Economics 422

Practice Problems

QUESTION 1

Assume that the weight of cereal in a "10-ounce box" is $N(\mu, \sigma^2)$. To test $H_0: \mu = 10.1$ against $H_1: \mu > 10.1$, we take an *i.i.d.* sample of size n = 16 and observe that

$$\overline{X} = \frac{1}{16} \sum_{i=1}^{16} X_i = 10.4$$

and

$$s^2 = \frac{1}{15} \sum_{i=1}^{16} (X_i - \overline{X})^2 = 0.16.$$

Do we reject or fail to reject H_0 at the 5% significance level? Justify your answer with the necessary calculations.

QUESTION 2

Let X and Y be discrete random variables with joint probability distribution given by

(x,y)	(0,0)	(0,1)	(0, 2)	(1,1)	(1, 2)	(2,2)
p(x,y)	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{1}{12}$

where p(x, y) is equal to zero elsewhere. Find

- (a) the marginal distribution of **X**;
- (b) the marginal distribution of **Y**;
- (c) $E(\mathbf{X})$
- (d) $E(\mathbf{Y})$
- (e) ρ_{XY} , i.e., the correlation coefficient of **X** and **Y**.

QUESTION 3

Let $X_1, X_2,, X_{64}$ be an *i.i.d.* sample drawn from a normal distribution with mean μ and variance σ^2 . Find the probability of the event

$$\left| \overline{X} - \mu \right| < 0.5\sigma,$$

where \overline{X} is the sample average.

QUESTION 4

Let $X_1, X_2,, X_n$ be an *i.i.d.* sample drawn from a normal distribution with mean 0 and variance σ^2

(a) Is

$$\widetilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

an unbiased estimator of σ^2 ? If so, prove it. If not, explain why not.

(b) If n = 20 and $\sigma^2 = 16$, find c such that $P(\tilde{\sigma}^2 > c) = 0.05$.

QUESTION 5

Suppose that a random sample of 200 twenty-year-old men is selected from a population and that these men's height and weight are recorded. A regression of weight on height yields

$$\widehat{Weight} = -101 + 3.2 \times Height, \ R^2 = 0.81, \ SER = 10.2,$$

where Weight is measured in pounds and Height is measured in inches.

- (a) What is the regression's weight prediction for someone who is 64 inches tall?
- (b) Suppose that a man has a late growth spurt and grows 2 inches over the course of a year. What is the regression's prediction for the increase in this man's weight?