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Abstract

This Online Appendix contains additional supporting lemmas with results that are

used in the proofs of Theorems 1 and 2 and Lemmas A1-A2 of the main paper

Additional Supporting Lemmas and Their Proofs

In this Online Appendix, we state and prove a number of additional supporting lemmas.

The results given by these lemmas are used to prove Theorems 1 and 2 as well as Lemmas

A1-A2 of the main paper and, thus, help to deliver the main results of the paper.

Lemma OA-1: Let  and  be real numbers such that   0 and  ≥ 1. Also, let  be a

finite non-negative integer. Then,
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Proof of Lemma OA-1: By the integral test,

∞X
=1

 exp
©−

ª
∞ for finite non-negative integer 

if Z ∞

1

 exp
©−ª  ∞ for finite non-negative integer 

In addition, note that since, by assumption,   0 and  ≥ 1, we haveZ ∞

1

 exp
©−ª  ≤ Z ∞

1

 exp {−} 

We will first consider the case where  = 0. In this case, note thatZ ∞

1

0 exp {−}  =
Z ∞

1

exp {−} 

Let  = −, so that −

= ; and we haveZ ∞

1

exp {−}  = −1


Z −∞

−
exp {} 

=
1



Z −

−∞
exp {} 

=
exp {−}


 ∞ for any   0. (1)

Next, consider the case where  is an integer such that  ≥ 1. Here, we will show thatZ ∞

1

 exp {−}  =
"
1


+

X
=1

1



Ã
−1Y
=0

− 



!#
exp {−} ∞

using mathematical induction. To proceed, first consider the case where  = 1. Let

 =   = 

 = exp {−}   = −1

exp {−} ;
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and making use of integration-by-parts, we haveZ ∞

1

 exp {−}  = −

exp {−}

¯̄̄∞
1
+
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1
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Next, for  = 2, let

 = 2  = 2

 = exp {−}   = −1

exp {−} ;

and we again make use of integration-by-parts to obtainZ ∞
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Now, suppose that, for some  ≥ 2,Z ∞
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then, let

 =   = −1

 = exp {−}   = −1

exp {−} ;

and, using integration-by-parts, we haveZ ∞
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In view of expressions (1) and (2), it then follows by the integral test for series convergence

that ∞X
=1

 exp
©−

ª
∞

for any finite non-negative integer  and for any constants  and  such that   0 and

 ≥ 1. ¤
Lemma OA-2: Let {} be a sequence of random variables (or random vectors) defined on
some probability space (ΩF   ), and let

 =  ( −1  −κ)

be a measurable function for some finite positive integer κ. In addition, defne G−∞ =

 (−1), G∞+ =  (+ ++1 ), F 
−∞ =  ( −1 ), and

F∞+−κ =  (+−κ  ++1−κ  ). Under this setting, the following results hold.
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(a) Let

−κ = sup



¡F 

−∞F∞+−κ
¢
= sup




£
sup

©¯̄

¡
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−∞
¢−  ()

¯̄
:  ∈ F∞+−κ

ª¤


 = sup



¡G−∞G∞+¢ = sup




£
sup

©¯̄

¡
|G−∞

¢−  ()
¯̄
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ª¤
.

If {} is -mixing with

−κ ≤ 1 exp {−2 (− κ)}

for all  ≥ κ and for some positive constants 1 and 2; then  is also -mixing

with -mixing coefficient satisfying

 ≤ 1 exp {−2} for all  ≥ κ,

where 1 is a positive constant such that 1 ≥ 1 exp {2κ}.
(b) Let

−κ = sup



¡F 

−∞F∞+−κ
¢
= sup



sup
∈F

−∞∈F∞+−κ
| ( ∩)−  () ()| 

 = sup



¡G−∞G∞+¢ = sup



sup
∈G−∞∈G∞+

| ( ∩)−  () ()|

If {} is -mixing with

−κ ≤ 1 exp {−2 (− κ)}

for all  ≥ κ and for some positive constants 1 and 2; then  is also -mixing

with -mixing coefficient satisfying

 ≤ 1 exp {−2} for all  ≥ κ,

where 1 is a positive constant such that 1 ≥ 1 exp {2κ}.

Proof of Lemma OA-2:

To show part (a), note first that it is well known that

 = sup



£
sup

©¯̄

¡
|G−∞

¢−  ()
¯̄
:  ∈ G∞+

ª¤
= sup



(
1

2
sup

X
=1

X
=1

| ( ∩)−  () ()|
)

where the second supremum on the last line above is taken over all pairs of finite partitions

{1  } and {1 } of Ω such that  ∈ G−∞ for  = 1   and  ∈ G∞+ for
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 = 1   . See, for example, Borovkova, Burton, and Dehling (2001). Similarly,

−κ = sup



£
sup

©¯̄

¡
|F 

−∞
¢−  ()

¯̄
:  ∈ F∞+−κ

ª¤
= sup



(
1

2
sup

X
=1

X
=1

| ( ∩)−  () ()|
)

where, similar to the definition of , the second supremum on the last line above is taken

over all pairs of finite partitions {1  } and {1  } of Ω such that  ∈ F 
−∞ for

 = 1   and  ∈ F∞+−κ for  = 1  . Moreover, since  is measurable on any

-field on which  −1  −κ are measurable, we also have

G−∞ =  (−1) ⊆  ( −1 ) = F 
−∞

and

G∞+ =  (+++1 ) ⊆  (+−κ  ++1−κ  ) = F∞+−κ .
It, thus, follows that, for all  ≥ κ,

 = sup


(
1

2
sup

X
=1

X
=1

| ( ∩)−  () ()|
)

≤ sup


(
1

2
sup

X
=1

X
=1

| ( ∩)−  () ()|
)

= −κ
≤ 1 exp {−2 (− κ)}
= 1 exp {2κ} exp {−2}
≤ 1 exp {−2}

for some positive constant 1 ≥ 1 exp {2κ} which exists given that κ is fixed. Moreover,
we have

 ≤ 1 exp {−2}→ 0 as →∞,
which establishes the required result for part (a).

Part (b) can be shown in a manner similar to part (a), so to avoid redundancy, we do

not include an explicit proof here. ¤
Remark: Note that part (b) of Lemma OA-2 is similar to a result given in Theorem 14.1

of Davidson (1994) but adapted to suit our situation and our notatons here. Indeed, parts

(a) and (b) of this lemma are both well-known results in the probability literature. We have

chosen to state these results explicitly here only so that we can more easily refer to them in

the proofs of some of our other results.

Lemma OA-3: Let {} be a sequence of random variables that is -mixing. Let   1
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and  ≥  (− 1), and let  = max { }. Suppose that, for all ,

kk = ( ||)
1
 ∞

Then,

| (+)| ≤ 2
¡
21−1 + 1

¢
1−1−1 kk k+k

where

 = sup



¡F 

−∞F∞+
¢
= sup

∈F
−∞∈F∞+

| ( ∩)−  () ()| .

Remark: This is Corollary 14.3 of Davidson (1994). For a proof, see pages 212-213 of

Davidson (1994).

Lemma OA-4: Suppose that Assumption 2-3 hold. Let  1 = b1
0 c, where 1  1  0 and

0 =  − + 1. Then,

(a)

1

 21

(−1)+1+−1X
=(−1)+

≤

| []| = 

µ
1

 1

¶

(b)

1

 31

(−1)+1+−1X
=(−1)+

≤≤

| ()| = 

µ
1

 21

¶

(c)

1

 41

(−1)+1+−1X
=(−1)+

≤≤≤

| []| = 

µ
1

 21

¶

Proof of Lemma OA-4:

To show part (a), first write

1

 21

(−1)+1+−1X
=(−1)+

≤

| []| = 1

 21

(−1)+1+−1X
=(−1)+


£
2
¤
+
1

 21

(−1)+1+−1X
=(−1)+



| []| (3)

Consider now the first term on the right-hand side of expression (3). Note that, trivially, by

Assumption 2-3(b), there exists a positive constant  such that

1

 21

(−1)+1+−1X
=(−1)+


£
2
¤ ≤ 

 1
= 

µ
1

 1

¶
(4)
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For the second term on the right-hand side of expression (3), note that by Assumption 2-3(c),

{}∞=−∞ is -mixing with  mixing coefficient satisfying

 () ≤ 1 exp {−2} .

for every . Since  ≤  (), it follows that {}∞=−∞ is -mixing as well, with  mixing
coefficient satisfying

 ≤ 1 exp {−2} for every .
Hence, in this case, we can apply Lemma OA-3 with  = 6 and  = 54 to obtain
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stant  such that¡
 ||6

¢ 1
6

³
 ||

5
4

´ 4
5 ≤ ¡

 ||6
¢ 1
6
¡
 ||6

¢ 1
6

≤
µ
sup


 ||6
¶1

3
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3 ∞ (by Assumption 2-3(b))

Moreover, let  = − , so that  =  + . Using these notations and the boundedness of
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(given Lemma OA-1) (5)

It follows from expressions (3), (4), and (5) that
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To show part (b), first write
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For the first term on the right-hand side of expression (6) above, note that, trivially, we can

apply Assumption 2-3(b) to obtain

1

 31

(−1)+1+−1X
=(−1)+

 ||3 ≤ 

 21
= 

µ
1

 21

¶
. (7)

Next, for the second term on the right-hand side of expression (6) above, we can apply

Lemma OA-3 with  = 6 and  = 54 to obtain
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Next, by application of Hölder’s inequality, we have
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= 
1
2 ∞ (by Assumption 2-3(b))

Moreover, let 1 =  −  and 2 =  − , so that  = + 1 and  = + 2 = + 1+ 2.
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Using these notations and the boundedness of
¡
 ||6

¢ 1
6

³
 ||

5
4

´ 4
5

as shown above,

we can further write
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=(−1)+
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| ()|

≤ 1

 31

(−1)+1+−1X
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−− −0

2
³
21−

1
6 + 1

´
[1 exp {−2 ( − )}]1− 1
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≤ ∗
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n
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1 ≤ ∗ ∞
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≤ ∗
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(given Lemma OA-1) (8)

Similarly, for the third term on the right-hand side of expression (6), we can apply Lemma
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OA-3 with  = 6 and  = 54 to obtain

1
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(−1)+1+−1X
=(−1)+

≤≤
−≥− −0

| ()|

≤ 1
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(−1)+1+−1X
=(−1)+
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−≥− −0

2
³
21−

1
6 + 1

´
[1 exp {−2 ( − )}]1− 4
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6

³
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4

´ 4
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6

Next, by applying Hölder’s inequality, we have

³
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5
4
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 ||6
¢ 1
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5
2
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2
³
 ||

5
2

´ 1
2

¶4
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=
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5
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6
¡
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6
¡
 ||6

¢ 1
6

(by Liapunov’s inequality)

= 
1
2 ∞ (by Assumption 2-3(b))

Moreover, let 1 =  −  and 2 =  − , so that  = + 1 and  = + 2 = + 1+ 2.

