Some Background on Bayesian Statistics and Econometrics

Economics 721
 John C. Chao

*These notes are for instructional purposes only and are not to be distributed outside the classroom.

I. Some Rudimentary Bayesian Statistics

Bayes’ Rule
Bayesian statistics is so named because, under this approach, statistical inference is
based on the posterior distribution obtained via Bayes’ rule

$$
p(\theta \mid x)=\frac{f(x \mid \theta) \pi(\theta)}{m(x)}
$$

where

$$
\begin{aligned}
& f(x \mid \theta) \text { - data density, } \\
& \pi(\theta) \text { - prior density, } \\
& m(x) \text { - marginal density of the data, } \\
& p(\theta \mid x) \text { - posterior density, } \\
\theta \in & \Theta \text {, where } \Theta \text { denotes the parameter space. }
\end{aligned}
$$

Remarks:
(i) $m(x)=\int_{\Theta} f(x \mid \theta) \pi(\theta) d \theta$.
(ii) Typically, in Bayesian statistics, we focus on a parametric framework so that Θ is finite dimensional.
(iii) Note that $f(x \mid \theta)=l(\theta, x)$, so that $f(x \mid \theta)$ is just the likelihood function when reinterpreted as a function of θ given X.
(iv) If $\pi(\theta)=c$, for some constant c, then

$$
p(\theta \mid x) \propto l(\theta, x) .
$$

- Some special features of Bayesian inference:

(i) Parameter θ is random.
(ii) Inference is made conditional on the data.
(iii) Model specification requires both specification of the likelihood and of the prior.
a. Point estimate of θ can be obtained by taking the mean, median, or mode of the posterior distribution.
b. More generally, given a loss function $L(\theta, \widehat{\theta})$, point estimates of θ can be obtained by miminizing the expected loss à posteriori, i.e.,

$$
\begin{aligned}
\widehat{\theta} & =\arg \min E^{\pi}[L(\theta, \widehat{\theta}) \mid x] \\
& =\arg \min \int_{\Theta} L(\theta, \widehat{\theta}) p(\theta \mid x) d \theta
\end{aligned}
$$

C. Some common loss functions:

1. quadratic loss:

$$
L(\theta, \widehat{\theta})=(\theta-\widehat{\theta})^{2}
$$

(Note: Use of quadratic loss results in $\widehat{\theta}=$ posterior mean.)
2. absolute error loss:

$$
L(\theta, \widehat{\theta})=|\theta-\widehat{\theta}|
$$

(Note: Use of absolute erro loss results in $\widehat{\theta}=$ posterior median.)

Interval (or Set) Estimation
a. Bayesian Credible Set: A $100(1-\alpha) \%$ credible set for θ is a subset C of Θ such that

$$
1-\alpha \leq p(C \mid x)=\int_{C} p(\theta \mid x) d \theta
$$

(Note: A problem with the above definition is that the set C is in most cases not unique.)
b. Highest Posterior Density (HPD)

Credible Set: The $100(1-\alpha) \%$ HPD credible set for θ is the subset C of Θ of the form

$$
C=\{\theta \in \Theta: p(\theta \mid x) \geq k(\alpha)\}
$$

where $k(\alpha)$ is the largest constant such that

$$
p(C \mid x) \geq 1-\alpha
$$

Hypothesis Testing
a. Posterior Odds Ratio and Bayes Factor:
Consider the testing problem

$$
H_{0}: \theta \in \Theta_{0} \text { versus } H_{1}: \theta \in \Theta_{1}
$$

where Θ_{0} and Θ_{1} forms a partition of the parameter space Θ (i.e.,
$\Theta_{0} \cup \Theta_{1}=\Theta$ and $\Theta_{0} \cap \Theta_{1}=\phi$). A
Bayes test of these hypotheses is based on the posterior odds ratio

$$
P O=\frac{p\left(H_{0} \mid x\right)}{p\left(H_{1} \mid x\right)}=\frac{p\left(\theta \in \Theta_{0} \mid x\right)}{p\left(\theta \in \Theta_{1} \mid x\right)}
$$

or the Bayes factor

$$
\begin{aligned}
B & =\frac{\text { posterior odds ratio }}{\text { prior odds ratio }} \\
& =\frac{p\left(H_{0} \mid x\right) / p\left(H_{1} \mid x\right)}{\pi\left(H_{0}\right) / \pi\left(H_{1}\right)} \\
& =\frac{p\left(H_{0} \mid x\right) \pi\left(H_{1}\right)}{p\left(H_{1} \mid x\right) \pi\left(H_{0}\right)}
\end{aligned}
$$

