# Some Background on Bayesian Statistics and Econometrics

Economics 721 John C. Chao

\*These notes are for instructional purposes only and are not to be distributed outside the classroom.

## I. Some Rudimentary Bayesian Statistics

Bayes' Rule
Bayesian statistics is so named because,
under this approach, statistical inference is
based on the *posterior distribution*obtained via Bayes' rule

$$p(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{m(x)},$$

where

 $f(x|\theta)$  - data density,

 $\pi(\theta)$  - prior density,

m(x) - marginal density of the data,

 $p(\theta | x)$ - posterior density,

 $\theta \in \Theta$ , where  $\Theta$  denotes the parameter space.



#### **Remarks**:

(i)  $m(x) = \int_{\Theta} f(x|\theta) \pi(\theta) d\theta$ .

- (ii) Typically, in Bayesian statistics, we focus on a parametric framework so that  $\Theta$  is finite dimensional.
- (iii) Note that  $f(x|\theta) = l(\theta, x)$ , so that  $f(x|\theta)$  is just the likelihood function when reinterpreted as a function of  $\theta$  given *x*.
- (iv) If  $\pi(\theta) = c$ , for some constant *c*, then  $p(\theta|x) \propto l(\theta,x)$ .
- Some special features of Bayesian inference:
  - (i) Parameter  $\theta$  is random.
  - (ii) Inference is made *conditional* on the data.
  - (iii) Model specification requires both specification of the likelihood and of the prior.



- **a**. Point estimate of  $\theta$  can be obtained by taking the mean, median, or mode of the posterior distribution.
- **b**. More generally, given a loss function  $L(\theta, \hat{\theta})$ , point estimates of  $\theta$  can be obtained by miminizing the expected loss à posteriori, i.e.,

$$\widehat{\theta} = \arg \min E^{\pi} \left[ L(\theta, \widehat{\theta}) | x \right]$$
$$= \arg \min \int_{\Theta} L(\theta, \widehat{\theta}) p(\theta | x) d\theta$$

- **c**. Some common loss functions:
  - 1. quadratic loss:

$$L(\theta,\widehat{\theta}) = (\theta - \widehat{\theta})^2$$

(Note: Use of quadratic loss results in  $\hat{\theta}$  = posterior mean.)



#### 2. absolute error loss:

$$L(\theta,\widehat{\theta}) = \left| \theta - \widehat{\theta} \right|$$

(Note: Use of absolute erro loss results in  $\hat{\theta}$  = posterior median.)

#### • Interval (or Set) Estimation

#### **a.** Bayesian Credible Set: A 100(1 – $\alpha$ )% credible set for $\theta$ is a subset *C* of $\Theta$ such that

$$1 - \alpha \le p(C|x) = \int_C p(\theta|x) d\theta$$

(Note: A problem with the above definition is that the set *C* is in most cases not unique.)

**b.** Highest Posterior Density (HPD) Credible Set: The  $100(1 - \alpha)$ % HPD credible set for  $\theta$  is the subset *C* of  $\Theta$ of the form

$$C = \{\theta \in \Theta : p(\theta | x) \ge k(\alpha)\},\$$

where  $k(\alpha)$  is the largest constant such that

 $p(C|x) \ge 1 - \alpha$ 



### a. Posterior Odds Ratio and Bayes **Factor**:

Consider the testing problem

 $H_0: \theta \in \Theta_0$  versus  $H_1: \theta \in \Theta_1$ , where  $\Theta_0$  and  $\Theta_1$  forms a partition of the parameter space  $\Theta$  (i.e.,

 $\Theta_0 \cup \Theta_1 = \Theta$  and  $\Theta_0 \cap \Theta_1 = \phi$ ). A Bayes test of these hypotheses is based on the posterior odds ratio

$$PO = \frac{p(H_0|x)}{p(H_1|x)} = \frac{p(\theta \in \Theta_0|x)}{p(\theta \in \Theta_1|x)}$$

or the Bayes factor

$$B = \frac{\text{posterior odds ratio}}{\text{prior odds ratio}}$$
$$= \frac{p(H_0|x)/p(H_1|x)}{\pi(H_0)/\pi(H_1)}$$
$$= \frac{p(H_0|x)\pi(H_1)}{p(H_1|x)\pi(H_0)}$$