Using these notations and the boundedness of
³
 ||

5
4

´ 4
5 ¡

 ||6
¢ 1
6 as shown above,
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we can further write

1
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(−1)+1+−1X
=(−1)+
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−≥− −0

| ()|
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(−1)+1+−1X
=(−1)+

≤≤
−≥− −0

2
³
21−

1
6 + 1

´
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− 1
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³
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5
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1
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³
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5
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≤ ∗
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−≥− −0

exp
n
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o
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³
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5
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1
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≤ ∗
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(given Lemma OA-1) (9)
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It follows from expressions (6), (7), (8), and (9) that

1

 31

(−1)+1+−1X
=(−1)+

≤≤

| ()| = 1

 31

(−1)+1+−1X
=(−1)+

 ||3 + 1
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µ
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+

µ
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µ
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¶
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µ
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¶
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Finally, to show part (c), we first write

1
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=
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≤
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For the first term on the right-hand side of expression (10) above, note that, trivially, by
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Jensen’s inequality and Hölder’s inequality, we have

1

 41

(−1)+1+−1X
=(−1)+

≤

¯̄

£


3


¤¯̄ ≤ 1

 41

(−1)+1+−1X
=(−1)+

≤


£¯̄


3


¯̄¤

≤ 1

 41

(−1)+1+−1X
=(−1)+

≤

q
 ||2

q
 ||6

≤ 1

 41

(−1)+1+−1X
=(−1)+

≤

¡
 ||6

¢ 1
6

q
 ||6

(by Liapunov’s inequality)

≤ 
2
3  21
 41

(by Assumption 2-3(b))

= 

µ
1

 21

¶
(11)

Next, for the second term on the right-hand side of expression (10), we can apply Lemma

OA-3 with  = 43 and  = 6 to obtain

1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−− −0

| [{ − ()}]|

≤ 1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−− −0

n
2
³
21−

3
4 + 1

´
[1 exp {−2 ( − )}]1−3

4
− 1
6

×
³
 |{ − ()}|

4
3

´ 3
4 ¡

 ||6
¢ 1
6

¾
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Next, by repeated application of Hölder’s inequality, we have

 |{ − ()}|
4
3 ≤

h
 | − ()|

12
7

i 7
9 £
 ||6

¤ 2
9

≤
h
2
5
7

³
 ||

12
7 + | []|

12
7

´i 7
9 £
 ||6

¤ 2
9

(by Loève’s  inequality)

≤
h
2
5
7

³
 ||

12
7 + ||

12
7

´i 7
9 £
 ||6

¤ 2
9

(by Jensen’s inequality)

=
h
2
12
7  ||

12
7

i 7
9 £
 ||6

¤ 2
9

≤ 2
4
3

∙³
 ||

24
7

´ 1
2
³
 ||

24
7

´ 1
2

¸ 7
9 £
 ||6

¤ 2
9

= 2
4
3

∙³
 ||

24
7

´ 7
24
³
 ||

24
7

´ 7
24

¸ 4
3 £
 ||6

¤ 2
9

≤ 2
4
3

h¡
 ||6

¢ 1
6
¡
 ||6

¢ 1
6

i 4
3 £
 ||6

¤ 2
9

≤ 2
4
3

¡

¢ 2
9
¡

¢ 2
9
¡

¢ 2
9 (by Assumption 2-3(b) )

= 2
4
3

2
3

Moreover, let 1 =  −  and 2 =  −  so that  = + 1 and  =  + 2 = + 1 + 2.

Using these notations and the boundedness of  |{ − ()}|
4
3 as shown above,
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we can further write

1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−− −0

| [{ − ()}]|

≤ 1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−− −0

n
2
³
21−

3
4 + 1

´
[1 exp {−2 ( − )}]1−3

4
− 1
6

×
³
 |{ − ()}|

4
3

´ 3
4 ¡

 ||6
¢ 1
6

¾
≤ 1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−− −0

2
³
2
1
4 + 1

´
[1 exp {−2 ( − )}] 112

³
2
4
3

2
3

´ 3
4 ¡


¢ 1
6

≤ ∗

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−− −0

exp
n
−2
12

2

o
³
for some constant ∗ such that 4

³
2
1
4 + 1

´


2
3

1
12

1 ≤ ∗ ∞
´

≤ ∗

 41

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

∞X
2=1

2−1X
1=0

exp
n
−2
12

2

o
≤ ∗

 21

∞X
2=1

2 exp
n
−2
12

2

o
= 

µ
1

 21

¶
(given Lemma OA-1) (12)

Similarly, for the third term on the right-hand side of expression (10) above, we can apply

18



Lemma OA-3 with  = 2 and  = 3 to obtain

1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−≤− −0

| [{ − ()}]|

≤ 1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−≤− −0

n
2
³
21−

1
2 + 1

´
[1 exp {−2 ( − )}]1− 1

2
−1
3

× ¡ |{ − ()}|2
¢ 1
2
¡
 ||3

¢ 1
3

o
Next, applications of Hölder’s inequality yield

 ||3 ≤
¡
 ||6

¢ 1
2
¡
 ||6

¢ 1
2

≤ ¡

¢ 1
2
¡

¢ 1
2 (by Assumption 2-3(b))

=  ∞

and

 |{ − ()}|2 ≤ 2
¡
 ||2 + ||2

¢
(by Loève’s  inequality and Jensen’s inequality)

= 4 ||2

≤ 4
h¡
 ||4

¢ 1
4
¡
 ||4

¢ 1
4

i2
≤ 4

h¡
 ||6

¢ 1
6
¡
 ||6

¢ 1
6

i2
(by Liapunov’s inequality)

≤ 4

µ
sup


 ||6
¶ 2

3

≤ 4
¡

¢ 2
3 ∞ (by Assumption 2-3(b) )

Moreover, let 1 =  −  and 2 =  −  so that  = + 1 and  =  + 2 = + 1 + 2.

Using these notations and the boundedness of  ||3 and  |{ − ()}|2 as
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shown above, we can further write

1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−≤− −0

| [{ − ()}]|

≤ 1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−≤− −0

n
2
³
21−

1
2 + 1

´
[1 exp {−2 ( − )}]1− 1

2
− 1
3

× ¡ |{ − ()}|2
¢ 1
2
¡
 ||3

¢ 1
3

o
≤ 1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−≤− −0

2
³
2
1
2 + 1

´
[1 exp {−2 ( − )}] 16

³
4

2
3

´ 1
2 ¡


¢ 1
3

≤ ∗

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−≤− −0

exp
n
−2
6
1

o
³
for some constant ∗ such that 4

³
2
1
2 + 1

´


2
3

1
6

1 ≤ ∗ ∞
´

≤ ∗

 41

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

∞X
1=1

1X
2=0

exp
n
−2
6
1

o
=

∗

 21

∞X
1=1

(1 + 1) exp
n
−2
6
1

o
= 

µ
1

 21

¶
(given Lemma OA-1) (13)

Finally, consider the fourth term on the right-hand side of expression (10) above. For

20



this term, we apply the result given in part (a) to obtain

1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−0

| ()| | ()|

≤

⎛⎜⎜⎝ 1

 21

(−1)+1+−1X
=(−1)+

≤

| ()|

⎞⎟⎟⎠
⎛⎜⎜⎝ 1

 21

(−1)+1+−1X
=(−1)+

≤

| ()|

⎞⎟⎟⎠
= 

µ
1

 21

¶
. (14)

It follows from expressions (10)-(14) that

1

 41

(−1)+1+−1X
=(−1)+

≤≤≤

| []|

≤ 1

 41

(−1)+1+−1X
=(−1)+

≤

¯̄

£


3


¤¯̄
+
1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−− −0

| [{ − ()}]|

+
1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−≤− −0

| [{ − ()}]|

+
1

 41

(−1)+1+−1X
=(−1)+

≤≤≤
−0

| ()| | ()|

= 

µ
1

 21

¶
. ¤

Lemma OA-5: Suppose that Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6 hold. Then, there

exists a positve constant  such that

 k k62 ≤  ∞ for all 

and, thus,

 k k62 ≤  ∞ and  k k62 ≤  ∞ for all ,
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where

 
×1

=

⎛⎜⎜⎜⎝

−1
...

−+1

⎞⎟⎟⎟⎠ , and  
×1

=

⎛⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎠ .
Proof of Lemma OA-5:

To proceed, note that, given Assumption 2-1, we can write the vector moving-average

(VMA) representation of the companion form of the FAVAR model as

  =
¡
(+) −

¢−1
+

∞X
=0

−

=
¡
(+) −

¢−1
 0+++

∞X
=0

 0++−

=
¡
(+) −

¢−1
 0++

∞X
=0

 0+−, (15)

where

  =

⎛⎜⎜⎜⎜⎜⎝


−1
...

−+2
−+1

⎞⎟⎟⎟⎟⎟⎠   =

⎛⎜⎜⎜⎜⎜⎝

0
...

0

0

⎞⎟⎟⎟⎟⎟⎠ ,  =
⎛⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎠ ,

+
(+)×(+)

=
£
+ 0 · · · 0 0

¤
, and  =

⎛⎜⎜⎜⎜⎜⎝
1 2 · · · −1 

+ 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎠ .

