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Econ 423 – Lecture Notes 

 

 
(These notes are slightly modified versions of lecture notes provided by 

Stock and Watson, 2007. They are for instructional purposes only  

and are not to be distributed outside of the classroom.)  
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Regression with Panel Data 

 

A panel dataset contains observations on multiple entities 

(individuals), where each entity is observed at two or more 

points in time. 

Some Examples: 

• Data on 420 California school districts in 1999 and 

again in 2000, for 840 observations total. 

• Data on traffic fatality rates for 48 U.S. states for 7 

years (1982,…, 1988), for a total of 336 observations 

• Penn World Table database contains data on real GDP, 

capital, productivity, employment, and population for 

167 countries over the years 1950-2014.  
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Notation for panel data 

A double subscript distinguishes entities (states) and time 

periods (years) 

 

i = entity (state), n = number of entities,  

so i = 1,…,n  

 

t = time period (year), T = number of time periods 

so t =1,…,T 

 

Data:  Suppose we have 1 regressor.  The data are: 

 

(Xit, Yit), i = 1,…,n, t = 1,…,T 
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Panel data notation, ctd. 

Panel data with k regressors: 

(X1it, X2it,…,Xkit, Yit), i = 1,…,n, t = 1,…,T 

 

n = number of entities (states) and T = number of time periods 

(years) 

 

Some jargon…  

• Another term for  panel data is longitudinal data 

• balanced panel:  no missing observations (all variables 

are observed for all entites [states] and all time periods 

[years]) 

• unbalanced panel: some missing observations – mutual 

fund data.  
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Why are panel data useful? 

 

With panel data we can control for factors that: 

• Vary across entities (states) but do not vary over time 

• Could cause omitted variable bias if they are omitted 

• are unobserved or unmeasured – and therefore cannot be 

included in the regression using multiple regression 

 

Here’s the key idea: 

If an omitted variable does not change over time, then any 

changes in Y over time cannot be caused by the omitted 

variable. 
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Example of a panel data set: 

Traffic deaths and alcohol taxes 

 

Observational unit: a year in a U.S. state 

• 48 U.S. states, so n = # of entities = 48 

• 7 years (1982,…, 1988), so T = # of time periods = 7 

• Balanced panel, so total # observations = 7×48 = 336 

Variables: 

• Traffic fatality rate (# traffic deaths in that state in that 

year, per 10,000 state residents) 

• Tax on a case of beer 

• Other (legal driving age, drunk driving laws, etc.) 
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U.S. traffic death data for 1982: 

 

Higher alcohol taxes, more traffic deaths? 
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U.S. traffic death data for 1988 

 

Higher alcohol taxes, more traffic deaths? 
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Why might there be higher more traffic deaths in states that 

have higher alcohol taxes? 

 

Other factors that determine traffic fatality rate: 

• Quality (age) of automobiles 

• Quality of roads 

• “Culture” around drinking and driving 

• Density of cars on the road 
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These omitted factors could cause omitted variable bias. 

 

Example #1: traffic density.  Suppose: 

 

(i) High traffic density means more traffic deaths 

(ii) (Western) states with lower traffic density have lower 

alcohol taxes 

• Then the two conditions for omitted variable bias are 

satisfied.  Specifically, “high taxes” could reflect “high 

traffic density” (so the OLS coefficient would be biased 

positively – high taxes, more deaths) 

• Panel data lets us eliminate omitted variable bias when the 

omitted variables are constant over time within a given 

state. 
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Example #2: cultural attitudes towards drinking and driving: 

 

(i)  arguably are a determinant of traffic deaths; and  

(ii) potentially are correlated with the beer tax, so beer 

taxes could be picking up cultural differences 

(omitted variable bias). 

• Then the two conditions for omitted variable bias are 

satisfied.  Specifically, “high taxes” could reflect “cultural 

attitudes towards drinking” (so the OLS coefficient would 

be biased) 

• Panel data lets us eliminate omitted variable bias when the 

omitted variables are constant over time within a given 

state. 
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Panel Data with Two Time Periods 

 

Consider the panel data model, 

 

FatalityRateit = β0 + β1BeerTaxit + β2Zi + uit 

 

Zi is a factor that does not change over time (density), at least 

during the years on which we have data. 

• Suppose Zi is not observed, so its omission could result in 

omitted variable bias. 

• The effect of Zi can be eliminated using T = 2 years. 
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The key idea:   

Any change in the fatality rate from 1982 to 1988 cannot 

be caused by Zi, because Zi (by assumption) does not 

change between 1982 and 1988. 

 

The math:  consider fatality rates in 1988 and 1982: 

FatalityRatei1988 = β0 + β1BeerTaxi1988 + β2Zi + ui1988 

FatalityRatei1982 = β0 + β1BeerTaxi1982 + β2Zi + ui1982 

 

Suppose E(uit|BeerTaxit, Zi) = 0. 