**b**. More explicitly, we often write the prior as

$$\pi(\theta) = \begin{cases} \pi_0 g_0(\theta) & \text{if } \theta \in \Theta_0 \\ \pi_1 g_1(\theta) & \text{if } \theta \in \Theta_1 \end{cases},$$

where  $g_0$  and  $g_1$  are (proper) densities which describe how the prior mass is spread out over the two hypotheses and where  $\pi_0 = \pi(H_0)$  and  $\pi_1 = \pi(H_1)$  are the prior probabilities of  $H_0$  and  $H_1$ . Hence,

$$PO = \frac{\int_{\Theta_0} f(x|\theta) \pi_0 g_0(\theta) d\theta / m(x)}{\int_{\Theta_1} f(x|\theta) \pi_1 g_1(\theta) d\theta / m(x)}$$
$$= \frac{\pi_0 \int_{\Theta_0} f(x|\theta) g_0(\theta) d\theta}{\pi_1 \int_{\Theta_1} f(x|\theta) g_1(\theta) d\theta} = \frac{ML_0}{ML_1}$$

and

$$B = \frac{\int_{\Theta_0} f(x|\theta) g_0(\theta) d\theta}{\int_{\Theta_1} f(x|\theta) g_1(\theta) d\theta}.$$

## **c**. Remarks:

- (i) Note that the Bayes factor is some sense a "weighted likelihood ratio".
- (ii) Typically, we take  $\pi_0 = \pi_1 = \frac{1}{2}$ , so PO = B.
- (iii) Note that one should avoid specifying  $g_0(\theta)$  and  $g_1(\theta)$  as improper priors. Too see why, suppose that the parameter spaces  $\Theta_0$  and  $\Theta_1$  are unbounded and let  $g_0(\theta) = c_0$  and  $g_1(\theta) = c_1$ ; then,

$$B = \frac{\int_{\Theta_0} f(x|\theta) g_0(\theta) d\theta}{\int_{\Theta_1} f(x|\theta) g_1(\theta) d\theta}$$
$$= \frac{c_0 \int_{\Theta_0} f(x|\theta) d\theta}{c_1 \int_{\Theta_1} f(x|\theta) d\theta}.$$

Hence, we can make *B* as big or small as we wish by manipulating the height of the densities  $c_0$  and  $c_1$ , since there is no constant of normalization for improper priors.

### d. Decision Rule:

Consider the case where  $\pi_0 = \pi_1 = \frac{1}{2}$ , then the decision rule is

Reject  $H_0$  if PO < 1,

Accept  $H_0$  if  $PO \ge 1$ .

**e**. Further Remark: Note the symmetric way in which  $H_0$  and  $H_1$  are treated in contrast to frequentist significant testing.

# Bayesian Handling of Nuisance Parameters:

- **a**. Marginalization i.e., nuisance parameters are integrated out.
- **b**. To illustrate, suppose that we can partition

$$\theta = (\theta_1', \theta_2')',$$

where

 $\theta_1$  - parameter (vector) of interest,

 $\theta_2$  - nuisance parameter (vector).

Bayesian inference is based on the marginal posterior distribution of  $\theta_1$  obtained by integrating out  $\theta_2$ , i.e.,

$$p(\theta_1|x) = \int_{\Theta_2} p(\theta_1, \theta_2|x) d\theta_2.$$

# II. An Illustrative Example - Linear Regression Model

Consider the linear model

$$y = X \beta + u, u \sim N(0, \sigma^2 I_T).$$
  
$$T \times I \qquad T \times k_{k \times 1} \qquad T \times 1$$

- **A**. Diffuse Prior Analysis:
- **1**. Diffuse Prior

$$\pi(\beta,\sigma) \propto \frac{1}{\sigma}$$
 for  $0 < \sigma < \infty$ 

#### **Remarks**:

- (i) This prior is uniform on  $\beta$ .
- (ii) This prior is also uniform on  $\theta = \ln \sigma$ , so that the prior density takes the form