By the triangle inequality,

k k2 ≤
°°°¡(+) −

¢−1
 0+

°°°
2
+

°°°°°
∞X
=0

 0+−

°°°°°
2

22



Moreover, using the inequality
¯̄̄X

=1


¯̄̄
≤ −1

X

=1
|| for  ≥ 1, we get

k k62 ≤ 25
⎛⎝°°°¡(+) −

¢−1
 0+

°°°6
2
+

°°°°°
∞X
=0

 0+−

°°°°°
6

2

⎞⎠
so that

 k k62 ≤ 32
°°°¡(+) −

¢−1
 0+

°°°6
2
+ 32

°°°°°
∞X
=0

 0+−

°°°°°
6

2

(16)

Focusing first on the first term on the right-hand side of the inequality (16), we note that°°°¡(+) −
¢−1

 0+
°°°6
2
=

³
0+

¡
(+) −

¢−10 ¡
(+) −

¢−1
 0+

´3
=

µ
0+

h¡
(+) −

¢ ¡
(+) −

¢0i−1
 0+

¶3
≤

⎛⎝ 1

min

n¡
(+) −

¢ ¡
(+) −

¢0o
⎞⎠3 ¡

0+
0
+

¢3

=

⎛⎝ 1

min

n¡
(+) −

¢ ¡
(+) −

¢0o
⎞⎠3

(0)3

Now, by Assumption 2-6, there exists a constant   0 such that

min

n¡
(+) −

¢ ¡
(+) −

¢0o
= min

n¡
(+) −

¢0 ¡
(+) −

¢o
= 2min

¡
(+) −

¢
≥ 2min

¡
(+) −

¢
≥  [1− max]

2

 0

where max = max {|max ()|  |min ()|} and where 0  max  1 since, by Assumption

2-1, all eigenvalues of  have modulus less than 1. It follows by Assumption 2-5 that, there

exists a positive constant 1 such that

°°°¡(+) −
¢−1

 0+
°°°6
2
≤

⎛⎝ 1

min

n¡
(+) −

¢ ¡
(+) −

¢0o
⎞⎠3

(0)3

≤ kk62
3 [1− max]

6
≤ 1 ∞.
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To show the boundedness of the second term on the right-hand side of the inequality

(16), let (+) be a (+)  × 1 elementary vector whose  component is 1 and all
other components are 0 for  ∈ {1 2  (+) }, and note that°°°°°

∞X
=0

 0+−

°°°°°
2

2

=

(+)X
=1

Ã ∞X
=0

0(+)
 0+−

!2

=

(+)X
=1

∞X
=0

∞X
=0

0(+)
 0+−

0
−+ (

0) (+)

from which we obtain, by applying the inequality
¯̄̄X

=1


¯̄̄
≤ −1

X

=1
|| for  ≥ 1°°°°°

∞X
=0

 0+−

°°°°°
6

2

=

⎡⎣(+)X
=1

Ã ∞X
=0

0(+)
 0+−

!2⎤⎦3

≤ [(+) ]
2

(+)X
=1

Ã ∞X
=0

0(+)
 0+−

!6

= [(+) ]
2

(+)X
=1

( ∞X
=0

∞X
=0

∞X
=0

∞X
=0

∞X
=0

∞X
=0

0(+)
 0+−

0
−+ (

0) (+)

×0(+) 0−
0
−+ (

0) (+)
0
(+)

 0+−
0
− (

0) (+)
o
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Hence,



°°°°°
∞X
=0

 0+−

°°°°°
6

2

≤ [(+) ]
2

(+)X
=1

∞X
=0


¯̄
0(+)

 0+−
¯̄6

+ [(+) ]
2

(+)X
=1

µ
6

3

¶Ã ∞X
=0


¯̄
0(+)

 0+−
¯̄3!2

+ [(+) ]
2

(+)X
=1

µ
6

2

¶µ
4

2

¶Ã ∞X
=0


¯̄
0(+)

 0+−
¯̄2!3

+ [(+) ]
2

(+)X
=1

µ
6

4

¶ ∞X
=0


¯̄
0(+)

 0+−
¯̄4 ∞X

=0


¯̄
0(+)

 0+−
¯̄2

= [(+) ]
2

(+)X
=1

∞X
=0


¯̄
0(+)

 0+−
¯̄6

+20 [(+) ]
2

(+)X
=1

Ã ∞X
=0


¯̄
0(+)

 0+−
¯̄3!2

+90 [(+) ]
2

(+)X
=1

Ã ∞X
=0


¯̄
0(+)

 0+−
¯̄2!3

+15 [(+) ]
2

(+)X
=1

∞X
=0


¯̄
0(+)

 0+−
¯̄4 ∞X

=0


¯̄
0(+)

 0+−
¯̄2
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Next, applying the Cauchy-Schwarz inequality, we further obtain



°°°°°
∞X
=0

 0+−

°°°°°
6

2

≤ [(+) ]
2

(+)X
=1

∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i3
 k−k62

+20 [(+) ]
2

(+)X
=1

Ã ∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i 3
2

 k−k32
!2

+90 [(+) ]
2

(+)X
=1

Ã ∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i
 k−k22

!3

+15 [(+) ]
2

(+)X
=1

( ∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i2
 k−k42

×
∞X
=0

h
0(+)

 0++
¡

¢0
(+)

i
 k−k22

)

≤ [(+) ]
2

(+)X
=1

∞X
=0

h
0(+)


¡

¢0
(+)

i3
 k−k62

+20 [(+) ]
2

(+)X
=1

Ã ∞X
=0

h
0(+)


¡

¢0
(+)

i 3
2

 k−k32
!2

+90 [(+) ]
2

(+)X
=1

Ã ∞X
=0

h
0(+)


¡

¢0
(+)

i
 k−k22

!3

+15 [(+) ]
2

(+)X
=1

( ∞X
=0

h
0(+)


¡

¢0
(+)

i2
 k−k42

×
∞X
=0

h
0(+)


¡

¢0
(+)

i
 k−k22

)
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In addition, observe that, for every  ∈ {1 2  (+) }

0(+)

¡

¢0
(+)

≤ max

n

¡

¢0o

= max

n¡

¢0

o

= 2max
¡

¢

≤ max
n¯̄
max

¡

¢¯̄2


¯̄
min

¡

¢¯̄2o

(by Assumption 2-6)

= max
n
|max ()|2  |min ()|2

o
= 2max

where max = max {|max ()|  |min ()|} and where 0  max  1 given that Assumption

2-1 implies that all eigenvalues of  have modulus less than 1. Now, in light of Assumption

2-2(b), we can set  ≥ 1 to be a constant such that  k−k62 ≤   ∞, so that, by
Liapunov’s inequality,

 k−k22 ≤
¡
 k−k62

¢ 1
3 ≤ 

1
3 ,  k−k32 ≤

¡
 k−k62

¢ 1
2 ≤ 

1
2 ,

 k−k42 ≤
¡
 k−k62

¢ 2
3 ≤ 

2
3 ,
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and, thus,



°°°°°
∞X
=0

 0+−

°°°°°
6

2

≤ [(+) ]
2

(+)X
=1

∞X
=0

h
0(+)


¡

¢0
(+)

i3
 k−k62

+20 [(+) ]
2

(+)X
=1

Ã ∞X
=0

h
0(+)


¡

¢0
(+)

i 3
2

 k−k32
!2

+90 [(+) ]
2

(+)X
=1

Ã ∞X
=0

h
0(+)


¡

¢0
(+)

i
 k−k22

!3

+15 [(+) ]
2

(+)X
=1

( ∞X
=0

h
0(+)


¡

¢0
(+)

i2
 k−k42

×
∞X
=0

h
0(+)


¡

¢0
(+)

i
 k−k22

)

≤  [(+) ]
2

⎧⎨⎩
(+)X
=1

∞X
=0

6max + 20

(+)X
=1

Ã ∞X
=0

3max

!2
+ 90

(+)X
=1

Ã ∞X
=0

2max

!3

+15

(+)X
=1

Ã ∞X
=0

4max

!Ã ∞X
=0

2max

!⎫⎬⎭
≤  [(+) ]

3

×
(

1

1− 6max
+ 20

µ
1

1− 3max

¶2
+ 90

µ
1

1− 2max

¶3
+ 15

µ
1

1− 4max

¶µ
1

1− 2max

¶)
≤ 2 ∞

for some constant such that

2

≥  [(+) ]
3

×
(

1

1− 6max
+ 20

µ
1

1− 3max

¶2
+ 90

µ
1

1− 2max

¶3
+ 15

µ
1

1− 4max

¶µ
1

1− 2max

¶)
.
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Putting everything together, we see that

 k k62 ≤ 32
°°°¡(+) −

¢−1
 0+

°°°6
2
+ 32

°°°°°
∞X
=0

 0+−

°°°°°
6

2

≤ 32
¡
1 + 2

¢
≤  ∞

for a constant  such that 0  32
¡
1 + 2

¢ ≤  ∞.
In addition, defineP(+) to be the (+) × (+)  permutation matrix such that

P(+)  =

⎛⎝  
×1
 

×1

⎞⎠ ; (17)

and let 0 =
³
 0

×

´
and 0 =

³
0

×


´
. Note that

0P(+)  =
³
 0

×

´⎛⎝  
×1
 

×1

⎞⎠ =  

0P(+)  =
³

0
×



´⎛⎝  
×1
 

×1

⎞⎠ =  .

so that

k k2 ≤ k0k2
°°P(+)°°2 k k2

=

q
max (

0
)

r
max

³
P 0
(+)

P(+)
´
k k2

=

q
max (

0
)

q
max

¡
(+)

¢ k k2
=

q
max ()

q
max

¡
(+)

¢ k k2
= k k2
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and

k k2 ≤ k0k2
°°P(+)°°2 k k2

=

q
max (

0
)

r
max

³
P 0
(+)

P(+)
´
k k2

=

q
max (

0
)

q
max

¡
(+)

¢ k k2
=

q
max ()

q
max

¡
(+)

¢ k k2
= k k2

It further follows that

 k k62 ≤  k k62 ≤  ∞ and  k k62 ≤  k k62 ≤  ∞. ¤

Lemma OA-6: Suppose that Assumptions 2-1, 2-2(a)-(b), 2-3, 2-5, 2-6, and 2-9(b) hold.

Then, the following statements are true as 1  →∞

(a)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 +1

¯̄̄̄
¯̄ → 0.

(b)

max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠2

→ 0

(c)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

+1

¯̄̄̄
¯̄ → 0.

