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1 These notes are based in large part on Chapter 16 of Stock and Watson (2011).

They are for instructional purposes only and are not to be distributed outside of the
classroom.
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Vector Autoregression (VAR)

@ Motivation: One may be interested in forecasting two or more
variables; such as rate of inflation, rate of unemployment, growth rate
of GDP, and interest rates. In this case, it is beneficial to develop a
single model that allows you to forecast all these variables in a
systemic approach.

o Definition: A VAR (p), i.e., a vector autoregression of order p, a set
of m time series regressions, in which the regressors are the p lagged
values of the m time series variables.

o Example: m = 2 case

Yir = PByot+ By Yieer -+ ,Blpylt—p
Y11 Yor-1+ Y1 Yor—p + ULt

Yor = PBogt+ By Y1+ + ﬁzpylt—p
+Y01 Yor—1+ -+ Yop Yor—p + U2t
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Estimation and Inference

o Algebraically, the VAR model is simply a system of m linear
regressions; or, to put it another way, it is a multivariate linear
regression model.

@ The coefficients of the VAR can be estimated by estimating each
equation by OLS.

@ Under appropriate conditions, the OLS estimators are consistent and
have a joint normal distribution in large samples in the stationary case.

@ In consequence, in the stationary case, inference can proceed in the
usual way; for example, 95% confidence interval on coefficients can be
constructed based on the usual rule:

estimated coefficients £ 1.96 x standard errors.
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Estimation and Inference (con't)

o An Advantage of the VAR: By modeling the dynamics of m
variables as a system, one can test joint hypotheses that involve
restrictions across multiple equations.

o Example: In a two-varlable VAR (1), one might be interested in
testing the null hypothesis

Ho : By; —Boy =0

on the unrestricted model

Yie = :310 + By Yie-1 + 711 Yor-1 + urg,
Yor = 1820 + ,321 Yit—1 + Y91 Yor—1 + uot.

@ Since the estimated coefficients have a jointly normal large sample
distribution, the restrictions on these coefficients can be tested by
computing the t- or the F-statistic.

@ Importantly, many hypotheses of interest to economists can be
formulated as cross-equation restrictions.
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Modeling Issues

@ How many variables should be included in a VAR?

(i) Having more variables leads to having more coefficients to estimate
which, in turn, increases estimation error and can result in a
deterioration of forecast accuracy.

(ii) Concrete example: A VAR with 5 variables and 4 lags will have 21
coefficients to estimate in each equation, leading to a total of 105
coefficients that must be estimated.

(iii) A preferred strategy is to keep m relatively small and to make sure that
the variables included are plausibly related to each other, so that they
will be useful in forecasting one another.

(iv) For example, economic theory suggests that the inflation rate, the
unemployment rate, and the short-term interest rate are related to one
another, suggesting that it would be useful to model these variables
together in a VAR system.
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Modeling Issues (con't)

@ Determining the lag order in VAR's
(i) We can estimate the lag length of a VAR using either the F-test or an
information criterion, but the latter is preferred as it trades off between
goodness of fit and the dimension of the model, whereas the F-test
does not.
(i) BIC in the vector case:

InT

T
where fu is an estimate of ¥, the m X m covariance matrix of the
VAR errors. Let Uj; and Uj; be, respectively, the OLS residual for the

BIC (p) = In [det (£, )] + m (mp+1)

ith and jth equations, respectively, and note that the (i,j)th element of
Y., is given by

N T
Xy (1)) = T Z Uit Ujt,
t=1

i.e., an estimate of Cov (uj, uj). Moreover, det (iu> denotes the

determinant of the matrix iu.
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Modeling Issues (con't)

@ Determining the lag order in VAR's (con't)
(iii) AIC in the vector case: Analogous to BIC,
~ 2
AIC (p) =1In {det (ZUH +m(mp+1) -
(iv) Note that "penalty term" for both AIC and BIC involves the factor
m(mp+1),

whih is the total number of coefficients in an m-variable VAR(p)
model, as there are m equations each having an intercept as well as p
lags of the m variables.

