€HC®
- Ufstrer (1-%))
- Ntz -0l

Hence, applying either part (a) or part (b) of Theorem 2 in Chao, Liu, and Swanson (2023a)

depending on whether S:T = Zezl @y |Sier| or SiT = maxi<¢<q |5 ¢ r|, we obtain

T (H°) MpsT (f?)' DM

P
r N, N, €
F
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< r(ﬂ SZ’T_Q) 1 5N
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Now, consider the term T’ (HC> [% — MFF} r (HC> /Ni. For this term, note first that, by

0
sub-multiplicativity of matrix norms, we have that

r (ff) [%OE . MFF} r (fl\)/ r (ﬁf) FE r (I/{\),
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Note that
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7 Ll
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ZPHVZHQ Nl
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N
1 —~
2 .
= sup ||y —Ejﬂ{zeﬂc}
618“||7||2N1

i€ i=1
(since v; = 0 for all v, € H)

1L~
ClE;]I{zGHC}

IN

for some positive constanct C; > sup; ||;13 = sup;ec e |[7:]|5 which exists in light of Assumption

3-5. Moreover, write

N
=5 ]1{' Hc}:—}‘ﬂ{' H} -5 ]1{' H} 104
N1 = 'c NlieH 'c +N1ieHC ' 1oy

For the first term on the right-hand side of expression (104) above, we can apply part (a) of Lemma

D-7 to obtain
1 = %)
C j— —_ —
A éH]I{z €eH } =0, (N1> =op(1).

With regard to the second term on the right-hand side of expression (104), note that

N%ZE[I[{ieﬁc}]gl

1eHe

since, by definition, Nj is the cardinality of the set{i € {1,..., N} : ¢ € H¢}. Hence, for any € > 0,
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set Ce = C/e for any positive constant C' > 1, and note that

LicHe

Pr {NL Z I {z IS I/{\C} > C’e} < C’ieNil Z E []I {Z S I/{\CH (by Markov’s inequality)

A
I
Q

which shows that

It follows that

o~ 2
r (e N .
\gﬁl) ) < ClN%;H{z’eHc}

= %;{H{ief/l\c}Jr%Z]l{ieﬁC}

icHe
©
= O (E) + Oy (1)

= 0,(1).

In addition, applying the result of part (b) of Lemma D-2, we have that

from which we further deduce that
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/ —~\/
Turning our attention to the term U (H ) FT (HC> / (N1Tp), we first write
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< ! Z L iH{ZEHC} (’y’F’u )2
> X7 k 7
M e MT§ =
1 1 L~ 2 1
= — — ]I{ZGHC} YViF ui)" + —
N keZH MTg icH 0l ) M
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Ny VNT, N VNI Th

1€H keH¢e

Applying parts (b) and (c) of Lemma D-7, we obtain

v () r () [
NlTo
F
< Silieml L U ATARS BRSSP
= ZEX}:I {ze }Flk;c<\/ﬁlTO> +F12 {ze }Z
1
- () 0. (3

1
Jo 1
= Op max {2(’0 —

= o0p(1) (by Assumption 3-11%)
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so that

U <ﬁ2\;1_1;1; (ﬁ), _o, <maX {N2é \/%, %}) — 0, (1). (106)

Since '
r (ﬁc) F'U (H\c) U (ﬁc)' FT (ﬁfc)/
N To - N Tp
F F

it follows immediately also that

O T 0

F
PN —~ 2
Finally, consider the term HU (HC> U (HC) /N1Tp|| , where
F
v(ie) = wmi{ie i} wifzent} - uwyi{nen} |.

Given that
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we can write

v () v (i)

NN L~ —\ U} ug. 2
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2
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= Y Y e B fi{ke B ()
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I T e P AW AL :
ty e By YTk e By (<
i€eH keH

= T+ T+ T3+7T (say),

where the order of magnitude in probability of the terms 7y, 75, 73, and 74 are given in parts
(a)-(d) of Lemma D-9. It, thus, follows by applying parts (a)-(d) of Lemma D-9 with A = 0 that
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2 5
1 1 N7p7
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= op(1).
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from which we further deduce that

—~\/ —~
v (HC> v (Hc> = 0, | max L L N%(Pl_i =0, (1) as N1, Nao, T —
=Up =0p 1, No, 0. (108)
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Expressions (102)-(108) together imply that
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Since ||A|ly < ||All z, we also have
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Lemma D-11: Let
TMppI
A =
NxN N
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where

T
Mpp = TLOZE[EtEQ] with Top =T —p + 1.

t=p

Suppose that Assumptions 3-1, 3-2(a)-(b), 3-2(d), 3-5, 3-6 and 3-7 hold; and let G be an N x N

orthogonal matrix whose columns are the eigenvectors of A. Under the assumed conditions, the

following statements are true.

(a)

(b)

Rank (A) = Kp for all Nj, Ny sufficiently large, and, hence, 0 is an eigenvlaue of A with
algebraic multiplicity equaling N — Kp.

Partition G as follows:

G =| Gi G2
NxN NxKp Nx(N—Kp)

Without loss of generality, suppose that the columns of G are eigenvectors associated with
the non-zero eigenvalues of A, whereas G contains the eigenvectors associated with the zero

eigenvalue. Then, the matrix G’ AG can be partitioned as follows:

A K ](\)IK M 0
G'AG — Kp(x)Kp px(Af D) _ KpxKp Kpx(N—Kp) ' (109)
0 0
(N-Kp)xKp (Npr)X2(N7Kp) (N-Kp)xKp (N—Kp)x(N—Kp)

where A; is a diagonal matrix whose diagonal elements are the non-zero eigenvalues of A and
where Ay = 0.

Define the separation measure

AKX — X Aol
A, A) = ;
Sep( 1 2) ?;é% HXHF 3

then, there exists a positive constant ¢ such that

A X MY2rrarl?
S€p (A1>A2) = S€p (Ala 0) = g?;é% w > Amin (% >c>0.
F

Proof of Lemma D-11: To show part (a), note first that, by the result of Lemma D-4 above,

there exists a positive constant C such that

Amin {Mpr} >C >0
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for all T > p — 1; and, by Assumption 3-6, we have,

min | = = I0r s sulnciently large.

for some constant C such that 0 < C' < co. Combining these two inequalities, we see that

MYPTT M2
>\min T

r'r
>\min (E) >\min {MFF}

C
> % > 0 for all N7, N, and T sufficiently large.

This implies that the Kp x Kp matrix

1/2 1/2
MU' T My
Ny
is a positive definite (and, therefore, also non-singular) for Ni, Na, and T sufficiently large. More-

over, observe that

I'MppIY
det< Ay — ——
) { N N }
/
— AV det {]N _ A—lw}
N
M2 Y2
= AVdet {I Kp — A1 % (by Sylvester’s determinantal theorem)
1

1/2m 7 71/2

M T'TM

= AVEPdet {)\IKp — M} (110)
Ny

Hence, the non-zero eigenvalues of the matrix T'MppI” /Ny correspond exactly to the eigenvalues

of the positive definite matrix M ;ﬂ/]? I FM}/; /N1, from which we further deduce that the matrix

_ TMppl”

A N,

must be of rank Kp for Ny, No, T sufficiently large. Since A is an N x N matrix with N = N7+ No,
it follows immediately that 0 is an eigenvalue of A with algebraic multiplicity equaling N — Kp for
N1, No, T sufficiently large.

To show part (b), let Ay = diag (M 1,...., \1,Kp), Whose diagonal elements A;; > 0, for i €
{1,..., Kp}, denote the non-zero eigenvalues of A (which must all be positive given that they

correspond to the eigenvalues of the positive definite matrix M ;/;F’ I'Mm }1;,/]3 /N1 as shown in the
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proof of part (a)). Moreover, let

Ay = 0
(N—Kp)x(N—Kp)

whose diagonal elements are the N — Kp zero eigenvalues of A.Since A is a symmetric matrix, the
representation given in expression (109) follows immediately from the usual spectral decomposition.

Finally, to show part (c), note that for any Kp x (N — Kp) matrix X # 0, we have

||A1X — XAQ”F == ||A1X||F (since A2 = 0)

=t {XNALX)
> Amin (Al) Vitr {X’X}

= Amin (Al) HXHF
It follows that

ALY — XA
sep (A1,A2) = 20 N 1 X1 ¢ e

M X
= min A1 Xl (since Ag = 0 in this case)
X#0 || X
Amin (A1) [| X |
X

- >\min (Al)

Furthermore, in light of expression (110), the diagonal elements of A1, being the non-zero eigenval-
ues of A, must all be the solutions of the determinantal equation

Ny

M1/2F/FM1/2
det{)\IKp— —EE___FF L =

so that, as noted in the proof of part (a) above, they are also the eigenvalues of the dual matrix
M ;/;F TM }/ﬁ /N1. It follows from the proof of part (a) that there exists a positive constant ¢ such
that for all N1, No, and T sufficiently large.

S€p (A17 AQ) = S€p (A17 0)

Z )\min (Al)
(R
= min Nl

> ¢>0.0
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Lemma D-12: Suppose that A and E are both n x n symmetric matrices and that

is an orthogonal matrix such that
ran (G1) = {y € R" : y = Gz for some z € R"}

is an invariant subspace for A, i.e., for any ¢ € ran(G;) and let ¢* = Ag; then ¢* € ran(Gy).
Partition the matrices G’AG and G'EG as follows:

A 0 En By
cgag=| " U b adeEe=| T e
0 A Eo Ea
(N=r)XT  (n—r)x(n—r) (n—r)xr (n—r)x(n—r)
! 40X = XAa]
. 1X—X 2|
sep (A1, A2) = min >0 (111)
X#0 1 X
and if
sep (A1, Ag)
B, < RS
= L X = XAl (112)
5 X#0 X1

then, there exists a matrix R € R("")%" gatisfying

4
— ||
IRl < iy 1Bl
: \|A1X—X1\2|hw>1
= 4| min ||E21H
(Xﬂ) 1 X | 2

such that the columns of

Gy = (Gy + GoR) (I, + RR)

define an orthonormal basis for a subspace that is invariant for A + E.

Remark: Lemma D-12 is a well-known result in linear algebra restated here in our notations. It is
given in Golub and van Loan (1996) as Theorem 8.1.10. As noted in Golub and van Loan (1996),
this result is also a slight adaptation of Theorem 4.11 in Stewart (1973), which could be consulted
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for proof details.

Lemma D-13: Let X be an invariant subspace of A, and let the columns of X form a basis for

X. Then, there is a unique matrix L such that
AX = XL.

The matrix L is the representation of A on X’ with respect to the basis X. In particular, (v, A) is
an eigenpair of L if and only if (Xwv, \) is an eigenpair of A.

Proof of Lemma D-13: This is Theorem 3.9 of Stewart and Sun (1990). For a proof of this
theorem, see Stewart and Sun (1990).

A straightforward application of Lemma D-12 (or Theorem 8.1.10 of Golub and van Loan, 1996)

to our setting here leads to the following lemma.

Lemma D-14: Let 5 (I/{\C) be the post-variable-selection sample covariance matrix as defined in

expression (98) in Lemma D-10. Decompose 3. <IiI\C> as follows:

g(fﬁ) —A+E,

where S
A=—x— (113)
and where
E =% ffc)-rM]gFrl
T (He) M ; )
c . ,
- (O o) ) [BE )
v (F) er (@) (@) ev(F) v(F) ()
H VTR A Y (14)
with To =T —p+ 1 and
T
Mpp = T%;E [F,F})

Suppose that Assumptions 3-1, 3-2, 3-3, 3-4 3-5, 3-6, 3-7, 3-8, 3-10, and 3-11* hold, and define

NxN

:[ Gy G ]
NxKp Nx(N—Kp)
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to be an orthogonal matrix whose columns are the eigenvectors of the matrix A. Without loss
of generality, suppose that the columns of G are the eigenvectors associated with the non-zero
eigenvalues of A, whereas G2 contains the eigenvectors associated with the zero eigenvalue which

has an algebraic multiplicity of N — Kp in this case’. Partition the matrices G’AG and G'EG as

follows:
Al 0 A1 0
G'AG — KpxKp Kpx(N-Kp) KpxKp Kpx(N—Kp) and
0 A
(N=Kp)xKp (N—Kp) ><2(N7Kp) (N—Kp)xKp (N—Kp)x(N—Kp)
En Ey
G'EG = KpxKp Kpx(N—Kp)
Ea Ess
(N—-Kp)xKp (N—Kp)x(N—Kp)

where A; is a diagonal matrix whose diagonal elements are the Kp largest eigevalues of the matrix
A8

Under the assumed conditions, the following statements are true.
(a) There exists a (N — Kp) x Kp matrix R such that the columns of the matrix
-~ / 71/2
G = (Gl + GQR) (IKp + R R)

define an orthonormal basis for a subspace that is invariant for ) (fl\c> = A+ E. Moreover,
|R||, = 0p (1) as Ny, N, andT — oo
(b) H@l - G1H2 =o0p (1) as N1, Na, and T' — o0
(¢) The exists a unique symmetric matrix L such that
(A+ E)Gy = G L.

Moreover, let

A= diag (3\\1, ...,XKp) (115)

"That 0 is an eigenvalue of the matrix
TMppI”
Ny
with algebraic multiplicity equaling N — Kp has already been shown previously in Lemma D-11.
$We have also previously shown in Lemma D-11 that G’ AG can be partitioned in the manner given here.

A=

207



denote a diagonal matrix whose diagonal elements are the eigenvalues of the matrix L, and

let

~

V:(@l T aKp) (116)

be a Kp x Kp matrix whose ¢/* column (i.e., 7;) is an eigenvector of L associated with
the eigenvalue ;\\g for £ = 1,..., Kp. Then, V is an orthogonal matrix and <CA¥1%,X5> is an
eigenpair for the matrix A+ F for £ =1,..., Kp.

(d) The columns of the matrix
GV=Ci (5 B o )= (G Gy - Gity )

are the eigenvectors associated with the Kp largest eigenvalues of the post-variable-selection
sample covariance matrix

A+E:§)<I/{\C).