b. More explicitly, we often write the prior as

$$
\pi(\theta)= \begin{cases}\pi_{0} g_{0}(\theta) & \text { if } \theta \in \Theta_{0} \\ \pi_{1} g_{1}(\theta) & \text { if } \theta \in \Theta_{1}\end{cases}
$$

where g_{0} and g_{1} are (proper) densities which describe how the prior mass is spread out over the two hypotheses and where $\pi_{0}=\pi\left(H_{0}\right)$ and $\pi_{1}=\pi\left(H_{1}\right)$ are the prior probabilities of H_{0} and H_{1}. Hence,

$$
\begin{aligned}
P O & =\frac{\int_{\Theta_{0}} f(x \mid \theta) \pi_{0} g_{0}(\theta) d \theta / m(x)}{\int_{\Theta_{1}} f(x \mid \theta) \pi_{1} g_{1}(\theta) d \theta / m(x)} \\
& =\frac{\pi_{0} \int_{\Theta_{0}} f(x \mid \theta) g_{0}(\theta) d \theta}{\pi_{1} \int_{\Theta_{1}} f(x \mid \theta) g_{1}(\theta) d \theta}=\frac{M L_{0}}{M L_{1}}
\end{aligned}
$$

and

$$
B=\frac{\int_{\Theta_{0}} f(x \mid \theta) g_{0}(\theta) d \theta}{\int_{\Theta_{1}} f(x \mid \theta) g_{1}(\theta) d \theta}
$$

C. Remarks:

(i) Note that the Bayes factor is some sense a "weighted likelihood ratio".
(ii) Typically, we take $\pi_{0}=\pi_{1}=\frac{1}{2}$, so $P O=B$.
(iii) Note that one should avoid specifying $g_{0}(\theta)$ and $g_{1}(\theta)$ as improper priors. Too see why, suppose that the parameter spaces Θ_{0} and Θ_{1} are unbounded and let $g_{0}(\theta)=c_{0}$ and $g_{1}(\theta)=c_{1}$; then,

$$
\begin{aligned}
B & =\frac{\int_{\Theta_{0}} f(x \mid \theta) g_{0}(\theta) d \theta}{\int_{\Theta_{1}} f(x \mid \theta) g_{1}(\theta) d \theta} \\
& =\frac{c_{0} \int_{\Theta_{0}} f(x \mid \theta) d \theta}{c_{1} \int_{\Theta_{1}} f(x \mid \theta) d \theta} .
\end{aligned}
$$

Hence, we can make B as big or small as we wish by manipulating the height of the densities c_{0} and c_{1}, since there is no constant of normalization for improper priors.
d. Decision Rule:

Consider the case where $\pi_{0}=\pi_{1}=\frac{1}{2}$, then the decision rule is

Reject H_{0} if $P O<1$,
Accept H_{0} if $P O \geq 1$.
e. Further Remark: Note the symmetric way in which H_{0} and H_{1} are treated in contrast to frequentist significant testing.

Bayesian Handling of Nuisance Parameters:
a. Marginalization - i.e., nuisance parameters are integrated out.
b. To illustrate, suppose that we can partition

$$
\theta=\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)^{\prime},
$$

where
θ_{1} - parameter (vector) of interest,
θ_{2} - nuisance parameter (vector).
Bayesian inference is based on the marginal posterior distribution of θ_{1} obtained by integrating out θ_{2}, i.e.,

$$
p\left(\theta_{1} \mid x\right)=\int_{\Theta_{2}} p\left(\theta_{1}, \theta_{2} \mid x\right) d \theta_{2}
$$

II. An Illustrative Example - Linear Regression Model

Consider the linear model

$$
\underset{T \times 1}{y}=\underset{T \times k_{k \times 1}}{X} \beta+\underset{T \times 1}{u}, u \sim N\left(0, \sigma^{2} I_{T}\right) .
$$

A. Diffuse Prior Analysis:

1. Diffuse Prior

$$
\pi(\beta, \sigma) \propto \frac{1}{\sigma} \text { for } 0<\sigma<\infty
$$

Remarks:
(i) This prior is uniform on β.
(ii) This prior is also uniform on $\theta=\ln \sigma$, so that the prior density takes the form

$$
\pi(\theta) \propto 1
$$

It follows that

$$
\pi(\sigma) \propto\left|\frac{d \theta}{d \sigma}\right|=\frac{1}{\sigma} .
$$

