Online Appendix to "Selecting the Relevant Variables for Factor Estimation in FAVAR Models"

John C. Chao, Yang Liu ${ }^{\dagger}$ and Norman R. Swanson ${ }^{\text {\& }}$

October 22, 2023

Abstract

This Online Appendix contains additional supporting lemmas with results that are used in the proofs of Theorems 1 and 2 and Lemmas A1-A2 of the main paper

Additional Supporting Lemmas and Their Proofs

In this Online Appendix, we state and prove a number of additional supporting lemmas. The results given by these lemmas are used to prove Theorems 1 and 2 as well as Lemmas A1-A2 of the main paper and, thus, help to deliver the main results of the paper.

Lemma OA-1: Let a and θ be real numbers such that $a>0$ and $\theta \geq 1$. Also, let G be a finite non-negative integer. Then,

$$
\sum_{m=1}^{\infty} m^{G} \exp \left\{-a m^{\theta}\right\}<\infty
$$

[^0]Proof of Lemma OA-1: By the integral test,

$$
\sum_{m=1}^{\infty} m^{G} \exp \left\{-a m^{\theta}\right\}<\infty \text { for finite non-negative integer } G
$$

if

$$
\int_{1}^{\infty} x^{G} \exp \left\{-a x^{\theta}\right\} d x<\infty \text { for finite non-negative integer } G
$$

In addition, note that since, by assumption, $a>0$ and $\theta \geq 1$, we have

$$
\int_{1}^{\infty} x^{G} \exp \left\{-a x^{\theta}\right\} d x \leq \int_{1}^{\infty} x^{G} \exp \{-a x\} d x
$$

We will first consider the case where $G=0$. In this case, note that

$$
\int_{1}^{\infty} x^{0} \exp \{-a x\} d x=\int_{1}^{\infty} \exp \{-a x\} d x
$$

Let $u=-a x$, so that $-\frac{d u}{a}=d x$; and we have

$$
\begin{align*}
\int_{1}^{\infty} \exp \{-a x\} d x & =-\frac{1}{a} \int_{-a}^{-\infty} \exp \{u\} d u \\
& =\frac{1}{a} \int_{-\infty}^{-a} \exp \{u\} d u \\
& =\frac{\exp \{-a\}}{a} \\
& <\infty \text { for any } a>0 \tag{1}
\end{align*}
$$

Next, consider the case where G is an integer such that $G \geq 1$. Here, we will show that

$$
\int_{1}^{\infty} x^{G} \exp \{-a x\} d x=\left[\frac{1}{a}+\sum_{k=1}^{G} \frac{1}{a}\left(\prod_{j=0}^{k-1} \frac{G-j}{a}\right)\right] \exp \{-a\}<\infty
$$

using mathematical induction. To proceed, first consider the case where $G=1$. Let

$$
\begin{aligned}
u & =x, d u=d x \\
d v & =\exp \{-a x\} d x, v=-\frac{1}{a} \exp \{-a x\}
\end{aligned}
$$

and making use of integration-by-parts, we have

$$
\begin{aligned}
\int_{1}^{\infty} x \exp \{-a x\} d x & =-\left.\frac{x}{a} \exp \{-a x\}\right|_{1} ^{\infty}+\int_{1}^{\infty} \frac{1}{a} \exp \{-a x\} d x \\
& =\frac{1}{a} \exp \{-a\}-\left.\frac{1}{a^{2}} \exp \{-a x\}\right|_{1} ^{\infty} \\
& =\frac{1}{a} \exp \{-a\}+\frac{1}{a^{2}} \exp \{-a\} \\
& =\left(\frac{1}{a}+\frac{1}{a^{2}}\right) \exp \{-a\} \\
& =\left\{\frac{1}{a}+\sum_{k=1}^{1} \frac{1}{a}\left(\prod_{j=0}^{k-1} \frac{1-j}{a}\right)\right\} \exp \{-a\}<\infty
\end{aligned}
$$

Next, for $G=2$, let

$$
\begin{aligned}
u & =x^{2}, d u=2 x d x \\
d v & =\exp \{-a x\} d x, v=-\frac{1}{a} \exp \{-a x\}
\end{aligned}
$$

and we again make use of integration-by-parts to obtain

$$
\begin{aligned}
\int_{1}^{\infty} x^{2} \exp \{-a x\} d x & =-\left.\frac{x^{2}}{a} \exp \{-a x\}\right|_{1} ^{\infty}+\frac{2}{a} \int_{1}^{\infty} x \exp \{-a x\} d x \\
& =\frac{1}{a} \exp \{-a\}+\frac{2}{a}\left(\frac{1}{a}+\frac{1}{a^{2}}\right) \exp \{-a\} \\
& =\frac{1}{a} \exp \{-a\}+2\left(\frac{1}{a^{2}}+\frac{1}{a^{3}}\right) \exp \{-a\} \\
& =\left(\frac{1}{a}+\frac{2}{a^{2}}+\frac{2}{a^{3}}\right) \exp \{-a\} \\
& =\left[\frac{1}{a}+\sum_{k=1}^{2} \frac{1}{a}\left(\prod_{j=0}^{k-1} \frac{2-j}{a}\right)\right] \exp \{-a\} \\
& <\infty
\end{aligned}
$$

Now, suppose that, for some $G \geq 2$,

$$
\int_{1}^{\infty} x^{G-1} \exp \{-a x\} d x=\left[\frac{1}{a}+\sum_{k=1}^{G-1} \frac{1}{a}\left(\prod_{j=0}^{k-1} \frac{G-1-j}{a}\right)\right] \exp \{-a\}
$$

then, let

$$
\begin{aligned}
u & =x^{G}, d u=G x^{G-1} d x \\
d v & =\exp \{-a x\} d x, v=-\frac{1}{a} \exp \{-a x\}
\end{aligned}
$$

and, using integration-by-parts, we have

$$
\begin{align*}
\int_{1}^{\infty} x^{G} \exp \{-a x\} d x= & -\left.\frac{x^{G}}{a} \exp \{-a x\}\right|_{1} ^{\infty}+\frac{G}{a} \int_{1}^{\infty} x^{G-1} \exp \{-a x\} d x \\
= & \frac{1}{a} \exp \{-a\}+\frac{G}{a}\left[\frac{1}{a}+\sum_{k=1}^{G-1} \frac{1}{a}\left(\prod_{j=0}^{k-1} \frac{G-1-j}{a}\right)\right] \exp \{-a\} \\
= & \frac{1}{a} \exp \{-a\}+\left[\frac{G}{a^{2}}+\sum_{k=1}^{G-1} \frac{1}{a} \frac{G}{a}\left(\prod_{j=0}^{k-1} \frac{G-(j+1)}{a}\right)\right] \exp \{-a\} \\
= & \left\{\frac{1}{a}+\frac{G}{a^{2}}+\frac{1}{a} \frac{G}{a}\left(\frac{G-1}{a}\right)+\frac{1}{a} \frac{G}{a}\left(\frac{G-1}{a}\right)\left(\frac{G-2}{a}\right)\right. \\
& \left.+\cdots+\frac{1}{a} \frac{G}{a}\left(\frac{G-1}{a}\right)\left(\frac{G-2}{a}\right) \times \cdots \times\left(\frac{1}{a}\right)\right\} \exp \{-a\} \\
= & \left\{\frac{1}{a}+\sum_{k=1}^{G} \frac{1}{a}\left(\prod_{j=0}^{k-1} \frac{G-j}{a}\right)\right\} \exp \{-a\} \\
< & \infty . \tag{2}
\end{align*}
$$

In view of expressions (1) and (2), it then follows by the integral test for series convergence that

$$
\sum_{m=1}^{\infty} m^{G} \exp \left\{-a m^{\theta}\right\}<\infty
$$

for any finite non-negative integer G and for any constants a and θ such that $a>0$ and $\theta \geq 1$.
Lemma OA-2: Let $\left\{V_{t}\right\}$ be a sequence of random variables (or random vectors) defined on some probability space (Ω, \mathcal{F}, P), and let

$$
X_{t}=g\left(V_{t}, V_{t-1}, \ldots, V_{t-\varkappa}\right)
$$

be a measurable function for some finite positive integer \varkappa. In addition, defne $\mathcal{G}_{-\infty}^{t}=$ $\sigma\left(\ldots, X_{t-1}, X_{t}\right), \mathcal{G}_{t+m}^{\infty}=\sigma\left(X_{t+m}, X_{t+m+1}, \ldots.\right), \mathcal{F}_{-\infty}^{t}=\sigma\left(\ldots, V_{t-1}, V_{t}\right)$, and $\mathcal{F}_{t+m-\varkappa}^{\infty}=\sigma\left(V_{t+m-\varkappa}, V_{t+m+1-\varkappa}, \ldots.\right)$. Under this setting, the following results hold.
(a) Let

$$
\begin{aligned}
\beta_{V, m-\varkappa} & =\sup _{t} \beta\left(\mathcal{F}_{-\infty}^{t}, \mathcal{F}_{t+m-\varkappa}^{\infty}\right)=\sup _{t} E\left[\sup \left\{\left|P\left(B \mid \mathcal{F}_{-\infty}^{t}\right)-P(B)\right|: B \in \mathcal{F}_{t+m-\varkappa}^{\infty}\right\}\right], \\
\beta_{X, m} & =\sup _{t} \beta\left(\mathcal{G}_{-\infty}^{t}, \mathcal{G}_{t+m}^{\infty}\right)=\sup _{t} E\left[\sup \left\{\left|P\left(H \mid \mathcal{G}_{-\infty}^{t}\right)-P(H)\right|: H \in \mathcal{G}_{t+m}^{\infty}\right\}\right] .
\end{aligned}
$$

If $\left\{V_{t}\right\}$ is β-mixing with

$$
\beta_{V, m-\varkappa} \leq \bar{C}_{1} \exp \left\{-C_{2}(m-\varkappa)\right\}
$$

for all $m \geq \varkappa$ and for some positive constants \bar{C}_{1} and C_{2}; then X_{t} is also β-mixing with β-mixing coefficient satisfying

$$
\beta_{X, m} \leq C_{1} \exp \left\{-C_{2} m\right\} \text { for all } m \geq \varkappa,
$$

where C_{1} is a positive constant such that $C_{1} \geq \bar{C}_{1} \exp \left\{C_{2} \varkappa\right\}$.
(b) Let

$$
\begin{aligned}
\alpha_{V, m-\varkappa} & =\sup _{t} \alpha\left(\mathcal{F}_{-\infty}^{t}, \mathcal{F}_{t+m-\varkappa}^{\infty}\right)=\sup _{t} \sup _{G \in \mathcal{F}_{-\infty}^{t}, H \in \mathcal{F}_{t+m-\varkappa}^{\infty}}|P(G \cap H)-P(G) P(H)|, \\
\alpha_{X, m} & =\sup _{t} \alpha\left(\mathcal{G}_{-\infty}^{t}, \mathcal{G}_{t+m}^{\infty}\right)=\sup _{t} \sup _{G \in \mathcal{G}_{-\infty}^{t}, H \in \mathcal{G}_{t+m}^{\infty}}|P(G \cap H)-P(G) P(H)|
\end{aligned}
$$

If $\left\{V_{t}\right\}$ is α-mixing with

$$
\alpha_{V, m-\varkappa} \leq \bar{C}_{1} \exp \left\{-C_{2}(m-\varkappa)\right\}
$$

for all $m \geq \varkappa$ and for some positive constants \bar{C}_{1} and C_{2}; then X_{t} is also α-mixing with α-mixing coefficient satisfying

$$
\alpha_{X, m} \leq C_{1} \exp \left\{-C_{2} m\right\} \text { for all } m \geq \varkappa,
$$

where C_{1} is a positive constant such that $C_{1} \geq \bar{C}_{1} \exp \left\{C_{2} \varkappa\right\}$.

Proof of Lemma OA-2:

To show part (a), note first that it is well known that

$$
\begin{aligned}
\beta_{X, m} & =\sup _{t} E\left[\sup \left\{\left|P\left(H \mid \mathcal{G}_{-\infty}^{t}\right)-P(H)\right|: H \in \mathcal{G}_{t+m}^{\infty}\right\}\right] \\
& =\sup _{t}\left\{\frac{1}{2} \sup \sum_{i=1}^{I} \sum_{j=1}^{J}\left|P\left(G_{i} \cap H_{j}\right)-P\left(G_{i}\right) P\left(H_{j}\right)\right|\right\}
\end{aligned}
$$

where the second supremum on the last line above is taken over all pairs of finite partitions $\left\{G_{1}, \ldots, G_{I}\right\}$ and $\left\{H_{1}, \ldots, H_{J}\right\}$ of Ω such that $G_{i} \in \mathcal{G}_{-\infty}^{t}$ for $i=1, \ldots, I$ and $H_{j} \in \mathcal{G}_{t+m}^{\infty}$ for
$j=1, \ldots ., J$. See, for example, Borovkova, Burton, and Dehling (2001). Similarly,

$$
\begin{aligned}
\beta_{V, m-\varkappa} & =\sup _{t} E\left[\sup \left\{\left|P\left(B \mid \mathcal{F}_{-\infty}^{t}\right)-P(B)\right|: B \in \mathcal{F}_{t+m-\varkappa}^{\infty}\right\}\right] \\
& =\sup _{t}\left\{\frac{1}{2} \sup \sum_{i=1}^{L} \sum_{j=1}^{M}\left|P\left(A_{i} \cap B_{j}\right)-P\left(A_{i}\right) P\left(B_{j}\right)\right|\right\}
\end{aligned}
$$

where, similar to the definition of $\beta_{X, m}$, the second supremum on the last line above is taken over all pairs of finite partitions $\left\{A_{1}, \ldots, A_{L}\right\}$ and $\left\{B_{1}, \ldots, B_{M}\right\}$ of Ω such that $A_{i} \in \mathcal{F}_{-\infty}^{t}$ for $i=1, \ldots, I$ and $B_{j} \in \mathcal{F}_{t+m-\varkappa}^{\infty}$ for $j=1, \ldots, M$. Moreover, since X_{t} is measurable on any σ-field on which $V_{t}, V_{t-1}, \ldots, V_{t-\varkappa}$ are measurable, we also have

$$
\mathcal{G}_{-\infty}^{t}=\sigma\left(\ldots, X_{t-1}, X_{t}\right) \subseteq \sigma\left(\ldots, V_{t-1}, V_{t}\right)=\mathcal{F}_{-\infty}^{t}
$$

and

$$
\mathcal{G}_{t+m}^{\infty}=\sigma\left(X_{t+m}, X_{t+m+1}, \ldots\right) \subseteq \sigma\left(V_{t+m-\varkappa}, V_{t+m+1-\varkappa}, \ldots .\right)=\mathcal{F}_{t+m-\varkappa}^{\infty}
$$

It, thus, follows that, for all $m \geq \varkappa$,

$$
\begin{aligned}
\beta_{X, m} & =\sup _{t}\left\{\frac{1}{2} \sup \sum_{i=1}^{I} \sum_{j=1}^{J}\left|P\left(G_{i} \cap H_{j}\right)-P\left(G_{i}\right) P\left(H_{j}\right)\right|\right\} \\
& \leq \sup _{t}\left\{\frac{1}{2} \sup \sum_{i=1}^{L} \sum_{j=1}^{M}\left|P\left(A_{i} \cap B_{j}\right)-P\left(A_{i}\right) P\left(B_{j}\right)\right|\right\} \\
& =\beta_{V, m-\varkappa} \\
& \leq \bar{C}_{1} \exp \left\{-C_{2}(m-\varkappa)\right\} \\
& =\bar{C}_{1} \exp \left\{C_{2} \varkappa\right\} \exp \left\{-C_{2} m\right\} \\
& \leq C_{1} \exp \left\{-C_{2} m\right\}
\end{aligned}
$$

for some positive constant $C_{1} \geq \bar{C}_{1} \exp \left\{C_{2} \varkappa\right\}$ which exists given that \varkappa is fixed. Moreover, we have

$$
\beta_{X, m} \leq C_{1} \exp \left\{-C_{2} m\right\} \rightarrow 0 \text { as } m \rightarrow \infty
$$

which establishes the required result for part (a).
Part (b) can be shown in a manner similar to part (a), so to avoid redundancy, we do not include an explicit proof here.
Remark: Note that part (b) of Lemma OA-2 is similar to a result given in Theorem 14.1 of Davidson (1994) but adapted to suit our situation and our notatons here. Indeed, parts (a) and (b) of this lemma are both well-known results in the probability literature. We have chosen to state these results explicitly here only so that we can more easily refer to them in the proofs of some of our other results.

Lemma OA-3: Let $\left\{X_{t}\right\}$ be a sequence of random variables that is α-mixing. Let $p>1$
and $r \geq p /(p-1)$, and let $q=\max \{p, r\}$. Suppose that, for all t,

$$
\left\|X_{t}\right\|_{q}=\left(E\left|X_{t}\right|^{q}\right)^{\frac{1}{q}}<\infty
$$

Then,

$$
\left|\operatorname{Cov}\left(X_{t}, X_{t+m}\right)\right| \leq 2\left(2^{1-1 / p}+1\right) \alpha_{m}^{1-1 / p-1 / r}\left\|X_{t}\right\|_{p}\left\|X_{t+m}\right\|_{r}
$$

where

$$
\alpha_{m}=\sup _{t} \alpha\left(\mathcal{F}_{-\infty}^{t}, \mathcal{F}_{t+m}^{\infty}\right)=\sup _{G \in \mathcal{F}_{-\infty}^{t}, H \in \mathcal{F}_{t+m}^{\infty}}|P(G \cap H)-P(G) P(H)|
$$

Remark: This is Corollary 14.3 of Davidson (1994). For a proof, see pages 212-213 of Davidson (1994).

Lemma OA-4: Suppose that Assumption 2-3 hold. Let $\tau_{1}=\left\lfloor T_{0}^{\alpha_{1}}\right\rfloor$, where $1>\alpha_{1}>0$ and $T_{0}=T-p+1$. Then,
(a)

$$
\frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\ g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}\right]\right|=O\left(\frac{1}{\tau_{1}}\right)
$$

(b)

$$
\frac{1}{\tau_{1}^{3}} \sum_{\substack{r, v, w=(r-1) \tau+p \\ h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right|=O\left(\frac{1}{\tau_{1}^{2}}\right)
$$

(c)

$$
\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\ g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h} u_{i v} u_{i w}\right]\right|=O\left(\frac{1}{\tau_{1}^{2}}\right)
$$

Proof of Lemma OA-4:

To show part (a), first write

$$
\begin{equation*}
\frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\ g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}\right]\right|=\frac{1}{\tau_{1}^{2}} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[u_{i g}^{2}\right]+\frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\ g<h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}\right]\right| \tag{3}
\end{equation*}
$$

Consider now the first term on the right-hand side of expression (3). Note that, trivially, by Assumption 2-3(b), there exists a positive constant C such that

$$
\begin{equation*}
\frac{1}{\tau_{1}^{2}} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[u_{i g}^{2}\right] \leq \frac{C}{\tau_{1}}=O\left(\frac{1}{\tau_{1}}\right) \tag{4}
\end{equation*}
$$

For the second term on the right-hand side of expression (3), note that by Assumption 2-3(c), $\left\{u_{i t}\right\}_{t=-\infty}^{\infty}$ is β-mixing with β mixing coefficient satisfying

$$
\beta_{i}(m) \leq a_{1} \exp \left\{-a_{2} m\right\} .
$$

for every i. Since $\alpha_{i, m} \leq \beta_{i}(m)$, it follows that $\left\{u_{i t}\right\}_{t=-\infty}^{\infty}$ is α-mixing as well, with α mixing coefficient satisfying

$$
\alpha_{i, m} \leq a_{1} \exp \left\{-a_{2} m\right\} \text { for every } i
$$

Hence, in this case, we can apply Lemma OA-3 with $p=6$ and $r=5 / 4$ to obtain

$$
\left.\left.\left.\left.\begin{array}{rl}
& \frac{1}{\tau_{1}^{2}} \\
\leq & \sum_{\substack{(r-1) \tau+\tau_{1}+p-1}}^{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\
g<h}}^{(r-1) \tau+\tau_{1}+p-1} \\
g<h \\
g<h \\
\hline
\end{array} 2\left(2_{i g} u_{i h}\right] \right\rvert\,\right]-1\right)\left[a_{1} \exp \left\{-a_{2}(h-g)\right\}\right]^{1-\frac{1}{6}-\frac{4}{5}}\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}\right)
$$

Next, by application of Liapunov's inequality, we have that there exists some positive constant \bar{C} such that

$$
\begin{aligned}
\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}} & \leq\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}} \\
& \leq\left(\sup _{t} E\left|u_{i t}\right|^{6}\right)^{\frac{1}{3}} \\
& =\bar{C}^{\frac{1}{3}}<\infty \quad \text { (by Assumption 2-3(b)) }
\end{aligned}
$$

Moreover, let $\varrho=h-g$, so that $h=g+\varrho$. Using these notations and the boundedness of
$\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}$ as shown above, we can further write

$$
\left(\text { for some constant } C^{*} \text { such that } 2\left(2^{\frac{5}{6}}+1\right) \bar{C}^{\frac{1}{3}} a_{1}^{\frac{1}{30}} \leq C^{*}<\infty\right)
$$

$$
\leq \frac{C^{*}}{\tau_{1}^{2}} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho=1}^{\infty} \exp \left\{-\frac{a_{2}}{30} \varrho\right\}
$$

$$
=\frac{C^{*}}{\tau_{1}} \sum_{\varrho=1}^{\infty} \exp \left\{-\frac{a_{2}}{30} \varrho\right\}
$$

$$
\begin{equation*}
=O\left(\frac{1}{\tau_{1}}\right) \quad \text { (given Lemma OA-1) } \tag{5}
\end{equation*}
$$

It follows from expressions (3), (4), and (5) that

$$
\begin{aligned}
\frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}\right]\right| & =\frac{1}{\tau_{1}^{2}} \sum_{\substack{g=(r-1) \tau+p}}^{(r-1) \tau+\tau_{1}+p-1} E\left[u_{i g}^{2}\right]+\frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\
g<h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}\right]\right| \\
& =O\left(\frac{1}{\tau_{1}}\right)+O\left(\frac{1}{\tau_{1}}\right) \\
& =O\left(\frac{1}{\tau_{1}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\
g<h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}\right]\right| \\
& \frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\
g<h}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{1-\frac{1}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(h-g)\right\}\right]^{1-\frac{1}{6}-\frac{4}{5}}\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}} \\
& \leq \frac{\bar{C}^{\frac{1}{3}}}{\tau_{1}^{2}} \sum_{\substack{\left.(r-1) \tau+\tau_{1}+p-1 \\
g<h\right) \tau+p}} 2\left(2^{\frac{5}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(h-g)\right\}\right]^{\frac{1}{30}} \\
& \leq \frac{C^{*}}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\
g<h}}^{(r-1) \tau+\tau_{1}+p-1} \exp \left\{-\frac{a_{2}}{30} \varrho\right\}
\end{aligned}
$$

To show part (b), first write

$$
\begin{align*}
\frac{1}{\tau_{1}^{3}} & \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right|= \\
\frac{1}{\tau_{1}^{3}} & \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left|u_{i h}\right|^{3}+\frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \tag{6}\\
& +\frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau p \\
h \leq v \leq w \\
w-v \geq v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right|
\end{align*}
$$

For the first term on the right-hand side of expression (6) above, note that, trivially, we can apply Assumption 2-3(b) to obtain

$$
\begin{equation*}
\frac{1}{\tau_{1}^{3}} \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left|u_{i h}\right|^{3} \leq \frac{C}{\tau_{1}^{2}}=O\left(\frac{1}{\tau_{1}^{2}}\right) . \tag{7}
\end{equation*}
$$

Next, for the second term on the right-hand side of expression (6) above, we can apply Lemma OA-3 with $p=6$ and $r=5 / 4$ to obtain

$$
\left.\begin{array}{rl}
& \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
\leq & \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}
\end{array} 2\left(2^{1-\frac{1}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(v-h)\right\}\right]^{1-\frac{1}{6}-\frac{4}{5}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i v} u_{i w}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}\right)
$$

Next, by application of Hölder's inequality, we have

$$
\begin{aligned}
\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i v} u_{i w}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}} \leq & \left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(\left(E\left|u_{i v}\right|^{\frac{5}{2}}\right)^{\frac{1}{2}}\left(E\left|u_{i w}\right|^{\frac{5}{2}}\right)^{\frac{1}{2}}\right)^{\frac{4}{5}} \\
= & \left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i v}\right|^{\frac{5}{2}}\right)^{\frac{2}{5}}\left(E\left|u_{i w}\right|^{\frac{5}{2}}\right)^{\frac{2}{5}} \\
\leq & \left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i v}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}} \\
& (\text { by Liapunov's inequality) } \\
= & \bar{C}^{\frac{1}{2}}<\infty \text { (by Assumption 2-3(b)) }
\end{aligned}
$$

Moreover, let $\varrho_{1}=v-h$ and $\varrho_{2}=w-v$, so that $v=h+\varrho_{1}$ and $w=v+\varrho_{2}=h+\varrho_{1}+\varrho_{2}$.

