Economics 422 Quiz 1

- 1. (10 points) An estimator $\hat{\mu}_Y$ of the population mean μ_Y is unbiased if
 - a. \overline{Y} has the smallest variance of all estimators.
 - b. $\widehat{\mu}_Y \xrightarrow{p} \mu_Y$.
 - c. $E\left[\widehat{\mu}_Y\right] = \mu_Y$.
 - d. $\widehat{\mu}_Y = 0$.
- 2. (10 points) Suppose that $Y_1, Y_2, ..., Y_n$ denotes an i.i.d. sample from a population with mean μ_Y and variance σ_Y^2 , and let $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ be the sample mean. Then, each of the following is true except
 - a. $E[\overline{Y}] = \mu_Y$.
 - b. $E\left[\overline{Y}\right] > E\left[Y_1\right]$.
 - c. \overline{Y} is efficient among linear, unbiased estimators.
 - d. \overline{Y} is a random variable.
- 3. (10 points) The expected value of a discrete random variable
 - a. is the outcome that is most likely to occur.
 - b. always equals $\frac{1}{n} \sum_{i=1}^{n} Y_i$
 - c. is computed as a weighted average of the possible outcomes of that random variable, where the weights are the probabilities associated with the individual outcomes.
 - d. equals the population median.

4. (10 points) Let X and Y be two random variables with covariance denoted by σ_{xy} and standard deviations denoted by σ_x and σ_y , respectively. Which of the cases listed below does not necessarily imply that X and Y are uncorrelated

a.
$$E[Y|X] = 0$$
.

b.
$$|\sigma_{xy}| \leq \sigma_x \sigma_y$$
.

c.
$$X$$
 and Y are independent.

d. X and Y have zero covariance.

5. (10 points) An estimator $\hat{\mu}_Y$ of the population mean μ_Y is more efficient when compared to another estimator $\tilde{\mu}_Y$ if

a.
$$E\left[\widehat{\mu}_{Y}\right] < E\left[\widetilde{\mu}_{Y}\right]$$
.

b.
$$var(\widetilde{\mu}_Y) = 0$$
.

c. the probability distribution of $\widetilde{\mu}_Y$ is more concentrated around μ_Y than that of $\widehat{\mu}_Y$.

d. both estimators are unbiased, and $var(\widehat{\mu}_Y) < var(\widetilde{\mu}_Y)$.

6. (10 points) Suppose that $Y_1, Y_2, ..., Y_n$ denotes an i.i.d. sample from a population with mean μ_Y and variance σ_Y^2 , and let $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ be the sample mean. Then, the standard deviation of \overline{Y} is given by

a.
$$\sigma_Y/\sqrt{n}$$
.

b.
$$\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2}$$
.

c.
$$\sigma_Y^2/n$$
.

d.
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n} (Y_i - \overline{Y})^2}$$
.

- 7. (10 points) Two random variables X and Y are independently distributed if all of the following conditions hold, with the exception of
 - a. $\Pr(Y = y | X = x) = \Pr(Y = y)$.
 - b. knowing the value of one of the variables provides no information about the other.
 - c. if the conditional distribution of Y given X equals the marginal distribution of Y.
 - d. E(Y) = E[E(Y|X)].
- 8. (10 points) A type I error is
 - a. always 5%.
 - b. the error you make in failing to reject the null hypothesis when it is in fact false.
 - c. has probability smaller than that of type II error.
 - d. the error you make when rejecting the null hypothesis when it is true.