Proof of Lemm D-14:
To show part (a), we first verify that the conditions (111) and (112) of Lemma D-12 are satisfied

here. To proceed, let ran(G1) denote the range space of Gy, i.e.,
ran (G1) = {g € RY : g = G1b for some b € RKP}

and, by definition, A; is a Kp x Kp diagonal matrix whose diagonal elements are the non-zero

eigenvalues of the matrix A = T'MppI”/N;. Now, for any g € ran(G1), note that

g° = Ag

T MppT’
= (/)G
< Ny > &

= GiAd
== Glb* where b* = Alb.

from which it follows that ¢* € ran(Gi), so that ran(G;) is an invariant subspace of A. Next, by
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applying the result of Lemma D-11, we have

sep (A1,A2) = sep(Aq,0)

A X
X
X0 || X| g
2 Amin(Al)
oy (MErTME
min Nl

v

¢ > 0 for N1 and Ny sufficiently large,

so that condition (111) of Lemma D-12 is fulfilled. Next, note that, from the result of Lemma D-10,

we have
B I'MppIY

Bll, = || (7°)
11, = | =

from which it follows that

=o0p(1) as Ni, Ny, and T'— 0;
2

1Bl <

A1,0
w w.p.a.l as N1, Ny, and T"— 0.

so that condition (112) of Lemma D-12 is also satisfied here w.p.a.1. Hence, application of Lemma
D-12 allows us to conclude that there exists a (N — Kp) x Kp matrix R such that the columns of
the matrix

Gy = (G + GoR) (Ixp + RR)/?

define an orthonormal basis for a subspace that is invariant for A + E. In addition,

4

R < —||F
IRl < i 1B
~1
MY
Ny
4 .
< - |E|l; (for some ¢ > 0 by Assumption 3-6 and Lemma D-4)
= Op (1) )

which shows result (a).
To show that H@l — G1H2 = 0y (1), we first show that an explicit representation for G can be

given as

/
Gy = r (FI‘

~1/2 12
— | — ==T(I"I")" =
— Nl) (r'r)

209



where = is an orthogonal matrix whose columns are eigenvectors of the matrix

I—\/F 1/2 F,F 1/2
Mip =(=—) Mpr(=—
Kpf[l?p (N1> FF(N1>

To see that this representation satisfies the various properties we require of GG1, note first that

Gl Gl — E/ E _1/2 E IV_P _1/2 E — IK .
1 Ny Ny \ MV ps

hence, G; so represented does have orthonormal columns. Moreover, note that

T Mppl’ r ', —1/2
— G, = —Mpp——(I'T =
M= gt )

r e e\
= —MFF—<—> =
VN1 N1 \ V1

B ey v R G v e Ew A VA ey A
- UMM N, FE\'N, N, N, N, =

r /rr\ Y2
= — (— M:
VN1 <N1> mr

= r(rn) Y’zn
- Gin (117)

(11

where Ay is a Kp x Kp diagonal matrix whose diagonal elements are the eigenvalues of the matrix
M}, which also happen to be the non-zero eigenvalues of the matrix A = T'MppI'/N;. Pre-

multiplying the above equation by G/, we obtain

I'MppI?
Gﬁ%Gl = G{G1A; = Ay
1
Since equation (117) shows that the columns of T (T” F)_l/ 2 are indeed the eigenvectors of the

matrix A = 'MppI” /Ny, by the argument given previously in the proof of part (a) above, we can

then deduce that ran(Gq), the range space of Gy with G; = T (I F)_I/ 22, is an invariant subspace

of A. It follows that setting
~1/2 —

G, =T (I'T)

fulfills all the required properties of Gy specified in Lemma D-12 above.
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Next, write

61 -Gy = (G1 + GQR) (IKp + R,R)il/2 -Gy
= Gi|(Ip+ R'R) " = Iy | + GaR (Iny + R'R)V°

r T\ 2 ~1/2 -1/2
= Ef(ﬁ) EW@+H@ —M4+@R@@+Hm
1

Applying the submultiplicative property of matrix norms and the triangle inequality, we obtain

@1—G4

2

r /o) Y2
VINy <W1>

Gl IR, || (1o + RE) ™|

-1/2

IN

1El, | (1o + B'R) ™ = I ||,
2

= | (o + RR) ™ — Iy ||+ IR, || (12cp + RR) ™2,

where the last equality follows from the fact that

||E||2 = Amax (E/E) = Amax (IKp) =1,

1G5, = s (G2Gh) = A (GG2) =\ A (Inv—1p) = 1, and
r /rr\ Y2 T\ Y2 /o Y2
A~ \ A = ENE -~ |\ A = 1/ "max =1
H\/Nl <N1> Ama <N1> N <N1> Auax {Tico}

Now, if (), p) is an eigen-pair of R'R so that

2

R'Rp = \p with A\ > 0 given that R'R is positive semidefinite;
then,

(Ikp+R'R)p = (1+X\)p,

_ 1
(IKp+R/R) 1/2[) mp, and
F o\ —1/2 1
VITA-1
Vitx !
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since

1 _
Vi) is an eigenvalue of (I Kp + R'R) /2 associated with the eigenvector p
and
Vi+A-1 -1/2
~————" is an eigenvalue of I, — (Ix, + R'R associated with the eigenvecto
i i igenvalu Kp (Kp ) i wi igenvector p
Moreover, let
0) = Vi+A-1
I = T
and note that
JO) = 1 1 1v14+A-1
21+ 2 (1+)\)3/2
VI VI +]
2 (1+X)%2
1
= ——=>0
2(1+ )32

so that, in particular, g (\) is an increasing function of A for A > 0. It follows that

=

2
A L (U

IN

= [0 = o+ BB IR [+ R

) -
= \/)\max (|:IKp — (Irxp+ R/R)fl/ﬂ Ircp — (Igp + R/R)1/2}>

1Bl P (1o + B (1 + ) ?)

Ama [Iip = (Ticp + R'R) 2| + 1 Blly A | (Ip + B'R) %]

(since Igp — (IKp + R'R)_1/2
1+ Amax (R'R) — 1 | Ry

= T VTP em (RR) VIt e (RER)

\/1+|RI3 =14 R, (since Amin (R'R) > 0 given that R'R is positive semi-definite)

= op(1) as N1, No, and T'— oo (since ||R|y =0, (1)).

and (I Kp T+ R’R)_l/ 2 are both symmetric and positive semideﬁnite>

IN

This shows result (b).
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To show part (c), note that, by the result given in part (a) above, the columns of G, =
(G1+ G2R) (I, + R R)_l/ ? form an orthonormal basis for a subspace that is invariant for A + E.

It then follows immediately from Lemma D-13 that there exists a unique matrix L such that

(A-FE)@l = (A+E)(G1+G2R)( +R/R)fl/2

— (Gi+GqR) (I, + RR) L
— GiL.

Note further that

GG = (I, + RR) V(G + RGY) (Gi + GaR) (I + R'R)

— (Ixp+ R'R) " (G,G1 + R'G4G: + G\GaR + R'G4GR) (Ikp + R'R)
= (Ixkp+R'R)” V2 (Ixp + R'R) (Icp + R,R)_l/2

~1/2

<51nce by assumption G = { Gi1 Go } is an orthogonal matrix>

which, in turn, implies that

IMppI”
PMppl” |

G (A+E)G, — @( i

= L

E) Gy = G.G\L

so that L must be symmetric since, in our situation here,

A+ E =

FM]\};FF’ s (I:fa) ~ IMppl” 8 (A) Z (fl\c>/z (I/{\C)
1

is a symmetric matrix. Now, let A= diag (Xl, e /)\\Kp> and
V(o % - )

be as defined in expressions (115) and (116). The fact that L is symmetric implies that V is an
orthogonal matrix. In addition, further application of Lemma D-13 shows that (éﬁg,X9> is an

eigenpair for the matrix A+ FE for g =1,..., Kp.
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Finally, to show part (d), let G = < G1 Go >, and note that, by assumption,

G/AG, GLAG Ar O
GAG=( T ) T )
GLAG, GLAG, 0 0
where Ay = diag (A1,1., ..., A\, kp) contains the Kp largest eigenvalues of A. Without loss of gener-

ality, we can further assume that A1 1, ..., A1 kp are ordered, so that A1 ; = A (A), i.e., A is the
4% largest eigenvalue of A.° Given that, G'G = GG’ = I, we have

<AG1 AG, ) — AG =GA = ( Gy, o)
from which it follows that
AG1GG1oy = GiM GGy, for L€ {1,...,Kp}. (118)

Now, the result of part (c) above shows (@1@,/):4) to be an eigenpair of the matrix A + E for
¢e{l,...,Kp}, so that
(A+ E) Gity = ANG1y for € € {1,..., Kp} (119)

where G1 = (G1 + G2R) (Irp + R'R)™Y/? as given in the result for part (a). Multiplying both sides
of expression (119) by @ééﬁGlG’l, we get

B\\g%éllGlGllél@\g = %@&GlG,l (A+FE) éli)\g
= %@iGlG/lA@l@\g + %éaGlGaEélﬁg (120)

Since A = T'MppI”/Ny is symmetric, it further follows by expression (118) that

0G\ GG A = T,G GLGL A = TG G MG (121)

%Tf this is not the case; then, we can always define a permutation matrix P such that
A" =P AP

results in a diagonal matrix whose diagonal elements are repermutated in such a way, so that the required ordering
of the eigenvalues is satisfied. Moreover, since P is an orthogonal matrix, it further follows that

A=GPP'APP'G' = GPA"P'G.

Now, define G= G'P, and note that G is an orthogonal matrix whose columns are just the columns of G repermutated.
Hence, we can simply proceed with our analysis using G in lieu of G, and the associated eigenvalues will be in the
order which we have assumed.
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Moreover, note that

~ ~ 2

0 < (%G’lGlG’lEG1@>

< (@;égangGlagé@) <®}CA¥’1E’E@1@> (by CS inequality)

_ (@égalag@@) <62@’1E’ECA¥1@> (since G4 Gy = Irgp)

= [0 (Iicp + R'R) 2 (Gh 4+ RG) Gi G (Gh + GaR) (Iigy + R'R) 25| (91G1 B EGyi )

= 3 (wep + R'R) 5] (0G4 ' EGy )

< (o (Irep + B'B) ™ 5] Amax (E'E)
from which it follows that

8 Iy + RR) 5 |Ely = =/ Uiy + B'R) 50/ Nanax (B'E)
~ ~ 2
< —\/ (31611 G BG )

< - \%@gclewé@\
< U,G\G1GEGT,

where the last inequality follows from the fact that

0,0, GG EG Ty, > — ‘%éﬁGlG’lE@ﬁg it 56 G GLEG T, > 0

whereas

0,0, GG EG Ty = — ‘%éﬁGlG’lE@l@ it 96 G GLEG 5, < 0

Combining expressions (120), (121), and (122), we see that

NOLGLGLG Gty = T,GLGLGL ATy + 0,G\ GG EG Ty
B G1A G G — 5 (TIxp + R'R) ¢ | Bl

V
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for £ € {1, ..., Kp}. In addition, note that

5,GL GGGty = B,GGrG (Gh + GaR) (Ixp + R'R) %,
— GGy (Ixp + R'R) %,
— 9 (Ixy + R'R)? (G} + R'Gy) G (I, + R'R) %%,
= O (Ixp+ R'R) 'y
> 0

Hence, dividing both sides of expression (123) by ﬁéé’lGlG’lélﬁg, we obtain

L OGN G Vo Iy + RR) 0 | B,
{ = = = - = —=
0,Gh GL G Gy nexenexercr

V0 i + R'R) 00|
0, (Ixp + R'R)™'%
1E],

V% Iy + RR) 5,

E
_ Z e,

AU

= WAL —

= WAL —

where
~ Kp
~ GG ~ 12 2
U= —= —— so that HUKHQ:ZW]:
UZGllGlGllleg =1
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Note also that

O (Ip + RR) "0 = Awin { (Ip + B'R) 570
= Amin {(IKP + R/R)_l} <since 1 Te|3 = 1>
_ 1
" Amax (Igp+ R'R)
>
T 14 Apax (R'R)
_ 1
1+ | R[5
i 2
> M (by Lemma D-12)
(sep (A1, Az))
2
> % (by Lemma D-3 )
(sep (A1, Az))
- 2 71
> |1+ 16 (scp (A1, Az)) 2/25 (by Lemma D-12)
I (sep (A1, A2))
B
Sl

Making use of this lower bound, we obtain

Kp
- E
/\Z Z Z ﬁhj)\l,j o || ||2
st V¥ (I + R'R) L5

Kp
— 25
= EUZ]‘ALJ T ||E||2-
j=1

Next, recall the notations we have introduced previously on the ordering of the eigenvalues of the

matrices A+ F and A, i.e.,

Ay (A+E) > > XNgp) (A+E) > Ngpy1) A+ E) > > A\w) (A+ E),
Ay (A) = 2 Nk (A) = ANrpgr) (A) = - = Ay (4)

Since A = T'MppI” /N1 and since part (a) of Lemma D-11 shows that Rank (A) = Kp for all Ny,
N>, and T sufficiently large; it follows that

Arpt1) (A) = -+ = Ay (A4) = 0. (124)
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In addition, by Corollary 8.1.6 of Golub and van Loan (1996), we have the inequality.

Akt (A+ B) € My (4) + | Bl (125)
Making use of expressions (124) and (125); we see that, for any ¢ € {1, ..., Kp},
A= MNgpin) (A+E) > ZWJ)\LJ ? 1By = {X\&p+1) (A) + 1Elly}

= Zvé])\ld \EH2 (since A(gp+1) (A) = 0 here)

66
- Z A0 (4) = 77 1Bl

(smce A1j = Ay (A) as discussed previously)

66 sep (A1, A2)
= Z )\(J TR (by Lemma D-12)
66 '
- Z 4,5 (J 2—053613 (A1,0) (since Ay =0 here)
66 ‘ ,
2 min (A1) = = 550p (A1,0)(since A = diag (A (4) - A (4))
139
= Sp55P (A1,0)
(since sep (A1,0) = Amin (A1) by Theorem 3.1 of Stewart and Sun (1990))
> ;—(?;?Q >0 (by part (c) of Lemma D-11).

