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Econ 422 – Lecture Notes 
Part II 

 
(These notes are slightly modified versions of lecture notes provided by 

Stock and Watson, 2007. They are for instructional purposes only  
and are not to be distributed outside of the classroom.)  
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Regression with a Single Regressor: 
Hypothesis Tests and Confidence Intervals 

 
Overview 
• Now that we have the sampling distribution of OLS 

estimator, we are ready to perform hypothesis tests about 
β1 and to construct confidence intervals about β1 

• Also, we will cover some loose ends about regression: 
o Regression when X is binary (0/1) 
o Heteroskedasticity and homoskedasticity 
o Efficiency of the OLS estimator 
o Use of the t-statistic in hypothesis testing 
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But first… a big picture view (and review) 
We want to learn about the slope of the population 

regression line, using data from a sample (so there is 
sampling uncertainty).  There are four steps towards this goal: 

1. State precisely the population object of interest  
2. Derive the sampling distribution of an estimator (this 

requires certain assumptions) 
3. Estimate the variance of the sampling distribution 

(which the CLT tells us is all you need to know if n is 
large) – that is, finding the standard error (SE) of the 
estimator – using only the information in the sample at 
hand! 

4. Use the estimator ( 1̂β ) to obtain a point estimate and, 
with its SE, hypothesis tests, and confidence intervals. 
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Object of interest:  β1 in, 
    Yi = β0 + β1Xi + ui, i = 1,…, n 
β1 = ΔY/ΔX, for an autonomous change in X (causal effect) 
 
The Least Squares Assumptions: 
1. E(u|X = x) = 0. 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare (E(X4) < ∞, E(Y4) < ∞. 
 
The Sampling Distribution of 1̂β  : 

Under the LSA’s, for n large, 1̂β  is approximately distributed, 

 1̂β   ~ 
2

1 4, v

X

N
n
σβ
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where vi = (Xi – μX)ui  
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Hypothesis Testing and the Standard Error of 1̂β  
 
The objective is to test a hypothesis, like β1 = 0, using data – 
to reach a tentative conclusion whether the (null) hypothesis 
is correct or incorrect. 
General setup 

Null hypothesis and two-sided alternative: 
H0:  β1 = β1,0  vs. H1:  β1 ≠ β1,0 

where β1,0 is the hypothesized value under the null. 
 

Null hypothesis and one-sided alternative: 
H0:  β1 = β1,0  vs. H1:  β1 < β1,0 
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General approach: construct t-statistic, and compute p-value 
(or compare to N(0,1) critical value) 
 

• In general:    t = estimator - hypothesized value
standard error of the estimator

   

 
where the SE of the estimator is the square root of an 
estimator of the variance of the estimator. 

• For testing the mean of Y:   t = ,0

/
Y

Y

Y
s n

μ−
 

• For testing β1,         t = 1 1,0

1

ˆ
ˆ( )SE

β β
β

−
  ,  

where SE( 1̂β ) = the square root of an estimator of the 
variance of the sampling distribution of 1̂β  
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Formula for SE( 1̂β ) 

Recall the expression for the variance of 1̂β  (large n): 
 

var( 1̂β ) = 2 2

var[( ) ]
( )

i x i

X

X u
n

μ
σ
−  = 

2

4
v

Xn
σ
σ

, where vi = (Xi – μX)ui.   

The estimator of the variance of 1̂β  replaces the unknown 
population values of 2

νσ  and 4
Xσ  by estimators constructed 

from the data: 
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where ˆiv  = ˆ( )i iX X u− . 
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SE( 1̂β ) = 
1

2
ˆˆ
β

σ  = the standard error of 1̂β  

 
OK, this is a bit nasty, but: 
• It is less complicated than it seems.  The numerator 

estimates var(v), the denominator estimates var(X). 
• Why the degrees-of-freedom adjustment n – 2?  Because 

two coefficients have been estimated (β0 and β1). 
• SE( 1̂β ) is computed by regression software 
• STATA has memorized this formula so you don’t need to. 
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Summary:  To test H0: β1 = β1,0 v.  H1: β1 ≠ β1,0, 
• Construct the t-statistic 

t = 1 1,0

1

ˆ
ˆ( )SE

β β
β

−
 = 

1

1 1,0

2
ˆ

ˆ

ˆ
β

β β

σ

−
   

• Reject at 5% significance level if |t| > 1.96 
• The p-value is p = Pr[|t| > |tact|] = probability in tails of 

normal outside |tact|; you reject at the 5% significance level 
if the p-value is < 5%. 