2. Likelihood Function

$$
\begin{aligned}
f(y \mid X, \beta, \sigma)= & \frac{1}{(2 \pi)^{\frac{T}{2}} \sigma^{T}} \\
& \exp \left\{-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right\}
\end{aligned}
$$

3. Joint Posterior Distribution

$$
\begin{aligned}
& p(\beta, \sigma \mid y, X) \\
\propto & \frac{1}{(2 \pi)^{\frac{T}{2}} \sigma^{T+1}} \\
& \exp \left\{-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right\} \\
= & \frac{1}{(2 \pi)^{\frac{T}{2}} \sigma^{T+1}} \\
& \exp \left\{-\frac{1}{2 \sigma^{2}}\left[v s^{2}+(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right]\right\},
\end{aligned}
$$

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
s^{2} & =\frac{(y-X \widehat{\beta})^{\prime}(y-X \widehat{\beta})}{v} \\
v & =T-k
\end{aligned}
$$

4. Marginal Posterior of β

$$
\begin{aligned}
p(\beta \mid y, X) & =\int_{0}^{\infty} p(\beta, \sigma \mid y, X) d \sigma \\
& \propto\left|v s^{2}+(\beta-\widehat{\beta})^{\prime} X^{\prime} X(\beta-\widehat{\beta})\right|^{-\frac{T}{2}}
\end{aligned}
$$

Note: this marginal posterior of β has a multivariate t distribution with $T-k$ degrees of freedom.
5. Remark: Note that
$p(\beta \mid y, X) \rightarrow$ normal density as $T \rightarrow \infty$.
This result does not depend on whether X consider on lagged dependent variable or not. In particular, consider the special case of a $A R(1)$ model, i.e.,

$$
y_{t}=\beta y_{t-1}+u_{t}, \text { i.i.d. } N\left(0, \sigma^{2}\right) .
$$

The asymptotic normality of the marginal
posterior of β holds even if $\beta_{0}=1$, i.e., even if we have a unit root model. THIS IS VERY DIFFERENT FROM RESULTS OBTAINED UNDER THE FREQUENTIST OR CLASSICAL APPROACH.
B. Gaussian Prior Analysis

1. Prior Specification

$$
\begin{aligned}
\pi(\beta \mid \sigma)= & \frac{1}{(2 \pi)^{\frac{k}{2}} \sigma^{k}} \\
& \exp \left\{-\frac{1}{2 \sigma^{2}}(\beta-\bar{\beta})^{\prime} V_{\beta}(\beta-\bar{\beta})\right\} \\
\pi(\sigma)= & \frac{1}{\sigma}
\end{aligned}
$$

2. Marginal Posterior of β

$$
\begin{aligned}
& p(\beta \mid y, X) \\
\propto & \left|T \widetilde{s}^{2}+(\beta-\widetilde{\beta})^{\prime}\left[X^{\prime} X+V_{\beta}\right](\beta-\widetilde{\beta})\right|^{-\frac{T+k}{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
\widetilde{\beta}= & {\left[X^{\prime} X+V_{\beta}\right]^{-1}\left[X^{\prime} y+V_{\beta} \bar{\beta}\right], } \\
\widetilde{s}^{2}= & \frac{1}{T}\left[y^{\prime} y+\bar{\beta}^{\prime} V_{\beta} \bar{\beta}\right. \\
& \left.-\widetilde{\beta}^{\prime}\left(X^{\prime} X+V_{\beta}\right) \widetilde{\beta}\right]
\end{aligned}
$$

3. Remark: Note that we can rewrite

$$
\begin{aligned}
\widetilde{\beta}= & {\left[X^{\prime} X+V_{\beta}\right]^{-1}\left(X^{\prime} X\right) \widehat{\beta} } \\
& +\left[X^{\prime} X+V_{\beta}\right]^{-1} V_{\beta} \bar{\beta},
\end{aligned}
$$

where $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. In the case where $k=1$,

$$
\begin{aligned}
\widetilde{\beta}= & \left(\frac{x^{\prime} x}{x^{\prime} x+v_{\beta}}\right) \widehat{\beta} \\
& +\left(\frac{v_{\beta}}{x^{\prime} x+v_{\beta}}\right) \bar{\beta},
\end{aligned}
$$

so $\widetilde{\beta}$ is a linear combination of the $M L E$ estimator $\widehat{\beta}$ and the prior mean $\bar{\beta}$.
C. Model Selection and Hypothesis Testing

Consider the problem of selecting the lag order of an autoregression

$$
M_{k}: y_{t}=\beta_{1} y_{t-1}+\ldots+\beta_{k} y_{t-k}+u_{t}
$$

where $\left\{u_{t}\right\} \equiv$ i.i.d. $N\left(0, \sigma^{2}\right)$.