This shows that the set {/):1, - /):Kp} contains the Kp largest eigenvalues of the matrix A + E. It

further follows from the result given in part (c) that the columns of the matrix
GV=C (5 % o )=(Gd Gty - Gidy )

are the eigenvectors associated with the Kp largest eigenvalues of the matrix A + E. O

Lemma D-15: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*

hold. Then, the following statements are true.

(a) R
Ny — Ny »p
Ny
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r(.r:r/chl—r b,
2
(c) Let

G1 = (G + GaR) (I, + R'R)/?

where G1, G2, and R are as defined in Lemma D-14 above. Also, let V be the Kp x Kp
orthogonal matrix given in expression (116) of Lemma D-14. Then, there exists some positive

constant C such that

V'G\T <FT> _
<4/ dmax | = ) £ C < o0
v N1 ) - Ny

for Ny, No, and T sufficiently large. In addition,

V'GIT

Nl

2

1
r'Tyz _-
o= (%) ="

with = being the Kp x Kp orthogonal matrix whose columns are the eigenvectors of the

where

matrix

T /2 rr\Y2  /rr\Y?2 1 r T 2
Min=(—) Mpp(—) =(~—=) ——S E[FF](—) .
=) () =(%) msees (R)

(d) For all fixed index ¢
Gll Ut,N (HC>

———|| =o0,(1).
(e) For all fixed index ¢
N 2
()|, 1)
Vo Il
(f) For all fixed index t,
GéUt’N (HC>
Op (1)

2
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(g) Let
G1 = (G1 + G3R) (Ix, + R'R) ™

where G, G2, and R are as defined in Lemma D-14 above. Also, let V be the Kp x Kp

orthogonal matrix given in expression (116) of Lemma D-14. Then, for all fixed index ¢,

VG U (f?)

VN ,

20 as Ny, No, and T — oo.

N\~ ~ o
m_Q = M—Q’ =0, (1) as N1, N, T — oo.

JE JE 2

where @ is as defined in part (c) above.
(i)
|Ello = Op (1) for all t.

HET - QlETHz =0, (1) as N1, Ny, and T' — oo

where F' + denotes the principal component estimator of the factor vector F'; obtained after

the variables have been pre-screened based on the decision rule

ie{ He ifSip >0 (1-5%)

H ifSfp<et(1-5%)

d
as described in section 3. Here, S:“T may be either the statistic Ze—l @y | Sier|or the statistic

maxi<¢<q |[Sie1|-

Proof of Lemma D-15:
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To show part (a), note first that, for any € > 0,

{ Ze} = {Nilﬁ‘l[{z’ef?}—1

N — N
Ny

N
—N—
Z| =

N
—N—
Z| =
g

=

m

T
——

L

i€He® 1€H
By Markov’s inequality, we have

Pr<Nili§c<ﬂ{ieﬁc}—1) 2%)
) Pr<%i§c(ﬂ{ie@}1)2>§)
< ;E{]\z;(ﬂ{zeH}l>2}
_ ;%NL%Z;;IC;E[(H{%E}—Q (ﬂ{keﬁc}-1)]
= ;%Ni%iEZI;Ck;E(E[H{ieﬁc}H{keﬁc}]—E[ﬂ{kefﬁ”—E[ﬂ{iefchH)
_ %%Z Z{Pr({ieﬁc}m{keffc})—Pr(keffc)}

€ Vi i€He¢ keHe

+%Nifi€ZH%§c{1—Pr(z‘eﬁc)}
< éNifiGZHCkGZHC{Pr(kefﬁ)—Pr(keﬁc)}+§2Nili€ZHc{1—Pr(ieffo)}
< éNili;c{l—irél}ﬁPrGef—fC)}—>OasN1,N2,andT—>oo.

where the last line above follows from the fact that, for ¢ € H® and for either the case where
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d
S:’FT = 25:1 wy|Sier| or the case where SZTT = maxi<y<q |Si¢r|, we can apply the results of
Theorem 2 in Chao, Liu, and Swanson (2023a) to obtain

winpr(ie ) > Pr<m{s;T>@1(1_%)}>

i€HE

. -1 '
= P(JS}}%SXT“’ (“ﬁ))
— 1

d
Also, making use of Markov’s inequality, we obtain, for either the case where S:T = Zgzl wy |Sier]

+ _
or the case where Si,T = maxi<¢<dq|Si el

IN

IN

(following an argument similar to that given in the proof of Theorem 1 in

Chao, Liu, and Swanson (2023&)10)

N:
0 (since ]\% — 0 and W2 = O(l)) .
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Combining these results, we have that

Pr<N1];1N1 26)
< n({lfk T afem) -y shol g ofie A} > 5
< ne(lg > (fem) 1) 2 5) ere (g Ti{ee 7)) 2 )
(by the union bound)
— 0

For part (b), note that

— 2
r (H) T

VN1

F

E;tr{(ﬂ{zef/ﬁ}%—%) (H{ief/l\c}yi—%),}
52 (e mhu=n) (1fre 7))

Nil Z Vi [1 —]I{i € f/I\CH (since y; =0 for i € H)
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Applying Markov’s inequality, we have, for any € > 0,

IA
[
&
—
z|~
.
2
—_
=
—
~
m
=
o
—_
—

icHe
11 , —
- - »1—P(€HC)}
T, GZH Yiy; [1 = Pr (i
< 1 -1 in P (efﬁ) ! :
— |1 — min Pr — Vi
= e iem "\ Ny 2 T
icHe
LT . 2
< —|1-minPr(ic ) ‘
< 1o (e )] (s )
1T —~\ | =
< —|1—minPr <i€HC> o (by Assumption 3-5)
€| ieHe
H

— 0 (since min Pr (z € /\C) — 1 for i € H° by Theorem 2 in Chao, Liu, and Swanson (2023&))

icHe¢

from which we further deduce that

r(ffc)—r r(f?c)—r
— < — N — 0.

2 F

Turning our attention to part (c), note that since, by definition,
G1 = (G1 + GyR) (I + R'R)?

where G} G1 = Iy, G4G2 = IN_kp, and G} G2 = 0; it follows that
~ A '\ —1/2 (0 A~ 7 >\ —1/2
G1G1 = (IKp+RR) ( 1+RG2) (G1+G2R) (IKp+RR)

= (Ikp+ R/R)il/2 (Ikp + R'R) (Ircp + R,R)ilﬂ
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Hence, by Assumption 3-6,

V'GiT PP r
2| < el

= e (@7776) s (5
\/Am (VGHET ) A <%>

T ~
= \/Amax (IKp) |/ Amax (W) (Since V' is an orthogonal matrix)
\/ 1

IKAN —
= Amax <V> < C < o for Ny, Ny sufficiently large
1

Now, to show the second result in part (c), note that, since

1
'T\%_ .~ r /T Y2 _1/2
—(— ) "=V and Gy = - ==T(I'T =,
< <N1> e \/_N1<N1> (™)

we can write

VG o - VG 5y (DTN
VN - VN “\ M
_ VG g <£>‘WP_T
\/Nl N1 N1
_ V'Gyv V'@
VNI VM
_ v (A _ r T
-7 (G1 Gl) =
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from which it follows that

V'G\.T
VN1

_Q/

2

IN

IN

r
Ny

7

Jie.-ay

2

rr

o (77 wm (6o (e Gly}\/Amax (%)

Amax (Iicp) \/ max § (G1=G1) (G- Gl)} \/ (F’f)

(smce V is an orthogonal matrix and since Amax (AA’) = Amax (A’A))
ZJer-al,

op(1) as Ni, Na, and T'— oo (by part (b) of Lemma D-14) .

(by Assumption 3-6)

Next, to show part

Gl Upn (ﬁ) ’

(d), we first write

Kp 2
91,ikWit
= € H} kYt
VI ) kz_:l (Z_: {Z VN )
- g 91.ikU 2
= Z ZH{ZGHC} 1,k zt'i‘ZI[{'LEHC} 1,ik zt)
k=1 (zGHC VN1 VN
K 2
glzk 2,t glzk it
< 22(2]1{@6[—[0}—) +QZ<ZH{ZGHC} )
k=1 \i€H° k=1 \ieH \/ﬁ
2 o
- N, Z DI {Z € HC} {J € HC} 91,k g1, jk Wit Uj ¢
k=1i€H¢ jeH*®
L2 K
Z Z Z I {@ € HC} {j € HC} 91,6k 91, jEWi tUj ¢ (126)
k 1i€H jeH

where g; ;1 denotes the (i, k)th

element of G1. Now, consider the first term on the right-hand side
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of expression (126). Write

Kp
2 oy~
N, Z Z Z I {Z € HC}H {.7 < Hc}gl,ikgl,iji,tuj,t

k=1icHe jeHe

Kp
2 . .
- N > > > (H {Z < HC} -1+ 1) (H {J € HC} -1+ 1) G1ikG1 kUi U ¢

k=1icHe jeHe

Kp
2 L~ .
= Nl Z Z (]I {Z € Hc} - 1) 91,ikUit E (]I {j S HC} — 1) 91,kUj ¢
k=liceH¢ jeEH¢®

2 &
N SN0 gringngruasug

k=1icHe jeHe

Kp
+Nil Z Z (I[ {l € E[\C} - 1) 91,ikWit Z 91,5kUsj ¢

k=1icHe jeHe
2 &

4 SN grauie Y (]I {j € HC} - 1) 91,jkWj ¢
L i=1icHe jeHe

= &+t +E130+Era

Focusing first on the term &11+, we have

Ni f Z (]I {z € I/J\C} — 1) 91,6k Wit Z (]I {J' € I/f\c} - 1) 91,5kt

1

k=1icHe jEH®
2 & — ’
= Z (Z (]I{z € HC} — 1) gl,ikuz‘,t>
13=1 \iene
2 X = i
< 23| 0fre T - )
=1 \lieme
Xp 1 . 2 2 .2
< 22 N Z (]I {z € HC} - 1) Z 91,ik Wi
k=1 icHe icHe
2l R . T 2 2
= 22 EZ(H{zEH}—QH{zEH}%—Q Zm,ikui,t
=1 LY icme icHe
oS Ly (rfiem )] (30 e
= 2 _N1 P P 91,ikWit

d
Now, for either the case where SZTT = Zezl @y |Sier| or the case where SZ_T = maxi<¢<d |Si 1|,
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we have

1 . T
()]
1
- g honem)
€He
_ 1 - 4
AT -r(ze (- )
< 1_P<ZI£11{I£S: >~ (1—%))
(given that Ny = # {H}, where # {H} denotes the cardinality of the set H¢)
— 0,

since, by Theorem 2 in Chao, Liu, and Swanson (2023a), P (minieHC S:“T > o1 (1 — %)) — 1.
Moreover, by part (b) of Assumption 3-3, we have

Z g%zk“’?t] Z giaE [uiy] < C'Z:gl ik <C

icHe icH®
It follows by Markov’s inequality that
1 T
N Z (1 - ]I{z € HC}) =0p (1) and Z giikuﬁt =0, (1)
icH¢ icH®
from which we deduce that
Kp 2
11t = ﬁ kz ( Z € HC} - 1> gl,ik“i,t)
Kp
< o3[y (- rfie )| (3 st
jcHe

k=1 icHe®
= op(1)

Consider next the term &£ 2;. To proceed, let Uy n (H®) denote an N x 1 vector whose ith

component U;; y (H¢) is given by

uiy ifie He

Ussn (HE) =
e (HY) {0 ificH
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and we can write

9 &2

1ot = FE E E 91,ik 91, jEWi tUj ¢
L y=1licHe jeHe

2

_ 2HG’lUt,N(HC)
\/Nl 2
< 2r {GllUtyN (H®) Upn (H)' G1}
N
= 2tr{ = <F/_F>l/2 I Ut7N(HC)Ut,N(HC)/ r <E>1/2:
Ny vV INy Ny vN1 \ M
o (rT)W I’ Uy (H) Uy (HS) T (rT)W
= T _— _—
Ny VINy Ny VN1 \ M1
X He HeY'T, T /2
= 2t7"{ *Ut7N< ?Z\ZQ}’N( ) } (Where F*:F<V1>
2
— WUL N (HO)' T.TLU v (H)
i
2
= N2 Z Z 7;,i’7*,jui,tuj,t
1 jeHe jeHe
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where 7, ; denotes the ith row of Ty =T (I‘T/Nl)fl/% Hence,

IN

IN

IN

IN

[51 2,t]

N Z Z Z 91,ik 91,561 [ g 4]

k li€cHe¢ jeHe®

_12 Z Z 7*[}/*] ultujt]

icHe jeH®

Z > 7 ( ) " <N1:>_1/27jE[ui,tUj,t]

lEHc]EHE
2 T\ V2 /T2
wE Y hi(y) (m) w|ewd
1 €Hc jeHe® 1

1 1
T
w2 i (w) %\/fy; () Bl
€He jeHe¢
2c 1
Yeboel DY B [wigugd)]

1 jeHe jeHe
(since, under Assumptions 3-5 and 3-6, there exist positive constants ¢ and C such that
I'r
sup 17illy <€ < 00 and Amin (F) >C > 0>
j 1

20 C . . .. —
HF — 0 as Ny — oc. (since, under Assumption 3-3(d), there exists a positive constant C'
1

1 _
such that SLtlp v g E |E [uiruj]] < C < oo
i€He jeH*®

It follows by Markov’s inequality that

81757t = Op (1) .

