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*These notes are for instructional purposes only and are
not to be distributed outside the classroom.



|. Some Rudimentary Bayesian
Statistics

@® Bayes’ Rule
Bayesian statistics Is so named because,
under this approach, statistical inference is
based on the posterior distribution
obtained via Bayes’ rule

f(x|0)7(0)
PO = =0

where
f(x|0) - data density,
7 (0) - prior density,
m(x) - marginal density of the data,
P(0] x)- posterior density,

0 € O, where ® denotes the parameter space.



® Remarks:
(i) m(x) = j@ f(x|0)7(0)do.

(i) Typically, in Bayesian statistics, we
focus on a parametric framework so
that ® Is finite dimensional.

(111) Note that f(x|@) = 1(0,x), so that f(x|0)
IS just the likelthood function when

reinterpreted as a function of 6 given
X

(iv) If #(0) = c, for some constant c, then
p(0] x) oc 1(6,X).
@® Some special features of Bayesian
Inference:

(1) Parameter 6 is random.

(i1) Inference is made conditional on the
data.

(i11) Model specification requires both

specification of the likelihood and of
the prior.



@® Point Estimation

a. Point estimate of 6 can be obtained by
taking the mean, median, or mode of
the posterior distribution.

b. More generally, given a loss function
L(@, 9), point estimates of 0 can be

obtained by miminizing the expected
loss a posteriori, I.e.,

0= argminE~[L(0,0)|x]
— arg min j@ L(G,@)p(@l x)dé

c. Some common loss functions:
1. quadratic loss:

L(0,0) = (6-0)°

(Note: Use of quadratic loss
results in @ = posterior mean.)



2. absolute error loss:

L(e,@) = [0-9]
Note: Use of absolute erro loss results In
= posterior median.)

D=



@ Interval (or Set) Estimation

a. Bayesian Credible Set: A
100(1 — a)% credible set for 6 1s a
subset C of ® such that

1—a < p(Clx) = j (O] x)do

(Note: A problem with the above
definition is that the set C is in most
cases not unique.)

b. Highest Posterior Density (HPD)
Credible Set: The 100(1 — a)% HPD
credible set for 6 is the subset C of ®
of the form

C=400:p@x) =ka)},
where k() Is the largest constant such
that

p(Clx) > 1-a



@® Hypothesis Testing

a. Posterior Odds Ratio and Bayes
Factor:

Consider the testing problem
Ho : 0 € ®pgversusH; : 0 € Oy,

where ®¢ and ®1 forms a partition of
the parameter space O (i.e.,
OoUB®; =0and Oy N O = ¢)A
Bayes test of these hypotheses is
based on the posterior odds ratio

PO = p(H0|X) _ p(9 € ®0|X)

p(Halx)  p(f € O1[x)

or the Bayes factor
posterior odds ratio

prior odds ratio
P(Ho|x)/p(H1|x)
r(Ho)/r(H1)
_ P(Ho|x)z(H1)
p(H1[x)z(Ho)

B =




b. More explicitly, we often write the
prior as

/

7000(6) ifo € O
7101(0) ifoec®,

where go and g; are (proper) densities
which describe how the prior mass Is
spread out over the two hypotheses
and where 7o = 7(Ho) and

w1 = w(H1) are the prior probabilities
of Hp and H1. Hence,

_'@0 f(x|0)70g0(6)dO/M(x)
:@1 f(x|0)7191(0)do/m(x)

w(0) = <

PO =

mo [, T(X10)g0(0)do ML
[, f(x9)g:0)de  Mbs

and



J o, f(X10)90(0)d0

Jo fx16)g1(6)d6



c. Remarks:
(1) Note that the Bayes factor is some

(i)
(iii)

sense a “weighted likelihood ratio”.
Typically, we take 7o = 71 = =, SO
PO = B.

Note that one should avoid specifying
do(0) and g1(0) as improper priors.
Too see why, suppose that the
parameter spaces ®o and ® are
unbounded and let go(0) = co and
g1(0) = c1; then,

J o, (XI0)90(6)d0
J, f(XI10)g1(6)d0
Co j@o f(x|6)do

c1 [, f(xi0)do

Hence, we can make B as big or small
as we wish by manipulating the height
of the densities ¢y and c1, since there
IS no constant of normalization for
Improper priors.



d. Decision Rule:
Consider the case where 7o = 71 = =,

then the decision rule iIs
Reject Hp If PO < 1,
Accept Hg If PO > 1.

e. Further Remark: Note the symmetric
way in which Hg and H; are treated in
contrast to frequentist significant testing.



@® Bayesian Handling of Nuisance
Parameters:

a. Marginalization - I1.e., nuisance
parameters are integrated out.

b. To illustrate, suppose that we can
partition

0 = (01.62)
where
01 - parameter (vector) of interest,
0, - nuisance parameter (vector).

Bayesian inference is based on the
marginal posterior distribution of 04
obtained by integrating out 9, I.e.,

(611 ) = [ p(01,02] x)do.



ll. An lllustrative Example - Linear
Regression Model

Consider the linear model
y= X B + u,u~ N(,oc°l7).
Tx1 Tkaxl Tx1

A. Diffuse Prior Analysis:
1. Diffuse Prior

n(p,0) o %foro <0 <
Remarks:
(1) This prior is uniform on p.

