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I. Some Rudimentary Bayesian
Statistics

 Bayes’ Rule
Bayesian statistics is so named because,
under this approach, statistical inference is
based on the posterior distribution
obtained via Bayes’ rule

p| x  fx|
mx ,

where
fx| - data density,
 - prior density,
mx - marginal density of the data,
p| x- posterior density,

 ∈ Θ, where Θ denotes the parameter space.



 Remarks:
(i) mx  

Θ
fx|d.

(ii) Typically, in Bayesian statistics, we
focus on a parametric framework so
that Θ is finite dimensional.

(iii) Note that fx|  l,x, so that fx|
is just the likelihood function when
reinterpreted as a function of  given
x.

(iv) If   c, for some constant c, then
p| x  l,x.

 Some special features of Bayesian
inference:
(i) Parameter  is random.
(ii) Inference is made conditional on the

data.
(iii) Model specification requires both

specification of the likelihood and of
the prior.



 Point Estimation

a. Point estimate of  can be obtained by
taking the mean, median, or mode of
the posterior distribution.

b. More generally, given a loss function
L ,


 , point estimates of  can be

obtained by miminizing the expected
loss à posteriori, i.e.,

  arg minE L ,


 | x

 arg min 
Θ

L ,

 p| xd

c. Some common loss functions:
1. quadratic loss:

L ,

   −




2

(Note: Use of quadratic loss
results in


  posterior mean.)



2. absolute error loss:
L ,


   −




(Note: Use of absolute erro loss results in
  posterior median.)



 Interval (or Set) Estimation

a. Bayesian Credible Set: A
1001 − % credible set for  is a
subset C of Θ such that

1 −  ≤ pC|x  
C

p| xd

(Note: A problem with the above
definition is that the set C is in most
cases not unique.)

b. Highest Posterior Density (HPD)
Credible Set: The 1001 − % HPD
credible set for  is the subset C of Θ
of the form

C   ∈ Θ : p| x ≥ k,
where k is the largest constant such
that

pC|x ≥ 1 − 



 Hypothesis Testing

a. Posterior Odds Ratio and Bayes
Factor:
Consider the testing problem

H0 :  ∈ Θ0 versus H1 :  ∈ Θ1,
where Θ0 and Θ1 forms a partition of
the parameter space Θ (i.e.,
Θ0  Θ1  Θ and Θ0 ∩ Θ1  ). A
Bayes test of these hypotheses is
based on the posterior odds ratio

PO  pH0|x
pH1|x

 p ∈ Θ0|x
p ∈ Θ1|x

or the Bayes factor

B  posterior odds ratio
prior odds ratio

 pH0|x/pH1|x
H0/H1

 pH0|xH1
pH1|xH0



b. More explicitly, we often write the
prior as

 
0g0 if  ∈ Θ0

1g1 if  ∈ Θ1
,

where g0 and g1 are (proper) densities
which describe how the prior mass is
spread out over the two hypotheses
and where 0  H0 and
1  H1 are the prior probabilities
of H0 and H1. Hence,

PO 

Θ0

fx|0g0d/mx


Θ1

fx|1g1d/mx


0 

Θ0
fx|g0d

1 
Θ1

fx|g1d
 ML0

ML1

and



B 

Θ0

fx|g0d


Θ1

fx|g1d
.



c. Remarks:
(i) Note that the Bayes factor is some

sense a “weighted likelihood ratio”.
(ii) Typically, we take 0  1  1

2 , so
PO  B.

(iii) Note that one should avoid specifying
g0 and g1 as improper priors.
Too see why, suppose that the
parameter spaces Θ0 and Θ1 are
unbounded and let g0  c0 and
g1  c1; then,

B 

Θ0

fx|g0d


Θ1

fx|g1d


c0 

Θ0
fx|d

c1 
Θ1

fx|d
.

Hence, we can make B as big or small
as we wish by manipulating the height
of the densities c0 and c1, since there
is no constant of normalization for
improper priors.



d. Decision Rule:
Consider the case where 0  1  1

2 ,
then the decision rule is

Reject H0 if PO  1,
Accept H0 if PO ≥ 1.

e. Further Remark: Note the symmetric
way in which H0 and H1 are treated in
contrast to frequentist significant testing.



 Bayesian Handling of Nuisance
Parameters:

a. Marginalization - i.e., nuisance
parameters are integrated out.

b. To illustrate, suppose that we can
partition

  1
′ ,2

′  ′,
where
1 - parameter (vector) of interest,
2 - nuisance parameter (vector).

Bayesian inference is based on the
marginal posterior distribution of 1
obtained by integrating out 2, i.e.,

p1| x  
Θ2

p1,2| xd2.



II. An Illustrative Example - Linear
Regression Model

Consider the linear model

T1
y 

Tk
X

k1

 
T1
u , u  N0,2IT.

A. Diffuse Prior Analysis:
1. Diffuse Prior

,  1
 for 0    

Remarks:
(i) This prior is uniform on .
(ii) This prior is also uniform on   ln,

so that the prior density takes the form
  1.

It follows that

  d
d  1

 .



