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Abstract

In this paper, we propose a new variable selection method that allows researchers to distinguish

between variables that are relevant in the sense that they provide useful information for estimating

underlying latent factors and variables that are irrelevant in the sense that they do not load on

underlying factors, in an FAVAR model. In our context, variable selection methods are needed

because using too many irrelevant variables could lead to inconsistency in factor estimation. Our

procedure is designed to facilitate consistent factor estimation and can be viewed as the factor model

analog of the type of multiple hypothesis testing or variable selection procedures that people use

to select regressors when specifying linear regression. One key difference between our method and

the typical multiple hypothesis testing procedure is that rather than controlling the overall Type

I error at some fixed non-zero level, our procedure is completely consistent in the sense that the

probability of both Type I and Type II errors go to zero asymptotically as sample sizes approach

infinity. Monte Carlo evidence indicates that our method has very good finite sample properties.

Additionally, we analyze a real-time macroeconomic dataset, where it is shown that our method

delivers factors that result in improved marginal predictive content, relative to cases where standard

principal components as well as hard-thresholding methods are used in factor estimation.

Keywords: Factor analysis, factor augmented vector autoregression, forecasting, mod-

erate deviation, principal components, self-normalization, variable selection.

JEL Classification: C32, C33, C38, C52, C53, C55.

∗Corresponding Author: Norman R. Swanson, Department of Economics, Rutgers University, nswanson@econ.

John C. Chao, Department of Economics, University of Maryland, jcchao@umd.edu. Yang Liu, Department of

Economics, Rutgers University, yl1241@scarletmail.rutgers.edu. The authors are grateful to Matteo Barigozzi, Bin

Chen, Rong Chen, Simon Freyaldenhoven, Domenico Giannone, Yuan Liao, Esther Ruiz, Minchul Shin, Jim Stock,

Timothy Vogelsang, Endong Wang, Xiye Yang, Peter Zadrozny, Bo Zhou and seminar participants at the University

of Glasgow, the University of California Riverside, the Federal Reserve Bank of Philadelphia, the 2022 North America

Summer Meeting of the Econometric Society, the 2022 International Association of Applied Econometrics Association

meetings, the DC-MD-VA Economtrics Workshop, the 2022 NBER-NSF Time Series Conference, the Spring 2023

Rochester Conference in Econometrics, and the 8th Annual Conference of the Society for Economic Measurement for

useful comments. Chao thanks the University of Maryland for research support.

1



1 Introduction

As a result of the astounding rate at which raw information is currently being

accumulated, there is a clear need for variable selection, dimension reduction and

shrinkage techniques when analyzing big data using machine learning methodologies.

This has led to a profusion of novel research in areas ranging from the analysis of

high dimensional and/or high frequency datasets to the development of new statistical

learning methods. Needless to say, there are many critical unanswered questions in

this burgeoning literature. One such question, which we address in this paper stems

from the work of Bai and Ng (2002), Stock and Watson (2002a,b), and Forni, Hallin,

Lippi, and Reichlin (2005). In these papers, the authors develop methods for con-

structing forecasts based on factor-augmented regression models. An obvious appeal

of using factor analytical methods for this problem is the capacity for dimension re-

duction, so that in terms of the specification of the forecasting equation, employment

of a factor structure allows the parsimonious representation of information embedded

in a possibly high-dimensional vector of predictor variables1.

Within this context, we note that a key assumption commonly used in the lit-

erature to obtain consistent factor estimation is the so-called factor pervasiveness

assumption, which requires that Γ0Γ converges to a positive definite matrix as

the number of time series variables,  → ∞, where Γ denotes the loading matrix
of the factor model. Since this assumption imposes certain conditions on how the

variables in a given dataset load on the underlying latent factors, it is of interest

to have econometric tools which allow researchers to check the empirical content of

this assumption for the particular datasets they are using. Along these lines, our

1In addition to the greater variety of data that are being collected now, an important source of

high dimensionality in economic datasets is the use of disaggregate, as opposed to aggregate data

(see e.g. Qiu and Qu (2021)). Disaggregate data may be more informative than aggregate data in

situations where there is information loss in the process of aggregation.
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paper explores situations where the pervasiveness assumption may not hold because

one is working with a dataset where some of the variables are irrelevant, in the sense

that they do not load on the underlying latent factors. If a sufficient number of

such irrelevant variables exist, inconsistency in factor estimation may result if one

naively includes all available variables when estimating the underlying factors, with-

out regard to whether they are relevant or not. See Chao, Qiu, and Swanson (2023),

for a particularly pathological example where an estimated factor, b approaches 0
in probability, regardless of what the true value of  happens to be - a situation

which can arise when the underlying factors are nonpervasive. Not being able to

obtain consistent estimates of the underlying factors will clearly cause problems for

empirical researchers, such as when the objective is to estimate forecast functions

that incorporate estimated factors. On the other hand, if one pre-screens the vari-

ables and successfully prunes out the irrelevant ones, then consistent estimation can

be achieved, under appropriate conditions. For this reason, a main contribution of

this paper is to introduce a novel variable selection procedure which allows empirical

researchers to correctly distinguish the relevant from the irrelevant variables prior to

factor estimation, with probability approaching one. We study this problem within a

factor-augmented VAR (FAVAR) framework - a setup which has the advantage that it

allows time series forecasts to be made using information sets much richer than those

used in traditional VAR models. While the present paper focuses on the develop-

ment of a variable selection procedure and the analysis of its asymptotic properties,

we show in Chao, Qiu, and Swanson (2023) that the use of our methodology will

allow the conditional mean function of a factor-augmented forecast equation to be

consistently estimated in a wide range of situations, including cases where violation

of factor pervasiveness is such that consistent estimation is precluded in the absence

of variable pre-screening.2 Monte Carlo experiments indicate that our procedure has

very good finite sample properties, in the sense that when sample sizes are large,

2See Theorem 4.2 of Chao, Qiu, and Swanson (2023). A proof of Theorem 4.2 can be found in

Appendix A of that paper.
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such as the case where the number of observations,  = 600 and  = 1000, then

both Type I and II error rates are very close to zero. Moreover, even in the smaller

sample case where  = 100 and  = 100, Type I and II error rates are usually less

than 0.05, and are often much smaller than that. In order to illustrate the empirical

relevance of our procedure, we also carry out real-time forecasting experiments using

a variety of macroeconomic variables from the well-known FRED-MD database. In

the illustration, we compare our method for pre-selecting variables prior to factor es-

timation with two alternative methods for factor construction: standard PCA, which

does not pre-screen the variables, and a hard thresholding method that is used in

the empirical literaure. We find that our method leads to appreciably more precise

predictions when forecasting using factor-augmented autoregressions than when fore-

casting with factors constructed using the other two methods. Overall, we feel that

the theoretical and experimental results detailed in this paper add to the nascent

literature that considers the problem of factor estimation under various relaxations

of the conventional factor pervasiveness assumption (see, for example, the interesting

papers by Giglio, Xiu, and Zhang (2021), Freyaldenhoven (2021a,b), and Bai and Ng

(2021)).

The variable selection procedure reported here is related to the well-known super-

vised principal components method proposed by Bair, Hastie, Paul, and Tibshirani

(2006) (henceforth, Bair et al. (2006)). Additionally, our procedure is related to

recent work by Giglio, Xiu, and Zhang (2021), who propose a method for selecting

test assets, with the objective of estimating risk premia in a Fama-MacBeth type

framework. A crucial difference between the variable selection method proposed in

our paper and those proposed in these papers is that we use a score statistic that is

self-nomalized, whereas the aforementioned papers do not make use of statistics that

involve self-normalization. An important advantage of self-normalized statistics is

their ability to accommodate a much wider range of possible tail behavior in the un-

derlying distributions, relative to their non-self-normalized counterparts. In addition,
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the type of models studied in Bair et al. (2006) and Giglio, Xiu, and Zhang (2021) dif-

fer significantly from the FAVAR model studied here. In particular, Bair et al. (2006)

study a one-factor model in an  Gaussian framework, thus, precluding complica-

tions associated with the introduction of dependence and non-normality. Giglio, Xiu,

and Zhang (2021), on the other hand, make certain high-level assumptions which can

accommodate some dependence both cross-sectionally and intertemporally, but the

model that they consider is very different from the dynamic vector time series model

studied in the sequel.3

Before continuing, it should be noted that although our self-normalized statis-

tics can be viewed as generalizations of the score statistic introduced in Bair et al.

(2006), our use and interpretation of these statistics differ from that given in their

paper. While these authors viewed the primary function of this type of statistic as

providing a method for picking variables which have predictive content for the target

variable of interest, we view these statistics as being primarily useful for determining

which variables are relevant for factor estimation in the sense that they load on the

underlying factors. Although we agree that these statistics do provide information

about the predictive content of variables; it is important to note that in the context

of the FAVAR model studied here, they do not allow one to construct a variable selec-

tion procedure which, with probability approaching one, correctly classifies variables

on the basis of their predictive content. On the other hand, as mentioned previously,

the use of these statistics does allow one to correctly identify variables which are

relevant for the purpose of consistent factor estimation. The intuition behind why

this is so is illustrated in an example, which we give as Remark 2.2(a) in Section 2

of the paper. In the example, we elucidate why we feel that it is important to first

try to identify all relevant variables and use them to get as precise of an estimate of

3Another interesting recent paper on factor estimation is Ahn and Bae (2022). This paper uses

partial least squares instead of principal component methods to estimate a factor-based forecasting

equation, and thus utilizes an approach that differs from the one taken in this paper. In addition,

Ahn and Bae (2022) assume factor pervasiveness so that issues of variable selection, which are the

main focus of this paper, do not arise in their paper.
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the latent factors as possible, prior to the use of said factors in forecasting models.

Any questions about predictability can subsequently be addressed via specification

testing or variable selection performed directly on the factor-augmented forecasting

equation, after one plugs in the estimated factors.

Our variable selection procedure also differs substantially from the approach to

multiple hypothesis testing taken in much of the traditional econometrics/statistics

literature. In particular, we show that important moderate deviation results obtained

recently by Chen, Shao, Wu, and Xu (2016) can be used to help control the probabil-

ity of a Type I error, i.e., the error that an irrelevant variable which is not informative

about the underlying factors is falsely selected as a relevant variable. This is so even

in situations where the number of irrelevant variables may be very large. Hence, we

are able to design a variable selection procedure where the probability of a Type I

error goes to zero, as the sample sizes grow to infinity. This fact, taken together

with the fact that the probability of a Type II error for our procedure also goes to

zero asymptotically, allows us to establish that our variable selection procedure is

completely consistent, in the sense that the probabilities of both Type I and Type

II errors go to zero in the limit. This property of complete consistency is important

because if we try simply to control the probability of a Type I error at some prede-

termined non-zero level, which is the typical approach in multiple hypothesis testing,

then we will not in general be able to estimate the factors consistently, even up to an

invertible matrix transformation, and in consequence, we will have fallen short of our

ultimate goal of obtaining a consistent estimate of the conditional mean function of

the factor-augmented forecasting equation.