Now, for &1 3+, write
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IN

IN

IN

1€1,3,4]

Kp
P o
N Z Z <]I {Z € HC} - 1) 91,k Wi t Z 91,5k Uj ¢
L =1icne jeHe
9 &
A SN guanuie Y (]1 {Z € HC} - 1) 91,k Wit
L= jene icHe
9 &
A Z Z 91,5k Uj ¢ Z (H {Z € HC} - 1) 91,k Wit
L=t |jene icHe
2 & — 2
= > ({ie By 1) 37 g2 | Y guieus
V=1 \iene icH® jeHe
1 & — 2
2 2 (H {Z < HC} - 1) > gLl
V=1 \ iche icHe®
1 & — 2 i
+F Z (]I{l € HC} — 1> Z 91,5kUj ¢
k=1 \ icHe jEHE
: : Lo 1i9
by the inequality |XY| < §X + §Y
1 &7
LS S (i) S
NS \/N1 icH® icHe
1 1 & ’
w2 (-fie B —=>"| 3 g
M Fe VNI jeHe
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Observe that

2
Ly
E 91,5k Uj ¢
N jeHe

Kp
_ \/LN_l SN gringraE [ugeue)

k=1j€Hc teH®

Kp
= \/;7_1 Z Z Zgl,jkgl,EkE [t t]

jEHE beHe k=1

— Kp 71/2 ’
1 ejnT (TT\ Y2 . (DT ey
= | — Ze e = — — F [u: u
/N1 Z Z /—N1 N Z k,KpCEk Kp N, \/]Tl [ gt Z,t]

k=1

e r /rr\ Y2_
1n = _ =
ST T UM AN

1 S T\ V2
= — Z Z e; NUxEET eq NE [ujrugy] | where Iy =T N

NP jeHe teHe

1 , ,
= —5 > > enlullen N E [ujpup]
N} jeHeteHe

(since = is an orthogonal matrix)

= % DD A E [ pue)

NP jeHe teHe
where we take
T\ V2
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Applying the triangle and Cauchy-Schwarz inequalities, we further obtain

(5 )
T~ 91,5kUj
M=\ e
1
= 3 Z Z 7;,]"7*,ZE [U’jatu&t]
NP jeHeteHe
1 e\ Y2 /1 1/2
= > > %< ) (F) Vel g sed]
N{ jeHeteHe
1 -1/2 /p 1/2
< Sy Yhi(®) (F) o B
NP jeHeteHe
1 I'T I
< =2 ) ( ) w\/vz (W) Vel [uj e,
Nf JEHC ZGHC 1
< G O O Bl
C Nl L icHe teme
(since, under Assumptions 3-5 and 3-6, there exist positive constants ¢ and C such that
I'r
sup ||7;lly <€ < oo and Amin <—> >C > O)
icHe Ny
¢ C . : .
< — 0 as N — o0. (since, under Assumption 3-3(d) that there exists a

CVN,

. — 1 —
positive constant C' such that Slip A ;”;; |E [ujur]] < C < oo
,7 c

from which we further deduce, upon applying Markov’s inequality, that

2

\/— Z Z grjkuge | =o0p(1).

jeHe

Moreover, since we have previously shown that

Nil Z (1 B H{i € ]_/I\C}) =0p (1) and Z g%,ikuzz,t =0,(1),

1€He 1€eH¢
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it follows from these calculations that

Kp
1 1 —
Eradl < =D 7 2 (1 -1 {Z € HC}) > Ghanuis
N\ e icHe

2

1 o 12
+\/F1 ig{:ﬁ <1 —1I {Z S HC}> m kz_:l j;{:ﬁ 91,5kUj ¢
= op(1).

In a similar way, we can also show that

[Eal = 0p (1)

Finally, application of the Slutsky’s theorem then allows us to deduce that

Kp
2 B R
N, Z Z Z I {Z € HC} I {J € HC} grikg1jptittie = e+ 20+ &30+ E1an
k=1icH¢ jeH¢

= 0y (1) +0p (1) + 0y (1) + 0, (1)
= op(1).

Next, consider the second term on the right-hand side of expression (126). In this case, write

Kp
Nil Z Z Z I {7’ € ]{{\C} I {] € -/H\C} 91,ik91,5kWi tUj ¢

k=1icH jeH
9 & ?
RS (zﬂ fic H}g>
=1 \ier
9 &r ?
- X ([ fee o
=1 \licH

IN

e[z

i€H i€H

d
Note that, for either the case where SZT = Zezl @y |S; ¢, or the case where S:’“ = maxi</<d|Sier|,

we have, by applying an argument similar to that given in the proof of Theorem 1 in Chao, Liu,
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and Swanson (2023b),

0 < E NiZﬂ{zeﬁ}]

Licn

= NilZPr(ief/I\c)
- w2 PErze (1-55))

Nop 2 (1-an)d | 2 41 © \3,,—(1-o)}
< 2 _ 2
< NN1{1+2ATO + 2240 (1 2N> T
Ng(p
= ——— = _ _[1+4o0(1
N, (N1+N2)[ (1]

— 0as Np, Ny, T —

Moreover, making use of part (b) of Assumption 3-3, we have

ZglzkE Uit <nglzk <C.

i€H

2 2
E Z 91,ik Wi t

i€H

It follows by Markov’s inequality that

Nil ZI[ {z € f/I\C} =0, (1) and Zg%zku?t =0,(1)
i€H

i€H

from which we deduce that

Ny Z Z Z I {1 < HC} {j € ﬁ\c} 91,k 91,5k Wi 1 W ¢

k=1icH jeH
< zz [ = ufie Hc}] [Zggmugt]
i€ i€H
= op(l).

Combining these results and using the inequality /a1 + as < /a1 + /a2, we further obtain, for
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all t,

iUy (H°) 5 i 5 _ _
~ < ~ IREAS HC} I {j € HC} 91,ik 91, jk Ui t U ¢
M 5 Y k=1icHe jene
2 & — _
+ A > Z Il {Z € HC} I {j € HC} 91,ik 91,k Wi tUj ¢
k=1icH jeH
= op(1)+o0p(1
= op(1).
For part (e), write
—~ 2 /
Urn (H°) Up (H) Uy (H)
VN B N
2
N
= EZH{Z’ c o ud,
i=1

jcHe Lien
1 _
= F lzi_i_ﬁl, H{ZEHC}u?t
€H¢ i€H
Note that, by Assumption 3-3(b),
E 1 Z sy L Z E[u2t] < C (since Ny = #{H})
- Ny e e

so that, by applying Markov’s inequality, we obtain

1
N, Z Ui%t =0,(1).
LicHe

Moreover, note that, for any € > 0,

N {zgél?} C {%Zﬂ{ieﬁ}uit«}

1€eH i€
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so that by DeMorgan’s law

fessfempazde{nfem} -y e

1€H i€H i€H

d
Hence, for either the case where S} = 24—1 @y |Si e 1| or the case where S = maxi<p<q4|Si 1],
we have, by applying an argument similar to that given in the proof of Theorem 1 as shown in
Chao, Liu, and Swanson (2023b),

AN VAN

e,
F..?/—/H
ZEC H-
n e 7
m m
NG

——
——

Hence,

i€H
from which it further follows that
Ut,N (ﬁ:) 1 1 —~
PV o Ly Ly afiemla
Vo PRSP ’t
= 0p(1) +o0p,(1)
= 0,(1).

Turning our attention to part (f), note first that since G = [ G1 Ga } is an orthogonal matrix,
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we have Iy = GG' = G1G) + G2GY or GoGS = Iy — G1GY. Hence, we can write

GLUp N (ﬁ) ’ Uiy (I?c)'Ut,N (I?) Uiy (fﬁ)IGlG’lUtw (1?)

VN , B Ny Ny
Ut.N (fﬁ),Ut,N (I/ﬁ) Ui, N (f/ﬁ>,G1G’1Ut,N (f/I\C>
< N, + N,
Ui,n <PTC> ’ G\UN <}/I\C> ?
NN e

Applying the results from parts (d) and (e) above, we then obtain

N\ 2 N\ 2 —
Gy (H°) Urn (H°) G\ Usx (°)
——F < ||/ +
v N1 , v N1 ) v N1 )
— 0,()+0,(1)
= 0p(1).
so that
GQUt,N HC>
=0p (1)
v N1 )
Now, to show part (g), first write
YAl I7¢ YAl I7¢
VG U n (H) VG U n (H
V Ny VIV (1/\\71—]\71+N1 /N1
1 N =M VG Uy (HC>
= |1+
Ny v N1
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Note that

V'GiUn (fl\c>

\/]Tl 2

V' (Ip + RR)™? [GIIUW ( ﬁ) + RGLUN (ﬁ)}

) VN
2
, e
< |7, |0+ BB, GlUi’/]jv_EH>
2
v - GyU N <I/{\C>

|7, s -y v | =7

= H([Kp-l-RIR)71/2H2 G,IL\/VEHC) 2+H(I p+R/R) 1/2H2HR”2 GIQUt\’/]\%HC) |

(since V'V = Ip so that H?H2 = 1)

It follows that
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VG Uy ()
N

(s M) R VAT ()
N VN
2

(1 + M) E {H (Ixcp + R’R)*WH2 G,U—@

= N

IN

N

2

van

_1 el
< [1 = : 1 GiUin (HC)
- Ny V' 1+ Amin (R'R) VM
2

IRl |Gt (77) }

me+ﬂm*%sz%m”@ﬂ }
2

VT4 Amin (R'R) VN
<[22 P
o Nl 2 N1
2 2
= op(1)

where the last line follows from the fact that

1 _ —
s -3 G Un (H Vel Uy (H®
||R||2 &07 1+u 2, 1, 1—> ﬁ)O’ and 2—(> :Op (1)
Ny v/ Ny v/ N1

2 2

as shown in part (a) in Lemma D-14 and in parts (a), (d), and (f) of this lemma.
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Turning our attention to part (h), we write

V'GT (ﬁ)
/5
(1) e (2

Ny
Q'+ (

1
N T2 S ¥all
<1+5L4%> 1+1‘”%PQ’

1
V'G'T Ni—Ny\ 2 V'G'T
/ 1 o / 1 4 1 1 - 1 1
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so that, by the triangle inequality

—~\! ~ ~
F(H) GV
—F= @
/N1 ,
?’@gr(ﬁa) o
\/ N1 ,
_1 PR
V'GiT N =N\ 2 V'GIr
< -Q 1+ -1 -
VN1 ) ( N VN1 ,
1 — —
o 3 r(He)-T r(He)-T
1— M ’ 1 A ( ) S ral < )
RIS AL 1 B | B A B
' [< T ) ' 1( VN, el T om
2 2
_1 .
V'GiD Ny =N\ V'GiD
< - +|1+ -
v IN1 ) N VN1 )
_1 ) —
o\ o [FE ] oy [T
QA e —1HV’G’ A N/ HV’G’ — 7
*(* N1> | v I | T,
2 2
_1 A
V'Gir N —Np\ 2 V'@
-Q| +|[1+——] -1
VN , N VM|,
_1 - —
Ny VN, VN
2 2

where the last equality follows from the fact that

|7e|, = &7, = wmax (VGLC1T) = P i) = 1.

Now, by parts (a), (b), and (c) of this lemma, we have that

_1 5 ~
Ni—Ni\ ° P F(HC> Tl VG T | P
1+ —— -150, |—=——1| =0,||—=—-Q'|| =0, and
( M ) VN ) VN1 )
and
V'Gr Ty
VG < 4 [ Amax <—> < C < oo for all Ny, No sufficiently large.
\/Nl 9 Nl
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It follows that

r(ﬁc)’alv_Q ) )_Q,

\/ N1 ) Ny N

1
SVl T T2 VAl
PR AR NP R GV 7 WY L1
v/ N1 . N /N1 .
-1 I7e Ire) _
Ll B e (@) - e () T
M VN, , VN, ,
= o0p(1)

To show part (i), let C be the positive constant given in Lemma C-4 such that
E|E,|S < T < oo for all t;
_1
and, for any € > 0, we let C. = C° /\/e. Applying Markov’s inequality, we see that

Pr(lEd,>C) < Pr(|E;>c?)
1

< C_EEHEtH;
< L(piE)’
= 062 =112
(by Liapunov’s inequality)
< ST
C3
< €

from which it follows that || £,||, = O, (1) for all .

Lastly, to show part (j), note that, similar to the derivation given in the proof of Theorem 4.1,
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except that we replace the fixed index ¢ with the sample size T', we can write

Er—QEr = Par(E) Q| Er+ PG (i)

VN Ny
I N N T
ver Ni— N V'Gir
- L Q) Ep+ |1+ ) 1| 2 E
~ -1 e\ _ Yaral I7c
NIRRT r(d)-r FTJFVGIUT,N(H)
Nl \/]_Vl - /]’\\[1

Next, note that, by following the same derivation as that given for the proof of part (g), we can

show that

VG Ury ()

- ]’\71 N Nl _% GllUT,N (I'/FC> N HRH G/QUT,N (fﬁ)
Ny N 2 VNI

2 2

IN

Moreover, by argument similar to that given for parts (d) and (f) of this lemma, we can show that,
as Ny, No, and T' — o0;
Gll UT7 N (H c)

2.0 127
| (127)
and .
G/QUT,N (HC)
——= =0,(1). (128)

VN1

2
It follows from applying expressions (127) and (128), part (a) of this lemma, and part (a) of Lemma

D-14 that L .
VG Ur (H)

e,

In addition, note that by applying Lemma C-4 and the Markov’s inequality in a way similar to the

2,0 as Ni, Ny, and T — . (129)

argument given for the proof of part (i) above, we can show that

1E7]l, = Op (1) (130)
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Making use of the results given in expressions (129) and (130) and applying the triangle inequality

as well as parts (a)-(c) of this lemma, expression (130), and the Slutsky’s theorem; we then obtain,

as N1, No, and T — o0;

|- Q’ET)L
1 N
V'GT Ny —Ny\ 2 V'GT
< + — -1 Jik
\/— ( Nl ) m 2” T”Q

VG o) -r T VGionx (1)

_1
N1> 2
et Ve | ——L— +
2 N — -
( VN YA )

22"
r(m) -

_|[vair V@FIWH
VN \/EQ—”

o E ) V' GiUry (IT°)
+ 1+ — IE7lly + =
2 V Nl 2
(again since HV’CAT”I , = Amax @1‘7‘7’6'1) = Amax (‘7/@'161‘7> = Amax (Ikp) = 1)
= 0p(1)Op (1) +0p (1) Op (1) Op (1) + Op (1) 0p (1) Op (1) + 0p (1)
= o0,(1). O

Lemma D-16: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*

hold. Then, the following statements are true as Ny, No, T — oo.

