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Econ 423 – Lecture Notes 

 

(These notes are slightly modified versions of lecture notes provided by 

Stock and Watson, 2007. They are for instructional purposes only  

and are not to be distributed outside of the classroom.)  
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Instrumental Variables Regression  

 

Three important threats to internal validity are: 

• omitted variable bias from a variable that is correlated 

with X but is unobserved, so cannot be included in the 

regression; 

• simultaneous causality bias (X causes Y,  Y causes X); 

• errors-in-variables bias (X is measured with error) 

 

Instrumental variables regression can eliminate bias when 

E(u|X) ≠ 0 – using an instrumental variable, Z 
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 IV Regression with One Regressor and One Instrument 

 

Yi = β0 + β1Xi + ui 

 

• IV regression breaks X into two parts:  a part that might be 

correlated with u, and a part that is not.  By isolating the 

part that is not correlated with u, it is possible to estimate 

β1. 

• This is done using an instrumental variable, Zi, which is 

uncorrelated with ui. 

• The instrumental variable detects movements in Xi that are 

uncorrelated with ui, and uses these to estimate β1. 
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Terminology:  endogeneity and exogeneity 

 

An endogenous variable is one that is correlated with u  

An exogenous variable is one that is uncorrelated with u  

 

Historical note:  “Endogenous” literally means 

“determined within the system,” that is, a variable that is 

jointly determined with Y, that is, a variable subject to 

simultaneous causality.  However, this definition is 

narrow and IV regression can be used to address OV bias 

and errors-in-variable bias, not just to simultaneous 

causality bias. 
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Two conditions for a valid instrument 

 

Yi = β0 + β1Xi + ui 

 

For an instrumental variable (an “instrument”) Z to be valid, 

it must satisfy two conditions: 

1. Instrument relevance: corr(Zi,Xi) ≠ 0 

2. Instrument exogeneity: corr(Zi,ui) = 0 

 

Suppose for now that you have such a Zi (we’ll discuss how 

to find instrumental variables later).  

 

How can you use Zi to estimate β1? 
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The IV Estimator, one X and one Z 

 

Explanation #1:  Two Stage Least Squares (TSLS) 

As it sounds, TSLS has two stages – two regressions: 

(1) First isolates the part of X that is uncorrelated with u: 

regress X on Z using OLS 

 

Xi = π0 + π1Zi + vi       (1) 

 

• Because Zi is uncorrelated with ui, π0 + π1Zi is 

uncorrelated with ui.  We don’t know π0 or π1 but we 

have estimated them, so… 

• Compute the predicted values of Xi, ˆ
i

X , where  ˆ
i

X  = 0π̂  

+ 1π̂ Zi, i = 1,…,n. 



 12-7 

Two Stage Least Squares, ctd.  

 

 (2) Replace Xi by ˆ
i

X  in the regression of interest:   

regress Y on ˆ
i

X  using OLS: 

Yi = β0 + β1
ˆ

i
X  + ui        (2) 

 

• Because ˆ
i

X  is uncorrelated with ui (if n is large), the first 

least squares assumption holds (if n is large) 

• Thus β1 can be estimated by OLS using regression (2) 

• This argument relies on large samples (so π0 and π1 are well 

estimated using regression (1)) 

• This the resulting estimator is called the Two Stage Least 

Squares (TSLS) estimator, 1
ˆTSLSβ . 
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Two Stage Least Squares, ctd.  

 

Suppose you have a valid instrument, Zi. 

 

Stage 1: Regress Xi on Zi, obtain the predicted values ˆ
i

X  

 

Stage 2: Regress Yi on ˆ
i

X ; the coefficient on ˆ
i

X  is  

the TSLS estimator, 1
ˆTSLSβ . 

 

1
ˆTSLSβ  is a consistent estimator of β1. 
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The IV Estimator, one X and one Z, ctd. 