The rest of the paper is organized as follows. In Section 2, we discuss the FAVAR

model and the assumptions that we impose on this model. We also describe our

variable selection procedure and provide theoretical results establishing the complete

consistency of this procedure. Section 3 presents the results of a promising Monte

Carlo study on the finite sample performance of our variable selection method. Sec-
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tion 4 offers some concluding remarks. Proofs of the main theorems and of two key

supporting lemmas are provided in the Appendix to this paper. In addition, some

further technical results are reported in an Online Appendix, Chao, Liu and Swanson

(2023).

Before proceeding, we first say a few words about some of the frequently used no-

tation in this paper. Throughout, let () (), max (), and min () denote, respec-

tively, the  largest eigenvalue, the maximal eigenvalue, and the minimal eigenvalue

of a square matrix . Similarly, let () (), max (), and min () denote, respec-

tively, the  largest singular value, the maximal singular value, and the minimal sin-

gular value of a matrix , which is not restricted to be a square matrix. In addition,

let kk2 denote the usual Euclidean normwhen applied to a (finite-dimensional) vector
. Also, for a matrix , kk2 ≡ max

np
 (0) :  (0) is an eigenvalue of 0

o
denotes the matrix spectral norm. For two sequences, {} and {}, write  ∼
 if  =  (1) and  =  (1), as  → ∞. Furthermore, let || de-
note the absolute value or the modulus of the number ; let b·c denote the floor
function, so that bc gives the integer part of the real number , and let  =

(1 1  1)
0
denote a  × 1 vector of ones. Finally, for a sequence of random vari-

ables + ++1 ++2 ; we let  (+ ++1 ++2 ) denote the

-field generated by this sequence of random variables.

2 Model, Assumptions, and Variable Selection in

High Dimensions

Consider the following -order factor-augmented vector autoregression (FAVAR):

+1 = +1 + · · ·+−+1 + +1, (1)
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where

+1
(+)×1

=

⎛⎜⎝ +1
×1

+1
×1

⎞⎟⎠ , +1
(+)×1

=

⎛⎜⎜⎝ +1
×1

+1
×1

⎞⎟⎟⎠ , 
(+)×1

=

⎛⎜⎝ 
×1


×1

⎞⎟⎠  and



(+)×(+)
=

⎛⎜⎜⎝  
×

 
×


×


×

⎞⎟⎟⎠  for  = 1  

Here,  denotes the vector of observable economic variables, and  is a vector of

unobserved (latent) factors. In our analysis of this model, it will often be convenient

to rewrite the FAVAR in several alternative forms, which will facilitate writing down

assumptions and conditions used in the sequel. We thus briefly outline two alternative

representations of the above model. First, it is easy to see that the system of equations

given in (1) can be written in the form:

+1 =  +    +   + +1 (2)

+1 =  +   +  + +1 (3)

where  
×

=
³
 1  2 · · ·  

´
,  
×

=
³
 1  2 · · ·  

´
,


×

=
³
1 2 · · · 

´
, 
×

=
³
1 2 · · · 

´
,  
×1

=³
 0
  0

−1 · · ·  0
−+1

´0
, and  

×1
=
³
 0
  0

−1 · · ·  0
−+1

´0
. Another useful

representation of the FAVAR model is the so-called companion form, wherein the

-order model given in expression (1) is written in terms of a first-order model:

 
(+)×1

= + −1 +,
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where   =
³
 0

  0
−1 · · ·  0

−+2  0
−+1

´0
and where

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · −1 

+ 0 · · · 0 0

0 +
. . .

... 0
...

. . .
. . . 0

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

In addition to the observations on , suppose that the data set available to re-

searchers includes a vector of time series variables which are related to the unobserved

factors in the following manner:

 = Γ  + , (5)

where 
×1

= (1 2  )
0
. Assume, however, that not all components of 

provide useful information for estimating the unobserved vector  , so that the×

parameter matrix Γ may have some rows whose elements are all zero. More precisely,

let the 1 ×  vector 0 denote the 
 row of Γ, and assume that the rows of the

matrix Γ can be divided into two classes:

 = { ∈ {1  } :  = 0} and (6)

 = { ∈ {1  } :  6= 0} . (7)

Now, let P be a permutation matrix which reorders the components of  such that

P =
³

(1)0
 

(2)0


´0
, where


(1)


1×1
= Γ1  + 

(1)
 (8)


(2)


2×1
= 

(2)
 . (9)
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The above representation suggests that the components of 
(1)
 can be interpreted as

the relevant variables for the purpose of factor estimation, as the information that

they supply will be helpful in estimating  . On the other hand, the components

of the subvector 
(2)
 are irrelevant variables (or pure “noise” variables), as they do

not load on the underlying factors and only add noise if they are included in the

factor estimation process. Given that an empirical researcher will typically not have

prior knowledge as to which variables are elements of 
(1)
 and which are elements

of 
(2)
 , it will be nice to have a variable selection procedure which will allow us to

properly identify the components of 
(1)
 and to use only these variables when we try

to estimate  . On the other hand, if we unknowingly include too many components

of 
(2)
 in the estimation process, then inconsistent factor estimation can arise. This

is demonstrated in an example analyzed recently in Chao, Qiu and Swanson (2023a)

which considers a setting similar to the specification given in expressions (5)-(9) above,

but for the case of a simple one-factor model. More precisely, Chao, Qiu, and Swanson

(2023) give an example which shows that, in this situation without variable pre-

screening, the usual principal-component-based factor estimator b → 0 regardless

of the true value  under the additional rate condition that 
³


(1+)
1

´
=  +


¡
−1
1

¢
, where  and  are constants such that 0   ∞ and 0    1 and where

1 is the number of relevant variables, 2 is the number of irrelevant variables, and

 = 1+2. This example shows the kind of severe inconsistency in factor estimation

that could result if the commonly assumed condition of factor pervasiveness (which

essentially requires that 1 ∼ ) does not hold4.

It should be noted that, in a recent paper, Bai and Ng (2021) provide results

which show that factors can still be estimated consistently in certain situations where

4The reason why we refer to the result given in Chao, Qiu, and Swanson (2023) as a severe

form of inconsistency in factor estimation is because inconsistency of this type will preclude the

consistent estimation of the conditional mean function of a factor-augmented forecast equation.

This is different from the case where the factors may be estimated consistently up to a non-zero

scalar multiplication or, more generally, up to an invertible matrix transformation. In the latter

case, consistent estimation of the conditional mean function of a factor-augmented forecast equation

can still be attained.
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factor loadings are weaker than implied by the conventional pervasiveness assump-

tion; although, as might be expected, in such cases the rate of convergence of the

factor estimator is slower and additional assumptions are needed. To understand the

relationship between their results and our setup, note that a key condition for the

consistency result given in their paper, when expressed in terms of our setup, is the

assumption that  (1)→ 0. When violation of the factor pervasiveness condition

is more severe than that characterized by this rate condition (i.e., if  (1)→ 1

for some positive constant 1 or if  (1) → ∞), then factors will be estimated
inconsistently unless there is some method which can correctly identify the relevant

variables, and only these variables are used to estimate the factors. Indeed, in Chao,

Qiu, and Swanson (2023), we add to the results given in Bai and Ng (2021) by giving

a result (Theorem 2.1 of Chao, Qiu, and Swanson (2023)) which shows that if one pre-

screens variables using the variable selection method proposed below, then consistent

factor estimation can be achieved, even if the rate condition that  (1)→ 0 is not

satisfied. In general, knowledge about the severity with which the conventional factor

pervasiveness assumption may be violated must ultimately be gathered on a case-by-

case basis, and depends on the dataset used for a particular study. Along these lines,

various authors have already documented cases where the empirical evidence shows

that the underlying factors are quite weak, suggesting that there may be rather severe

violation of the assumption of factor pervasiveness. For example, see Jagannathan

andWang (1998), Kan and Zhang (1999), Harding (2008), Kleibergen (2009), Onatski

(2012), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan, and Robotti (2017),

Anatolyev and Mikusheva (2021), and Freyaldenhoven (2021a,b). In such cases, it is

of interest to explore the possibility that weakness in loadings is not uniform across

all variables, but rather is due to the fact that only a fraction of the  variables loads

significantly on the underlying factors. Furthermore, even if the empirical situation

of interest is one where, strictly speaking, the condition  (1)→ 0 does hold, it

may still be beneficial in some such instances to do variable pre-screening. This is

11



particularly true in situations where the condition  (1) → 0 is “barely” satis-

fied, in which case one would expect to pay a rather hefty finite sample price for not

pruning out variables that do not load significantly on the underlying factors, since

these variables may add unwanted noise to the estimation process. For these reasons,

we believe that there is a need to develop methods which will enable empirical re-

searchers to pre-screen the components of  so that variables which are informative

and helpful to the estimation process can be properly identified. In summary, our

paper aims to build on the results developed by Bai and Ng (2021) and others by

introducing additional tools for situations where factor estimator properties may be

impacted by failure of the conventional pervasiveness assumption.

To provide a variable selection procedure with provable guarantees, we must first

specify a number of conditions on the FAVAR model defined above.

Assumption 2-1: Suppose that:

det
©
(+) −1 − · · ·−


ª
= 0 implies that ||  1. (10)

Assumption 2-2: Let  satisfy the following set of conditions: (a) {} is an
independent sequence of random vectors with  [] = 0 ∀; (b) there exists a positive
constant  such that sup kk62 ≤   ∞; and (c)  admits a density  such

that, for some positive constant   ∞, sup
Z
| ( − )−  ()|  ≤  kk,

whenever kk ≤  for some constant   0.

Assumption 2-3: Let  be the 
 element of the error vector  in expression

(5), and we assume that it satisfies the following conditions: (a)  [] = 0 for

all  and ; (b) there exists a positive constant  such that sup ||7 ≤  

∞, and there exists a constant   0 such that inf
£
2
¤ ≥ ; and (c) de-

fine F 
−∞ =  ( −2 −1 ), F∞+ =  (+ ++1 ++2 ), and

 () = sup
£
sup

©¯̄

¡
|F 

−∞
¢−  ()

¯̄
:  ∈ F∞+

ª¤
. Assume that there ex-
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ist constants 1  0 and 2  0 such that

 () ≤ 1 exp {−2}  for all .

Assumption 2-4:  and  are independent, for all   and .

Assumption 2-5: There exists a positive constant  such that sup∈ kk2 ≤
 ∞ and kk2 ≤  ∞, where  = (0  0 )0.
Assumption 2-6: Let  be as defined in expression (4) above, and let the modulus

of the eigenvalues of the matrix (+) − be sorted so that:

¯̄̄
(1)

¡
(+) −

¢¯̄̄ ≥ ¯̄̄(2) ¡(+) −
¢¯̄̄ ≥ · · · ≥ ¯̄̄((+)) ¡(+) −

¢¯̄̄
= min.