• This procedure relies on the large-n approximation; 
typically n = 50 is large enough for the approximation to 
be excellent. 
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Example:  Test Scores and STR, California data 
 
Estimated regression line:  TestScore  = 698.9 – 2.28×STR 
 
Regression software reports the standard errors: 

 
SE( 0β̂ ) = 10.4   SE( 1̂β ) = 0.52 

 

t-statistic testing β1,0 = 0 = 1 1,0

1

ˆ
ˆ( )SE

β β
β

−
 = 2.28 0

0.52
− −  = –4.38 

 
• The 1% 2-sided significance level is 2.58, so we reject the 

null at the 1% significance level. 
• Alternatively, we can compute the p-value… 
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The p-value based on the large-n standard normal 
approximation to the t-statistic is 0.00001 (10–5) 
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Confidence Intervals for β1 
 
Recall that a 95% confidence is, equivalently: 
• The set of points that cannot be rejected at the 5% 

significance level; 
• A set-valued function of the data (an interval that is a 

function of the data) that contains the true parameter value 
95% of the time in repeated samples. 

 
Because the t-statistic for β1 is N(0,1) in large samples, 
construction of a 95% confidence for β1 is just like the case of 
the sample mean:  
      95% confidence interval for β1 = { 1̂β  ±1.96×SE( 1̂β )} 
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Confidence interval example:  Test Scores and STR 
Estimated regression line:  TestScore  = 698.9 – 2.28×STR 

 
SE( 0β̂ ) = 10.4   SE( 1̂β ) = 0.52 

 
95% confidence interval for 1̂β : 
 

{ 1̂β  ± 1.96×SE( 1̂β )} = {–2.28 ± 1.96×0.52} 
        = (–3.30, –1.26) 
 
The following two statements are equivalent (why?) 
• The 95% confidence interval does not include zero; 
• The hypothesis β1 = 0 is rejected at the 5% level 
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A concise (and conventional) way to report regressions: 
Put standard errors in parentheses below the estimated 
coefficients to which they apply. 
 

 TestScore  = 698.9 – 2.28×STR, R2 = .05, SER = 18.6 
(10.4)  (0.52) 

 
This expression gives a lot of information 
• The estimated regression line is  

TestScore  = 698.9 – 2.28×STR 
• The standard error of 0β̂  is 10.4 

• The standard error of 1̂β  is 0.52 
• The R2 is .05; the standard error of the regression is 18.6 
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OLS regression:  reading STATA output 
 
regress testscr str, robust 

 
Regression with robust standard errors            Number of obs =     420 
                                                  F(  1,   418) =   19.26 
                                                  Prob > F      =  0.0000 
                                                  R-squared     =  0.0512 
                                                  Root MSE      =  18.581 
------------------------------------------------------------------------- 
        |               Robust 
testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------+---------------------------------------------------------------- 
    str |  -2.279808   .5194892    -4.38   0.000    -3.300945   -1.258671 
  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 
------------------------------------------------------------------------- 

so: 

  TestScore  = 698.9 – 2.28×STR, , R2 = .05, SER = 18.6 
 (10.4) (0.52) 

t (β1 = 0) = –4.38,    p-value = 0.000 (2-sided) 
95% 2-sided conf. interval for β1 is (–3.30, –1.26) 
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Summary of Statistical Inference about β0 and β1: 
Estimation: 
• OLS estimators 0β̂  and 1̂β  
• 0β̂  and 1̂β  have approximately normal sampling 

distributions in large samples 
Testing: 
• H0: β1 = β1,0 v. β1 ≠ β1,0 (β1,0 is the value of β1 under H0) 
• t = ( 1̂β  – β1,0)/SE( 1̂β ) 
• p-value = area under standard normal outside tact (large n) 