(d)

max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠2

→ 0

(e)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠¯̄̄̄¯̄ → 0
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Proof of Lemma OA-6.

To show part (a), first write



⎧⎨⎩max1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 +1

¯̄̄̄
¯̄ ≥ 

⎫⎬⎭
= 

⎧⎨⎩max1≤≤
max
∈

⎛⎝1


X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠6

≥ 6

⎫⎬⎭
≤ 

⎧⎨⎩max1≤≤
max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠6

≥ 6

⎫⎬⎭
(by Jensen’s inequality)

≤ 

⎧⎨⎩
X

=1

X
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠6

≥ 6

⎫⎬⎭
≤ 1

6
1



X
=1

X
=1

X
∈



⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠6
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Next, note that

1



X
=1

X
=1

X
∈



⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠6

≤ 1

 61

X
=1

X
=1

X
∈

(−1)+1+−1X
=(−1)+

 [0 +1]
6

+
20

 61

X
=1

X
=1

X
∈

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

6=

 [|0 +1|]3 [|0 +1|]3

+
15

 61

X
=1

X
=1

X
∈

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

6=

 [0 +1]
4
 [0 +1]

2

+
90

 61

X
=1

X
=1

X
∈

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

6=

(−1)+1+−1X
=(−1)+
 6=  6=

n
 [0 +1]

2
 [0 +1]

2

× [0 +1]
2
o

≤ 1

 61

X
=1

X
=1

X
∈

(−1)+1+−1X
=(−1)+


h
(0 )

6
i

£
6+1

¤
+
20

 61

X
=1

X
=1

X
∈

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

6=

1

64

£
0 

0
 + 2+1

¤3

£
0 

0
 + 2+1

¤3

+
15

 61

X
=1

X
=1

X
∈

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

6=

 [0 
0
]
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To show part (b), note that, for any   0
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Now, there exists a constant 1  1 such that

1



X
=1

X
=1

X
∈



⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠6

≤ 1

 61

X
=1

X
∈

⎧⎪⎪⎨⎪⎪⎩
(−1)+1+−1X

=(−1)+
≤≤≤≤≤

| []|

×
X

=1

| [+1+1+1+1+1+1]|
)

Next, note that, by repeated application of Hölder’s inequality, we have by Lemma OA-5

that there exists a positive constant  such that

X
=1

| [+1+1+1+1+1+1]|

≤
X

=1

¡

£
2+1

2
+1

2
+1

¤¢ 1
2
¡

£
2+1

2
+1

2
+1

¤¢ 1
2

≤
X

=1

³©

£
6+1

¤ª 1
3
¡

£|+1+1|3¤¢ 23´ 1

2
³©


£
6+1

¤ª 1
3
¡

£|+1+1|3¤¢ 23´ 1

2

≤
X

=1

∙³©

£
6+1

¤ª 1
3
©

£
6+1

¤ª 1
3
©

£
6+1

¤ª 1
3

´ 1
2

×
³©


£
6+1

¤ª 1
3
©

£
6+1

¤ª 1
3
©

£
6+1

¤ª 1
3

´ 1
2

¸
≤

X
=1

©

£
6+1

¤ª 1
6
©

£
6+1

¤ª 1
6
©

£
6+1

¤ª 1
6
©

£
6+1

¤ª 1
6
©

£
6+1

¤ª 1
6
©

£
6+1

¤ª 1
6

≤  max
1≤≤

sup



£
6
¤

≤  ∞¡
since, given that  = e

0
 ; 

£
6
¤ ≤  k k62 ≤  by Lemma OA-5

where  is a constant not depending on  or 
¢

35



Hence, we can write
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Consider first T1. Note that
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Next, consider T2. For this term, note first that by Assumption 2-3(c), {}∞=−∞ is

-mixing with  mixing coefficient satisfying

 () ≤ 1 exp {−2}

for every . Since  ≤  (), it follows that {}∞=−∞ is -mixing as well, with  mixing
coefficient satisfying

 ≤ 1 exp {−2} for every .
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Hence, we apply Lemma OA-3 with  = 54 and  = 6 to obtain
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Moreover, let 1 =  − , 2 =  − , and 3 =  − , so that  =  + 1,  = +

2 =  + 1+ 2,  =  + 3 =  + 1+ 2 + 3. Using these notations and the boundedness
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Now, consider T3. Here, we can apply Lemma OA-3 with  = 32 and  = 72 to obtain
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2 as shown above, we can further write
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Turning our attention to the term T4, note that, from the upper bounds given in the

proofs of parts (a) and (c) of Lemma OA-4, it is clear that there exists a positive constant
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Consider now T5. In this case, we apply Lemma OA-3 with  = 2 and  = 94 to obtain
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Next, by repeated application of Hölder’s inequality, we obtain
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2,  = +3 = +1+ 2+3. Using these notations and the boundedness of  ||
9
4
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and  |{ − ()}|2 as shown above, we can further write

T5

≤ 1

 61

X
=1

X
∈

(−1)+1+−1X
=(−1)+

≤≤≤≤≤
−≥max{−−}−0

½
2
³
21−

1
2 + 1

´ h
1 exp

n
−2 (− )


oi1− 1

2
− 4
9

× ¡ |{ − ()}|2
¢ 1
2

³
 ||

9
4

´ 4
9

¾
≤ 1

 61

X
=1

X
∈

(−1)+1+−1X
=(−1)+

≤≤≤≤≤
−≥max{−−}−0

2
³
2
1
2 + 1

´
[1 exp {−2 (− )}] 118

³
4

6
7

´ 1
2
³


27
28

´ 4
9

≤ ∗

 61

X
=1

X
∈

(−1)+1+−1X
=(−1)+

≤≤≤≤≤
−≥max{−−}−0

exp
n
−2
18

1

o
³
for some constant ∗ such that 4

³
2
1
2 + 1

´
1

13
7 

1
18

1 ≤ ∗ ∞
´

≤ ∗

 61

X
=1

X
∈

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

∞X
1=1

1X
2=0

1X
3=0

exp
n
−2
18

1

o
≤ ∗

1

 31

∞X
1=1

(1 + 1)
2
exp

n
−2
18

1

o

= ∗
1

 31

⎡⎣ ∞X
1=1

21 exp
n
−2
18

1

o
+ 2

∞X
1=1

1 exp
n
−2
18

1

o
+

∞X
1=1

exp
n
−2
18

1

o⎤⎦
= 

µ
1

 31

¶
(by Lemma OA-1) (24)

Finally, consider T6. Note that, from the upper bounds given in the proofs of part (b) of
Lemma OA-4, it is clear that there exists a positive constant  such that

1

 31

(−1)+1+−1X
=(−1)+

≤≤

| ()| ≤ 

 21
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and

1

 31

(−1)+1+−1X
=(−1)+

≤≤

| ()| ≤ 

 21

from which it follows that

T6 =
1

 61

X
=1

X
∈

(−1)+1+−1X
=(−1)+

≤≤≤≤≤
−≥max{−−}−0

| ()| | ()|

≤ 1



X
=1

X
∈

⎛⎜⎜⎝ 1

31

(−1)+1+−1X
=(−1)+

≤≤

| ()|

⎞⎟⎟⎠
⎛⎜⎜⎝ 1

 31

(−1)+1+−1X
=(−1)+

≤≤

| ()|

⎞⎟⎟⎠
≤ 1



X
=1

X
∈

µ


 21

¶µ


 21

¶
= 1

21

 41

= 

µ
1

 41

¶
. (25)

It follows from expressions (18)-(25) that, for any   0,



⎧⎨⎩max1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

+1

¯̄̄̄
¯̄ ≥ 

⎫⎬⎭
≤ 1

6
1



X
=1

X
=1

X
∈



⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠6

≤ 1

4
(T1 + T2 + T3 + T4 + T5 + T6)

= 

µ
1

 51

¶
+

µ
1

 31

¶
+

µ
1

 31

¶
+

µ
1

 31

¶
+

µ
1

 31

¶
+

µ
1

 41

¶
= 

µ
1

 31

¶
=  (1)

µ
by Assumption 2-9(b) which stipulates that

1

 31
∼ 1

 31
→ 0

¶
which proves the required result.
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Turning our attention to part (d), note that, for any   0,



⎧⎨⎩max1≤≤
max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠2

≥ 

⎫⎬⎭
= 

⎧⎪⎨⎪⎩max1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠2 ¯̄̄̄
¯̄
3

≥ 3

⎫⎪⎬⎪⎭
≤ 

⎧⎨⎩max1≤≤
max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠6

≥ 3

⎫⎬⎭
(by Jensen’s inequality)

≤ 

⎧⎨⎩
X

=1

X
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠6

≥ 3

⎫⎬⎭
≤ 1

3
1



X
=1

X
=1

X
∈



⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠6

.

The rest of the proof for part (d) then follows in a manner similar to the argument given for

part (c) above.

For part (e), note that, by the Cauchy-Schwarz inequality,

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠¯̄̄̄¯̄
≤ max

1≤≤
max
∈

vuuut1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠2
vuuut1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠2

≤

⎧⎪⎪⎨⎪⎪⎩
vuuutmax

1≤≤
max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠2

×

vuuutmax
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠2

⎫⎪⎪⎬⎪⎪⎭
=  (1) ,
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where the convergence in probability to zero in the last line above follows from applying the

results in parts (b) and (d) of this lemma. ¤
Lemma OA-7: Suppose that Assumptions 2-1 and 2-6 hold. Then, the following statements

are true.

(a) There exists a positive constant † such that

k  k2 ≤ †max

where max = max {|max ()|  |min ()|} with 0  max  1.

(b) There exists a positive constant † such that

k k2 ≤ †max

where max is as defined in part (a).

Proof of Lemma OA-7:

To proceed, recall first that the FAVAR model, i.e.,

 =  +   −1 +  −1 + 

 =  +  −1 + −1 +  ,

can be written in the companion form

  = + −1 +

where   =
¡
 0

  0
−1 · · ·  0

−+2  0
−+1

¢0
with  =

¡
 0
  0



¢0
and where

 =

⎛⎜⎜⎜⎜⎜⎝


0
...

0

0

⎞⎟⎟⎟⎟⎟⎠ ,  =
⎛⎜⎜⎜⎜⎜⎝

1 2 · · · −1 

+ 0 · · · 0 0

0 +
. . .