Suppose that there is a constant   0 such that

min
¡
(+) −

¢ ≥ min (11)

In addition, there exists a positive constant  ∞ such that, for all positive integer

,

max
¡

¢ ≤ max

©¯̄
max

¡

¢¯̄

¯̄
min

¡

¢¯̄ª

 (12)

Remark 2.1:

(a) Note that Assumption 2-1 is the stability condition that one typically assumes for

a stationary VAR process. One difference is that we allow for possible heterogeneity

in the distribution of  across time, so that our FAVAR process is not necessarily

a strictly stationary process. Under Assumption 2-1, there exists a vector moving

average representation for the FAVAR process.

(b) It is well known that det
©
(+) −

ª
= det

©
(+) −1 − · · ·−


ª


where  is the coefficient matrix of the companion form given in expression (4). It

follows that Assumption 2-1 is equivalent to the condition that det
©
(+) −

ª
= 0

implies that ||  1. In addition, Assumption 2-1 is also, of course, equivalent to the

13



assumption that all eigenvalues of  have modulus less than 1.

(c) Assumption 2-6 imposes a condition whereby the extreme singular values of the

matrices  and (+) − have bounds that depend on the extreme eigenvalues of

these matrices. More primitive conditions for such a relationship between the singular

values and the eigenvalues of a (not necessarily symmetric) matrix have been studied

in the linear algebra literature. In fact, it is easy to show that Assumption 2-6 holds

automatically if the matrix  is diagonalizable, even if it is not symmetric. Assump-

tions 2-6, on the other hand, takes into account other situations where expressions

(11) and (12) are valid even though the matrix  is not diagonalizable.

(d) Note that Assumptions 2-1, 2-2, and 2-6 together imply that the process {}
generated by the FAVAR model given in expression (1) is a -mixing process with -

mixing coefficient satisfying  () ≤ 1 exp {−2}, for some positive constants 1
and 2, with  () = sup

£
sup

©¯̄

¡
|A

−∞
¢−  ()

¯̄
:  ∈ A∞+

ª¤
, and with

A
−∞ =  (−2−1) and A∞+ =  (+++1++2 )

5. Note,

in addition, that Assumption 2-2 (c) rules out situations such as that given in the

famous counterexample presented by Andrews (1984) which shows that a first-order

autoregression with errors having a discrete Bernoulli distribution is not -mixing,

even if it satisfies the stability condition. Conditions similar to Assumption 2-2(c)

have also appeared in previous papers, such as Gorodetskii (1977) and Pham and

Tran (1985), which seek to provide sufficient conditions for establishing the  or 

mixing properties of linear time series processes.

Our variable selection procedure is based on a self-normalized statistic and makes

use of some pathbreaking moderate deviation results for weakly dependent processes

recently obtained by Chen, Shao, Wu, and Xu (2016). An advantage of using a

self-normalized statistic, as discussed in Remark 2.2(b) below, is that it allows the

range of the moderate deviation approximation to be wider relative to their non-

5This can be shown by applying Theorem 2.1 of Pham and Tran (1985). A proof of this result

is also given in Chao, Liu, and Swanson (2023). See, in particular, Lemma OA-11 and its proof in

Chao, Liu, and Swanson (2023).
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self-normalized counterparts. To accommodate data dependence, we consider self-

nomalized statistics that are constructed from observations which are first split into

blocks in a manner similar to the kind of construction one would employ in imple-

menting a block bootstrap or in proving a central limit theorem using the blocking

technique. Two such statistics are proposed in this paper. The first of these statistics

has the form of an ∞ norm and is given by:

max
1≤≤

| | = max
1≤≤

¯̄̄̄
¯̄ q

 

¯̄̄̄
¯̄  (13)

where

 =

X
=1

(−1)+1+−1X
=(−1)+

+1 and   =

X
=1

⎡⎣(−1)+1+−1X
=(−1)+

+1

⎤⎦2 . (14)

Here,  denotes the 
 component of  , +1 denotes the 

 component of +1,

 1 = b1
0 c, and  2 = b2

0 c, where 1  1 ≥ 2  0,  =  1 +  2,  = b0c, and
0 =  − +1. Note that the statistic given in expression (13) can be interpreted as

the maximum of the (self-normalized) sample covariances between the  component

of  and the components of +1. Our second statistic has the form of a pseudo-1

norm and is given by:

X
=1

 | | =
X

=1



¯̄̄̄
¯̄ q

 

¯̄̄̄
¯̄ 

where  and   are as defined in (14) above and where { :  = 1  } denotes
pre-specified weights, such that  ≥ 0 for every  ∈ {1  } and

X

=1
 = 1.

Both of these statistics employ a blocking scheme similar to that proposed in Chen,

Shao, Wu, and Xu (2016), where, in order to keep the effects of dependence under

control, the construction of these statistics is based only on observations in every
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other block. To see this, note that if we write out the “numerator” term  in

greater detail, we have that:

 =

1+−1X
=

+1 +

+1+−1X
=+

+1

+

2+1+−1X
=2+

+1 + · · ·+
(−1)+1+−1X
=(−1)+

+1 (15)

Comparing the first term and the second term on the right-hand side of expression

(15), we see that the observations +1, for  =  1+    + − 1, have not been
included in the construction of the sum. Similar observations hold when comparing

the second and the third terms, and so on.

It should also be pointed out that although we make use of some of their fun-

damental results on moderate deviation, both the model studied in our paper and

the objective of our paper are very different from that of Chen, Shao, Wu, and Xu

(2016). Whereas Chen, Shao, Wu, and Xu (2016) focus their analysis on problems

of testing and inference for the mean of a scalar weakly dependent time series using

self-normalized Student-type test statistics, our paper applies the self-normalization

approach to a variable selection problem in a FAVAR setting. Indeed, the problem

which we study is in some sense more akin to a model selection problem rather than

a multiple hypothesis testing problem. In order to consistently estimate the factors

(at least up to an invertible matrix transformation), we need to develop a variable

selection procedure whereby both the probability of a false positive and the prob-

ability of a false negative converge to zero as 1, 2,  → ∞6. This is different

from the typical multiple hypothesis testing approach whereby one tries to control

the familywise error rate (or, alternatively, the false discovery rate), so that it is no

greater than 005 say, but does not try to ensure that this probability goes to zero

6Here, a false positive refers to mis-classifying a variable,  as a relevant variable for the purpose

of factor estimation when its factor loading 0 = 0, whereas a false negative refers to the opposite
case, where 0 6= 0 but the variable  is mistakenly classified as irrelevant.
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as the sample size grows.

To determine whether the  component of  is a relevant variable for the purpose

of factor estimation, we propose the following procedure. Define  ∈ b to indicate

that the procedure has classified  to be a relevant variable for the purpose of factor

estimation. Similarly, define  ∈ b to indicate that the procedure has classified 

to be an irrelevant variable. Now, let S+ denote either the statistic max1≤≤ | |
or the statistic

X

=1
 | | 7 Our variable selection procedure is based on the

decision rule:

 ∈
⎧⎨⎩ b if S+ ≥ ©−1

¡
1− 

2

¢
b if S+  ©−1

¡
1− 

2

¢  (16)

where ©−1 (·) denotes the quantile function or the inverse of the cumulative distri-
bution function of the standard normal random variable, and where  is a tuning

parameter which may depend on  . Some conditions on  will be given in Assump-

tion 2-10 below.

Remark 2.2:

(a) As noted in the introduction, the statistics proposed in this paper can be viewed

as self-normalized versions of the score statistic introduced in Bair et al. (2006),

where to accommodate for time series dependence in the data, we make the additional

modification of constructing these statistics using block sums. However, our use of

these statistics here differs from how Bair et al. (2006) apply and interpret their score

statistic. In particular, within the FAVAR framework studied here, we view these self-

normalized score statistics as being primarily useful for identifying variables that are

relevant for factor estimation and not so much for identifying variables which have

7It should be noted that the denominator of the statistic  =  

q
  does not cor-

respond to the use of an HAR standard error constructed using the fixed  (or fixed smoothing)

approach pioneered by Kiefer and Vogelsang (2002a, 2002b), even in the case without any trunca-

tion. Hence, our statistic differs from the usual Studentized statistic that is normalized by an HAR

estimator. This can be shown by straightforward calculations for the case of the Bartlett kernel, for

example. For interesting discussions of different approaches to self-normalization in the statistics

and probability literature, refer to Z. Zhou and X. Shao (2013), X. Chen, Q-M. Shao, W.B. Wu,

and L. Xu (2016), and the references cited therein.
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predictive content for the target variable of interest. The following example illustrates

this and provides some intuition. Consider the following two-factor FAVAR model:

+1 =    +  11 + +1

1+1 = 1 + 111 + 122 + 1+1

2+1 = 2 + 211 + 222 + 2+1, (17)

with factor equation having the form

 = Γ +  (18)

where  =
³
1 2

´0
. Note that, under the specification given by expressions

(17) and (18), the factor 2 has no predictive content for future values of  whereas

the factor 1 does have predictive content. Now, write the companion form:

+1 =  + +1

where

 =

⎛⎜⎜⎜⎝


1

2

⎞⎟⎟⎟⎠ ,  =
⎛⎜⎜⎜⎝

+1

1+1

2+1

⎞⎟⎟⎟⎠ , and  =

⎛⎜⎜⎜⎝
   1 0

1 11 12

2 21 22

⎞⎟⎟⎟⎠ 

Here, under Assumption 2-1, we have the vector moving-average representation:

+1 =

∞X
=0

+1

It follows that the components of +1 have the univariate MA representations:

+1 =

∞X
=0

01
+1−, 1 =

∞X
=0

02
−, and 2 =

∞X
=0

03
−
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with 1 =
³
1 0 0

´0
, 2 =

³
0 1 0

´0
, and 3 =

³
0 0 1

´0
. Let  and 

be, respectively, the  and the  components of  (with  6= ). Suppose that

 loads only on the second factor but not the first, so that 
0
 =

³
0 2

´
, where

2 6= 0; and suppose that  loads only on the first factor but not the second, so

that 0 =
³
1 0

´
, where 1 6= 0 Hence, both  and  are relevant variables

for factor estimation, but  has predictive content for +1 whereas  does not.