Confidence Intervals: 
• 95% confidence interval for β1 is { 1̂β  ± 1.96×SE( 1̂β )} 
• This is the set of β1 that is not rejected at the 5% level 
• The 95% CI contains the true β1 in 95% of all samples. 
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Regression when X is Binary 
 
Sometimes a regressor is binary: 
• X = 1 if small class size, = 0 if not  
• X = 1 if female, = 0 if male 
• X = 1 if treated (experimental drug), = 0 if not 
 
Binary regressors are sometimes called “dummy” variables. 
  
So far, β1 has been called a “slope,” but that doesn’t make 
sense if X is binary. 
 
How do we interpret regression with a binary regressor? 
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Interpreting regressions with a binary regressor 
Yi = β0 + β1Xi + ui, where X is binary (Xi = 0 or 1): 

 
When Xi = 0, Yi = β0 + ui  

• the mean of Yi is β0 
• that is, E(Yi|Xi=0) = β0 

 
When Xi = 1, Yi = β0 + β1 + ui  

• the mean of Yi is β0 + β1 
• that is, E(Yi|Xi=1) = β0 + β1 

so:  
 β1 = E(Yi|Xi=1) – E(Yi|Xi=0)  

= population difference in group means 
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Example:    Let Di = 
1 if 20
0 if 20

i

i

STR
STR

≤⎧
⎨ >⎩

 

 
OLS regression:  TestScore  = 650.0 + 7.4×D 

(1.3)   (1.8) 
Tabulation of group means: 
Class Size Average score (Y ) Std. dev. (sY) N 

Small (STR ≤ 20) 657.4 19.4 238 
Large (STR > 20) 650.0 17.9 182 

 
Difference in means: small largeY Y−  = 657.4 – 650.0 = 7.4 

Standard error:  SE =
2 2
s l

s l

s s
n n

+  = 
2 219.4 17.9

238 182
+  = 1.8 
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Hypothesis testing 
Difference-in-means test:  compute the t-statistic, 
 

2 2 ( )s l

s l

s l s l

s s s l
n n

Y Y Y Yt
SE Y Y

− −
= =

−+
   

 
where SE( sY  – lY ) is the “standard error” of sY  – lY ; the 
subscripts s and l refer to “small” and “large” STR 

districts; and 2 2

1

1 ( )
1

sn

s i s
is

s Y Y
n =

= −
− ∑  (etc.) 
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Compute the difference-of-means t-statistic: 
 

Size Y  sY n 
small 657.4 19.4 238 
large 650.0 17.9 182 

 

2 2 2 219.4 17.9
238 182

657.4 650.0 7.4
1.83s l

s l

s l

s s
n n

Y Yt − −
= = =

+ +
 = 4.05 

 
|t| > 1.96, so reject (at the 5% significance level) the null 
hypothesis that the two means are the same. 
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Confidence interval 
A 95% confidence interval for the difference between the 
means is, 
 

( sY  – lY ) ± 1.96×SE( sY  – lY ) 
     = 7.4 ±1.96×1.83 = (3.8, 11.0) 
 
Two equivalent statements: 
1. The 95% confidence interval for Δ doesn’t include 0; 
2. The hypothesis that Δ = 0 is rejected at the 5% level.  
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Summary:  regression when Xi is binary (0/1) 

 
Yi = β0 + β1Xi + ui 

 
• β0 = mean of Y when X = 0 
• β0 + β1 = mean of Y when X = 1 
• β1 = difference in group means, X =1 minus X = 0 
• SE( 1̂β ) has the usual interpretation 
• t-statistics, confidence intervals constructed as usual 
• This is another way (an easy way) to do difference-in-

means analysis 
• The regression formulation is especially useful when we 

have additional regressors 
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Heteroskedasticity and Homoskedasticity, and 
Homoskedasticity-Only Standard Errors  

 
• What…? 
• Consequences of homoskedasticity 
• Implication for computing standard errors 

 
What do these two terms mean? 