(i) This prior is also uniform on 6 = Ino,
so that the prior density takes the form

w(0) o 1.
It follows that

”(")“‘d‘



2. Likelihood Function
f(yIX, B,0) = —=

71')6

oxp{ 517 (/= XB) (y - Xp) }
3. Joint Posterior Dlstrlbutlon

p(B,aly, X)
1

(Zﬂ)lGTH

exp{ Ly -%p) v -xp) |

oC

(27.[) 6T+1

exp{—z%‘2 [vs2 + (ﬁ - ,B) /X’X<,B = ﬁ) ]}

where



B = (X'X)"Xly,
o (-XB) (v-xB)
_ , |

v=T-Kk
4. Marginal Posterior of

p(BlY,X) = [ P(B.oly, X)do

< |vs2+ (B-B) xx(-B)| *

Note: this marginal posterior of 8 has a
multivariate t distribution with T — K
degrees of freedom.

5. Remark: Note that
p(Bly,X) — normal density as T — oo.

This result does not depend on whether X
consider on lagged dependent variable or
not. In particular, consider the special case
of a AR(1) model, i.e.,

Vit = ,Byt_1 + Uy, 1.1.d. N(O,Gz).
The asymptotic normality of the marginal




posterior of § holds even if 5o = 1, I.e.,
even If we have a unit root model. THIS IS
VERY DIFFERENT FROM RESULTS
OBTAINED UNDER THE
FREQUENTIST OR CLASSICAL
APPROACH.



=

. Gaussian Prior Analysis

Prior Specification

n(Blo) = ﬂ

(27) 2 ok

exp{ L (B-B)VsB-B)}

n(c) = =

Marginal Posterior of 5

p(Bly, X)
o ‘T%’Z + (B-B) XX+ Vg]
where
B = [X'X+Vp] " [X'y + V4B,

52 = = [yy+BV,P
B XX+ Vp)B |




3. Remark: Note that we can rewrite
B =[XX+Vg] (X'X)B
+[X'X + V] VB,

where B = (X'X)™'X'y. In the case where

k =1,
= _ x'x ~
P (X,X+Vﬁ>ﬁ
Vﬂ —
+<X,X+Vﬁ )ﬁ’

so B is a linear combination of the MLE
estimator 8 and the prior mean p.




C. Model Selection and Hypothesis Testing

Consider the problem of selecting the lag
order of an autoregression

M © ¥yt = B1Yea +...+PkYiek + Ut
where {u;} =1i.i.d.N(0,0?).
1. Prior Specification Based on Training

Sample:
(Blo, My)
o —exp{ L _ek)'Xa1(K) Xl(k)e(k)}
r(c|Mg)
T1 —k)s?(k
% GT11—k+1 exp{—( 1 26)281( )}’
where

e(k) = B(k) — B, (K),

_ (k)
st = D0 Dulk),




X1(k) = (x1(k),...., x1,(K))',
Xt(K) = (Yeet, v vn, Yik) ',
k) = (B1,.-.., B)’,
B (k) = X2()' X1 (k)] X2 (K)'Y1,
U1(k) = Y1 — X1(K)B, (k).
2. Likelithood Function
f(Y2|ﬁ o, Xo, I\/Ik)

uz(k) uz(k)},
where
uz(k) = Yz — Xa(k)B(k),

Xa2(K) = (X1,41(K), ... ., x1(K))'.



3. Marginal Likelihood
Cr(k) = —% In(MLy)

— In(s2(k)) + % InX(K)'X(K)|

+ lower order terms,

where
s2( = LB
ak) = Y = X(K)B(K),
Y = (yl 1111 yT)

X(k) = (x1(k),...., x1(K))',
B(k) = [XK)'X(K)]XK)'Y.



Further Approximation:
cr(k) = In(s2(k)) + % InX(K)'X(K)|

+ lower order terms

= In(s2(k)) + % In T¥IX(K)'X(K)/T|
+ lower order terms

= In(s?(k)) + % InT
4 % In[X(K)' X(K)/T]

+ lower order terms
= BIC(k) + lower order terms.



lll. Some Aspects of Bayesian
Computation

@® Laplace’s Method
Consider the integral

j b(0) exp{—nh(0)}de,

where h(0) = n~tIn(1(0)7(0)). Laplace’s
method approximates the integral above by
expanding the integrand as a Taylor series
and then integrate with respect to the
quadratic term, I.e.,



j(b(@) +b'@)(6-0) +....)

exp{—n[h(@) + %h” (@) (9 - @)2

.. ]hdo
= exp{—nh(@)}(Zn)% [nh"(0) ]_%
j(b(@) +b'@)(6-0) +....)

o {3 ol (9)0-3)”

(1 + lower order terms)do

= exp{-nh (0) }(2rm) B [nh"(0) ]_% b(9)

(1 + lower order terms),

where 0 denotes the maximum of —h.



@® Example: (Chao and Phillips, 1999)

Consider joint estimation of cointegrating
rank and lag order in the vector
error-correction model

Ayt = 7/,3')&—1 + (DlAyt_l +. .-I—(DpAyt_p + Et

= GUt + Et,
where
!
Uy = B'Yi1 |
Lt
G =[y,®],

D = [Dy,...., 0p]

2= [AYig e AYep]

Laplace method was used to construct the
PIC criterion which has interpretation as a
transformed marginal likelihood

/\ 1 /\
PIC(p,r) = In‘z‘ + Wln‘Bn




@® Monte Carlo Integration
Consider the integral

EO) = [ 9(0)f(0)de,

where f(0) Is a p.d.f. We can approximate
for E(0) by drawing I.1.d. sample
01,...,0n from f(0) and estimate E(0) by

E©) = & > 9)
i=1

By the (strong) law of large number

E©O) ¥ E@0)

Note that also that the convergence above
does not depend on the dimension of 6.



@® Importance Sampling
The algorithm above may be inefficient
because we may draw a lot of 6; where
g(@) is close to zero. Alternatively, we can
Instead draw an i.1.d. sample 04,...,0n
from an importance function I(6) which
better mimic the function g(6) and
estimate E(0) by

~ 290w
E(Q) _ =1 .
2 Wi
i=1
where
f(0)
TN