Explanation #2: a little algebra… 

 

Yi = β0 + β1Xi + ui 

Thus, 

    cov(Yi,Zi) = cov(β0 + β1Xi + ui,Zi) 

= cov(β0,Zi) + cov(β1Xi,Zi) + cov(ui,Zi) 

=   0        + cov(β1Xi,Zi) +      0 

= β1cov(Xi,Zi) 

 

where cov(ui,Zi) = 0 (instrument exogeneity); thus 

 

    β1 = 
cov( , )

cov( , )
i i

i i

Y Z

X Z
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The IV Estimator, one X and one Z, ctd. 

 

β1 = 
cov( , )

cov( , )
i i

i i

Y Z

X Z
 

 

The IV estimator replaces these population covariances with 

sample covariances: 

 

1
ˆTSLSβ  = YZ

XZ

s

s
, 

 

sYZ and sXZ are the sample covariances.  This is the TSLS 

estimator – just a different derivation! 
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Consistency of the TSLS estimator 

 

1
ˆTSLSβ  = YZ

XZ

s

s
 

 

The sample covariances are consistent: sYZ 
p

→ cov(Y,Z) and 

sXZ 
p

→ cov(X,Z).  Thus, 

 

1
ˆTSLSβ  = YZ

XZ

s

s
 

p

→ 
cov( , )

cov( , )

Y Z

X Z
 = β1 

 

• The instrument relevance condition, cov(X,Z) ≠ 0, ensures 

that you don’t divide by zero. 
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Example #1:  Supply and demand for butter 

 

IV regression was originally developed to estimate demand 

elasticities for agricultural goods, for example butter: 

 

ln( butter

iQ ) = β0 + β1ln( butter

iP ) + ui 

 

• β1 = price elasticity of butter = percent change in quantity 

for a 1% change in price (recall log-log specification 

discussion) 

• Data: observations on price and quantity of butter for 

different years 

• The OLS regression of ln( butter

iQ ) on ln( butter

iP ) suffers from 

simultaneous causality bias (why?) 
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Simultaneous causality bias in the OLS regression of 

ln( butter

iQ ) on ln( butter

iP ) arises because price and quantity are 

determined by the interaction of demand and supply 
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This interaction of demand and supply produces… 

 

Would a regression using these data produce the demand 

curve? 
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But…what would you get if only supply shifted? 

 

• TSLS estimates the demand curve by isolating shifts in 

price and quantity that arise from shifts in supply. 

• Z is a variable that shifts supply but not demand. 
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TSLS in the supply-demand example: 

 

ln( butter

iQ ) = β0 + β1ln( butter

iP ) + ui 

 

Let Z = rainfall in dairy-producing regions. 

Is Z a valid instrument? 

(1) Exogenous? corr(raini,ui) = 0? 

Plausibly: whether it rains in dairy-producing regions 

shouldn’t affect demand 

(2) Relevant? corr(raini,ln( butter

iP )) ≠ 0? 

Plausibly: insufficient rainfall means less grazing 

means less butter 
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TSLS in the supply-demand example, ctd. 

 

ln( butter

iQ ) = β0 + β1ln( butter

iP ) + ui 

 

Zi = raini = rainfall in dairy-producing regions. 

 

Stage 1: regress ln( butter

iP ) on rain, get ·ln( )butter

iP  

·ln( )butter

iP  isolates changes in log price that arise from 

supply (part of supply, at least) 

 

Stage 2: regress ln( butter

iQ ) on ·ln( )butter

iP  

The regression counterpart of using shifts in the supply 

curve to trace out the demand curve. 
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Example #2:  Test scores and class size 

 

• The California regressions still could have OV bias (e.g. 

parental involvement).  

• This bias could be eliminated by using IV regression 

(TSLS). 

• IV regression requires a valid instrument, that is, an 

instrument that is: 

(1) relevant: corr(Zi,STRi) ≠ 0 

(2) exogenous:  corr(Zi,ui) = 0 
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Example #2:  Test scores and class size, ctd. 