Using these notations and the boundedness of $\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i v} u_{i w}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}$ as shown above, we can further write

$$
\begin{align*}
& \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
& \leq \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{1-\frac{1}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(v-h)\right\}\right]^{1-\frac{1}{6}-\frac{4}{5}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i v} u_{i w}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}} \\
& \leq \frac{\bar{C}^{\frac{1}{2}}}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{\frac{5}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(v-h)\right\}\right]^{\frac{1}{30}} \\
& \leq \frac{C^{*}}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq \leq v w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1} \exp \left\{-\frac{a_{2}}{30} \varrho_{1}\right\} \\
& \text { (for some constant } C^{*} \text { such that } 2\left(2^{\frac{5}{6}}+1\right) \bar{C}^{\frac{1}{2}} a_{1}^{\frac{1}{30}} \leq C^{*}<\infty \text {) } \\
& \leq \frac{C^{*}}{\tau_{1}^{3}} \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho_{1}=1}^{\infty} \sum_{\varrho_{2}=0}^{\varrho_{1}-1} \exp \left\{-\frac{a_{2}}{30} \varrho_{1}\right\} \\
& \leq \frac{C^{*}}{\tau_{1}^{3}} \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho_{1}=1}^{\infty} \varrho_{1} \exp \left\{-\frac{a_{2}}{30} \varrho_{1}\right\} \\
& =\frac{C^{*}}{\tau_{1}^{2}} \sum_{\varrho_{1}=1}^{\infty} \varrho_{1} \exp \left\{-\frac{a_{2}}{30} \varrho_{1}\right\} \\
& =O\left(\frac{1}{\tau_{1}^{2}}\right) \quad \text { (given Lemma OA-1) } \tag{8}
\end{align*}
$$

Similarly, for the third term on the right-hand side of expression (6), we can apply Lemma

OA-3 with $p=6$ and $r=5 / 4$ to obtain

$$
\begin{aligned}
& \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
w-v \geq v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
\leq & \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
w-v \geq v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{1-\frac{1}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{1-\frac{4}{5}-\frac{1}{6}}\left(E\left|u_{i h} u_{i v}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}}
\end{aligned}
$$

Next, by applying Hölder's inequality, we have

$$
\begin{aligned}
\left(E\left|u_{i h} u_{i v}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}} \leq & \left(\left(E\left|u_{i h}\right|^{\frac{5}{2}}\right)^{\frac{1}{2}}\left(E\left|u_{i v}\right|^{\frac{5}{2}}\right)^{\frac{1}{2}}\right)^{\frac{4}{5}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}} \\
= & \left(E\left|u_{i h}\right|^{\frac{5}{2}}\right)^{\frac{2}{5}}\left(E\left|u_{i v}\right|^{\frac{5}{2}}\right)^{\frac{2}{5}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}} \\
\leq & \left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i v}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}} \\
& (\text { by Liapunov's inequality) } \\
= & \bar{C}^{\frac{1}{2}}<\infty \text { (by Assumption 2-3(b)) }
\end{aligned}
$$

Moreover, let $\varrho_{1}=v-h$ and $\varrho_{2}=w-v$, so that $v=h+\varrho_{1}$ and $w=v+\varrho_{2}=h+\varrho_{1}+\varrho_{2}$.
Using these notations and the boundedness of $\left(E\left|u_{i h} u_{i v}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}}$ as shown above,
we can further write

$$
\begin{align*}
& \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
w-v \geq v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
& \leq \frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v w \\
w-v \geq v-w, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{1-\frac{1}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{1-\frac{4}{5}-\frac{1}{6}}\left(E\left|u_{i h} u_{i v}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}} \\
& \leq \frac{\bar{C}^{\frac{1}{2}}}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
w-v \geq v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{\frac{5}{6}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{\frac{1}{30}} \\
& \leq \frac{C^{*}}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1} \exp \left\{-\frac{a_{2}}{30} \varrho_{2}\right\} \\
& w-v \geq v-h, w-v>0 \\
& \text { (for some constant } C^{*} \text { such that } 2\left(2^{\frac{5}{6}}+1\right) \bar{C}^{\frac{1}{2}} a_{1}^{\frac{1}{30}} \leq C^{*}<\infty \text {) } \\
& \leq \frac{C^{*}}{\tau_{1}^{3}} \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho_{2}=1}^{\infty} \sum_{\varrho_{1}=0}^{\varrho_{2}} \exp \left\{-\frac{a_{2}}{30} \varrho_{2}\right\} \\
& =\frac{C^{*}}{\tau_{1}^{3}} \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho_{2}=1}^{\infty}\left(\varrho_{2}+1\right) \exp \left\{-\frac{a_{2}}{30} \varrho_{2}\right\} \\
& =\frac{C^{*}}{\tau_{1}^{2}}\left[\sum_{\varrho_{2}=1}^{\infty} \varrho_{2} \exp \left\{-\frac{a_{2}}{30} \varrho_{2}\right\}+\sum_{\varrho_{2}=1}^{\infty} \exp \left\{-\frac{a_{2}}{30} \varrho_{2}\right\}\right] \\
& =O\left(\frac{1}{\tau_{1}^{2}}\right) \quad \text { (given Lemma OA-1) } \tag{9}
\end{align*}
$$

It follows from expressions (6), (7), (8), and (9) that

$$
\begin{aligned}
\frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right|= & \frac{1}{\tau_{1}^{3}} \sum_{\substack{h=(r-1) \tau+p}}^{(r-1) \tau+\tau_{1}+p-1} E\left|u_{i h}\right|^{3}+\frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
v-h>w-v, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
& +\frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w \\
w-v \geq v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
= & O\left(\frac{1}{\tau_{1}^{2}}\right)+O\left(\frac{1}{\tau_{1}^{2}}\right)+O\left(\frac{1}{\tau_{1}^{2}}\right) \\
= & O\left(\frac{1}{\tau_{1}^{2}}\right) .
\end{aligned}
$$

Finally, to show part (c), we first write

$$
\begin{align*}
& \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& =\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}^{3}\right]\right|+\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v>v=h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& +\frac{1}{\tau_{1}^{4}} \sum_{\substack{(r-1) \tau+\tau_{1}+p-1}}^{\substack{g, h, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v \leq v=h, v-h>0}}\left|E\left[u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& =\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}^{3}\right]\right|+\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v>v=h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)+E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& +\frac{1}{\tau_{1}^{4}} \sum_{g, h, v, w=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)+E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& \begin{array}{c}
g \leq h \leq v \leq w \\
w-v \leq v-h, v-h>0
\end{array} \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}^{3}\right]\right|+\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v>v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& +\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v \leq v-h, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& +\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i g} u_{i h}\right)\right|\left|E\left(u_{i v} u_{i w}\right)\right| \tag{10}
\end{align*}
$$

For the first term on the right-hand side of expression (10) above, note that, trivially, by

Jensen's inequality and Hölder's inequality, we have

$$
\begin{aligned}
\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}^{3}\right]\right| & \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left|u_{i g} u_{i h}^{3}\right|\right] \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{(r-1) \tau+\tau_{1}+p-1}} \sqrt{E\left|u_{i g}\right|^{2}} \sqrt{E\left|u_{i h}\right|^{6}} \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}} \sqrt{E\left|u_{i h}\right|^{6}}
\end{aligned}
$$

(by Liapunov's inequality)
$\leq \frac{\bar{C}^{\frac{2}{3}} \tau_{1}^{2}}{\tau_{1}^{4}}$ (by Assumption 2-3(b))
$=O\left(\frac{1}{\tau_{1}^{2}}\right)$
Next, for the second term on the right-hand side of expression (10), we can apply Lemma OA-3 with $p=4 / 3$ and $r=6$ to obtain

$$
\begin{aligned}
& \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v>v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{(r-h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v>v-h, w-v>0}}^{(r+p-1}\left\{2\left(2^{1-\frac{3}{4}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{1-\frac{3}{4}-\frac{1}{6}}\right. \\
&\left.\times\left(E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v}\right|^{\frac{4}{3}}\right)^{\frac{3}{4}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}}\right\}
\end{aligned}
$$

Next, by repeated application of Hölder's inequality, we have

$$
\begin{aligned}
E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v}\right|^{\frac{4}{3} \leq} \leq & {\left[E\left|u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right|^{\frac{12}{7}}\right]^{\frac{7}{9}}\left[E\left|u_{i v}\right|^{6}\right]^{\frac{2}{9}} } \\
\leq & {\left[2^{\frac{5}{7}}\left(E\left|u_{i g} u_{i h}\right|^{\frac{12}{7}}+\left|E\left[u_{i g} u_{i h}\right]\right|^{\frac{12}{7}}\right)\right]^{\frac{7}{9}}\left[E\left|u_{i v}\right|^{6}\right]^{\frac{2}{9}} } \\
& \left(\text { by Loève's } c_{r}\right. \text { inequality) } \\
\leq & {\left[2^{\frac{5}{7}}\left(E\left|u_{i g} u_{i h}\right|^{\frac{12}{7}}+E\left|u_{i g} u_{i h}\right|^{\frac{12}{7}}\right)\right]^{\frac{7}{9}}\left[E\left|u_{i v}\right|^{6}\right]^{\frac{2}{9}} } \\
& (\text { by Jensen's inequality) } \\
= & {\left[2^{\frac{12}{7}} E\left|u_{i g} u_{i h}\right|^{\frac{12}{7}}\right]^{\frac{7}{9}}\left[E\left|u_{i v}\right|^{6}\right]^{\frac{2}{9}} } \\
\leq & 2^{\frac{4}{3}}\left[\left(E\left|u_{i g}\right|^{\frac{24}{7}}\right)^{\frac{1}{2}}\left(E\left|u_{i h}\right|^{\frac{24}{7}}\right)^{\frac{1}{2}}\right]^{\frac{7}{9}}\left[E\left|u_{i v}\right|^{6}\right]^{\frac{2}{9}} \\
= & 2^{\frac{4}{3}}\left[\left(E\left|u_{i g}\right|^{\frac{24}{7}}\right)^{\frac{7}{24}}\left(E\left|u_{i h}\right|^{\frac{24}{7}}\right)^{\frac{7}{24}}\right]^{\frac{4}{3}}\left[E\left|u_{i v}\right|^{6}\right]^{\frac{2}{9}} \\
\leq & 2^{\frac{4}{3}}\left[\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\right]^{\frac{4}{3}}\left[E\left|u_{i v}\right|^{6}\right]^{\frac{2}{9}} \\
\leq & 2^{\frac{4}{3}}(\bar{C})^{\frac{2}{9}}(\bar{C})^{\frac{2}{9}}(\bar{C})^{\frac{2}{9}}(\text { by Assumption 2-3(b)) } \\
= & 2^{\frac{4}{3}} \bar{C}^{\frac{2}{3}}
\end{aligned}
$$

Moreover, let $\varrho_{1}=v-h$ and $\varrho_{2}=w-v$ so that $v=h+\varrho_{1}$ and $w=v+\varrho_{2}=h+\varrho_{1}+\varrho_{2}$. Using these notations and the boundedness of $E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v}\right|^{\frac{4}{3}}$ as shown above,
we can further write

$$
\begin{align*}
& \frac{1}{\tau_{1}^{4}} \sum_{\substack{(r-1) \tau+\tau_{1}+p-1 \\
g, v, w=(r-1) \tau+p \\
g \leq \leq \leq v \leq w \\
w-v>v=h, w-v>0}}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v>v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left\{2\left(2^{1-\frac{3}{4}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{1-\frac{3}{4}-\frac{1}{6}}\right. \\
& \left.\times\left(E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v}\right|^{\frac{4}{3}}\right)^{\frac{3}{4}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}}\right\} \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{(r-1) \tau+\tau_{1}+p-1 \\
g, v, w=(r-1) \tau+p \\
g \leq \leq \leq v \leq w \\
w-v>v=h, w-v>0}} 2\left(2^{\frac{1}{4}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{\frac{1}{12}}\left(2^{\frac{4}{3}} \bar{C}^{\frac{2}{3}}\right)^{\frac{3}{4}}(\bar{C})^{\frac{1}{6}} \\
& \leq \frac{C^{*}}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h v \leq w \\
w-v>v=h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1} \exp \left\{-\frac{a_{2}}{12} \varrho_{2}\right\} \\
& \text { (for some constant } C^{*} \text { such that } 4\left(2^{\frac{1}{4}}+1\right) \bar{C}^{\frac{2}{3}} a_{1}^{\frac{1}{12}} \leq C^{*}<\infty \text {) } \\
& \leq \frac{C^{*}}{\tau_{1}^{4}} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho_{2}=1}^{\infty} \sum_{\varrho_{1}=0}^{\varrho_{2}-1} \exp \left\{-\frac{a_{2}}{12} \varrho_{2}\right\} \\
& \leq \frac{C^{*}}{\tau_{1}^{2}} \sum_{\rho_{2}=1}^{\infty} \varrho_{2} \exp \left\{-\frac{a_{2}}{12} \varrho_{2}\right\} \\
& =O\left(\frac{1}{\tau_{1}^{2}}\right) \quad \text { (given Lemma OA-1) } \tag{12}
\end{align*}
$$

Similarly, for the third term on the right-hand side of expression (10) above, we can apply

Lemma OA-3 with $p=2$ and $r=3$ to obtain

$$
\begin{aligned}
& \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v \leq v=h, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v \leq v-h, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left\{2\left(2^{1-\frac{1}{2}}+1\right)\left[a_{1} \exp \left\{-a_{2}(v-h)\right\}\right]^{1-\frac{1}{2}-\frac{1}{3}}\right. \\
& \left.\times\left(E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\}\right|^{2}\right)^{\frac{1}{2}}\left(E\left|u_{i v} u_{i w}\right|^{3}\right)^{\frac{1}{3}}\right\}
\end{aligned}
$$

Next, applications of Hölder's inequality yield

$$
\begin{aligned}
E\left|u_{i v} u_{i w}\right|^{3} & \leq\left(E\left|u_{i v}\right|^{6}\right)^{\frac{1}{2}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{2}} \\
& \leq(\bar{C})^{\frac{1}{2}}(\bar{C})^{\frac{1}{2}} \quad(\text { by Assumption 2-3(b)) } \\
& =\bar{C}<\infty
\end{aligned}
$$

and

$$
\begin{aligned}
E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\}\right|^{2} \leq & 2\left(E\left|u_{i g} u_{i h}\right|^{2}+E\left|u_{i g} u_{i h}\right|^{2}\right) \\
& \left(\text { by Loève's } c_{r}\right. \text { inequality and Jensen's inequality) } \\
= & 4 E\left|u_{i g} u_{i h}\right|^{2} \\
\leq & 4\left[\left(E\left|u_{i g}\right|^{4}\right)^{\frac{1}{4}}\left(E\left|u_{i h}\right|^{4}\right)^{\frac{1}{4}}\right]^{2} \\
\leq & 4\left[\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\right]^{2} \quad \text { (by Liapunov's inequality) } \\
\leq & 4\left(\sup _{i, t} E\left|u_{i t}\right|^{6}\right)^{\frac{2}{3}} \\
\leq & 4(\bar{C})^{\frac{2}{3}}<\infty \quad \text { (by Assumption 2-3(b)) }
\end{aligned}
$$

Moreover, let $\varrho_{1}=v-h$ and $\varrho_{2}=w-v$ so that $v=h+\varrho_{1}$ and $w=v+\varrho_{2}=h+\varrho_{1}+\varrho_{2}$. Using these notations and the boundedness of $E\left|u_{i v} u_{i w}\right|^{3}$ and $E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\}\right|^{2}$ as
shown above, we can further write

$$
\begin{align*}
& \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v \leq v-h, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w \leq v \leq v-h, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left\{2\left(2^{1-\frac{1}{2}}+1\right)\left[a_{1} \exp \left\{-a_{2}(v-h)\right\}\right]^{1-\frac{1}{2}-\frac{1}{3}}\right. \\
& \left.\times\left(E\left|\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\}\right|^{2}\right)^{\frac{1}{2}}\left(E\left|u_{i v} u_{i w}\right|^{3}\right)^{\frac{1}{3}}\right\} \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq \leq \leq v \leq w \\
w-v \leq v=h, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{\frac{1}{2}}+1\right)\left[a_{1} \exp \left\{-a_{2}(v-h)\right\}\right]^{\frac{1}{6}}\left(4 \bar{C}^{\frac{2}{3}}\right)^{\frac{1}{2}}(\bar{C})^{\frac{1}{3}} \\
& \leq \frac{C^{*}}{\tau_{1}^{4}} \sum_{\substack{ \\
g, h, v, w=(r-1) \tau+p \\
g<h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1} \exp \left\{-\frac{a_{2}}{6} \varrho_{1}\right\} \\
& \begin{array}{c}
g \leq h \leq v \leq w \\
w-v \leq v-h, v-h>0
\end{array} \\
& \text { (for some constant } C^{*} \text { such that } 4\left(2^{\frac{1}{2}}+1\right) \bar{C}^{\frac{2}{3}} a_{1}^{\frac{1}{6}} \leq C^{*}<\infty \text {) } \\
& \leq \frac{C^{*}}{\tau_{1}^{4}} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{h=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho_{1}=1}^{\infty} \sum_{\varrho_{2}=0}^{\varrho_{1}} \exp \left\{-\frac{a_{2}}{6} \varrho_{1}\right\} \\
& =\frac{C^{*}}{\tau_{1}^{2}} \sum_{\rho_{1}=1}^{\infty}\left(\varrho_{1}+1\right) \exp \left\{-\frac{a_{2}}{6} \varrho_{1}\right\} \\
& =O\left(\frac{1}{\tau_{1}^{2}}\right) \quad \text { (given Lemma OA-1) } \tag{13}
\end{align*}
$$

Finally, consider the fourth term on the right-hand side of expression (10) above. For
this term, we apply the result given in part (a) to obtain

$$
\begin{align*}
& \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i g} u_{i h}\right)\right|\left|E\left(u_{i v} u_{i w}\right)\right| \\
\leq & \left(\frac{1}{\tau_{1}^{2}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i g} u_{i h}\right)\right|\right)\left(\frac{1}{\tau_{1}^{2}} \sum_{\substack{v, w=(r-1) \tau+p \\
v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i v} u_{i w}\right)\right|\right) \\
= & O\left(\frac{1}{\tau_{1}^{2}}\right) \tag{14}
\end{align*}
$$

It follows from expressions (10)-(14) that

$$
\begin{aligned}
& \frac{1}{\tau_{1}^{4}} \sum_{\substack{(r, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& \leq \frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h=(r-1) \tau+p \\
g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i g} u_{i h}^{3}\right]\right|+\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
w-v>v-h, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
&+\frac{1}{\tau_{1}^{4}} \sum_{\substack{g, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w \\
(r-1) \tau+\tau_{1}+p-1}}^{\substack{w-v \leq v \leq h, w-h>0 \\
(r-1) \tau+\tau_{1}+p-1}}\left|E\left[\left\{u_{i g} u_{i h}-E\left(u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
&+\frac{1}{\tau_{1}^{4}} \sum_{\substack{(, h, v, w=(r-1) \tau+p \\
g \leq h \leq v \leq w}}^{\substack{(-h>0}}\left|E\left(u_{i g} u_{i h}\right)\right|\left|E\left(u_{i v} u_{i w}\right)\right| \\
&=O\left(\frac{1}{\tau_{1}^{2}}\right) . \square
\end{aligned}
$$

Lemma OA-5: Suppose that Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6 hold. Then, there exists a positve constant \bar{C} such that

$$
E\left\|\underline{W}_{t}\right\|_{2}^{6} \leq \bar{C}<\infty \text { for all } t
$$

and, thus,

$$
E\left\|\underline{Y}_{t}\right\|_{2}^{6} \leq \bar{C}<\infty \text { and } E\left\|\underline{F}_{t}\right\|_{2}^{6} \leq \bar{C}<\infty \text { for all } t
$$

where

$$
\underset{d p \times 1}{\underline{Y}_{t}}=\left(\begin{array}{c}
Y_{t} \\
Y_{t-1} \\
\vdots \\
Y_{t-p+1}
\end{array}\right), \text { and } \underset{K p \times 1}{F_{t}}=\left(\begin{array}{c}
F_{t} \\
F_{t-1} \\
\vdots \\
F_{t-p+1}
\end{array}\right)
$$

Proof of Lemma OA-5:

To proceed, note that, given Assumption 2-1, we can write the vector moving-average (VMA) representation of the companion form of the FAVAR model as

$$
\begin{align*}
\underline{W}_{t} & =\left(I_{(d+K) p}-A\right)^{-1} \alpha+\sum_{j=0}^{\infty} A^{j} E_{t-j} \\
& =\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} J_{d+K} \alpha+\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} J_{d+K} E_{t-j} \\
& =\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu+\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}, \tag{15}
\end{align*}
$$

where

$$
\begin{aligned}
\underline{W}_{t} & =\left(\begin{array}{c}
W_{t} \\
W_{t-1} \\
\vdots \\
W_{t-p+2} \\
W_{t-p+1}
\end{array}\right), E_{t}=\left(\begin{array}{c}
\varepsilon_{t} \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \alpha=\left(\begin{array}{c}
\mu \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \\
\underset{(d+K) \times(d+K) p}{J_{d+K}}= & {\left[\begin{array}{lllll}
I_{d+K} & 0 & \cdots & 0 & 0
\end{array}\right], \text { and } A=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \cdots & A_{p-1} & A_{p} \\
I_{d+K} & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & I_{d+K} & 0
\end{array}\right) . }
\end{aligned}
$$

By the triangle inequality,

$$
\left\|\underline{W}_{t}\right\|_{2} \leq\left\|\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu\right\|_{2}+\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}
$$

Moreover, using the inequality $\left|\sum_{i=1}^{m} a_{i}\right|^{r} \leq m^{r-1} \sum_{i=1}^{m}\left|a_{i}\right|^{r}$ for $r \geq 1$, we get

$$
\left\|\underline{W}_{t}\right\|_{2}^{6} \leq 2^{5}\left(\left\|\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu\right\|_{2}^{6}+\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{6}\right)
$$

so that

$$
\begin{equation*}
E\left\|\underline{W}_{t}\right\|_{2}^{6} \leq 32\left\|\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu\right\|_{2}^{6}+32 E\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{6} \tag{16}
\end{equation*}
$$

Focusing first on the first term on the right-hand side of the inequality (16), we note that

$$
\begin{aligned}
\left\|\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu\right\|_{2}^{6} & =\left(\mu^{\prime} J_{d+K}\left(I_{(d+K) p}-A\right)^{-1 \prime}\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu\right)^{3} \\
& =\left(\mu^{\prime} J_{d+K}\left[\left(I_{(d+K) p}-A\right)\left(I_{(d+K) p}-A\right)^{\prime}\right]^{-1} J_{d+K}^{\prime} \mu\right)^{3} \\
& \leq\left(\frac{1}{\lambda_{\min }\left\{\left(I_{(d+K) p}-A\right)\left(I_{(d+K) p}-A\right)^{\prime}\right\}}\right)^{3}\left(\mu^{\prime} J_{d+K} J_{d+K}^{\prime} \mu\right)^{3} \\
& =\left(\frac{1}{\lambda_{\min }\left\{\left(I_{(d+K) p}-A\right)\left(I_{(d+K) p}-A\right)^{\prime}\right\}}\right)^{3}\left(\mu^{\prime} \mu\right)^{3}
\end{aligned}
$$

Now, by Assumption 2-6, there exists a constant $\underline{C}>0$ such that

$$
\begin{aligned}
\lambda_{\min }\left\{\left(I_{(d+K) p}-A\right)\left(I_{(d+K) p}-A\right)^{\prime}\right\} & =\lambda_{\min }\left\{\left(I_{(d+K) p}-A\right)^{\prime}\left(I_{(d+K) p}-A\right)\right\} \\
& =\sigma_{\min }^{2}\left(I_{(d+K) p}-A\right) \\
& \geq \underline{C} \lambda_{\min }^{2}\left(I_{(d+K) p}-A\right) \\
& \geq \underline{C}\left[1-\phi_{\max }\right]^{2} \\
& >0
\end{aligned}
$$

where $\phi_{\max }=\max \left\{\left|\lambda_{\max }(A)\right|,\left|\lambda_{\min }(A)\right|\right\}$ and where $0<\phi_{\max }<1$ since, by Assumption 2-1, all eigenvalues of A have modulus less than 1. It follows by Assumption 2-5 that, there exists a positive constant \bar{C}_{1} such that

$$
\begin{aligned}
\left\|\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu\right\|_{2}^{6} & \leq\left(\frac{1}{\lambda_{\min }\left\{\left(I_{(d+K) p}-A\right)\left(I_{(d+K) p}-A\right)^{\prime}\right\}}\right)^{3}\left(\mu^{\prime} \mu\right)^{3} \\
& \leq \frac{\|\mu\|_{2}^{6}}{\underline{C}^{3}\left[1-\phi_{\max }\right]^{6}} \leq \bar{C}_{1}<\infty .
\end{aligned}
$$

To show the boundedness of the second term on the right-hand side of the inequality (16), let $e_{g,(d+K) p}$ be a $(d+K) p \times 1$ elementary vector whose $g^{t h}$ component is 1 and all other components are 0 for $g \in\{1,2, \ldots,(d+K) p\}$, and note that

$$
\begin{aligned}
\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{2} & =\sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty} e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right)^{2} \\
& =\sum_{g=1}^{(d+K) p} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j} \varepsilon_{t-k}^{\prime} J_{d+K}\left(A^{\prime}\right)^{k} e_{g,(d+K) p}
\end{aligned}
$$

from which we obtain, by applying the inequality $\left|\sum_{i=1}^{m} a_{i}\right|^{r} \leq m^{r-1} \sum_{i=1}^{m}\left|a_{i}\right|^{r}$ for $r \geq 1$

$$
\begin{aligned}
& \left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{6} \\
= & {\left[\sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty} e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right)^{2}\right]^{3} } \\
\leq & {[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty} e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right)^{6} } \\
= & {[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left\{\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j} \varepsilon_{t-k}^{\prime} J_{d+K}\left(A^{\prime}\right)^{k} e_{g,(d+K) p}\right.} \\
& \left.\times e_{g,(d+K) p}^{\prime} A^{i} J_{d}^{\prime} \varepsilon_{t-i} \varepsilon_{t-\ell}^{\prime} J_{d+K}\left(A^{\prime}\right)^{\ell} e_{g,(d+K) p} e_{g,(d+K) p}^{\prime} A^{r} J_{d+K}^{\prime} \varepsilon_{t-r} \varepsilon_{t-s}^{\prime} J_{d}\left(A^{\prime}\right)^{s} e_{g,(d+K) p}\right\}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& E\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{6} \\
\leq & {[(d+K) p]^{2} \sum_{g=1}^{(d+K) p} \sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right|^{6} } \\
& +[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\binom{6}{3}\left(\sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right|^{3}\right)^{2} \\
& +[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\binom{6}{2}\binom{4}{2}\left(\sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right|^{2}\right)^{3} \\
= & {[(d+K) p]^{2} \sum_{g=1}^{(d+K) p} \sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K^{\prime}}^{\prime} \varepsilon_{t-j}\right|^{6} } \\
& +[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\binom{6}{4} \sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K^{\prime}}^{\prime} \varepsilon_{t-j}\right|^{4} \sum_{k=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{k} J_{d+K^{\prime}}^{\prime} \varepsilon_{t-k}\right|^{2} \\
& +20[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K^{\prime}}^{\prime} \varepsilon_{t-j}\right|^{3}\right)^{2} \\
& +90[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right|^{2}\right)^{3} \\
& +15[(d+K) p]^{2} \sum_{g=1}^{(d+K) p} \sum_{j=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right|^{4} \sum_{k=0}^{\infty} E\left|e_{g,(d+K) p}^{\prime} A^{k} J_{d+K^{\prime}}^{\prime} \varepsilon_{t-k}\right|^{2}
\end{aligned}
$$