(v) Note also that increasing the lag order by one leads to an additional
m? coefficients to estimate.

(vi) Let P ={0,1,2,....,p}. As in the univariate case, we can select the
lag order based on BIC or AIC using the following estimation rule

Peic = in BIC (p),
PBiC arg min (p)

Paic = argmin AIC (p).
peP
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Empirical Example: A VAR Model of the Rates of Inflation

and Unemployment

e Estimating a VAR (4) model for Alnf; and Unemp; using data from
1982:1 to 2004:1V gives the following result:

Alnf, = 1.47 — 0.64AInf,_; — 0.64AInfi_y — 0.13Alnfi_3
(0.55)  (0.12) (0.10) (0.11)
—0.13AlInf;_4 — 3.49 Unemp; _1 + 2. 80 Unemp;_»
(0.09) (0.58) (0.94)

+2.44 Unemp;_3 — 2. 03 Unemp;_y4, (ﬁ = 0.44) ;
(1.07) (0.55)

Unemp, = 0.22 + 0.005A/nf,_; — 0.004Alnf,_, — 0.007 Alnfi_3

(0.12)  (0.017) (0.018) (0.018)
—0. 003Alnft s+ L 52 Unemp;:_1 — 0.29 Unemp;_»
(0.014) (0.11) (0.18)

—0.43 Unemp;_3 + 0.16 Unemp;_a4, (ﬁ2 — 0.982) .
(0.21) (0.11)
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Empirical Example (con't)

o Granger Causality Tests
(a) Write the VAR (4) model for Alnf; and Unempy as

Alnft = 510 + ,B]_]_Alnft_]_ + ,812Alnft_2 + ﬁl3A/nft_3
+B14AInfr_g + 11 Unempy_1 + 15 Unempy_
+713Unemps_3 + y14Unemps_4 + ui¢

Unemp: = PBog+ BayAlnfe_1 + BoyAlnfy_o + BysAlnfy_3
—i—,324Alnft_4 + ')/21 Unempt_l + ')’22 Unempt_g
+723Unemp_3 + yp4a Unemps 4 + upe.

(b) Test Granger non-causality of lagged unemployment rates on changes
in inflation, i.e.,

Ho : 711 =712 =713 = 714 = 0.

In this case, F = 11.04 with p-value = 0.001, so that Hy is rejected.
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Empirical Example (con't)

e Granger Causality Tests (con’t)

(c) In this case, we conclude that unemployment rate is a useful predictor
for changes in inflation, given lags in inflation.

(d) Test Granger non-causality of lagged changes in inflation rates on the
unemployment rate, i.e.,

Ho : By1 = Bop = Po3 = Bry = 0.

Here, F = 0.16 with p-value = 0.96, so that Hy is not rejected in this
case.
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Cointegration

o Intuitive Notion of Common Stochastic Trend:
It is possible that two or more time series with stochastic trends can
move together so closely over the long run that they appear to have
the same trend component. In this case, they are said to share a
common stochastic trend.

e Orders of Integration, Differencing, and Stationarity

@ |If Yt is integrated of order one (denoted Y: =/ (1)); then, its first
difference AY% is stationary, i.e., AYy =/ (0). In this case, Y; has a
unit autoregressive root.

@ |If Y; is integrated of order two (denoted Y; = /(2)); then, its second
difference A?Y; is stationary. In this case, AY; = /(1).

© |If Yt is integrated of order d (denoted Y: =/ (d)); then, AlY, s
stationary, i.e., Yy must be differenced d times in order to produce a
series that is stationary.
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Cointegration (con't)

o Definition of Cointegration:
Suppose that X; and Y; are integrated of order one. If, for some
coefficient 8, Z; = Y; — 6X; is integrated of order zero; then, X; and
Y; are said to be cointegrated. The coefficient 8 is called the
cointegrating coefficient.