Consider the score statistics associated with  and  :

 =

−1X
=1

+1 =

−1X
=1

(0 + ) +1 =

−1X
=1

22+1 +

−1X
=1

+1 and

 =

−1X
=1

+1 =

−1X
=1

¡
0 + 

¢
+1 =

−1X
=1

11+1 +

−1X
=1

+1

Note that, when both 21 6= 0 and 31 6= 0, where 21 and 31 are, respectively,

the (2 1)

and the (3 1)


elements of the error covariance matrix Σ, the expected

values of  and  will not, in general, be properly centered at zero, i.e.,

 [] =

−1X
=1

 [+1]

= 2

−1X
=1

 [2+1] +

−1X
=1

 [+1]

= 2

−1X
=1

∞X
=0

∞X
=0

03

£
−

0
+1−

¤
(0) 1

= 2

−1X
=1

∞X
=0

03
Σ (

0)+1 1

6= 0
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and

 [] =

−1X
=1

 [+1]

= 1

−1X
=1

 [1+1] +

−1X
=1

 [+1]

= 1

−1X
=1

∞X
=0

∞X
=0

02

£
−

0
+1−

¤
(0) 1

= 1

−1X
=1

∞X
=0

02
Σ (

0)+1 1

6= 0

Hence, both statistics, when appropriately normalized, will diverge with probability

approaching one, as  → ∞ This makes the right inference about the relevance

of both of these variables, since the divergence of these statistics implies that the

null hypothesis 0 :  = 0 (i.e.,  is irrelevant) as well as the null hypothesis

0 :  = 0 (i.e.,  is irrelevant) will both be rejected with probability approaching

one. However, if we were to interpret these statistics as providing inference about

the predictive content of the variables  and ; then, we would have made the

wrong inference about , since it loads only on 2 which is not helpful in predicting

+1. On the other hand, suppose instead that 2 = 0 and 1 = 0 so that 0 =³
0 2

´
=
³
0 0

´
and 0 =

³
1 0

´
=
³
0 0

´
, and, thus, both  and 

are now irrelevant variables. Then, under this alternative scenario, we would have

 [] = 2

−1X
=1

∞X
=1

03
−1Σ (

0) 1 = 0

 [] = 1

−1X
=1

∞X
=1

02
−1Σ (

0) 1 = 0

so that both statistics are now properly centered at zero, and neither will diverge,

when appropriately normalized, as  → ∞. Hence, under this alternative scenario,
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given an appropriate threshold or critical value, we will also make the correct inference

asymptotically about the fact that both  and  are irrelevant variables in this

case.

Note that, for ease of presentation, we have constructed this example based on a

simple score statistic for which construction does not involve a blocking scheme or

self-normalization. Of course, the same story holds for the more complicated score

statistics discussed in this paper. Formal results showing that our self-normalized

statistics correctly identify the relevant variables with probability approaching one

are given below in Theorems 1 and 2.

(b) To understand why using the quantile function of the standard normal as the

threshold function for our procedure is a natural choice, note first that, by a slight

modification of the arguments given in the proof of Lemma A28, we can show that,

as  →∞
 (| | ≥ ) = 2 [1−©()] (1 +  (1))  (19)

which holds for all  and  and for all  such that

0 ≤  ≤ 0min
©
 (1−1)6 ( )  22

ª
, where  ( ) denotes a slowly varying func-

tion such that  ( )→∞ but  ( )  (1−1)6 → 0 as  →∞. In view of expression
(19), we can interpret moderate deviation as providing an asymptotic approxima-

tion of the (two-sided) tail behavior of the self-normalized statistic,   based on

the tails of the standard normal distribution. An important advantage of using self-

normalized statistics in this context is that the range for which this standard normal

approximation is valid (i.e., the range 0 ≤  ≤ 0min
©
 (1−1)6 ( )  22

ª
) is

wider for self-normalized statistics relative to their non-self-normalized counterparts.

Now, suppose initially that we wish simply to control the probability of a Type I error

for testing the null hypothesis 0 :  = 0 (i.e., the 
 variable does not load on the

underlying factors) at some fixed significance level . Then, expression (19) suggests

that a natural way to do this is to set  = ©−1 (1− 2). This is because, given that

8The statement and proof of Lemma A2 are provided below in the Appendix to this paper.
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the quantile function ©−1 (·) is, by definition, the inverse function of the cdf ©(·), we
have that:


¡| | ≥ ©−1 (1− 2)

¢
= 2

£
1− © ¡©−1 (1− 2)

¢¤
(1 +  (1)) =  (1 +  (1)) 

so that the probability of a Type I error is controlled at the desired level  asymp-

totically. Note also that an advantage of moderate deviation theory is that it gives

a characterization of the relative approximation error, as opposed to the absolute

approximation error. As a result, the approximation given is useful and meaningful

even when  is very small, which is of importance to us since we are interested in

situations where we might want to let  go to zero, as sample size approaches infinity.

We give the above example to provide some intuition concerning the form of

the threshold function that we have specified. The variable selection problem that

we actually consider is more complicated than what is illustrated by this example,

since we need to control the probability of a Type I error (or of a false positive) not

just for a single test involving the  variable but for all variables simultaneously.

Moreover, as noted previously, we also need the probability of a false positive to go

to zero asymptotically, if we want to be able to estimate the factors consistently, even

up to an invertible matrix transformation. We show in Theorem 1 below that these

objectives can all be accomplished using the threshold function specified in expression

(16), since a threshold function of this form makes it easy for us to properly control

the probability of a false positive in large samples.

(c) The threshold function used here is reminiscent of the one employed in Bel-

loni, Chen, Chernozhukov, and Hansen (2012) and further studied in Belloni, Cher-

nozhukov, and Hansen (2014). The latter paper focuses on developing a variable

screening methodology for a partially linear treatment effects model. In that paper,

a threshold function that is similar to ours is used to set the penalty level for a

lasso-based procedure for selecting the terms in a series expansion of the nonlinear

component of their model under conditions of sparsity. In spite of the similarity in
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the form of the threshold function used, the nature of the variable selection problem

studied in the two above papers is quite different from that investigated in our paper.

In particular, Belloni, Chenozhukov, and Hansen (2014) do not require their variable

selection procedure to be completely consistent, nor do they provide a result showing

that the probability of both Type I and Type II error vanishes asymptotically as sam-

ple sizes approach infinity. As noted in Belloni, Chernozhukov, and Hansen (2014),

perfect variable selection is not needed in the type of regression settings considered in

their paper if the goal is to approximate the nonlinear functions in their model suf-

ficiently well so that the post-selection estimators of the treatment effect parameter

will have good asymptotic properties. Here, we instead argue that having a variable

selection procedure that is completely consistent is quite useful given our objective

of ensuring that good factor estimates can be obtained in a high-dimensional latent

factor model. This is because, as noted earlier, if the probability of a Type I error

is only controlled at some fixed nonzero level asymptotically, then consistent factor

estimation may not be possible. In addition, the precision with which the latent fac-

tors are estimated will be reduced if we have a variable selection procedure where the

probability of a Type II error does not go to zero. As a result of these differences in

setup and objectives, the conditions that we specify for setting the tuning parameter

 will also be quite different from those in Belloni, Chen, Chernozhukov, and Hansen

(2012) and Belloni, Chernozhukov, and Hansen (2014).

Under appropriate conditions, the variable selection procedure described above

can be shown to be consistent, in the sense that both the probability of a false positive,

i.e. 
³
 ∈ b| ∈ 

´
, and the probability of a false negative, i.e., 

³
 ∈ b| ∈ 

´
,

approach zero as 1 2  →∞. To show this result, we must first state a number
of additional assumptions.

Assumption 2-7: There exists a positive constant  such that for all  ≥ 1 and
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 1 ≥ 1:

min
1≤≤

min
∈

min
∈{1}



⎧⎨⎩
⎡⎣ 1√

1

(−1)+1+−1X
=(−1)+

+1

⎤⎦2⎫⎬⎭ ≥ 

where, as defined earlier,  1 = b1
0 c,  2 = b2

0 c for 1  1 ≥ 2  0 and  =j
0

1+2

k
, and 0 =  − + 1.

Assumption 2-8: Let  ∈  = { ∈ {1  } :  6= 0}. Suppose that there
exists a positive constant,  such that, for all 1 2and  sufficiently large:

min
1≤≤

min
∈

¯̄̄̄


 1

¯̄̄̄

= min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
≥   0

where  = 0 ,   = 0  , and   = 0  Here,  is a  × 1
elementary vector whose  component is 1 and all other components are 0.

Assumption 2-9: Suppose that, as 1, 2, and  → ∞, the following rate condi-
tions hold:

(a)
√
lnmin

©
 (1−1)6 22

ª→ 0, where 1  1 ≥ 2  0 and  = 1 +2.

(b) 1
31 → 0 where 1 is as defined in part (a) above.

Assumption 2-10: Let  satisfy the following two conditions: (a)  → 0 as

1 2 → ∞, and (b) there exists some constant   0 such that  ≥ 1 for

all 1 2 sufficiently large.

Remark 2.3: Assumption 2-8 imposes the condition that there exists a positive

constant,  such that, for all 1 2 and  sufficiently large:

min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
≥   0.
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This is a fairly mild condition which allows us to differentiate the alternative hy-

pothesis,  ∈  from the null hypothesis,  ∈  since if  ∈ , then it is clear

that:



 1
=
1



X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª
= 0

given that  = 0. Note that this assumption does rule out certain specialized

situations, such as the case when  = 0,   = 0, and   = 0 for some

 ∈ {1  }. However, we do not consider such cases to be of much practical interest
since, for example, if  = 0,   = 0, and   = 0 for some  then expres-

sion (2) above implies that the  component of +1 will have the representation

+1 =  +  0
  + 0

  + +1 = +1, so that, in this case, +1 depends

neither on   =
¡
 0
  

0
−1  

0
−+1

¢0
nor on   =

¡
 0
  

0
−1  

0
−+1

¢
. This is, of

course, an unrealistic model for +1 since it would not even be a dependent process

in this case.

The following two theorems give our main theoretical results on the variable se-

lection procedure described above.

Theorem 1: Let  = { ∈ {1  } :  = 0}. Suppose that Assumptions 2-1,
2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-9 (a) and 2-10 hold. Let ©−1 (·) denote the inverse
of the cumulative distribution function of the standard normal random variable, or,

alternatively, the quantile function of the standard normal distribution. Then the

following statements are true:

(a) Let { :  = 1  } be pre-specified weights such that  ≥ 0 for every  ∈
{1  } and

X

=1
 = 1, then:



Ã
max
∈

X
=1

 | | ≥ ©−1
³
1− 

2

´!
= 

µ
2



¶
=  (1) ,

where  = 1 +2.

25



(b)



µ
max
∈

max
1≤≤

| | ≥ ©−1
³
1− 

2

´¶
= 

µ
2



¶
=  (1) .

Theorem 2: Let  = { ∈ {1  } :  6= 0}. Suppose that Assumptions 2-1,
2-2, 2-3, 2-5, 2-6, 2-8, 2-9, and 2-10 hold. Then the following statements are true.

(a) Let { :  = 1  } be pre-specified weights such that  ≥ 0 for every  ∈
{1  } and

X

=1
 = 1, then:



Ã
min
∈

X
=1

 | | ≥ ©−1
³
1− 

2

´!
→ 1.

(b)



µ
min
∈

max
1≤≤

| | ≥ ©−1
³
1− 

2

´¶
→ 1.

Remark 2.4:

(a) Theorem 1 shows that, for both of our statistics, the probability of a false positive

approaches zero uniformly over all  ∈  as 1 2  →∞. The results of Theorem
2 further imply that, for both of our statistics, the probability of a false negative also

approaches zero, uniformly over all  ∈  as 1 2  → ∞. Together, these two
theorems show that our procedure is (completely) consistent in the sense that the

probability of committing a misclassification error vanishes as 1 2  →∞.
(b) Note that our variable selection procedure also delivers a consistent estimate of

1 (i.e., b1); this is shown in Lemma D-15 part (a) of Chao, Qiu, and Swanson

(2023), where we establish that b11
→ 1. The estimator b1 is useful to applied

researchers implementing the methodology developed in this paper, and also to em-

piricists interested in assessing the rate condition for consistent factor estimation,

given in Assumption A4 of Bai and Ng (2021). This is another way in which the

methods developed in this paper built upon the work of Bai and Ng (2021).