 

Subtracting 1988 – 1982 (that is, calculating the change), 

eliminates the effect of Zi… 
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FatalityRatei1988 = β0 + β1BeerTaxi1988 + β2Zi + ui1988 

 

FatalityRatei1982 = β0 + β1BeerTaxi1982 + β2Zi + ui1982 

so 

FatalityRatei1988 – FatalityRatei1982 = 

β1(BeerTaxi1988 – BeerTaxi1982) + (ui1988 – ui1982) 

 

• The new error term, (ui1988 – ui1982), is uncorrelated with 

either BeerTaxi1988 or BeerTaxi1982. 

• This “difference” equation can be estimated by OLS, even 

though Zi isn’t observed. 

• The omitted variable Zi doesn’t change, so it cannot be a 

determinant of the change in Y 
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Example: Traffic deaths and beer taxes 

 

1982 data: 

������������	 = 2.01 + 0.15BeerTax  (n = 48) 

         (.15)   (.13) 

1988 data: 

������������	  = 1.86 + 0.44BeerTax  (n = 48) 

         (.11)   (.13) 

 

Difference regression (n = 48) 

��
��� − ��
���	 = –.072 – 1.04(BeerTax1988–BeerTax1982)  

      (.065)   (.36) 
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∆FatalityRate v. ∆BeerTax: 
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Fixed Effects Regression 

 

 

What if you have more than 2 time periods (T > 2)?  

 

Yit = β0 + β1Xit + β2Zi + uit, i =1,…,n, T = 1,…,T 

 

We can rewrite this in two useful ways: 

1. “n-1 binary regressor” regression model 

2. “Fixed Effects” regression model 

 

We first rewrite this in “fixed effects” form.  Suppose we 

have n = 3 states: California, Texas, Massachusetts.  
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Yit = β0 + β1Xit + β2Zi + ui, i =1,…,n, T = 1,…,T 

 

Population regression for California (that is, i = CA): 

YCA,t = β0 + β1XCA,t + β2ZCA + uCA,t 

     = (β0 + β2ZCA) + β1XCA,t  + uCA,t  

or 

  YCA,t = αCA + β1XCA,t  + uCA,t 

 

• αCA = β0 + β2ZCA  doesn’t change over time 

• αCA is the intercept for CA, and β1 is the slope 

• The intercept is unique to CA, but the slope is the same in 

all the states: parallel lines. 
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For TX: 

YTX,t = β0 + β1XTX,t + β2ZTX + uTX,t 

     = (β0 + β2ZTX) + β1XTX,t  + uTX,t  

or 

  YTX,t = αTX + β1XTX,t  + uTX,t, where αTX = β0 + β2ZTX 

 

Collecting the lines for all three states: 

  YCA,t = αCA + β1XCA,t  + uCA,t 

  YTX,t = αTX + β1XTX,t  + uTX,t 

YMA,t = αMA + β1XMA,t  + uMA,t 

or 

  Yit = αi + β1Xit + uit, i = CA, TX, MA, T = 1,…,T 
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The regression lines for each state in a picture 

 

Recall that shifts in the intercept can be represented using 

binary regressors… 

Y  = αCA + β1X  

Y  = αTX + β1X  

Y  = αMA+ β1X  

αMA  

αTX  

αCA  

Y  

X  

MA  

TX  

CA  
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In binary regressor form: 

Yit = β0 + γCADCAi + γTXDTXi + β1Xit + uit 

• DCAi = 1 if state is CA, = 0 otherwise 

• DTXt = 1 if state is TX, = 0 otherwise 

• leave out DMAi (why?) 

Y  = αCA + β1X  

Y  = αTX + β1X  

Y  = αMA+ β1X  

αMA  

αTX  

αCA  

Y  

X  

MA  

TX  

CA  
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Summary:  Two ways to write the fixed effects model 

“n-1 binary regressor” form 

 

Yit = β0 + β1Xit + γ2D2i + … + γnDni + uit 

 

where D2i = 
1 for =2 (state #2)

0 otherwise

i



, etc. 

 

“Fixed effects” form: 

Yit = β1Xit + αi + uit 

 

• αi is called a “state fixed effect” or “state effect” – it is the 

constant (fixed) effect of being in state i 
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Fixed Effects Regression: Estimation 

 

Three estimation methods: 

1. “n-1 binary regressors” OLS regression 

2. “Entity-demeaned” OLS regression 

3. “Changes” specification, without an intercept 

 

• These three methods produce identical estimates of the 

regression coefficients, and identical standard errors in the 

case with T = 2. 

• We already did the “changes” specification (1988 minus 

1982). 

• Methods #1 and #2 are more efficient for general T. 
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1.  “n-1 binary regressors” OLS regression 

 

Yit = β0 + β1Xit + γ2D2i + … + γnDni + uit  (1) 

 

where  D2i = 
1 for =2 (state #2)

0 otherwise

i



  etc. 