Next, applying the Cauchy-Schwarz inequality, we further obtain

$$
\begin{aligned}
& E\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{6} \\
& \leq[(d+K) p]^{2} \sum_{g=1}^{(d+K) p} \sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} J_{d+K}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{3} E\left\|\varepsilon_{t-j}\right\|_{2}^{6} \\
& +20[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} J_{d+K}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{\frac{3}{2}} E\left\|\varepsilon_{t-j}\right\|_{2}^{3}\right)^{2} \\
& +90[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} J_{d+K}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right] E\left\|\varepsilon_{t-j}\right\|_{2}^{2}\right)^{3} \\
& +15[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left\{\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j} J_{d+K}^{\prime} J_{d+K}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{2} E\left\|\varepsilon_{t-j}\right\|_{2}^{4}\right. \\
& \left.\times \sum_{k=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{k} J_{d+K}^{\prime} J_{d+K}\left(A^{k}\right)^{\prime} e_{g,(d+K) p}\right] E\left\|\varepsilon_{t-k}\right\|_{2}^{2}\right\} \\
& \leq[(d+K) p]^{2} \sum_{g=1}^{(d+K) p} \sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{3} E\left\|\varepsilon_{t-j}\right\|_{2}^{6} \\
& +20[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{\frac{3}{2}} E\left\|\varepsilon_{t-j}\right\|_{2}^{3}\right)^{2} \\
& +90[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right] E\left\|\varepsilon_{t-j}\right\|_{2}^{2}\right)^{3} \\
& +15[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left\{\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{2} E\left\|\varepsilon_{t-j}\right\|_{2}^{4}\right. \\
& \left.\times \sum_{k=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{k}\left(A^{k}\right)^{\prime} e_{g,(d+K) p}\right] E\left\|\varepsilon_{t-k}\right\|_{2}^{2}\right\}
\end{aligned}
$$

In addition, observe that, for every $g \in\{1,2, \ldots,(d+K) p\}$

$$
\begin{aligned}
& e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p} \\
\leq & \lambda_{\max }\left\{A^{j}\left(A^{j}\right)^{\prime}\right\} \\
= & \lambda_{\max }\left\{\left(A^{j}\right)^{\prime} A^{j}\right\} \\
= & \sigma_{\max }^{2}\left(A^{j}\right) \\
\leq & C \max \left\{\left|\lambda_{\max }\left(A^{j}\right)\right|^{2},\left|\lambda_{\min }\left(A^{j}\right)\right|^{2}\right\} \quad(\text { by Assumption 2-6) } \\
= & C \max \left\{\left|\lambda_{\max }(A)\right|^{2 j},\left|\lambda_{\min }(A)\right|^{2 j}\right\} \\
= & C \phi_{\max }^{2 j}
\end{aligned}
$$

where $\phi_{\max }=\max \left\{\left|\lambda_{\max }(A)\right|,\left|\lambda_{\min }(A)\right|\right\}$ and where $0<\phi_{\max }<1$ given that Assumption 2-1 implies that all eigenvalues of A have modulus less than 1 . Now, in light of Assumption $2-2(\mathrm{~b})$, we can set $C \geq 1$ to be a constant such that $E\left\|\varepsilon_{t-j}\right\|_{2}^{6} \leq C<\infty$, so that, by Liapunov's inequality,

$$
\begin{aligned}
& E\left\|\varepsilon_{t-j}\right\|_{2}^{2} \leq\left(E\left\|\varepsilon_{t-j}\right\|_{2}^{6}\right)^{\frac{1}{3}} \leq C^{\frac{1}{3}}, E\left\|\varepsilon_{t-j}\right\|_{2}^{3} \leq\left(E\left\|\varepsilon_{t-j}\right\|_{2}^{6}\right)^{\frac{1}{2}} \leq C^{\frac{1}{2}} \\
& E\left\|\varepsilon_{t-j}\right\|_{2}^{4} \leq\left(E\left\|\varepsilon_{t-j}\right\|_{2}^{6}\right)^{\frac{2}{3}} \leq C^{\frac{2}{3}}
\end{aligned}
$$

and, thus,

$$
\begin{aligned}
& E\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{6} \\
\leq & {[(d+K) p]^{2} \sum_{g=1}^{(d+K) p} \sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{3} E\left\|\varepsilon_{t-j}\right\|_{2}^{6} } \\
& +20[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{\frac{3}{2}} E\left\|\varepsilon_{t-j}\right\|_{2}^{3}\right)^{2} \\
& +90[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right] E\left\|\varepsilon_{t-j}\right\|_{2}^{2}\right)^{3} \\
& +15[(d+K) p]^{2} \sum_{g=1}^{(d+K) p}\left\{\sum_{j=0}^{\infty}\left[e_{g,(d+K) p}^{\prime} A^{j}\left(A^{j}\right)^{\prime} e_{g,(d+K) p}\right]^{2} E\left\|\varepsilon_{t-j}\right\|_{2}^{4}\right. \\
\leq & C[(d+K) p]^{2}\left\{\sum_{g=1}^{\infty}\left[\sum_{j=0}^{\prime} \phi_{\max }^{6 j}+20 \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{\infty} \phi_{\max }^{3 j}\right)^{2}+90 \sum_{g=1}^{(d+K) p}\left(\sum_{j=0}^{k}\right)^{\prime} e_{g,(d+K) p} \phi_{\max }^{2 j}\right)^{3} E\left\|\varepsilon_{t-k}\right\|_{2}^{2}\right\} \\
\leq & C[(d+K) p]^{3} \\
& \times\left\{\frac{1}{1-\phi_{\max }^{6}}+20\left(\frac{1}{1-\phi_{\max }^{3}}\right)^{2}+90\left(\frac{1}{1-\phi_{\max }^{2}}\right)^{3}+15\left(\frac{1}{1-\phi_{\max }^{4}}\right)\left(\frac{1}{1-\phi_{\max }^{2}}\right)\right\} \\
\leq & \sum_{2}<\infty
\end{aligned}
$$

for some constant such that

$$
\begin{aligned}
& \bar{C}_{2} \\
\geq & C[(d+K) p]^{3} \\
& \times\left\{\frac{1}{1-\phi_{\max }^{6}}+20\left(\frac{1}{1-\phi_{\max }^{3}}\right)^{2}+90\left(\frac{1}{1-\phi_{\max }^{2}}\right)^{3}+15\left(\frac{1}{1-\phi_{\max }^{4}}\right)\left(\frac{1}{1-\phi_{\max }^{2}}\right)\right\} .
\end{aligned}
$$

Putting everything together, we see that

$$
\begin{aligned}
E\left\|\underline{W}_{t}\right\|_{2}^{6} & \leq 32\left\|\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu\right\|_{2}^{6}+32 E\left\|\sum_{j=0}^{\infty} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}\right\|_{2}^{6} \\
& \leq 32\left(\bar{C}_{1}+\bar{C}_{2}\right) \\
& \leq \bar{C}<\infty
\end{aligned}
$$

for a constant \bar{C} such that $0<32\left(\bar{C}_{1}+\bar{C}_{2}\right) \leq \bar{C}<\infty$.
In addition, define $\mathcal{P}_{(d+K) p}$ to be the $(d+K) p \times(d+K) p$ permutation matrix such that

$$
\mathcal{P}_{(d+K) p} \underline{W}_{t}=\left(\begin{array}{c}
\frac{Y_{t}}{d p \times 1} \tag{17}\\
\underline{F}_{t} \\
K p \times 1
\end{array}\right) ;
$$

and let $S_{d}^{\prime}=\left(\begin{array}{cc}I_{d p} & 0 \\ d p \times K p\end{array}\right)$ and $S_{K}^{\prime}=\left(\begin{array}{ll}0 & I_{K p} \\ K p \times d p\end{array}\right)$. Note that

$$
\begin{aligned}
S_{d}^{\prime} \mathcal{P}_{(d+K) p} \underline{W}_{t} & =\left(\begin{array}{ll}
I_{d p} & 0 \\
& 0
\end{array}\right)\binom{\frac{\underline{Y}_{t}}{d p \times 1}}{\underline{K p} t}=\underline{Y}_{t}, \\
S_{K}^{\prime} \mathcal{P}_{(d+K) p} \underline{W}_{t} & =\left(\begin{array}{cc}
0 & I_{K p} \\
K p \times d p
\end{array}\right)\binom{\frac{Y_{t}}{d p \times 1}}{\frac{F_{t}}{K p \times 1}}=\underline{F}_{t} .
\end{aligned}
$$

so that

$$
\begin{aligned}
\left\|\underline{Y}_{t}\right\|_{2} & \leq\left\|S_{d}^{\prime}\right\|_{2}\left\|\mathcal{P}_{(d+K) p}\right\|_{2}\left\|\underline{W}_{t}\right\|_{2} \\
& =\sqrt{\lambda_{\max }\left(S_{d} S_{d}^{\prime}\right)} \sqrt{\lambda_{\max }\left(\mathcal{P}_{(d+K) p}^{\prime} \mathcal{P}_{(d+K) p}\right)}\left\|\underline{W}_{t}\right\|_{2} \\
& =\sqrt{\lambda_{\max }\left(S_{d}^{\prime} S_{d}\right)} \sqrt{\lambda_{\max }\left(I_{(d+K) p}\right)}\left\|\underline{W}_{t}\right\|_{2} \\
& =\sqrt{\lambda_{\max }\left(I_{d p}\right)} \sqrt{\lambda_{\max }\left(I_{(d+K) p}\right)}\left\|\underline{W}_{t}\right\|_{2} \\
& =\left\|\underline{W}_{t}\right\|_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\underline{F}_{t}\right\|_{2} & \leq\left\|S_{K}^{\prime}\right\|_{2}\left\|\mathcal{P}_{(d+K) p}\right\|_{2}\left\|\underline{W}_{t}\right\|_{2} \\
& =\sqrt{\lambda_{\max }\left(S_{K} S_{K}^{\prime}\right)} \sqrt{\lambda_{\max }\left(\mathcal{P}_{(d+K) p}^{\prime} \mathcal{P}_{(d+K) p}\right)}\left\|\underline{W}_{t}\right\|_{2} \\
& =\sqrt{\lambda_{\max }\left(S_{K}^{\prime} S_{K}\right)} \sqrt{\lambda_{\max }\left(I_{(d+K) p}\right)}\left\|\underline{W}_{t}\right\|_{2} \\
& =\sqrt{\lambda_{\max }\left(I_{K p}\right)} \sqrt{\lambda_{\max }\left(I_{(d+K) p}\right)}\left\|\underline{W}_{t}\right\|_{2} \\
& =\left\|\underline{W}_{t}\right\|_{2}
\end{aligned}
$$

It further follows that

$$
E\left\|\underline{Y}_{t}\right\|_{2}^{6} \leq E\left\|\underline{W}_{t}\right\|_{2}^{6} \leq \bar{C}<\infty \text { and } E\left\|\underline{F}_{t}\right\|_{2}^{6} \leq E\left\|\underline{W}_{t}\right\|_{2}^{6} \leq \bar{C}<\infty
$$

Lemma OA-6: Suppose that Assumptions 2-1, 2-2(a)-(b), 2-3, 2-5, 2-6, and 2-9(b) hold. Then, the following statements are true as $N_{1}, T \rightarrow \infty$
(a)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right| \xrightarrow{p} 0
$$

(b)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{2} \xrightarrow{p} 0
$$

(c)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right| \xrightarrow{p} 0
$$

(d)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{2} \xrightarrow{p} 0
$$

(e)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)\right| \xrightarrow{p} 0
$$

Proof of Lemma OA-6.

To show part (a), first write

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right| \geq \epsilon\right\} \\
= & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6} \geq \epsilon^{6}\right\} \\
\leq & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6} \geq \epsilon^{6}\right\}
\end{aligned}
$$

(by Jensen's inequality)

$$
\begin{aligned}
& \leq P\left\{\sum_{\ell=1}^{d} \sum_{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6} \geq \epsilon^{6}\right\} \\
& \leq \frac{1}{\epsilon^{6}} \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6}
\end{aligned}
$$

Next, note that

$$
\begin{aligned}
& \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6} \\
& \leq \frac{1}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[\gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right]^{6} \\
& +\frac{20}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left|\gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right|\right]^{3} E\left[\left|\gamma_{i}^{\prime} \underline{F}_{s} \varepsilon_{\ell, s+1}\right|\right]^{3} \\
& +\frac{15}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1} E\left[\gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right]^{4} E\left[\gamma_{i}^{\prime} \underline{F}_{s} \varepsilon_{\ell, s+1}\right]^{2} \\
& +\frac{90}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{r=(r-1) \tau+p \\
r \neq t, r \neq s}}^{(r-1) \tau+\tau_{1}+p-1}\left\{E\left[\gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right]^{2} E\left[\gamma_{i}^{\prime} \underline{F}_{s} \varepsilon_{\ell, s+1}\right]^{2}\right. \\
& \left.\times E\left[\gamma_{i}^{\prime} \underline{F}_{s} \varepsilon_{\ell, r+1}\right]^{2}\right\} \\
& \leq \frac{1}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left(\gamma_{i}^{\prime} \underline{F}_{t}\right)^{6}\right] E\left[\varepsilon_{\ell, t+1}^{6}\right] \\
& +\frac{20}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1} \frac{1}{64} E\left[\gamma_{i}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime} \gamma_{i}+\varepsilon_{\ell, t+1}^{2}\right]^{3} E\left[\gamma_{i}^{\prime} \underline{F}_{s} \underline{F}_{s}^{\prime} \gamma_{i}+\varepsilon_{\ell, s+1}^{2}\right]^{3} \\
& +\frac{15}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1} E\left[\gamma_{i}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime} \gamma_{i}\right]^{2} E\left[\varepsilon_{\ell, t+1}^{4}\right] E\left[\gamma_{i}^{\prime} \underline{F}_{s} \underline{F}_{s}^{\prime} \gamma_{i}\right] E\left[\varepsilon_{\ell, s+1}^{2}\right] \\
& +\frac{90}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}}\left\{\sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1} E\left[\gamma_{i}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime} \gamma_{i}\right] E\left[\varepsilon_{\ell, t+1}^{2}\right] E\left[\gamma_{i}^{\prime} \underline{F}_{s} \underline{F}_{s}^{\prime} \gamma_{i}\right] E\left[\varepsilon_{\ell, s+1}^{2}\right]\right. \\
& \left.\times \sum_{\substack{r=(r-1) \tau+p \\
r \neq t, r \neq s}}^{(r-1) \tau+\tau_{1}+p-1} E\left[\gamma_{i}^{\prime} \underline{F}_{r} \underline{F}_{r}^{\prime} \gamma_{i}\right] E\left[\varepsilon_{\ell, r+1}^{2}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\|\gamma_{i}\right\|_{2}^{6} E\left[\left\|\underline{F}_{t}\right\|_{2}^{6}\right] E\left[\varepsilon_{\ell, t+1}^{6}\right] \\
& +\frac{(20 \cdot 16)}{64 q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1}\left\{\left(E\left[\left(\gamma_{i}^{\prime} \underline{F}_{t}\right)^{6}\right]+E\left[\varepsilon_{\ell, t+1}^{6}\right]\right)\right. \\
& \left.\times\left(E\left[\left(\gamma_{i}^{\prime} \underline{F}_{s}\right)^{6}\right]+E\left[\varepsilon_{\ell, s+1}^{6}\right]\right)\right\} \\
& +\frac{15}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1}\left\{\left\|\gamma_{i}\right\|_{2}^{4} E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right] E\left[\varepsilon_{\ell, t+1}^{4}\right]\right. \\
& \left.\times\left\|\gamma_{i}\right\|_{2}^{2} E\left[\left\|\underline{F}_{s}\right\|_{2}^{2}\right] E\left[\varepsilon_{\ell, s+1}^{2}\right]\right\} \\
& +\frac{90}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}}\left\{\sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\|\gamma_{i}\right\|_{2}^{2} E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\right] E\left[\varepsilon_{\ell, t+1}^{2}\right]\right. \\
& \left.\times \sum_{\substack{s=(r-1) \tau+p \\
s \neq t}}^{(r-1) \tau+\tau_{1}+p-1}\left\|\gamma_{i}\right\|_{2}^{2} E\left[\left\|\underline{F}_{s}\right\|_{2}^{2}\right] E\left[\varepsilon_{\ell, s+1}^{2}\right] \sum_{\substack{r=(r-1) \tau+p \\
r \neq t, r \neq s}}^{(r-1) \tau+\tau_{1}+p-1}\left\|\gamma_{i}\right\|_{2}^{2} E\left[\left\|\underline{F}_{r}\right\|_{2}^{2}\right] E\left[\varepsilon_{\ell, r+1}^{2}\right]\right\} \\
& \leq C\left(\frac{N_{1}}{\tau_{1}^{5}}+5 \frac{N_{1}}{\tau_{1}^{4}}+15 \frac{N_{1}}{\tau_{1}^{4}}+90 \frac{N_{1}}{\tau_{1}^{3}}\right) \\
& \text { (applying Assumptions 2-2(b), Assumption 2-5, and Lemma OA-5) } \\
& =O\left(\frac{N_{1}}{\tau_{1}^{3}}\right) \text {. }
\end{aligned}
$$

It follows that

$$
P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right| \geq \epsilon\right\}=O\left(\frac{N_{1}}{\tau_{1}^{3}}\right)=o(1) .
$$

To show part (b), note that, for any $\epsilon>0$

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{2} \geq \epsilon\right\} \\
= & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{2}\right|^{3} \geq \epsilon^{3}\right\} \\
\leq & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6} \geq \epsilon^{3}\right\}
\end{aligned}
$$

(by Jensen't inequality)

$$
\leq P\left\{\sum_{\ell=1}^{d} \sum_{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6} \geq \epsilon^{3}\right\}
$$

$$
\leq \frac{1}{\epsilon^{3}} \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{6}
$$

The rest of the proof for part (b) then follows in a manner similar to the argument given for part (a) above.

To show part (c), first note that, for any $\epsilon>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right| \geq \epsilon\right\} \\
= & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \geq \epsilon^{6}\right\} \\
\leq & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \geq \epsilon^{6}\right\}
\end{aligned}
$$

(by convexity or Jensen's inequality)

$$
\begin{align*}
& \leq P\left\{\sum_{\ell=1}^{d} \sum_{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \geq \epsilon^{6}\right\} \\
& \leq \frac{1}{\epsilon^{6}} \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \tag{18}
\end{align*}
$$

Now, there exists a constant $C_{1}>1$ such that

$$
\begin{aligned}
& \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \\
& \leq \frac{C_{1}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}}\left\{\begin{array}{c}
\sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
\\
\left.\times \sum_{\ell=1}^{d}\left|E\left[y_{\ell, t+1} y_{\ell, s+1} y_{\ell, g+1} y_{\ell, h+1} y_{\ell, v+1} y_{\ell, w+1}\right]\right|\right\}
\end{array}, .\right.
\end{aligned}
$$

Next, note that, by repeated application of Hölder's inequality, we have by Lemma OA-5 that there exists a positive constant \bar{C} such that

$$
\begin{aligned}
& \sum_{\ell=1}^{d}\left|E\left[y_{\ell, t+1} y_{\ell, s+1} y_{\ell, g+1} y_{\ell, h+1} y_{\ell, v+1} y_{\ell, w+1}\right]\right| \\
\leq & \sum_{\ell=1}^{d}\left(E\left[y_{\ell, t+1}^{2} y_{\ell, s+1}^{2} y_{\ell, g+1}^{2}\right]\right)^{\frac{1}{2}}\left(E\left[y_{\ell, h+1}^{2} y_{\ell, v+1}^{2} y_{\ell, w+1}^{2}\right]\right)^{\frac{1}{2}} \\
\leq & \sum_{\ell=1}^{d}\left(\left\{E\left[y_{\ell, t+1}^{6}\right]\right\}^{\frac{1}{3}}\left(E\left[\left|y_{\ell, s+1} y_{\ell, g+1}\right|^{3}\right]\right)^{\frac{2}{3}}\right)^{\frac{1}{2}}\left(\left\{E\left[y_{\ell, h+1}^{6}\right]\right\}^{\frac{1}{3}}\left(E\left[\left|y_{\ell, v+1} y_{\ell, w+1}\right|^{3}\right]\right)^{\frac{2}{3}}\right)^{\frac{1}{2}} \\
\leq & \sum_{\ell=1}^{d}\left[\left(\left\{E\left[y_{\ell, t+1}^{6}\right]\right\}^{\frac{1}{3}}\left\{E\left[y_{\ell, s+1}^{6}\right]\right\}^{\frac{1}{3}}\left\{E\left[y_{\ell, g+1}^{6}\right]\right\}^{\frac{1}{3}}\right)^{\frac{1}{2}}\right. \\
& \left.\times\left(\left\{E\left[y_{\ell, h+1}^{6}\right]\right\}^{\frac{1}{3}}\left\{E\left[y_{\ell, v+1}^{6}\right]\right\}^{\frac{1}{3}}\left\{E\left[y_{\ell, w+1}^{6}\right]\right\}^{\frac{1}{3}}\right)^{\frac{1}{2}}\right] \\
\leq & \sum_{\ell=1}^{d}\left\{E\left[y_{\ell, t+1}^{6}\right]\right\}^{\frac{1}{6}}\left\{E\left[y_{\ell, s+1}^{6}\right]\right\}^{\frac{1}{6}}\left\{E\left[y_{\ell, g+1}^{6}\right]\right\}^{\frac{1}{6}}\left\{E\left[y_{\ell, h+1}^{6}\right]\right\}^{\frac{1}{6}}\left\{E\left[y_{\ell, v+1}^{6}\right]\right\}^{\frac{1}{6}}\left\{E\left[y_{\ell, w+1}^{6}\right]\right\}^{\frac{1}{6}} \\
\leq & d \max _{1 \leq \ell \leq d} \sup E\left[y_{\ell, t}^{6}\right] \\
\leq & \bar{C}<\infty \\
& \left(\text { since, given that } y_{\ell, t}=\mathbf{e}_{\ell, d p}^{\prime} \underline{Y_{t}} ; E\left[y_{\ell, t}^{6}\right] \leq E\left\|\underline{Y}_{t}\right\|_{2}^{6} \leq \bar{C}\right. \text { by Lemma OA-5 } \\
& \text { where } \bar{C} \text { is a constant not depending on } \ell \text { or } t)
\end{aligned}
$$

Hence, we can write

$$
\begin{aligned}
& \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g}^{4}\right]\right| \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
w-v \geq \max \{v=h, h \leq g\}, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
v-h \geq \max \{w-v, h-g\}, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H} \sum_{\substack{t, s, g, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
h-g \geq \max \{w-v, v-h\}, h-g>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g} u_{i h} u_{i v} u_{i w}\right]\right|
\end{aligned}
$$

$$
\begin{align*}
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g}^{4}\right]\right| \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
\text { t } \leq s \leq g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g} u_{i h} u_{i v} u_{i w}\right]\right| \\
& w-v \geq \max \{v-h, \bar{h}-\bar{g}\}, w-v>0 \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, v, v=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i t} u_{i s} u_{i g} u_{i h}-E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right]\right| \\
& v-h \geq \max \{w-v, h-g\}, v-h>0 \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{t, s, g, h, v, w=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right|\left|E\left(u_{i v} u_{i w}\right)\right| \\
& \begin{array}{c}
t \leq s \leq g \leq h \leq v \leq w \\
v-h \geq \max \{w-v, h-g\}, v-h>0
\end{array} \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, g, g, h, v, w=(r-1) \tau+p \\
t \leq \leq \leq g \leq h \leq v \leq w \\
h-g \geq \max \{w=v, v-h\}, h-g>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i t} u_{i s} u_{i g}-E\left(u_{i t} u_{i s} u_{i g}\right)\right\} u_{i h} u_{i v} u_{i w}\right]\right| \\
& +\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g}\right)\right|\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
& h-g \geq \max \{w-v, v-\bar{h}\}, h-g>0 \\
& =\mathcal{T}_{1}+\mathcal{T}_{2}+\mathcal{T}_{3}+\mathcal{T}_{4}+\mathcal{T}_{5}+\mathcal{T}_{6}, \quad \text { (say) } . \tag{19}
\end{align*}
$$