(3 B
1 T—h GllUt,N (Hc)
— ———|| =0,(1), where T}, =T —h—p+1.

1y vV INy

t=p 9

t=p 9
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1 T—h 1 T—h
= D EE =0, (1) and | > " EFy|| =0, (1)
h t=p h t=p 2
—~\/ ~\ o~
V/GllU (Hc) /[:f (HC> GV 0 (1)
Ty N1
2
F'U <I‘/I\C> GV
= =0y (1)
Th\/ﬁl 2
1 T—h
= (F-QE) (R-QLE)| =o(1)
t=p 2

Proof of Lemma D-16:
For part (a), first write

IN

N\ 2
1 T—h GllUnN HC>
Th <= VA
t=p 5
| T=h Kp —\ gra 2
FI Y (Tl )
Th t=p k=1 (z:l Nl
1 T—hKP( Y gL ik 2
_ZE H{iGHC} 1,k zt+ZH{Z€HC} 1, zt)
Th i i3 \iche VN i VIV
g T=h Kp( G 2 o T=h Kp g1 int 2
FYY(Srfem) ) o 2SS (e ) 2
T t=p k=1 \icH® N T t=p k=1 \icH N
T—h Kp

9 = oy~
N T Z Z Z I {Z € HC} I {] € HC} 91,ik 91,5k Uit Uj L
o =p k=1i€Hc jeH®
9 T—h Kp - -
+N1Th Z Z Z Z I {1 € HC} I {j € HC} 91,ik 91,5k Uit Uj ¢ (131)

t=p k=1icH jeH
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where gy i denotes the (3, k)th element of

I.= r /rm\ 2
ot ()

Now, where

T—h Kp
2 SN
N.T Z Z Z Z H{Z < HC}H {J € Hc}gl,ikgl7jkui7tuj7t
15h t=p k=1i€H¢° jeH¢
9 T—h Kp - .
= TE 2 2 <H {Z € HC} -1+ 1) (H {J € HC} —1+ 1) Gk g1 kUi 1 ¢
15h t=p k=1icHc jcH¢
9 T—h Kp - .
= NT > 2> (H {Z < HC} - 1) gLiktiie ) (H {j € HC} - 1) 91,5k Uj ¢
LEh %2p k=1icHe jEHe
92 T—h Kp -
N T E E E (H {Z € HC} - 1) 91,ikWit Z 91,jkUjt
14h t=p k=1i€cH¢ jeHC
9 T—h Kp .
NT Z Z Z 91,k Wi t Z (H {j € HC} - 1) 91,5k Uj ¢
Loh 32 k=1 icHe jeHe
9 T—h Kp
TNT Z Z Z Z 91,ikg1,jkWi t s ¢
1oh t=p k=1icHc jeH¢
= &Git&iptéiztiiy

_l’_

_l’_
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Focusing first on the term &, 1, we have

—h Kp
NlTh Z Z Z ( {Z < I/{\C} a 1> I iktat Z (H {j < I/{\C} - 1) 91,5k Uit
t=p k=1icH¢® icHe
T—h Kp - ’ 2
- w2 (5 (e )
T—h Kp . 2
“ i g (5 (e o
. 22( > (e i) 0)) £ 5 (3 )
1€H‘“ t_p icHe

- 2;_ EHC(]I{ie}/ﬁ}—Q]I{iEI/ﬁ}Jrl) Ep(;;cgm Zt>
_ 2:(2_ ZeHC(l—]I{iEEﬁ}) —§<Z€ZH691U§ Zt)

d
Now, for either the case where SiT = Zezl @y |Sier| or the case where Sj’T = maxi<¢<d |Si 1|,

we have, by applying Theorem 2 in Chao, Liu, and Swanson (2023a),

0 < B Nili;;c(l_n{ie@})]
= Nil-eZHE{l_Pr(iEfﬁ)}
- w2 [Pz (1-57))]

IN

1—p > P (1—i)
<ggg§5% ON

(given that N1 = # {H}, where # {H} denotes the cardinality of the set H)

— 0 <51nce P (ngjl—]Itl?Sj:T > 1 <1 _ %)) - 1) .
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Moreover, making use of part (b) of Assumption 3-3, we have

Thzzglzk zt] = ThzzglzkE zt

t=p i€H¢ t=p i€H¢

N

T—h—-p+1 9

< C—E 91
Th — l,ZkI

N
< C (since Zg%ikzland Th:T—h—p—i—l)
i=1

It follows by Markov’s inequality that

A%Z(l—][{iel/{\c}):op()and—z Zglzkuzt Op (1)

i€EH®C t=p i€cH¢

from which we deduce that
2
E11 = NlTh Z Z (Z ( {’L € EI\C} - 1) gl,ik“z‘,t)
< 22 [L > (1-1{ienr}) —Z (Z 92k m>

i€H¢ t—p icHe
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Next, consider the term & 5. To proceed, write

[€1,2]
9 T—h Kp -
- T Z Z Z (]I {Z € HC} - 1) 91,ik Wit E g1,jkUj ¢
120 i=p k=1icH" jeme
9 T—h Kp -
- N-T Z Z Z 91,5kUj ¢t Z <H {Z € HC} — 1) 91,ik Wit
15h t=p k=1j€H¢® icHe
9 T—h Kp .
= N7 D> | 2 e | D (H {Z € Hc} - 1) 91,k Wit
Loh = k=1 |jene icHe
o Kp — 5 1 T=h
= Ny Z Z (H{l < HC} N 1) T, Z Z giz‘kuzz,t Z 91,jkUsj ¢
k=1 (EH® t=p i€EH® jEH®
1 &r — 51 T=h
< S (e E}-1) =Y ghad,
V=1 \ ieme = S
1 Kp — 71 T—h 2
2 2 (e} 1) 72 | 2 gt
k=1 ieHe t=p \jeH®
1 1
<by the inequality |XY| < §X2 + 5}/2)
1 Kp 1 L T-
= Tm w2 () 3 3 dhed,
M= \/Nl icHe T t=p icH®
1 — 1= K 2
Hla o (-{ie B ) 23 <=5 3 i
\/Nl ieHe Th t—p N1 k=1 \jere
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Observe that

2
T—h
o 1 1
T 91,5kUj ¢
T | 2
him VNS jEHe
T—h Kp

> g1jkgrE [ug ]

S|~
T

P k=1j€Hc (cH®

1 T—h Kp
= =D = D D > kB ujaue

I t=p N1 €He (e He k=1

Ly i i SRS M
- T ‘—‘ek erk Kp= UjtUg ¢

Th t:p Nl j CZEHC k 1 Nl

F*E 'T —-1/2
since G1 = with T, =T =—
! V Nl ( N1 >

T—h

- Tih > Lé YD NDEET e N E [ujpue]

t=p Nf jEH® (e HE

= Z Z ZeNI‘FegNE[UJtWt]

1 jEHC LeH*®

’ﬂ

(smce E is an orthogonal matrix)

= Z Z Z 7*,37* @E Usj, tuﬁt]

t=p N12 JEHC® leH*

where v, ; = (I'T /Nl)fl/ 2 7,- Applying the triangle and Cauchy-Schwarz inequalities, we further
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obtain

&

1 1
T Z VN £ Z 2 g1aktic

JEH®
- —z S S I Ao

t_p Nl jEH® tcH*

1/2 1/2
— 1 Z 13 Z ZV]( ) (%) f)/gE ujtuu]

hi=p Nf jeEHe LeH*®
'l 1/2 1/2
(&) (=)

1 1 T
Z 2 2 i
T—h ,
OB ID WA \/ Bl

H—

—

NOJ

IN

| B [uj s ]|

VAN
—_

ht=p NP jeHeicHe
t=p N1 jeHCZeHC

C\/_Thz Z Z’E Ugtuzt

t=p jEHC leHe
(since, under Assumptions 3-5 and 3-6, there exist positive constants ¢ and C such that
I'r
sup ||v;lly <€ < 0o and Amin <—> >C > ())
1€He Nl
¢ C
C VN,

IN

IN

— 0 as N7 — oo. (since, under Assumption 3-3(d), there exists a
. — 1 —
positive constant C' such that sgp N GZH EEZH |E [ujug]] < C < o0
j c (&

from which we further deduce, upon applying Markov’s inequality, that

2

Z\/—Z Zgl,yk ujp | =op(1)

jeH¢®

Moreover, since we have previously shown that

A%Z(l—]l{ieff\c})— and—zzglzkuzt_ b (1)

i€H¢ t=p icH°
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it follows from these calculations that

. L Ko — | T=h
€10 < m;\/ﬁz(l_ﬂ{zEH})Th > il

1cH¢ t=p icH¢
1 B 2
+ = Z <1 —]I{z' € HC}>— — = Z 91,5k Ujt
\/Nl i€cH¢ T t=p Nl =1 \jeH*®
= op(1).

In a similar way, we can also show that

|§1,3‘ =0p (1).

th

Finally, let U; vy (H¢) denote an N x 1 vector whose " component U; ; n (H€) is given by

wiy ifie€ H

Us s (HE) =
& () {o ifieH
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and we can write

T—h Kp

14 = N12Th SN gringugruiiug.

t=p k=1i€H° jeH*

_ 2y Gl )
Th t—p le 2

- ETE_:}LW G U (H®) Uy (H®) Gy
Ty, N

- - VN N VN \ V1
2 T‘ht (r'r>—1/2 I’ Uy (H)Upy (H) T <FT>_1/2}
_ S (T

9 {H, <FT>_1/2 I’ Uy (HO)Upn (H®) T <FT>_1/2H}
= 2" W ™M) -
1

y & N Vo N VNI \ Ny
_ 2 Tz_‘ftr {FiUt,N (H®) Upn (H)' T }

h = N}

9 T—h "y . .
— TN ; Upn (H) TLIUp v (H)

9 T—h
= T]VIQ Z Z Z ’Yi,ﬂ*,jui,tuj',t

t=p icHc jeH®
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where 7, ; denotes the ith row of T, = T (I F/Nl)fl/ % Taking expectation, we then obtain

0 <

IN

IN

IN

IN

E (£, 4]

2 T—h Kp
N, T, Z Z Z Z 91,ik 91 ik E [wi g t]

t=p k=1icHe jeHe

T—h
%Nf DD D Veive B lwivul

t=p i€Hc¢ jeH¢®

T—h -1/2 sy —1/2
2 , (T'T I'r
e 2 2ol(w) (W) we

t=p icHc jeH¢

Y Y Y

t=p icHe jeHe

~1/2 —1/2
L (TTY Ty
"\ MV N J

| [ pu |

T—h -1 -1
2 (DT (DT
e () () )

t=p icHc jeH®

% 1 =
C T,N? DD D 1B iyl

t=p icHe jeHe

(since, under Assumptions 3-5 and 3-6, there exist positive constants ¢ and C such that

T'r
up ||7;lls <€ < 0o and Amin (—) >C > 0)
€He Ny

7

2%CT—-h—p+1 2C
- = _— 50asN.,,T .
CN Ty cn, o T

(since, under Assumption 3-3(d), there exist a positive constant C

1 _
such that sgp A E g |E [u; pu,]| < C < o0
i€He jeH*®

It follows by Markov’s inequality that

Application of the Slutsky’s theorem then allows us to deduce that

2
Ty N,

Ei14=0p (1).

T—h Kp

Z Z Z Z I {z € lEI\C} I {j € f/f\c} 91,ikG1,jk Wit Ujt

t=p k=1icHe¢ jeH®
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op (1) +0p (1) +0p (1) +0p (1)
op (1).



Consider now the second term on the extreme right-hand side of expression (131)

d
Note that, for either the case where S;.FT = Z

we have

T-h K.
9 p

T,V Z Z Z Z I {1 € f/f\c} I {j € f/f\c} 91,ik g1,k Wit Uit

t=p k=1icH jeH

9 T—h Kp - 2
T TV 2> (ZH{Z © Hc}glﬁ“‘““ivt>

t=p k=1 \i€eH
g T—hKp - 2
- e 2 ([Tl o)
t=p k=1 1€H
Kp 1 1 T—h
.~ Tre 2 2
S 22 [E ZH{Z S HC} Th Zzgl7ikui7t]
k=1 i€H t=p icH

oy Tt |Sie.7| or the case where S;FT = maxi</<q |Sier/,

E

Nili;{]l{ie@}]

1 ) —
Flg PI' (ZGHC)
1€H
1 _ ®
— P(f ><1>1<1——))
N Z Sir 2 2N
i€H

Naw 146 g~ (1=01)3 | o145 41 P N2 —(1-a1)d
14 210AT, 2 42040 (1 _ _) T :
NlN{ + 0 + IN 0

Nap
NN
(following an argument similar to that given in the proof of Theorem 1

[1+o(1)]

as shown in Chao, Liu, and Swanson (2023b))
0 as N1, No, T — 0
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Moreover, making use of part (b) of Assumption 3-3, we have

Thzzglzk zt] = ThzzglzkE zt

t=p i€cH t=p i€cH
T—h N

< CTh Z Zgl ik

t=p i=1
T—h-— 1
< C—p—i-
Ty

N

(given that Zg%lk =landTp,=T—-h—-p+ 1)
i=1

< C<x

It follows by Markov’s inequality that

—ZH{@EHC}—OP and—ZZg“ku” O, (1)

i€H t=p icH

from which we deduce that

T—h Kp

Tth Z Z Z ZH {z € HC} {j € P/I\C} 91,ik 91,5k Wi t Uit

t=p k=1i€H ieH

22[ 1 {zef{\}” ZZglzk lt]

1€H t=p icH
= op(1)