 

• First create the binary variables D2i,…,Dni 

• Then estimate (1) by OLS 

• Inference (hypothesis tests, confidence intervals) is as usual 

(using heteroskedasticity-robust standard errors) 

• This may be hard to do when n is very large (for example if 

n = 1000 workers) 
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2.  “Entity-demeaned” OLS regression 

The fixed effects regression model: 

Yit = β1Xit + αi + uit 

 

The state averages satisfy: 

  
1

1 T

it

t

Y
T =
∑  = αi + β1

1

1 T

it

t

X
T =
∑  + 

1

1 T

it

t

u
T =
∑  

 

Deviation from state averages: 

Yit – 
1

1 T

it

t

Y
T =
∑  = β1

1

1 T

it it

t

X X
T =

 − 
 

∑  + 
1

1 T

it it

t

u u
T =

 − 
 

∑  
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Entity-demeaned OLS regression, ctd. 

 

Yit – 
1

1 T

it

t

Y
T =
∑  = β1

1

1 T

it it

t

X X
T =

 − 
 

∑  + 
1

1 T

it it

t

u u
T =

 − 
 

∑  

or 

itY%  = β1 itX%  + itu%  

 

where itY%  = Yit – 
1

1 T

it

t

Y
T =
∑  and itX%  = Xit – 

1

1 T

it

t

X
T =
∑  

 

• For i=1 and t = 1982, itY%  is the difference between the 

fatality rate in Alabama in 1982, and its average value in 

Alabama averaged over all 7 years. 
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Entity-demeaned OLS regression, ctd. 

 

itY%  = β1 itX%  + itu%         (2) 

 

where  itY%  = Yit – 
1

1 T

it

t

Y
T =
∑ , etc. 

• First construct the demeaned variables itY%  and itX%  

• Then estimate (2) by regressing itY%  on itX%  using OLS 

• Inference (hypothesis tests, confidence intervals) is as 

usual (using heteroskedasticity-robust standard errors) 

• This is like the “changes” approach, but instead Yit is 

deviated from the state average instead of Yi1. 

• This can be done in a single command in STATA 
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Example:  Traffic deaths and beer taxes in STATA 
 

. areg vfrall beertax, absorb(state) r; 

 

Regression with robust standard errors                 Number of obs =     336 

                                                       F(  1,   287) =   10.41 

                                                       Prob > F      =  0.0014 

                                                       R-squared     =  0.9050 

                                                       Adj R-squared =  0.8891 

                                                       Root MSE      =  .18986 

 

------------------------------------------------------------------------------ 

             |               Robust 

      vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     beertax |  -.6558736   .2032797    -3.23   0.001    -1.055982   -.2557655 

       _cons |   2.377075   .1051515    22.61   0.000     2.170109    2.584041 

-------------+---------------------------------------------------------------- 

       state |   absorbed                                      (48 categories) 

 

 

• “areg” automatically de-means the data 

• this is especially useful when n is large 

• the reported intercept is arbitrary 
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Example, ctd.  For n = 48, T = 7: 

 

FatalityRate = –.66BeerTax + State fixed effects 

        (.20) 

 

• Should you report the intercept? 

• How many binary regressors would you include to 

estimate this using the “binary regressor” method? 

• Compare slope, standard error to the estimate for the 1988 

v. 1982  “changes” specification (T = 2, n = 48) (note that 

this includes an intercept – return to this below): 

 


1988 1982FR FR−  = –.072 – 1.04(BeerTax1988–BeerTax1982)  

      (.065)   (.36) 
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By the way… how much do beer taxes vary? 

 

Beer Taxes in 2005 

Source: Federation of Tax Administrators 

http://www.taxadmin.org/fta/rate/beer.html 

 

 

EXCISE 
TAX 

RATES 
($ per 
gallon) 

 
SALES 
TAXES 

APPLIED 

 
 
OTHER TAXES 

Alabama $0.53 Yes $0.52/gallon local tax 

Alaska 1.07 n.a. $0.35/gallon small breweries 

Arizona 0.16 Yes  

Arkansas 0.23 Yes 
under 3.2% - $0.16/gallon; $0.008/gallon and 3% off- 10% 
on-premise tax 

California 0.20 Yes  

Colorado 0.08 Yes  

Connecticut 0.19 Yes  

Delaware 0.16 n.a.  

Florida 0.48 Yes 2.67¢/12 ounces on-premise retail tax 
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Georgia 0.48 Yes $0.53/gallon local tax 

Hawaii 0.93 Yes $0.54/gallon draft beer 

Idaho 0.15 Yes over 4% - $0.45/gallon 

Illinois 0.185 Yes $0.16/gallon in Chicago and $0.06/gallon in Cook County 

Indiana 0.115 Yes  

Iowa 0.19 Yes  

Kansas 0.18 -- 
over 3.2% - {8% off- and 10% on-premise}, under 3.2% - 4.25% sales 
tax. 