Here is a (hypothetical) instrument: 

• some districts, randomly hit by an earthquake, “double up” 

classrooms:   

Zi = Quakei = 1 if hit by quake, = 0 otherwise 

• Do the two conditions for a valid instrument hold? 

• The earthquake makes it as if the districts were in a random 

assignment experiment.  Thus the variation in STR arising 

from the earthquake is exogenous. 

• The first stage of TSLS regresses STR against Quake, 

thereby isolating the part of STR that is exogenous (the part 

that is “as if” randomly assigned)
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Inference using TSLS  

 

• In large samples, the sampling distribution of the TSLS 

estimator is normal 

• Inference (hypothesis tests, confidence intervals) proceeds 

in the usual way, e.g. ± 1.96SE 

• The idea behind the large-sample normal distribution of the 

TSLS estimator is that – like all the other estimators we 

have considered – it involves an average of mean zero i.i.d. 

random variables, to which we can apply the CLT. 

• Here is a sketch of the math (see SW App. 12.3 for the 

details)... 
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1
ˆTSLSβ  = YZ

XZ

s

s
 = 1

1

1
( )( )

1

1
( )( )

1

n

i i

i

n

i i

i

Y Y Z Z
n

X X Z Z
n

=

=

− −
−

− −
−

∑

∑
 

= 1

1

( )

( )

n

i i

i

n

i i

i

Y Z Z

X Z Z

=

=

−

−

∑

∑

 

Substitute in Yi = β0 + β1Xi + ui and simplify: 

1
ˆTSLSβ  = 

1

1 1

1

( ) ( )

( )

n n

i i i i

i i

n

i i

i

X Z Z u Z Z

X Z Z

β
= =

=

− + −

−

∑ ∑

∑

 

so…  
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1
ˆTSLSβ  = β1 + 1

1

( )

( )

n

i i

i

n

i i

i

u Z Z

X Z Z

=

=

−

−

∑

∑

. 

so    1
ˆTSLSβ  – β1 = 1

1

( )

( )

n

i i

i

n

i i

i

u Z Z

X Z Z

=

=

−

−

∑

∑

 

Multiply through by n : 

  n ( 1
ˆTSLSβ  – β1) = 1

1

1
( )

1
( )

n

i i

i

n

i i

i

Z Z u
n

X Z Z
n

=

=

−

−

∑

∑
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n ( 1
ˆTSLSβ  – β1) = 1

1

1
( )

1
( )

n

i i

i

n

i i

i

Z Z u
n

X Z Z
n

=

=

−

−

∑

∑

 

• 
1

1
( )

n

i i

i

X Z Z
n =

−∑  = 
1

1
( )( )

n

i i

i

X X Z Z
n =

− −∑  
p

→ cov(X,Z) ≠ 0 

• 
1

1
( )

n

i i

i

Z Z u
n =

−∑  is dist’d N(0,var[(Z–µZ)u])  (CLT) 

 

so:     1
ˆTSLSβ  is approx. distributed N(β1,

1

2
ˆTSLSβ

σ ),  

where    
1

2
ˆTSLSβ

σ  = 
2

1 var[( ) ]

[cov( , )]
i Z i

i i

Z u

n Z X

µ−
. 

where cov(X,Z) ≠ 0 because the instrument is relevant 
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Inference using TSLS, ctd. 

1
ˆTSLSβ  is approx. distributed N(β1,

1

2
ˆTSLSβ

σ ),  

• Statistical inference proceeds in the usual way. 

• The justification is (as usual) based on large samples 

• This all assumes that the instruments are valid – we’ll 

discuss what happens if they aren’t valid shortly. 

• Important note on standard errors: 

o The OLS standard errors from the second stage 

regression aren’t right – they don’t take into account the 

estimation in the first stage ( ˆ
i

X  is estimated). 

o Instead, use a single specialized command that computes 

the TSLS estimator and the correct SEs. 

o as usual, use heteroskedasticity-robust SEs 
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Example:  Cigarette demand, ctd. 