If var(u|X=x) is constant – that is, if the variance of the 
conditional distribution of u given X does not depend on X 
– then u is said to be homoskedastic.  Otherwise, u is 
heteroskedastic. 
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Example: hetero/homoskedasticity in the case of a binary 
regressor (that is, the comparison of means) 
• Standard error when group variances are unequal: 

SE =
2 2
s l

s l

s s
n n

+   

• Standard error when group variances are equal: 

SE = 1 1
p

s l

s
n n

+  

where  2
ps  = 

2 2( 1) ( 1)
2

s s l l

s l

n s n s
n n

− + −
+ −

   

sp = “pooled estimator of σ2” when 2
lσ  = 2

sσ  

• Equal group variances = homoskedasticity 
• Unequal group variances = heteroskedasticity 
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Homoskedasticity in a picture: 
 

 
• E(u|X=x) = 0 (u satisfies Least Squares Assumption #1) 
• The variance of u does not depend on x  
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Heteroskedasticity in a picture: 
 

 
• E(u|X=x) = 0 (u satisfies Least Squares Assumption #1) 
• The variance of u does depends on x: u is heteroskedastic. 
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A real-data example from labor economics:  average hourly 
earnings vs. years of education (data source: Current 
Population Survey): 

 
Heteroskedastic or homoskedastic? 
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The class size data: 
 

 
 

Heteroskedastic or homoskedastic? 
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So far we have (without saying so) assumed that u might be 
heteroskedastic. 
 
Recall the three least squares assumptions: 

1. E(u|X = x) = 0 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare 

 
Heteroskedasticity and homoskedasticity concern var(u|X=x).  
Because we have not explicitly assumed homoskedastic 
errors, we have implicitly allowed for heteroskedasticity. 
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What if the errors are in fact homoskedastic? 
• You can prove that OLS has the lowest variance among 

unbiased estimators that are linear in Y… a result called 
the Gauss-Markov theorem that we will return to shortly. 

• The formula for the variance of 1̂β  and the OLS standard 
error simplifies:  If var(ui|Xi=x) = 2

uσ , then 

var( 1̂β ) = 2 2

var[( ) ]
( )

i x i

X

X u
n

μ
σ
−  = 

2 2

2 2

[( ) ]
( )
i x i

X

E X u
n

μ
σ
−   

= 
2

2
u

Xn
σ
σ

 

Note: var( 1̂β ) is inversely proportional to var(X):  more 

spread in X means more information about 1̂β  - we 
discussed this earlier but it is clearer from this formula. 
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• Along with this homoskedasticity-only formula for the 
variance of 1̂β , we have homoskedasticity-only standard 
errors: 
Homoskedasticity-only standard error formula: 

 

SE( 1̂β  ) =   

2

1

2

1

1 ˆ
1 2

1 ( )

n

i
i

n

i
i

u
n

n X X
n

=

=

−×
−

∑

∑
. 

 
Some people (e.g. Excel programmers) find the 
homoskedasticity-only formula simpler. 
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We now have two formulas for standard errors for 1̂β .  
• Homoskedasticity-only standard errors – these are valid 

only if the errors are homoskedastic. 
• The usual standard errors – to differentiate the two, it is 

conventional to call these heteroskedasticity – robust 
standard errors, because they are valid whether or not the 
errors are heteroskedastic. 

• The main advantage of the homoskedasticity-only 
standard errors is that the formula is simpler.  But the 
disadvantage is that the formula is only correct in general 
if the errors are homoskedastic. 
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Practical implications…  
• The homoskedasticity-only formula for the standard error 

of 1̂β  and the “heteroskedasticity-robust” formula differ – 
so in general, you get different standard errors using the 
different formulas. 

• Homoskedasticity-only standard errors are the default 
setting in regression software – sometimes the only setting 
(e.g. Excel).  To get the general “heteroskedasticity-
robust” standard errors you must override the default. 

• If you don’t override the default and there is in fact 
heteroskedasticity, your standard errors (and wrong t-
statistics and confidence intervals) will be wrong – 
typically, homoskedasticity-only SEs are too small. 