Kentucky 0.08 Yes* 9% wholesale tax 

Louisiana 0.32 Yes $0.048/gallon local tax 

Maine 0.35 Yes additional 5% on-premise tax 

Maryland 0.09 Yes $0.2333/gallon in Garrett County 

Massachusetts 0.11 Yes* 0.57% on private club sales 

Michigan 0.20 Yes  

Minnesota 0.15 -- under 3.2% - $0.077/gallon. 9% sales tax 

Mississippi 0.43 Yes  

Missouri 0.06 Yes  

Montana 0.14 n.a.  

Nebraska 0.31 Yes  

Nevada 0.16 Yes  

New 
Hampshire 

0.30 n.a.  

New Jersey 0.12 Yes  

New Mexico 0.41 Yes  
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New York 0.11 Yes $0.12/gallon in New York City 

North Carolina 0.53 Yes $0.48/gallon bulk beer 

North Dakota 0.16 -- 7% state sales tax, bulk beer $0.08/gal. 

Ohio 0.18 Yes  

Oklahoma 0.40 Yes under 3.2% - $0.36/gallon; 13.5% on-premise 

Oregon 0.08 n.a.  

Pennsylvania 0.08 Yes  

Rhode Island 0.10 Yes $0.04/case wholesale tax 

South Carolina 0.77 Yes  

South Dakota 0.28 Yes  

Tennessee 0.14 Yes 17% wholesale tax 

Texas 0.19 Yes 
over 4% - $0.198/gallon, 14% on-premise and $0.05/drink on airline 
sales 

Utah 0.41 Yes over 3.2% - sold through state store 

Vermont 0.265 no 6% to 8% alcohol - $0.55; 10% on-premise sales tax 

Virginia 0.26 Yes  

Washington 0.261 Yes  

West Virginia 0.18 Yes  

Wisconsin 0.06 Yes  

Wyoming 0.02 Yes  

    

Dist. of 
Columbia 

0.09 Yes 8% off- and 10% on-premise sales tax 

U.S. Median $0.188   
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Regression with Time Fixed Effects 

 

An omitted variable might vary over time but not across 

states: 

• Safer cars (air bags, etc.); changes in national laws 

• These produce intercepts that change over time 

• Let these changes (“safer cars”) be denoted by the variable 

St, which changes over time but not states. 

• The resulting population regression model is: 

 

Yit = β0 + β1Xit + β2Zi + β3St + uit 
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Time fixed effects only 

 

Yit = β0 + β1Xit + β3St + uit 

 

In effect, the intercept varies from one year to the next: 

 

Yi,1982 = β0 + β1Xi,1982 + β3S1982 + ui,1982 

    = (β0 + β3S1982) + β1Xi,1982 + ui,1982 

or 

Yi,1982 = µ1982 + β1Xi,1982 + ui,1982,     µ1982 = β0 + β3S1982 

 

Similarly, 

Yi,1983 = µ1983 + β1Xi,1983 + ui,1983,     µ1983 = β0 + β3S1983 

etc. 



 10-35 

Two formulations for time fixed effects 

 

1.  “T-1 binary regressor” formulation: 

 

Yit = β0 + β1Xit + δ2B2t + … δTBTt + uit 

 

where  B2t = 
1 when =2 (year #2)

0 otherwise

t



, etc. 

 

2.  “Time effects” formulation: 

 

Yit = β1Xit + µt + uit 
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Time fixed effects: estimation methods 

 

1.  “T-1 binary regressor” OLS regression 

Yit = β0 + β1Xit + δ2B2it + … δTBTit + uit 

• Create binary variables B2,…,BT 

• B2 = 1 if t = year #2, = 0 otherwise 

• Regress Y on X, B2,…,BT using OLS 

• Where’s B1? 

 

2.  “Year-demeaned” OLS regression 

• Deviate Yit, Xit from year (not state) averages 

• Estimate by OLS using “year-demeaned” data 

 

These two methods can be combined… 
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. gen y83=(year==1983); 

. gen y84=(year==1984); 

. gen y85=(year==1985); 

. gen y86=(year==1986); 

. gen y87=(year==1987); 

. gen y88=(year==1988); 

. areg vfrall beertax y83 y84 y85 y86 y87 y88, absorb(state) r; 

 

Regression with robust standard errors                 Number of obs =     336 

                                                       F(  7,   281) =    3.70 

                                                       Prob > F      =  0.0008 

                                                       R-squared     =  0.9089 

                                                       Adj R-squared =  0.8914 

                                                       Root MSE      =  .18788 

------------------------------------------------------------------------------ 

             |               Robust 

      vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     beertax |  -.6399799   .2547149    -2.51   0.013    -1.141371   -.1385884 

         y83 |  -.0799029   .0502708    -1.59   0.113    -.1788579    .0190522 

         y84 |  -.0724206   .0452466    -1.60   0.111     -.161486    .0166448 

         y85 |  -.1239763   .0460017    -2.70   0.007     -.214528   -.0334246 

         y86 |  -.0378645   .0486527    -0.78   0.437    -.1336344    .0579055 

         y87 |  -.0509021   .0516113    -0.99   0.325    -.1524958    .0506917 

         y88 |  -.0518038     .05387    -0.96   0.337    -.1578438    .0542361 

       _cons |    2.42847   .1468565    16.54   0.000     2.139392    2.717549 

-------------+---------------------------------------------------------------- 

       state |   absorbed                                      (48 categories) 

(there are other ways to do this in STATA) 
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Combined entity and time fixed effects 

 

• When T = 2, computing the first difference and including 

an intercept is equivalent (gives exactly the same 

regression) as the previous STATA command. 

