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Econ 423 – Lecture Notes 

 

(These notes are slightly modified versions of lecture notes provided by 

Stock and Watson, 2007. They are for instructional purposes only  

and are not to be distributed outside of the classroom.)  

 

 

 

 

 



 14-2 

 

 

Introduction to Time Series Regression  

and Forecasting 

 

Time series data are data collected on the same observational 

unit at multiple time periods 

• Aggregate consumption and GDP for a country (for 

example, 20 years of quarterly observations = 80 

observations) 

• Yen/$, pound/$ and Euro/$ exchange rates (daily data for 

1 year = 365 observations) 

• Cigarette consumption per capita in a state, by year 
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Example #1 of time series data: US rate of price inflation, as 

measured by the quarterly percentage change in the 

Consumer Price Index (CPI), at an annual rate 

 



 14-4 

Example #2: US rate of unemployment 
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Why use time series data? 

 

• To develop forecasting models  

o What will the rate of inflation be next year? 

• To estimate dynamic causal effects  

o If the Fed increases the Federal Funds rate now, what 

will be the effect on the rates of inflation and 

unemployment in 3 months? in 12 months? 

o What is the effect over time on cigarette consumption 

of a hike in the cigarette tax? 

• Or, because that is your only option … 

o Rates of inflation and unemployment in the US can be 

observed only over time! 
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Time series data raises new technical issues 

 

• Time lags 

• Correlation over time (serial correlation, a.k.a. 

autocorrelation) 

• Forecasting models built on regression methods: 

o autoregressive (AR) models 

o autoregressive distributed lag (ADL) models 

o need not (typically do not) have a causal interpretation 

• Conditions under which dynamic effects can be estimated, 

and how to estimate them 

• Calculation of standard errors when the errors are serially 

correlated 
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Using Regression Models for Forecasting 

 

• Forecasting and estimation of causal effects are quite 

different objectives. 

 

• For forecasting, 

o 2
R  matters (a lot!) 

o Omitted variable bias isn’t a problem! 

o We will not worry about interpreting coefficients in 

forecasting models 

o External validity is paramount:  the model estimated 

using historical data must hold into the (near) future 
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Introduction to Time Series Data  

and Serial Correlation 

 

First, some notation and terminology. 

 

Notation for time series data 

• Yt = value of Y in period t. 

• Data set:  Y1,…,YT = T observations on the time series 

random variable Y 

• We consider only consecutive, evenly-spaced 

observations (for example, monthly, 1960 to 1999, no 

missing months) (missing and non-evenly spaced data 

introduce technical complications) 
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We will transform time series variables using lags, first 

differences, logarithms, & growth rates 
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Example: Quarterly rate of inflation at an annual rate (U.S.) 

CPI = Consumer Price Index (Bureau of Labor Statistics) 

• CPI in the first quarter of 2004 (2004:I) = 186.57 

• CPI in the second quarter of 2004 (2004:II) = 188.60 

• Percentage change in CPI, 2004:I to 2004:II 

= 
188.60 186.57

100
186.57

− 
×  
 

 = 
2.03

100
186.57

 
×  
 

 = 1.088% 

• Percentage change in CPI, 2004:I to 2004:II, at an annual 

rate = 4×1.088 = 4.359% ≈ 4.4% (percent per year) 

• Like interest rates, inflation rates are (as a matter of 

convention) reported at an annual rate. 

• Using the logarithmic approximation to percent changes 

yields 4×100×[log(188.60) – log(186.57)] = 4.329% 
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Example:  US CPI inflation – its first lag and its change 
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Autocorrelation 

 

The correlation of a series with its own lagged values is called 

autocorrelation or serial correlation. 

 

• The first autocorrelation of Yt is corr(Yt,Yt–1) 

• The first autocovariance of Yt is cov(Yt,Yt–1) 

• Thus 

corr(Yt,Yt–1) = 1

1

cov( , )

var( ) var( )

t t

t t

Y Y

Y Y

−

−

 =ρ1 

 

• These are population correlations – they describe the 

population joint distribution of (Yt, Yt–1)
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Sample autocorrelations 

The jth sample autocorrelation is an estimate of the jth 

population autocorrelation: 

ˆ
j

ρ  = 
�

�

cov( , )

var( )

t t j

t

Y Y

Y

−
 

where 

�cov( , )t t jY Y −  = 1, 1,

1

1
( )( )

T

t j T t j T j

t j

Y Y Y Y
T

+ − −

= +

− −∑  

where 1,j T
Y +  is the sample average of Yt computed over 

observations t = j+1,…,T.  NOTE: 

o the summation is over t=j+1 to T (why?) 

o The divisor is T, not T – j (this is the conventional 

definition used for time series data) 
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Example: Autocorrelations of: 

(1) the quarterly rate of U.S. inflation 

(2) the quarter-to-quarter change in the quarterly rate of 

inflation 
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• The inflation rate is highly serially correlated (ρ1 = .84) 

• Last quarter’s inflation rate contains much information 

about this quarter’s inflation rate 

• The plot is dominated by multiyear swings 

• But there are still surprise movements! 
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Other economic time series: 
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Other economic time series, ctd: 
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Stationarity: a key requirement for external validity of 

time series regression 

 

Stationarity says that history is relevant: 

 

 

 

For now, assume that Yt is stationary (we return to this later). 
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Autoregressions 

 

A natural starting point for a forecasting model is to use past 

values of Y (that is, Yt–1, Yt–2,…) to forecast Yt. 