IN

Combining these results, we further obtain

| T=h G1UtN< > T—h Kp N
iy 2SS S e m e B s
t=p 9 t=p k=1icHc jeH¢
T—h Kp

{l € HC} {j € HC} 91,ik 91, kWi t U ¢
t=p k=1i€H jeH

- op<1>+op<1>
= op(1).
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To show part (b), write

2

_ N/ -
1 L= U N (HC> 1 Tz Upn <HC> Ui,n (Hc>

Ty = VN1 , Ty = Ny
| T=h N
_  ~ TTc 2
= TN Z ZI[ {Z € HC} Uiy
t=p =1
| T A=
_ -~ 77el, 2 T
= TN Z Z ]I{z € Hc}um + TN, Z Z]I{z € HC}UM
t=p i€cH°¢ t=p i€H
A= 1 | T=h
2 - TT¢ 2
< el Yt Yifiem) Ry
t=p i€H¢ i€eH t=p
Next, note that, by making use of part (b) of Assumption 3-3, we have
= | T
E 2 — E [u?
T—h—-—p+

IN
Q

1
(since Ny = #{H},
T
where # {H} denotes the cardinality of the set H)
C (sinceT,=T—-h—p+1)

IN

so that, by Markov’s inequality,

1 T—h
TN, Z Z Uzz,t =0p(1).

t=p icHe
Moreover, note that, for any € > 0,
et Ly ifiem) Ly e
Zg{zgé }_{Eg]:{ {ze }?htz:;ui’t<€}
so that, applying DeMorgan’s law, we obtain
fesifemy S delnfiem] -y fiem)
N icH T l=p " - icH - icH

d

It follows that, for any € > 0 and for either the case where SjT = Ze—
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where SZ_T = maxj<¢<q|Si¢r|, we have

1 . 1T—h
Pri— }I{ieHc}— w2, > e
(wslem gy e

1

o7
< Pr{g{{z’eﬁc}}

< ;{Pr{iel/{\c}

)

< B2 {1+21+5AT et gaet (12 2 (““)%}
= 240w

(following an argument similar to that given in the proof of Theorem 1
as shown in Chao, Liu, and Swanson (2023b))
— 0as Ny, N9, T — o0

Hence,
| IT=h
N Zﬂ{z € HC} T Z u?’t =o0p (1)
icH t=p

from which it we further deduce that

| T ( ) | T=h
L ) I S DT A LS i)
T t=p 9 Tth t=p i€H¢ N i€H Ty t=p
= Op(1)+0p(1)
= 0p(1).
Now, for part (c), note first that since G = [ Gi1 Go } is an orthogonal matrix, we have
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In = GG' = G1G| + G2GY, or GoGY = Iy — G1GY. Hence, we can write

— 2 —~\/ —~ —~\/ —~
et (B 2ot () i () 2 o () i1 ()
Th t=p M 2 T t=p M T t=p M

| T U (B9) U (F2) T2 U () GiGiU v (1)

R + =
Ty ; Ny Th Z Ny
— 2 — 2
L T=h||Uw (Hc) | TG U (Hc>
- T & VA Th = VA
t=p 9 t=p 2

Applying the results from parts (a) and (b) of this lemma, we then obtain

o () e () ()

Th = , - T = v N1 ) Th = )
= Op(1)+o0p(1)
= Op(l)-

Next, to show part (d), let C' be the constant given in Lemma C-4 such that
E||F,||S < C < oo for all t.

—1
Now, for any € > 0, let C¥ = C'? /¢; then, upon application of Markov’s inequality, we have

IN

1 T—h
Pr( — E3>cCr
(2 1k c:)

C*T ZEHFtwb

1 1
C* Ty,

IN

1
<E ||Et||g> * (by Liapunov’s inequality)

t=p
T—h

€ 1 U%
C3 Th

T—h—p+1
6—

Th

< € (sinceT,=T—-h—p+1)
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so that

1 I=h
T > Bl =0, (1)
t=p

In addition, note that

| T=h

/

T > B
t=p

1 T—h
/
s T ; [pamagi®

2

1 T—h

= = 3 Ve (EELELF)
h t=p

1 =0
- Th Z \/HEtHg >‘max (EtEQ)
t=p

1 T—h
= = Y VIE I A (1)
=
1 T—h
4
= 7 2 VIE:
t=p

1 T—h
2
=T > IES
t=p

= Op (1)
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Turning our attention to part (e), write

view (B°) v (1°) arv
T, Ny
1 T=h 17’@’1U (fl\c>/ e, e U (P/I\C> GV

t=p \/ ]/\71 ]/\71

1y,

| T=h V'G\Uy N (fﬁ) Ul n (}/I\C> GV

Th t=p \/Vl\/(]?h —N1+N1 /N1 \/]TI\/ NI—N1+N1> /N1
. -1

- <1+ N11;1N1> NiT, ZVG/ U (H?) Uy (H7) Gi7

N -1 T—h
_ N1 — Ny 1 ~, N—1/2 - _
- (H Ny ) N.T) ; (V' (1 + RR) ™ [Gh + RGY] Uy (H°)

xU N (I/—I\C),[Gl +G2R] (IKp +R/R)71/2 ‘7}

~ ~1
N —N o
- <1+ — 1) (V' (I + RR) 2 G4

1

NlTh ZUtN(HC> UtN< ) G (IKp+R/R)_1/2{7}

-1
M = N U ~1/2
(B

T—h
NllTh Z UtN (HC> UtN< C>/G2R (IKp‘i‘R/R)*l/z ‘7}
+ (1 > { V' (Ixcy + R'R) 1/2R,G,2

NlT ZUt (H)Ut]v< )Gl (IKp+R’R)1/2‘7}

) {’IKp+R’ )P RGY
~ (0
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To analyze the four terms on the right-hand side of the expression above, note first that, by the

homogeneity of matrix norm and the triangle inequality,

T—h

o~ —~\/
ﬁﬁ ; Uin (fﬁ) Ui,n (I?C)/Ch L |Gy <H ) Uiy (H ) G

= T_hz Ny

. = |
- %Z | [ ) (7 @\’
- Tihji Nas GﬁUtN<HC>NCth(Hc)'G1
_ Tihiz::_: . G\ Usn (HC)NL?’N (HC>/G1
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Similarly, we obtain

Gl 5t () 0 ()

2

| TG (°) U () G
> ?ht:p Nl
2
1 T=h G’UtN< )Ut,N (f/I\C>IG1G UtN( )UtN<fI\),G2
_ E;\)\mm{ N7
L 1 || Gvn (79 | Gy (°) U (F2) G
PP v %
| T=h G’UtN<[/{\c> GyUs N (Hc) U N <ﬁ>’G2
| T=h|| G U ﬁ) GLUN (H )
S Hi|Tvm |
and
—~\/
G'2N11T TiUtN( ) U () G Tihiz; i (7 >NU;N(H) =
2 - 2
| T=h G’Ut,N( > 2
_ ﬁ; L
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Hence,

lenv (ﬁ)' v (F) &

TN
2
—~ 2
o~ 71 y -
o o B o ey LS M
2
M- - f G4U, v (HC
LIS i ()] et ()
2! |71 ||t + 7 H R
+ + N; 9 (Kp+ H ||2T Z \/_ N
2 2
N - 2 T—h ( )
1— % 'R 1/2H
14+ ——— I
M N AR llRuzThZ S
2
N o || Gy (7°) ?
_ =M H(I + R'R) 1/2H L
Ny Kp QTh Ve
2
N -1 T-n| Te
Y e e G_<H> |2 ()
2 2
o~ _1 _ y .
L S H(I +R'R) 1/2H IR| Tzh GQUt_N(H)
M v ) v
2
(since V'V = Ikp so that HXA/H2 = 1)
—~ 2
~ —1 , .
< 2 1+u H(I —i—R' 1/2H —h GIL(H)
- Ny Kp QTh NG
o < ()
+2 1_{_2 H hi +R, 1/2H R T2PeN )
N | | IRIZ = g; gl

2

It follows that
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IN

IN

T, Ny
2
~ -1 / T7¢
ol =M H (Ixp + R'R 1/2H h GrUeN (Hc>
N1 Kp 2 Th v N1
Ni— N - ~1/2 | GaUs
/
2|1+ —— H(IKerR H IR = Z
—1 2 T—h G
91+ N1 N 1 1 Z 1
Ny /14 Amin (R'R) Ty = VN
—1 2 T—h
ol M= |21, o (
Ny /14 Amin (R'R) Ty - VN
o\ 2
~ —1 — c
of1+ M 1 157 GllUt’N(H>
M 1+ Amin (R'R) T}, 4 VN1
2
o\ 2
~ -1 T—h ! c
o|14 =M IRl 1§~ | Sl ()
Nl 1 + Amln R,R h t_p \/ N]_
2
= - ||l 72 |12
NS I B < e ) () +|IRI3 = : -2
N Th = VA ) =

e ()
cur ()
aii ()

)|

2

2

T-h||GLU; &

VN

op (1) (applying part (a) of Lemma D-14, part (a) of Lemma D-15,

parts (a) and (c) of this lemma, and Slutsky’s theorem)
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To show part (f), first write

F'U (ﬁ) GV

Ty

~

Ny

2

2

—

H

T—h (fﬂ@lm, w () ELE] 5 (

Ny

)@ﬁ/)

V'GLU v (ﬁ) Uy (ﬁ) GV

)\max

-~

Ny

Ut (H°) GV VGt ()

2

IN
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Next, note that

2

VG (IT)
VN1
V! Iy + R'B)2 G+ RG] U (H°)
VN1

2
2

)
G Uy (1?)
VN1
GLUy v (1?)
N

IN

V], [ ),

2
2

g AR LT

)

+ ||ty + BB B
2

—

- () (IKp+R’R)*1/2H2 Gan’/I\%H0>

(since V'V = Iy so that HVHQ = 1)

GLUy v (f?) ’

VN1

)

GLUy N (ﬁf) ’

VM

Gl Upn (ﬁ) ’

VM

—-1/2

IN

QH(IKp—l—R/R)_I/QHZ

+2| Iy + R'R) HZ IR

2 2
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from which we obtain
=~ N\ 2
1 T—h V GlUt,N (Hc)
t=p N1 9
1 T—h V’@’lUt,N (f{\c)

t=p || /N1y /(N1 + Ny — N1 ) /Ny
| )

2
2

— |1+ N |1 | VG (HC>
Ny Th = VN
2
~ —1 G U 2
N1 — Ny ')/ 1 tN( )
o s B ey L5 A )
< + N ( K+ ) Th N

2

— 2
v2|(rc + RR) ™[ IRIE TihTZf FhA) <HC>
t=p

VN1
1+.N1—N17 2 1 GlUtN( )
- N1 14+ Amin (R/R) Th =
2
2
T—h ! c
IR Gl ()
\\/1+/\mm R'R) T = VNt
2
2
< - T-h|| Gt U,y (HE T-h|| GLU
N — N 2 1YE,N 1 2
< it =5 {72 ( ) +2| Rl D ( )
1 hiS , h = VN )

= op(1) (applying part (a) of Lemma D-14, part (a) of Lemma D-15,
parts (a) and (c) of this lemma, and Slutsky’s theorem)

It then follows from part (d) of this lemma and the Slutsky’s theorem that

~ —~ 2
1 T—h V/GllUt7N <H0>

IN

~

Thr/ N1

1 I=h

2

7 2 I3
t=p

= Op(1)op (1)
= op(1)
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Lastly, to show part (g), first write

where U; n (P/I\C> =U (I/{\C)/etj = ( H{l S I-/I\C}uu ]I{Z € I/{\C} Ugg - ]I{N € I—/I\C} UN¢ )/.
Applying part (h) of Lemma D-15 and parts (d), (e), and (f) of this lemma and the Slutsky’s
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theorem, we obtain

| T=h R ,
= (R-@L)(R-QL)
h = )
_ | (e Q’) Ly pm [ () v Q
Nl h t=p ]Vl )
. (fﬂ@’lr (1?) ) Q/) F'U (I?) GV
M Th\/ﬁl
. VG (ﬁ)’E r (ﬁc)/@ﬂ? Al V'GhU (ﬁ)’ij <ﬁ> G\ V
Th\/ﬁl \/ﬁl ) Ty N, ,
) (r/@lp A(ffc) i Q,) 15t (ﬁC)A/(A}ﬂA/ y
N hi=p Ny )
p (v@lp (7°) ) Q/) FU (H) GV X ey (ﬁi)lﬁf (7°) GV
\/ﬁl Tyr/ Ny , T N1 ,
V'GIr (ff) - ’ 14 VG ( ) F'U (I?) GV
- \/§1 ’ 2 f ;EtFt 2 \/7 2 Tny/ Ny 2
view (°) v (°) Giv
" TNy
2
= 0p(1)Op (1) +0p(1)0p (1) + 0, (1)
= o0p(1). O

Lemma D-17: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*

hold. Then, the following statements are true.

(a)

Y T—h

FF 1

== _ T_ ZQ'E [FtE;]
h h t—p
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(1), where T, =T —h—p+ 1.



=~/ T—h
Fy 1
% T ; QE[EY}] = 0p(1)
() . o
Fur, 1 «—
E|F,] =0,(1),
T, Th;pQ [E,] = 0p (1)

where v, = (1,1,...,1)" is a T}, x 1 vector.