Consider first \mathcal{T}_{1}. Note that

$$
\begin{aligned}
& \mathcal{T}_{1}=\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[u_{i t} u_{i s} u_{i g}^{4}\right]\right| \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{s, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left|u_{i t} u_{i s} u_{i g}^{4}\right|\right] \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left(E\left[\left|u_{i t} u_{i s}\right|^{3}\right]\right)^{\frac{1}{3}}\left(E\left[\left|u_{i g}\right|^{6}\right]\right)^{\frac{2}{3}} \quad \text { (by Hölder's inequality) } \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left(\left[E\left\{\left|u_{i t}\right|^{6}\right\}\right]^{\frac{1}{2}}\left[E\left\{\left|u_{i s}\right|^{6}\right\}\right]^{\frac{1}{2}}\right)^{\frac{1}{3}}\left(E\left[\left|u_{i g}\right|^{6}\right]\right)^{\frac{2}{3}}
\end{aligned}
$$

(by further application of Hölder's inequality)

$$
\begin{align*}
& =\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{(r, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left(E\left\{\left|u_{i t}\right|^{6}\right\}\right)^{\frac{1}{6}}\left(E\left\{\left|u_{i t}\right|^{6}\right\}\right)^{\frac{1}{6}}\left(E\left[\left|u_{i g}\right|^{6}\right]\right)^{\frac{2}{3}} \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{r, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1} \bar{C} \text { (by Assumption 2-3(b)) } \\
& \leq C_{1} \bar{C}^{2} \frac{N_{1}}{\tau_{1}^{5}} \\
& =O\left(\frac{N_{1}}{\tau_{1}^{5}}\right) . \tag{20}
\end{align*}
$$

Next, consider \mathcal{T}_{2}. For this term, note first that by Assumption 2-3(c), $\left\{u_{i t}\right\}_{t=-\infty}^{\infty}$ is β-mixing with β mixing coefficient satisfying

$$
\beta_{i}(m) \leq a_{1} \exp \left\{-a_{2} m\right\}
$$

for every i. Since $\alpha_{i, m} \leq \beta_{i}(m)$, it follows that $\left\{u_{i t}\right\}_{t=-\infty}^{\infty}$ is α-mixing as well, with α mixing coefficient satisfying

$$
\alpha_{i, m} \leq a_{1} \exp \left\{-a_{2} m\right\} \text { for every } i
$$

Hence, we apply Lemma OA-3 with $p=5 / 4$ and $r=6$ to obtain

$$
\begin{aligned}
& \left.=\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}}^{\mathcal{T}_{2}} \sum_{\substack{t, s, g, h, v \leq w=(r-1) \tau+p \\
t \leq s \leq \leq \leq h \leq v \leq w \\
w-v \geq \max \{v-h, h-g\}, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\right\}
\end{aligned}\left|E\left[u_{i t} u_{i s} u_{i g} u_{i h} u_{i v} u_{i w}\right]\right|
$$

Next, by Liapunov's inequality and Assumption 2-3(b), we obtain

$$
\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}} \leq\left(E\left|u_{i w}\right|^{7}\right)^{\frac{1}{7}} \leq \bar{C}^{\frac{1}{7}}
$$

Making use of this bound and by repeated application of Hölder's inequality, we have

$$
\begin{aligned}
& E\left|u_{i t} u_{i s} u_{i g} u_{i h} u_{i v}\right|^{\frac{5}{4}} \\
\leq & {\left[E\left|u_{i t} u_{i s} u_{i g}\right|^{\frac{25}{12}}\right]^{\frac{3}{5}}\left[E\left|u_{i h} u_{i v}\right|^{\frac{25}{8}}\right]^{\frac{2}{5}} } \\
\leq & {\left[\left(E\left|u_{i t} u_{i s}\right|^{\frac{150}{47}}\right)^{\frac{47}{72}}\left(E\left|u_{i g}\right|^{6}\right)^{\frac{25}{72}}\right]^{\frac{3}{5}}\left[\left(E\left|u_{i h}\right|^{\frac{25}{4}}\right)^{\frac{1}{2}}\left(E\left|u_{i v}\right|^{\frac{25}{4}}\right)^{\frac{1}{2}}\right]^{\frac{2}{5}} } \\
\leq & {\left[\left(\sqrt{E\left|u_{i t}\right|^{\frac{300}{47}}} \sqrt{E\left|u_{i s}\right|^{\frac{300}{47}}}\right)^{\frac{47}{72}}\left(E\left|u_{i g}\right|^{6}\right)^{\frac{25}{72}}\right]^{\frac{3}{5}}\left[\left(E\left|u_{i h}\right|^{\frac{25}{4}}\right)^{\frac{1}{2}}\left(E\left|u_{i v}\right|^{\frac{25}{4}}\right)^{\frac{1}{2}}\right]^{\frac{2}{5}} } \\
= & \left(E\left|u_{i t}\right|^{\frac{300}{47}}\right)^{\frac{141}{720}}\left(E\left|u_{i s}\right|^{\frac{300}{47}}\right)^{\frac{141}{720}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{15}{72}}\left(E\left|u_{i v}\right|^{\frac{25}{4}}\right)^{\frac{1}{5}}\left(E\left|u_{i w}\right|^{\frac{25}{4}}\right)^{\frac{1}{5}} \\
= & {\left[\left(E\left|u_{i t}\right|^{\frac{300}{47}}\right)^{\frac{47}{300}}\left(E\left|u_{i s}\right|^{\frac{300}{47}}\right)^{\frac{47}{300}}\right]^{\frac{5}{4}}\left[\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\right]^{\frac{5}{4}}\left[\left(E\left|u_{i v}\right|^{\frac{25}{4}}\right)^{\frac{4}{25}}\right]^{\frac{5}{4}}\left[\left(E\left|u_{i w}\right|^{\frac{25}{4}}\right)^{\frac{4}{25}}\right]^{\frac{5}{4}} } \\
\leq & {\left[\left(E\left|u_{i t}\right|^{7}\right)^{\frac{1}{7}}\left(E\left|u_{i s}\right|^{7}\right)^{\frac{1}{7}}\right]^{\frac{5}{4}}\left[\left(E\left|u_{i h}\right|^{7}\right)^{\frac{1}{7}}\right]^{\frac{5}{4}}\left[\left(E\left|u_{i v}\right|^{7}\right)^{\frac{1}{7}}\right]^{\frac{5}{4}}\left[\left(E\left|u_{i w}\right|^{7}\right)^{\frac{1}{7}}\right]^{\frac{5}{4}} } \\
\leq & (\bar{C})^{\frac{5}{28}}(\bar{C})^{\frac{5}{28}}(\bar{C})^{\frac{5}{28}}(\bar{C})^{\frac{5}{28}}(\bar{C})^{\frac{5}{28}} \quad(\text { by Assumption 2-3(b))} \\
= & \bar{C}^{\frac{25}{28}}
\end{aligned}
$$

Moreover, let $\rho_{1}=h-g, \rho_{2}=v-h$, and $\rho_{3}=w-v$, so that $h=g+\rho_{1}, v=h+$ $\rho_{2}=g+\rho_{1}+\rho_{2}, w=v+\rho_{3}=g+\rho_{1}+\rho_{2}+\rho_{3}$. Using these notations and the boundedness
of $E\left|u_{i t} u_{i s} u_{i g} u_{i h} u_{i v}\right|^{\frac{5}{4}}$ as shown above, we can further write

$$
\begin{align*}
& \mathcal{T}_{2} \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
w-v \geq \max \{v=h, h-\bar{g}\}, w-v>0}}^{(r-1) \tau+\tau_{1}+p-1}\left\{2\left(2^{1-\frac{4}{5}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{1-\frac{4}{5}-\frac{1}{6}}\right. \\
& \left.\times\left(E\left|u_{i t} u_{i s} u_{i g} u_{i h} u_{i v}\right|^{\frac{5}{4}}\right)^{\frac{4}{5}}\left(E\left|u_{i w}\right|^{6}\right)^{\frac{1}{6}}\right\} \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{t, s, g, h, v, w=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{\frac{1}{5}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{\frac{1}{30}} \bar{C}^{\frac{25}{28}} \bar{C}^{\frac{1}{7}} \\
& t \leq s \leq g \leq h \leq v \leq w \\
& w-v \geq \max \{v-h, \bar{h}-g\}, w-v>0 \\
& \leq \frac{C_{1} \bar{C}^{\frac{57}{28}}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{t, s, g, h, v, w=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{\frac{1}{5}}+1\right)\left[a_{1} \exp \left\{-a_{2}(w-v)\right\}\right]^{\frac{1}{30}} \\
& \begin{array}{c}
t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w
\end{array} \\
& w-v \geq \max \{v-h, \bar{h}-g\}, w-v>0 \\
& \leq \frac{C^{*}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t s<g<h<v<w}}^{(r-1) \tau+\tau_{1}+p-1} \exp \left\{-\frac{a_{2}}{30} \rho_{3}\right\} \\
& \underset{w-v \geq \max \{v-h, h-g\}, w-v>0}{t \leq g \leq h \leq v} \\
& \text { (for some constant } C^{*} \text { such that } 2\left(2^{\frac{1}{5}}+1\right) C_{1} \bar{C}^{\frac{57}{28}} a_{1}^{\frac{1}{30}} \leq C^{*}<\infty \text {) } \\
& \leq \frac{C^{*}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\rho_{3}=1}^{\infty} \sum_{\rho_{1}=0}^{\rho_{3}} \sum_{\rho_{2}=0}^{\rho_{3}} \exp \left\{-\frac{a_{2}}{30} \rho_{3}\right\} \\
& \leq \frac{C^{*}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\rho_{3}=1}^{\infty}\left(\rho_{3}+1\right)^{2} \exp \left\{-\frac{a_{2}}{30} \rho_{3}\right\} \\
& =C^{*} \frac{N_{1}}{\tau_{1}^{3}}\left[\sum_{\rho_{3}=1}^{\infty} \rho_{3}^{2} \exp \left\{-\frac{a_{2}}{30} \rho_{3}\right\}+2 \sum_{\rho_{3}=1}^{\infty} \rho_{3} \exp \left\{-\frac{a_{2}}{30} \rho_{3}\right\}+\sum_{\rho_{3}=1}^{\infty} \exp \left\{-\frac{a_{2}}{30} \rho_{3}\right\}\right] \\
& =O\left(\frac{N_{1}}{\tau_{1}^{3}}\right) \quad \text { (by Lemma OA-1). } \tag{21}
\end{align*}
$$

Now, consider \mathcal{T}_{3}. Here, we can apply Lemma OA-3 with $p=3 / 2$ and $r=7 / 2$ to obtain

Next, note that applications of Hölder's inequality yield

$$
\begin{aligned}
E\left|u_{i v} u_{i w}\right|^{\frac{7}{2}} & \leq\left(E\left|u_{i v}\right|^{7}\right)^{\frac{1}{2}}\left(E\left|u_{i w}\right|^{7}\right)^{\frac{1}{2}} \\
& \leq(\bar{C})^{\frac{1}{2}}(\bar{C})^{\frac{1}{2}} \quad(\text { by Assumption 2-3(b)) } \\
& =\bar{C}<\infty
\end{aligned}
$$

and

$$
E\left|\left\{u_{i t} u_{i s} u_{i g} u_{i h}-E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right\}\right|^{\frac{3}{2}} \leq 2^{\frac{1}{2}}\left(E\left|u_{i t} u_{i s} u_{i g} u_{i h}\right|^{\frac{3}{2}}+E\left|u_{i t} u_{i s} u_{i g} u_{i h}\right|^{\frac{3}{2}}\right)
$$

$$
\text { (by Loève's } c_{r} \text { inequality) }
$$

$$
\leq 2^{\frac{3}{2}} E\left|u_{i t} u_{i s} u_{i g} u_{i h}\right|^{\frac{3}{2}}
$$

$$
\leq 2^{\frac{3}{2}}\left(E\left|u_{i t} u_{i s}\right|^{3}\right)^{\frac{1}{2}}\left(E\left|u_{i g} u_{i h}\right|^{3}\right)^{\frac{1}{2}}
$$

$$
\leq 2^{\frac{3}{2}}\left(\left(E\left|u_{i t}\right|^{6}\right)^{\frac{1}{2}}\left(E\left|u_{i s}\right|^{6}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\left(\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{2}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}
$$

$$
\leq 2^{\frac{3}{2}}\left[\left(E\left|u_{i t}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i s}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i h}\right|^{6}\right)^{\frac{1}{6}}\right]^{\frac{3}{2}}
$$

$$
\leq 2^{\frac{3}{2}}\left[\left(E\left|u_{i t}\right|^{7}\right)^{\frac{1}{7}}\left(E\left|u_{i s}\right|^{7}\right)^{\frac{1}{7}}\left(E\left|u_{i g}\right|^{7}\right)^{\frac{1}{7}}\left(E\left|u_{i h}\right|^{7}\right)^{\frac{1}{7}}\right]^{\frac{3}{2}}
$$

(by Liapunov's inequality)

$$
\begin{aligned}
& \leq 2^{\frac{3}{2}}\left[\left(\sup _{i, t} E\left|u_{i t}\right|^{7}\right)^{\frac{4}{7}}\right]^{\frac{3}{2}} \\
& =2^{\frac{3}{2}} C^{\frac{6}{7}} \quad(\text { by Assumption 2-3(b)) }
\end{aligned}
$$

Again, let $\rho_{1}=h-g, \rho_{2}=v-h$, and $\rho_{3}=w-v$, so that $h=g+\rho_{1}, v=h+\rho_{2}=g+\rho_{1}+$ $\rho_{2}, w=v+\rho_{3}=g+\rho_{1}+\rho_{2}+\rho_{3}$. Using these notations and the boundedness of $E\left|u_{i v} u_{i w}\right|^{\frac{7}{2}}$

$$
\begin{aligned}
& \left.\times\left(E\left|\left\{u_{i t} u_{i s} u_{i g} u_{i h}-E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right\}\right|^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(E\left|u_{i v} u_{i w}\right|^{\frac{7}{2}}\right)^{\frac{2}{7}}\right\}
\end{aligned}
$$

and $E\left|\left\{u_{i t} u_{i s} u_{i g} u_{i h}-E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right\}\right|^{\frac{3}{2}}$ as shown above, we can further write

$$
\left.\begin{align*}
\mathcal{T}_{3}= & \left.\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{(r-1) \tau+\tau_{1}+p-1}}^{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
v-h \geq \max \{w-v, h-g\}, v-h>0}} \right\rvert\,
\end{align*} E\left[\left\{u_{i t} u_{i s} u_{i g} u_{i h}-E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right\} u_{i v} u_{i w}\right] \right\rvert\,
$$

Turning our attention to the term \mathcal{T}_{4}, note that, from the upper bounds given in the proofs of parts (a) and (c) of Lemma OA-4, it is clear that there exists a positive constant C such that

$$
\frac{1}{\tau_{1}^{4}} \sum_{\substack{t, s, g, h=(r-1) \tau+p \\ t \leq s \leq g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right| \leq \frac{C}{\tau_{1}^{2}}
$$

and

$$
\frac{1}{\tau_{1}^{2}} \sum_{\substack{v, w=(r-1) \tau+p \\ v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i v} u_{i w}\right)\right| \leq \frac{C}{\tau_{1}}
$$

from which it follows that

$$
\begin{align*}
\mathcal{T}_{4} & =\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
v-h \leq \max \{w-h \leq v, h-g\}, v-h>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right|\left|E\left(u_{i v} u_{i w}\right)\right| \\
& \leq \frac{C_{1} \bar{C}}{q} \sum_{r=1}^{q} \sum_{i \in H^{c}}\left(\frac{1}{\tau_{1}^{4}} \sum_{\substack{t, s, g, h=(r-1) \tau+p \\
t \leq s \leq g \leq h}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g} u_{i h}\right)\right|\right)\left(\frac{1}{\tau_{1}^{2}} \sum_{\substack{v, w=(r-1) \tau+p \\
v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i v} u_{i w}\right)\right|\right) \\
& \leq \frac{C_{1} \bar{C}}{q} \sum_{r=1}^{q} \sum_{i \in H^{c}}\left(\frac{C}{\tau_{1}^{2}}\right)\left(\frac{C}{\tau_{1}}\right) \\
& =C_{1} \bar{C} C^{2} \frac{N_{1}}{\tau_{1}^{3}} \\
& =O\left(\frac{N_{1}}{\tau_{1}^{3}}\right) . \tag{23}
\end{align*}
$$

Consider now \mathcal{T}_{5}. In this case, we apply Lemma OA-3 with $p=2$ and $r=9 / 4$ to obtain

$$
\begin{aligned}
& \mathcal{T}_{5}=\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
h-g \geq \max \{w-v, v-h\}, h-g>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left[\left\{u_{i t} u_{i s} u_{i g}-E\left(u_{i t} u_{i s} u_{i g}\right)\right\} u_{i h} u_{i v} u_{i w}\right]\right| \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{(r-1) \tau+\tau 1+p-1}}^{\substack{\begin{subarray}{c}{(, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
h-g \geq \max \{w-v, v-h\}, h-g>0} }}\end{subarray}}\left\{2\left(2^{1-\frac{1}{2}}+1\right)\left[a_{1} \exp \left\{-a_{2}(h-g)\right\}\right]^{1-\frac{1}{2}-\frac{4}{9}}\right. \\
&\left.\times\left(E\left|\left\{u_{i t} u_{i s} u_{i g}-E\left(u_{i t} u_{i s} u_{i g}\right)\right\}\right|^{2}\right)^{\frac{1}{2}}\left(E\left|u_{i h} u_{i v} u_{i w}\right|^{\frac{9}{4}}\right)^{\frac{4}{9}}\right\}
\end{aligned}
$$

Next, by repeated application of Hölder's inequality, we obtain

$$
\begin{aligned}
& E\left|u_{i h} u_{i v} u_{i w}\right|^{\frac{9}{4}} \\
\leq & {\left[E\left|u_{i h}\right|^{7}\right]^{\frac{9}{28}}\left[E\left|u_{i v} u_{i w}\right|^{\frac{63}{19}}\right]^{\frac{19}{28}} } \\
\leq & {\left[E\left|u_{i h}\right|^{7}\right]^{\frac{9}{28}}\left[\left(E\left|u_{i v}\right|^{\frac{126}{19}}\right)^{\frac{1}{2}}\left(E\left|u_{i w}\right|^{\frac{126}{19}}\right)^{\frac{1}{2}}\right]^{\frac{19}{28}} } \\
= & {\left[E\left|u_{i h}\right|^{7}\right]^{\frac{9}{28}}\left(E\left|u_{i v}\right|^{\frac{126}{19}}\right)^{\frac{19}{56}}\left(E\left|u_{i w}\right|^{\frac{126}{19}}\right)^{\frac{19}{56}} } \\
= & {\left[E\left|u_{i h}\right|^{7}\right]^{\frac{9}{28}}\left[\left(E\left|u_{i v}\right|^{\frac{126}{19}}\right)^{\frac{19}{126}}\left(E\left|u_{i w}\right|^{\frac{126}{19}}\right)^{\frac{19}{126}}\right]^{\frac{9}{4}} } \\
\leq & {\left[E\left|u_{i h}\right|^{7}\right]^{\frac{9}{28}}\left[\left(E\left|u_{i v}\right|^{7}\right)^{\frac{1}{7}}\left(E\left|u_{i w}\right|^{7}\right)^{\frac{1}{7}}\right]^{\frac{9}{4}}(\text { by Liapunov's inequality }) } \\
\leq & \left(\sup _{i, t} E\left|u_{i t}\right|^{7}\right)^{\frac{27}{28}} \\
\leq & \bar{C}^{\frac{27}{28}}(\text { by Assumption 2-3(b)) }
\end{aligned}
$$

and

$$
\begin{aligned}
E\left|\left\{u_{i t} u_{i s} u_{i g}-E\left(u_{i t} u_{i s} u_{i g}\right)\right\}\right|^{2} \leq & 2\left(E\left|u_{i t} u_{i s} u_{i g}\right|^{2}+E\left|u_{i t} u_{i s} u_{i g}\right|^{2}\right) \\
& \left(\text { by Loève's } c_{r}\right. \text { inequality) } \\
\leq & 4 E\left|u_{i t} u_{i s} u_{i g}\right|^{2} \\
\leq & 4\left(E\left|u_{i t}\right|^{6}\right)^{\frac{1}{3}}\left(E\left|u_{i s} u_{i g}\right|^{3}\right)^{\frac{2}{3}} \\
\leq & 4\left(E\left|u_{i t}\right|^{6}\right)^{\frac{1}{3}}\left(\sqrt{E\left|u_{i s}\right|^{6}} \sqrt{E\left|u_{i g}\right|^{6}}\right)^{\frac{2}{3}} \\
= & 4\left[\left(E\left|u_{i t}\right|^{6}\right)^{\frac{1}{6}}\right]^{2}\left[\left(E\left|u_{i s}\right|^{6}\right)^{\frac{1}{6}}\left(E\left|u_{i g}\right|^{6}\right)^{\frac{1}{6}}\right]^{2} \\
\leq & 4\left[\left(E\left|u_{i t}\right|^{7}\right)^{\frac{1}{7}}\right]^{2}\left[\left(E\left|u_{i s}\right|^{7}\right)^{\frac{1}{7}}\left(E\left|u_{i g}\right|^{7}\right)^{\frac{1}{7}}\right]^{2} \\
& (\text { by Liapunov's inequality }) \\
\leq & 4\left[\left(\sup _{i, t} E\left|u_{i t}\right|^{7}\right)^{\frac{1}{7}}\right]^{6} \\
\leq & 4 \bar{C}^{\frac{6}{7}}(\text { by Assumption 2-3(b)) }
\end{aligned}
$$

Define again $\rho_{1}=h-g, \rho_{2}=v-h$, and $\rho_{3}=w-v$, so that $h=g+\rho_{1}, v=h+\rho_{2}=g+\rho_{1}+$ $\rho_{2}, w=v+\rho_{3}=g+\rho_{1}+\rho_{2}+\rho_{3}$. Using these notations and the boundedness of $E\left|u_{i h} u_{i v} u_{i w}\right|^{\frac{9}{4}}$
and $E\left|\left\{u_{i t} u_{i s} u_{i g}-E\left(u_{i t} u_{i s} u_{i g}\right)\right\}\right|^{2}$ as shown above, we can further write

$$
\begin{align*}
& \mathcal{T}_{5} \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
h-g \geq \max \{w-v, v-h\}, h-g>0}}^{(r-1) \tau+\tau_{1}+p-1}\left\{2\left(2^{1-\frac{1}{2}}+1\right)\left[a_{1} \exp \left\{-a_{2}(h-g)^{\theta}\right\}\right]^{1-\frac{1}{2}-\frac{4}{9}}\right. \\
& \left.\times\left(E\left|\left\{u_{i t} u_{i s} u_{i g}-E\left(u_{i t} u_{i s} u_{i g}\right)\right\}\right|^{2}\right)^{\frac{1}{2}}\left(E\left|u_{i h} u_{i v} u_{i w}\right|^{\frac{9}{4}}\right)^{\frac{4}{9}}\right\} \\
& \leq \frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
h-g \geq \max \{w-v, v-h\}, h-g>0}}^{(r-1) \tau+\tau_{1}+p-1} 2\left(2^{\frac{1}{2}}+1\right)\left[a_{1} \exp \left\{-a_{2}(h-g)\right\}\right]^{\frac{1}{18}}\left(4 \bar{C}^{\frac{6}{7}}\right)^{\frac{1}{2}}\left(\bar{C}^{\frac{27}{28}}\right)^{\frac{4}{9}} \\
& \leq \frac{C^{*}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v w \\
h-g \geq \max \{v-v, v-h\}, h-g>0}}^{(r-1) \tau+\tau_{1}+p-1} \exp \left\{-\frac{a_{2}}{18} \varrho_{1}\right\} \\
& \text { (for some constant } C^{*} \text { such that } 4\left(2^{\frac{1}{2}}+1\right) C_{1} \bar{C}^{\frac{13}{7}} a_{1}^{\frac{1}{18}} \leq C^{*}<\infty \text {) } \\
& \leq \frac{C^{*}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{g=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{\varrho_{1}=1}^{\infty} \sum_{\varrho_{2}=0}^{\varrho_{1}} \sum_{\varrho_{3}=0}^{\varrho_{1}} \exp \left\{-\frac{a_{2}}{18} \varrho_{1}\right\} \\
& \leq C^{*} \frac{N_{1}}{\tau_{1}^{3}} \sum_{\varrho_{1}=1}^{\infty}\left(\varrho_{1}+1\right)^{2} \exp \left\{-\frac{a_{2}}{18} \varrho_{1}\right\} \\
& =C^{*} \frac{N_{1}}{\tau_{1}^{3}}\left[\sum_{\varrho_{1}=1}^{\infty} \varrho_{1}^{2} \exp \left\{-\frac{a_{2}}{18} \varrho_{1}\right\}+2 \sum_{\varrho_{1}=1}^{\infty} \varrho_{1} \exp \left\{-\frac{a_{2}}{18} \varrho_{1}\right\}+\sum_{\varrho_{1}=1}^{\infty} \exp \left\{-\frac{a_{2}}{18} \varrho_{1}\right\}\right] \\
& =O\left(\frac{N_{1}}{\tau_{1}^{3}}\right) \text { (by Lemma OA-1) } \tag{24}
\end{align*}
$$

Finally, consider \mathcal{T}_{6}. Note that, from the upper bounds given in the proofs of part (b) of Lemma OA-4, it is clear that there exists a positive constant C such that

$$
\frac{1}{\tau_{1}^{3}} \sum_{\substack{t, s, g=(r-1) \tau+p \\ t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g}\right)\right| \leq \frac{C}{\tau_{1}^{2}}
$$

and

$$
\frac{1}{\tau_{1}^{3}} \sum_{\substack{h, v, w=(r-1) \tau+p \\ h \leq v \leq w}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \leq \frac{C}{\tau_{1}^{2}}
$$

from which it follows that

$$
\begin{align*}
\mathcal{T}_{6} & =\frac{C_{1} \bar{C}}{q \tau_{1}^{6}} \sum_{r=1}^{q} \sum_{i \in H^{c}} \sum_{\substack{t, s, g, h, v, w=(r-1) \tau+p \\
t \leq s \leq g \leq h \leq v \leq w \\
h-g \geq \max \{w-v, v-h\}, h-g>0}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g}\right)\right|\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right| \\
& \leq \frac{C_{1} \bar{C}}{q} \sum_{r=1}^{q} \sum_{i \in H^{c}}\left(\frac{1}{\tau_{1}^{3}} \sum_{\substack{(r, s, g=(r-1) \tau+p \\
t \leq s \leq g}}^{(r-1) \tau+\tau_{1}+p-1}\left|E\left(u_{i t} u_{i s} u_{i g}\right)\right|\right)\left({\frac{1}{\tau_{1}^{3}}}_{\substack{(r-1) \tau+\tau_{1}+p-1}}^{\substack{h, v, w=(r-1) \tau+p \\
h \leq v \leq w}}\left|E\left(u_{i h} u_{i v} u_{i w}\right)\right|\right) \\
& \leq \frac{C_{1} \bar{C}}{q} \sum_{r=1}^{q} \sum_{i \in H^{c}}\left(\frac{C}{\tau_{1}^{2}}\right)\left(\frac{C}{\tau_{1}^{2}}\right) \\
& =C_{1} C \bar{C}^{2} \frac{N_{1}}{\tau_{1}^{4}} \\
& =O\left(\frac{N_{1}}{\tau_{1}^{4}}\right) .
\end{align*}
$$

It follows from expressions (18)-(25) that, for any $\epsilon>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right| \geq \epsilon\right\} \\
\leq & \frac{1}{\epsilon^{6}} \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \\
\leq & \frac{1}{\epsilon^{4}}\left(\mathcal{T}_{1}+\mathcal{T}_{2}+\mathcal{T}_{3}+\mathcal{T}_{4}+\mathcal{T}_{5}+\mathcal{T}_{6}\right) \\
= & O\left(\frac{N_{1}}{\tau_{1}^{5}}\right)+O\left(\frac{N_{1}}{\tau_{1}^{3}}\right)+O\left(\frac{N_{1}}{\tau_{1}^{3}}\right)+O\left(\frac{N_{1}}{\tau_{1}^{3}}\right)+O\left(\frac{N_{1}}{\tau_{1}^{3}}\right)+O\left(\frac{N_{1}}{\tau_{1}^{4}}\right) \\
= & O\left(\frac{N_{1}}{\tau_{1}^{3}}\right) \\
= & \left.o(1) \quad \text { by Assumption 2-9(b) which stipulates that } \frac{N_{1}}{\tau_{1}^{3}} \sim \frac{N_{1}}{T^{3 \alpha_{1}}} \rightarrow 0\right)
\end{aligned}
$$

which proves the required result.