• So there are various equivalent ways to allow for both 

entity and time fixed effects: 

o differences & intercept (T = 2 only) – this is what we 

did initially 

o entity demeaning & T – 1 time indicators 

o time demeaning & n – 1 entity indicators 

o T – 1 time indicators & n – 1 entity indicators  

o entity & time demeaning 
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The Fixed Effects Regression Assumptions and Standard 

Errors for Fixed Effects Regression 

 

Under assumptions that are basically extensions of the 

least squares assumptions, the OLS fixed effects estimator of 

β1 is normally distributed.  However, there are some 

subtleties associated with computing standard errors that 

don’t come up with cross-sectional data. 

 

Outline 

A.  The fixed effects regression assumptions 

B.  Standard errors for fixed effects regression – in two cases, 

one of which is new. 
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A.  Extension of LS Assumptions to Panel Data 

Consider a single X: 

 

Yit = β1Xit + αi + uit,  i = 1,…,n, t = 1,…, T 

 

1. E(uit|Xi1,…,XiT,αi) = 0. 

2. (Xi1,…,XiT,Yi1,…,YiT), i =1,…,n, are i.i.d. draws from 

their joint distribution. 

3. (Xit, Yit) have finite fourth moments. 

4. There is no perfect multicollinearity (multiple X’s) 

5. corr(uit,uis|Xit,Xis,αi) = 0 for t ≠ s. 

Assumptions 3&4 are least squares LS assumptions 3&4 

Assumptions 1&2 differ 

Assumption 5 is new
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Assumption #1: E(uit|Xi1,…,XiT,αi) = 0 

 

• uit has mean zero, given the state fixed effect and the 

entire history of the X’s for that state 

• This is an extension of the previous multiple regression 

Assumption #1 

• This means there are no omitted lagged effects (any 

lagged effects of X must enter explicitly) 

• Also, there is not feedback from u to future X: 

o Whether a state has a particularly high fatality rate this 

year doesn’t subsequently affect whether it increases 

the beer tax. 
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Assumption #2:  (Xi1,…,XiT,Yi1,…,YiT), i =1,…,n, are 

i.i.d. draws from their joint distribution. 

 

• This is an extension of Assumption #2 for multiple 

regression with cross-section data 

• This is satisfied if entities (states, individuals) are 

randomly sampled from their population by simple 

random sampling, then data for those entities are collected 

over time. 

• This does not require observations to be i.i.d. over time for 

the same entity – that would be unrealistic (whether a state 

has a beer tax this year is strongly related to whether it 

will have a high tax next year). 
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Assumption #5:  corr(uit,uis|Xit,Xis,αi) = 0 for t ≠ s 

 

• We haven’t seen this before. 

• This says that (given X), the error terms are uncorrelated 

over time within a state. 

• For example, uCA,1982 and uCA,1983 are uncorrelated 

• Is this plausible?  What enters the error term? 

o Especially snowy winter 

o Opening major new divided highway 

o Fluctuations in traffic density from local economic 

conditions 

• Assumption #5 requires these omitted factors entering uit 

to be uncorrelated over time, within a state. 
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Assumption #5 in a picture: 

 

11 21 31 1

1 2 3

1 2 3

1 n

T T T nT

i i i i n

t u u u u

t T u u u u

= = = =
=

=

L

L

M M M M L M

L

 

 

    ← Sampling is i.i.d. across entities → 

       (by Assumption #2) 

 

Assumption #5: u’s are uncorrelated over time, same entity 

• Is this plausible? 

• The u’s consist of omitted factors – are they uncorrelated 

over time? 
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What if Assumption #5 fails: so corr(uit,uis|Xit,Xis,αi) ≠0? 

• A useful analogy is heteroskedasticity. 

• OLS panel data estimators of β1 are unbiased, consistent 

• The OLS standard errors will be wrong – usually the OLS 

standard errors understate the true uncertainty 

• Intuition:  if uit is correlated over time, you don’t have as 

much information (as much random variation) as you would 

were uit uncorrelated. 

• This problem is solved by using “heteroskedasticity and 

autocorrelation-consistent standard errors” 
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B.  Standard Errors 

B.1 First get the large-n approximation to the sampling 

distribution of the FE estimator 

 

Fixed effects regression model: itY%  = β1 itX%  + itu%  

 

OLS fixed effects estimator:  1β̂  = 1 1

2

1 1

n T

it it

i t

n T

it

i t

X Y

X

= =

= =

∑∑

∑∑

% %

%

 

so:         1β̂  – β1 = 1 1

2

1 1

n T

it it

i t

n T

it

i t

X u

X

= =

= =

∑∑

∑∑

% %

%
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Sampling distribution of fixed effects estimator, ctd. 

