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Econ 423 – Lecture Notes 

 

(These notes are modified versions of lecture notes provided by 

Stock and Watson, 2007. They are for instructional purposes only  

and are not to be distributed outside of the classroom.)  
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Heteroskedasticity and Autocorrelation-Consistent 

(HAC) Standard Errors  

 

• Consider a generalization of the distributed lag model, 

where the errors ut are not necessarily i.i.d., i.e., 

 

Yt = β0 + β1Xt + … + βr+1Xt–r + ut .  

 

• Suppose that ut is serially correlated; then, OLS will still 

yield consistent* estimators of the coefficients  

β0 , β1 ,…., βr+1  (*consistent but possibly biased!) 

• The sampling distribution of 1β̂ , etc., is normal 
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• BUT the formula for the variance of this sampling 

distribution is not the usual one from cross-sectional 

(i.i.d.) data, because ut is not i.i.d. in this case since, in 

particular, ut is serially correlated! 

• This means that the usual OLS standard errors (usual 

STATA printout) are wrong! 

• We need to use, instead, SEs that are robust to 

autocorrelation as well as to heteroskedasticity… 

• This is easy to do using STATA and most (but not all) 

other statistical software. 
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HAC standard errors, ctd. 

The math…for the simplest case with no lags: 

Yt = β0 + β1Xt + ut 

 

The OLS estimator:  Using the usual regression algebra, we 

obtain 

1β̂  – β1 = 1
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where vt = (Xt – X )ut. 



 15-5 

HAC standard errors, ctd. 

 

Thus, in large samples, 
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In i.i.d. cross sectional data, cov(vt, vs) = 0 for t ≠ s, so 

var( 1β̂ ) = 
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This is our usual cross-sectional result. 
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HAC standard errors, ctd. 

 

But in time series data, cov(vt, vs) ≠ 0 in general. 

 

Consider T = 2: 
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     = ½ 2

v
σ ×f2, where f2 = (1+ρ1) 

• In i.i.d. data, ρ1 = 0 so f2 = 1, yielding the usual formula 

• In time series data, if ρ1 ≠ 0 then var( 1β̂ ) is not given by the 

usual formula. 
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Expression for var( 1β̂ ), general T 
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• Conventional OLS  SE’s are wrong when ut is serially 

correlated (STATA printout is wrong). 

• The OLS SEs are off by the factor fT  

• We need to use a different SE formula!!! 



 15-8 

HAC Standard Errors 

 

• Conventional OLS SEs (heteroskedasticity-robust or not) 

are wrong when ut is autocorrelated  

• So, we need a new formula that produces SEs that are robust 

to autocorrelation as well as heteroskedasticity 

We need Heteroskedasticity- and Autocorrelation-

Consistent (HAC) standard errors 

• If we knew the factor fT, we could just make the adjustment. 

However, in most practical applications, we must estimate 

fT. 
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HAC SEs, ctd. 

  var( 1β̂ ) = 
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The most commonly used estimator of fT is: 
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• 
j

ρ%  is an estimator of ρj  

• This is the “Newey-West” HAC SE estimator 

• m is called the truncation parameter 

• Why not just set m = T? 

• Then how should you choose m?  

o Use the Goldilocks method 

o Or, use the rule of thumb, m = 0.75T
1/3
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Empirical Example 

The Orange Juice Data 

 

Data 

• Monthly, Jan. 1950 – Dec. 2000 (T = 612) 

• Price = price of frozen OJ (a sub-component of the 

producer price index; US Bureau of Labor Statistics) 

• %ChgP = percentage change in price at an annual rate, so 

%ChgPt = 1200∆ln(Pricet) 

• FDD = number of freezing degree-days during the month, 

recorded in Orlando FL  

o Example: If November has 2 days with lows < 32
o
, one 

at 30
o
 and at 25

o
, then FDDNov = 2 + 7 = 9  
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Initial OJ regression 

 

�%
t

ChgP  = -.40 + .47FDDt 

  (.22)  (.13) 

 

• Statistically significant positive relation 

• More freezing degree days ⇒ price increase 

• Standard errors are heteroskedasticity and autocorrelation-

consistent (HAC) SE’s  
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Example: OJ and HAC estimators in STATA 

 
. gen l0fdd = fdd;        generate lag #0 

. gen l1fdd = L1.fdd;    generate lag #1 

. gen l2fdd = L2.fdd;    generate lag #2 

. gen l3fdd = L3.fdd;     . 