$$\pi(\theta) \propto 1.$$

It follows that

$$\pi(\sigma) \propto \left|\frac{d\theta}{d\sigma}\right| = \frac{1}{\sigma}.$$

. Likelihood Function

$$f(y|X,\beta,\sigma) = \frac{1}{(2\pi)^{\frac{T}{2}}\sigma^{T}}$$
$$\exp\left\{-\frac{1}{2\sigma^{2}}(y-X\beta)'(y-X\beta)\right\}$$

. Joint Posterior Distribution

$$p(\beta,\sigma|y,X)$$

$$\propto \frac{1}{(2\pi)^{\frac{T}{2}}\sigma^{T+1}}$$

$$\exp\left\{-\frac{1}{2\sigma^{2}}(y-X\beta)'(y-X\beta)\right\}$$

$$= \frac{1}{(2\pi)^{\frac{T}{2}}\sigma^{T+1}}$$

$$\exp\left\{-\frac{1}{2\sigma^{2}}\left[vs^{2}+\left(\beta-\widehat{\beta}\right)'X'X(\beta-\widehat{\beta})\right]\right\},$$

$$\widehat{\beta} = (X'X)^{-1}X'y,$$

$$s^{2} = \frac{(y - X\widehat{\beta})'(y - X\widehat{\beta})}{v},$$

$$v = T - k$$

4. Marginal Posterior of  $\beta$   $p(\beta|y,X) = \int_{0}^{\infty} p(\beta,\sigma|y,X) d\sigma$  $\propto \left| vs^{2} + \left(\beta - \widehat{\beta}\right)' X' X \left(\beta - \widehat{\beta}\right) \right|^{-\frac{T}{2}}$ 

Note: this marginal posterior of  $\beta$  has a multivariate t distribution with T - k degrees of freedom.

#### **5. Remark**: Note that

 $p(\beta|y,X) \rightarrow \text{normal density as } T \rightarrow \infty.$ This result does not depend on whether *X* consider on lagged dependent variable or not. In particular, consider the special case of a *AR*(1) model, i.e.,

 $y_t = \beta y_{t-1} + u_t, \ i. i. d. N(0, \sigma^2).$ 

The asymptotic normality of the marginal

posterior of  $\beta$  holds even if  $\beta_0 = 1$ , i.e., even if we have a unit root model. THIS IS VERY DIFFERENT FROM RESULTS OBTAINED UNDER THE FREQUENTIST OR CLASSICAL APPROACH.

- **B**. Gaussian Prior Analysis
- **1**. Prior Specification

$$\begin{aligned} \pi(\beta|\sigma) &= \frac{1}{(2\pi)^{\frac{k}{2}} \sigma^k} \\ &\exp\left\{-\frac{1}{2\sigma^2}(\beta-\overline{\beta})'V_\beta(\beta-\overline{\beta})\right\}, \\ \pi(\sigma) &= \frac{1}{\sigma}. \end{aligned}$$

**2.** Marginal Posterior of  $\beta$  $p(\beta|y,X)$ 

$$\propto \left| T \widetilde{s}^{2} + \left( \beta - \widetilde{\beta} \right)' [X'X + V_{\beta}] \left( \beta - \widetilde{\beta} \right) \right|^{-\frac{T+k}{2}},$$

$$\widetilde{\beta} = [X'X + V_{\beta}]^{-1}[X'y + V_{\beta}\overline{\beta}],$$
  

$$\widetilde{s}^{2} = \frac{1}{T} \Big[ y'y + \overline{\beta}' V_{\beta}\overline{\beta} \\ -\widetilde{\beta}'(X'X + V_{\beta})\widetilde{\beta} \Big]$$

**3. Remark**: Note that we can rewrite  $\widetilde{\beta} = [X'X + V_{\beta}]^{-1}(X'X)\widehat{\beta} + [X'X + V_{\beta}]^{-1}V_{\beta}\overline{\beta},$ 

where  $\hat{\beta} = (X'X)^{-1}X'y$ . In the case where k = 1,

$$\widetilde{\beta} = \left(\frac{x'x}{x'x + \nu_{\beta}}\right)\widehat{\beta} + \left(\frac{\nu_{\beta}}{x'x + \nu_{\beta}}\right)\overline{\beta},$$

so  $\tilde{\beta}$  is a linear combination of the *MLE* estimator  $\hat{\beta}$  and the prior mean  $\overline{\beta}$ .