 

ln( cigarettes

i
Q ) = β0 + β1ln( cigarettes

i
P ) + ui 

 

Panel data: 

• Annual cigarette consumption and average prices paid 

(including tax) 

• 48 continental US states, 1985-1995 

Proposed instrumental variable: 

• Zi = general sales tax per pack in the state = SalesTaxi 

• Is this a valid instrument? 

(1) Relevant? corr(SalesTaxi, ln( cigarettes

i
P )) ≠ 0? 

(2) Exogenous? corr(SalesTaxi,ui) = 0? 
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Cigarette demand, ctd.    

 

For now, use data from 1995 only. 

First stage OLS regression: 

·ln( )cigarettes

i
P  = 4.63 + .031SalesTaxi, n = 48 

 

Second stage OLS regression: 

·ln( )cigarettes

i
Q  = 9.72 – 1.08 ·ln( )cigarettes

i
P , n = 48 

 

Combined regression with correct, heteroskedasticity-robust 

standard errors: 

·ln( )cigarettes

i
Q  = 9.72 – 1.08 ·ln( )cigarettes

i
P , n = 48 

      (1.53)  (0.32) 
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STATA Example:  Cigarette demand, First stage 

Instrument = Z = rtaxso = general sales tax (real $/pack) 
 

 

     X        Z 

. reg lravgprs rtaxso if year==1995, r; 

 

Regression with robust standard errors                 Number of obs =      48 

                                                       F(  1,    46) =   40.39 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.4710 

                                                       Root MSE      =  .09394 

 

------------------------------------------------------------------------------ 

             |               Robust 

    lravgprs |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      rtaxso |   .0307289   .0048354     6.35   0.000     .0209956    .0404621 

       _cons |   4.616546   .0289177   159.64   0.000     4.558338    4.674755 

------------------------------------------------------------------------------ 

 

            X-hat 

. predict lravphat;  Now we have the predicted values from the 1
st
 stage 
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Second stage 
 

        Y       X-hat 

. reg lpackpc lravphat if year==1995, r; 

 

Regression with robust standard errors                 Number of obs =      48 

                                                       F(  1,    46) =   10.54 

                                                       Prob > F      =  0.0022 

                                                       R-squared     =  0.1525 

                                                       Root MSE      =  .22645 

 

------------------------------------------------------------------------------ 

             |               Robust 

     lpackpc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

 

-------------+---------------------------------------------------------------- 

    lravphat |  -1.083586   .3336949    -3.25   0.002    -1.755279   -.4118932 

       _cons |   9.719875   1.597119     6.09   0.000     6.505042    12.93471 

------------------------------------------------------------------------------ 

 

• These coefficients are the TSLS estimates 

• The standard errors are wrong because they ignore the fact 

that the first stage was estimated 
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Combined into a single command: 
           Y         X        Z 

. ivreg lpackpc (lravgprs = rtaxso) if year==1995, r; 

 

IV (2SLS) regression with robust standard errors       Number of obs =      48 

                                                       F(  1,    46) =   11.54 

                                                       Prob > F      =  0.0014 

                                                       R-squared     =  0.4011 

                                                       Root MSE      =  .19035 

 

------------------------------------------------------------------------------ 

             |               Robust 

     lpackpc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    lravgprs |  -1.083587   .3189183    -3.40   0.001    -1.725536   -.4416373 

       _cons |   9.719876   1.528322     6.36   0.000     6.643525    12.79623 

------------------------------------------------------------------------------ 

Instrumented:  lravgprs   This is the endogenous regressor 

Instruments:   rtaxso    This is the instrumental varible 

------------------------------------------------------------------------------ 

 

OK, the change in the SEs was small this time...but not always! 