... 0
...

. . .
. . . 0

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎠ , and  =

⎛⎜⎜⎜⎜⎜⎝

0
...

0

0

⎞⎟⎟⎟⎟⎟⎠
with  =

¡
0 0

¢0
,  =

¡
 0  0

¢0
, and

 =

µ
   

 

¶
for  = 1  .

Let P(+) be the (+) × (+)  permutation matrix defined by expression (17) in the
proof of Lemma OA-5; and it is easy to see that  = P(+)P 0(+) has the partitioned
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form

 = P(+)P 0(+) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

11
×

12
×

21
(−1)×

22
(−1)×

31
×

32
×

41
(−1)×

42
(−1)×

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where 11 =   and 12 =   , i.e., the first  rows of the matrix  as given by the

submatrix
£
   

¤
.

Now, to show part (a), let  ∈ R such that kk2 = 1 and such that

k  k2 = 00    = max
kk2=1

00    = 0
0
1111

and let  =
³
 0

×

´0
. It follows that

k  k2 =
p
00   

=

q
0

0
1111

≤
q
0

0
1111 + 0

0
2121 + 0

0
3131 + 0

0
4141

=

q
00

0


=
q
00P(+)0P 0(+)P(+)P 0(+)

=
q
00P(+)0P 0(+)

¡
since P(+) is an orthogonal matrix

¢
≤

r
max
kk2=1

00
³
noting that

°°P 0(+)°°2 =q00P(+)P 0(+) = 1
´

= kk2
= max ()

≤ †max (by Assumption 2-6)

where max = max {|max ()|  |min ()|}. Note further that 0  max  1 since, by As-

sumption 2-1, all eigenvalues of  have modulus less than 1.

To show part (b), let e ∈ R such that kek2 = 1 and such that
k k2 = e00  e = max

kk2=1
00   = e001212e

and let


(+)×

=

µ
0



¶
.
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It follows that

k k2 =

qe00  e
=

qe001212e
≤

qe001212e + e002222e + e003232e + e004242e
=

qe000e
=

qe00P(+)0P 0(+)P(+)P 0(+)e
=

qe00P(+)0P 0(+)e ¡since P(+) is an orthogonal matrix¢
≤

r
max
kk2=1

00
³
noting that

°°P 0(+)e°°2 =qe00P(+)P 0(+)e = 1´
= kk2
= max ()

≤ †max (by Assumption 2-6)

where max = max {|max ()|  |min ()|}. As noted in the proof for part (a), 0  max  1

since, by Assumption 2-1, all eigenvalues of  have modulus less than 1. ¤
Lemma OA-8: Consider the linear process

 =

∞X
=0

Ψ−

Suppose the process satisfies the following assumptions

(i) Let {} is an independent sequence of random vectors with  [] = 0 for all . For

some   0, suppose that there exists a positive constant  such that

 kk1+2 ≤  ∞ for all 

(ii) Suppose that  has p.d.f.  such that, for some positive constant  ∞,

sup


Z
| ( − )−  ()|  ≤ ||

whenever || ≤  for some constant   0.

(iii) Suppose that
∞X
=0

kΨk2 ∞
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and

det

( ∞X
=0

Ψ


)
6= 0 for all  with || ≤ 1

Under these conditions, suppose further that

∞X
=0

Ã ∞X
=

kΨk2
! 

1+

∞;

then, for some positive constant ,

 () ≤ 

∞X
=

Ã ∞X
=

kΨk2
! 

1+

where

 () = sup



£
sup

©¯̄

¡
|F 

−∞
¢−  ()

¯̄
:  ∈ F∞+

ª¤
.

with F 
−∞ = 

¡
 −2 −1 

¢
and F∞+ = 

¡
+ ++1 ++2 

¢
.

Remark: This is Theorem 2.1 of Pham and Tran (1985) restated here in our notation. For

a proof, see Pham and Tran (1985).

Lemma OA-9: Let  be an ×  square matrix with (ordered) singular values given by

(1) () ≥ (2) () ≥ · · · ≥ () () ≥ 0.

Suppose that  is diagonalizable, i.e.,

 = Λ−1

where Λ is diagonal matrix whose diagonal elements are the eigenvalues of . Let the

modulus of these eigenvalues be ordered as follows:¯̄
(1) ()

¯̄
≥
¯̄
(2) ()

¯̄
≥ · · · ≥

¯̄
() ()

¯̄
.

Then, for  ∈ {1  } and for any positive integer , we have

 ()
−1 ¯̄

()
¡

¢¯̄ ≤ ()

¡

¢ ≤  ()

¯̄
()

¡

¢¯̄

where

 () = (1) ()(1)
¡
−1

¢
.

Proof of Lemma OA-9: Observe first that we can assume, without loss of generality, that

the decomposition

 = Λ−1 =  ·  (1 2  ) · −1
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is such that

 = () () for  = 1  

with ¯̄
(1) ()

¯̄
≥
¯̄
(2) ()

¯̄
≥ · · · ≥

¯̄
() ()

¯̄
.

This is because suppose we have the alternative representation where

 = eeΛe−1 = e ·  ³e1 e2  e´ · e−1
and where e 6= () () for at least some of the 

0. Then, we can always define a permutation
matrix P such that

P 0eΛP = Λ

so that, given that P is an orthogonal matrix, we have

 = eeΛe−1 = ePP 0eΛPP 0 e−1 = Λ−1

where  = eP and, thus, −1 = ³eP´−1 = P 0 e−1.
Next, note that, for any positive integer ,

 = Λ−1 × Λ−1 × · · · × Λ−1 = Λ−1

where

Λ = 
¡


1 


2  




¢
= 

³



(1)
()  



(2)
()   



()
()
´
.

Moreover, since () (
) = 



()
() for any  ∈ {1 }, we also have

Λ = 
¡


1 


2  




¢
= 

¡
(1)

¡

¢
 (2)

¡

¢
  ()

¡

¢¢
.

In addition, let () () denote the complex conjugate of () (
) for  ∈ {1 }, and

note that, by definition,

()
¡
Λ
¢
=

q
() ()() () =

¯̄
()

¡

¢¯̄

Since
¯̄
() (

)
¯̄
=
¯̄̄



()
()
¯̄̄
=
¯̄
() ()

¯̄
, the ordering¯̄

(1) ()
¯̄
≥
¯̄
(2) ()

¯̄
≥ · · · ≥

¯̄
() ()

¯̄
implies that ¯̄

(1)
¡

¢¯̄ ≥ ¯̄(2) ¡

¢¯̄ ≥ · · · ≥ ¯̄() ¡
¢¯̄

and, thus,

(1)
¡
Λ
¢ ≥ (2)

¡
Λ
¢ ≥ · · · ≥ ()

¡
Λ
¢
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for any positive integer .

Now, apply the inequality

(+−1) () ≤ () ()() ()

for   ∈ {1  } and +  ≤ + 1; we have

()
¡

¢
= ()

¡
Λ−1

¢
≤ ()

¡
Λ

¢
(1)

¡
−1

¢
≤ ()

¡
Λ
¢
(1) ()(1)

¡
−1

¢
= (1) ()(1)

¡
−1

¢ ¯̄
()

¡

¢¯̄

=  ()
¯̄
()

¡

¢¯̄
for any  ∈ {1  }

Moreover, for any  ∈ {1  },¯̄
()

¡

¢¯̄

= ()
¡
Λ
¢

= ()
¡
−1Λ−1

¢
= ()

¡
−1

¢
≤ (1)

¡
−1

¢
()

¡

¢
(1) ()

or ¯̄
() (

)
¯̄

 ()
=

¯̄
() (

)
¯̄

(1) ()(1) (−1)
≤ ()

¡

¢

Putting these two inequalities together, we have, for any  ∈ {1  } and for all positive
integer ,

 ()
−1 ¯̄

()
¡

¢¯̄ ≤ ()

¡

¢ ≤  ()

¯̄
()

¡

¢¯̄
. ¤

Remark: Note that the case where  = 1 in Lemma OA-9 has previously been obtained in

Theorem 1 of Ruhe (1975). Hence, Lemma OA-9 can be viewed as providing an extension

to the first part of that theorem.

Lemma OA-10: Let  be such that ||  1. Then,
∞X
=0

( + 1)  =
1

(1− )
2
∞

Proof of Lemma OA-10: Define

 () = 1 + + 2 + · · ·+  =
1− +1

1− 

53



Note that

0 () = 1 + 2+ 32 + · · ·+ −1

= −(+ 1) 


1− 
+
1− +1

(1− )
2

=
1− +1 − (+ 1)  (1− )

(1− )
2

=
1− +1 − (+ 1)  + (+ 1) +1

(1− )
2

=
1− (+ 1)  + +1

(1− )
2

=
1−  −  (1− )

(1− )
2

It follows that

0 () =
−1X
=0

( + 1)  =
1−  −  (1− )

(1− )
2

→ 1

(1− )
2
as →∞. ¤

Lemma OA-11: Let  = (
0
  

0
)
0
be generated by the factor-augmented VAR process

+1 = +1 + · · ·+−+1 + +1

described in section 3 of the main paper. Under Assumptions 2-1, 2-2, and 2-6; {} is a
-mixing process with -mixing coefficient  () such that

 () ≤ 1 exp {−2}

for some positive constants 1 and 2. Here,

 () = sup



£
sup

©¯̄

¡
|A

−∞
¢−  ()

¯̄
:  ∈ A∞+

ª¤
with A

−∞ =  (−2−1) and A∞+ =  (+++1++2 ).

