Econ 423 – Lecture Notes

(These notes are modified versions of lecture notes provided by Stock and Watson, 2007. They are for instructional purposes only and are not to be distributed outside of the classroom.)

Heteroskedasticity and Autocorrelation-Consistent (HAC) Standard Errors

• Consider a generalization of the *distributed lag model*, where the errors *u_t* are not necessarily i.i.d., i.e.,

$$Y_t = \beta_0 + \beta_1 X_t + \ldots + \beta_{r+1} X_{t-r} + u_t .$$

Suppose that u_t is serially correlated; then, OLS will still yield consistent* estimators of the coefficients β₀, β₁,..., β_{r+1} (*consistent but possibly biased!)
The sampling distribution of β₁, etc., is normal

- *BUT* the formula for the variance of this sampling distribution is not the usual one from cross-sectional (i.i.d.) data, because u_t is not i.i.d. in this case since, in particular, u_t is serially correlated!
- This means that the usual OLS standard errors (usual STATA printout) are wrong!
- We need to use, instead, *SE*s that are robust to autocorrelation as well as to heteroskedasticity...
- This is easy to do using STATA and most (but not all) other statistical software.

HAC standard errors, ctd. The math...for the simplest case with no lags:

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

The OLS estimator: Using the usual regression algebra, we obtain

$$\hat{\beta}_{1} - \beta_{1} = \frac{\frac{1}{T} \sum_{t=1}^{T} (X_{t} - \overline{X}) u_{t}}{\frac{1}{T} \sum_{t=1}^{T} (X_{t} - \overline{X})^{2}}$$
$$= \frac{\frac{1}{T} \sum_{t=1}^{T} v_{t}}{\sigma_{X}^{2}} \text{ (in large samples)}$$

where $v_t = (X_t - \overline{X})u_t$.

HAC standard errors, ctd.

Thus, in large samples,

$$\operatorname{var}(\hat{\beta}_{1}) = \operatorname{var}\left(\frac{1}{T}\sum_{t=1}^{T} v_{t}\right) / (\sigma_{X}^{2})^{2}$$
$$= \frac{1}{T^{2}} \sum_{t=1}^{T} \sum_{s=1}^{T} \operatorname{cov}(v_{t}, v_{s}) / (\sigma_{X}^{2})^{2}$$

In i.i.d. cross sectional data, $cov(v_t, v_s) = 0$ for $t \neq s$, so

$$\operatorname{var}(\hat{\beta}_{1}) = \frac{1}{T^{2}} \sum_{t=1}^{T} \operatorname{var}(v_{t})) / (\sigma_{X}^{2})^{2} = \frac{\sigma_{v}^{2}}{T(\sigma_{X}^{2})^{2}}$$

This is our usual cross-sectional result.

HAC standard errors, ctd.

But in time series data, $cov(v_t, v_s) \neq 0$ in general.

Consider T = 2: $\operatorname{var}\left(\frac{1}{T}\sum_{t=1}^{T} v_{t}\right) = \operatorname{var}[\frac{1}{2}(v_{1}+v_{2})]$ $= \frac{1}{4}[\operatorname{var}(v_{1}) + \operatorname{var}(v_{2}) + 2\operatorname{cov}(v_{1},v_{2})]$ $= \frac{1}{2}\sigma_{v}^{2} + \frac{1}{2}\rho_{1}\sigma_{v}^{2} \qquad (\rho_{1} = \operatorname{corr}(v_{1},v_{2}))$ $= \frac{1}{2}\sigma_{v}^{2} \times f_{2}, \text{ where } f_{2} = (1+\rho_{1})$

- In i.i.d. data, $\rho_1 = 0$ so $f_2 = 1$, yielding the usual formula
- In time series data, if $\rho_1 \neq 0$ then $var(\hat{\beta}_1)$ is *not* given by the usual formula.

Expression for var $(\hat{\beta}_1)$, general *T*

$$\operatorname{var}\left(\frac{1}{T}\sum_{t=1}^{T}v_{t}\right) = \frac{\sigma_{v}^{2}}{T} \times f_{T}$$
$$\operatorname{var}(\hat{\beta}_{1}) = \left[\frac{1}{T}\frac{\sigma_{v}^{2}}{(\sigma_{X}^{2})^{2}}\right] \times f_{T}$$

SO

where

$$f_T = 1 + 2\sum_{j=1}^{T-1} \left(\frac{T-j}{T}\right) \rho_j$$

- Conventional OLS SE's are wrong when *u_t* is serially correlated (STATA printout is wrong).
- The OLS *SE*s are off by the factor f_T
- We need to use a different *SE* formula!!!

HAC Standard Errors

- Conventional OLS *SEs* (heteroskedasticity-robust or not) are wrong when *u_t* is autocorrelated
- So, we need a new formula that produces *SE*s that are robust to autocorrelation as well as heteroskedasticity *We need Heteroskedasticity- and Autocorrelation-Consistent (HAC) standard errors*
- If we knew the factor f_T , we could just make the adjustment. However, in most practical applications, we must estimate f_T .