Fact: 

    
1

T

it itt
X u

=∑ % %  =  
1

T

it itt
X u

=∑ %  – ( )
1

T

it i it
X X u

=
 −
 ∑  = 

1

T

it itt
X u

=∑ %  

so 

  nT ( 1β̂  –  β1) = 1 1

2

1

ˆ

n T

it

i t

X
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where ηi = 
1

1 T

ittT
ν

=∑ % , itν%  = it itX u% , and 2ˆ
X

Q %  = 2

1 1

1 n T

it

i t

X
nT = =
∑∑ %  . 

By the CLT, 

     nT ( 1β̂  –  β1) 
d

→ N(0, 2

ησ / 4

X
Q % )  

where 
d

→ means converges in distribution and 2ˆ
X

Q %  
p

→ 2

X
Q % . 
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Sampling distribution of fixed effects estimator, ctd.  

 

nT ( 1β̂  –  β1) 
d

→ N(0, 2

ησ / 4

X
Q % ), where 2

ησ  = 
1

1
var

T

ittT
ν

=

 
 
 

∑ %  

 

B.2 Obtain Standard Error: 

• Standard error of 1β̂ :  SE( 1β̂ ) = 

2

4

ˆ1

ˆ
X

nT Q

ησ

%

 

• Only part we don’t have:  what is 2ˆησ ? 

• Case I:  uit, uis uncorrelated 

• Case II: uit, uis correlated 
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Case I: 2ˆ
Bσ   when uit, uis are uncorrelated 

     2

ησ  = 
1

1
var

T

it

tT
ν

=

 
 
 

∑ %   = 1 2 ...
var i i iT

T

ν ν ν+ + + 
 
 

% % %
 

 

• Recall var(X + Y) = var(X) + var(Y) + 2cov(X,Y). 

• When uit and uis are uncorrelated, cov( itν% , isν% ) = 0 unless t 

= s, so all the covariance terms are zero and 

2

ησ  =  ( )1
var itT

T
ν× %  = var( itν% ) 

• You can use the usual (hetero-robust) SE formula for 

standard errors.  This works because the usual hetero-

robust formula is for uncorrelated errors – which is the 

case here. 
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Case II:  uit and uis are correlated – so Assumption 5 fails 

 

2

ησ  = 
1

1
var

T

it

tT
ν

=

 
 
 

∑ %    

= 1 2 ...
var i i iT

T

ν ν ν+ + + 
 
 

% % %
 

  ≠ var( itν% ) 

• Recall var(X + Y) = var(X) + var(Y) + 2cov(X,Y) 

• If uit and uis are correlated, we have some nonzero 

covariances!!  So in general we don’t get any further 

simplifications. 

• However, we can still compute standard errors – but using 

a different method: “clustered” standard errors. 
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Case II:  Clustered Standard Errors 

 

Variance: 

2

ησ  = 
1

1
var

T

it

tT
ν

=

 
 
 

∑ %  

 

Variance estimator: 

2

,
ˆ

clusteredησ  = 

2

1 1

1 1 ˆ
n T

it

i tn T
ν

= =

 
 
 

∑ ∑ % , where ˆ
itν%  = ˆ

it it
X u% . 

 

Clustered standard error: 

SE( 1β̂ ) = 

2

,

4

ˆ1

ˆ
clustered

X
nT Q

ησ

%
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Comments on clustered standard errors: 

 

• The clustered SE formula is NOT the usual (hetero-robust) 

SE formula! 

 

• OK this is messy – but you get something for it – you can 

have correlation of the error for an entity from one time 

period to the next.  This would arise if the omitted 

variables that make up uit are correlated over time. 
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Comments on clustered standard errors, ctd. 

 

• The Case II standard error formula goes under various 

names: 

o Clustered standard errors, because there is a 

grouping, or “cluster,” within which the error term is 

possibly correlated, but outside of which (across 

groups) it is not. 

o  Heteroskedasticity- and autocorrelation-consistent 

standard errors (autocorrelation is correlation with 

other time periods – uit and uis correlated) 
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Comments on clustered standard errors, ctd. 