• An autoregression is a regression model in which Yt is 

regressed against its own lagged values. 

• The number of lags used as regressors is called the order 

of the autoregression. 

o In a first order autoregression, Yt is regressed against 

Yt–1 

o In a pth
 order autoregression, Yt is regressed against 

Yt–1,Yt–2,…,Yt–p. 
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The First Order Autoregressive (AR(1)) Model 

 

The population AR(1) model is 

 

Yt = β0 + β1Yt–1 + ut 

 

• if β1 = 0, Yt–1 is not useful for forecasting Yt 

• The AR(1) model can be estimated by OLS regression of 

Yt against Yt–1 

• Testing β1 = 0 v. β1 ≠ 0 provides a test of the hypothesis 

that Yt–1 is not useful for forecasting Yt 
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Example: AR(1) model of the change in inflation 

 

Estimated using data from 1962:I – 2004:IV: 

 

�
tInf∆  = 0.017 – 0.238∆Inft–1  

2
R  = 0.05 

     (0.126) (0.096) 

 

Is the lagged change in inflation a useful predictor of the 

current change in inflation? 

• t = –.238/.096 = –2.47 > 1.96 (in absolute value) 

• ⇒Reject H0: β1 = 0 at the 5% significance level 

• Yes, the lagged change in inflation is a useful predictor of 

current change in inflation–but the 2
R  is pretty low! 
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Forecasts: terminology and notation 

• Predicted values are “in-sample” (the usual definition) 

• Forecasts are “out-of-sample” – in the future 

• Notation: 

o YT+1|T = forecast of YT+1 based on YT,YT–1,…, using the 

population (true unknown) coefficients 

o 1|
ˆ
T TY +  = forecast of YT+1 based on YT,YT–1,…, using the 

estimated coefficients, which are estimated using data 

through period T. 

o For an AR(1): 

� YT+1|T = β0 + β1YT 

� 1|
ˆ
T TY +  = 0β̂  + 1β̂ YT, where 0β̂  and 1β̂  are estimated 

using data through period T. 
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Forecast errors 

 

The one-period ahead forecast error is, 

 

forecast error = YT+1 – 1|
ˆ
T TY +  

 

The distinction between a forecast error and a residual is the 

same as between a forecast and a predicted value: 

• a residual is “in-sample” 

• a forecast error is “out-of-sample” – the value of YT+1 

isn’t used in the estimation of the regression coefficients 
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Example:  forecasting inflation using an AR(1) 

 

AR(1) estimated using data from 1962:I – 2004:IV: 

 

�
tInf∆  = 0.017 – 0.238∆Inft–1 

 

Inf2004:III = 1.6 (units are percent, at an annual rate) 

Inf2004:IV = 3.5   

∆Inf2004:IV = 3.5 – 1.6 = 1.9  

The forecast of ∆Inf2005:I is: 

�
2005: |2000:I IVInf∆  = 0.017 – 0.238×1.9 = -0.44 ≈ -0.4  

so 

�
2005: |2000:I IVInf  = Inf2004:IV + � 2005: |2000:I IVInf∆  = 3.5 – 0.4 = 3.1% 
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The AR(p) model: using multiple lags for forecasting 

 

The pth order autoregressive model (AR(p)) is 

 

Yt = β0 + β1Yt–1 + β2Yt–2 + … + βpYt–p + ut 

 

• The AR(p) model uses p lags of Y as regressors 

• The AR(1) model is a special case 

• To test the hypothesis that Yt–2,…,Yt–p do not further help 

forecast Yt, beyond Yt–1, use an F-test 

• Use t- or F-tests to determine the lag order p 

• Or, better, determine p using an “information criterion” 

(more on this later…) 
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Example:  AR(4) model of inflation 

 

�
tInf∆  = .02 – .26∆Inft–1 – .32∆Inft–2 + .16∆Inft–3 – .03∆Inft–4,  

  (.12) (.09)     (.08)     (.08)    (.09) 

 
2

R  = 0.18 

   

• F-statistic testing lags 2, 3, 4 is 6.91 (p-value < .001) 

• 2
R  increased from .05 to .18 by adding lags 2, 3, 4 

• So, lags 2, 3, 4 (jointly) help to predict the change in 

inflation, above and beyond the first lag – both in a 

statistical sense (are statistically significant) and in a 

substantive sense (substantial increase in the 2
R ) 
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Example: AR(4) model of inflation – STATA 
 

. reg dinf L(1/4).dinf if tin(1962q1,2004q4), r; 

 

Linear regression                                      Number of obs =     172 

                                                       F(  4,   167) =    7.93 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.2038 

                                                       Root MSE      =  1.5421 

 

------------------------------------------------------------------------------ 

             |               Robust 

        dinf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        dinf | 

         L1. |  -.2579205   .0925955    -2.79   0.006    -.4407291   -.0751119 

         L2. |  -.3220302   .0805456    -4.00   0.000     -.481049   -.1630113 

         L3. |   .1576116   .0841023     1.87   0.063    -.0084292    .3236523 

         L4. |  -.0302685   .0930452    -0.33   0.745    -.2139649    .1534278 

       _cons |   .0224294   .1176329     0.19   0.849    -.2098098    .2546685 

------------------------------------------------------------------------------ 

 

NOTES 

 

• L(1/4).dinf is A convenient way to say “use lags 1–4 of dinf as regressors” 

• L1,…,L4 refer to the first, second,… 4th lags of dinf 
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Example: AR(4) model of inflation – STATA, ctd. 
 