(c) In addition, note that knowledge of the number of factors is not needed to im-
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plement our variable selection procedure. In the case where the number of factors

needs to be determined empirically, an applied researcher can first use our procedure

to select the relevant variables and then apply an information criterion such as that

proposed in Bai and Ng (2002) to estimate the number of factors.

3 Monte Carlo Study

In this section, we report some simulation results on the finite sample performance

of our variable selection procedure. The model used in the Monte Carlo study is the

following tri-variate FAVAR(1) process:

 = +−1 +  (20)

 =  + , (21)

where

 =

⎛⎜⎜⎜⎝
1

2



⎞⎟⎟⎟⎠ ,  =
⎛⎜⎜⎜⎝
2

1

2

⎞⎟⎟⎟⎠ ,  =
⎛⎜⎜⎜⎝
09 03 05

0 07 01

0 06 07

⎞⎟⎟⎟⎠ , and  =

⎛⎝ 1

0
2×1

⎞⎠ 

with 1 denoting an 1 × 1 vector of ones. We consider different configurations
of  , 1, and  as given below. For the error process in equation (20), we take

{} ≡  (0Σ), where:

Σ =

⎛⎜⎜⎜⎝
13 099 0641

099 081 0009

0641 0009 585

⎞⎟⎟⎟⎠ .

The error process, {}  in equation (21) is allowed to exhibit both temporal and
cross-sectional dependence and also conditional heteroskedasticity. More specifically,
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we let  = 08−1 +  , and following the approach for modeling cross-sectional

dependence given in the Monte Carlo design of Stock and Watson (2002a), we specify:

 = (1 + 2)  + +1 + −1, and set  = 1. In addition,  =  with

{} ≡  (0 1) independent of {}, and  follows a GARCH(1,1) process

given by: 2 = 1 + 09
2
−1 + 005

2
−1. To study the effects of varying the tuning

parameter, we consider specifications where  = (ln ln)
−
for  = 01 05 1 and

also  = − for  = 02 04 06.9 We also attempt to shed light on the effects of

using blocks of different sizes on the performance of our procedure. To do this, for

 = 100, we set  1 = 2, 3, 4, and 5; for  = 200, we set  1 = 5, 6, 8, and 10;

and for  = 600, we set  1 = 6, 8, 10, and 12. Due to space considerations, we

only report Monte Carlo results for the statistic
X

=1
 | |. Simulation results

for the statistic max1≤≤ | | have also been obtained by the authors and are
qualitatively similar to the results reported here for

X

=1
 | |. The results for

max1≤≤ | | are available from the authors upon request. In addition, since  = 2
in our Monte Carlo setup, we set 1 = 2 = 12. Results are gathered in Table

1, where FPR denotes the “False Positive Rate” or the “Type I” error rate, i.e., the

proportion of cases where an irrelevant variable , with associated coefficient  = 0

is erroneously selected as a relevant variable. FNR denotes the “False Negative Rate”

or the “Type II” error rate, i.e., the proportion of cases where a relevant variable is

erroneously identified as being irrelevant.

Looking across each row of the table, note that FPRs decrease when moving

from left to right, whereas FNRs increase. This is not surprising, because moving

from  = (ln ln)
−01

to  = −06 for a given  results in smaller values of the

tuning parameter , and the specified threshold ©−1
¡
1− 

2

¢
thus becomes larger.

Overall, these results indicate that choosing  in the range between (ln ln)
−01

and

−04 leads to very good performance, since within this range, neither FPR nor FNR

9We have also obtained simulation results for the cases where  = (ln)
−
for  = 01 05 1 and

where  = − for  = 03 05 07. The results obtained for these cases are qualitatively similar
to the results reported in this paper. Hence, due to space considerations, we do not report these

results here, but they are available from the authors upon request.
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exceeds 01 in any of the cases studied here. In fact, both are smaller than 005 in a

vast majority of the cases. In contrast, choosing  = −06 can lead to high FNRs,

as such a choice of  can set our threshold at such a high level that our procedure

ends up having very little power.

Looking down the columns of the table, note that FPR tends to increase as  1

increases, whereas FNR tends to decrease as  1 increases. As an explanation for this

result, note first that the smaller is  1 relative to  , the larger is  2 (since  =  1+ 2),

and thus the larger is the number of observations removed when constructing the

self-normalized block sums. Intuitively, this can lead to better accommodation of

the effects of dependence and better moderate deviation approximations under the

null hypothesis, resulting in a lower FPR. However, removal of a larger number of

observations can also lead to a reduction in power, when the alternative hypothesis

is correct, so that a negative consequence of having a smaller  1 relative to  is that

FNR will tend to be higher in this case. The opposite, of course, occurs when we try

to specify a larger  1 relative to  .

Our results also show that when the sample sizes are large enough such as the cases

presented in the last panel of the table, where  = 600 and  = 1000, then both FPR

and FNR are very close to zero for all of the cases that we consider. Moreover, even

in the extreme case where  = 100 and  = 100, FPR and NPR rates are usually

less than 0.05, and are often much smaller than that. This is in accord with the

results of our theoretical analysis, which shows that our variable selection procedure

is completely consistent in the sense that both the probability of a false positive and

the probability of a false negative approach zero, as the sample sizes go to infinity.
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Table 1: Monte Carlo Results for S+ =
X

=1
 | |

 = 100 1 = 50  = 100  = 5

 = (ln ln)−01  = (ln ln)−05  = (ln ln)−1  = −02  = −04  = −06

1 = 2 FPR 0.03916 0.03350 0.02678 0.01460 0.00382 0.00076

FNR 0.00046 0.00068 0.00104 0.00284 0.01674 0.09412

1 = 3 FPR 0.04544 0.03902 0.03110 0.01810 0.00526 0.00092

FNR 0.00022 0.00032 0.00052 0.00172 0.01100 0.06942

1 = 4 FPR 0.05408 0.04650 0.03756 0.02224 0.00702 0.00162

FNR 0.00016 0.00024 0.00034 0.00118 0.00828 0.05194

1 = 5 FPR 0.06332 0.05462 0.04558 0.02796 0.00924 0.00232

FNR 0.00014 0.00018 0.00034 0.00084 0.00574 0.03948

 = 200 1 = 100  = 100  = 5

1 = 2 FPR 0.01913 0.01470 0.01068 0.00486 0.00064 0.00002

FNR 0.00206 0.00282 0.00449 0.01415 0.09966 0.48356

1 = 3 FPR 0.02341 0.01842 0.01365 0.00657 0.00098 0.00005

FNR 0.00143 0.00190 0.00315 0.00921 0.07372 0.40894

1 = 4 FPR 0.02869 0.02306 0.01733 0.00841 0.00133 0.00004

FNR 0.00111 0.00145 0.00224 0.00661 0.05564 0.34279

1 = 5 FPR 0.03506 0.02903 0.02194 0.01124 0.00213 0.00017

FNR 0.00086 0.00112 0.00172 0.00477 0.04258 0.28620

 = 400 1 = 200  = 200  = 10

1 = 5 FPR 0.00214 0.00148 0.00090 0.00030 2.5×10−5 0.00000

FNR 7.5×10−5 0.00016 0.00040 0.00231 0.06894 0.67266

1 = 6 FPR 0.00249 0.00166 0.00104 0.00034 0.00002 0.00000

FNR 0.00004 0.00009 0.00025 0.00148 0.05058 0.60968

1 = 8 FPR 0.00337 0.00235 0.00142 0.00046 0.00004 0.00000

FNR 0.00001 0.00002 0.00008 0.00068 0.02712 0.48133

1 = 10 FPR 0.00484 0.00350 0.00220 0.00079 7.5×10−5 5.0×10−6
FNR 0.00001 0.00001 0.00002 0.00034 0.01535 0.36382

 = 1000 1 = 500  = 600  = 12

1 = 6 FPR 0.00155 0.00121 0.00086 0.00038 0.00006 0.00001

FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 8 FPR 0.00201 0.00153 0.00106 0.00049 8.2×10−5 1.4×10−5
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 10 FPR 0.00274 0.00216 0.00155 0.00072 0.00016 3.2×10−5
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 12 FPR 0.00421 0.00332 0.00242 0.00115 0.00028 6.0×10−5
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Notes: False positive and negative rates are reported for various values of 1 and  . Results are

based on 1000 simulations. See Section 3 for complete details.
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4 Empirical Illustration

In this illustration, we forecast eight target variables from the monthly real-time

macroeconomic FRED-MD dataset maintained by St. Louis Federal Reserve Bank.

We follow the data cleaning methods outlined on the FRED-MD data website, as well

as removing all discontinued series, when pre-processing the data, yielding a dataset,

X, containing  = 97 variables for the period 1973:3 to 2022:9. The full list of all

macroeconomic variables and their transformations is available upon request from the

authors.

Of note is that the dataset used here is “truly” real-time, in the sense that a “vin-

tage” of data is available at calendar date in our sample period. Consider the value of

industrial production for January 2020. In February 2020, the government reported a

“first release” value for January. In March 2020, however, they further updated their

“estimate” of industrial production for January. Namely, they reported a “second

release” for January. This process of revision continues indefinitely. Namely, as the

government changes data collection and processing methodology, collects new data

and/or revises definitions of variables, new releases are reported. A “vintage” of data

is a date, say February 2020. For industrial production, there is a whole vector of

truly real-time data that includes different releases, all available in February 2020.

For example, this vintage includes a 1st release value for January 2020, a 2nd release

value for December 2019 is included in this vintage, a 3rd release value for November

2019, etc. In this sense, there is an entirely unique vintage of industrial production

available each month, and the values of the calendar dated observations in each vin-

tage change because the government updates historical values of the variable every

month. Using this type of data allows the practitioner to truly simulate a forecasting

environment in which models are updated at each point in time using data that were

actually available at that time. If we were to simply collect industrial production data

from a website today, calendar dated observations in our dataset from 2020 would

reflect revisions that occurred after 2020. For variables that are subject to revision,
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this means that forecasting experiments of the type carried out in this paper would

be invalid, in the sense that they would be utilizing “future data” as explanatory

variables when estimating forecasting model regressions, if it were the case that the

correct vintage of data was not used at each point in time when estimating models and

constructing forecasts. For further discussion of the structure of real-time datasets,

as well as methods for real-time forecasting, refer to Swanson (1996), Swanson and

van Dijk (2006), and Kim and Swanson (2018).