 

• Extensions: 

o The clusters can be other groupings, not necessarily 

time 

o For example, you can allow for correlation of uit 

between individuals within a given group, as long as 

there is independence across groups – for example i 

runs over individuals, the clusters can be families 

(correlation of uit for i within same family, not between 

families). 
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Implementation in STATA 

Case I: treat uit and uis as uncorrelated 
 

 

 

 

 

. areg vfrall beertax, absorb(state) robust; 

 

Linear regression, absorbing indicators                Number of obs =     336 

                                                       F(  1,   287) =   10.41 

                                                       Prob > F      =  0.0014 

                                                       R-squared     =  0.9050 

                                                       Adj R-squared =  0.8891 

                                                       Root MSE      =  .18986 

 

------------------------------------------------------------------------------ 

             |               Robust 

      vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     beertax |  -.6558736   .2032797    -3.23   0.001    -1.055982   -.2557655 

       _cons |   2.377075   .1051515    22.61   0.000     2.170109    2.584041 

-------------+---------------------------------------------------------------- 

       state |   absorbed                                      (48 categories) 
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Case II: treat uit and uis as possibly correlated 
 

. areg vfrall beertax, absorb(state) robust cluster(state); 

 

Linear regression, absorbing indicators                Number of obs =     336 

                                                       F(  1,    47) =    4.34 

                                                       Prob > F      =  0.0427 

                                                       R-squared     =  0.9050 

                                                       Adj R-squared =  0.8891 

                                                       Root MSE      =  .18986 

 

                                 (Std. Err. adjusted for 48 clusters in state) 

------------------------------------------------------------------------------ 

             |               Robust 

      vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     beertax |  -.6558736   .3148476    -2.08   0.043    -1.289265    -.022482 

       _cons |   2.377075   .1615974    14.71   0.000     2.051983    2.702167 

-------------+---------------------------------------------------------------- 

       state |   absorbed                                      (48 categories) 

 

 

Coefficients are identical (why?) 

Pretty big difference in the standard errors! 



 10-57 

Try adding year effects: 
. areg vfrall beertax y83 y84 y85 y86 y87 y88, absorb(state) r; 

 

Regression with robust standard errors                 Number of obs =     336 

                                                       F(  7,   281) =    3.70 

                                                       Prob > F      =  0.0008 

                                                       R-squared     =  0.9089 

                                                       Adj R-squared =  0.8914 

                                                       Root MSE      =  .18788 

------------------------------------------------------------------------------ 

             |               Robust 

      vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     beertax |  -.6399799   .2547149    -2.51   0.013    -1.141371   -.1385884 

         y83 |  -.0799029   .0502708    -1.59   0.113    -.1788579    .0190522 

         y84 |  -.0724206   .0452466    -1.60   0.111     -.161486    .0166448 

         y85 |  -.1239763   .0460017    -2.70   0.007     -.214528   -.0334246 

         y86 |  -.0378645   .0486527    -0.78   0.437    -.1336344    .0579055 

         y87 |  -.0509021   .0516113    -0.99   0.325    -.1524958    .0506917 

         y88 |  -.0518038     .05387    -0.96   0.337    -.1578438    .0542361 

       _cons |    2.42847   .1468565    16.54   0.000     2.139392    2.717549 

-------------+---------------------------------------------------------------- 

       state |   absorbed                                      (48 categories) 
 

.   test $yeardum; 

 

       F(  6,   281) =    2.47 

            Prob > F =    0.0243 
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.  areg vfrall beertax $yeardum, absorb(state) r cluster(state); 

 

Linear regression, absorbing indicators                Number of obs =     336 

                                                       F(  7,    47) =    3.74 

                                                       Prob > F      =  0.0027 

                                                       R-squared     =  0.9089 

                                                       Adj R-squared =  0.8914 

                                                       Root MSE      =  .18788 

 

                                 (Std. Err. adjusted for 48 clusters in state) 

------------------------------------------------------------------------------ 

             |               Robust 

      vfrall |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     beertax |  -.6399799   .3857867    -1.66   0.104    -1.416083    .1361229 

         y83 |  -.0799029   .0379069    -2.11   0.040    -.1561617    -.003644 

         y84 |  -.0724206   .0474088    -1.53   0.133    -.1677948    .0229537 

         y85 |  -.1239763   .0497587    -2.49   0.016    -.2240779   -.0238747 

         y86 |  -.0378645   .0616479    -0.61   0.542    -.1618841    .0861552 

         y87 |  -.0509021   .0687224    -0.74   0.463    -.1891536    .0873495 

         y88 |  -.0518038   .0695801    -0.74   0.460    -.1917809    .0881732 

       _cons |    2.42847   .2179038    11.14   0.000     1.990104    2.866836 

-------------+---------------------------------------------------------------- 

       state |   absorbed                                      (48 categories) 

 

.   test $yeardum; 

 

       F(  6,    47) =    3.61 

            Prob > F =    0.0050  
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Fixed Effects Regression Results 

Dependent variable: Fatality rate 

 

 (1) (2) (3) (4) 

BeerTax -.656** 

(.203) 

-.656+ 

(.315) 

-.640* 

(.255) 

-.640++ 

(.386) 

State effects? Yes Yes Yes Yes 

Time effects? No No Yes Yes 

F testing time 

effects = 0 

– 2.47 

(.024) 

– 3.61 

(.005) 

Clustered SEs? No Yes No Yes 

Significant at the **1% *5% +10% level 
++ Significant at the 10% level using normal but not Student t 

critical values 

 