 

.  dis "Adjusted Rsquared = " _result(8); result(8) is the rbar-squared 
Adjusted Rsquared = .18474733     of the most recently run regression 

 

 

.  test L2.dinf L3.dinf L4.dinf;   L2.dinf is the second lag of dinf, etc. 

 

 ( 1)  L2.dinf = 0.0 

 ( 2)  L3.dinf = 0.0 

 ( 3)  L4.dinf = 0.0 

 

       F(  3,   147) =    6.71 

            Prob > F =    0.0003 
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Digression: we used ∆Inf, not Inf, in the AR’s.  Why? 

 

The AR(1) model of Inft–1 is an AR(2) model of Inft: 

 

∆Inft = β0 + β1∆Inft–1 + ut 

or 

Inft – Inft–1 = β0 + β1(Inft–1 – Inft–2) + ut 

or 

Inft = Inft–1 + β0 + β1Inft–1 – β1Inft–2 + ut 

 

 = β0 + (1+β1)Inft–1 – β1Inft–2 + ut 
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So why use ∆Inft, not Inft? 

AR(1) model of ∆Inf:  ∆Inft = β0 + β1∆Inft–1 + ut 

AR(2) model of Inf:  Inft = γ0 + γ1Inft + γ2Inft–1 + vt 

• When Yt is strongly serially correlated, the OLS estimator of 

the AR coefficient is biased towards zero. 

• In the extreme case that the AR coefficient = 1, Yt isn’t 

stationary:  the ut’s accumulate and Yt blows up. 

• If Yt isn’t stationary, our regression theory are working with 

here breaks down  

• Here, Inft is strongly serially correlated – so to keep 

ourselves in a framework we understand, the regressions are 

specified using ∆Inf 

• More on this later… 
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Time Series Regression with Additional Predictors and 

the Autoregressive Distributed Lag (ADL) Model  

 

• So far we have considered forecasting models that use only 

past values of Y 

• It makes sense to add other variables (X) that might be 

useful predictors of Y, above and beyond the predictive 

value of lagged values of Y: 

 

Yt = β0 + β1Yt–1 + … + βpYt–p + δ1Xt–1 + … + δrXt–r + ut 

 

• This is an autoregressive distributed lag model with p lags 

of Y and r lags of X … ADL(p,r). 



 14-33 

Example: inflation and unemployment 

 

According to the “Phillips curve,” if unemployment is 

above its equilibrium, or “natural,” rate, then the rate of 

inflation will decrease.  That is, ∆Inft is related to lagged 

values of the unemployment rate, with a negative coefficient  

 

• The rate of unemployment at which inflation neither 

increases nor decreases is often called the “non-accelerating 

inflation rate of unemployment” (the NAIRU). 

• Is the Phillips curve found in US economic data? 

• Can it be exploited for forecasting inflation? 

• Has the U.S. Phillips curve been stable over time? 
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The empirical U.S. “Phillips Curve,” 1962 – 2004 (annual) 

 

One definition of the NAIRU is that it is the value of u for 

which ∆Inf = 0 – the x intercept of the regression line. 
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The empirical (backwards-looking) Phillips Curve, ctd. 

 

ADL(4,4) model of inflation (1962 – 2004): 

 

�
tInf∆  = 1.30 – .42∆Inft–1 – .37∆Inft–2 + .06∆Inft–3 – .04∆Inft–4 

     (.44)  (.08)      (.09)    (.08)     (.08) 

 

 – 2.64Unemt–1 + 3.04Unemt–2 – 0.38Unemt–3 + .25Unempt–4   

    (.46)       (.86)     (.89)     (.45) 

 

• 2
R  = 0.34 – a big improvement over the AR(4), for which 

2
R  = .18 
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Example: dinf and unem – STATA 
 

 

. reg dinf L(1/4).dinf L(1/4).unem if tin(1962q1,2004q4), r; 

 

Linear regression                                      Number of obs =     172 

                                                       F(  8,   163) =    8.95 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.3663 

                                                       Root MSE      =  1.3926 

 

------------------------------------------------------------------------------ 

             |               Robust 

        dinf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        dinf | 

         L1. |  -.4198002   .0886973    -4.73   0.000    -.5949441   -.2446564 

         L2. |  -.3666267   .0940369    -3.90   0.000    -.5523143   -.1809391 

         L3. |   .0565723   .0847966     0.67   0.506    -.1108691    .2240138 

         L4. |  -.0364739   .0835277    -0.44   0.663    -.2014098     .128462 

        unem | 

         L1. |  -2.635548   .4748106    -5.55   0.000    -3.573121   -1.697975 

         L2. |   3.043123   .8797389     3.46   0.001     1.305969    4.780277 

         L3. |  -.3774696   .9116437    -0.41   0.679    -2.177624    1.422685 

         L4. |  -.2483774   .4605021    -0.54   0.590    -1.157696    .6609413 

       _cons |   1.304271   .4515941     2.89   0.004     .4125424       2.196 

------------------------------------------------------------------------------ 
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Example: ADL(4,4) model of inflation – STATA, ctd. 
 