Proof of Lemma OA-11:

To prove this lemma, we shall verify the conditions of Lemma OA-8 given above for the

vector moving-average representation of , i.e.,

 = +
¡
(+) −

¢−1
 0++

∞X
=0

+
 0+− = ∗ +

∞X
=0

Ψ−,
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where

∗ = +
¡
(+) −

¢−1
 0+, Ψ = +

 0+ ,

+
(+)×(+)

=
£
+ 0 · · · 0 0

¤
, and  =

⎛⎜⎜⎜⎜⎜⎝
1 2 · · · −1 

+ 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎠
To proceed, set

 =

∞X
=0

Ψ− (26)

and note first that, setting  = 5 in Lemma OA-8, and we see that Assumptions (i) and (ii)

of Lemma OA-8 are the same as the conditions specified in Assumption 2-2 (a)-(c). Next,

note that, since in this case Ψ = +
 0+, we have

kΨk2 ≤ k+k2
°°

°°
2

°° 0+°°2
≤

q
max

¡
 0++

¢µq
max

©
()

0

ª¶q

max
¡
+

0
+

¢
= max

¡
+

0
+

¢µq
max

©
()

0

ª¶

=

q
max

©
()

0

ª

= max
¡

¢

≤ 
£
max

©¯̄
max

¡

¢¯̄

¯̄
min

¡

¢¯̄ª¤

(by Assumption 2-6)

=  [max {|max ()|  |min ()|}]
= max

where max = max {|max ()|  |min ()|} and where 0  max  1 since, by Assumption

2-1, all eigenvalues of  have modulus less than 1. It follows that

∞X
=0

kΨk2 ≤ 

∞X
=0

max =


1− max
∞.

Moreover, by Assumption 2-1,

det
©
(+) −1 − · · ·−


ª 6= 0 for all  such that || ≤ 1
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and, by definition,

∞X
=0

Ψ
 = Ψ () =

¡
(+) −1 − · · ·−


¢−1

for all  such that || ≤ 1

so that

Ψ ()
¡
(+) −1 − · · ·−


¢
= (+) for all  such that || ≤ 1

In addition, since

det {Ψ ()}det©(+) −1 − · · ·−

ª

= det
©
Ψ ()

¡
(+) −1 − · · ·−


¢ª

= det
©
(+)

ª
= 1,

and since ¯̄
det

©
(+) −1 − · · ·−


ª¯̄

∞ for all  such that || ≤ 1,

it follows that

det

( ∞X
=0

Ψ


)
= det {Ψ ()}

=
1

det
©
(+) −1 − · · ·−

ª
6= 0 for all  such that || ≤ 1.
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Finally, note that, setting  = 5,

∞X
=0

Ã ∞X
=

kΨk2
! 

1+

=

∞X
=0

Ã ∞X
=

kΨk2
! 5

6

≤
∞X
=0

Ã ∞X
=

max

! 5
6

= 
5
6

∞X
=0

Ã ∞X
=

max

!5
6

≤ 
5
6

∞X
=0

∞X
=

³

5
6
max

´
Ã
by the inequality

¯̄̄̄
¯
∞X
=1



¯̄̄̄
¯


≤
∞X
=1

|| for  ≤ 1
!

= 
5
6

∞X
=0

( + 1)
³

5
6
max

´
= 

5
6

h
1− 

5
6
max

i−2
(by Lemma OA-10)

 ∞
³
since 0  

5
6
max  1 given that 0  max  1

´
.

Hence, all conditions of Lemma OA-8 are fulfilled. Applying Lemma OA-8, we then
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obtain that there exists a constant  such that

 () ≤ 

∞X
=

Ã ∞X
=

kΨk2
! 5

6

≤ 

∞X
=

Ã ∞X
=

max

! 5
6

= 
5
6

∞X
=

Ã ∞X
=

max

! 5
6

≤ 
5
6

∞X
=

∞X
=

³

5
6
max

´
= 

5
6

³

5
6
max

´ ∞X
=0

( + 1)
³

5
6
max

´
= 

5
6

³

5
6
max

´ h
1− 

5
6
max

i−2
= 

5
6

h
1− 

5
6
max

i−2
exp

½
−
∙
5

6
|lnmax|

¸


¾
(since 0  max  1)

≤ 1 exp {−2}→ 0 as →∞.

for some positive constants 1 and 2 such that

1 ≥ 
5
6

h
1− 

5
6
max

i−2
and 2 ≤ 5

6
|lnmax|

It follows that the process {} (as defined in expression (26)) is  mixing with beta coefficient
 () satisfying

 () ≤ 1 exp {−2} .
Since

 = ∗ +
∞X
=0

Ψ− = ∗ + 

and since ∗ is a nonrandom parameter, we can then apply part (a) of Lemma OA-2 to

deduce that {} is a  mixing process with  coefficient  () satisfying the inequality

 () ≤ 1 exp {−2} . ¤

Lemma OA-12: Let   =
¡
 0
  0

−1 · · ·  0
−+2  0

−+1
¢0
and

  =
¡
 0
  0

−1 · · ·  0
−+2  0

−+1
¢0
. Under Assumptions 2-1, 2-2, 2-5, 2-6, and 2-9(b);

the following statements are true as  →∞
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(a)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

¯̄̄̄
¯̄ → 0

(b)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

¯̄̄̄
¯̄ → 0

(c)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 (  − [ ])

¯̄̄̄
¯̄ → 0

(d)

max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0
©
(  − [ ]) + ( 

0
 − [ 

0
]) 

+( 
0
 − [ 

0
]) })2

→ 0

(e)

max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠2

=  (1) .

(f)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎧⎨⎩
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 (  − [ ])

+
1

 1

(−1)+1+−1X
=(−1)+

{0 ( 
0
 − [ 

0
])  + 0 ( 

0
 − [ 

0
]) }

⎫⎬⎭
⎞⎠

×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª⎞⎠⎫⎬⎭
¯̄̄̄
¯̄

→ 0
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(g)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠¯̄̄̄¯̄
→ 0

(h)

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠¯̄̄̄¯̄
→ 0

Proof of Lemma OA-12:

To show part (a), note that, for any   0,
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⎧⎨⎩max1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

¯̄̄̄
¯̄ ≥ 

⎫⎬⎭
= 

⎧⎨⎩max1≤≤
max
∈

⎛⎝1


X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

⎞⎠2

≥ 2

⎫⎬⎭
≤ 

⎧⎨⎩max1≤≤
max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

⎞⎠2

≥ 2

⎫⎬⎭
(by Jensen’s inequality)

= 

⎧⎨⎩max∈
max
1≤≤

1



X
=1

⎛⎝0

⎡⎣ 1
 1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦⎞⎠2

≥ 2

⎫⎬⎭
≤ 

⎧⎨⎩max∈

X
=1

1



X
=1

⎛⎝0

⎡⎣ 1
 1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦⎞⎠2

≥ 2

⎫⎬⎭
≤ 

⎧⎨⎩max∈
kk22

X
=1

⎛⎝1


X
=1

⎡⎣ 1
 1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦0

×
⎡⎣ 1
 1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦⎞⎠ ≥ 2

⎫⎬⎭
= 

⎧⎨⎩max∈
kk22

X
=1

1



X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

0  ( 
0
 − [ 

0
])
0

× ( 
0
 − [ 

0
])  ≥ 2

ª
≤ max∈ kk22

2

X
=1

1



X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

©
0 

× £( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

ª
(by Markov’s inequality)

≤ 

2

X
=1

1



X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

©
0 

× £( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

ª
(27)

(by Assumption 2-5)
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Next, write

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

©
0 

× £( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

ª¢
=

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

⎞⎠
+

X
=1

⎛⎝2


X
=1

1

 21

(−1)+1+−2X
=(−1)+

(−1)+1+−−1X
=1

©
0 

× £( 
0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
 

ª¢
≤

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

⎞⎠
+

X
=1

⎛⎝2


X
=1

1

 21

(−1)+1+−2X
=(−1)+

(−1)+1+−−1X
=1

¯̄
0 

× £( 
0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
 

¯̄¢
(28)

Let  be a × 1 elementary vector whose  component is 1 and all other components are
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0, and note that

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

⎞⎠
=

X
=1

⎛⎝ 1

 21

X
=1

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
0  

⎞⎠
=

X
=1

1

 21

X
=1

⎛⎝(−1)+1+−1X
=(−1)+

0  [ 
0
 

0
]

0
  

−
(−1)+1+−1X
=(−1)+

0  [ 
0
] [ 

0
]

0
  

⎞⎠
≤

X
=1

1

 21

X
=1

(−1)+1+−1X
=(−1)+


h
k k22

¡
0   

¢2i

≤
X

=1

1

 21

X
=1

(−1)+1+−1X
=(−1)+

q

£k k42

¤q

¡
0   

0


0
  

¢2
(by CS inequality)

≤
X

=1

1

 21

X
=1

(−1)+1+−1X
=(−1)+

q

£k k42

¤q

£k k42

¤q¡
0 

0
  

¢2
≤

X
=1

1

 21

X
=1

(−1)+1+−1X
=(−1)+

q

£k k42

¤q

£k k42

¤ k  k22
q¡

0
¢2

≤ 
¡
†¢2
 21

X
=1

(−1)+1+−1X
=(−1)+

q

£k k42

¤q

£k k42

¤
2max

(by part (a) of Lemma OA-7 and by the fact that  is an elementary vector)

≤ 

 1
= 

µ
1

 1

¶
. (29)

for some positive constant  ≥ 
¡
†¢2q

£k k42
¤q


£k k42

¤
2max, which exists in light

of Lemma OA-5 and the fact that 0  max  1 given Assumption 2-1.

To analyze the second term on the right-hand side of expression (28), note first that by

Lemma OA-11,
©
( 0

  
0
)
0ª
is -mixing with  mixing coefficient satisfying

 () ≤ 1 exp {−2} for some positive constants 1 and 2.

Since  ≤  (), it follows that  = ( 0
  

0
)
0
is -mixing as well, with  mixing
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coefficient satisfying

 ≤ 1 exp {−2}
Moreover, by applying part (b) of Lemma OA-2, we further deduce that 1 =  

0


0
  

is also -mixing with  mixing coefficient satisfying

1 ≤ 1 exp {−2 (− + 1)}
≤ ∗1 exp {−2}

for some positive constant ∗1 ≥ 1 exp {2 (− 1)}. Hence, we can apply Lemma OA-3
with  = 3 and  = 3 to obtain¯̄

0 
£
( 

0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
 

¯̄
=

¯̄
0 

£
( 

0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
0  

¯̄
=

¯̄̄̄
¯
X
=1

0 
£
( 

0
 − [ 

0
])
0


0


¡
 +

0
+ −

£
 +

0
+

¤¢¤
0  

¯̄̄̄
¯

≤
X
=1

½
2
³
2
2
3 + 1

´

1
3

1

³

¯̄
0  ( 

0
 − [ 

0
])
0


¯̄3´ 1
3

×
³

¯̄
0

¡
 +

0
+ −

£
 +

0
+

¤¢
0  

¯̄3´13¾
where  denotes the mixing coefficient for the process {1} and where, by our previous
calculations,


1
3

1
≤ (∗1)

1
3 exp

½
−2

3

¾
for all  sufficiently large.