The eight target variables for which we construct predictions are: Industrial Pro-

duction (INDPRO), Civilian Unemployment Rate (UNRATE), Housing Starts: new,

privately owned (HOUST), Housing Permits: new, privately owned (PERMIT), Real

M2 Money Stock (M2REAL), 10-Year Government Treasury Bond Rate (R10), CPI

- All Items (CPI), S&P Common Stock Price Index - Composite (S&P 500). Our

experiments compare variable selection and dimension reduction methods when used

to estimate and/or select factors and observable variables for inclusion in forecasting

models of the form:

+ = + () + ()F + + (22)

where  is a scalar target variable to be predicted, () and () are finite order

lag polynomials and where  is a stochastic disturbance term. Lags in this model are

selected using the Schwarz Information Criterion (SIC), and our benchmark model

sets the coefficients in () = 0. In the sequel, we carry out variable selection and

dimension reduction using seven different methods.

Principal Components Analysis (PCA): Excluding the target variable, apply PCA to

X and estimate latent factors, F, with the number of factors determined using the

2 criterion in Bai and Ng (2002). The maximum number of the factors is set

equal to eight, following the findings of McCracken and Ng (2016), who introduce

and examine the dataset that we utilize in our experiments.

Hard Thresholding: For each variable in X, and forecast horizon, , perform a re-
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Table 2: Empirical Illustration - Target Forecast Variables∗
Target Variable Abbreviation Data Transformation

Industrial Production INDPRO ∆()

Civilian Unemployment Rate UNRATE 
Housing Starts (new, privately owned) HOUST ()

Housing Permits (new, privately owned) PERMIT ()

Real M2 Money Stock M2REAL ∆()

10-Year Government Treasury Bond Rate R10 
CPI (all items) CPI ∆()

S&P Common Stock Price Index (composite) S&P500 ∆()

∗ Notes: This table lists the target forecast variables that are predicted in our empirical illustration, and associated

data transformations.

gression of + on lags of  and on , where  is a scalar variable in X, for

 = 1   , and lags of  are selected using the SIC. Let  denote the  statistic

associated with − in the regression, and select variables,  if ||  128. If

the number of selected variables is greater than 20, utilize PCA to estimate factors

for inclusion in the above forecasting equation, otherwise use the AR(SIC) model.

As models are re-estimated at each point in time, this approach is a hybrid, in the

sense that some models may include factors as regressors, while others may be simple

AR(SIC) models. Note that in our experiments, less than 10% of the total number

of forecasting periods involved replacing the thresholding model with our AR(SIC)

benchmark.

Chao-Swanson Variable Selection: Use the variable selection method introduced in

this paper to select variables. Then, use PCA to estimate factors for inclusion in the

forecasting equation. There are three tuning parameters in the CS method, including:

   1, and . We set { = 5 1 = 3 5} and { = 10  1 = 6 8} and consider the
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following values for :

 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

()−01 ()−06 ()−01 ()−06 −01 −06

()−02 ()−07 ()−02 ()−07 −02 −07

()−03 ()−08 ()−03 ()−08 −03 −08

()−04 ()−09 ()−04 ()−09 −04 −09

()−05 ()−1 ()−05 ()−1 −05 −1

Different tuning parameters select different numbers of variables and we exclude tun-

ing parameter permutations that select less than 25 variables for use in factor con-

struction. In this method, the tuning parameter used for each value of  and target

variable is selected by partitioning a “training dataset” consisting of the first 10 years

on data in our sample into an in-sample period of 7 years and an out-of-sample pe-

riod of 3 years. The tuning parameter is set equal to that yielding the smallest mean

square forecast error (MSFE) after constructing real-time predictions based on mod-

els estimated at each point in time prior to the construction of each new prediction

for the out-of-sample period. Note that in our experiments, less than 10% of the to-

tal number of forecasting periods involved replacing the selected variables with those

from the previous period.

In summary, we carry out truly real-time -month ahead predictions using monthly

data, with  =1, 3, 6, and 12. Our “full sample forecasting period” is 2000:1-2022:9

(when reporting results for this period, we omit predictions for 2008:1-2008:12 and

2020:1-2020:12, in order to mitigate the influence of predictions made during the 2008

Financial Crisis and the Covid-19 period). However, even though some predictions

are omitted in our “full-sample”, data from these extraordinary periods in history

still affect the estimated models used when predicting other periods. For this reason,

this first set of results, where it is clearly seen that the impact of these periods on

estimated models is severe, is not included here, but is available upon request from
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the authors. In the sequel, we report results for the out-of-sample period 2000:1-

2007:12. All factors and forecasting equations are re-estimated at each point in time,

prior to the construction of each new forecast, using rolling windows of length 120

observations. Additionally, in-sample estimation periods used when constructing our

 =3, 6, and 12-step ahead forecasts are adjusted so that the forecast period remains

the same regardless of forecast horizon.

Forecasting performance is evaluated using point mean squared forecast errors

(MSFEs), where MSFE= 1


P

=1(− ̂)2, and ̂ denotes the prediction for target
variable  that is made using data that are truly available in real-time at period .

In our tabulated results, MSFEs, relative to that of the benchmark AR(SIC) model

are reported. Additionally, we report the results of Giacomini and White (GW)

tests (see Giacomini and White (2006)), which can be viewed as conditional Diebold-

Mariano (DM) predictive accuracy tests (see Diebold and Mariano (1995)). Recall

that the null hypothesis of the DM test when formulated using the conditioning

approach of Giacomini and White is: 0 : E[(̂
(1)

+)|] − E[(̂(2)+)|] = 0, where

the ̂
()

+ are prediction errors associated with model , for  = 1 2, and  denotes

the conditioning set, which includes the model and estimated parameters. Here,

(·) is a quadratic loss function, and the test statistic is DM = −1
P
=1

+
̂̄
, where

+ = [̂
(1)

+]
2 − [̂(2)+]

2, ̄ denotes the mean of +, ̂̄ is a heteroskedasticity and

autocorrelation consistent estimate of the standard deviation of ̄, and  denotes the

number of ex-ante predictions used to construct the test statistic.10 If the statistic

is “significantly negative”, then Model 1 is preferred to Model 2, and in our context,

where we report relative MSFEs, rejection indicates that the benchmark AR(SIC)

model is preferred if the relative MSFE is greater than one, and the converse if it is

less than one.

Turning to our empirical findings, note first that a summary of the target variables

in our experiments is contained in Table 2. Table 3 contains results for our full

10In this paper, we report test results for the Wald version of this test statistic (see Giacomini

and White (2006) for further details).
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sample forecasting period. In this table, all entries are relative MSFEs, as discussed

above. Additionally, bolded entries indicate the “MSFE-best" method for a particular

target variable and forecast horizon. Since relative MSFEs are reported, however, if

the lowest relative MSFE is greater than 1, it is not bolded, as this means that

the AR(SIC) benchmark yields the MSFE-best predictions. Starred entries denote

rejection of the null hypothesis of equal forecast accuracy when comparing the model

associated with a given method against the AR(SIC) benchmark. Turning to the

results in this table, a number of conclusions can be made.

First, comparing the standard PCA method, which does not involve variable pre-

selection, with our method (called CS hereafter), CS beats the PCA in terms of

relative MSFE in 22 out of 32 cases across all forecast horizons and all target variables

examined here. Moreover, for the longer forecast horizons of  = 6 and  = 12, CS

beats PCA in 12 out of 16 cases. Second, comparing the CS method with the hard

thresholding method for variable selection (called THRESH hereafter), we see that

CS wins in 19 out of 32 overall cases, and, for the longer horizons of  = 6 and  = 12,

CS wins in 12 out of 16 cases. In addition, it should be noted that there is one tie

between CS and THRESH, so that overall CS performed as least as well if not better

than THRESH in 20 out of 32 overall cases and in 13 out of the 16 longer horizon

cases. Finally, it should be noted that the CS method beats the AR(SIC) benchmark

model in 16 out of 32 overall cases, but if we focus just on the longer horizons of

 = 6 and  = 12, we see that our method outperforms the benchmark model in 10

out of the 16 cases. In summary, our method performs well overall, and performs

particularly well relative to the other two methods (and also the benchmark method)

in the longer horizon cases.
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Table 3: Empirical Illustration - Real-Time Predictive Accuracy Experiments∗
Factor Estimation Method

Target Variable Principal Components Analysis Hard Thresholding CS Variable Selection

INDPRO 0.971 1.025 1.092

UNRATE 1.098 0.966 0.984

HOUST 1.000 0.882 ** 0.877

h=1 PERMIT 1.009 1.005 1.042

M2REAL 1.06 1.052 * 1.19 *

R10 1.086 1.107 1.051

CPI 1.08 1.125 1.161

S&P500 1.142 1.104 1.118

INDPRO 1.042 1.042 1.083

UNRATE 0.839 0.691 ** 0.785 *

HOUST 0.979 0.777 0.766 **

h=3 PERMIT 1.021 0.971 0.895

M2REAL 0.979 0.907 1.035

R10 1.187 1.225 1.109

CPI 1.022 1.048 * 0.993

S&P500 1.186 1.213 1.055

INDPRO 1.145 1.043 0.965 *

UNRATE 0.561 * 0.518 ** 0.617 *

HOUST 0.818 0.696 * 0.665 *

h=6 PERMIT 0.855 0.825 0.744

M2REAL 1.031 1.049 0.994

R10 1.513 1.046 1.064 **

CPI 1.034 1.05 1.081 *

S&P500 1.126 * 1.276 ** 1.166

INDPRO 1.251 * 1.096 * 1.004

UNRATE 0.632 0.489 0.471

HOUST 0.693 0.605 0.605

h=12 PERMIT 0.681 0.650 0.621

M2REAL 1.087 1.036 0.984

R10 0.992 0.641 0.638 *

CPI 1.024 1.131 1.064 **

S&P500 1.188 1.311 * 1.046

∗ Notes: See notes to Table 2. Tabulated entries are relative mean squared forecast error (MSFEs) for our 8 target

variables, for forecast horizons of h=1,3,6, and 12 months ahead. The AR(SIC) benchmark model is in the denominator

of the reported MSFEs, so that entries that are less than unity indicate that our factor and variable augmented forecast

regressions yield lower MSFEs than those associated with the AR(SIC) benchmark. The forecast period is 2000:1-

2007:12, and all models are estimated prior to the construction of each monthly forecast. In cases where at least one

big data method outperfroms the AR(SIC) benchmark model, entries in bold denote the big data method yielding

the lowest relative MSFE for a given target variable and forecast horizon. Starred entries indicate rejection of the null

hypothesis of equal conditional predictive ability, at significance levels  = 001 (∗ ∗ ∗),  = 005, (∗∗), and  = 010

(∗). See Section 4 for complete details.