 

.  dis "Adjusted Rsquared = " _result(8); 

Adjusted Rsquared = .33516905 

 

 

.  test L1.unem L2.unem L3.unem L4.unem; 

 

 ( 1)  L.unem = 0 

 ( 2)  L2.unem = 0 

 ( 3)  L3.unem = 0 

 ( 4)  L4.unem = 0 

 

       F(  4,   163) =    8.44  The lags of unem are significant 

            Prob > F =    0.0000 

 

 

The null hypothesis that the coefficients on the lags of the 

unemployment rate are all zero is rejected at the 1% significance 

level using the F-statistic  
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The test of the joint hypothesis that none of the X’s is a useful 

predictor, above and beyond lagged values of Y, is called a 

Granger causality test 

 

 

 

“causality” is an unfortunate term here: Granger Causality 

simply refers to (marginal) predictive content. 
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Forecast uncertainty and forecast intervals 

 

Why do you need a measure of forecast uncertainty? 

• To construct forecast intervals 

• To let users of your forecast (including yourself) know 

what degree of accuracy to expect 

 

Consider the forecast  

1|
ˆ
T TY +  = 0β̂  + 1β̂ YT + 1β̂ XT 

 

The forecast error is: 

 

YT+1 – 1|
ˆ
T TY +  = uT+1 – [( 0β̂  – β0) + ( 1β̂  – β1)YT + ( 1β̂  – β2)XT] 
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 The mean squared forecast error (MSFE) is, 

 

E(YT+1 – 1|
ˆ
T TY + )2 = E(uT+1)

2 +  

   + E[( 0β̂  – β0) + ( 1β̂  – β1)YT + ( 1β̂  – β2)XT]2 

 

• MSFE = var(uT+1) + uncertainty arising because of 

estimation error 

• If the sample size is large, the part from the estimation 

error is (much) smaller than var(uT+1), in which case 

MSFE ≈ var(uT+1) 

• The root mean squared forecast error (RMSFE) is the 

square root of the MS forecast error: 

RMSFE = 2

1 1|
ˆ[( ) ]T T TE Y Y+ +−  
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The root mean squared forecast error (RMSFE) 

 

RMSFE = 2

1 1|
ˆ[( ) ]T T TE Y Y+ +−  

 

• The RMSFE is a measure of the spread of the forecast 

error distribution. 

• The RMSFE is like the standard deviation of ut, except 

that it explicitly focuses on the forecast error using 

estimated coefficients, not using the population regression 

line. 

• The RMSFE is a measure of the magnitude of a typical 

forecasting “mistake” 
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Three ways to estimate the RMSFE 

1. Use the approximation RMSFE ≈ σu, so estimate the 

RMSFE by the SER. 

2. Use an actual forecast history for t = t1,…, T, then 

estimate by 

�MSFE= 
1

1
2

1 1|

11

1 ˆ( )
1

T

t t t

t t

Y Y
T t

−

+ +

= −

−
− +

∑  

Usually, this isn’t practical – it requires having an 

historical record of actual forecasts from your model 

3. Use a simulated forecast history, that is, simulate the 

forecasts you would have made using your model in real 

time….then use method 2, with these pseudo out-of-

sample forecasts… 
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The method of pseudo out-of-sample forecasting 

• Re-estimate your model every period, t = t1–1,…,T–1 

• Compute your “forecast” for date t+1 using the model 

estimated through t 

• Compute your pseudo out-of-sample forecast at date t, 

using the model estimated through t–1.  This is 1|
ˆ
t tY + . 

• Compute the poos forecast error, Yt+1 – 1|
ˆ
t tY +  

• Plug this forecast error into the MSFE formula, 

 

�MSFE  = 
1

1
2

1 1|

11

1 ˆ( )
1

T

t t t

t t

Y Y
T t

−

+ +

= −

−
− +

∑  

 

Why the term “pseudo out-of-sample forecasts”?
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Using the RMSFE to construct forecast intervals 

  

If uT+1 is normally distributed, then a 95% forecast interval 

can be constructed as  

 

| 1
ˆ
T TY −  ± 1.96×�RMSFE   

Note: 

1. A 95% forecast interval is not a confidence interval (YT+1 

isn’t a nonrandom coefficient, it is random!) 

2. This interval is only valid if uT+1 is normal – but still 

might be a reasonable approximation and is a commonly 

used measure of forecast uncertainty 

3. Often “67%” forecast intervals are used: ± �RMSFE  
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Example #1:  the Bank of England “Fan Chart”, 11/05 

 
 

http://www.bankofengland.co.uk/publications/inflationreport/index.htm
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Example #2:  Monthly Bulletin of the European Central 

Bank, Dec. 2005, Staff macroeconomic projections 

 

Precisely how, did they compute these intervals?  

 

http://www.ecb.int/pub/mb/html/index.en.html
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Example #3:  Fed, Semiannual Report to Congress, 7/04 

Economic projections for 2004 and 2005 

   

Federal Reserve Governors 
and Reserve Bank presidents  

 
Indicator  

 

  Range    

 

Central tendency  

 

  
2005  

 
Change, fourth quarter 

to fourth quarter 
    

Nominal GDP 4-3/4 to 6-1/2 5-1/4 to 6 

Real GDP 3-1/2 to 4 3-1/2 to 4 

PCE price index excl food and energy 1-1/2 to 2-1/2 1-1/2 to 2  

 
Average level, fourth quarter 

    

Civilian unemployment rate 5 to 5-1/2  5 to 5-1/4  

  

How did they compute these intervals? 

http://www.federalreserve.gov/boarddocs/hh/ 
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Lag Length Selection Using Information Criteria 

 

How to choose the number of lags p in an AR(p)? 