 

·ln( )cigarettes

i
Q  = 9.72 – 1.08 ·ln( )cigarettes

i
P , n = 48 

      (1.53)  (0.32) 
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Summary of IV Regression with a Single X and Z 

 

• A valid instrument Z must satisfy two conditions: 

(1) relevance:  corr(Zi,Xi) ≠ 0 

(2) exogeneity:  corr(Zi,ui) = 0 

• TSLS proceeds by first regressing X on Z to get X̂ , then 

regressing Y on X̂ . 

• The key idea is that the first stage isolates part of the 

variation in X that is uncorrelated with u 

• If the instrument is valid, then the large-sample sampling 

distribution of the TSLS estimator is normal, so inference 

proceeds as usual 
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The General IV Regression Model 

 

• So far we have considered IV regression with a single 

endogenous regressor (X) and a single instrument (Z). 

• We need to extend this to: 

o multiple endogenous regressors (X1,…,Xk) 

o multiple included exogenous variables (W1,…,Wr) 

These need to be included for the usual OV reason 

o multiple instrumental variables (Z1,…,Zm) 

More (relevant) instruments can produce a smaller 

variance of TSLS:  the R2 of the first stage increases, 

so you have more variation in X̂ .  

• Terminology: identification & overidentification 
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Identification 

 

• In general, a parameter is said to be identified if different 

values of the parameter would produce different 

distributions of the data. 

• In IV regression, whether the coefficients are identified 

depends on the relation between the number of instruments 

(m) and the number of endogenous regressors (k) 

• Intuitively, if there are fewer instruments than endogenous 

regressors, we can’t estimate β1,…,βk 

o For example, suppose k = 1 but m = 0 (no instruments)! 
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Identification, ctd. 

 

The coefficients β1,…, βk are said to be: 

• exactly identified if m = k. 

There are just enough instruments to estimate β1,…,βk. 

• overidentified if m > k. 

There are more than enough instruments to estimate 

β1,…,βk.  If so, you can test whether the instruments are 

valid (a test of the “overidentifying restrictions”) – we’ll 

return to this later 

• underidentified if m < k. 

There are too few instruments to estimate β1,…,βk.  If so, 

you need to get more instruments! 
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The general IV regression model: Summary of jargon 

 

Yi = β0 + β1X1i + … + βkXki + βk+1W1i + … + βk+rWri + ui 

 

• Yi is the dependent variable 

• X1i,…, Xki are the endogenous regressors (potentially 

correlated with ui) 

• W1i,…,Wri are the included exogenous variables or 

included exogenous regressors (uncorrelated with ui) 

• β0, β1,…, βk+r are the unknown regression coefficients 

• Z1i,…,Zmi are the m instrumental variables (the excluded 

exogenous variables) 

• The coefficients are overidentified if m > k; exactly 

identified if m = k; and underidentified if m < k.
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TSLS with a single endogenous regressor  

Yi = β0 + β1X1i + β2W1i + … + β1+rWri + ui 

 

• m instruments: Z1i,…, Zm 

• First stage 

o Regress X1 on all the exogenous regressors: regress X1 

on W1,…,Wr, Z1,…, Zm by OLS 

o Compute predicted values 1
ˆ

i
X , i = 1,…,n 

• Second stage 

o Regress Y on 1X̂ , W1,…, Wr by OLS 

o The coefficients from this second stage regression are 

the TSLS estimators, but SEs are wrong 

• To get correct SEs, do this in a single step 



 12-36 

Example: Demand for cigarettes 

 

ln( cigarettes

i
Q ) = β0 + β1ln( cigarettes

i
P ) + β2ln(Incomei) + ui 

 

Z1i = general sales taxi 

Z2i = cigarette-specific taxi 

 

• Endogenous variable: ln( cigarettes

i
P ) (“one X”) 

• Included exogenous variable: ln(Incomei) (“one W”) 

• Instruments (excluded endogenous variables):  general sales 

tax, cigarette-specific tax (“two Zs”) 

• Is the demand elasticity β1 overidentified, exactly identified, 

or underidentified? 
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Example: Cigarette demand, one instrument 
 