1. Prior Specification Based on Training Sample:

$$
\begin{aligned}
& \pi\left(\beta \mid \sigma, M_{k}\right) \\
\propto & \frac{1}{\sigma^{k}} \exp \left\{-\frac{1}{2 \sigma^{2}} e(k)^{\prime} X_{1}(k)^{\prime} X_{1}(k) e(k)\right\} \\
& \pi\left(\sigma \mid M_{k}\right) \\
\propto & \frac{1}{\sigma^{T_{1}-k+1}} \exp \left\{-\frac{\left(T_{1}-k\right) s_{1}^{2}(k)}{2 \sigma^{2}}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
e(k) & =\beta(k)-\widehat{\beta}_{1}(k), \\
s_{1}^{2}(k) & =\frac{\widehat{u}_{1}(k)^{\prime} \widehat{u}_{1}(k)}{T_{1}-k}
\end{aligned}
$$

$$
\begin{aligned}
Y_{1} & =\left(y_{1}, \ldots, y_{T_{1}}\right)^{\prime}, \\
X_{1}(k) & =\left(x_{1}(k), \ldots,, x_{T_{1}}(k)\right)^{\prime}, \\
x_{t}(k) & =\left(y_{t-1}, \ldots, ., y_{t-k}\right)^{\prime}, \\
\beta(k) & =\left(\beta_{1}, \ldots, \beta_{k}\right)^{\prime}, \\
\widehat{\beta}_{1}(k) & =\left[X_{1}(k)^{\prime} X_{1}(k)\right]^{-1} X_{1}(k)^{\prime} Y_{1}, \\
\widehat{u}_{1}(k) & =Y_{1}-X_{1}(k) \widehat{\beta}_{1}(k) .
\end{aligned}
$$

2. Likelihood Function

$$
\begin{aligned}
& f\left(Y_{2} \mid \beta, \sigma, X_{2}, M_{k}\right) \\
\propto & \frac{1}{\sigma^{T_{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}} u_{2}(k)^{\prime} u_{2}(k)\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
u_{2}(k) & =Y_{2}-X_{2}(k) \beta(k), \\
Y_{2} & =\left(y_{T_{1}+1}, \ldots, y_{T}\right)^{\prime}, \\
X_{2}(k) & =\left(x_{T_{1}+1}(k), \ldots, x_{T}(k)\right)^{\prime} .
\end{aligned}
$$

3. Marginal Likelihood

$$
\begin{aligned}
\operatorname{Cr}(k)= & -\frac{2}{T} \ln \left(M L_{k}\right) \\
= & \ln \left(s^{2}(k)\right)+\frac{1}{T} \ln \left|X(k)^{\prime} X(k)\right| \\
& + \text { lower order terms, }
\end{aligned}
$$

where

$$
\begin{aligned}
s^{2}(k) & =\frac{\widehat{u}(k)^{\prime} \widehat{u}(k)}{T-k}, \\
\widehat{u}(k) & =Y-X(k) \widehat{\beta}(k), \\
Y & =\left(y_{1}, \ldots, y_{T}\right)^{\prime}, \\
X(k) & =\left(x_{1}(k), \ldots, X_{T}(k)\right)^{\prime}, \\
\widehat{\beta}(k) & =\left[X(k)^{\prime} X(k)\right]^{-1} X(k)^{\prime} Y .
\end{aligned}
$$

Further Approximation:

$$
\begin{aligned}
\operatorname{Cr}(k)= & \ln \left(s^{2}(k)\right)+\frac{1}{T} \ln \left|X(k)^{\prime} X(k)\right| \\
& + \text { lower order terms } \\
= & \ln \left(s^{2}(k)\right)+\frac{1}{T} \ln T^{k}\left|X(k)^{\prime} X(k) / T\right| \\
& + \text { lower order terms }
\end{aligned}
$$