• Omitted variable bias is irrelevant for forecasting 

• You can use sequential “downward” t- or F-tests; but the 

models chosen tend to be “too large” (why?) 

• Another – better – way to determine lag lengths is to use 

an information criterion 

• Information criteria trade off bias (too few lags) vs. 

variance (too many lags) 

• Two IC are the Bayes (BIC) and Akaike (AIC)… 
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The Bayes Information Criterion (BIC) 

BIC(p) = 
( ) ln

ln ( 1)
SSR p T

p
T T

 
+ + 

 
 

• First term:  always decreasing in p (larger p, better fit) 

• Second term:  always increasing in p.   

o The variance of the forecast due to estimation error 

increases with p – so you don’t want a forecasting model 

with too many coefficients – but what is “too many”? 

o This term is a “penalty” for using more parameters – and 

thus increasing the forecast variance. 

• Minimizing BIC(p) trades off bias and variance to determine 

a “best” value of p for your forecast. 

o The result is that ˆ BIC
p  

p

→ p!  (SW, App. 14.5) 
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Another information criterion: Akaike Information 

Criterion (AIC) 

 

AIC(p) = 
( ) 2

ln ( 1)
SSR p

p
T T

 
+ + 

 
 

BIC(p) = 
( ) ln

ln ( 1)
SSR p T

p
T T

 
+ + 

 
 

 

The penalty term is smaller for AIC than BIC (2 < lnT) 

o AIC estimates more lags (larger p) than the BIC 

o This might be desirable if you think longer lags might 

be important. 

o However, the AIC estimator of p isn’t consistent – it 

can overestimate p – the penalty isn’t big enough 
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Example: AR model of inflation, lags 0 – 6: 

 

# Lags BIC AIC R
2 

0 1.095 1.076 0.000 

1 1.067 1.030 0.056 

2 0.955 0.900 0.181 

3 0.957 0.884 0.203 

4 0.986 0.895 0.204 

5 1.016 0.906 0.204 

6 1.046 0.918 0.204 

 

• BIC chooses 2 lags, AIC chooses 3 lags. 

• If you used the R2 to enough digits, you would (always) 

select the largest possible number of lags. 
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Generalization of BIC to multivariate (ADL) models 

 

Let K = the total number of coefficients in the model 

(intercept, lags of Y, lags of X).  The BIC is, 

 

BIC(K) = 
( ) ln

ln
SSR K T

K
T T

 
+ 

 
 

 

• Can compute this over all possible combinations of lags of 

Y and lags of X (but this is a lot)! 

• In practice you might choose lags of Y by BIC, and decide 

whether or not to include X using a Granger causality test 

with a fixed number of lags (number depends on the data 

and application) 
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Nonstationarity I:  Trends 

 

• So far, we have assumed that the data are well-behaved – 

technically, that the data are stationary. 

• Now we will discuss two of the most important ways that, 

in practice, data can be nonstationary (that is, deviate from 

stationarity).  You need to be able to recognize/detect 

nonstationarity, and to deal with it when it occurs. 

• Two important types of nonstationarity are: 

o Trends (SW Section 14.6)  

o Structural breaks (model instability) (SW Section 14.7) 

• We discuss trends first. 
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Outline of discussion of trends in time series data: 

1. What is a trend? 

2. What problems are caused by trends? 

3. How do you detect trends (statistical tests)? 

4. How to address/mitigate problems raised by trends 
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1.  What is a trend? 

• A trend is a long-term movement or tendency in the data. 

• Trends need not be just a straight line! 

• Which of these series has a trend? 
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What is a trend, ctd. 

 

The three series: 

• log Japan GDP clearly has a long-run trend – not a straight 

line, but a slowly decreasing trend – fast growth during 

the 1960s and 1970s, slower during the 1980s, stagnating 

during the 1990s/2000s. 

• Inflation has long-term swings, periods in which it is 

persistently high for many years (70s’/early 80s) and 

periods in which it is persistently low.  Maybe it has a 

trend – hard to tell. 

• NYSE daily changes has no apparent trend.  There are 

periods of persistently high volatility – but this isn’t a 

trend. 
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Deterministic and stochastic trends 

 

• A trend is a long-term movement or tendency in the data. 

• A deterministic trend is a nonrandom function of time 

(e.g. yt = t, or yt = t2). 

• A stochastic trend is random and varies over time 

• An important example of a stochastic trend is a random 

walk: 

 

Yt = Yt–1 + ut, where ut is serially uncorrelated 

 

If Yt follows a random walk, then the value of Y tomorrow 

is the value of Y today, plus an unpredictable disturbance. 
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Deterministic and stochastic trends, ctd. 

 

Two key features of a random walk: 

(i) YT+h|T = YT 

• Your best prediction of the value of Y in the future is the 

value of Y today 

• To a first approximation, log stock prices follow a 

random walk (more precisely, stock returns are 

unpredictable 

(ii) var(YT+h|T – YT) = 2

uhσ  

• The variance of your forecast error increases linearly in 

the horizon.  The more distant your forecast, the greater 

the forecast uncertainty.  (Technically this is the sense in 

which the series is “nonstationary”)  
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Deterministic and stochastic trends, ctd. 