@ Remark:
If X; and Y; are cointegrated, then they have the same, or common,
stochastic trend. Computing the difference Y; — 6X; then eliminates
this common stochastic trend.
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Deciding If Variables Are Cointegrated

Three ways to decide whether two variables is cointegrated:

@ Use expert knowledge and economic theory.

@ Graph the series and see whether they appear to have a common
stochastic trend.

© Perform statistical test for cointegration.
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Testing for Cointegration

@ Some Observations: Let Y; and X; be two time series such that
Yi=1(1) and X, =1(1).
@ If Y; and X; are cointegrated with cointegrating coefficient 8, then

@ On the other hand, if Y; and X; are not cointegrated, then
Y —0Xe =1(1).

@ 1. and 2. suggest that we can test for the presence of cointegration by
testing

Ho: Yy —0X¢ =1(1) versus Hy : Yy — 60X = 1(0)

e Two Cases

@ 0 is known, i.e., a value for 8 is suggested by expert knowledge or by
economic theory. In this case, one can simply construct the time series

Zr =Yy —0X:

and test the null hypothesis Hy : Y — 08X = I (1) using the
augmented Dickey-Fuller test.
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Testing for Cointegration (con't)

2. 0 is unknown: In this case, perhaps the easiest approach is to adopt a
two-step procedure

@ Step 1: Estimate the cointegrating coefficient 6 by OLS estimation of
the regression
Yi =a+ 60Xt + 2

and obtain the residual series Z =Y —E—@Xt.

@ Step 2: Apply a unit root test, such as the augmented Dickey-Fuller
test, to test whether the residual series Z; is an / (1) process. (Engle
and Granger, 1987, and Phillips and Ouliaris, 1990).
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Testing for Cointegration (con't)

3. Remark: A complication which arises when 6 is unknown is that,
under Hp, Z, =1 (1), so that the regression of Y; on X; is a spurious
regression, which implies, in particular, that 9 is not a consistent
estimator. As a result, we cannot use the same critical values which
apply in Case 1 discussed earlier.

4. The two-step procedure can be extended in a straightforward manner
to cases with more than one regressor (e.g., the case with k regressors
Xit, ..., Xkt) by running the multiple regression

Yi =a+ 01Xt + - - 4+ 0k Xie + Z;

and testing the residual process Z =Y,—a —§1X1t — —§kat
for the presence of a unit root. Critical values for the residual-based
cointegration test do depend on the number of regressors, however.
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Testing for Cointegration (con't)

Table: Critical Values for Residual-
Based Tests for Cointegration

# of X's in the regression 10% 5% 1%
1 —3.12 —-3.41 —-3.96
2 —3.52 —-3.80 —-4.36
3 —3.84 —416 —4.73
4 —420 —449 -—5.07
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Vector Error Correction Model

@ Suppose that X; = /(1) and Y; =/ (1), and suppose that X; and Y;
are cointegrated. Then, it turns out that a bivariate VAR model in
terms of the first differences AX; and AY; is misspecified.

@ The correct model will include the term Y;_1 — 6X;_1 in addition to
the lagged values of AX; and AY:;.

@ More specifically, the correct model is of the form

AY: = Byt ppAYea+---+ ﬁ1pAthp
+r118Xe—1 + -+ 7, AXep
Fay (Yior —0Xe1) + e,

AXe = Byt PpuAYi1 4+ By,AYip
+’)’21AXt71 +---+ ,.)/QPAthp
+a (Yt—l - 9Xt—1) + upy.

@ This model is known as the vector error correction model (VECM),
and the term Y;_1 — 0X;_1 is called the error correction term.

John C. Chao () April 25, 2017 18 / 34



Vector Error Correction Model (con't)

o Remarks:

@ In a VECM, past values of the error correction term Y; — 0.X; help to
predict future values of AY; and/or AX:.

@ Note also that a VAR model in first differences is misspecified in this
case precisely because it omits the error correction term.