It further follows that there exists a positive constant 3 such that

∞X
=1


1
3

1
≤ (∗1)

1
3

∞X
=1

exp

½
−2

3

¾
≤ (∗1)

1
3

∞X
=0

exp

½
−2

3

¾
= (∗1)

1
3

∙
1− exp

½
−2
3

¾¸−1
≤ 3

where the last inequality stems from the fact that
X∞

=0
exp {− (23)} is a convergent
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geometric series given that 0  exp {− (23)}  1 for 2  0. Next, note that


¯̄
0  ( 

0
 − [ 

0
])
0


¯̄3
≤ 22

n

¯̄
0   

0


¯̄3
+
¯̄

£
0   

0


¤¯̄3o
(by Loève’s  inequality)

≤ 22
n

¯̄
0   

0


¯̄3
+
¡

£¯̄
0   

0


¯̄¤¢3o
(by Jensen’s inequality)

≤ 22

(


¯̄̄̄
0   

0


0
  

2
+

0 
0


2

¯̄̄̄3
+
¡

£¯̄
0   

0


¯̄¤¢3)
≤ 4

8

h

¯̄
0   

0


0
  

¯̄3
+

¯̄
0 

0


¯̄3i
+4

µq

£
0   

0


0
  

¤q
 [ 

0
]

¶3
(by Loève’s  inequality and by the CS inequality)

≤ 1

2

¯̄
0 

0
  

¯̄3
 k k62 +

1

2
 k k62 + 4

¡
 k k22

¢ 3
2
¡
0 

0
  

¢ 3
2
¡
 k k22

¢ 3
2

≤ 1

2
kk62

¡
†¢6 6max k k62 +

1

2
 k k62 + 4

¡
 k k22

¢ 3
2 kk32

¡
†¢3 3max ¡ k k22

¢ 3
2

=
1

2

¡
†¢6 6max k k62 +

1

2
 k k62 + 4

¡
 k k22

¢ 3
2
¡
†¢3 3max ¡ k k22

¢ 3
2¡

since kk2 = 1 for every  ∈ {1  } given that ’s are elementary vectors
¢

≤ 4

for some positive constant 4 ≥ (12)
¡
†¢6 6max k k62 + (12) k k62

+4
¡
 k k22

¢ 3
2
¡
†¢3 3max ¡ k k22

¢ 3
2 which exists in light of Lemma OA-5 and the fact that

0  max  1 given Assumption 2-1. In a similar way, we can also show that there exists a

positive constant 5 such that


¯̄
0

¡
 +

0
+ −

£
 +

0
+

¤¢
0  

¯̄3
≤ (12) kk62

¡
†¢6 6max °° +

°°6
2
+ (12)

°° +

°°6
2

+4
³

°° +

°°2
2

´ 3
2 kk32

¡
†¢3 3max ³ °° +

°°2
2

´ 3
2

≤ 5 ∞
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Hence,

2

 21

X
=1

(−1)+1+−2X
=(−1)+

(−1)+1+−−1X
=1

¯̄
0 

× £( 
0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
0  

¯̄
≤

4
³
2
2
3 + 1

´
 21

X
=1

(−1)+1+−2X
=(−1)+

(−1)+1+−−1X
=1

X
=1


1
3

1

³

¯̄
0  ( 

0
 − [ 

0
])
0


¯̄3´ 1
3

×
³

¯̄
0

¡
 +

0
+ −

£
 +

0
+

¤¢
0  

¯̄3´13
≤

4
³
2
2
3 + 1

´


1
3

4 
1
3

5

 21

(−1)+1+−2X
=(−1)+

∞X
=1

(∗1)
1
3 exp

½
−2

3

¾

≤ ∗

 1

µ
 1 − 1
 1

¶ ∞X
=1

exp

½
−2

3

¾ ³
where ∗ ≥ 4

³
2
2
3 + 1

´
(∗1)

1
3 

1
3

4 
1
3

5

´
≤ ∗

 1

∞X
=1

exp

½
−2

3

¾
= 

µ
1

 1

¶
(30)
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It then follows from expressions (27), (28), (29), and (30) that



⎧⎨⎩max1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

¯̄̄̄
¯̄ ≥ 

⎫⎬⎭
≤ 

2

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

0 

× £( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
0  

¢
≤ 

2

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
0  

⎞⎠
+


2

X
=1

1



X
=1

2

 21

(−1)+1+−2X
=(−1)+

(−1)+1+−−1X
=1

¯̄
0 

× £( 
0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
0  

¯̄
≤ 

2
1



X
=1



 1
+



2
1



X
=1

∗

 1

∞X
=1

exp

½
−2

3

¾
=



2
1

 1
+

∗

2
1

 1

∞X
=1

exp

½
−2

3

¾
= 

µ
1

 1

¶
+

µ
1

 1

¶
= 

µ
1

 1

¶
=  (1) .
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Next, to show part (b), note that, for any   0,



⎧⎨⎩max1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

¯̄̄̄
¯̄ ≥ 

⎫⎬⎭
= 

⎧⎨⎩max1≤≤
max
∈

⎛⎝1


X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

⎞⎠2

≥ 2

⎫⎬⎭
≤ 

⎧⎨⎩max1≤≤
max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

⎞⎠2

≥ 2

⎫⎬⎭
(by Jensen’s inequality)

= 

⎧⎨⎩max1≤≤
max
∈

1



X
=1

⎛⎝0

⎡⎣ 1
 1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦⎞⎠2

≥ 2

⎫⎬⎭
≤ 

⎧⎨⎩max∈

X
=1

1



X
=1

⎛⎝0

⎡⎣ 1
 1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦⎞⎠2

≥ 2

⎫⎬⎭
≤ 

⎧⎨⎩max∈
kk22

X
=1

⎛⎝1


X
=1

⎡⎣ 1
 1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦ 0

×
⎡⎣ 1
1

(−1)+1+−1X
=(−1)+

( 
0
 − [ 

0
]) 

⎤⎦⎞⎠ ≥ 2

⎫⎬⎭
= 

⎧⎨⎩max∈
kk22

X
=1

1



X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

0 

× ( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])  ≥ 2

ª
≤ max∈ kk22

2

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

0 

× £( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

¢
(by Markov’s inequality)

≤ 

2

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

0 

× £( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

¢
(31)

(by Assumption 2-5)
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Note first that

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

(−1)+1+−1X
=(−1)+

0 

× £( 
0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

¢
=

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

⎞⎠
+

X
=1

⎛⎝2


X
=1

1

 21

(−1)+1+−2X
=(−1)+

(−1)+1+−−1X
=1

0 

× £( 
0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
 

¢
≤

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

⎞⎠
+

X
=1

2



X
=1

1

 21

(−1)+1+−2X
=(−1)+

(−1)+1+−−1X
=1

¯̄
0 

× £( 
0
 − [ 

0
])
0 ¡
 +

0
+ −

£
 +

0
+

¤¢¤
 

¯̄
(32)

Consider the first term on the majorant side of expression (32), whose order of magnitude
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we can analyze as follows

X
=1

⎛⎝1


X
=1

1

 21

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
 

⎞⎠
=

X
=1

⎛⎝ 1

 21

X
=1

(−1)+1+−1X
=(−1)+

0 
£
( 

0
 − [ 

0
])
0
( 

0
 − [ 

0
])
¤
0 

⎞⎠
=

X
=1

1

 21

X
=1

⎛⎝(−1)+1+−1X
=(−1)+

©
0  [ 

0
 

0
]

0
  − 0  [ 

0
] [ 

0
]

0
 

ª⎞⎠
≤

X
=1

1

 21

X
=1

(−1)+1+−1X
=(−1)+


h
k k22

¡
0  

¢2i

≤
X

=1

1

 21

X
=1

(−1)+1+−1X
=(−1)+

q

£k k42

¤q

¡
0  

0


0
 

¢2
(by CS inequality)

≤
X

=1

1

 21

X
=1

(−1)+1+−1X
=(−1)+

q
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for some positive constant  ≥ 
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¤
2max, which exists in light of Lemma OA-5

and the fact that 0  max  1 given Assumption 2-1.

To analyze the second term on the right-hand side of expression (32), note first that by

Lemma OA-11, {} is -mixing with  mixing coefficient satisfying

 () ≤ 1 exp {−2} for some positive constants 1 and 2.

Since  ≤  (), it follows that  is -mixing as well, with  mixing coefficient satis-

fying

 ≤ 1 exp {−2}
Moreover, by applying part (b) of Lemma OA-2, we further deduce that 2 =  

0


0
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is also -mixing with  mixing coefficient satisfying

2 ≤ 1 exp {−2 (− + 1)}
≤ ∗1 exp {−2}

for some positive constant ∗1 ≥ 1 exp {2 (− 1)}. Hence, we can apply Lemma OA-3
with  = 3 and  = 3 to obtain
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where 2 denotes the alpha mixing coefficient for the process {2} and where, by our
previous calculations,
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Next, note that
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which exists in light of Lemma OA-5 and the fact that 0  max  1 given Assumption 2-1.