 

A random walk with drift is 

 

Yt = β0 +Yt–1 + ut, where ut is serially uncorrelated 

 

The “drift” is β0:  If β0 ≠ 0, then Yt follows a random walk 

around a linear trend.  You can see this by considering the h-

step ahead forecast: 

 

YT+h|T = β0h + YT 

 

The random walk model (with or without drift) is a good 

description of stochastic trends in many economic time series.
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Deterministic and stochastic trends, ctd. 

 

Where we are headed is the following practical advice: 

If Yt has a random walk trend, then ∆∆∆∆Yt is stationary 

and regression analysis should be undertaken using 

∆∆∆∆Yt instead of Yt. 

 

Upcoming specifics that lead to this advice: 

• Relation between the random walk model and AR(1), 

AR(2), AR(p) (“unit autoregressive root”) 

• A regression test for detecting a random walk trend 

arises naturally from this development 
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Stochastic trends and unit autoregressive roots 

 

Random walk (with drift):  Yt = β0 + Yt–1 + ut 

 

AR(1):       Yt = β0 + β1Yt–1 + ut 

 

• The random walk is an AR(1) with β1 = 1. 

• The special case of β1 = 1 is called a unit root*. 

• When β1 = 1, the AR(1) model becomes 

       ∆Yt = β0 + ut 

 

*This terminology comes from considering the equation  

1 – β1z = 0 – the “root” of this equation is z = 1/β1, which equals one 

(unity) if β1 = 1.
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Unit roots in an AR(2) 

  

AR(2):  Yt = β0 + β1Yt–1 + β2Yt–2 + ut 

 

Use the “rearrange the regression” trick from Ch 7.3: 

 Yt = β0 + β1Yt–1 + β2Yt–2 + ut 

= β0 + (β1+β2)Yt–1 – β2Yt–1 + β2Yt–2 + ut 

= β0 + (β1+β2)Yt–1 – β2(Yt–1 – Yt–2) + ut 

 

Subtract Yt–1 from both sides: 

Yt – Yt–1 = β0 + (β1+β2–1)Yt–1 – β2(Yt–1 – Yt–2) + ut 

or 

∆Yt = β0 + δYt–1 + γ1∆Yt–1 + ut,  

where δ = β1 + β2 – 1 and γ1 = –β2.. 
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Unit roots in an AR(2), ctd. 

Thus the AR(2) model can be rearranged as, 

∆Yt = β0 + δYt–1 + γ1∆Yt–1 + ut 

where δ = β1 + β2 – 1 and γ1 = –β2. 

 

Claim: if 1 – β1z – β2z
2 = 0 has a unit root, then β1 + β2 = 1 

(you can show this yourself!) 

 

Thus, if there is a unit root, then δ = 0 and the AR(2) model 

becomes, 

∆Yt = β0 + γ1∆Yt–1 + ut 

 

If an AR(2) model has a unit root, then it can be written 

as an AR(1) in first differences. 
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Unit roots in the AR(p) model 

 

AR(p):  Yt = β0 + β1Yt–1 + β2Yt–2 + … + βpYt–p + ut 

 

This regression can be rearranged as, 

 

∆Yt = β0 + δYt–1 + γ1∆Yt–1 + γ2∆Yt–2 + … + γp–1∆Yt–p+1 + ut 

 

where 

δ = β1 + β2 + … + βp – 1 

γ1 = –(β2 +… + βp) 

γ2 = –(β3 +… + βp) 

… 

γp–1 = –βp 
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Unit roots in the AR(p) model, ctd. 

 

The AR(p) model can be written as, 

 

∆Yt = β0 + δYt–1 + γ1∆Yt–1 + γ2∆Yt–2 + … + γp–1∆Yt–p+1 + ut 

 

where δ = β1 + β2 + … + βp – 1. 

 

Claim: If there is a unit root in the AR(p) model, then δδδδ = 

0 and the AR(p) model becomes an AR(p–1) model in first 

differences: 

 

∆Yt = β0 + γ1∆Yt–1 + γ2∆Yt–2 + … + γp–1∆Yt–p+1 + ut 
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2.  What problems are caused by trends? 

 

There are three main problems with stochastic trends: 

1. AR coefficients can be badly biased towards zero.  This 

means that if you estimate an AR and make forecasts, if 

there is a unit root then your forecasts can be poor (AR 

coefficients biased towards zero) 

 

2. Some t-statistics don’t have a standard normal 

distribution, even in large samples (more on this later) 

 

3. If Y and X both have random walk trends then they can 

look related even if they are not – you can get “spurious 

regressions.”  Here is an example… 
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Log Japan gdp (smooth line) and US inflation (both rescaled), 

1965-1981  

 

time

 lgdpjs  infs

1965q1 1970q1 1975q1 1980q1 1985q1
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Log Japan gdp (smooth line) and US inflation (both rescaled), 

1982-1999  

 

time

 lgdpjs  infs

1980q1 1985q1 1990q1 1995q1 2000q1
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3.  How do you detect trends? 

 

1. Plot the data (think of the three examples we started with). 

2. There is a regression-based test for a random walk – the 

Dickey-Fuller test for a unit root. 