2. Likelihood Function
fy|X,,  1

2
T
2 T

exp − 1
22 y − X ′y − X

3. Joint Posterior Distribution
p,|y,X

 1
2

T
2 T1

exp − 1
22 y − X ′y − X

 1
2

T
2 T1

exp − 1
22 s2   −




′
X ′X  −


 ,

where




  X ′X−1X ′y,

s2 
y − X




′
y − X




 ,

  T − k.
4. Marginal Posterior of 

p|y,X  
0


p,|y,Xd

 s2   −



′
X ′X  −




− T
2

Note: this marginal posterior of  has a
multivariate t distribution with T − k
degrees of freedom.

5. Remark: Note that
p|y,X → normal density as T → .

This result does not depend on whether X
consider on lagged dependent variable or
not. In particular, consider the special case
of a AR1 model, i.e.,

yt  yt−1  ut, i. i.d.N0,2.
The asymptotic normality of the marginal



posterior of  holds even if 0  1, i.e.,
even if we have a unit root model. THIS IS
VERY DIFFERENT FROM RESULTS
OBTAINED UNDER THE
FREQUENTIST OR CLASSICAL
APPROACH.



B. Gaussian Prior Analysis
1. Prior Specification

|  1
2

k
2 k

exp − 1
22  − 

′V −  ,

  1
 .

2. Marginal Posterior of 
p|y,X

 Ts 2   −



′
X ′X  V   −




− Tk
2 ,

where

  X ′X  V 

−1X ′y  V,
s 2  1

T y ′y   ′V

−


′
X ′X  V






3. Remark: Note that we can rewrite

  X ′X  V 

−1X ′X



 X ′X  V 
−1V,

where

  X ′X−1X ′y. In the case where

k  1,

  x ′x

x ′x  v




v

x ′x  v
,

so

 is a linear combination of the MLE

estimator

 and the prior mean .



C. Model Selection and Hypothesis Testing

Consider the problem of selecting the lag
order of an autoregression

Mk : yt  1yt−1 . . .kyt−k  ut,
where ut ≡ i. i.d.N0,2.
1. Prior Specification Based on Training

Sample:
|,Mk

 1
k exp − 1

22 ek ′X1k ′X1kek

|Mk

 1
T1−k1 exp − T1 − ks1

2k
22 ,

where
ek  k −


1k,

s1
2k 

u 1k ′u 1k
T1 − k ,



Y1  y1, . . . ,yT1 ′,
X1k  x1k, . . . . ,xT1k

′,
xtk  yt−1, . . . . . ,yt−k ′,
k  1, . . . . ,k ′,

1k  X1k ′X1k−1X1k ′Y1,
u 1k  Y1 − X1k


1k.

2. Likelihood Function
fY2|,,X2,Mk

 1
T2

exp − 1
22 u2k ′u2k ,

where
u2k  Y2 − X2kk,

Y2  yT11, . . . ,yT ′,
X2k  xT11k, . . . . ,xTk ′.



3. Marginal Likelihood
Crk  − 2

T lnMLk

 lns2k  1
T ln|Xk ′Xk|

 lower order terms,
where

s2k 
uk ′uk

T − k ,
uk  Y − Xk


k,

Y  y1, . . . ,yT ′,
Xk  x1k, . . . . ,xTk ′,

k  Xk ′Xk−1Xk ′Y.



Further Approximation:
Crk  lns2k  1

T ln|Xk ′Xk|

 lower order terms

 lns2k  1
T lnTk|Xk ′Xk/T|

 lower order terms

 lns2k  k
T lnT

 1
T ln|Xk ′Xk/T|

 lower order terms
 BICk  lower order terms.



III. Some Aspects of Bayesian
Computation

 Laplace’s Method
Consider the integral

 bexp−nhd,

where h  n−1 lnl. Laplace’s
method approximates the integral above by
expanding the integrand as a Taylor series
and then integrate with respect to the
quadratic term, i.e.,



 b

  b ′


  −


 . . . .

exp −n h

  1

2 h ′′

  −




2

. . .  d

 exp −nh

 2

1
2 nh ′′




− 1
2

 b

  b ′


  −


 . . . .

2−
1
2 nh ′′


 exp − 1

2 nh ′′

  −




2

1  lower order termsd

 exp −nh

 2

1
2 nh ′′




− 1
2 b




1  lower order terms,

where

 denotes the maximum of −h.



 Example: (Chao and Phillips, 1999)
Consider joint estimation of cointegrating
rank and lag order in the vector
error-correction model
Δyt   ′yt−1  1Δyt−1 . .pΔyt−p   t

 Gut   t,
where

ut 
 ′yt−1

zt
,

G  ,,
  1, . . . . ,p 

zt  Δyt−1
′ , . . . . ,Δyt−p 

′.
Laplace method was used to construct the
PIC criterion which has interpretation as a
transformed marginal likelihood

PICp, r  ln   1
n ln Bn .



 Monte Carlo Integration
Consider the integral

E   gfd,

where f is a p.d.f. We can approximate
for E by drawing i. i.d. sample
1, . . . ,m from f and estimate E by

E  1
m ∑

i1

m

gi

By the (strong) law of large number

E a.s.
→ E

Note that also that the convergence above
does not depend on the dimension of .



 Importance Sampling
The algorithm above may be inefficient
because we may draw a lot of i where
g is close to zero. Alternatively, we can
instead draw an i. i.d. sample 1, . . . ,m
from an importance function I which
better mimic the function g and
estimate E by

E 
∑
i1

m
giwi

∑
i1

m
wi

where

wi 
fi
Ii