5 Conclusion

In this paper, we propose a new variable selection procedure based on two alternative

self-normalized score statistics and provide asymptotic analyses showing that our

procedure, based on either of these statistics, correctly identify the set of variables

which load significantly on the underlying factors, with probability approaching one
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as the sample sizes go to infinity. Our research is motivated by the observation

that inconsistency in factor estimation could result in high dimensional settings when

the conventional assumption of factor pervasiveness does not hold. Hence, in such

settings, it is particularly important to pre-screen the variables in terms of their

association with the underlying factors prior to estimation. We conduct a small Monte

Carlo study which yields encouraging evidence about the finite sample properties of

our variable selection procedure. Moreover, we present empirical evidence suggesting

that use of our procedure yields factors that improve the forecasting performance of

factor augmented regressions, relative to the case when principal component analysis

or hard thresholding methods are used to construct factors. It is also worth noting

that in a companion paper (Chao, Qiu, and Swanson, 2023) we prove that consistent

estimation of factors (up to an invertible matrix transformation) can be achieved by

estimating factors using only those variables selected by our method, and this is so

even in situations where the standard pervasiveness assumption does not hold. In

addition, in the same paper, we further show that by plugging factors estimated in

such a manner into the factor-augmented forecasting equation implied by the FAVAR

model, the conditional mean function of the forecasting equation can be consistently

estimated, even for the case of multi-step ahead forecasts. In sum, the collective body

of results discussed in this paper indicates that the variable selection methodology

introduced in this paper can be useful to empirical researchers as they engage in the

important tasks of factor estimation and the construction of point forecasts based on

factor-augmented forecasting equations.

6 Appendix: Proofs of Theorems

This appendix contains the proofs of the main results of the paper: Theorems 1

and 2. In addition, two key supporting lemmas, Lemmas A1and A2, along with their

proofs are also given here. Additional technical results are available in an Online

38



Appendix, Chao, Liu, and Swanson (2023).

Proof of Theorem 1: To show part (a), first set  = ©−1
¡
1− 

2

¢
, where  =

1 +2. Note that, under Assumption 2-10, we can easily show that

©−1
¡
1− 

2

¢ ≤ p
2 (1 + )

√
ln , for all 1 2 sufficiently large.

11 By part (a)

of Assumption 2-9,
√
lnmin

©
 (1−1)6 22

ª → 0 as 1 2  → ∞; this, in
turn, implies that, for some positive constant 0, ©

−1 ¡1− 

2
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satisfies the inequality

constraint 0 ≤ ©−1 ¡1− 
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for all 1 2  sufficiently

large, so that ©−1
¡
1− 

2

¢
lies within the range of values of  for which the moderate

deviation inequality given in Lemma A2 holds. Thus, plugging ©−1
¡
1− 

2

¢
into the

moderate deviation inequality (23) given in Lemma A2 below, we see that there exists

a positive constant  such that:


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for  ∈ {1  }, for  ∈  = { ∈ {1  } :  = 0}, and for all 1 2  suffi-

ciently large. Next, note that:


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X
=1

 | | ≥ ©−1
¡
1− 

2

¢!

≤ 

Ã[
∈

[
1≤≤

©| | ≥ ©−1 ¡1− 

2

¢ª! Ã
since 0 ≤  ≤ 1 and

X
=1

 = 1

!

≤
X
∈

X
=1


¡| | ≥ ©−1 ¡1− 

2

¢¢
(by union bound)

≤
X
∈

X
=1





n
1 +

£
1 + ©−1

¡
1− 

2

¢¤3
−(1−1)

1
2

o
= 2



n
1 +

£
1 + ©−1

¡
1− 

2

¢¤3
−(1−1)

1
2

o
Using the inequality ©−1

¡
1− 

2

¢ ≤ p2 (1 + )
√
ln discussed above, we further

obtain, for all 1 2  sufficiently large:

11An explicit proof of this result is given in Chao, Liu, and Swanson (2023). In particular, this

inequality is shown in part (b) of Lemma OA-15 in Chao, Liu, and Swanson (2023).
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

Ã
max∈

X
=1

 | | ≥ ©−1
¡
1− 

2

¢!≤2



n
1 + 

 (1−1)2
£
1 + ©−1

¡
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¢¤3o
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
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1 + 22−
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2 + 22

£
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¡
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¢¤3
−

(1−1)
2

o
Ã
by the inequality

¯̄̄̄
¯
X
=1



¯̄̄̄
¯


≤ 

X
=1

|| where  = −1 for  ≥ 1
!

≤2



½
1 + 4−

(1−1)
2 + 4

hp
2 (1 + )

√
ln

i3
−

(1−1)
2

¾
=2



½
1 + 4−

(1−1)
2 + 2

7
2 (1 + )

3
2
(ln)

3
2


1−1
2

¾


Finally, note that the rate condition given in part (a) of Assumption 2-9

(i.e.,
√
lnmin

©
 (1−1)6 22

ª→ 0 as 1 2  →∞) implies that
(ln)

3
2 

1−1
2 → 0 as 1 2  →∞, from which it follows that:



Ã
max∈

X
=1

 | | ≥ ©−1
¡
1− 

2

¢!
≤2



½
1 + 4−

(1−1)
2 + 2

7
2 (1 + )

3
2
(ln)

3
2


1−1
2

¾
= 2


[1 +  (1)] = 

¡
2



¢
=  (1).

Next, to show part (b), note that, by a similar argument as that given for part

(a) above, we have:


¡
max∈ max1≤≤ | | ≥ ©−1

¡
1− 

2

¢¢
= 

Ã[
∈

[
1≤≤

©| | ≥ ©−1 ¡1− 

2
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≤ 2



½
1 + 4

 (1−1)2 +
2
7
2(1+)

3
2 (ln)

3
2

 (1−1)2

¾
= 2


[1 +  (1)] = 

¡
2



¢
=  (1). ¤

Proof of Theorem 2: To show part (a), let  and   be as defined in

expression (14), and note that:
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−√

 
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= 

Ã
min∈

X
=1
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where =
X

=1

X2()

=1()
0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª
for

1 () = ( − 1)  +  and 2 () = 1 () +  1 − 1. Next, let
=

X

=1

µX2()

=1()

©
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0
]  + 0 [ 

0
] 

ª¶2
, and

we see that, under Assumption 2-8, there exists a positive constant  such that for

every  ∈ {1  } and for all 1 2 and  sufficiently large:

min∈ { ( 21)}

=min∈
1


X
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⎛⎝ 1
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2()X
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⎛⎝1


X
=1

1
1

2()X
=1()

 [0 +1]
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(by Jensen’s inequality)

=min∈

¯̄̄̄
¯̄1 X

=1

1
1

2()X
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©
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0
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0
] 

ª¯̄̄̄¯̄
2

≥ 2 0 (in light of Assumption 2-8) 

It follows that for all 1 2 and  sufficiently large:
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
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√
 
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 (21)
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
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
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≥ 
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making use of the inequality

¯̄√
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where E =
¡
 − 

¢
 and V =

¡
  − 

¢
 . By part

(a) of Lemma QA-16 (given in the Online Appendix, Chao, Liu, and Swanson, 2023),

there exists a sequence of positive numbers {} such that, as  → ∞,  → 0

and  (max1≤≤max∈ |E | ≥  ) → 0. In addition, by the result of part (b)

of Lemma QA-16, there exists a sequence of positive numbers {∗} such that, as
 → ∞, ∗ → 0 and  (max1≤≤max∈ |V | ≥ ∗ ) → 0. Further define E =

max1≤≤max∈ |E | and V = max1≤≤max∈ |V |; and note that, for all
1 2, and  sufficiently large,
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2

¢) ∩ ©E  
ª ∩ ©V  ∗

ª!
+ (1) 

where the last equality above follows from the fact that



Ã(
1−E
1+
√
V
min∈

X
=1



¯̄̄
√


¯̄̄
≥ ©−1 ¡1− 

2

¢) ∩ ©E ≥ 
ª!

≤ 
¡
E ≥ 

¢
=  (1)

Moreover, making use of Assumption 2-8, the result given in Lemma A1, and the fact

that  = b0c ∼  1−1 , we see that, there exists positive constants  and  such

that:

min∈

X
=1



¯̄̄
√


¯̄̄
=min∈

X
=1



√
| (1)|
 (21)

≥√
X

=1



min∈ | (1)|
\

max∈  (21)

≥√
X

=1


√

=
√
 √


∼√∼

q
0

∼  (1−1)2 .

On the other hand, applying the inequality

©−1
¡
1− 

2

¢ ≤p2 (1 + )
√
ln ∼

√
ln ,12 we further deduce that,

as 1 2  →∞,

1

©−1
¡
1− 

2

¢ min
∈

X
=1



¯̄̄̄
√


¯̄̄̄
≥ √



r


2 (1 + ) ln
∼ \
r

 (1−1)

ln
→∞.

This is true because the condition
√
lnmin

©
 (1−1)6 22

ª→ 0 as 1 2  →
∞ (as specified in Assumption 2-9 part (a)) implies that ln (1−1) → 0 as

1 2  → ∞. Hence, there exists a natural number  such that, for all 1 ≥
2 ≥ , and  ≥ , we have

¯̄̄̄
1−
1+
√

∗


¯̄̄̄
min∈

X
=1



¯̄̄
√


¯̄̄
≥ ©−1 ¡1− 

2

¢
so

that:



Ã
min∈

X
=1

 | | ≥ ©−1
¡
1− 

2

¢!
12As noted previously, an explicit proof of this result is given in Chao, Liu, and Swanson (2023).

In particular, this inequality is shown in part (b) of Lemma QA-15 in Chao, Liu, and Swanson

(2023).

43



≥ 

Ã(¯̄̄̄
1−
1+
√

∗


¯̄̄̄
min∈

X
=1



¯̄̄
√


¯̄̄
≥ ©−1 ¡1− 

2

¢) ∩ ©E  
ª ∩ ©V  ∗

ª!
+ (1)

= 
¡©
E  

ª ∩ ©V  ∗
ª¢
+ (1)

(for all 1 ≥2 ≥ and  ≥)

≥ 
¡
E  

¢
+

¡
V  ∗

¢−1 +  (1) (using the inequality



(
\
=1



)
≥

X
=1

 ()− (− 1) in Chao, Liu, and Swanson (2023) Lemma OA-14
!

= 1− 
¡
E ≥ 

¢
+1− 

¡
V ≥ ∗

¢−1 +  (1)

= 1− 
¡
E ≥ 

¢− ¡V ≥ ∗
¢
+ (1)

= 1 +  (1).

Next, to show part (b), note that, by applying the result in part (a), we have that:


¡
min∈max1≤≤ | | ≥ ©−1

¡
1− 

2

¢¢
≥ 

Ã
min∈

X
=1

 | | ≥ ©−1
¡
1− 

2

¢!
= 1 +  (1). ¤

LemmaA1: Let   =
³
 0
  0

−1 · · ·  0
−+1

´0
and   =

³
 0
  0

−1 · · ·  0
−+1

´0
,

and define 1 () = ( − 1)  +  and 2 () = 1 () +  1− 1. Under Assumptions 2-1,
2-2, 2-5, 2-6, and 2-9(b); there exists a positive constant  such that:

max1≤≤ ∈

³

21

´
= max1≤≤ ∈

1


X
=1

⎛⎝ 1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2

≤  ∞ for all 1 2  sufficiently large.