 

The Dickey-Fuller test in an AR(1) 

 

Yt = β0 + β1Yt–1 + ut 

or 

∆Yt = β0 + δYt–1 + ut 

 

H0: δ = 0 (that is, β1 = 1) v. H1: δ < 0 

 (note: this is 1-sided: δ  < 0 means that Yt is stationary) 
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DF test in AR(1), ctd. 

 

∆Yt = β0 + δYt–1 + ut 

H0: δ = 0 (that is, β1 = 1) v. H1: δ < 0 

Test: compute the t-statistic testing δ = 0 

• Under H0, this t statistic does not have a normal 

distribution!! 

• You need to compare the t-statistic to the table of Dickey-

Fuller critical values.  There are two cases: 

 

(a)   ∆Yt = β0 + δYt–1 + ut    (intercept only) 

(b)  ∆Yt = β0 + µt + δYt–1 + ut  (intercept & time trend) 

 

• The two cases have different critical values! 
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Table of DF critical values 

 

(a)   ∆Yt = β0 + δYt–1 + ut    (intercept only) 

(b)  ∆Yt = β0 + µt + δYt–1 + ut  (intercept and time trend) 
 

 
 

Reject if the DF t-statistic (the t-statistic testing δ  = 0) is less 

than the specified critical value.  This is a 1-sided test of the 

null hypothesis of a unit root (random walk trend) vs. the 

alternative that the autoregression is stationary.
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The Dickey-Fuller test in an AR(p) 

In an AR(p), the DF test is based on the rewritten model, 

 

∆Yt = β0 + δYt–1 + γ1∆Yt–1 + γ2∆Yt–2 + … + γp–1∆Yt–p+1 + ut  (*) 

 

where δ = β1 + β2 + … + βp – 1.  If there is a unit root 

(random walk trend), δ = 0; if the AR is stationary, δ < 1. 

 

The DF test in an AR(p) (intercept only): 

1. Estimate (*), obtain the t-statistic testing δ = 0 

2. Reject the null hypothesis of a unit root if the t-statistic is 

less than the DF critical value in Table 14.5 

 

Modification for time trend: include t as a regressor in (*) 
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When should you include a time trend in the DF test? 

 

The decision to use the intercept-only DF test or the intercept 

& trend DF test depends on what the alternative is – and what 

the data look like. 

• In the intercept-only specification, the alternative is that Y 

is stationary around a constant 

• In the intercept & trend specification, the alternative is 

that Y is stationary around a linear time trend. 
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Example: Does U.S. inflation have a unit root? 

 

The alternative is that inflation is stationary around a constant  
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Example: Does U.S. inflation have a unit root? ctd 

DF test for a unit root in U.S. inflation – using p = 4 lags 
 

. reg dinf L.inf L(1/4).dinf if tin(1962q1,2004q4); 

 

      Source |       SS       df       MS              Number of obs =     172 

-------------+------------------------------           F(  5,   166) =   10.31 

       Model |  118.197526     5  23.6395052           Prob > F      =  0.0000 

    Residual |  380.599255   166   2.2927666           R-squared     =  0.2370 

-------------+------------------------------           Adj R-squared =  0.2140 

       Total |  498.796781   171  2.91694024           Root MSE      =  1.5142 

 

------------------------------------------------------------------------------ 

        dinf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         inf | 

         L1. |  -.1134149   .0422339    -2.69   0.008    -.1967998     -.03003 

        dinf | 

         L1. |  -.1864226   .0805141    -2.32   0.022    -.3453864   -.0274589 

         L2. |   -.256388   .0814624    -3.15   0.002     -.417224   -.0955519 

         L3. |    .199051   .0793508     2.51   0.013     .0423842    .3557178 

         L4. |   .0099822   .0779921     0.13   0.898     -.144002    .1639665 

       _cons |   .5068071    .214178     2.37   0.019     .0839431     .929671 

------------------------------------------------------------------------------ 

DF t-statstic = –2.69 

Don’t compare this to –1.645 – use the Dickey-Fuller table!
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DF t-statstic = –2.69 (intercept-only): 

 

t = –2.69 rejects a unit root at 10% level but not the 5% level 

• Some evidence of a unit root – not clear cut. 

• This is a topic of debate – what does it mean for inflation 

to have a unit root? 

• We model inflation as having a unit root. 

 

Note:  you can choose the lag length in the DF regression by 

BIC or AIC (for inflation, both reject at 10%, not 5% level)
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4.  How to address and mitigate problems raised by trends 

 

If Yt has a unit root (has a random walk stochastic trend), the 

easiest way to avoid the problems this poses is to model Yt in 

first differences. 

• In the AR case, this means specifying the AR using first 

differences of Yt (∆Yt) 

• This is what we did in our initial treatment of inflation – 

the reason was that inspection of the plot of inflation, plus 

the DF test results, suggest that inflation plausibly has a 

unit root – so we estimated the ARs using ∆Inft 



 14-80 

Summary: detecting and addressing stochastic trends 

 

1. The random walk model is the workhorse model for trends 

in economic time series data 

 

2. To determine whether Yt has a stochastic trend, first plot 

Yt, then if a trend looks plausible, compute the DF test 

(decide which version, intercept or intercept+trend) 

 

3. If the DF test fails to reject, conclude that Yt has a unit 

root (random walk stochastic trend) 

 

4. If Yt has a unit root, use ∆Yt for regression analysis and 

forecasting. 
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Nonstationarity II:  Breaks and Model Stability 

 

The second type of nonstationarity we consider is that the 

coefficients of the model might not be constant over the full 

sample.  Clearly, it is a problem for forecasting if the model 

describing the historical data differs from the current model – 

you want the current model for your forecasts! (This is an 

issue of external validity.) 