**C**. Model Selection and Hypothesis Testing

Consider the problem of selecting the lag order of an autoregression

 $M_k : y_t = \beta_1 y_{t-1} + ... + \beta_k y_{t-k} + u_t,$ where  $\{u_t\} \equiv i. i. d. N(0, \sigma^2).$ 

**1**. Prior Specification Based on Training Sample:

$$\pi(\beta|\sigma, M_k)$$

$$\propto \frac{1}{\sigma^k} \exp\left\{-\frac{1}{2\sigma^2} e(k)' X_1(k)' X_1(k) e(k)\right\}$$

$$\pi(\sigma|M_k)$$

$$\propto \frac{1}{\sigma^{T_1-k+1}} \exp\left\{-\frac{(T_1-k)s_1^2(k)}{2\sigma^2}\right\},$$

$$e(k) = \beta(k) - \widehat{\beta}_1(k),$$
  
$$s_1^2(k) = \frac{\widehat{u}_1(k)'\widehat{u}_1(k)}{T_1 - k},$$

$$Y_{1} = (y_{1}, \dots, y_{T_{1}})',$$

$$X_{1}(k) = (x_{1}(k), \dots, x_{T_{1}}(k))',$$

$$x_{t}(k) = (y_{t-1}, \dots, y_{t-k})',$$

$$\beta(k) = (\beta_{1}, \dots, \beta_{k})',$$

$$\widehat{\beta}_{1}(k) = [X_{1}(k)'X_{1}(k)]^{-1}X_{1}(k)'Y_{1},$$

$$\widehat{u}_{1}(k) = Y_{1} - X_{1}(k)\widehat{\beta}_{1}(k).$$

**2**. Likelihood Function

$$f(Y_2|\beta,\sigma,X_2,M_k) \propto \frac{1}{\sigma^{T_2}} \exp\left\{-\frac{1}{2\sigma^2}u_2(k)'u_2(k)\right\},$$

$$u_{2}(k) = Y_{2} - X_{2}(k)\beta(k),$$
  

$$Y_{2} = (y_{T_{1}+1}, \dots, y_{T})',$$
  

$$X_{2}(k) = (x_{T_{1}+1}(k), \dots, x_{T}(k))'.$$

3. Marginal Likelihood  $Cr(k) = -\frac{2}{T} \ln(ML_k)$   $= \ln(s^2(k)) + \frac{1}{T} \ln|X(k)'X(k)|$  + lower order terms,

$$s^{2}(k) = \frac{\widehat{u}(k)'\widehat{u}(k)}{T-k},$$
  

$$\widehat{u}(k) = Y - X(k)\widehat{\beta}(k),$$
  

$$Y = (y_{1}, \dots, y_{T})',$$
  

$$X(k) = (x_{1}(k), \dots, x_{T}(k))',$$
  

$$\widehat{\beta}(k) = [X(k)'X(k)]^{-1}X(k)'Y.$$

**Further Approximation:** 

 $Cr(k) = \ln(s^{2}(k)) + \frac{1}{T} \ln|X(k)'X(k)|$ + lower order terms  $= \ln(s^{2}(k)) + \frac{1}{T} \ln T^{k}|X(k)'X(k)/T|$ + lower order terms  $= \ln(s^{2}(k)) + \frac{k}{T} \ln T$ +  $\frac{1}{T} \ln|X(k)'X(k)/T|$ + lower order terms = BIC(k) + lower order terms.