            Y      W        X         Z 
. ivreg lpackpc lperinc (lravgprs = rtaxso) if year==1995, r; 

 

IV (2SLS) regression with robust standard errors       Number of obs =      48 

                                                       F(  2,    45) =    8.19 

                                                       Prob > F      =  0.0009 

                                                       R-squared     =  0.4189 

                                                       Root MSE      =  .18957 

 

------------------------------------------------------------------------------ 

             |               Robust 

     lpackpc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    lravgprs |  -1.143375   .3723025    -3.07   0.004    -1.893231   -.3935191 

     lperinc |    .214515   .3117467     0.69   0.495     -.413375     .842405 

       _cons |   9.430658   1.259392     7.49   0.000     6.894112     11.9672 

------------------------------------------------------------------------------ 

Instrumented:  lravgprs 

Instruments:   lperinc rtaxso        STATA lists ALL the exogenous regressors 

                                     as instruments – slightly different 

                                     terminology than we have been using 

------------------------------------------------------------------------------ 

• Running IV as a single command yields correct SEs 

• Use , r for heteroskedasticity-robust SEs 
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Example: Cigarette demand, two instruments 
 

            Y      W        X        Z1      Z2 
. ivreg lpackpc lperinc (lravgprs = rtaxso rtax) if year==1995, r; 

 

IV (2SLS) regression with robust standard errors       Number of obs =      48 

                                                       F(  2,    45) =   16.17 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.4294 

                                                       Root MSE      =  .18786 

 

------------------------------------------------------------------------------ 

             |               Robust 

     lpackpc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    lravgprs |  -1.277424   .2496099    -5.12   0.000    -1.780164   -.7746837 

     lperinc |   .2804045   .2538894     1.10   0.275     -.230955    .7917641 

       _cons |   9.894955   .9592169    10.32   0.000     7.962993    11.82692 

------------------------------------------------------------------------------ 

Instrumented:  lravgprs 

Instruments:   lperinc rtaxso rtax   STATA lists ALL the exogenous regressors 

                                     as “instruments” – slightly different 

                                     terminology than we have been using 

------------------------------------------------------------------------------ 
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TSLS estimates, Z = sales tax (m = 1) 

·ln( )cigarettes

i
Q  = 9.43 – 1.14·ln( )cigarettes

i
P  + 0.21ln(Incomei) 

     (1.26)  (0.37)       (0.31) 

 

TSLS estimates, Z = sales tax, cig-only tax (m = 2) 

·ln( )cigarettes

i
Q  = 9.89 – 1.28·ln( )cigarettes

i
P  + 0.28ln(Incomei) 

     (0.96)  (0.25)       (0.25) 

 

• Smaller SEs for m = 2.  Using 2 instruments gives more 

information – more “as-if random variation”. 

• Low income elasticity (not a luxury good); income elasticity 

not statistically significantly different from 0 

• Surprisingly high price elasticity 
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The General Instrument Validity Assumptions 

 

Yi = β0 + β1X1i + … + βkXki + βk+1W1i + … + βk+rWri + ui 

(1) Instrument exogeneity: corr(Z1i,ui) = 0,…, corr(Zmi,ui) = 0 

(2) Instrument relevance: General case, multiple X’s 

Suppose the second stage regression could be run using 

the predicted values from the population first stage 

regression.  Then: there is no perfect multicollinearity in 

this (infeasible) second stage regression. 

• Multicollinearity interpretation… 

• Special case of one X: the general assumption is 

equivalent to (a) at least one instrument must enter the 

population counterpart of the first stage regression, and 

(b) the W’s are not perfectly multicollinear. 
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The IV Regression Assumptions 

 

   Yi = β0 + β1X1i + … + βkXki + βk+1W1i + … + βk+rWri + ui 

1. E(ui|W1i,…,Wri) = 0 

• #1 says “the exogenous regressors are exogenous.”  

2.  (Yi,X1i,…,Xki,W1i,…,Wri,Z1i,…,Zmi) are i.i.d. 