 5-35

Heteroskedasticity-robust standard errors in STATA  
 
regress testscr str, robust 

 
Regression with robust standard errors            Number of obs =     420 
                                                  F(  1,   418) =   19.26 
                                                  Prob > F      =  0.0000 
                                                  R-squared     =  0.0512 
                                                  Root MSE      =  18.581 
------------------------------------------------------------------------- 
        |               Robust 
testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------+---------------------------------------------------------------- 
    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 
  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 
------------------------------------------------------------------------- 

 
• If you use the “, robust” option, STATA computes 

heteroskedasticity-robust standard errors 
• Otherwise, STATA computes homoskedasticity-only 

standard errors 
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The bottom line: 
• If the errors are either homoskedastic or heteroskedastic 

and you use heteroskedastic-robust standard errors, you 
are OK 

• If the errors are heteroskedastic and you use the 
homoskedasticity-only formula for standard errors, your 
standard errors will be wrong (the homoskedasticity-only 
estimator of the variance of 1̂β  is inconsistent if there is 
heteroskedasticity). 

• The two formulas coincide (when n is large) in the special 
case of homoskedasticity 

• So, you should always use heteroskedasticity-robust 
standard errors. 
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Some Additional Theoretical Foundations of OLS 
 

We have already learned a very great deal about OLS: 
OLS is unbiased and consistent; we have a formula for 
heteroskedasticity-robust standard errors; and we can 
construct confidence intervals and test statistics. 

 
Also, a very good reason to use OLS is that everyone else 

does – so by using it, others will understand what you are 
doing.  In effect, OLS is the language of regression analysis, 
and if you use a different estimator, you will be speaking a 
different language. 
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Still, some of you may have further questions: 
• Is this really a good reason to use OLS?  Aren’t there 

other estimators that might be better – in particular, ones 
that might have a smaller variance? 

• Also, what ever happened to our old friend, the Student t 
distribution? 

 
So we will now answer these questions – but to do so we will 
need to make some stronger assumptions than the three least 
squares assumptions already presented. 
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The Extended Least Squares Assumptions 
These consist of the three LS assumptions, plus two more: 

1. E(u|X = x) = 0. 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare (E(Y4) < ∞, E(X4) < ∞). 
4. u is homoskedastic 
5. u is distributed N(0,σ2) 

 
• Assumptions 4 and 5 are more restrictive – so they apply 

to fewer cases in practice.  However, if you make these 
assumptions, then certain mathematical calculations 
simplify and you can prove strong results – results that 
hold if these additional assumptions are true. 

• We start with a discussion of the efficiency of OLS 
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Efficiency of OLS, part I:  The Gauss-Markov Theorem 
 

Under extended LS assumptions 1-4 (the basic three, plus 
homoskedasticity), 1̂β  has the smallest variance among all 
unbiased linear estimators (unbiased estimators that are linear 
functions of Y1,…, Yn).  This is the Gauss-Markov theorem. 
 
Comments 
• The GM theorem is proven in SW Appendix 5.2 
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The Gauss-Markov Theorem, ctd. 

• 1̂β  is a linear estimator, that is, it can be written as a linear 
function of Y1,…, Yn: 

1̂β  – β1 =  1

2

1

( )

( )

n

i i
i

n

i
i

X X u

X X

=

=

−

−

∑

∑
  =  

1

1 n

i i
i

w u
n =
∑ ,  

where wi = 
2

1

( )
1 ( )

i
n

i
i

X X

X X
n =

−

−∑
. 

• The G-M theorem says that among all possible choices of 
{wi}, the OLS weights yield the smallest var( 1̂β ) 
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Efficiency of OLS, part II: 
• Under all five extended LS assumptions – including 

normally distributed errors – 1̂β  has the smallest variance of 
all consistent estimators (linear or nonlinear functions of 
Y1,…,Yn), as n →∞. 