 

So we will: 

• Discuss econometric test procedure for detecting a break 

• Work through an example:  the U.S. Phillips curve 
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A.  Tests for a break (change) in regression coefficients 

Case I:  The break date is known 

Suppose the break is known to have occurred at date τ.  

Stability of the coefficients can be tested by estimating a fully 

interacted regression model.  In the ADL(1,1) case: 

 

Yt = β0 + β1Yt–1 + δ1Xt–1  

+ γ0Dt(τ) + γ1[Dt(τ)×Yt–1] + γ2[Dt(τ)×Xt–1] + ut 

where Dt(τ) = 1 if t ≥ τ, and = 0 otherwise. 

• If γ0 = γ1 = γ2 = 0, then the coefficients are constant over 

the full sample. 

• If at least one of γ0, γ1, or γ2 are nonzero, the regression 

function changes at date τ. 
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Yt = β0 + β1Yt–1 + δ1Xt–1  

+ γ0Dt(τ) + γ1[Dt(τ)×Yt–1] + γ2[Dt(τ)×Xt–1] + ut 

where Dt(τ) = 1 if t ≥ τ, and = 0 otherwise 

 

The Chow test statistic for a break at date τ is the 

(heteroskedasticity-robust) F-statistic that tests: 

 

H0: γ0 = γ1 = γ2 = 0 

vs.  H1: at least one of γ0, γ1, or γ2 are nonzero 

 

• Note that you can apply this to a subset of the coefficients, 

e.g. only the coefficient on Xt–1. 

• Often, however, you don’t have a candidate break date… 
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Case II:  The break date is unknown 

 

Why consider this case? 

• You might suspect there is a break, but not know when 

• You might want to test for stationarity (coefficient 

stability) against a general alternative that there has been a 

break sometime. 

• Often, even if you think you know the break date, that 

“knowledge” is based on prior inspection of the series – so 

that in effect you “estimated” the break date.  This 

invalidates the Chow test critical values (why?) 
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The Quandt Likelihod Ratio (QLR) Statistic 

(also called the “sup-Wald” statistic) 

 

The QLR statistic = the maximal Chow statistics 

• Let F(τ) = the Chow test statistic testing the hypothesis of 

no break at date τ. 

• The QLR test statistic is the maximum of all the Chow F-

statistics, over a range of τ, τ0 ≤ τ ≤ τ1: 

QLR = max[F(τ0), F(τ0+1) ,…, F(τ1–1), F(τ1)] 

 

• A conventional choice for τ0 and τ1 are the inner 70% of 

the sample (exclude the first and last 15%. 

• Should you use the usual Fq,∞ critical values? 
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The QLR test, ctd. 

 

QLR = max[F(τ0), F(τ0+1) ,…, F(τ1–1), F(τ1)] 

 

• The large-sample null distribution of F(τ) for a given 

(fixed, not estimated) τ  is Fq,∞  

• But if you get to compute two Chow tests and choose the 

biggest one, the critical value must be larger than the 

critical value for a single Chow test. 

• If you compute very many Chow test statistics – for 

example, all dates in the central 70% of the sample – the 

critical value must be larger still! 
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• Get this: in large samples, QLR has the distribution, 
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where {Bi}, i =1,…,n, are independent continuous-time 

“Brownian Bridges” on 0 ≤ s ≤ 1 (a Brownian Bridge is a 

Brownian motion deviated from its mean), and where a = 

.15 (exclude first and last 15% of the sample) 

• Critical values are tabulated in SW Table 14.6… 
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Note that these critical values are larger than the Fq,∞ critical 

values – for example, F1,∞  5% critical value is 3.84. 
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Has the postwar U.S. Phillips Curve been stable? 

 

Recall the ADL(4,4) model of ∆Inft and Unempt – the 

empirical backwards-looking Phillips curve, estimated over 

(1962 – 2004): 

 

�
tInf∆  = 1.30 – .42∆Inft–1 – .37∆Inft–2 + .06∆Inft–3 – .04∆Inft–4 

     (.44)  (.08)      (.09)    (.08)     (.08) 

 

 – 2.64Unemt–1 + 3.04Unemt–2 – 0.38Unemt–3 + .25Unempt–4   

    (.46)       (.86)     (.89)     (.45) 

 

Has this model been stable over the full period 1962-2004? 
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QLR tests of the stability of the U.S. Phillips curve. 

dependent variable:  ∆Inft   

regressors: intercept, ∆Inft–1,…, ∆Inft–4,  

Unempt–1,…, Unempt–4 

• test for constancy of intercept only (other coefficients are 

assumed constant): QLR = 2.865 (q = 1). 

o 10% critical value = 7.12 ⇒ don’t reject at 10% level 

• test for constancy of intercept and coefficients on 

Unempt,…, Unempt–3 (coefficients on ∆Inft–1,…, ∆Inft–4 

are constant): QLR = 5.158 (q = 5) 

o 1% critical value = 4.53 ⇒ reject at 1% level 

o Break date estimate: maximal F occurs in 1981:IV 

• Conclude that there is a break in the inflation – 

unemployment relation, with estimated date of 1981:IV 
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