(d)

~/

F(E-FQ)Q B

T, — o
(© i
Y (E—i?) LRI
" (ﬁ FQ)Q 1B
 \E-EQ)Q B =0, (1

=/ T—h
F9H 1 ~
=t = — E F =0, (1
T, T, i LMy n p( )

Proof of Lemma D-17:
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To show part (a), first write

o~ A~
FF 1 .
= — — FE|\F.F
T ; QE[F,F;] Q
1 T—h/\ . 1 T—h
= =Y EF,—=—> QE[EF]Q
hi= =
T—h T—h
1 5 ’ / o ’ / ! 1 ’ /
= (Et—QEt“‘QEt) <Ft—QEt+QEt> _TZQE[EtEt]Q
his hi=
1 T—h T—h
- A (B n) (o) ok S E(E-on)
t=p
T—h

Now, by part (g) of Lemma D-16, we have that

T—h
20

=3 (B~ @) (B -QF,)

Th &

Moreover, for any a,b € REP such that |ja||, = [|b]|, = 1

1 T—h ,
dQ—S " F (fw —Q’F) b
Th ;—t =1 =t

1 T—h 1 T—h R R ,
< @ (=S EF ) Qa, | — b’(E— E)(E— ’E)b
Q(Th;”)Q Th; —QE) (B - QE,
1 T—h 1 T—h R R ,
< @t (7T )| - 30 (B ) (B - 0) s
t=p t=p

= R ,
7 2V (B~ QE) (B~ @E) b
2 =p

1 T—h
= | 0QQa| = > EF,

(since, for a symmetric psd matrix A,

[)‘max (A)]2 = Amax (A)>

||A||2 = \/)‘max (AA) = \/)‘max (42)
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Now, by Assumption 3-6, there exists a positive constant C' such that

R / 1/2 / 1/2 R
dQ'Qa = dV'Z <E> <E> =EVa

Ny
~ 'T\ _ ~
= dV'Z <—> =Va
N

T 17 1=1=1
< Amax (M) aV'ZEVa
= Amax (%) (since === Iy, V'V = Ixp, and ada= 1)
< C for all Ny, Ny sufficiently large. (132)

while, applying the triangle inequality and part (d) of Lemma D-16 allow us to show that

| T=h

/

T > L
t=p

1 T—h
< 73 Ik,
2 P

1 T—h
= ? Z \/)\max (EtE:‘,EtEQ)
h t=p
1 T—h
- = Amax (B )]
Th tz:; [ max (_t—t)]
1 T—h
- = Eyl
i 2 VI

1 T—h
- = 2
- 7 L e

= 0p(1)

Combining this result with part (g) of Lemma D-16 and the Slutsky’s Theorem, we deduce that

1 T—h ,
dQ =S F (1? —Q’F) b
Th ; =t \ =t =t

IN

a'@Q'Qa

| T=h

/

T, > EF,
t=p

L Th R .
72U (B QE) (B -QE) b
2 t=p

= op(1)
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Since this argument holds for all a,b € REP such that ||lal|, = ||b]|, = 1, we further obtain

| T=h R ,
Q=Y E (B, ~QE,) =o0,(1)
i
Now, given that
= | T=h R hE
7o (B-QE)FQ= [Q’Th S E(E-QR)| .
t=p t=p
a similar argument also shows that
1 T—h
—> (B~ QE) FlQ =0, (1).

Th &

Making use of part (b) of Lemma D-2 and the Slutsky’s theorem, we also see that
| T=h | T=h
P
@ (ﬁ Z;Etﬁz -7 ;E [ﬂEH) QL0

Putting these results together and apply Slutsky’s theorem, we then obtain

=~ T—h

EE 1

T tZ QE[EF]Q
=p

L Th R . | T=h ,
- T Z (Et - Q/Et) (Et - Q/Et> + Q/?h Z £, (Et - Q/Et>
t= t:p
L Tk | Ih | T=h
S (B -QE)EQ+Q (7 Y EF - S E[EF])Q
t=p T t=p T t=p

= o0p(1)
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To show part (b), first write, for any a € RE? and b € R% such that |al|, = 1 and ||b]|, = 1,

~/ T—h
dFYb 1 1y !
== - =Y dQE[FY{]b
Th T, tz:;
| T=h T-h
- = 'F,Yib—— > dQE|FY,|b
T—h
AN (o o)y LS woE mrys
= TZ‘L ol T A N L
W= t=p
T—h 1 L=k 1 /
1 1 T / / '0) —_ FY/ r— E EZ b
= g2 (B-QR) Y+ dQ | Y EY 7 2 B EY]
h i=p t=p p
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Focusing first on the first term on last line above, we note that,

=
— > d(E,—-QFE)Y
T, ; ( t t> ¢
1 T—h R , | T=h
© S (o) (B 0m) £ Y
h t—p h t=p
1 T—h N /
- "7 L (B-on) (B-en).
t=
| T=h T—h T—h
(—ZYY’——ZE YY’]>b+—Zb’E Y, Y)b
Th = =p t=p
1 T—h N N ’ 1 T—h 1 T=h
< G’Th Z (Et - Q,Et) <Et - Q/Et> ay |V <Th Z Y, Yi— T, Z E [thgo b
= t=p t=p
1 T—h R . ’ 1 T—h
I — 0 — 0 P / !
+,a T Z: <Et QEt) (Et Qﬂt) a T, ;p VE[Y,Y;]b
(since Vai +az < /a; + \/@)
1 T—h R N ’ 1 T—h 1 T—h
< (o= (B -QL) (B -QE) a\|¥ (; DY Y- D E mﬂ]) b
h t=p h t=p h t=p
EER R p 1 Lzh
+ a’? Z (Et - Q’Et) (Et - Q,Et) a Ty Z b ”thg
h t—p h t=r+1

(since 0 [y, v1] b= E [(Y,)?] < B poviy,] = B Iy, 2]

= op(1)

by part (b) of Lemma D-2 and parts (d) and (g) of Lemma D-16. In addition, note that, by making
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use of part (b) of Lemma D-2, Assumption 3-6, and Slutsky’s theorem; we obtain

1 T—h 1 T—h
Q' (E ;Etzz -7 2:3 E [E&%]) b

< JadQQa b/( ZFY’——ZEFY’) ( ZEtY/——ZEFY’>
h t—p
INN 1 T 1 T-h 1 T—h 1 T—h
< >\m —~ A FY,—— EFY/ — FY/__ EFY/ b
~ ax ( Nl ) (Th ;p =—t= Th ; [—t—t]) (Th ;p =t=t Th ; [—t—t])

= o0p(1).

Combining these results, we then get

N T—h
a%hzb _ Tlh tZI:) dQ'E [Etxg] b
1 T—h R 1 T—h 1 T—h
= T, Za' (Et _Q/Ft> Yib| + |a'Q’ (Th ZEtX; T, ZE [Etzﬂ) b
t=p t=p t=p
= o0p(1)

Since the above argument holds for all a € RE? and b € R% such that ||a|, = 1 and ||b, = 1; we

further deduce that N
FYy 1
Th——ZQE FY/] —OP( )

To show part (c), first write, for any a € REP such that |al|, = 1,

1
aELTh
T

1Th

= = Z dFy = d'QSicPlasrop (lasrop — A Jhirch
=p

1 5 _
= Th Z a <Et - Q,Et + Q/Et> — a'Q'S}(P(d+K)p (I(d—i—K)p — A) ! JZHKN

— d'Q' Sk Pasryy Larry — A) " Jhyxeh

T—h T—h
1 ~ 1 3
- T, > d <—Ft - Q,—Ft> +dQf ( > Fy = SiPuariyp (Larxp — A) 1Jé+Ku)
t=p t=p
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Focusing first on the first term on last line above, we note that,

T—h T—h
1 e 1 N
T ;p da <Et - Q/Et> < T ; a’ (Et - Q'F t) ’ (by triangle inequality)
| T=h R /
= G/Th Z (Et - Q/Et> <Et - Q’Et> a (by Liapunov’s inequality)
t=p
L Th R /
< T_ Z (Et - Q/Et> <Et - Q’Et>
i )
= 0p(1)

by part (g) of Lemma D-16 and Slutsky’s theorem. In addition, note that, by making use of part
(d) of Lemma D-2, Assumption 3-6, and Slutsky’s theorem; we obtain

T—h
1 -1
adQ (Fh E Fy — SkPatkyp (I(d+K)p —A) J</1+KM>
t=p

T—h !
1 _

< VdQ'Qa (ﬁ Z Fy — SkPas iy Lty — A) ! J(/1+KM>

t=p

| T 1/2

1
X (E > Ey— SiPusip larrp — A) J</1+KM>]
t=p
T—h !
IR 1 -1

< L L o . /
> Amax < N, ) (Th ;}; Et SKP(d+K)p (I(dJrK)p A) Jd+Ku>

| T 1/2
1
X (T_h > Ey— SiPlasip Tarrp — A) JQ+KM>]
t=p
= op(1).

Combining these results and applying Slutsky’s theorem, we then get

~/
adF “1
TTh — ' Q'S Pty Larky —A) Jiirh
L Th 1 L=h 1
< % >od (Et - Q'Et) +1d'Q (ﬁ Y E = SkPlasryy (Larxp — A) Jé+Kﬂ> ‘
t=p t=p
= op(1)

279



Since the above argument holds for all a € RE? such that ||a|, = 1; we further deduce that

~/

g,

-1
T, Q/S}fp(dJrK)p (I(d+K)p - A) Jc,l+K# =0p(1).

Turning our attention to part (d), note that for any a € RXP and b € R? such that [|all, = 1

and ||b]|, = 1, we can write
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IN

IN

IN

IN

1 T—h )
Q0T 2 [1.15]

oF (B~ FQ) Q"B

T
1 T—h
dF, (F FQQ) Q!B
Ty &
1 T—h 1 T—h , , ,
o | =S FF)a |bVByQ1— (E —F ) (E —F ) ~1B,b
\ (Th;tt) 2Q Th; (—EQ) (B -EQ)Q'B

T—h

+ E a'Q'E [E,F}] Qa

1 T—h 1 T—h
=Y FEF - = QE[EF]
a (Th & tL't Th s Q [_t—t] Q)

xd b/BnglTih Ti:h (Ft F’Q) (A; - E;Q) Q-1Byb

i

T—h
e LS (E - p) (2 2o QlB2b}

t=p

1 T—h
a (Th Z FF! — Z Q'E [F,.F)) Q) a

N—

(usmg the inequality /a1 + a2 < /a1 + v/az for a1 > 0 and ap > O)

1 T—h 1 T—h
_ ,
“ (ﬁ 2 Bl =7y 3 QEILE @) a

J Za’Q’E [E.F ]Qan’B’Q’ 1= > (B -EQ) (E-EQ) Q' Bab

1 T=h ~/ VN
7 > (B~ Ee) (F - Eo)
t=p

2

b’BéQ’lQlng}

b/BéQ/—leleb
2

1 T=h ~/ VPN
7 2 (B - FQ) (E - Q)

t=p

<since for a symmetric psd matrix A, ||Ally = v/ Amax (A’A) = v/ Amax (42) = 1/ [Amax (4)]?

= Amax (4) and since o Q'E [E,F] Qa = E [(/Q'E,)*| < B[/ QQuEIE,] = dQ'QaE [|EJ3])
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1 = | Th
_ . |
- al(ﬁ;FtFt_T_hZQ/E[EtEt]Q>a

t=p
| Tk N /
- ?h tZ (Et N QlEi) (Et - Q/Et> b’BéQ/leleﬂ)
— 2
1 =h 1 T=h R /
+ “’Q’Q“Th Y E [HE,:HS} T > (Et - Q/Et> <£t _ QlEt) B Q- By
t=p — 2

Now, by part (a) of this lemma and Slutsky’s theorem, we have

=op(1) (133)

Note also that

1 L=h ) 1 I=h i | N |
T ; E |:”Et”2i| < T ; (E [”Et”zD (by Liapunov’s inequality)

< 7 TZh (C)5 (by Lemma C-4)

=
- O (134)
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In addition, note that, by Assumption 3-7, there exists a positive constant C' such that

Amax (B3 B2)

/
= Amax (JdAhPEd+K)pSKS}(P(d+K)p (Ah> J(/i)

/
< Amax (SKS}() Amax (,PédJrK) P(d+K)p> Amax {Ah (Ah> } Amax (JdJc,l)

= Amax (SxSk) A

Ah

-
e (4')

= Cmax < |[Amax (4

< Cmax{’/\max Ah
{

= O
< (C for integer h > 1,

41
N (SlSi) A {
(si

50 Amax (Pl )Pl ) = Amax (JaJ) = 1)

)

Ah Ah} since S Sk = Ixp SO Amax (SKSK) = 1)

9

Amin (Ah> ‘2} (by Assumption 3-7)

Phain (A}

where ¢, = max{|Amax (A)|, |[Amin (A)|} and where the last equality follows from the fact that

0 < ¢pax < 1 given that Assumption 3-1 implies that all eigenvalues of A have modulus less than
1. The boundedness of Apmax (B5B2) allows us to further deduce that

IN

IN

IN

b,BéQ,_lQ_leb

TN V2 /T Y2
VB (—) =VVIE <—> Bsb
2\'V M 2

I'T
v B} ( ~ > Bab
1

[ IR
Amin (E) b By Bob

[ IR
_>\min (E)_ Amax (BéBQ) b’b

[ r'r\] !
>\min (Nl > >\max (B£B2)

C* < o0 (135)
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for some positive constant C* in light of Assumption 3-6. It follows by applying expression (132) in
the proof for part (a), expressions (133)-(135) here, as well as the result given in part (g) of Lemma
D-16 and the Slutsky’ theorem that

oE (E~EQ) Q' Bab
Ty

1 Tfh/\/\ 1 T—h
1| /_ / /
a(Th;thFt Th;pQE[EtEt]Q>a

IN

T—h

1 ~ ~ '
“\N T Z (Et - Q/Et> (Et - QlEt) V'ByQ Q1 Bab
hi= )
| T=h R R ,
| @QQaz S E[IEIE] ||l X (B~ @E) (B~ QE) || 0BjQ 1@ Bab
t=p t=p 2

= o0p(1).

Since the above argument holds for all a € REP and b € R such that |ja||, = 1 and ||b]|, = 1, we
further deduce that

~/

F(E-£Q)Q7'By
Th

=op(1).