$$
=\ln \left(s^{2}(k)\right)+\frac{k}{T} \ln T
$$

$$
+\frac{1}{T} \ln \left|X(k)^{\prime} X(k) / T\right|
$$

+ lower order terms

$$
=B I C(k)+\text { lower order terms. }
$$

III. Some Aspects of Bayesian Computation

- Laplace's Method

Consider the integral

$$
\int b(\theta) \exp \{-n h(\theta)\} d \theta,
$$

where $h(\theta)=n^{-1} \ln (l(\theta) \pi(\theta))$. Laplace's method approximates the integral above by expanding the integrand as a Taylor series and then integrate with respect to the quadratic term, i.e.,

$$
\begin{aligned}
& \int\left(b(\widehat{\theta})+b^{\prime}(\widehat{\theta})(\theta-\widehat{\theta})+\ldots\right) \\
& \exp \left\{-n\left[h(\widehat{\theta})+\frac{1}{2} h^{\prime \prime}(\widehat{\theta})(\theta-\widehat{\theta})^{2}\right.\right. \\
&+\ldots]\} d \theta \\
&= \exp \{-n h(\widehat{\theta})\}(2 \pi)^{\frac{1}{2}}\left[n h^{\prime \prime}(\widehat{\theta})\right]^{-\frac{1}{2}} \\
& \int\left(b(\widehat{\theta})+b^{\prime}(\widehat{\theta})(\theta-\widehat{\theta})+\ldots .\right) \\
&(2 \pi)^{-\frac{1}{2}} \sqrt{n h^{\prime \prime}(\widehat{\theta})} \exp \left\{-\frac{1}{2} n h^{\prime \prime}(\widehat{\theta})(\theta-\widehat{\theta})^{2}\right) \\
&(1+\text { lower order terms }) d \theta \\
&= \exp \{-n h(\widehat{\theta})\}(2 \pi)^{\frac{1}{2}}\left[n h^{\prime \prime}(\widehat{\theta})\right]^{-\frac{1}{2}} b(\widehat{\theta}) \\
&(1+\text { lower order terms }),
\end{aligned}
$$

where $\widehat{\theta}$ denotes the maximum of $-h$.

Example: (Chao and Phillips, 1999)
Consider joint estimation of cointegrating rank and lag order in the vector error-correction model

$$
\begin{aligned}
\Delta y_{t} & =\gamma \beta^{\prime} y_{t-1}+\Phi_{1} \Delta y_{t-1}+. .+\Phi_{p} \Delta y_{t-p}+\varepsilon_{t} \\
& =G u_{t}+\varepsilon_{t},
\end{aligned}
$$

where

$$
\begin{aligned}
u_{t} & =\left[\begin{array}{c}
\beta^{\prime} y_{t-1} \\
z_{t}
\end{array}\right], \\
G & =[\gamma, \Phi] \\
\Phi & =\left[\Phi_{1}, \ldots, \Phi_{p}\right] \\
z_{t} & =\left[\Delta y_{t-1}^{\prime}, \ldots, \Delta y_{t-p}\right]^{\prime} .
\end{aligned}
$$

Laplace method was used to construct the PIC criterion which has interpretation as a transformed marginal likelihood

$$
\operatorname{PIC}(p, r)=\ln |\hat{\Sigma}|+\frac{1}{n} \ln \left|\hat{B}_{n}\right| .
$$

Monte Carlo Integration
Consider the integral

$$
E(\theta)=\int g(\theta) f(\theta) d \theta
$$

where $f(\theta)$ is a p.d.f. We can approximate for $E(\theta)$ by drawing i.i.d. sample $\theta_{1}, \ldots, \theta_{m}$ from $f(\theta)$ and estimate $E(\theta)$ by

$$
\widehat{E}(\theta)=\frac{1}{m} \sum_{i=1}^{m} g\left(\theta_{i}\right)
$$

By the (strong) law of large number

$$
\widehat{E}(\theta) \xrightarrow{\text { a.s. }} E(\theta)
$$

Note that also that the convergence above does not depend on the dimension of θ.

- Importance Sampling

The algorithm above may be inefficient because we may draw a lot of θ_{i} where $g(\theta)$ is close to zero. Alternatively, we can instead draw an i.i.d. sample $\theta_{1}, \ldots, \theta_{m}$ from an importance function $I(\theta)$ which better mimic the function $g(\theta)$ and estimate $E(\theta)$ by

$$
\widetilde{E}(\theta)=\frac{\sum_{i=1}^{m} g\left(\theta_{i}\right) w_{i}}{\sum_{i=1}^{m} w_{i}}
$$

where

$$
w_{i}=\frac{f\left(\theta_{i}\right)}{I\left(\theta_{i}\right)}
$$