In a similar way, we can also show that there exists a positive constant 7 such that


¯̄
0

¡
 +

0
+ −

£
 +

0
+

¤¢
0  

¯̄3
≤ 1

2
kk62

¡
†¢6 6max °° +

°°6
2
+
1

2

°° +

°°6
2

+4
³

°° +

°°2
2

´3
kk32

¡
†¢3 3max

≤ 7 ∞

72



Hence,
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It then follows from expressions (31), (32), (33), and (34) that
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Now, to show part (c), note that, for any   0,
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Note that
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Consider the first term on the majorant side of expression (36), whose order of magnitude

we can analyze as follows
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for some positive constant  ≥ k k22
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, which exists in light of Assumption 2-5

and Lemma OA-5.
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To analyze the second term on the right-hand side of expression (36), note first that by

the same argument as given for part (b) above, we can apply Lemma OA-11 to deduce that

{} is -mixing and, thus, also -mixing with  mixing coefficient satisfying

 ≤ 1 exp {−2}

Hence, we can apply Lemma OA-3 with  = 3 and  = 3 to obtain
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result given in Lemma OA-5. In a similar way, we can also show that there exists a positive
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constant 9 such that
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It then follows from expressions (35), (36), (37), and (38) that
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Turning our attention to part (d), note that, by apply Loève’s  inequality, we obtain
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It follows from the arguments given in the proofs of parts (a)-(c) above that, for any   0,
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from which we deduce via the Slutsky’s theorem that
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To show part (f), we apply the Cauchy-Schwarz inequality as well as part (d) of this
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lemma and Lemma A1 of the main paper to obtain

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎧⎨⎩
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 (  − [ ]) + 0 ( 

0
 − [ 

0
]) 

+0 ( 
0
 − [ 

0
]) })

×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª⎞⎠⎫⎬⎭
¯̄̄̄
¯̄

≤ max
1≤≤

max
∈

1



X
=1

¯̄̄̄
¯̄
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 (  − [ ]) + 0 ( 

0
 − [ 

0
]) 

+0 ( 
0
 − [ 

0
]) })

×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª⎞⎠¯̄̄̄¯̄
≤

⎡⎣max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 (  − [ ]) + 0 ( 

0
 − [ 

0
]) 

+0 ( 
0
 − [ 

0
]) })2

i12
×
⎡⎣max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª⎞⎠2⎤⎦12
=  (1) (1)

=  (1) .

For part (g), we apply the Cauchy-Schwarz inequality as well as part (d) of Lemma
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OA-6 and part (e) of this lemma to obtain

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠¯̄̄̄¯̄
≤ max

1≤≤
max
∈

1



X
=1

¯̄̄̄
¯̄
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠¯̄̄̄¯̄
≤

vuuutmax
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠2

×

vuuutmax
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠2

=  (1)  (1)

=  (1)

Finally, for part (h), we apply the Cauchy-Schwarz inequality as well as part (b) of
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Lemma OA-6 and part (e) of this lemma to obtain

max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠¯̄̄̄¯̄
≤ max

1≤≤
max
∈

1



X
=1

¯̄̄̄
¯̄
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠¯̄̄̄¯̄
≤

vuuutmax
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠2

×

vuuutmax
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠2

=  (1)  (1)

=  (1) . ¤

Lemma OA-13: Let   ∈ R such that  ≥ 0 and  ≥ 0. Then,¯̄̄√
−
√

¯̄̄
≤
p
|− |

Proof of Lemma OA-13: Note that³√
−
√

´2

= − 2√
√
+ 

=
√

³√

−
√

´
+
√

³√

−√
´

≤ √

¯̄̄√

−
√

¯̄̄
+
√

¯̄̄√

−√
¯̄̄

=
³√

+
√

´ ¯̄̄√

−
√

¯̄̄

=
¯̄̄³√

+
√

´³√

−
√

´¯̄̄

= |− |
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Taking principal square root on both sides, we obtain¯̄̄√
−
√

¯̄̄
≤
p
|− |. ¤

Lemma OA-14:



(
\
=1



)
≥

X
=1

 ()− (− 1)

Proof of Lemma OA-14:



(
\
=1



)
= 1− 

(Ã
\
=1



!)

= 1− 

(
[
=1




)
(by DeMorgan’s Law)

≥ 1−
X
=1

 (
)

= 1−
X
=1

[1−  ()]

=

X
=1

 ()−+ 1

=

X
=1

 ()− (− 1) . ¤

Lemma OA-15:

(a) For   0,

©() = 1−©() ≤  ()




where  () and ©() denote, respectively, the pdf and the cdf of a standard normal

random variable.

(b) Let  = 1+2. Specify  such that → 0 as 1 2 →∞ and such that, for some

constant   0,

 ≥ 1



for all 1 2 sufficiently large. Then, for all 1 2 sufficiently large such that

1− 

2
≥ ©(2)

85



we have

©−1
³
1− 

2

´
≤
p
2 (1 + )

√
ln .

Proof of Lemma OA-15:

(a)

1− ©() =

Z ∞



1√
2
exp

½
−

2

2

¾


=

Z ∞



1



√
2
exp

½
−

2

2

¾


≤ 1



Z ∞



√
2
exp

½
−

2

2

¾


Let

 = −
2

2
and  = −

so that Z ∞



√
2
exp

½
−

2

2

¾
 = −

Z −∞

− 2

2

1√
2
exp {} 

=

Z − 2

2

−∞

1√
2
exp {} 

=
1√
2
exp

½
−

2

2

¾
=  ()

It follows that

©() = 1−©() ≤  ()


.

(b) Let   0 and set

©() = Pr ( ≤ ) = 1− 

2
.

It follows that

©−1 (© ()) = ©−1
³
1− 

2

´
= 

and, by the result given in part (a) above,

1−©() = 1−
³
1− 

2

´
=



2
≤  ()


.
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The latter inequality implies that

 ≤  ()
2



so that

ln  ≤ ln () + ln 2 + ln

µ




¶
= −1

2
2 − 1

2
ln 2− 1

2
ln + ln 2 + ln

µ




¶
= −1

2
2 +

1

2
ln 2− 1

2
ln + ln

µ




¶
 −1

2
2 +

1

2
ln 2 + ln

µ




¶
 −1

2
2 + ln 2 + ln

µ




¶
or

2 ≤ 2 (ln 2− ln ) + 2 ln
µ




¶
= 2 ln

µ
2



¶
+ 2 ln

µ




¶
≤ 2 ln

µ




¶
for any  = ©−1

³
1− 

2

´
≥ 2

so that

 ≤
√
2

s
ln

µ




¶
for any  = ©−1

³
1− 

2

´
≥ 2

Hence, for 1 2 sufficiently large so that

1− 

2
≥ ©(2) or, equivalently,  = ©−1

³
1− 

2

´
≥ 2,
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we have

©−1
³
1− 

2

´
= 

≤
√
2

s
ln

µ




¶
=
√
2
p
ln − ln

=
√
2
√
ln

r
1− ln

ln

≤
√
2
√
ln

r
1− ln

−

ln

=
p
2 (1 + )

√
ln . ¤

Lemma QA-16: Suppose that Assumptions 2-1, 2-2, 2-3, 2-5, 2-6, and 2-8 hold and suppose

that 1 2  → ∞ such that 1
3
1 = 1 b1

0 c3 → 0. Then, the following statements

are true.

(a)

max
1≤≤

max
∈

¯̄̄̄
¯ − 



¯̄̄̄
¯ → 0

(b)

max
1≤≤

max
∈

¯̄̄̄
  − 



¯̄̄̄
→ 0

where

 =

X
=1

(−1)+1+−1X
=(−1)+

+1  =

X
=1

⎡⎣(−1)+1+−1X
=(−1)+

+1

⎤⎦2

Proof of Lemma QA-16:

To show part (a), note first that by applying parts (a) and (c) of Lemma OA-6, parts
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(a)-(c) of Lemma OA-12, and the Slutsky theorem; we obtain

max
1≤≤

max
∈

¯̄̄̄
¯ − 

 1

¯̄̄̄
¯

= max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤
+
1



X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 +1 +
1



X
=1

1

 1

(−1)+1+−1X
=(−1)+

+1

−1


X
=1

1

 1

(−1)+1+−1X
=(−1)+

©
0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª¯̄̄̄¯̄
≤ max

1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 (  − [ ])

¯̄̄̄
¯̄

+ max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

¯̄̄̄
¯̄

+ max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 ( 
0
 − [ 

0
]) 

¯̄̄̄
¯̄

+ max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0 +1

¯̄̄̄
¯̄

+ max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

+1

¯̄̄̄
¯̄

=  (1)

Moreover, by Assumption 2-8, there exist a positive constant  such that for all  and 

sufficiently large

min
1≤≤

min
∈

¯̄̄̄


 1

¯̄̄̄

= min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
≥   0
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It follows that

max
1≤≤

max
∈

¯̄̄̄
¯ − 



¯̄̄̄
¯ ≤ max

1≤≤
max
∈

¯̄̄̄
¯ − 

 1

¯̄̄̄
¯  min1≤≤

min
∈

¯̄̄̄


 1

¯̄̄̄
=  (1) .

Now, for part (b), note that, applying parts (d), (f), (g), and (h) of Lemma OA-12, parts

(b), (d), and (e) of Lemma OA-6, and the Slutsky theorem; we have
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max
1≤≤

max
∈

¯̄̄̄
  − 

 21

¯̄̄̄

= max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0
©
(  − [ ]) + ( 

0
 − [ 

0
]) 

+( 
0
 − [ 

0
]) })2

+ max
1≤≤

max
∈

¯̄̄̄
¯̄2

X
=1

⎧⎨⎩
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0
©
(  − [ ]) + ( 

0
 − [ 

0
]) 

+( 
0
 − [ 

0
]) })

×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠⎫⎬⎭
¯̄̄̄
¯̄

+ max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠2

+ max
1≤≤

max
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠2

+2 max
1≤≤

max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠¯̄̄̄¯̄
+2 max

1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

+1

⎞⎠¯̄̄̄¯̄
+2 max

1≤≤
max
∈

¯̄̄̄
¯̄1

X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 

£
 +  0

  +  0
 

¤⎞⎠
×
⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0 +1

⎞⎠¯̄̄̄¯̄
=  (1)
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Moreover, note that, for all  and  sufficiently large,

min
1≤≤

min
∈



 21

= min
1≤≤

min
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

©
0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª⎞⎠2

= min
1≤≤

min
∈

1



X
=1

⎛⎝ 1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2

≥ min
1≤≤

min
∈

⎛⎝1


X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2

(by Jensen’s inequality)

= min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
2

=

⎛⎝min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
⎞⎠2

≥ 2  0 (by Assumption 2-8) .

It follows that

max
1≤≤

max
∈

¯̄̄̄
  − 



¯̄̄̄
≤ max

1≤≤
max
∈

¯̄̄̄
  − 

 21

¯̄̄̄
 min
1≤≤

min
∈

µ


 21

¶
=  (1) . ¤
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