To show part (e), note that for any a € R% and b € R? such that [jall, = 1 and [|b]|, = 1, we

can write
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IN

IN

IN

@'Y (E~EQ) Q' Bab
T,

T—h
1 ~/ _
7 2oL (£ - £1Q) Q"' Bab

T—h T—h
1 1 ~ AN
o 3y rn) oy vosen 3 (- o) (B - m) o
t=p t:p

1 T—h 1 T—h 1 T—h
o (T D VY- > E [Mé]) al + |7 2 ElY.Yia
h t=p h t=p h t=p
1 T 'y
X\ VB 3 (Ei— FiQ) (E, ~ FiQ) Q' Bab
t=p
1 T—h 1 T—h
a|l=)> Y,V — Z E [théo a
(Th t=p Th t=p
= Vg
<\ VB S (B - EQ) (B~ i) Q' Bob
t=p

T—h T—h
1 1 ~/ I s~y
+ ﬁgpa@mma VB Y (Ei ~ FiQ) (Ei ~ FQ) @71 Bab

(using the inequality /a1 + a2 < /a1 + +/az for a3 > 0 and ag > 0)
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IN

| T=h | T=h
a (? ZXtXQ T Z E [XtXﬂ) a
\ h = h=p

1 T=h ~1 IoN
7 2 (B -Ee) (- EQ)

t=p

1 T—h )
+J oy L5 [ztzw

(since for a symmetric psd matrix A, [|Ally = v/ Amax (A’A) = v/ Amax (42) = 1/ [Amax (A))?

b/B;QlelBQb}

2

1 T=h ~/ AYON
7> (B -Ee) (£ -EQ)

t=p

b/BéQl_lQ_lBQb
2

= Amax (A) and since 'E [Y,Yi|a = FE [(a'zt)ﬂ < EldaYiY,| =E [HXtHgD
€
T,
T—h

T—h 1 T—h
= { a! ( Y YYi - — ZMLE]) a
t=p Th t=p
1 «—— /~ ~ /
T ; (B -QE) (E-QF)

1 T—h
+J IR AH J
t=p
1 T=h ~/ ON 1 T-h ~ /
(since T Y (Et _ Egcg) (Et _ E;Q) = 3 (Et - Q’Et> (Et — Q'Et) )
t=p

2

b'B;Qlelng}

7> (E-on) (E-or)

t=p

b’BéQ'ilelBQb
2

Now, by part (b) of Lemma D-2 and Slutsky’s theorem, we have

_0, <%) — 0, (1) (136)

1 T—h 1 T—h
a | = Y, Y, - — ElY.Y'l|a
(w5 Eeuan)
Note also that

T—h T—h 1
1 1 3
T tg_p E {Hthg} < T g—p (E [HthgD3 (by Liapunov’s inequality)

1 T—h 1

Z (C)® (by Lemma C-4)
"

3

IN

T &
= (0) (137)

It follows by applying expressions (135), (136), and (137) as well as the result given in part (g) of
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Lemma D-16 and the Slutsky’ theorem that

@'Y (E~EQ) Q' Bab

I,
1 T—h 1 T—h
< a (T_h ; thzlt - ?h ; E [Ktl%]) a
B Y @ -on) (E-an)| vmemom
Th Pt T - o — )
1 T=h 1 T=h ~ /
| 7 tz E [HLH%} T tz (Et - Q’Et> (Et - Q’Et> b BYQ' Q1 Bob
=p =p 9
= o,(1).

Since the above argument holds for all @ € R% and b € R such that |ja|, = 1 and ||b], = 1, we
further deduce that R
Y (E-EQ)Q B,
T,

=0, (1).

To show part (f), note that for any b € R? such that ||b||, = 1, we can write
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t=p

4, (B~ FQ) Q' Bab
Ty,
1=
_ |~ o —1
= |G 2 (L-re)e
1
< T Z ‘(Et — EQQ) Q_lng‘ (by triangle inequality)
t=p
1 T=h ~7 YN
< \ b'BéQlflT—h Z (Et - EQQ) <Et - EQQ) Q@ 'Bzb  (by Liapunov’s inequality)
t=p
1 T=h ~/ YN
< \ T Z (Et — EQQ) <Et - EQQ) V' ByQ' Q1 Bsb (since for a symmetric

2

psd matrix A, [|A]l; = v/ Amax (AA) = /Amax (A2) = 1/ [Mmax (A)]? = Mmax (A))

T—h

- |z (E-er) (E-or)| vee-Q B
t=p
1 T=h ~/ PN 2 1 =h ~ /
(since T tZ (E: - FiQ) (E - FiQ) = T tZ (£:-QFE,) (B - QF,) )
=p =p

It follows by applying expression (135), the result given in part (g) of Lemma D-16, and the Slutsky’
theorem that

o -1 _
(£ L;F?Q il J Tihjz_j(ﬁt—aﬂt) (B, -@E) VB

= op(1).
Since the above argument holds for all b € R? such that 6]l = 1, we further deduce that

b, (E-EQ) Q7B
Th

=op(1).

For part (g), note that, for any a € RX? and b € R such that ||a||, = 1 and ||b], = 1, we have,
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by direct calculation,

T—h
= =3 (B - QE A+ QE )b
t=

T—h T—h
1

~ 1
= 7 2 (B QE ) ninb+ 7 3 a'QFurfnd

T t=p t=p

Focusing first on the first term on last line above, we note that

| IT=h
=3 (B~ QL) b
h i
1 T R , | T=h
< 7 2 (BmQE) (B~ QE) ay Vg 3 b
t=p t=p
1 T R )
< 7Y (B-QE)(E-QE)a
T, ; ¢ t t ¢
| IT=h | T=h | L=h
XAl Y T Z nt+h77§t+h T Z E [nt+h771/t+h] bl + T, Z VE [Ut+h77£+h] b
" i=p hi=p h i=p
T R , | T=h | =1
< T, tz:; a’ (Et - Q,Et) (Et - QIEt> a, ||V (T_h tz:; Merh M, — T, tz:; b [771‘,+h77::+h]) b
A= R , | IT=h
+ Th ; a <Et - Q’Et> (Et - Q,Et) a ?h ; VE [nt+hn2+h] b

(by the inequality /a1 + a2 < /a1 + /az for a3 > 0 and ag > O)

Note that, by part (g) of Lemma D-16, we have

1 T—h

Ty &

<Et - QlEt) (Et - Q,Et), = Op (1).
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and, by part (h) of Lemma D-2,

1 T—h 1 T—h 1
Th Z 77t+h771,t+h - Th Z E [nt+h77;+h] =0p (ﬁ) .

t=p t=p

Moreover, note that
h—1

) 7!
Mt+n = Z JaA? Jqy kEtrn—j
j=0

and, using expression (71) given in the proof of part (e) of Lemma D-2 and Assumption 3-2(b), we

see that there exists a positive constant C* such that

| T=h
T ; VE [0 non) b

1 T—h )
= 7 2 B[ men)’]
t=p

T—h

< 7 2 (B[ena])’
| T=h .
< T ; (C%)>

(for some positive constant C* as shown in expression (71))

< (02 <0

Making use of these calculations and applying Slutsky’s theorem, we deduce that

= / /
_ a(Et_QEt)T]t+hb
h =
1 = =~ ~ ! 1 T—h 1 T—h
=\ ,Z: ! (Et N Q/Et) <Et a Q/Et> “\ [ (T_h tz: Merh My, — T, tX: E [nt—&-hn;ﬁ—&-h]) b
=p =p

=p
1 T-h R . / 1 T—h
T o (B @E) (B Q) a\| 7 3 VE ]
(
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Next, note that, by part (f) of Lemma D-2 and Slutsky’s theorem, we see that

T—h

T—h
1 1
T tZ:; dQEm b = dQ (Th tz:; Eﬂ?ﬂh) b

Op (%) =op (1)

Putting everything together and applying Slutsky’s theorem once more, we then obtain

alElf)b = iga'ﬁ nb
T, T, £ LyMian
- iTha'(ﬁ —Q'F) / b+iTia’Q'F b
T, e L4 Ly ) Mean T, e L4Tean
= op(1).

Since the above argument holds for all @ € REP and b € R? such that ||all, = 1 and ||b], = 1; we

further deduce that
~ T—h

Fo 1
T_:TZEtn;—&-h:Op(l)' .
h h =

Lemma D-18: Suppose that Assumptions 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, and 3-11*
hold. Then,

~/
Bo — Bo
B1 — Bl = 0Op (1) .
By — Q7 'By

Here, BO, Bi, and By denote the OLS estimators of the coefficient parameters in the (feasible)

h-step ahead forecast equation

D p
Yien = Bo+ Z B Yi g1+ Z By gFi—gi1 + s
g=1 g=1

= Bo+BY,+ByF 4+,

for t = p,....,T—h, where the unobserved factor vector £, is replaced by the estimate F , and where

~ h—1 ,
Ton = Nepn — B (Et - Et> with 7,5, = ijo JgAI T gerin—j as previously defined.
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Proof of Lemma D-18: To proceed, we first stack the observations to obtain the representation

Y(hy=up, Bfy+ ¥ B+ E By, + 9 (138)
Tpxd — Tpxllxd Thpxdpdpxd TpxKpKpxd Thxd

where T, =T — h — p + 1 and where

~/
!/ ! ~/
Yiip Y, an Th+p
Y (h) = ) K — ) E - ) and S/j ==
Thxd , Ty xdp , ThxKp ~/ Thxd ,
YT XT—h ET_h nr

It is easily seen from expression (138) that the OLS estimators of the coefficients 3, Bi, and By

are given by

|
—_

By T, Y 4 F U Y ()
B |=| Y, YY YF Y'Y (h)
Bs Fu, Fy FF E'Y (h)

Now, rewrite expression (138) as

Y(h) = u5,By+YBi+FBy+$
= B+ YBi+EBy+ 59— (E-F) B
= B0 +YBi1+EBy+ 9
= 11,80 +YB1+FQQ 'By+ 9
= w B+ YBi+ (E+EQ-FE)Q "By +9
= By +Y B+ FQ B,y — (E - EQ) OBy + 6
B0
B, |- (E-EQ)Q B +5,
Q7 'B,

[=)

= |y Y
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and it follows that

~/ ’
Bo — Bo
By — By
By — Q1B
~\ -1 A
T, Y o F vy, Bo
= | Yu, YY Y'F Y |[Y(h)-| B
Fu, Fy FF F Q™' By
~\ -1 r q
Ty L/Thz L/Th§ /,/Th R b b
= | Y, Y'Y Y'F v' | [m ¥ E]| B |-| B
-~/ -~/ PN -~/
Fu, FY FF W Q™ 'By QB
~\ -1 q
Ty, L/Thz L’ThE L/Th ~
~| Y, YY YE Y | (E-EQ)Q'B,
Fu, Fy FF E
/ ! -lr r ]
T LThX LThE L,
+| Y, YY Y'F Y | 9.
Fu, Fy FF F
~ —-17T = _
T by B\ | 4 (E-EQ)Q7E,
= - | Yu, Y'Y YF Y (E-FQ)Q 'Bs
~/ -~/ )~ ~ -~
Fu, FY FEF F(F-FQ)Q B
N —1
T, oY o F )
+| Y, YY Y'E Y'$
Fu, Fy FF ol

Next, applying parts (b) and (d) of Lemma D-2 and parts (a), (b), (c), and (d) of Lemma D-17,
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we obtain

1 YT, 4y E/T,
Y'ir, /Tw Y'Y )T, Y'F/T,
Fu,/Tw Ey/T, EFE/T,
B T—h B T—h
! VNI D W T
B T—h
_ Thlzt:f?E[Xt] 12 E[Y, Y 12 = EY,F}Q
— T_
Ty, @EIE] hlzt:p QE[FY}] hlzt:p Q'E[F,F}]Q
= op(1).

Moreover, note that

1 -1 ZT_ph Y , -1 ZT_ph _;
T Y B lz YY) lzt_ Y,F/]Q
T Zf_f@'E 7)) hIZt_fQ' E[EY] T, hlzt_fcg' E[EF)Q
1 Elyj  EIE]Q
= 7 Z ElY] EYY] EY.F]Q
P\ QEIL) QEEY] QE[EE)Q

Lo 0 1 Bl  E[X] L0 0
= |0 Iy O T—hz ElY, EY,Y)] E[Y,F} 0 I, O
0 0 @ =P \ E[|F,] E|EY! EI[F.F) 0 0 Q

which is non-singular and, therefore, also positive definite for all T" sufficiently large in light of the
result given in part (b) of Lemma D-1.

In addition, applying parts (f) and (g) of Lemma D-2 and parts (d), (e), (f), and (g) of Lemma
D-17, we have

T—h
vy, ) 1 , ( 1 )
T T Zt_p Teh = 2r \ T
Y'§ 1 =h 1 >
= = =N Y =0,(—=
T, T, - LiMitn p T
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and

4 (E-FQ)Q7'B, 1
h ( T ) = ? Z (Et _E:‘,Q) QilBQ = Op(1)7
h h t=p
X/ (E _ EQ) Qle2 1 T—h .
7 = LS v (- FQ) Q' Bi=0y(1).
h h t=p
~/ -~
F(E-FQ)Q'B: (T,
- = 7 L E(E-EQ) QB =0,(1),
=p
~/ T—h
E9H 1 5
T_h = Th Z Em2+h = 0p(1)
t=p

Putting everything together and applying the Slutsky’s theorem

~/
Bo — Bo
By — B
By — Q7B
—~ -1T s _
Ty [’IT;LX L/ThE L’/Th <£_EQ>Q lBQ
= | Yu, Y'Y YF Y'(F-FQ)Q B,
~/ ~/ )~ —~, o~
Fu, Fy FF F(F-FQ)Q'B,
~ -1 r
Th Y up I vy, )
+| Y, YY Y'F Y’
Fu, Fy FE) |Fo
—~ -1T _ fa _
1 T, Y TN F T, ', (E—EQ)Q "By
= —| T, TYY T7'Y'E T,'Y' (E-FQ)Q™'B,
~/ ~/ )~ —~, o~
T Fur, T,'FY T,'FF T,'F (F-FQ) Q!B
1 ey e B\ [ iy 9
h “Tp— h “Tp=— h “Ty
+ Th—IX/LTh T}L_IX,Z Th—IXIE Th—lzlﬁ
T,'Fu, T,'FY T,'FF | | 1,'E%
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