• #2 is not new 

3. The X’s, W’s, Z’s, and Y have nonzero, finite 4th moments 

• #3 is not new 

4. The instruments (Z1i,…,Zmi) are valid. 

• We have discussed this 

 

• Under 1-4, TSLS and its t-statistic are normally distributed 

• The critical requirement is that the instruments be valid… 
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Checking Instrument Validity 

  

Recall the two requirements for valid instruments: 

1.  Relevance (special case of one X) 

At least one instrument must enter the population 

counterpart of the first stage regression. 

2. Exogeneity 

All the instruments must be uncorrelated with the error 

term:  corr(Z1i,ui) = 0,…, corr(Zmi,ui) = 0 

 

What happens if one of these requirements isn’t satisfied?  

How can you check? What do you do? 

If you have multiple instruments, which should you use?  
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Checking Assumption #1:  Instrument Relevance 

 

We will focus on a single included endogenous regressor: 

Yi = β0 + β1Xi + β2W1i + … + β1+rWri + ui 

 

First stage regression: 

  Xi = π0 + π1Z1i +…+ πmZmi + πm+1W1i +…+ πm+kWki + ui 

 

• The instruments are relevant if at least one of π1,…,πm are 

nonzero. 

• The instruments are said to be weak if all the π1,…,πm are 

either zero or nearly zero. 

• Weak instruments explain very little of the variation in X, 

beyond that explained by the W’s 
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What are the consequences of weak instruments? 

 

If instruments are weak, the sampling distribution of TSLS 

and its t-statistic are not (at all) normal, even with n large. 

Consider the simplest case: 

Yi = β0 + β1Xi + ui 

Xi = π0 + π1Zi + ui 

• The IV estimator is 1
ˆTSLSβ  = YZ

XZ

s

s
 

• If cov(X,Z) is zero or small, then sXZ will be small:  With 

weak instruments, the denominator is nearly zero. 

• If so, the sampling distribution of 1
ˆTSLSβ  (and its t-statistic) is 

not well approximated by its large-n normal 

approximation… 
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An example: the sampling distribution of the TSLS  

t-statistic with weak instruments 

 

Dark line = irrelevant instruments 

Dashed light line = strong instruments 
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Why does our trusty normal approximation fail us? 

1
ˆTSLSβ  = YZ

XZ

s

s
 

• If cov(X,Z) is small, small changes in sXZ (from one sample 

to the next) can induce big changes in 1
ˆTSLSβ  

• Suppose in one sample you calculate sXZ = .00001... 

• Thus the large-n normal approximation is a poor 

approximation to the sampling distribution of 1
ˆTSLSβ  

• A better approximation is that 1
ˆTSLSβ  is distributed as the 

ratio of two correlated normal random variables (see SW 

App. 12.4) 

• If instruments are weak, the usual methods of inference are 

unreliable – potentially very unreliable. 
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Measuring the strength of instruments in practice: 

The first-stage F-statistic 

 

• The first stage regression (one X): 

Regress X on Z1,..,Zm,W1,…,Wk. 

• Totally irrelevant instruments ⇔ all the coefficients on 

Z1,…,Zm are zero. 

• The first-stage F-statistic tests the hypothesis that Z1,…,Zm 

do not enter the first stage regression. 

• Weak instruments imply a small first stage F-statistic. 
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Checking for weak instruments with a single X 

 

• Compute the first-stage F-statistic. 

Rule-of-thumb:  If the first stage F-statistic is less than 

10, then the set of instruments is weak. 

• If so, the TSLS estimator will be biased, and statistical 

inferences (standard errors, hypothesis tests, confidence 

intervals) can be misleading. 

• Note that simply rejecting the null hypothesis that the 

coefficients on the Z’s are zero isn’t enough – you actually 

need substantial predictive content for the normal 

approximation to be a good one. 

• There are more sophisticated things to do than just compare 

F to 10 but they are beyond this course. 
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What to do if you have weak instruments? 