Turning our attention to part (d), note that, for any $\epsilon>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{2} \geq \epsilon\right\} \\
& =P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{2}\right|^{3} \geq \epsilon^{3}\right\} \\
& \leq P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \geq \epsilon^{3}\right\} \\
& \text { (by Jensen's inequality) } \\
& \leq P\left\{\sum_{\ell=1}^{d} \sum_{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6} \geq \epsilon^{3}\right\} \\
& \leq \frac{1}{\epsilon^{3}} \frac{1}{q} \sum_{r=1}^{q} \sum_{\ell=1}^{d} \sum_{i \in H^{c}} E\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{6}
\end{aligned}
$$

The rest of the proof for part (d) then follows in a manner similar to the argument given for part (c) above.

For part (e), note that, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)\right| \\
\leq & \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \sqrt{\frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{2}} \sqrt{\frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{2}} \\
\leq & \left\{\sqrt{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} F_{t} \varepsilon_{\ell, t+1}\right)^{2}}\right. \\
= & o_{p}(1),
\end{aligned}
$$

where the convergence in probability to zero in the last line above follows from applying the results in parts (b) and (d) of this lemma.
Lemma OA-7: Suppose that Assumptions 2-1 and 2-6 hold. Then, the following statements are true.
(a) There exists a positive constant C^{\dagger} such that

$$
\left\|A_{Y Y}\right\|_{2} \leq C^{\dagger} \phi_{\max }
$$

where $\phi_{\max }=\max \left\{\left|\lambda_{\max }(A)\right|,\left|\lambda_{\min }(A)\right|\right\}$ with $0<\phi_{\max }<1$.
(b) There exists a positive constant C^{\dagger} such that

$$
\left\|A_{Y F}\right\|_{2} \leq C^{\dagger} \phi_{\max }
$$

where $\phi_{\max }$ is as defined in part (a).

Proof of Lemma OA-7:

To proceed, recall first that the FAVAR model, i.e.,

$$
\begin{aligned}
Y_{t} & =\mu_{Y}+A_{Y Y} \underline{Y}_{t-1}+A_{Y F} \underline{F}_{t-1}+\varepsilon_{t}^{Y} \\
F_{t} & =\mu_{F}+A_{F Y} \underline{Y}_{t-1}+A_{F F} \underline{F}_{t-1}+\varepsilon_{t}^{F}
\end{aligned}
$$

can be written in the companion form

$$
\underline{W}_{t}=\alpha+A \underline{W}_{t-1}+E_{t}
$$

where $\underline{W}_{t}=\left(\begin{array}{lllll}W_{t}^{\prime} & W_{t-1}^{\prime} & \cdots & W_{t-p+2}^{\prime} & W_{t-p+1}^{\prime}\end{array}\right)^{\prime}$ with $W_{t}=\left(\begin{array}{ll}Y_{t}^{\prime} & F_{t}^{\prime}\end{array}\right)^{\prime}$ and where

$$
\alpha=\left(\begin{array}{c}
\mu \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), A=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \cdots & A_{p-1} & A_{p} \\
I_{d+K} & 0 & \cdots & 0 & 0 \\
0 & I_{d+K} & \ddots & \vdots & 0 \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & I_{d+K} & 0
\end{array}\right) \text {, and } E_{t}=\left(\begin{array}{c}
\varepsilon_{t} \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

with $\mu=\left(\begin{array}{ll}\mu_{Y}^{\prime} & \mu_{F}^{\prime}\end{array}\right)^{\prime}, \varepsilon_{t}=\left(\begin{array}{ll}\varepsilon_{t}^{Y \prime} & \varepsilon_{t}^{F \prime}\end{array}\right)^{\prime}$, and

$$
A_{\ell}=\left(\begin{array}{cc}
A_{Y Y, \ell} & A_{Y F, \ell} \\
A_{F Y, \ell} & A_{F F, \ell}
\end{array}\right) \text { for } \ell=1, \ldots, p .
$$

Let $\mathcal{P}_{(d+K) p}$ be the $(d+K) p \times(d+K) p$ permutation matrix defined by expression (17) in the proof of Lemma OA-5; and it is easy to see that $\bar{A}=\mathcal{P}_{(d+K) p} A \mathcal{P}_{(d+K) p}^{\prime}$ has the partitioned
form

$$
\bar{A}=\mathcal{P}_{(d+K) p} A \mathcal{P}_{(d+K) p}^{\prime}=\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22} \\
d(p-1) \times d p & d(p-1) \times K p \\
\bar{A}_{31} & \bar{A}_{32} \\
\frac{K \times d p}{} & K \times{ }^{\prime} p \\
\bar{A}_{41} & \bar{A}_{42} \\
K(p-1) \times d p & K(p-1) \times K p
\end{array}\right)
$$

where $\bar{A}_{11}=A_{Y Y}$ and $\bar{A}_{12}=A_{Y F}$, i.e., the first d rows of the matrix \bar{A} as given by the submatrix $\left[\begin{array}{ll}A_{Y Y} & A_{Y F}\end{array}\right]$.

Now, to show part (a), let $\bar{v} \in \mathbb{R}^{d p}$ such that $\|\bar{v}\|_{2}=1$ and such that

$$
\left\|A_{Y Y}\right\|_{2}=\bar{v}^{\prime} A_{Y Y}^{\prime} A_{Y Y} \bar{v}=\max _{\|v\|_{2}=1} v^{\prime} A_{Y Y}^{\prime} A_{Y Y} v=\bar{v}^{\prime} \bar{A}_{11}^{\prime} \bar{A}_{11} \bar{v}
$$

and let $S_{d}=\left(\begin{array}{ll}I_{d p} & \begin{array}{c}0 \\ d p \times K p\end{array}\end{array}\right)^{\prime}$. It follows that

$$
\begin{aligned}
\left\|A_{Y Y}\right\|_{2} & =\sqrt{\bar{v}^{\prime} A_{Y Y}^{\prime} A_{Y Y} \bar{v}} \\
& =\sqrt{\bar{v}^{\prime} \bar{A}_{11}^{\prime} \bar{A}_{11} \bar{v}} \\
& \leq \sqrt{\bar{v}^{\prime} \bar{A}_{11}^{\prime} \bar{A}_{11} \bar{v}+\bar{v}^{\prime} \bar{A}_{21}^{\prime} \bar{A}_{21} \bar{v}+\bar{v}^{\prime} \bar{A}_{31}^{\prime} \bar{A}_{31} \bar{v}+\bar{v}^{\prime} \bar{A}_{41}^{\prime} \bar{A}_{41} \bar{v}} \\
& =\sqrt{\bar{v}^{\prime} S_{d}^{\prime} \bar{A}^{\prime} \bar{A} S_{d} \bar{v}} \\
& =\sqrt{\bar{v}^{\prime} S_{d}^{\prime} \mathcal{P}_{(d+K) p} A^{\prime} \mathcal{P}_{(d+K) p}^{\prime} \mathcal{P}_{(d+K) p} A \mathcal{P}_{(d+K) p}^{\prime} S_{d} \bar{v}} \\
& =\sqrt{\bar{v}^{\prime} S_{d}^{\prime} \mathcal{P}_{(d+K) p} A^{\prime} A \mathcal{P}_{(d+K) p}^{\prime} S_{d} \bar{v}}\left(\text { since } \mathcal{P}_{(d+K) p} \text { is an orthogonal matrix }\right) \\
& \leq \sqrt{\max _{\|v\|_{2}=1}^{v^{\prime} A^{\prime} A v}}\left(\text { noting that }\left\|\mathcal{P}_{(d+K) p}^{\prime} S_{d} \bar{v}\right\|_{2}=\sqrt{\bar{v}^{\prime} S_{d}^{\prime} \mathcal{P}_{(d+K) p} \mathcal{P}_{(d+K) p}^{\prime} S_{d} \bar{v}}=1\right) \\
& =\|A\|_{2} \\
& =\sigma_{\max }(A) \\
& \leq C^{\dagger} \phi_{\max }(\text { by Assumption 2-6) }
\end{aligned}
$$

where $\phi_{\max }=\max \left\{\left|\lambda_{\max }(A)\right|,\left|\lambda_{\min }(A)\right|\right\}$. Note further that $0<\phi_{\max }<1$ since, by Assumption 2-1, all eigenvalues of A have modulus less than 1 .

To show part (b), let $\widetilde{v} \in \mathbb{R}^{K p}$ such that $\|\widetilde{v}\|_{2}=1$ and such that

$$
\left\|A_{Y F}\right\|_{2}=\widetilde{v}^{\prime} A_{Y F}^{\prime} A_{Y F} \widetilde{v}=\max _{\|v\|_{2}=1} v^{\prime} A_{Y F}^{\prime} A_{Y F} v=\widetilde{v}^{\prime} \bar{A}_{12}^{\prime} \bar{A}_{12} \widetilde{v}
$$

and let

$$
\underset{(d+K) p \times K p}{S_{K}}=\binom{0}{I_{K p}} .
$$

It follows that

$$
\begin{aligned}
\left\|A_{Y F}\right\|_{2} & =\sqrt{\widetilde{v}^{\prime} A_{Y F}^{\prime} A_{Y F} \widetilde{v}} \\
& =\sqrt{\widetilde{v}^{\prime} \bar{A}_{12}^{\prime} \bar{A}_{12} \widetilde{v}} \\
& \leq \sqrt{\widetilde{v}^{\prime} \bar{A}_{12}^{\prime} \bar{A}_{12} \widetilde{v}+\widetilde{v}^{\prime} \bar{A}_{22}^{\prime} \bar{A}_{22} \widetilde{v}+\widetilde{v}^{\prime} \bar{A}_{32}^{\prime} \bar{A}_{32} \widetilde{v}+\widetilde{v}^{\prime} \bar{A}_{42}^{\prime} \bar{A}_{42} \widetilde{v}} \\
& =\sqrt{\widetilde{v}^{\prime} S_{K}^{\prime} \bar{A}^{\prime} \bar{A} S_{K} \widetilde{v}} \\
& =\sqrt{\widetilde{v}^{\prime} S_{K}^{\prime} \mathcal{P}_{(d+K) p} A^{\prime} \mathcal{P}_{(d+K) p}^{\prime} \mathcal{P}_{(d+K) p} A \mathcal{P}_{(d+K) p}^{\prime} S_{K} \widetilde{v}} \\
& =\sqrt{\widetilde{v}^{\prime} S_{K}^{\prime} \mathcal{P}_{(d+K) p} A^{\prime} A \mathcal{P}_{(d+K) p}^{\prime} S_{K} \widetilde{v}}\left(\text { since } \mathcal{P}_{(d+K) p}\right. \text { is an orthogonal matrix) } \\
& \leq \sqrt{\max _{\|v\|_{2}=1} v^{\prime} A^{\prime} A v}\left(\text { noting that }\left\|\mathcal{P}_{(d+K) p}^{\prime} S_{K} \widetilde{v}\right\|_{2}=\sqrt{\widetilde{v}^{\prime} S_{K}^{\prime} \mathcal{P}_{(d+K) p} \mathcal{P}_{(d+K) p}^{\prime} S_{K} \widetilde{v}}=1\right) \\
& =\|A\|_{2} \\
& =\sigma_{\max }(A) \\
& \leq C^{\dagger} \phi_{\max }(\text { by Assumption 2-6) }
\end{aligned}
$$

where $\phi_{\max }=\max \left\{\left|\lambda_{\max }(A)\right|,\left|\lambda_{\min }(A)\right|\right\}$. As noted in the proof for part (a), $0<\phi_{\max }<1$ since, by Assumption 2-1, all eigenvalues of A have modulus less than 1.

Lemma OA-8: Consider the linear process

$$
\xi_{t}=\sum_{j=0}^{\infty} \Psi_{j} \varepsilon_{t-j}
$$

Suppose the process satisfies the following assumptions
(i) Let $\left\{\varepsilon_{t}\right\}$ is an independent sequence of random vectors with $E\left[\varepsilon_{t}\right]=0$ for all t. For some $\delta>0$, suppose that there exists a positive constant K such that

$$
E\left\|\varepsilon_{t}\right\|_{2}^{1+\delta} \leq K<\infty \text { for all } t
$$

(ii) Suppose that ε_{t} has p.d.f. $g_{\varepsilon_{t}}$ such that, for some positive constant $M<\infty$,

$$
\sup _{t} \int\left|g_{\varepsilon_{t}}(v-u)-g_{\varepsilon_{t}}(v)\right| d \varepsilon \leq M|u|
$$

whenever $|u| \leq \bar{\kappa}$ for some constant $\bar{\kappa}>0$.
(iii) Suppose that

$$
\sum_{j=0}^{\infty}\left\|\Psi_{j}\right\|_{2}<\infty
$$

and

$$
\operatorname{det}\left\{\sum_{j=0}^{\infty} \Psi_{j} z^{j}\right\} \neq 0 \text { for all } z \text { with }|z| \leq 1
$$

Under these conditions, suppose further that

$$
\sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty}\left\|\Psi_{j}\right\|_{2}\right)^{\frac{\delta}{1+\delta}}<\infty
$$

then, for some positive constant \bar{K},

$$
\beta_{\xi}(m) \leq \bar{K} \sum_{j=m}^{\infty}\left(\sum_{k=j}^{\infty}\left\|\Psi_{k}\right\|_{2}\right)^{\frac{\delta}{1+\delta}}
$$

where

$$
\beta_{\xi}(m)=\sup _{t} E\left[\sup \left\{\left|P\left(B \mid \mathcal{F}_{\xi,-\infty}^{t}\right)-P(B)\right|: B \in \mathcal{F}_{\xi, t+m}^{\infty}\right\}\right]
$$

with $\mathcal{F}_{\xi,-\infty}^{t}=\sigma\left(\ldots, \xi_{t-2}, \xi_{t-1}, \xi_{t}\right)$ and $\mathcal{F}_{\xi, t+m}^{\infty}=\sigma\left(\xi_{t+m}, \xi_{t+m+1}, \xi_{t+m+2}, \ldots\right)$.
Remark: This is Theorem 2.1 of Pham and Tran (1985) restated here in our notation. For a proof, see Pham and Tran (1985).
Lemma OA-9: Let A be an $n \times n$ square matrix with (ordered) singular values given by

$$
\sigma_{(1)}(A) \geq \sigma_{(2)}(A) \geq \cdots \geq \sigma_{(n)}(A) \geq 0
$$

Suppose that A is diagonalizable, i.e.,

$$
A=S \Lambda S^{-1}
$$

where Λ is diagonal matrix whose diagonal elements are the eigenvalues of A. Let the modulus of these eigenvalues be ordered as follows:

$$
\left|\lambda_{(1)}(A)\right| \geq\left|\lambda_{(2)}(A)\right| \geq \cdots \geq\left|\lambda_{(n)}(A)\right|
$$

Then, for $k \in\{1, \ldots, n\}$ and for any positive integer j, we have

$$
\chi(S)^{-1}\left|\lambda_{(k)}\left(A^{j}\right)\right| \leq \sigma_{(k)}\left(A^{j}\right) \leq \chi(S)\left|\lambda_{(k)}\left(A^{j}\right)\right|
$$

where

$$
\chi(S)=\sigma_{(1)}(S) \sigma_{(1)}\left(S^{-1}\right)
$$

Proof of Lemma OA-9: Observe first that we can assume, without loss of generality, that the decomposition

$$
A=S \Lambda S^{-1}=S \cdot \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \cdot S^{-1}
$$

is such that

$$
\lambda_{i}=\lambda_{(i)}(A) \text { for } i=1, \ldots, n
$$

with

$$
\left|\lambda_{(1)}(A)\right| \geq\left|\lambda_{(2)}(A)\right| \geq \cdots \geq\left|\lambda_{(n)}(A)\right| .
$$

This is because suppose we have the alternative representation where

$$
A=\widetilde{S} \widetilde{\Lambda} \widetilde{S}^{-1}=\widetilde{S} \cdot \operatorname{diag}\left(\widetilde{\lambda}_{1}, \widetilde{\lambda}_{2}, \ldots, \widetilde{\lambda}_{n}\right) \cdot \widetilde{S}^{-1}
$$

and where $\widetilde{\lambda}_{i} \neq \lambda_{(i)}(A)$ for at least some of the $i^{\prime} s$. Then, we can always define a permutation matrix \mathcal{P} such that

$$
\mathcal{P}^{\prime} \widetilde{\Lambda} \mathcal{P}=\Lambda
$$

so that, given that \mathcal{P} is an orthogonal matrix, we have

$$
A=\widetilde{S} \widetilde{\Lambda} \widetilde{S}^{-1}=\widetilde{S} \mathcal{P} \mathcal{P}^{\prime} \widetilde{\Lambda} \mathcal{P} \mathcal{P}^{\prime} \widetilde{S}^{-1}=S \Lambda S^{-1}
$$

where $S=\widetilde{S} \mathcal{P}$ and, thus, $S^{-1}=(\widetilde{S} \mathcal{P})^{-1}=\mathcal{P}^{\prime} \widetilde{S}^{-1}$.
Next, note that, for any positive integer j,

$$
A^{j}=S \Lambda S^{-1} \times S \Lambda S^{-1} \times \cdots \times S \Lambda S^{-1}=S \Lambda^{j} S^{-1}
$$

where

$$
\Lambda^{j}=\operatorname{diag}\left(\lambda_{1}^{j}, \lambda_{2}^{j}, \ldots, \lambda_{n}^{j}\right)=\operatorname{diag}\left(\lambda_{(1)}^{j}(A), \lambda_{(2)}^{j}(A), \ldots, \lambda_{(n)}^{j}(A)\right)
$$

Moreover, since $\lambda_{(k)}\left(A^{j}\right)=\lambda_{(k)}^{j}(A)$ for any $k \in\{1, \ldots, m\}$, we also have

$$
\Lambda^{j}=\operatorname{diag}\left(\lambda_{1}^{j}, \lambda_{2}^{j}, \ldots, \lambda_{n}^{j}\right)=\operatorname{diag}\left(\lambda_{(1)}\left(A^{j}\right), \lambda_{(2)}\left(A^{j}\right), \ldots, \lambda_{(n)}\left(A^{j}\right)\right)
$$

In addition, let $\overline{\lambda_{(k)}\left(A^{j}\right)}$ denote the complex conjugate of $\lambda_{(k)}\left(A^{j}\right)$ for $k \in\{1, \ldots, m\}$, and note that, by definition,

$$
\sigma_{(k)}\left(\Lambda^{j}\right)=\sqrt{\overline{\lambda_{(k)}\left(A^{j}\right)} \lambda_{(k)}\left(A^{j}\right)}=\left|\lambda_{(k)}\left(A^{j}\right)\right|
$$

Since $\left|\lambda_{(k)}\left(A^{j}\right)\right|=\left|\lambda_{(k)}^{j}(A)\right|=\left|\lambda_{(k)}(A)\right|^{j}$, the ordering

$$
\left|\lambda_{(1)}(A)\right| \geq\left|\lambda_{(2)}(A)\right| \geq \cdots \geq\left|\lambda_{(n)}(A)\right|
$$

implies that

$$
\left|\lambda_{(1)}\left(A^{j}\right)\right| \geq\left|\lambda_{(2)}\left(A^{j}\right)\right| \geq \cdots \geq\left|\lambda_{(n)}\left(A^{j}\right)\right|
$$

and, thus,

$$
\sigma_{(1)}\left(\Lambda^{j}\right) \geq \sigma_{(2)}\left(\Lambda^{j}\right) \geq \cdots \geq \sigma_{(n)}\left(\Lambda^{j}\right)
$$

for any positive integer j.
Now, apply the inequality

$$
\sigma_{(i+\ell-1)}(B C) \leq \sigma_{(i)}(B) \sigma_{(\ell)}(C)
$$

for $i, \ell \in\{1, \ldots, n\}$ and $i+\ell \leq n+1$; we have

$$
\begin{aligned}
\sigma_{(k)}\left(A^{j}\right) & =\sigma_{(k)}\left(S \Lambda^{j} S^{-1}\right) \\
& \leq \sigma_{(k)}\left(S \Lambda^{j}\right) \sigma_{(1)}\left(S^{-1}\right) \\
& \leq \sigma_{(k)}\left(\Lambda^{j}\right) \sigma_{(1)}(S) \sigma_{(1)}\left(S^{-1}\right) \\
& =\sigma_{(1)}(S) \sigma_{(1)}\left(S^{-1}\right)\left|\lambda_{(k)}\left(A^{j}\right)\right| \\
& =\chi(S)\left|\lambda_{(k)}\left(A^{j}\right)\right| \text { for any } k \in\{1, \ldots, n\}
\end{aligned}
$$

Moreover, for any $k \in\{1, \ldots, n\}$,

$$
\begin{aligned}
\left|\lambda_{(k)}\left(A^{j}\right)\right| & =\sigma_{(k)}\left(\Lambda^{j}\right) \\
& =\sigma_{(k)}\left(S^{-1} S \Lambda^{j} S^{-1} S\right) \\
& =\sigma_{(k)}\left(S^{-1} A^{j} S\right) \\
& \leq \sigma_{(1)}\left(S^{-1}\right) \sigma_{(k)}\left(A^{j}\right) \sigma_{(1)}(S)
\end{aligned}
$$

or

$$
\frac{\left|\lambda_{(k)}\left(A^{j}\right)\right|}{\chi(S)}=\frac{\left|\lambda_{(k)}\left(A^{j}\right)\right|}{\sigma_{(1)}(S) \sigma_{(1)}\left(S^{-1}\right)} \leq \sigma_{(k)}\left(A^{j}\right)
$$

Putting these two inequalities together, we have, for any $k \in\{1, \ldots, n\}$ and for all positive integer j,

$$
\chi(S)^{-1}\left|\lambda_{(k)}\left(A^{j}\right)\right| \leq \sigma_{(k)}\left(A^{j}\right) \leq \chi(S)\left|\lambda_{(k)}\left(A^{j}\right)\right|
$$

Remark: Note that the case where $j=1$ in Lemma OA-9 has previously been obtained in Theorem 1 of Ruhe (1975). Hence, Lemma OA-9 can be viewed as providing an extension to the first part of that theorem.
Lemma OA-10: Let ρ be such that $|\rho|<1$. Then,

$$
\sum_{j=0}^{\infty}(j+1) \rho^{j}=\frac{1}{(1-\rho)^{2}}<\infty
$$

Proof of Lemma OA-10: Define

$$
S_{n}(\rho)=1+\rho+\rho^{2}+\cdots+\rho^{n}=\frac{1-\rho^{n+1}}{1-\rho}
$$

Note that

$$
\begin{aligned}
S_{n}^{\prime}(\rho) & =1+2 \rho+3 \rho^{2}+\cdots+n \rho^{n-1} \\
& =-\frac{(n+1) \rho^{n}}{1-\rho}+\frac{1-\rho^{n+1}}{(1-\rho)^{2}} \\
& =\frac{1-\rho^{n+1}-(n+1) \rho^{n}(1-\rho)}{(1-\rho)^{2}} \\
& =\frac{1-\rho^{n+1}-(n+1) \rho^{n}+(n+1) \rho^{n+1}}{(1-\rho)^{2}} \\
& =\frac{1-(n+1) \rho^{n}+n \rho^{n+1}}{(1-\rho)^{2}} \\
& =\frac{1-\rho^{n}-n \rho^{n}(1-\rho)}{(1-\rho)^{2}}
\end{aligned}
$$

It follows that

$$
S_{n}^{\prime}(\rho)=\sum_{j=0}^{n-1}(j+1) \rho^{j}=\frac{1-\rho^{n}-n \rho^{n}(1-\rho)}{(1-\rho)^{2}} \rightarrow \frac{1}{(1-\rho)^{2}} \text { as } n \rightarrow \infty
$$

Lemma OA-11: Let $W_{t}=\left(Y_{t}^{\prime}, F_{t}^{\prime}\right)^{\prime}$ be generated by the factor-augmented VAR process

$$
W_{t+1}=\mu+A_{1} W_{t}+\cdots+A_{p} W_{t-p+1}+\varepsilon_{t+1}
$$

described in section 3 of the main paper. Under Assumptions 2-1, 2-2, and 2-6; $\left\{W_{t}\right\}$ is a β-mixing process with β-mixing coefficient $\beta_{W}(m)$ such that

$$
\beta_{W}(m) \leq C_{1} \exp \left\{-C_{2} m\right\}
$$

for some positive constants C_{1} and C_{2}. Here,

$$
\beta_{W}(m)=\sup _{t} E\left[\sup \left\{\left|P\left(B \mid \mathcal{A}_{-\infty}^{t}\right)-P(B)\right|: B \in \mathcal{A}_{t+m}^{\infty}\right\}\right]
$$

with $\mathcal{A}_{-\infty}^{t}=\sigma\left(\ldots, W_{t-2}, W_{t-1}, W_{t}\right)$ and $\mathcal{A}_{t+m}^{\infty}=\sigma\left(W_{t+m}, W_{t+m+1}, W_{t+m+2}, \ldots.\right)$.