@ In the case where 0 is known; set Z;_1 = Y;_1 — 0X:_1, and we have
AYe = PiptPudYer -+ B AY e
+r1BXe—1 + 7 pAXe—p
+a1Zi 1+ ure,

FY01AXe—1 + - Y AXe—p
+arZi_1 + Uy,

so that the parameters of the VECM can be estimated by linear least
squares in this case.
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Vector Error Correction Model (con't)

@ In the case where 6 is unknown; then, the VECM is nonlinear in
parameters, so that one cannot directly apply linear least squares.

@ In this case, there are a few different approaches to estimating the
parameters of a VECM.

© Approach 1: Two-step procedure.
(i) Step 1: Estimate 6 by a preliminary OLS regression

Yt:D(+9Xt+Zt

and obtain the residual Z—l =Y 1 —§Xt_1.
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Vector Error Correction Model (con't)

(ii) Step 2: Plug Z;_1 into the VECM specification to obtain

AY: = :310 + B AYe1 -+ 51pAYt—p
+Y118Xe—1 + -+, AXe—p
—|—0612r—1 + Uy,

AXe = Pyg+PpuAYeic1+- -+, AYip
Y2 AXe1 £+ Y, AXep
+“22t71 + Uy,

The remaining parameters of the VECM can then be estimated by
linear least squares. Note that this approach exploits the fact Ois a
consistent estimator of 8 if the assumption of cointegration is correct.
Moreover, rate of convergence for this estimator is T which is faster
than the usual /T convergence rate.
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Vector Error Correction Model (con't)

2. Approach 2: A more efficient approach is to estimate all the

parameters 0, (/510, wor By Bog: ..ﬁ2p>, (Y11 Y1pr Yo1r - Yap)s
and (a1, a2) in the model

AY: = Bt BudYea+--+ B A
Fr1udXeo1 £+ 71, AXep
+ag (Yeo1 — 0Xe—1) + uis,

AXe = Pyt PpuAYea+-- -+ ﬁszYt—p
+')’21AXt—1 + -+ ’)’QPAXt—p
+ao (Yic1 — 0Xe1) + uoe.

jointly by full system maximum likelihood. This is the approach that
has been developed by Soren Johansen (see Johansen 1988, 1991).
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Models of Conditional Heteroskedasticity - Motivation

o Consider again the AR (1) model

Y: = BYeo1+ ug,

where |B| < 1 and {u:} =i.i.d. (0,0%).
@ Note that for this model

E[Yira] =0

but
E[Yt+1|yt: Yi-1, ] = E[Yt+1|Yt] = ‘BYt’

so that by using information about current and past values of Y4, this
model allows one to improve on ones forecast of the mean-level of

Yi4+1 over that which can be obtained when this information is not
used.
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Models of Conditional Heteroskedasticity - Motivation

@ Shortcoming of this model: The same improvement is not achieved
when forecasting the error variance with this model since

E [uf-i-l‘yfv Yt*lv ] =E [uf—i-l] = 0’2

Observation: This model is not rich enough to allow for better
prediction of the error variance based on past information. In
particular, the independence assumption on the errors precludes any
forecast improvement.

On the other hand, many financial and macroeconomic time series
exhibit "volatility clustering." Volatility clustering suggests the
possible presence of time dependent variance or time-varying
heteroskedasticty that may be forecastable. Interestingly, this can
occur even if the time series itself is close to being serially
uncorrelated so that the mean-level is difficult to forecast.
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Models of Conditional Heteroskedasticity - Empirical

Motivation

Relative Daily Index Closings
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Why would there be interest in forecasting variance?

o First, in finance, the variance of the return to an asset is a measure of
the risk of owning that asset. Hence, investors, particularly those who
are risk averse, would naturally be interested in predicting return
variances.

@ Secondly, the value of some financial derivatives, such as options,
depends on the variance of the underlying assets. Thus, an options
trader would want to obtain good forecasts of future volatility to help
her or him decide on the price at which to buy or sell options.

@ Thirdly, being able to forecast variance could allow one to have more
accurate forecast intervals that adapt to changing economic
conditions.
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AutoRegressive Conditional Heteroskedasticity (ARCH)

Models

@ Here, we will discuss two frequently used models of time-varying
heteroskedasticity: the autoregressive conditional
heteroskedasticity (ARCH) model and its extension, the
generalized ARCH (or GARCH) model.