# III. Some Aspects of Bayesian Computation

Laplace's Method Consider the integral

 $\int b(\theta) \exp\{-nh(\theta)\} d\theta,\$ 

where  $h(\theta) = n^{-1} \ln(l(\theta)\pi(\theta))$ . Laplace's method approximates the integral above by expanding the integrand as a Taylor series and then integrate with respect to the quadratic term, i.e.,

$$\int \left( b(\hat{\theta}) + b'(\hat{\theta}) \left(\theta - \hat{\theta}\right) + \dots \right)$$
  

$$\exp \left\{ -n \left[ h(\hat{\theta}) + \frac{1}{2} h''(\hat{\theta}) \left(\theta - \hat{\theta}\right)^2 + \dots \right] \right\} d\theta$$
  

$$= \exp \left\{ -nh(\hat{\theta}) \right\} (2\pi)^{\frac{1}{2}} \left[ nh''(\hat{\theta}) \right]^{-\frac{1}{2}}$$
  

$$\int \left( b(\hat{\theta}) + b'(\hat{\theta}) \left(\theta - \hat{\theta}\right) + \dots \right)$$
  

$$(2\pi)^{-\frac{1}{2}} \sqrt{nh''(\hat{\theta})} \exp \left\{ -\frac{1}{2} nh''(\hat{\theta}) \left(\theta - \hat{\theta}\right)^2 \right\}$$
  

$$(1 + \text{lower order terms}) d\theta$$
  

$$= \exp \left\{ -nh(\hat{\theta}) \right\} (2\pi)^{\frac{1}{2}} \left[ nh''(\hat{\theta}) \right]^{-\frac{1}{2}} b(\hat{\theta})$$
  

$$(1 + \text{lower order terms}),$$
  
where  $\hat{\theta}$  denotes the maximum of  $-h$ .

**Example**: (Chao and Phillips, 1999) Consider joint estimation of cointegrating rank and lag order in the vector error-correction model

$$\Delta y_t = \gamma \beta' y_{t-1} + \Phi_1 \Delta y_{t-1} + \ldots + \Phi_p \Delta y_{t-p} + \varepsilon_t$$
  
=  $Gu_t + \varepsilon_t$ ,

where

$$u_{t} = \begin{bmatrix} \beta' y_{t-1} \\ z_{t} \end{bmatrix},$$
  

$$G = [\gamma, \Phi],$$
  

$$\Phi = [\Phi_{1}, \dots, \Phi_{p}],$$
  

$$z_{t} = [\Delta y'_{t-1}, \dots, \Delta y_{t-p}]'$$

Laplace method was used to construct the PIC criterion which has interpretation as a transformed marginal likelihood

$$PIC(p,r) = \ln \left| \widehat{\Sigma} \right| + \frac{1}{n} \ln \left| \widehat{B}_n \right|.$$

Monte Carlo Integration Consider the integral

$$E(\theta) = \int g(\theta) f(\theta) d\theta,$$

where  $f(\theta)$  is a p.d.f. We can approximate for  $E(\theta)$  by drawing *i.i.d.* sample  $\theta_1, \ldots, \theta_m$  from  $f(\theta)$  and estimate  $E(\theta)$  by

$$\hat{E}(\theta) = \frac{1}{m} \sum_{i=1}^{m} g(\theta_i)$$

By the (strong) law of large number

$$\hat{E}(\theta) \stackrel{a.s.}{\rightarrow} E(\theta)$$

Note that also that the convergence above does not depend on the dimension of  $\theta$ .



#### Importance Sampling

The algorithm above may be inefficient because we may draw a lot of  $\theta_i$  where  $g(\theta)$  is close to zero. Alternatively, we can instead draw an *i.i.d.* sample  $\theta_1, \ldots, \theta_m$ from an importance function  $I(\theta)$  which better mimic the function  $g(\theta)$  and estimate  $E(\theta)$  by

$$\widetilde{E}(\theta) = \frac{\sum_{i=1}^{m} g(\theta_i) w_i}{\sum_{i=1}^{m} w_i}$$

$$w_i = \frac{f(\theta_i)}{I(\theta_i)}$$