Proof of Lemma OA-11:

To prove this lemma, we shall verify the conditions of Lemma OA-8 given above for the vector moving-average representation of W_{t}, i.e.,

$$
W_{t}=J_{d+K}\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu+\sum_{j=0}^{\infty} J_{d+K} A^{j} J_{d+K}^{\prime} \varepsilon_{t-j}=\mu_{*}+\sum_{j=0}^{\infty} \Psi_{j} \varepsilon_{t-j}
$$

where

$$
\begin{aligned}
\mu_{*} & =J_{d+K}\left(I_{(d+K) p}-A\right)^{-1} J_{d+K}^{\prime} \mu, \Psi_{j}=J_{d+K} A^{j} J_{d+K}^{\prime}, \\
\underset{(d+K) \times(d+K) p}{J_{d+K}}= & {\left[\begin{array}{lllll}
I_{d+K} & 0 & \cdots & 0 & 0
\end{array}\right], \text { and } A=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \cdots & A_{p-1} & A_{p} \\
I_{d+K} & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & I_{d+K} & 0
\end{array}\right) }
\end{aligned}
$$

To proceed, set

$$
\begin{equation*}
\xi_{t}=\sum_{j=0}^{\infty} \Psi_{j} \varepsilon_{t-j} \tag{26}
\end{equation*}
$$

and note first that, setting $\delta=5$ in Lemma OA-8, and we see that Assumptions (i) and (ii) of Lemma OA-8 are the same as the conditions specified in Assumption 2-2 (a)-(c). Next, note that, since in this case $\Psi_{j}=J_{d+K} A^{j} J_{d+K}^{\prime}$, we have

$$
\begin{aligned}
\left\|\Psi_{j}\right\|_{2} & \leq\left\|J_{d+K}\right\|_{2}\left\|A^{j}\right\|_{2}\left\|J_{d+K}^{\prime}\right\|_{2} \\
& \leq \sqrt{\lambda_{\max }\left(J_{d+K}^{\prime} J_{d+K}\right)}\left(\sqrt{\lambda_{\max }\left\{\left(A^{j}\right)^{\prime} A^{j}\right\}}\right) \sqrt{\lambda_{\max }\left(J_{d+K} J_{d+K}^{\prime}\right)} \\
& =\lambda_{\max }\left(J_{d+K} J_{d+K}^{\prime}\right)\left(\sqrt{\lambda_{\max }\left\{\left(A^{j}\right)^{\prime} A^{j}\right\}}\right) \\
& =\sqrt{\lambda_{\max }\left\{\left(A^{j}\right)^{\prime} A^{j}\right\}} \\
& =\sigma_{\max }\left(A^{j}\right) \\
& \leq C\left[\max \left\{\left|\lambda_{\max }\left(A^{j}\right)\right|,\left|\lambda_{\min }\left(A^{j}\right)\right|\right\}\right] \quad \text { (by Assumption 2-6) } \\
& =C\left[\max \left\{\left|\lambda_{\max }(A)\right|,\left|\lambda_{\min }(A)\right|\right\}\right]^{j} \\
& =C \phi_{\max }^{j}
\end{aligned}
$$

where $\phi_{\max }=\max \left\{\left|\lambda_{\max }(A)\right|,\left|\lambda_{\min }(A)\right|\right\}$ and where $0<\phi_{\max }<1$ since, by Assumption $2-1$, all eigenvalues of A have modulus less than 1 . It follows that

$$
\sum_{j=0}^{\infty}\left\|\Psi_{j}\right\|_{2} \leq C \sum_{j=0}^{\infty} \phi_{\max }^{j}=\frac{C}{1-\phi_{\max }}<\infty
$$

Moreover, by Assumption 2-1,

$$
\operatorname{det}\left\{I_{(d+K) p}-A_{1} z-\cdots-A_{p} z^{p}\right\} \neq 0 \text { for all } z \text { such that }|z| \leq 1
$$

and, by definition,

$$
\sum_{j=0}^{\infty} \Psi_{j} z^{j}=\Psi(z)=\left(I_{(d+K) p}-A_{1} z-\cdots-A_{p} z^{p}\right)^{-1} \text { for all } z \text { such that }|z| \leq 1
$$

so that

$$
\Psi(z)\left(I_{(d+K) p}-A_{1} z-\cdots-A_{p} z^{p}\right)=I_{(d+K) p} \text { for all } z \text { such that }|z| \leq 1
$$

In addition, since

$$
\begin{aligned}
& \operatorname{det}\{\Psi(z)\} \operatorname{det}\left\{I_{(d+K) p}-A_{1} z-\cdots-A_{p} z^{p}\right\} \\
= & \operatorname{det}\left\{\Psi(z)\left(I_{(d+K) p}-A_{1} z-\cdots-A_{p} z^{p}\right)\right\} \\
= & \operatorname{det}\left\{I_{(d+K) p}\right\} \\
= & 1,
\end{aligned}
$$

and since

$$
\left|\operatorname{det}\left\{I_{(d+K) p}-A_{1} z-\cdots-A_{p} z^{p}\right\}\right|<\infty \text { for all } z \text { such that }|z| \leq 1
$$

it follows that

$$
\begin{aligned}
\operatorname{det}\left\{\sum_{j=0}^{\infty} \Psi_{j} z^{j}\right\} & =\operatorname{det}\{\Psi(z)\} \\
& =\frac{1}{\operatorname{det}\left\{I_{(d+K) p}-A_{1} z-\cdots-A_{p} z^{p}\right\}} \\
& \neq 0 \text { for all } z \text { such that }|z| \leq 1 .
\end{aligned}
$$

Finally, note that, setting $\delta=5$,

$$
\begin{aligned}
\sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty}\left\|\Psi_{k}\right\|_{2}\right)^{\frac{\delta}{1+\delta}} & =\sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty}\left\|\Psi_{k}\right\|_{2}\right)^{\frac{5}{6}} \\
& \leq \sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty} C \phi_{\max }^{k}\right)^{\frac{5}{6}} \\
& =C^{\frac{5}{6}} \sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty} \phi_{\max }^{k}\right)^{\frac{5}{6}} \\
& \leq C^{\frac{5}{6}} \sum_{j=0}^{\infty} \sum_{k=j}^{\infty}\left(\phi_{\max }^{\frac{5}{6}}\right)^{k} \\
& =\left(\text { by the inequality }\left|\sum_{i=1}^{\infty} a_{i}\right|^{r} \leq \sum_{i=1}^{\infty}\left|a_{i}\right|^{r} \text { for } r \leq 1\right) \\
& =C^{\frac{5}{6}} \sum_{j=0}^{\infty}(j+1)\left(\phi_{\max }^{\frac{5}{6}}\right)^{j} \\
& <\phi_{\max }^{\left.{ }^{\frac{5}{6}}\right]^{-2}(\text { by Lemma OA-10 })} \quad
\end{aligned}
$$

Hence, all conditions of Lemma OA-8 are fulfilled. Applying Lemma OA-8, we then
obtain that there exists a constant \bar{C} such that

$$
\begin{aligned}
\beta_{\xi}(m) & \leq \bar{C} \sum_{j=m}^{\infty}\left(\sum_{k=j}^{\infty}\left\|\Psi_{k}\right\|_{2}\right)^{\frac{5}{6}} \\
& \leq \bar{C} \sum_{j=m}^{\infty}\left(\sum_{k=j}^{\infty} C \phi_{\max }^{k}\right)^{\frac{5}{6}} \\
& =\bar{C} C^{\frac{5}{6}} \sum_{j=m}^{\infty}\left(\sum_{k=j}^{\infty} \phi_{\max }^{k}\right)^{\frac{5}{6}} \\
& \leq \bar{C} C^{\frac{5}{6}} \sum_{j=m}^{\infty} \sum_{k=j}^{\infty}\left(\phi_{\max }^{\frac{5}{6}}\right)^{k} \\
& =\bar{C} C^{\frac{5}{6}}\left(\phi_{\max }^{\frac{5}{6}}\right)^{m} \sum_{j=0}^{\infty}(j+1)\left(\phi_{\max }^{\frac{5}{6}}\right)^{j} \\
& =\bar{C} C^{\frac{5}{6}}\left(\phi_{\max }^{\frac{5}{6}}\right)^{m}\left[1-\phi_{\max }^{\frac{5}{6}}\right]^{-2} \\
& =\bar{C} C^{\frac{5}{6}}\left[1-\phi_{\max }^{6}\right]^{-2} \exp \left\{-\left[\frac{5}{6}\left|\ln \phi_{\max }\right|\right] m\right\}\left(\text { since } 0<\phi_{\max }<1\right) \\
& \leq C_{1} \exp \left\{-C_{2} m\right\} \rightarrow 0 \operatorname{as} m \rightarrow \infty .
\end{aligned}
$$

for some positive constants C_{1} and C_{2} such that

$$
C_{1} \geq \bar{C} C^{\frac{5}{6}}\left[1-\phi_{\max }^{\frac{5}{6}}\right]^{-2} \text { and } C_{2} \leq \frac{5}{6}\left|\ln \phi_{\max }\right|
$$

It follows that the process $\left\{\xi_{t}\right\}$ (as defined in expression (26)) is β mixing with beta coefficient $\beta_{\xi}(m)$ satisfying

$$
\beta_{\xi}(m) \leq C_{1} \exp \left\{-C_{2} m\right\} .
$$

Since

$$
W_{t}=\mu_{*}+\sum_{j=0}^{\infty} \Psi_{j} \varepsilon_{t-j}=\mu_{*}+\xi_{t}
$$

and since μ_{*} is a nonrandom parameter, we can then apply part (a) of Lemma OA-2 to deduce that $\left\{W_{t}\right\}$ is a β mixing process with β coefficient $\beta_{W}(m)$ satisfying the inequality

$$
\beta_{W}(m) \leq C_{1} \exp \left\{-C_{2} m\right\} .
$$

Lemma OA-12: Let $\underline{Y}_{t}=\left(\begin{array}{lllll}Y_{t}^{\prime} & Y_{t-1}^{\prime} & \cdots & Y_{t-p+2}^{\prime} & Y_{t-p+1}^{\prime}\end{array}\right)^{\prime}$ and
$\underline{F}_{t}=\left(\begin{array}{lllll}F_{t}^{\prime} & F_{t-1}^{\prime} & \cdots & F_{t-p+2}^{\prime} & F_{t-p+1}^{\prime}\end{array}\right)^{\prime}$. Under Assumptions 2-1, 2-2, 2-5, 2-6, and 2-9(b); the following statements are true as $N, T \rightarrow \infty$
(a)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right| \xrightarrow{p} 0
$$

(b)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right| \xrightarrow{p} 0
$$

(c)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right| \xrightarrow{p} 0
$$

(d)

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \gamma _ { i } ^ { \prime } \left\{\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right. \\
& \\
& \\
& \xrightarrow{p} 0
\end{aligned}
$$

(e)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)^{2}=O_{p}(1) .
$$

(f)

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}\left\{\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right.\right.\right. \\
& \left.\left.\quad+\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}+\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right\}\right) \\
& \left.\quad \times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\gamma_{i}^{\prime} E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)\right\} \\
& \xrightarrow{p} 0
\end{aligned}
$$

(g)

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)\right. \\
& \\
& \left.\quad \times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right) \right\rvert\, \\
& \xrightarrow{p} 0
\end{aligned}
$$

(h)

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)\right. \\
& \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right) \right\rvert\,
\end{aligned}
$$

Proof of Lemma OA-12:

To show part (a), note that, for any $\epsilon>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right| \geq \epsilon\right\} \\
= & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right)^{2} \geq \epsilon^{2}\right\} \\
\leq & P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right)^{2} \geq \epsilon^{2}\right\}
\end{aligned}
$$

(by Jensen's inequality)

$$
\begin{aligned}
& =P\left\{\max _{i \in H^{c}} \max _{1 \leq \ell \leq d} \frac{1}{q} \sum_{r=1}^{q}\left(\gamma_{i}^{\prime}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right]\right)^{2} \geq \epsilon^{2}\right\} \\
& \leq P\left\{\max _{i \in H^{c}} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q}\left(\gamma_{i}^{\prime}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right]\right)^{2} \geq \epsilon^{2}\right\} \\
& \leq P\left\{\operatorname { m a x } _ { i \in H ^ { c } } \| \gamma _ { i } \| _ { 2 } ^ { 2 } \sum _ { \ell = 1 } ^ { d } \left(\frac{1}{q} \sum_{r=1}^{q}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right]^{\prime}\right.\right.
\end{aligned}
$$

$$
\left.\left.\times\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right]\right) \geq \epsilon^{2}\right\}
$$

$$
=P\left\{\max _{i \in H^{c}}\left\|\gamma_{i}\right\|_{2}^{2} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y Y, \ell}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\right.
$$

$$
\left.\times\left(\underline{F}_{s} \underline{Y}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{Y}_{s}^{\prime}\right]\right) \alpha_{Y Y, \ell} \geq \epsilon^{2}\right\}
$$

$$
\leq \frac{\max _{i \in H^{c}}\left\|\gamma_{i}\right\|_{2}^{2}}{\epsilon^{2}} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\alpha_{Y Y, \ell}^{\prime}\right.
$$

(by Markov's inequality)

$$
\left.\times E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{Y}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{Y}_{s}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right\}
$$

$$
\begin{align*}
& \leq \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\alpha_{Y Y, \ell}^{\prime}\right. \\
&\left.\times E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{\underline{Y}}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{Y}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{\underline{Y}}_{s}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right\} \tag{27}
\end{align*}
$$

(by Assumption 2-5)

Next, write

$$
\begin{align*}
& \sum_{\ell=1}^{d}\left(\frac { 1 } { q } \sum _ { r = 1 } ^ { q } \frac { 1 } { \tau _ { 1 } ^ { 2 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \sum _ { s = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \left\{\alpha_{Y Y, \ell}^{\prime}\right.\right. \\
& \left.\left.\times E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{Y}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{Y}_{s}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right\}\right) \\
& =\sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y Y, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right) \\
& +\sum_{\ell=1}^{d}\left(\frac { 2 } { q } \sum _ { r = 1 } ^ { q } \frac { 1 } { \tau _ { 1 } ^ { 2 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 2 } \sum _ { m = 1 } ^ { (r - 1) \tau + \tau _ { 1 } + p - t - 1 } \left\{\alpha_{Y Y, \ell}^{\prime}\right.\right. \\
& \left.\left.\times E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right\}\right) \\
& \leq \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y Y, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right) \\
& +\sum_{\ell=1}^{d}\left(\left.\frac{2}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1} \right\rvert\, \alpha_{Y Y, \ell}^{\prime}\right. \\
& \left.\times E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell} \mid\right) \tag{28}
\end{align*}
$$

Let $e_{\ell, d}$ be a $d \times 1$ elementary vector whose $\ell^{\text {th }}$ component is 1 and all other components are

0 , and note that

$$
\begin{aligned}
& \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y Y, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right) \\
& =\sum_{\ell=1}^{d}\left(\frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} e_{\ell, d}^{\prime} A_{Y Y} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)\right] A_{Y Y}^{\prime} e_{\ell, d}\right) \\
& =\sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q}\left(\sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} e_{\ell, d}^{\prime} A_{Y Y} E\left[\underline{Y}_{t} \underline{F}_{t}^{\prime} \underline{F}_{t} \underline{Y}_{t}^{\prime}\right] A_{Y Y}^{\prime} e_{\ell, d}\right. \\
& \left.-\sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} e_{\ell, d}^{\prime} A_{Y Y} E\left[\underline{Y}_{t} \underline{F}_{t}^{\prime}\right] E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] A_{Y Y}^{\prime} e_{\ell, d}\right) \\
& \leq \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\left(e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t}\right)^{2}\right] \\
& \leq \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left(e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{Y}_{t}^{\prime} A_{Y Y}^{\prime} e_{\ell, d}\right)^{2}} \text { (by CS inequality) } \\
& \leq \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left[\left\|\underline{Y}_{t}\right\|_{2}^{4}\right]} \sqrt{\left(e_{\ell, d}^{\prime} A_{Y Y} A_{Y Y}^{\prime} e_{\ell, d}\right)^{2}} \\
& \leq \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left[\left\|\underline{Y}_{t}\right\|_{2}^{4}\right]}\left\|A_{Y Y}\right\|_{2}^{2} \sqrt{\left(e_{\ell, d}^{\prime} e_{\ell, d}\right)^{2}} \\
& \leq \frac{d\left(C^{\dagger}\right)^{2}}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left[\left\|\underline{Y}_{t}\right\|_{2}^{4}\right]} \phi_{\max }^{2}
\end{aligned}
$$

(by part (a) of Lemma OA-7 and by the fact that $e_{\ell, d}$ is an elementary vector)

$$
\begin{equation*}
\leq \frac{\bar{C}}{\tau_{1}}=O\left(\frac{1}{\tau_{1}}\right) . \tag{29}
\end{equation*}
$$

for some positive constant $\bar{C} \geq d\left(C^{\dagger}\right)^{2} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left[\left\|\underline{Y}_{t}\right\|_{2}^{4}\right]} \phi_{\text {max }}^{2}$, which exists in light of Lemma OA-5 and the fact that $0<\phi_{\max }<1$ given Assumption 2-1.

To analyze the second term on the right-hand side of expression (28), note first that by Lemma OA-11, $\left\{\left(Y_{t}^{\prime}, F_{t}^{\prime}\right)^{\prime}\right\}$ is β-mixing with β mixing coefficient satisfying

$$
\beta_{W}(m) \leq C_{1} \exp \left\{-C_{2} m\right\} \text { for some positive constants } C_{1} \text { and } C_{2} .
$$

Since $\alpha_{W, m} \leq \beta_{W}(m)$, it follows that $W_{t}=\left(Y_{t}^{\prime}, F_{t}^{\prime}\right)^{\prime}$ is α-mixing as well, with α mixing
coefficient satisfying

$$
\alpha_{W, m} \leq C_{1} \exp \left\{-C_{2} m\right\}
$$

Moreover, by applying part (b) of Lemma OA-2, we further deduce that $X_{1 t}=\underline{F}_{t} \underline{Y}_{t}^{\prime} A_{Y Y}^{\prime} e_{\ell, d}$ is also α-mixing with α mixing coefficient satisfying

$$
\begin{aligned}
\alpha_{X_{1}, m} & \leq C_{1} \exp \left\{-C_{2}(m-p+1)\right\} \\
& \leq C_{1}^{*} \exp \left\{-C_{2} m\right\}
\end{aligned}
$$

for some positive constant $C_{1}^{*} \geq C_{1} \exp \left\{C_{2}(p-1)\right\}$. Hence, we can apply Lemma OA-3 with $p=3$ and $r=3$ to obtain

$$
\begin{aligned}
& \left|\alpha_{Y Y, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right| \\
= & \left|e_{\ell, d}^{\prime} A_{Y Y} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}\right]\right)\right] A_{Y Y}^{\prime} e_{\ell, d}\right| \\
= & \left|\sum_{h=1}^{K p} e_{\ell, d}^{\prime} A_{Y Y} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p} e_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}\right]\right)\right] A_{Y Y}^{\prime} e_{\ell, d}\right| \\
\leq & \sum_{h=1}^{K p}\left\{2\left(2^{\frac{2}{3}}+1\right) \alpha_{X_{1}, m}^{\frac{1}{3}}\left(E\left|e_{\ell, d}^{\prime} A_{Y Y}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p}\right|^{3}\right)^{\frac{1}{3}}\right. \\
& \left.\quad \times\left(E\left|e_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}\right]\right) A_{Y Y}^{\prime} e_{\ell, d}\right|^{3}\right)^{1 / 3}\right\}
\end{aligned}
$$

where $\alpha_{X, m}$ denotes the α mixing coefficient for the process $\left\{X_{1 t}\right\}$ and where, by our previous calculations,

$$
\alpha_{X_{1}, m}^{\frac{1}{3}} \leq\left(C_{1}^{*}\right)^{\frac{1}{3}} \exp \left\{-\frac{C_{2} m}{3}\right\} \text { for all } m \text { sufficiently large. }
$$

It further follows that there exists a positive constant C_{3} such that

$$
\begin{aligned}
\sum_{m=1}^{\infty} \alpha_{X_{1}, m}^{\frac{1}{3}} & \leq\left(C_{1}^{*}\right)^{\frac{1}{3}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
& \leq\left(C_{1}^{*}\right)^{\frac{1}{3}} \sum_{m=0}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
& =\left(C_{1}^{*}\right)^{\frac{1}{3}}\left[1-\exp \left\{-\frac{C_{2}}{3}\right\}\right]^{-1} \\
& \leq C_{3}
\end{aligned}
$$

where the last inequality stems from the fact that $\sum_{m=0}^{\infty} \exp \left\{-\left(C_{2} m / 3\right)\right\}$ is a convergent
geometric series given that $0<\exp \left\{-\left(C_{2} / 3\right)\right\}<1$ for $C_{2}>0$. Next, note that

$$
\begin{aligned}
& E\left|e_{\ell, d}^{\prime} A_{Y Y}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p}\right|^{3} \\
\leq & 2^{2}\left\{E\left|e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|^{3}+\left|E\left[e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{\underline{F}}_{t}^{\prime} e_{h, K p}\right]\right|^{3}\right\} \text { (by Loève's } c_{r} \text { inequality) } \\
\leq & 2^{2}\left\{E\left|e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|^{3}+\left(E\left[\left|e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|\right]\right)^{3}\right\} \text { (by Jensen's inequality) } \\
\leq & 2^{2}\left\{E\left|\frac{e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{Y}_{t}^{\prime} A_{Y Y}^{\prime} e_{\ell, d}}{2}+\frac{e_{h, K p}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}}{2}\right|^{3}+\left(E\left[\left|e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|\right]\right)^{3}\right\} \\
\leq & \frac{4}{8}\left[E\left|e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{Y}_{t}^{\prime} A_{Y Y}^{\prime} e_{\ell, d}\right|^{3}+E\left|e_{h, K p}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|^{3}\right] \\
& +4\left(\sqrt{E\left[e_{\ell, d}^{\prime} A_{Y Y} \underline{Y}_{t} \underline{Y}_{t}^{\prime} A_{Y Y}^{\prime} e_{\ell, d}\right]} \sqrt{E\left[e_{h, K p} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right]}\right)^{3}
\end{aligned}
$$