@ ARCH(1) process: Consider the ADL(1,1) regression

Yi=Bg+ B Ye1+ 71 Xeo1+ v
Instead of modeling {u;} as an independent sequence of random
variables, as we have before, the ARCH(1) process takes
1/2
ur = & (oo + gl
where ag > 0,0 < a3 <1, and {&;} =i.i.d N(0,1).
e Remark: We have described here a ADL(1,1) model with ARCH

errors; but, in principle, an ARCH process can be applied to model
the error variance for any time series regression.
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ARCH Models

@ Some Moment Calculations

(i) Conditional Mean:

, 7172
Elutlug—1,ut—,...] = [ao + txlutfl] Elet|u—1, ur—2,...]
1/2
= [ao + g ”?—1] E [e:]
=0
(i) Unconditional Mean:
Elu] = E(Elutlug—1,ut-2,..])
(by law of iterated expectations)
= E0]

= 0.
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ARCH Models

@ (iii) Conditional Variance:

2 2 2
E |:Ut |Ut7]_, ug_o, :| |:0(0 “+ Ut71:| E [€t|ut,1, ug_o, j|

= {txo +0(1u?71} E [eﬂ

|:0(0 + L5} U%_1:|

(iv) Autocovariances: Let j be any positive integer, and note that

Elutuej| = E(ue—jE [ut|ug—1, up—2,..])
(by law of iterated expectations)
E [ut_j X 0]
0.

@ Remark: Interestingly, an ARCH process is serially uncorrelated but
not independent. These features are important for the modeling of
asset returns.
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ARCH Models

@ More Moments: It can also be shown that

Var () = E[uf] = : io{xl ’

o 33 1—a
Elu] = [(1—21)2] [1—3“1%]'

(Note: we assume that ap > 0 and 0 < a; < 1).
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ARCH Models

@ Remark: Note that since

1—a?
> 1,
1—3a2

we have that

33 1 — a2 342 ,
<1_§1)2] [1—3035} > e =3 (ELD”

On the other hand, if u; had been normally distributed, say
{w} =i.idN (0,02); then, we would have

E[uf] =3(E [uﬂ)2 = 30*. Hence, the ARCH error process has
“fatter-tails" than that implied by the normal distribution.
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ARCH Models

e ARCH(p) process: A straightforward extension of the ARCH(1)
model is the p-th order ARCH process given by

2 2 11/2
up =g (o +aqup g+ +oapup ],

where {&;} =i.i.d.N(0,1); a; > 0fori=0,1, ..., p; and

&1+, < 1
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GARCH Models

o GARCH(p.q) process: A useful generalization of the ARCH model
is the following GARCH model due to Bollerslev (1986).

usy = h%/zﬁt,

where
he = oo+ a1u; g+ +apup ,+01he_1+ -+ 5ghe_g.

@ Assumptions:
(i) {e:} = i.i.d.N(0,1);
(i) ap >0anda; >0fori=1,..,p;
(iii) 0 >0forj=1,..4q

e Remark: Note that even a GARCH(1,1) model will allow h; to
depend on u? from the distant past. Thus, GARCH provides a clever
way of capturing slowly changing variances without having to specify
a model that has a lot of parameters to estimate.

@ Remark: Both ARCH and GARCH can be estimated using the
method of maximum likelihood.
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Empirical lllustration

@ A simple model of stock return with time-varying volatility is the

following
Rt =Hu + uy
where {u;} follows a GARCH(1,1) process, i.e.,
us h%/2€t,

hy = wp+m u?,l +d1hs1.

@ The textbook provides empirical results of fitting this model to daily
percentage changes in the NYSE index using data on all trading days
from January 2, 1990 to November 11, 2005. The results are

R. = 7i= 0049

TR o)

he = 0.0079 + 0.072u? ; + 0.919h; ;
(0.0014)  (0.005) (0.006)
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