HAC SEs, ctd.

$$\operatorname{var}(\hat{\beta}_{1}) = \left[\frac{1}{T}\frac{\sigma_{v}^{2}}{(\sigma_{X}^{2})^{2}}\right] \times f_{T}, \text{ where } f_{T} = 1 + 2\sum_{j=1}^{T-1} \left(\frac{T-j}{T}\right) \rho_{j}$$

The most commonly used estimator of f_T is:

$$\hat{f}_T = 1 + 2\sum_{j=1}^{m-1} \left(\frac{m-j}{m}\right) \tilde{\rho}_j$$
 (Newey-West)

- $\tilde{\rho}_j$ is an estimator of ρ_j
- This is the "Newey-West" HAC SE estimator
- *m* is called the *truncation parameter*
- Why not just set m = T?
- Then how should you choose *m*?

• Use the Goldilocks method

 \circ Or, use the rule of thumb, $m = 0.75T^{1/3}$

Empirical Example The Orange Juice Data

Data

- Monthly, Jan. 1950 Dec. 2000 (T = 612)
- *Price* = price of frozen OJ (a sub-component of the producer price index; US Bureau of Labor Statistics)
- %*ChgP* = percentage change in price at an annual rate, so %*ChgP_t* = $1200\Delta \ln(Price_t)$
- *FDD* = number of freezing degree-days during the month, recorded in Orlando FL

• Example: If November has 2 days with lows < 32° , one at 30° and at 25° , then $FDD_{Nov} = 2 + 7 = 9$

FIGURE 15.1 Orange Juice Prices and Florida Weather, 1950–2000

(a) Price Index for Frozen Concentrated Orange Juice

(c) Monthly Freezing Degree Days in Orlando, Florida

Initial OJ regression

$$%ChgP_{t} = -.40 + .47FDD_{t}$$

(.22) (.13)

- Statistically significant positive relation
- More freezing degree days \Rightarrow price increase
- Standard errors are heteroskedasticity and autocorrelationconsistent (HAC) SE's

Example: OJ and HAC estimators in STATA

•	gen	10fdd =	fdd;			genera	ate 1	lag #()				
•	gen	n llfdd = Ll.fdd; generate lag #1											
•	. gen 12fdd = L2.fdd; generate lag #2												
•	gen	13fdd =	L3.fdd;										
•	gen	14fdd =	L4.fdd;										
•	gen	15fdd =	L5.fdd;										
•	gen	16fdd =	L6.fdd;										
•	reg	dlpoj f	dd if ti	n (1950n	n1,20	00m12),	, r;	NOT	HAC SE	S			
L:	inear	regres	sion							Number	of obs	=	612
										F(1,	610)	=	12.12
										Prob >	F	=	0.0005
										R-squar	red	=	0.0937
										Root MS	SE	=	4.8261
			1		Rob	ust							
		dlpoj		oef.	Std.	Err.		t	P> t	[95%	Conf.	In	terval]
		fdd	+ .466	2182	.133	 9293	 3.	48	0.001	. 203	 31998		7292367
		_cons	402	2562	.189	3712	-2.	12	0.034	774	11549		0303575

Example: OJ and HAC estimators in STATA, ctd Rerun this regression, but with Newey-West *SEs*:

```
newey dlpoj fdd if tin(1950m1,2000m12), lag(7);
```

Regression with Newey-West standard errors	Number of obs =	612
maximum lag: 7	F(1, 610) =	12.23
	Prob > F =	0 0005

dlpoj		Coef.	Newey-We Std. Er:	st r. t	P> t 	[95% Conf.	Interval]
fdd	.4	662182	.133314	2 3.50	0.001	.2044077	.7280288
_cons	4	022562	.215980	2 -1.86	0.063	8264112	.0218987

Uses autocorrelations up to m = 7 to compute the SEs rule-of-thumb: $0.75*(612^{1/3}) = 6.4 \approx 7$, rounded up a little.

OK, in this case the difference in SEs is small, but not always so!

Example: OJ and HAC estimators in STATA, ctd.

. global lfdd6 "fdd llfdd l2fdd l3fdd l4fdd l5fdd l6fdd";

. newey dlpoj \$1fdd6 if tin(1950m1,2000m12), lag(7);

Regression with Newey-West standard errors	Number of obs	=	612
maximum lag : 7	F(7, 604)	=	3.56
	Prob > F	=	0.0009

1		Newey-West					
dlpoj	Coef.	Std. Err.	t	P> t 	[95% Conf.	Interval]	
fdd	.4693121	.1359686	3.45	0.001	. 2022834	.7363407	
llfdd	.1430512	.0837047	1.71	0.088	0213364	.3074388	
12fdd	.0564234	.0561724	1.00	0.316	0538936	.1667404	
13fdd	.0722595	.0468776	1.54	0.124	0198033	.1643223	
14fdd	.0343244	.0295141	1.16	0.245	0236383	.0922871	
15fdd	.0468222	.0308791	1.52	0.130	0138212	.1074657	
16fdd	.0481115	.0446404	1.08	0.282	0395577	.1357807	
_cons	6505183	.2336986	-2.78	0.006	-1.109479	1915578	

• global lfdd6 defines a string which is all the additional lags

• What are the estimated dynamic multipliers (dynamic effects)?

FAQ: Do I need to use HAC SEs when I estimate an AR or an ADL model?

A: No, only if one is sure that the true model is an AR or an ADL in the purest sense so that there is no serial correlation or heteroskedasticity in the errors.

• In AR and ADL models with homoskedastic errors, one may argue that the errors will be serially uncorrelated if you include enough lags of *Y*

• If you include enough lags of *Y*, then the error term can't be predicted using past *Y*, or equivalently by past u - so u is serially uncorrelated

• However, the safer and more robust choice would be to always use HAC SE's.