Proof of Lemma A1: To proceed, let max = max {|max ()|  |min ()|} and, for
 ∈ {1  }, let  denote a × 1 elementary vector whose  component is 1 and
all other components are 0. Now, note that:

max1≤≤ ∈ { ( 21)}

= max1≤≤ ∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2
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≤ max1≤≤ ∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

©
 [|0 |]

¯̄


¯̄
+ [|0 

0


0
  |]

+ [|0 
0


0
 |]})2 (by triangle and Jensen’s inequalities)

≤ max∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

½q
kk22

q
 k k22max1≤≤

¯̄


¯̄
+
p
0 [ 

0
] 

q
max1≤≤ 0  [ 

0
]

0
  

+
p
0 [ 

0
] 

q
max1≤≤ 0  [ 

0
]

0
 

o´2
≤ ¡max∈ kk22

¢
1


X
=1

⎛⎝ 1
1

2()X
=1()

½q
 k k22max1≤≤

¯̄


¯̄
+

q
 k k22

q
 k k22

q
max1≤≤ 0 

0
  

+ k k22
q
max1≤≤ 0 

0
 

o´2
≤ ¡max∈ kk22

¢
1


X
=1

⎛⎝ 1
1

2()X
=1()

½q
 k k22max1≤≤

¯̄


¯̄
+

q
 k k22

q
 k k22†max + k k22†max

¾¶2


where the last inequality follows from the fact that, by making use of Assumption

2-6, it is easy to show that there exists a constant †  0 such thatq
max1≤≤ 0 

0
   ≤ k  k2

q
max1≤≤ 0 = k  k2 ≤ †max and,

similarly,
q
max1≤≤ 0 

0
  ≤ k k2 ≤ †max.

13 Hence,

max1≤≤max∈ { ( 21)}

≤ ¡max∈ kk22
¢
1


X
=1

⎛⎝ 1
1

2()X
=1()

½q
 k k22max1≤≤

¯̄


¯̄
+

q
 k k22

q
 k k22†max + k k22†max

¾¶2
≤ ¡max∈ kk22

¢
1


X
=1

1
1

2()X
=1()

 k k22
µ
k k22 +

∙q
 k k22 +

q
 k k22

¸
†max

¶2
≤  ∞,
13Explicit proofs of these two inequalities are given in Chao, Liu, and Swanson (2023). In partic-

ular, these inequalities are shown in parts (a) and (b) of Lemma OA-7 in Chao, Liu, and Swanson

(2023).
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for some positive constant  such that

 ≥ ¡max∈ kk22
¢
 k k22

µ
k k22 +

∙q
 k k22 +

q
 k k22

¸
†max

¶2
, where

such a constant exists because max∈ kk22 and k k22 are both bounded given
Assumption 2-5; because 0  max  1 given Assumption 2-1; and because, under

Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6; one can easily show that there exists a

constant ∗  0 such that  k k22 ≤ ∗ and  k k22 ≤
¡
 k k62

¢13 ≤ ∗.14 ¤

Lemma A2: Suppose that Assumptions 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, and 2-7 hold.

Let ©(·) denote the cumulative distribution function of the standard normal random
variable. Then, there exists a positive constant  such that

 (| | ≥ ) ≤ 2 [1−©()]
n
1 + (1 + )

3
−(1−1)

1
2

o
(23)

for  ∈  = { ∈ {1  } :  = 0}, for  ∈ {1  }, for  sufficiently large, and
for all  such that 0 ≤  ≤ 0min

©
 (1−1)6 22

ª
with 0 being a positive constant.

Proof of Lemma A2: Note first that, for any  such that

 ∈  = { ∈ {1  } :  = 0}, the formula for  reduces to:

 =

ÃX

=1

∙X(−1)+1+−1
=(−1)+

+1

¸2!−1
2 X

=1

X(−1)+1+−1
=(−1)+

+1.

Hence, to verify the conditions of Theorem 4.1 of Chen, Shao, Wu, and Xu (2016), we

set = +1, and note that  [] =  [+1] =  [ [] +1] = 0 , where

the second equality follows by the law of iterated expectations given that Assumption

2-4 implies the independence of  and +1 and where the third equality follows by

Assumption 2-3(a). Hence, the first part of condition (4.1) of Chen, Shao, Wu, and

Xu (2016) is fulfilled. Moreover, in light of Assumption 2-3(b) and in light of the fact

that, under Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6; one can show by straightforward

calculations that there exists a positive constant  such that  k k62 ≤ ; we see

14An explicit proof that, under Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6; there exists some positive

constant # such that  k k62 ≤ # and  k k62 ≤ # is given in Chao, Liu, and Swanson (2023).

See Lemma OA-5 in Chao, Liu, and Swanson (2023).
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that there exists some positive constant 1 such that, for every  ∈ {1 },


h
||

31
10

i
= 

h
|+1|

31
10

i
≤
³
 ||

186
29

´ 29
60 ¡

 |+1|6
¢ 31
60

≤
∙³

 ||
186
29

´ 29
186

¸ 31
10

⎡⎣Ã X
=1

−1X
=0

2+1−

!3⎤⎦ 31
60

≤
h¡
 ||7

¢ 1
7

i 31
10

∙³

°° +1

°°6
2

´ 1
6

¸ 31
10

≤ 
31
10

1 ,

where the first and third inequalities above follow, respectively, by Hölder’s and Li-

apunov’s inequalities. Hence, the second part of condition (4.1) of Chen, Shao, Wu,

and Xu (2016) is also fulfilled with  = 31
10

 2. Moreover, note that, by Assumption

2-7, for all  ≥ 1 and  1 ≥ 1 :



⎧⎨⎩
⎡⎣(−1)+1+−1X

=(−1)+


⎤⎦2⎫⎬⎭ =  1

⎧⎨⎩
⎡⎣ 1√

 1

(−1)+1+−1X
=(−1)+

+1

⎤⎦2⎫⎬⎭ ≥  1,

so that condition (4.2) of Chen, Shao, Wu, and Xu (2016) is satisfied here. Now,

making use of Assumption 2-3(c) and Assumption 2-4 and applying Theorem 2.1 of

Pham and Tran (1985), it can be shown that
©
(+1 )

0ª
is  mixing with  mixing

coefficient satisfying  () ≤ 1 exp {−2} for some constants 1  0 and 2  0.

Next, define  = +1, and note that {} is a -mixing process with -mixing
coefficient  satisfying the condition  ≤ 1 exp {−2} for some constant
1  0 and for all  sufficiently large, given that measurable functions of a finite

number of -mixing random variables are also -mixing, with -mixing coefficients

having the same order of magnitude15. It follows that {} satisfies the  mixing
condition (2.1) stipulated in Chen, Shao, Wu, and Xu (2016) for all  ∈ . Hence, by

15For -mixing and -mixing, this result is given in Theorem 14.1 of Davidson (1994). However,

using essentially the same argument as that given in the proof of Theorem 14.1, one can also prove

a similar result for -mixing. For an explicit proof of this result, see Lemma OA-2 part (a) in Chao,

Liu, and Swanson (2023).
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applying Theorem 4.1 of Chen, Shao, Wu, and Xu (2016) for the case where  = 116,

we obtain the Cramér-type moderate deviation result



½


q
  ≥ 

¾
1−©() = 1 + (1) (1 + )

3
−(1−1)

1
2  (24)

which holds for all 0 ≤  ≤ 0min
©
 (1−1)6 22

ª
and for | (1)| ≤ , where  is

an absolute constant and where  and   are as defined in expression (14).

Next, consider obtaining a moderate deviation result for



½
−

q
  ≥ 

¾
 [1−©()]. As  =

X

=1

X(−1)+1+−1
=(−1)+

(−+1),
we can take  = −+1, and note that, by calculations similar to those given
above, we have  [] =  [−+1] = 0, 

h
||

31
10

i
= 

h
|−+1|

31
10

i
=


h
|+1|

31
10

i
≤ 

31
10

1 , and



⎧⎨⎩
⎡⎣(−1)+1+−1X

=(−1)+


⎤⎦2⎫⎬⎭ = 

⎧⎨⎩
⎡⎣(−1)+1+−1X

=(−1)+
(−+1)

⎤⎦2⎫⎬⎭ ≥  1

Moreover, it is easily seen that {} (with  = −+1) also satisfies the 

mixing condition (2.1) stipulated in Chen, Shao, Wu, and Xu (2016) for every .

Thus, by applying Theorem 4.1 of Chen, Shao, Wu, and Xu (2016), we also obtain

the Cramér-type moderate deviation result



½
−

q
  ≥ 

¾
1−©() = 1 + (1) (1 + )

3
−(1−1)

1
2  (25)

which holds for all 0 ≤  ≤ 0min
©
 (1−1)6 22

ª
and for | (1)| ≤  with  being

an absolute constant. Next, note that:¯̄̄̄
(| |≥)
2[1−©()] − 1

¯̄̄̄
=

¯̄̄̄

 √ 

≥
2[1−©()] − 1

¯̄̄̄
16Note that Theorem 4.1 of Chen, Shao, Wu and Xu (2016) requires that 0   ≤ 1 and   −2.

These conditions are satisfied here given that we choose  = 1 and  = 3110.
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=

¯̄̄̄



 
√

 ≥

∪

− 

√
 ≥


2[1−©()] − 1

¯̄̄̄
=

¯̄̄̄


 

√
 ≥


+


− 

√
 ≥


2[1−©()] − 1

¯̄̄̄
µ
since

½


q
  ≥ 

¾
∩
½
−

q
  ≥ 

¾
= ∅ w.p.1

¶
≤ 1

2

¯̄̄̄


 

√
 ≥


1−©() − 1

¯̄̄̄
+ 1

2

¯̄̄̄


− 

√
 ≥


1−©() − 1

¯̄̄̄


Thus, in light of expressions (24) and (25), we have that:¯̄̄̄
 (| | ≥ )

2 [1−©()] − 1
¯̄̄̄

≤ 1

2

¯̄̄̄
¯̄̄̄
µ


q
  ≥ 

¶
1− ©() − 1

¯̄̄̄
¯̄̄̄+ 1

2

¯̄̄̄
¯̄̄̄
½
−

q
  ≥ 

¾
1−©() − 1

¯̄̄̄
¯̄̄̄

≤ 

2
(1 + )

3
−(1−1)

1
2 +



2
(1 + )

3
−(1−1)

1
2 =  (1 + )

3
−(1−1)

1
2

It then follows that:

− (1 + )
3
−(1−1)

1
2 ≤  (| | ≥ )

2 [1−©()] − 1 ≤  (1 + )
3
−(1−1)

1
2 (26)

where  = 

q
  . Focusing on the right-hand part of the inequality in

(26), we have that:

 (| | ≥ )  (2 [1− ©()]) − 1 ≤  (1 + )
3
−(1−1)

1
2 . Simple rearrangement of

this inequality then leads to the desired result:

 (| | ≥ ) ≤ 2 [1− ©()]
n
1 + (1 + )

3
−(1−1)

1
2

o


which holds for all  ∈  = { ∈ {1  } :  = 0}, for every  ∈ {1  }, for all
 sufficiently large, and for all  such that 0 ≤  ≤ 0min

©
 (1−1)6 22

ª
. ¤
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