(by Loève's c_{r} inequality and by the CS inequality)

$$
\begin{aligned}
& \leq \frac{1}{2}\left|e_{\ell, d}^{\prime} A_{Y Y} A_{Y Y}^{\prime} e_{\ell, d}\right|^{3} E\left\|\underline{Y}_{t}\right\|_{2}^{6}+\frac{1}{2} E\left\|\underline{F}_{t}\right\|_{2}^{6}+4\left(E\left\|\underline{Y}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}}\left(e_{\ell, d}^{\prime} A_{Y Y} A_{Y Y}^{\prime} e_{\ell, d}\right)^{\frac{3}{2}}\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}} \\
& \leq \frac{1}{2}\left\|e_{\ell, d}\right\|_{2}^{6}\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{Y}_{t}\right\|_{2}^{6}+\frac{1}{2} E\left\|\underline{F}_{t}\right\|_{2}^{6}+4\left(E\left\|\underline{Y}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}}\left\|e_{\ell, d}\right\|_{2}^{3}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3}\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}} \\
& =\frac{1}{2}\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{Y}_{t}\right\|_{2}^{6}+\frac{1}{2} E\left\|\underline{F}_{t}\right\|_{2}^{6}+4\left(E\left\|\underline{Y}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3}\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}}
\end{aligned}
$$

$$
\text { (since }\left\|e_{\ell, d}\right\|_{2}=1 \text { for every } \ell \in\{1, \ldots, d\} \text { given that } e_{\ell, d} \text { 's are elementary vectors) }
$$

$$
\leq C_{4}
$$

for some positive constant $C_{4} \geq(1 / 2)\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{Y}_{t}\right\|_{2}^{6}+(1 / 2) E\left\|\underline{F}_{t}\right\|_{2}^{6}$
$+4\left(E\left\|\underline{Y}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3}\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{\frac{3}{2}}$ which exists in light of Lemma OA-5 and the fact that $0<\phi_{\max }<1$ given Assumption 2-1. In a similar way, we can also show that there exists a positive constant C_{5} such that

$$
\begin{aligned}
& E\left|e_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}\right]\right) A_{Y Y}^{\prime} e_{\ell, d}\right|^{3} \\
\leq & (1 / 2)\left\|e_{\ell, d}\right\|_{2}^{6}\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{Y}_{t+m}\right\|_{2}^{6}+(1 / 2) E\left\|\underline{F}_{t+m}\right\|_{2}^{6} \\
& +4\left(E\left\|\underline{Y}_{t+m}\right\|_{2}^{2}\right)^{\frac{3}{2}}\left\|e_{\ell, d}\right\|_{2}^{3}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3}\left(E\left\|\underline{F}_{t+m}\right\|_{2}^{2}\right)^{\frac{3}{2}} \\
\leq & C_{5}<\infty
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \left.\frac{2}{\tau_{1}^{2}} \sum_{\ell=1}^{d} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1} \right\rvert\, e_{\ell, d}^{\prime} A_{Y Y} \\
\leq & \frac{4\left(2^{\frac{2}{3}}+1\right)}{\tau_{1}^{2}} \sum_{\ell=1}^{d} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1} \underline{F}_{t} \sum_{h=1}^{K_{p}} \alpha_{X_{1}, m}^{\frac{1}{3}}\left(E\left|\underline{F}_{\ell, d}^{\prime} A_{Y Y}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p}\right|^{3}\right)^{\frac{1}{3}} \\
& \times\left(E\left|\underline{e}_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{Y}_{t+m}^{\prime}-E\left[\underline{F}_{t+m}^{\prime} \underline{Y}_{t+m}^{\prime}\right]\right) A_{Y Y}^{\prime} e_{\ell, d}\right|^{3}\right)^{1 / 3} \\
\leq & \frac{4 d K p\left(2^{\frac{2}{3}}+1\right) C_{4}^{\frac{1}{3}} C_{5}^{\frac{1}{3}}}{\tau_{1}^{2}} \sum_{(r-1) \tau+\tau_{1}+p-2}^{\sum_{t+m}^{\prime}} \sum_{t=(r-1) \tau+p}^{\infty}\left(C_{1}^{*}\right)^{\frac{1}{3}} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
\leq & \frac{C^{*}}{\tau_{1}}\left(\frac{\tau_{1}-1}{\tau_{1}}\right) \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\}\left(\text { where } C^{*} \geq 4 d K p\left(2^{\frac{2}{3}}+1\right)\left(C_{1}^{*}\right)^{\frac{1}{3}} C_{4}^{\frac{1}{3}} C_{5}^{\frac{1}{3}}\right) \\
\leq & \frac{C^{*}}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
= & O\left(\frac{1}{\tau_{1}}\right)
\end{align*}
$$

It then follows from expressions (27), (28), (29), and (30) that

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right| \geq \epsilon\right\} \\
\leq & \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+\tau_{1}+p-1}^{(r-1)} e_{\ell, d}^{\prime} A_{Y Y}\right. \\
& \times E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right)^{\prime}\left(\underline{F}_{s} \underline{Y}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{Y}_{s}^{\prime}\right]\right)\right] A_{Y Y}^{\prime} e_{\ell, d}\right) \\
\leq & \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} e_{\ell, d}^{\prime} A_{Y Y} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)\right] A_{Y Y}^{\prime} e_{\ell, d}\right) \\
& +\left.\frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q} \frac{2}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1}\right|_{\ell, d} ^{\prime} A_{Y Y} \\
\leq & \frac{C}{\epsilon^{2}} \frac{1}{q} \sum_{r=1}^{q} \frac{\bar{C}}{\tau_{1}}+\frac{C}{\epsilon^{2}} \frac{1}{q} \sum_{r=1}^{q} \frac{C^{*}}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
= & \frac{C \bar{C}}{\epsilon^{2}} \frac{1}{\tau_{1}}+\frac{C C^{*}}{\epsilon^{2}} \frac{1}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
= & O\left(\frac{1}{\tau_{1}}\right)+O\left(\frac{1}{\tau_{1}}\right) \\
= & O\left(\frac{1}{\tau_{1}}\right)=o(1) .
\end{aligned}
$$

Next, to show part (b), note that, for any $\epsilon>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq l \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right| \geq \epsilon\right\} \\
= & P\left\{\max _{1 \leq l \leq d} \max _{i \in H^{c}}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right)^{2} \geq \epsilon^{2}\right\} \\
\leq & P\left\{\max _{1 \leq l \leq d i \in H^{c}} \max ^{1} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right) \alpha_{Y F, \ell}\right)^{2} \geq \epsilon^{2}\right\}\right.
\end{aligned}
$$

(by Jensen's inequality)
$=P\left\{\max _{1 \leq l \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\gamma_{i}^{\prime}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right]\right)^{2} \geq \epsilon^{2}\right\}$
$\leq P\left\{\max _{i \in H^{c}} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q}\left(\gamma_{i}^{\prime}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right]\right)^{2} \geq \epsilon^{2}\right\}$
$\leq P\left\{\max _{i \in H^{c}}\left\|\gamma_{i}\right\|_{2}^{2} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right) \alpha_{Y F, \ell}\right]^{\prime}\right.\right.\right.$
$\left.\left.\times\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{E}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right]\right) \geq \epsilon^{2}\right\}$
$=P\left\{\max _{i \in H^{c}}\left\|\gamma_{i}\right\|_{2}^{2} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime}\right.$

$$
\left.\times\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{F}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{F}_{s}^{\prime}\right]\right) \alpha_{Y F, \ell} \geq \epsilon^{2}\right\}
$$

$\leq \frac{\max _{i \in H^{c}}\left\|\gamma_{i}\right\|_{2}^{2}}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{\prime} \alpha_{Y F, \ell}^{\prime}\right.$

$$
\times E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right)\right)^{\prime}\left(\underline{F}_{s} \underline{F}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{F}_{s}^{\prime}\right)\right] \alpha_{Y F, \ell}\right)
$$

(by Markov's inequality)

$$
\begin{align*}
& \leq \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1+1} \sum_{s=(r-1) \tau+\tau_{1}+p-1} \sum_{t+p} \alpha_{Y F, \ell}^{\prime}\right. \\
& \quad \times E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{F}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{\underline{F}}_{s}^{\prime}\right)\right] \alpha_{Y F, \ell}\right) \tag{31}
\end{align*}
$$

(by Assumption 2-5)

Note first that

$$
\begin{aligned}
& \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime}\right. \\
= & \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)\right] \alpha_{Y F, \ell}\right) \\
& \left.\left.+\sum_{\ell=1}^{d}\left(\frac{2}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{(r-1) \tau+\tau_{1}+p-t-1} \sum_{m=1}^{F_{s}^{\prime}} \underline{F}_{Y F, \ell}^{\prime}-E\left[\underline{F}_{s} \underline{F}_{s}^{\prime}\right]\right)\right] \alpha_{Y F, \ell}\right) \\
\leq & \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)\right] \alpha_{Y F, \ell}\right) \\
& \left.+\sum_{\ell=1}^{d} \frac{2}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \underline{F}_{(r-1) \tau+\tau_{1}+p-t-1} \sum_{m=1}^{\prime} \right\rvert\, \alpha_{Y F, \ell}^{\prime} \\
& \times E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right)\right] \alpha_{Y F, \ell} \mid(32)
\end{aligned}
$$

Consider the first term on the majorant side of expression (32), whose order of magnitude
we can analyze as follows

$$
\begin{aligned}
& \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right)\right] \alpha_{Y F, \ell}\right)\right. \\
= & \sum_{\ell=1}^{d}\left(\frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} e_{\ell, d}^{\prime} A_{Y F} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)\right] A_{Y F}^{\prime} e_{\ell, d}\right) \\
= & \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q}\left(\sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{e_{\ell, d}^{\prime} A_{Y F} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime}\right] A_{Y F}^{\prime} e_{\ell, d}-e_{\ell, d}^{\prime} A_{Y F} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] A_{Y F}^{\prime} e_{\ell, d}\right\}\right) \\
\leq & \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\left(e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t}\right)^{2}\right] \\
\leq & \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{(r-1) \tau+\tau_{1}+p-1}^{t=(r-1) \tau+p} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left(e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} A_{Y F}^{\prime} e_{\ell, d}\right)^{2}}(\text { by CS inequality }) \\
\leq & \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{\left(e_{\ell, d}^{\prime} A_{Y F} A_{Y F}^{\prime} e_{\ell, d}\right)^{2}} \\
\leq & \frac{1}{q \tau_{1}^{2}} \sum_{\ell=1}^{d} \sum_{r=1}^{q} \sum_{(r-1) \tau+\tau_{1}+p-1}^{t=(r-1) \tau+p} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]} \sqrt{E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right]}\left\|A_{Y F}\right\|_{2}^{2} \sqrt{\left(e_{\ell, d}^{\prime} e_{\ell, d}\right)^{2}} \\
\leq & \frac{\left(C^{\dagger}\right)^{2}}{q \tau_{1}^{2}} \sum_{\ell=1}^{d} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right] \phi_{\max }^{2}
\end{aligned}
$$

(by part (b) of Lemma OA-7 and by the fact that $e_{\ell, d}$ is an elementary vector)

$$
\begin{equation*}
\leq \frac{\bar{C}}{\tau_{1}}=O\left(\frac{1}{\tau_{1}}\right) . \tag{33}
\end{equation*}
$$

for some positive constant $\bar{C} \geq d\left(C^{\dagger}\right)^{2} E\left[\left\|\underline{F}_{t}\right\|_{2}^{4}\right] \phi_{\max }^{2}$, which exists in light of Lemma OA-5 and the fact that $0<\phi_{\max }<1$ given Assumption 2-1.

To analyze the second term on the right-hand side of expression (32), note first that by Lemma OA-11, $\left\{F_{t}\right\}$ is β-mixing with β mixing coefficient satisfying

$$
\beta_{F}(m) \leq C_{1} \exp \left\{-C_{2} m\right\} \text { for some positive constants } C_{1} \text { and } C_{2}
$$

Since $\alpha_{F, m} \leq \beta_{F}(m)$, it follows that F_{t} is α-mixing as well, with α mixing coefficient satisfying

$$
\alpha_{F, m} \leq C_{1} \exp \left\{-C_{2} m\right\}
$$

Moreover, by applying part (b) of Lemma OA-2, we further deduce that $X_{2 t}=\underline{F}_{t} \underline{F}_{t}^{\prime} A_{Y F}^{\prime} e_{\ell, d}$
is also α-mixing with α mixing coefficient satisfying

$$
\begin{aligned}
\alpha_{X_{2}, m} & \leq C_{1} \exp \left\{-C_{2}(m-p+1)\right\} \\
& \leq C_{1}^{*} \exp \left\{-C_{2} m\right\}
\end{aligned}
$$

for some positive constant $C_{1}^{*} \geq C_{1} \exp \left\{C_{2}(p-1)\right\}$. Hence, we can apply Lemma OA-3 with $p=3$ and $r=3$ to obtain

$$
\begin{aligned}
& \left|\alpha_{Y F, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right)\right] \alpha_{Y F, \ell}\right| \\
= & \left|e_{\ell, d}^{\prime} A_{Y F} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right)\right] A_{Y F}^{\prime} e_{\ell, d}\right| \\
= & \left|\sum_{h=1}^{K p} e_{\ell, d}^{\prime} A_{Y F} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p} e_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right)\right] A_{Y F}^{\prime} e_{\ell, d}\right| \\
\leq & \sum_{h=1}^{K p}\left\{2\left(2^{\frac{2}{3}}+1\right) \alpha_{X_{2}, m}^{\frac{1}{3}}\left(E\left|e_{\ell, d}^{\prime} A_{Y F}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p}\right|^{3}\right)^{\frac{1}{3}}\right. \\
& \left.\quad \times\left(E\left|e_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right) A_{Y F}^{\prime} e_{\ell, d}\right|^{3}\right)^{1 / 3}\right\}
\end{aligned}
$$

where $\alpha_{X_{2}, m}$ denotes the alpha mixing coefficient for the process $\left\{X_{2 t}\right\}$ and where, by our previous calculations,

$$
\alpha_{X_{2}, m}^{\frac{1}{3}} \leq\left(C_{1}^{*}\right)^{\frac{1}{3}} \exp \left\{-\frac{C_{2} m}{3}\right\} \text { for all } m \text { sufficiently large }
$$

It further follows that there exists a positive constant C_{3} such that

$$
\begin{aligned}
\sum_{m=1}^{\infty} \alpha_{X_{2}, m}^{\frac{1}{3}} & \leq\left(C_{1}^{*}\right)^{\frac{1}{3}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
& \leq\left(C_{1}^{*}\right)^{\frac{1}{3}} \sum_{m=0}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
& =\left(C_{1}^{*}\right)^{\frac{1}{3}}\left[1-\exp \left\{-\frac{C_{2}}{3}\right\}\right]^{-1} \\
& \leq C_{3}
\end{aligned}
$$

Next, note that

$$
\begin{aligned}
& E\left|e_{\ell, d}^{\prime} A_{Y F}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p}\right|^{3} \\
\leq & 2^{2}\left\{E\left|e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{\underline{F}}_{t}^{\prime} e_{h, K p}\right|^{3}+\left|E\left[e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right]\right|^{3}\right\} \text { (by Loève's } c_{r} \text { inequality) } \\
\leq & 2^{2}\left\{E\left|e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|^{3}+\left(E\left[\left|e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|\right]\right)^{3}\right\} \text { (by Jensen's inequality) } \\
\leq & 2^{2}\left\{E\left|\frac{e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} A_{Y F}^{\prime} e_{\ell, d}}{2}+\frac{e_{h, K p}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}}{2}\right|^{3}+\left(E\left[\left|e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right|\right]\right)^{3}\right\} \\
\leq & \frac{4}{8}\left[E\left|e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} A_{Y F}^{\prime} e_{\ell, d}\right|^{3}+E\left|e_{h, K p}^{\prime} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}^{\prime}\right|^{3}\right] \\
& +4\left(\sqrt{E\left[e_{\ell, d}^{\prime} A_{Y F} \underline{F}_{t} \underline{F}_{t}^{\prime} A_{Y F}^{\prime} e_{\ell, d}\right]} \sqrt{E\left[e_{h, K p} \underline{F}_{t} \underline{F}_{t}^{\prime} e_{h, K p}\right]}\right)^{3}
\end{aligned}
$$

(by Loève's c_{r} inequality and by the CS inequality)

$$
\begin{aligned}
& \leq \frac{1}{2}\left|e_{\ell, d}^{\prime} A_{Y F} A_{Y F}^{\prime} e_{\ell, d}\right|^{3} E\left\|\underline{F}_{t}\right\|_{2}^{6}+\frac{1}{2} E\left\|\underline{F}_{t}\right\|_{2}^{6}+4\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{3}\left(e_{\ell, d}^{\prime} A_{Y F} A_{Y F}^{\prime} e_{\ell, d}\right)^{\frac{3}{2}} \\
& \leq \frac{1}{2}\left\|e_{\ell, d}\right\|_{2}^{6}\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{F}_{t}\right\|_{2}^{6}+\frac{1}{2} E\left\|\underline{F}_{t}\right\|_{2}^{6}+4\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{3}\left\|e_{\ell, d}\right\|_{2}^{3}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3} \\
& =\frac{1}{2}\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{F}_{t}\right\|_{2}^{6}+\frac{1}{2} E\left\|\underline{F}_{t}\right\|_{2}^{6}+4\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{3}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3}
\end{aligned}
$$

$$
\text { (since }\left\|e_{\ell, d}\right\|_{2}=1 \text { for every } \ell \in\{1, \ldots, d\} \text { given that } e_{\ell, d} \text { 's are elementary vectors) }
$$

$$
\leq C_{6}
$$

for some positive constant $C_{6} \geq(1 / 2)\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{F}_{t}\right\|_{2}^{6}+(1 / 2) E\left\|\underline{F}_{t}\right\|_{2}^{6}+4\left(E\left\|\underline{F}_{t}\right\|_{2}^{2}\right)^{3}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3}$ which exists in light of Lemma OA-5 and the fact that $0<\phi_{\max }<1$ given Assumption 2-1. In a similar way, we can also show that there exists a positive constant C_{7} such that

$$
\begin{aligned}
& E\left|e_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right) A_{Y Y}^{\prime} e_{\ell, d}\right|^{3} \\
\leq & \frac{1}{2}\left\|e_{\ell, d}\right\|_{2}^{6}\left(C^{\dagger}\right)^{6} \phi_{\max }^{6} E\left\|\underline{F}_{t+m}\right\|_{2}^{6}+\frac{1}{2} E\left\|\underline{F}_{t+m}\right\|_{2}^{6} \\
& +4\left(E\left\|\underline{F}_{t+m}\right\|_{2}^{2}\right)^{3}\left\|e_{\ell, d}\right\|_{2}^{3}\left(C^{\dagger}\right)^{3} \phi_{\max }^{3} \\
\leq & C_{7}<\infty
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \frac{2}{\tau_{1}^{2}} \sum_{\ell=1}^{d} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1} \sum_{\ell_{\ell, d}} A_{Y F} \\
& \times E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right)\right] A_{Y F}^{\prime} e_{\ell, d} \mid \\
& \leq \frac{4\left(2^{\frac{2}{3}}+1\right)}{\tau_{1}^{2}} \sum_{\ell=1}^{d} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1} \sum_{h=1}^{K p}\left\{\alpha_{X_{2}, m}^{\frac{1}{3}}\left(E\left|e_{\ell, d}^{\prime} A_{Y F}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime} e_{h, K p}\right|^{3}\right)^{\frac{1}{3}}\right. \\
&\left.\times\left(E\left|e_{h, K p}^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right) A_{Y F}^{\prime} e_{\ell, d}\right|^{3}\right)^{1 / 3}\right\} \\
& \leq \frac{4 d K p\left(2^{\frac{2}{3}}+1\right) C_{6}^{\frac{1}{3}} C_{7}^{\frac{1}{3}}}{\tau_{1}^{2}} \sum_{(r-1) \tau+\tau_{1}+p-2}^{\sum_{t=(r-1) \tau+p}} \sum_{m=1}^{\infty}\left(C_{1}^{*}\right)^{\frac{1}{3}} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
& \leq \frac{C^{*}}{\tau_{1}}\left(\frac{\tau_{1}-1}{\tau_{1}}\right) \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\}\left(\text { where } C^{*} \geq 4 d K p\left(2^{\frac{2}{3}}+1\right)\left(C_{1}^{*}\right)^{\frac{1}{3}} C_{6}^{\frac{1}{3}} C_{7}^{\frac{1}{3}}\right) \\
& \leq \frac{C^{*}}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
&= O\left(\frac{1}{\tau_{1}}\right) \tag{34}
\end{align*}
$$

It then follows from expressions (31), (32), (33), and (34) that

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right| \geq \epsilon\right\} \\
& \leq \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{F}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{F}_{s}^{\prime}\right]\right)\right] \alpha_{Y F, \ell}\right) \\
& \leq \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)\right] \alpha_{Y F, \ell}\right) \\
& \left.+\frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q} \frac{2}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1} \sum_{m=1} \right\rvert\, \alpha_{Y F, \ell}^{\prime} \\
& \leq \frac{C}{\epsilon^{2}} \frac{1}{q} \sum_{r=1}^{q} \frac{\bar{C}}{\tau_{1}}+\frac{C}{\epsilon^{2}} \frac{1}{q} \sum_{r=1}^{q} \frac{C^{*}}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
&= \frac{C \bar{C}}{\epsilon^{2}} \frac{1}{\tau_{1}}+\frac{C C^{*}}{\epsilon^{2}} \frac{1}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
&= O\left(\frac{1}{\tau_{1}}\right)+O\left(\frac{1}{\tau_{1}}\right) \\
&=\left.\left.O\left(\frac{1}{\tau_{1}}\right)=o\left(\underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}-E\left[\underline{F}_{t+m} \underline{F}_{t+m}^{\prime}\right]\right)\right] \alpha_{Y F, \ell} \mid \\
&=
\end{aligned}
$$

Now, to show part (c), note that, for any $\epsilon>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right| \geq \epsilon\right\} \\
& =P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right)^{2} \geq \epsilon^{2}\right\} \\
& \leq P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right)^{2} \geq \epsilon^{2}\right\} \text { (by Jensen's inequality) } \\
& =P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\gamma_{i}^{\prime}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right]\right)^{2} \geq \epsilon^{2}\right\} \\
& \leq P\left\{\max _{i \in H^{c}} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q}\left(\gamma_{i}^{\prime}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right]\right)^{2} \geq \epsilon^{2}\right\} \\
& \leq P\left\{\operatorname { m a x } _ { i \in H ^ { c } } \| \gamma _ { i } \| _ { 2 } ^ { 2 } \sum _ { \ell = 1 } ^ { d } \left(\frac{1}{q} \sum_{r=1}^{q}\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right]^{\prime}\right.\right. \\
& \left.\left.\times\left[\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right]\right) \geq \epsilon^{2}\right\} \\
& =P\left\{\max _{i \in H^{c}}\left\|\gamma_{i}\right\|_{2}^{2} \sum_{\ell=1}^{d} \frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{s}-E\left[\underline{F}_{s}\right]\right) \mu_{Y, \ell} \geq \epsilon^{2}\right\} \\
& \leq \frac{\max _{i \in H^{c}}\left\|\gamma_{i}\right\|_{2}^{2}}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{s}-E\left[\underline{F}_{s}\right]\right)\right]\right)
\end{aligned}
$$

(by Markov's inequality)

$$
\begin{equation*}
\leq \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{s}-E\left[\underline{F}_{s}\right]\right)\right]\right) \tag{35}
\end{equation*}
$$

(by Assumption 2-5)

Note that

$$
\begin{aligned}
& \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{s}-E\left[\underline{F}_{s}\right]\right)\right]\right) \\
= & \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)\right]\right) \\
& +\sum_{\ell=1}^{d}\left(\frac{2}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right]\right) \\
\leq & \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)\right]\right) \\
& +\frac{2}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1) \tau+\tau_{1}+p-t-1} \sum_{m=1}\left|E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right]\right| \sum_{\ell=1}^{d} \mu_{Y, \ell}^{2}(36)
\end{aligned}
$$

Consider the first term on the majorant side of expression (36), whose order of magnitude we can analyze as follows

$$
\begin{align*}
& \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)\right]\right) \\
= & \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q}\left(\sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2}\left\{E\left[\underline{F}_{t}^{\prime} \underline{F}_{t}\right]-E\left[\underline{F}_{t}\right]^{\prime} E\left[\underline{F}_{t}\right]\right\}\right) \\
\leq & \sum_{\ell=1}^{d} \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\right] \\
= & \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\right] \sum_{\ell=1}^{d}\left(\mu_{Y, \ell}^{2}\right) \\
\leq & \frac{1}{q \tau_{1}^{2}} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\right]\left\|\mu_{Y}\right\|_{2}^{2} \\
\leq & \frac{\bar{C}}{\tau_{1}}=O\left(\frac{1}{\tau_{1}}\right) . \tag{37}
\end{align*}
$$

for some positive constant $\bar{C} \geq\left\|\mu_{Y}\right\|_{2}^{2} E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\right]$, which exists in light of Assumption 2-5 and Lemma OA-5.