 

• Get better instruments (!) 

 

• If you have many instruments, some are probably weaker 

than others and it’s a good idea to drop the weaker ones 

(dropping an irrelevant instrument will increase the first-

stage F)
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Estimation with weak instruments 

 

• There are no consistent estimators if instruments are weak 

or irrelevant. 

• However, some estimators have a distribution more 

centered around β1 than does TSLS 

• One such estimator is the limited information maximum 

likelihood estimator (LIML) 

• The LIML estimator  

o can be derived as a maximum likelihood estimator
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Checking Assumption #2:  Instrument Exogeneity 

 

• Instrument exogeneity:  All the instruments are 

uncorrelated with the error term:  corr(Z1i,ui) = 0,…, 

corr(Zmi,ui) = 0 

• If the instruments are correlated with the error term, the 

first stage of TSLS doesn’t successfully isolate a 

component of X that is uncorrelated with the error term, so 

X̂  is correlated with u and TSLS is inconsistent. 

• If there are more instruments than endogenous regressors, 

it is possible to test – partially – for instrument 

exogeneity. 
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Testing overidentifying restrictions 

 

Consider the simplest case: 

Yi = β0 + β1Xi + ui,   

 

• Suppose there are two valid instruments:  Z1i, Z2i 

• Then you could compute two separate TSLS estimates. 

• Intuitively, if these 2 TSLS estimates are very different 

from each other, then something must be wrong: one or the 

other (or both) of the instruments must be invalid. 

• The J-test of overidentifying restrictions makes this 

comparison in a statistically precise way. 

• This can only be done if #Z’s > #X’s (overidentified). 
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Suppose #instruments = m >  # X’s = k (overidentified) 

 Yi = β0 + β1X1i + … + βkXki + βk+1W1i + … + βk+rWri + ui 

 

The J-test of overidentifying restrictions 

The J-test is the Anderson-Rubin test, using the TSLS 

estimator instead of the hypothesized value β1,0.  The recipe: 

1. First estimate the equation of interest using TSLS and all 

m instruments; compute the predicted values ˆ
i

Y , using the 

actual X’s (not the X̂ ’s used to estimate the second stage) 

2. Compute the residuals ˆ
i

u  = Yi – ˆ
i

Y  

3. Regress ˆ
i

u  against Z1i,…,Zmi, W1i,…,Wri 

4. Compute the F-statistic testing the hypothesis that the 

coefficients on Z1i,…,Zmi are all zero; 

5. The J-statistic is  J = mF
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J = mF, where F = the F-statistic testing the coefficients 

on Z1i,…,Zmi in a regression of the TSLS residuals against 

Z1i,…,Zmi, W1i,…,Wri. 

 

Distribution of the J-statistic 

• Under the null hypothesis that all the instruments are 

exogeneous, J has a chi-squared distribution with m–k 

degrees of freedom 

• If m = k, J = 0 (does this make sense?) 

• If some instruments are exogenous and others are 

endogenous, the J statistic will be large, and the null 

hypothesis that all instruments are exogenous will be 

rejected. 
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Checking Instrument Validity: Summary 

 

The two requirements for valid instruments: 

 

1.  Relevance (special case of one X) 

• At least one instrument must enter the population 

counterpart of the first stage regression. 

• If instruments are weak, then the TSLS estimator is biased 

and the and t-statistic has a non-normal distribution 

• To check for weak instruments with a single included 

endogenous regressor, check the first-stage F  

o If F>10, instruments are strong – use TSLS 

o If F<10, weak instruments – take some action 
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2. Exogeneity 

 

• All the instruments must be uncorrelated with the error 

term:  corr(Z1i,ui) = 0,…, corr(Zmi,ui) = 0 

• We can partially test for exogeneity: if m>1, we can test 

the hypothesis that all are exogenous, against the 

alternative that as many as m–1 are endogenous 

(correlated with u) 

• The test is the J-test, constructed using the TSLS 

residuals. 

 
 