. gen l4fdd = L4.fdd;     . 

. gen l5fdd = L5.fdd;     . 

. gen l6fdd = L6.fdd; 

 

. reg dlpoj fdd if tin(1950m1,2000m12), r;  NOT HAC SEs  

 

Linear regression                                      Number of obs =     612 

                                                       F(  1,   610) =   12.12 

                                                       Prob > F      =  0.0005 

                                                       R-squared     =  0.0937 

                                                       Root MSE      =  4.8261 

 

------------------------------------------------------------------------------ 

             |               Robust 

       dlpoj |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         fdd |   .4662182   .1339293     3.48   0.001     .2031998    .7292367 

       _cons |  -.4022562   .1893712    -2.12   0.034    -.7741549   -.0303575 

------------------------------------------------------------------------------ 
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Example: OJ and HAC estimators in STATA, ctd 

Rerun this regression, but with Newey-West SEs: 
 

.  newey dlpoj fdd if tin(1950m1,2000m12), lag(7); 

 

Regression with Newey-West standard errors          Number of obs  =       612 

maximum lag: 7                                      F(  1,   610)  =     12.23 

                                                    Prob > F       =    0.0005 

 

------------------------------------------------------------------------------ 

             |             Newey-West 

       dlpoj |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         fdd |   .4662182   .1333142     3.50   0.001     .2044077    .7280288 

       _cons |  -.4022562   .2159802    -1.86   0.063    -.8264112    .0218987 

------------------------------------------------------------------------------ 

 

 

  Uses autocorrelations up to m = 7 to compute the SEs 

   rule-of-thumb: 0.75*(6121/3) = 6.4 ≈≈≈≈ 7, rounded up a little. 
 

OK, in this case the difference in SEs is small, but not always so! 

 



 15-15 

Example: OJ and HAC estimators in STATA, ctd. 
 

. global lfdd6 "fdd l1fdd l2fdd l3fdd l4fdd l5fdd l6fdd"; 

 

.  newey dlpoj $lfdd6 if tin(1950m1,2000m12), lag(7); 

 

Regression with Newey-West standard errors          Number of obs  =       612 

maximum lag : 7                                     F(  7,   604)  =      3.56 

                                                    Prob > F       =    0.0009 

 

------------------------------------------------------------------------------ 

             |             Newey-West 

       dlpoj |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         fdd |   .4693121   .1359686     3.45   0.001     .2022834    .7363407 

       l1fdd |   .1430512   .0837047     1.71   0.088    -.0213364    .3074388 

       l2fdd |   .0564234   .0561724     1.00   0.316    -.0538936    .1667404 

       l3fdd |   .0722595   .0468776     1.54   0.124    -.0198033    .1643223 

       l4fdd |   .0343244   .0295141     1.16   0.245    -.0236383    .0922871 

       l5fdd |   .0468222   .0308791     1.52   0.130    -.0138212    .1074657 

       l6fdd |   .0481115   .0446404     1.08   0.282    -.0395577    .1357807 

       _cons |  -.6505183   .2336986    -2.78   0.006    -1.109479   -.1915578 

------------------------------------------------------------------------------ 

 

• global lfdd6 defines a string which is all the additional lags 

• What are the estimated dynamic multipliers (dynamic effects)? 
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FAQ:  Do I need to use HAC SEs when I estimate an AR 

or an ADL model? 

 

A:  No, only if one is sure that the true model is an AR or an 

ADL in the purest sense so that there is no serial correlation 

or heteroskedasticity in the errors.  

• In AR and ADL models with homoskedastic errors, one 

may argue that the errors will be serially uncorrelated if 

you include enough lags of Y 

o If you include enough lags of Y, then the error term 

can’t be predicted using past Y, or equivalently by past 

u – so u is serially uncorrelated 

• However, the safer and more robust choice would be to 

always use HAC SE’s.  