To analyze the second term on the right-hand side of expression (36), note first that by the same argument as given for part (b) above, we can apply Lemma OA-11 to deduce that $\left\{F_{t}\right\}$ is β-mixing and, thus, also α-mixing with α mixing coefficient satisfying

$$
\alpha_{F, m} \leq C_{1} \exp \left\{-C_{2} m\right\}
$$

Hence, we can apply Lemma OA-3 with $p=3$ and $r=3$ to obtain

$$
\begin{aligned}
& \left|E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right]\right| \sum_{\ell=1}^{d} \mu_{Y, \ell}^{2} \\
= & \left|\sum_{h=1}^{K p} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime} e_{h, K p} e_{h, K p}^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right]\right| \sum_{\ell=1}^{d} \mu_{Y, \ell}^{2} \\
\leq & \sum_{h=1}^{K p} 2\left(2^{\frac{2}{3}}+1\right) \alpha_{F, m}^{\frac{1}{3}}\left(E\left|\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime} e_{h, K p}\right|^{3}\right)^{\frac{1}{3}}\left(E\left|e_{h, K p}^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right|^{3}\right)^{1 / 3} \sum_{\ell=1}^{d} \mu_{Y, \ell}^{2}
\end{aligned}
$$

Moreover, there exists a positive constant C_{3} such that

$$
\sum_{m=1}^{\infty} \alpha_{F, m}^{\frac{1}{3}} \leq C_{1}^{\frac{1}{3}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\}=C_{1}^{\frac{1}{3}}\left[1-\exp \left\{-\frac{C_{2}}{3}\right\}\right]^{-1} \leq C_{3}
$$

where again the last inequality stems from the fact that $\sum_{m=0}^{\infty} \exp \left\{-\left(C_{2} m / 3\right)\right\}$ is a convergent geometric series given that $0<\exp \left\{-\left(C_{2} / 3\right)\right\}<1$ for $C_{2}>0$. Next, note that

$$
\begin{aligned}
& E\left|\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime} e_{h, K p}\right|^{3} \\
\leq & 2^{2}\left\{E\left|\underline{F}_{t}^{\prime} e_{h, K p}\right|^{3}+\left|E\left[\underline{F}_{t}^{\prime} e_{h, K p}\right]\right|^{3}\right\} \text { (by Loève's } c_{r} \text { inequality) } \\
\leq & 2^{2}\left\{E\left|\underline{F}_{t}^{\prime} e_{h, K p}\right|^{3}+\left(E\left[\left|\underline{F}_{t}^{\prime} e_{h, K p}\right|\right]\right)^{3}\right\} \text { (by Jensen's inequality) } \\
\leq & 2^{2}\left\{E\left[\left(\underline{F}_{t}^{\prime} \underline{F}_{t}\right)^{\frac{3}{2}}\left(e_{h, K p}^{\prime} e_{h, K p}\right)^{\frac{3}{2}}\right]+\left(\sqrt{E\left[\underline{F}_{t}^{\prime} \underline{F}_{t}\right]} \sqrt{e_{h, K p}^{\prime} e_{h, K p}}\right)^{3}\right\} \text { (by CS inequality) } \\
\leq & 4\left\{E\left[\left\|\underline{F}_{t}\right\|_{2}^{3}\right]+\left(E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\right]\right)^{\frac{3}{2}}\right\} \\
\leq & C_{8}
\end{aligned}
$$

for some positive constant $C_{8} \geq 4\left\{E\left[\left\|\underline{F}_{t}\right\|_{2}^{3}\right]+\left(E\left[\left\|\underline{F}_{t}\right\|_{2}^{2}\right]\right)^{\frac{3}{2}}\right\}$ which exists in light of the result given in Lemma OA-5. In a similar way, we can also show that there exists a positive
constant C_{9} such that

$$
\begin{aligned}
E\left|e_{\ell}^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right|^{3} & \leq 4\left\{E\left[\left\|\underline{F}_{t+m}\right\|_{2}^{3}\right]+\left(E\left[\left\|\underline{F}_{t+m}\right\|_{2}^{2}\right]\right)^{\frac{3}{2}}\right\} \\
& \leq C_{9}<\infty
\end{aligned}
$$

Finally, by Assumption 2-5, there exists a positive constant C_{10} such that $\max _{1 \leq \ell \leq d} \mu_{Y, \ell}^{2} \leq$ $\left\|\mu_{Y}\right\|_{2}^{2} \leq C_{10}<\infty$. Hence,

$$
\begin{align*}
& \frac{2}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1}\left|E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right]\right| \sum_{\ell=1}^{d} \mu_{Y, \ell}^{2} \\
\leq & \sum_{h=1}^{K p} \frac{4\left(2^{\frac{2}{3}}+1\right)}{\tau_{1}^{2}}\left\|\mu_{Y}\right\|_{2}^{2} \\
& \times \frac{1}{q} \sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{m=1}^{(r-1) \tau+\tau_{1}+p-t-1}\left\{\alpha_{F, m}^{\frac{1}{3}}\left(E\left|\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime} e_{h, K p}\right|^{3}\right)^{\frac{1}{3}}\right. \\
\leq & \frac{4 K p\left(2^{\frac{2}{3}}+1\right) C_{8}^{\frac{1}{3}} C_{9}^{\frac{1}{3}} C_{10}}{\tau_{1}^{2}} \sum_{\sum_{h-1) \tau+\tau_{1}+p-2}^{\prime}}^{\left.\left.\sum_{t=(r-1) \tau+p}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right|^{3}\right)^{1 / 3} C_{1}^{\frac{1}{3}} \exp \left\{-\frac{C_{2} m}{3}\right\}} \\
\leq & \frac{C^{*}}{\tau_{1}}\left(\frac{\tau_{1}-1}{\tau_{1}}\right) \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\}\left(\text { where } C^{*} \geq 4 K p\left(2^{\frac{2}{3}}+1\right) C_{1}^{\frac{1}{3}} C_{8}^{\frac{1}{3}} C_{9}^{\frac{1}{3}} C_{10}\right) \\
\leq & \frac{C^{*}}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
= & O\left(\frac{1}{\tau_{1}}\right)
\end{align*}
$$

It then follows from expressions (35), (36), (37), and (38) that

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right| \geq \epsilon\right\} \\
\leq & \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+\tau_{1}+p-1} \sum_{t+p}^{2} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{s}-E\left[\underline{F}_{s}\right]\right)\right]\right) \\
\leq & \frac{C}{\epsilon^{2}} \sum_{\ell=1}^{d}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)\right]\right) \\
& +\frac{C}{\epsilon^{2}} \frac{1}{q} \sum_{r=1}^{q} \frac{2}{\tau_{1}^{2}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-2} \sum_{(r-1) \tau+\tau_{1}+p-t-1} \sum_{m=1}^{q}\left|E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{t+m}-E\left[\underline{F}_{t+m}\right]\right)\right]\right| \sum_{\ell=1}^{d} \mu_{Y, \ell}^{2} \\
\leq & \frac{C}{\epsilon^{2}} \frac{1}{q} \sum_{r=1}^{q} \frac{\bar{C}}{\tau_{1}}+\frac{C}{\epsilon^{2}} \frac{1}{q} \sum_{r=1}^{q} \frac{C^{*}}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
= & \frac{C \bar{C}}{\epsilon^{2}} \frac{1}{\tau_{1}}+\frac{C C^{*}}{\epsilon^{2}} \frac{1}{\tau_{1}} \sum_{m=1}^{\infty} \exp \left\{-\frac{C_{2} m}{3}\right\} \\
= & O\left(\frac{1}{\tau_{1}}\right)+O\left(\frac{1}{\tau_{1}}\right) \\
= & O\left(\frac{1}{\tau_{1}}\right)=o(1) .
\end{aligned}
$$

Turning our attention to part (d), note that, by apply Loève's c_{r} inequality, we obtain

$$
\begin{aligned}
& \quad \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \gamma _ { i } ^ { \prime } \left\{\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right. \\
& \leq \\
& \leq \\
& \left.\left.+\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right)^{2} \\
& \left.\quad+3 \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right)^{2} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right)^{2} \\
& \quad+3 \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right)^{2}
\end{aligned}
$$

It follows from the arguments given in the proofs of parts (a)-(c) above that, for any $\epsilon>0$,

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right)^{2} \geq \epsilon\right\} \\
\leq & \frac{C}{\epsilon^{2}} \frac{1}{q \tau_{1}^{2}} \\
& \times \sum_{\ell=1}^{d}\left(\sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y Y, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{Y}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{Y}_{s}^{\prime}\right]\right)\right] \alpha_{Y Y, \ell}\right) \\
= & o(1), \\
& P\left\{\max _{1 \leq \ell \leq d}^{\max } \frac{1}{i \in H^{c}} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right)^{2} \geq \epsilon\right\} \\
\leq & \frac{C}{\epsilon^{2}} \frac{1}{q \tau_{1}^{2}} \\
& \times \sum_{\ell=1}^{d}\left(\sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \alpha_{Y F, \ell}^{\prime} E\left[\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right)^{\prime}\left(\underline{F}_{s} \underline{F}_{s}^{\prime}-E\left[\underline{F}_{s} \underline{F}_{s}^{\prime}\right]\right)\right] \alpha_{Y F, \ell}\right) \\
= & o(1)
\end{aligned}
$$

and

$$
\begin{aligned}
& P\left\{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right)^{2} \geq \epsilon\right\} \\
\leq & \frac{C}{\epsilon^{2}} \frac{1}{q \tau_{1}^{2}} \\
& \times \sum_{\ell=1}^{d}\left(\sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \sum_{s=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \mu_{Y, \ell}^{2} E\left[\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right)^{\prime}\left(\underline{F}_{s}-E\left[\underline{F}_{s}\right]\right)\right]\right) \\
= & o(1)
\end{aligned}
$$

from which we deduce via the Slutsky's theorem that

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \gamma _ { i } ^ { \prime } \left\{\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right. \\
& \left.\left.+\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right)^{2} \\
= & o_{p}(1)
\end{aligned}
$$

as required.
To show part (e), note that

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)^{2} \\
& \leq \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \gamma _ { i } ^ { \prime } \left\{\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right. \\
&\left.+\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\} \\
& \leq \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{2}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{\sum_{1} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left\{\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.}\right. \\
&\left.\left.+\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right)^{2} \\
&\left.+\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{2}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \gamma_{i}^{(r-1) \tau+\tau_{1}+p-1} \sum_{t=(r-1) \tau+p}^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)^{2} \\
&\left(\text { by Loève's } c_{r}\right. \text { inequality) } \\
&= o_{p}(1)+O(1)
\end{aligned}
$$

(applying the results given in part (d) of this lemma and in Lemma A1 of the main paper) $=O_{p}(1)$.

To show part (f), we apply the Cauchy-Schwarz inequality as well as part (d) of this
lemma and Lemma A1 of the main paper to obtain

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}\left\{\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \left\{\gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right.\right.\right. \\
& \left.\left.+\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right) \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\gamma_{i}^{\prime} E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)\right\} \mid \\
& \leq \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q} \left\lvert\,\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \left\{\gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right.\right. \\
& \left.\left.+\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right) \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\gamma_{i}^{\prime} E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right) \right\rvert\, \\
& \leq\left[\operatorname { m a x } _ { 1 \leq \ell \leq d } \operatorname { m a x } _ { i \in H ^ { c } } \frac { 1 } { q } \sum _ { r = 1 } ^ { q } \left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \left\{\gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right.\right. \\
& \left.\left.\left.+\gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right)^{2}\right]^{1 / 2} \\
& \times\left[\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\gamma_{i}^{\prime} E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{\underline{Y}}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)^{2}\right]^{1 / 2} \\
& =o_{p}(1) O(1) \\
& =o_{p}(1) \text {. }
\end{aligned}
$$

For part (g), we apply the Cauchy-Schwarz inequality as well as part (d) of Lemma

OA-6 and part (e) of this lemma to obtain

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}(\right. \\
&\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right) \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right) \right\rvert\, \\
& \leq \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q} \left\lvert\,\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)\right. \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right) \right\rvert\, \\
& \leq \sqrt{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)^{2}} \\
& \times \sqrt{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)} \\
&= O_{p}(1) o_{p}(1) \\
&= o_{p}(1)
\end{aligned}
$$

Finally, for part (h), we apply the Cauchy-Schwarz inequality as well as part (b) of

Lemma OA-6 and part (e) of this lemma to obtain

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)\right. \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right) \right\rvert\, \\
\leq & \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q} \left\lvert\,\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)\right. \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right) \right\rvert\, \\
\leq & \sqrt{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)^{2}} \\
& \times \sqrt{\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)} \\
= & O_{p}(1) o_{p}(1) \\
= & o_{p}(1) . \square
\end{aligned}
$$

Lemma OA-13: Let $a, b \in \mathbb{R}$ such that $a \geq 0$ and $b \geq 0$. Then,

$$
|\sqrt{a}-\sqrt{b}| \leq \sqrt{|a-b|}
$$

Proof of Lemma OA-13: Note that

$$
\begin{aligned}
(\sqrt{a}-\sqrt{b})^{2} & =a-2 \sqrt{a} \sqrt{b}+b \\
& =\sqrt{a}(\sqrt{a}-\sqrt{b})+\sqrt{b}(\sqrt{b}-\sqrt{a}) \\
& \leq \sqrt{a}|\sqrt{a}-\sqrt{b}|+\sqrt{b}|\sqrt{b}-\sqrt{a}| \\
& =(\sqrt{a}+\sqrt{b})|\sqrt{a}-\sqrt{b}| \\
& =|(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})| \\
& =|a-b|
\end{aligned}
$$

Taking principal square root on both sides, we obtain

$$
|\sqrt{a}-\sqrt{b}| \leq \sqrt{|a-b|}
$$

Lemma OA-14:

$$
P\left\{\bigcap_{i=1}^{m} A_{i}\right\} \geq \sum_{i=1}^{m} P\left(A_{i}\right)-(m-1)
$$

Proof of Lemma OA-14:

$$
\begin{aligned}
P\left\{\bigcap_{i=1}^{m} A_{i}\right\} & =1-P\left\{\left(\bigcap_{i=1}^{m} A_{i}\right)^{c}\right\} \\
& =1-P\left\{\bigcup_{i=1}^{m} A_{i}^{c}\right\}(\text { by DeMorgan's Law) } \\
& \geq 1-\sum_{i=1}^{m} P\left(A_{i}^{c}\right) \\
& =1-\sum_{i=1}^{m}\left[1-P\left(A_{i}\right)\right] \\
& =\sum_{i=1}^{m} P\left(A_{i}\right)-m+1 \\
& =\sum_{i=1}^{m} P\left(A_{i}\right)-(m-1) .
\end{aligned}
$$

Lemma OA-15:

(a) For $t>0$,

$$
\bar{\Phi}(t)=1-\Phi(t) \leq \frac{\phi(t)}{t}
$$

where $\phi(t)$ and $\Phi(t)$ denote, respectively, the pdf and the cdf of a standard normal random variable.
(b) Let $N=N_{1}+N_{2}$. Specify φ such that $\varphi \rightarrow 0$ as $N_{1}, N_{2} \rightarrow \infty$ and such that, for some constant $a>0$,

$$
\varphi \geq \frac{1}{N^{a}}
$$

for all N_{1}, N_{2} sufficiently large. Then, for all N_{1}, N_{2} sufficiently large such that

$$
1-\frac{\varphi}{2 N} \geq \Phi(2)
$$

we have

$$
\Phi^{-1}\left(1-\frac{\varphi}{2 N}\right) \leq \sqrt{2(1+a)} \sqrt{\ln N}
$$

Proof of Lemma OA-15:

(a)

$$
\begin{aligned}
1-\Phi(t) & =\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{z^{2}}{2}\right\} d z \\
& =\int_{t}^{\infty} \frac{1}{z} \frac{z}{\sqrt{2 \pi}} \exp \left\{-\frac{z^{2}}{2}\right\} d z \\
& \leq \frac{1}{t} \int_{t}^{\infty} \frac{z}{\sqrt{2 \pi}} \exp \left\{-\frac{z^{2}}{2}\right\} d z
\end{aligned}
$$

Let

$$
u=-\frac{z^{2}}{2} \text { and } d u=-z d z
$$

so that

$$
\begin{aligned}
\int_{t}^{\infty} \frac{z}{\sqrt{2 \pi}} \exp \left\{-\frac{z^{2}}{2}\right\} d z & =-\int_{-\frac{t^{2}}{2}}^{-\infty} \frac{1}{\sqrt{2 \pi}} \exp \{u\} d u \\
& =\int_{-\infty}^{-\frac{t^{2}}{2}} \frac{1}{\sqrt{2 \pi}} \exp \{u\} d u \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{t^{2}}{2}\right\} \\
& =\phi(t)
\end{aligned}
$$

It follows that

$$
\bar{\Phi}(t)=1-\Phi(t) \leq \frac{\phi(t)}{t}
$$

(b) Let $t>0$ and set

$$
\Phi(t)=\operatorname{Pr}(Z \leq t)=1-\frac{\varphi}{2 N}
$$

It follows that

$$
\Phi^{-1}(\Phi(t))=\Phi^{-1}\left(1-\frac{\varphi}{2 N}\right)=t
$$

and, by the result given in part (a) above,

$$
1-\Phi(t)=1-\left(1-\frac{\varphi}{2 N}\right)=\frac{\varphi}{2 N} \leq \frac{\phi(t)}{t}
$$

The latter inequality implies that

$$
t \leq \phi(t) \frac{2 N}{\varphi}
$$

so that

$$
\begin{aligned}
\ln t & \leq \ln \phi(t)+\ln 2+\ln \left(\frac{N}{\varphi}\right) \\
& =-\frac{1}{2} t^{2}-\frac{1}{2} \ln 2-\frac{1}{2} \ln \pi+\ln 2+\ln \left(\frac{N}{\varphi}\right) \\
& =-\frac{1}{2} t^{2}+\frac{1}{2} \ln 2-\frac{1}{2} \ln \pi+\ln \left(\frac{N}{\varphi}\right) \\
& <-\frac{1}{2} t^{2}+\frac{1}{2} \ln 2+\ln \left(\frac{N}{\varphi}\right) \\
& <-\frac{1}{2} t^{2}+\ln 2+\ln \left(\frac{N}{\varphi}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
t^{2} & \leq 2(\ln 2-\ln t)+2 \ln \left(\frac{N}{\varphi}\right) \\
& =2 \ln \left(\frac{2}{t}\right)+2 \ln \left(\frac{N}{\varphi}\right) \\
& \leq 2 \ln \left(\frac{N}{\varphi}\right) \text { for any } t=\Phi^{-1}\left(1-\frac{\varphi}{2 N}\right) \geq 2
\end{aligned}
$$

so that

$$
t \leq \sqrt{2} \sqrt{\ln \left(\frac{N}{\varphi}\right)} \text { for any } t=\Phi^{-1}\left(1-\frac{\varphi}{2 N}\right) \geq 2
$$

Hence, for N_{1}, N_{2} sufficiently large so that

$$
1-\frac{\varphi}{2 N} \geq \Phi(2) \text { or, equivalently, } t=\Phi^{-1}\left(1-\frac{\varphi}{2 N}\right) \geq 2
$$

we have

$$
\begin{aligned}
\Phi^{-1}\left(1-\frac{\varphi}{2 N}\right) & =t \\
& \leq \sqrt{2} \sqrt{\ln \left(\frac{N}{\varphi}\right)} \\
& =\sqrt{2} \sqrt{\ln N-\ln \varphi} \\
& =\sqrt{2} \sqrt{\ln N} \sqrt{1-\frac{\ln \varphi}{\ln N}} \\
& \leq \sqrt{2} \sqrt{\ln N} \sqrt{1-\frac{\ln N^{-a}}{\ln N}} \\
& =\sqrt{2(1+a)} \sqrt{\ln N} . \square
\end{aligned}
$$

Lemma QA-16: Suppose that Assumptions 2-1, 2-2, 2-3, 2-5, 2-6, and 2-8 hold and suppose that $N_{1}, N_{2}, T \rightarrow \infty$ such that $N_{1} / \tau_{1}^{3}=N_{1} /\left\lfloor T_{0}^{\alpha_{1}}\right\rfloor^{3} \rightarrow 0$. Then, the following statements are true.
(a)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{S}_{i, \ell, T}-\mu_{i, \ell, T}}{\mu_{i, \ell, T}}\right| \xrightarrow{p} 0
$$

(b)

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{V}_{i, \ell, T}-\pi_{i, \ell, T}}{\pi_{i, \ell, T}}\right| \xrightarrow{p} 0
$$

where

$$
\bar{S}_{i \ell, T}=\sum_{r=1}^{q} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} Z_{i t} y_{\ell, t+1} a n d \bar{V}_{i, \ell, T}=\sum_{r=1}^{q}\left[\sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} Z_{i t} y_{\ell, t+1}\right]^{2}
$$

Proof of Lemma QA-16:
To show part (a), note first that by applying parts (a) and (c) of Lemma OA-6, parts
(a)-(c) of Lemma OA-12, and the Slutsky theorem; we obtain

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{S}_{i, \ell, T}-\mu_{i, \ell, T}}{q \tau_{1}}\right| \\
& =\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right. \\
& +\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}+\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t} \\
& \left.-\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\gamma_{i}^{\prime} E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\} \right\rvert\, \\
& \leq \max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}\right| \\
& +\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right| \\
& +\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right| \\
& +\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} F_{t} \varepsilon_{\ell, t+1}\right| \\
& +\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right| \\
& =o_{p}(1)
\end{aligned}
$$

Moreover, by Assumption 2-8, there exist a positive constant \underline{c} such that for all N and T sufficiently large

$$
\begin{aligned}
& \min _{1 \leq \ell \leq d} \min _{i \in H^{c}}\left|\frac{\mu_{i, \ell, T}}{q \tau_{1}}\right| \\
= & \min _{1 \leq \ell \leq d} \min _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right| \\
\geq & \underline{c}>0
\end{aligned}
$$

It follows that

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{S}_{i, \ell, T}-\mu_{i, \ell, T}}{\mu_{i, \ell, T}}\right| \leq \max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{S}_{i, \ell, T}-\mu_{i, \ell, T}}{q \tau_{1}}\right| / \min _{1 \leq \ell \leq d} \min _{i \in H^{c}}\left|\frac{\mu_{i, \ell, T}}{q \tau_{1}}\right|=o_{p}(1) .
$$

Now, for part (b), note that, applying parts (d), (f), (g), and (h) of Lemma OA-12, parts (b), (d), and (e) of Lemma OA-6, and the Slutsky theorem; we have

$$
\begin{aligned}
& \max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{V}_{i, \ell, T}-\pi_{i, \ell, T}}{q \tau_{1}^{2}}\right| \\
& =\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \gamma _ { i } ^ { \prime } \left\{\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right. \\
& \left.\left.+\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right)^{2} \\
& +\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{2}{q} \sum_{r=1}^{q}\left\{\left(\frac { 1 } { \tau _ { 1 } } \sum _ { t = (r - 1) \tau + p } ^ { (r - 1) \tau + \tau _ { 1 } + p - 1 } \gamma _ { i } ^ { \prime } \left\{\left(\underline{F}_{t}-E\left[\underline{F}_{t}\right]\right) \mu_{Y, \ell}+\left(\underline{F}_{t} \underline{Y}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right]\right) \alpha_{Y Y, \ell}\right.\right.\right.\right. \\
& \left.\left.+\left(\underline{F}_{t} \underline{F}_{t}^{\prime}-E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right]\right) \alpha_{Y F, \ell}\right\}\right) \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)\right\} \\
& +\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)^{2} \\
& +\max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)^{2} \\
& +2 \max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right)\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right)\right| \\
& +2 \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)\right. \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} y_{\ell, t+1} u_{i t}\right) \right\rvert\, \\
& +2 \max _{1 \leq \ell \leq d} \max _{i \in H^{c}} \left\lvert\, \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t}\left[\mu_{Y, \ell}+\underline{Y}_{t}^{\prime} \alpha_{Y Y, \ell}+\underline{F}_{t}^{\prime} \alpha_{Y F, \ell}\right]\right)\right. \\
& \left.\times\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime} \underline{F}_{t} \varepsilon_{\ell, t+1}\right) \right\rvert\, \\
& =o_{p}(1)
\end{aligned}
$$

Moreover, note that, for all N and T sufficiently large,

$$
\begin{aligned}
& \min _{1 \leq \ell \leq d} \min _{i \in H^{c}} \frac{\pi_{i, \ell, T}}{q \tau_{1}^{2}} \\
= & \min _{1 \leq \ell \leq d} \min _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1}\left\{\gamma_{i}^{\prime} E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+\gamma_{i}^{\prime} E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)^{2} \\
= & \min _{1 \leq \ell \leq d} \min _{i \in H^{c}} \frac{1}{q} \sum_{r=1}^{q}\left(\frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)^{2} \\
\geq & \min _{1 \leq \ell \leq d} \min _{i \in H^{c}}\left(\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right)^{2}
\end{aligned}
$$

(by Jensen's inequality)

$$
\begin{aligned}
& =\min _{1 \leq \ell \leq d} \min _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right|^{2} \\
& =\left(\min _{1 \leq \ell \leq d} \min _{i \in H^{c}}\left|\frac{1}{q} \sum_{r=1}^{q} \frac{1}{\tau_{1}} \sum_{t=(r-1) \tau+p}^{(r-1) \tau+\tau_{1}+p-1} \gamma_{i}^{\prime}\left\{E\left[\underline{F}_{t}\right] \mu_{Y, \ell}+E\left[\underline{F}_{t} \underline{Y}_{t}^{\prime}\right] \alpha_{Y Y, \ell}+E\left[\underline{F}_{t} \underline{F}_{t}^{\prime}\right] \alpha_{Y F, \ell}\right\}\right|\right)^{2} \\
& \geq \underline{c}^{2}>0 \text { (by Assumption 2-8). }
\end{aligned}
$$

It follows that

$$
\max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{V}_{i, \ell, T}-\pi_{i, \ell, T}}{\pi_{i, \ell, T}}\right| \leq \max _{1 \leq \ell \leq d} \max _{i \in H^{c}}\left|\frac{\bar{V}_{i, \ell, T}-\pi_{i, \ell, T}}{q \tau_{1}^{2}}\right| / \min _{1 \leq \ell \leq d} \min _{i \in H^{c}}\left(\frac{\pi_{i, \ell, T}}{q \tau_{1}^{2}}\right)=o_{p}(1) .
$$

References

[1] Borovkova, S., R. Burton, and H. Dehling (2001): "Limit Theorems for Functionals of Mixing Processes to U-Statistics and Dimension Estimation," Transactions of the American Mathematical Society, 353, 4261-4318.
[2] Davidson. J. (1994): Stochastic Limit Theory: An Introduction for Econometricians. New York: Oxford University Press.
[3] Pham, T. D. and L. T. Tran (1985): "Some Mixing Properties of Time Series Models," Stochastic Processes and Their Applications, 19, 297-303.
[4] Ruhe, A. (1975): "On the Closeness of Eigenvalues and Singular Values for Almost Normal Matrices," Linear Algebra and Its Applications, 11, 87-94.

[^0]: *Department of Economics, 7343 Preinkert Drive, University of Maryland, jcchao@umd.edu
 ${ }^{\dagger}$ Department of Economics, 9500 Hamilton Street, Rutgers University, yl1241@scarletmail.rutgers.edu.
 ${ }^{\ddagger}$ Department of Economics, 9500 Hamilton Street, Rutgers University, nswanson@econ.rutgers.edu.
 ${ }^{\S}$ The authors are grateful to The authors are grateful to Matteo Barigozzi, Bin Chen, Rong Chen, Simon Freyaldenhoven, Domenico Giannone, Yuan Liao, Esther Ruiz, Minchul Shin, Jim Stock, Timothy Vogelsang, Endong Wang, Xiye Yang, Peter Zadrozny, Bo Zhou and seminar participants at the University of Glasgow, the University of California Riverside, the Federal Reserve Bank of Pihadelphia, the 2022 North America Summer Meeting of the Econometrics Society, the 2022 International Association of Applied Econometrics Association meetings, the DC-MD-VA Economtrics Workshop, the 2022 NBER-NSF Time Series Conference, the Spring 2023 Rochester Conference in Econometrics, and the 8th Annual Conference of the Society for Economic Measurement for useful comments received on earlier versions of this paper. Chao thanks the University of Maryland for research support.

