Economics 422

Midterm Examination Solution Sheet

Multiple-Choice Questions

- 1. c
- 2. b
- 3. a
- 4. b
- 5. d
- 6. a
- 7. b
- 8. a
- 9. d 10. b

Problems

11. (a) From the OLS formulae, we have

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{110} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sum_{i=1}^{110} (X_{i} - \overline{X})^{2}}$$

$$= \frac{7625.9}{1248.9}$$

$$\approx 6.1061$$

Moreover,

$$\overline{Y} = \frac{1}{110} \sum_{i=1}^{110} Y_i = \frac{17,375}{110} \approx 157.955,$$

$$\overline{X} = \frac{1}{110} \sum_{i=1}^{110} X_i = \frac{7665.5}{110} \approx 69.686$$

so that

$$\widehat{\boldsymbol{\beta}}_0 = \overline{Y} - \widehat{\boldsymbol{\beta}}_1 \overline{X} = 157.955 - (6.1061) \, (69.686) \approx -267.555$$

(b) Note first that

$$\widehat{Y}_{i} - \overline{Y} = \widehat{\beta}_{0} + \widehat{\beta}_{1} X_{i} - \overline{Y}$$

$$= \overline{Y} - \widehat{\beta}_{1} \overline{X} + \widehat{\beta}_{1} X_{i} - \overline{Y}$$

$$= \widehat{\beta}_{1} \left(X_{i} - \overline{X} \right)$$

It follows that

$$R^{2} = \frac{\sum_{i=1}^{110} \left(\widehat{Y}_{i} - \overline{Y}\right)^{2}}{\sum_{i=1}^{110} \left(Y_{i} - \overline{Y}\right)^{2}}$$

$$= \frac{\widehat{\beta}_{1}^{2} \sum_{i=1}^{110} \left(X_{i} - \overline{X}\right)^{2}}{\sum_{i=1}^{110} \left(Y_{i} - \overline{Y}\right)^{2}}$$

$$\approx (6.1061)^{2} \frac{1248.9}{94,228.8}$$

$$\approx 0.4942$$

What this \mathbb{R}^2 measure shows is that around 49% of the variance in Y has been explained by X.

12.

(a) Note that, since the data sample is i.i.d. (0,4) under the null hypothesis,

$$E\left[\overline{X}_n\right] = 0$$

$$Var\left(\overline{X}_n\right) = \frac{4}{\sqrt{n}},$$

so that by the central limit theorem

$$Z_{n} = \frac{\overline{X}_{n}}{2/\sqrt{n}} = \frac{\sqrt{n}\overline{X}_{n}}{2} \stackrel{a}{\sim} N(0,1)$$

when the sample size n is large. This implies that

$$\sqrt{nX_n} = 2Z_n \stackrel{a}{\sim} N(0,4).$$

(b) Note that

$$\Pr\left[-1.25 \le \overline{X}_n - 1 \le -0.5\right]$$

$$= \Pr\left[-0.25 \le \overline{X}_n \le 0.5\right]$$

$$= \Pr\left[\frac{\sqrt{100}}{2}\left(-0.25\right) \le \frac{\sqrt{100}\overline{X}_n}{2} \le \frac{\sqrt{100}}{2}0.5\right]$$

$$\approx \Pr\left[-1.25 \le Z \le 2.5\right]$$

$$= \Pr\left[Z \le 2.5\right] - \Pr\left[Z \le -1.25\right]$$

$$= 0.9938 - 0.1056$$

$$= 0.8882.$$