• This is a pretty amazing result – it says that, if (in addition 
to LSA 1-3) the errors are homoskedastic and normally 
distributed, then OLS is a better choice than any other 
consistent estimator.  And because an estimator that isn’t 
consistent is a poor choice, this says that OLS really is the 
best you can do – if all five extended LS assumptions hold.  
(The proof of this result is beyond the scope of this course 
and it is typically done in graduate courses.) 
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Some not-so-good thing about OLS 
The foregoing results are impressive, but these results – and 
the OLS estimator – have important limitations. 

 
1. The GM theorem really isn’t that compelling: 

• The condition of homoskedasticity often doesn’t hold 
(homoskedasticity is special) 

• The result is only for linear estimators – only a small 
subset of estimators (more on this in a moment)   

 
2. The strongest optimality result (“part II” above) requires 

homoskedastic normal errors – not plausible in applications 
(think about the hourly earnings data!) 
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Limitations of OLS, ctd. 
3. OLS is more sensitive to outliers than some other 

estimators.  In the case of estimating the population mean, if 
there are big outliers, then the median is preferred to the 
mean because the median is less sensitive to outliers – it has 
a smaller variance than OLS when there are outliers.  
Similarly, in regression, OLS can be sensitive to outliers, 
and if there are big outliers other estimators can be more 
efficient (have a smaller variance).  One such estimator is 
the least absolute deviations (LAD) estimator: 

0 1, 0 1
1

min ( )
n

b b i i
i

Y b b X
=

− +∑
 

In virtually all applied regression analysis, OLS is used – and 
that is what we will do in this course too. 
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Inference if u is Homoskedastic and Normal: 
the Student t Distribution (Section 5.6) 

 
Recall the five extended LS assumptions: 

1. E(u|X = x) = 0. 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare (E(Y4) < ∞, E(X4) < ∞). 
4. u is homoskedastic 
5. u is distributed N(0,σ2) 

 
If all five assumptions hold, then: 
• 0β̂  and 1̂β  are normally distributed for all n (!) 
• the t-statistic has a Student t distribution with n – 2 

degrees of freedom – this holds exactly  for all n (!) 
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Normality of the sampling distribution of 1̂β  under 1–5: 

1̂β  – β1 =  1

2

1

( )
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i i
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What is the distribution of a weighted average of normals? 
Under assumptions 1 – 5: 

1̂β  – β1 ~ 2 2
2

1

10,
n

i u
i

N w
n

σ
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑      (*) 

Substituting wi into (*) yields the homoskedasticity-only 
variance formula. 
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In addition, under assumptions 1 – 5, under the null 
hypothesis the t statistic has a Student t distribution with n – 2 
degrees of freedom 
• Why n – 2? because we estimated 2 parameters, β0 and β1 
• For n < 30, the t critical values can be a fair bit larger than 

the N(0,1) critical values 
• For n > 50 or so, the difference in tn–2 and N(0,1) 

distributions is negligible.  Recall the Student t table: 
 

degrees of freedom 5% t-distribution critical value 
10 2.23 
20 2.09 
30 2.04 
60 2.00 
∞ 1.96 
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Practical implication: 
• If n < 50 and you really believe that, for your application, u 

is homoskedastic and normally distributed, then use the tn–2 
instead of the N(0,1) critical values for hypothesis tests and 
confidence intervals. 

• In most econometric applications, there is no reason to 
believe that u is homoskedastic and normal – usually, there 
is good reason to believe that neither assumption holds. 

• Fortunately, in modern applications, n > 50, so we can rely 
on the large-n results presented earlier, based on the CLT, to 
perform hypothesis tests and construct confidence intervals 
using the large-n normal approximation. 
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Summary and Assessment (Section 5.7) 
 
• The initial policy question: 

Suppose new teachers are hired so the student-teacher 
ratio falls by one student per class.  What is the effect 
of this policy intervention (“treatment”) on test scores? 

• Does our regression analysis answer this convincingly? 
o Not really – districts with low STR tend to be ones with 

lots of other resources and higher income families, 
which provide kids with more learning opportunities 
outside school…this suggests that corr(ui, STRi) > 0, so 
E(ui|Xi)¹0. 

o So, we have omitted some factors, or variables, from our 
analysis, and this has biased our results. 