This is a hard call – what would you conclude?
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Summary: SEs for Panel Data in a picture: 

11 21 31 1

1 2 3

1 2 3

1 n

T T T nT

i i i i n

t u u u u

t T u u u u

= = = =
=

=

L

L

M M M M L M

L

 

 

        ← i.i.d. sampling across entities →  

• Intuition #1:  This is similar to heteroskedasticity – you 

make an assumption about the error, derive SEs under that 

assumption, if the assumption is wrong, so are the SEs 

• Intuition #2:  If u21 and u22 are correlated, there is less 

information in the sample than if they are not – and SEs 

need to account for this (usual SEs are typically too small) 

• Hetero-robust (or homosk-only) SEs don’t allow for this 

correlation, but clustered SEs do. 
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Application: Drunk Driving Laws and Traffic Deaths 

(SW Section 10.6) 

 

Some facts 

• Approx. 40,000 traffic fatalities annually in the U.S. 

• 1/3 of traffic fatalities involve a drinking driver 

• 25% of drivers on the road between 1am and 3am have 

been drinking (estimate) 

• A drunk driver is 13 times as likely to cause a fatal crash 

as a non-drinking driver (estimate) 
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Drunk driving laws and traffic deaths, ctd. 

 

Public policy issues 

• Drunk driving causes massive externalities (sober drivers 

are killed, society bears medical costs, etc. etc.) – there is 

ample justification for governmental intervention 

• Are there any effective ways to reduce drunk driving?  If 

so, what? 

• What are effects of specific laws: 

o mandatory punishment 

o minimum legal drinking age 

o economic interventions (alcohol taxes) 
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The Commonwealth of Massachusetts 
Executive Department  

State House Boston, MA 02133 
(617) 725-4000 

 

MITT ROMNEY  
GOVERNOR  

KERRY HEALEY  
LIEUTENANT GOVERNOR 

FOR IMMEDIATE RELEASE:  
October 28, 2005 

CONTACT:
Julie Teer
Laura Nicoll
(617) 725

ROMNEY CELEBRATES THE PASSAGE OF MELANIE'S BILL  
Legislation puts Massachusetts in line with federal standards for drunk driving  

Governor Mitt Romney today signed into law the toughest drunk driving 
legislation in the Commonwealth’s history.     
 
Named in honor of 13-year-old Melanie Powell, the new law will stiffen penalties 
for drunk driving offenses in Massachusetts and close loopholes in the legal 
system that allow repeat drunk drivers to get back behind the wheel.  
 
“Today we honor those who have lost their lives in senseless drunk driving 
tragedies and act to save the lives we could otherwise lose next year,” said 
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Romney.  “We have Melanie’s Law today because the citizens of the 
Commonwealth cared enough to make it happen.”  

The new measure gives prosecutors the power to introduce certified court 
documents to prove that a repeat offender has been previously convicted of 
drunk driving.   In addition, the mandatory minimum jail sentence for any 
individual found guilty of manslaughter by motor vehicle will be increased from 2 
½ to five years.  

Repeat offenders will be required to install an interlock device on any vehicle 
they own or operate.  These devices measure the driver’s Blood Alcohol Content 
(BAC) and prevent the car from starting if the driver is intoxicated.   Any 
individual who tampers with the interlock device could face a jail sentence. 

For the first time, Massachusetts will be in compliance with federal standards for 
drunk driving laws. 

Romney was joined by Tod and Nancy Powell, the parents of Melanie Powell, 
and her grandfather, Ron Bersani to celebrate the passage of the new drunk 
driving measure.  
 
“Today we should give thanks to all of those who have worked so hard to make 
this day possible,” said Bersani.   “Governor Romney and the Legislative 
leadership have advanced the fight against repeat drunk driving to heights that 
seemed unattainable just six months ago. 

Under the law, stiff penalties will be established for individuals who drive while 
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drunk with a child under the age of 14 in the vehicle and those who drive with a 
BAC of .20 or higher, more than twice the legal limit. 

Romney thanked the Legislature for enacting a tough bill that cracks down on 
repeat drunk driving offenders in Massachusetts. 

“Public safety is one of our top priorities and Melanie’s Law will go a long way 
towards making our citizens and roadways safer,” said Speaker Salvatore F. 
DiMasi.  “I commend the my colleagues in the Legislature and the Governor for 
taking comprehensive and quick action on this very important issue.” 

“Today we are sending a powerful message that Massachusetts is serious about 
keeping repeat drunken drivers off the road,” said House Minority Leader Bradley 
H. Jones Jr. “I am proud of the Governor, Lieutenant Governor, and my 
legislative colleagues for joining together to pass tough laws to make our 
roadways safer.” 

“I am pleased and proud that the Legislature did the right thing in the end and 
supported a Bill worthy of Melanie’s name and the sacrifices made by the Powell 
family and all victims of drunk drivers,” said Senator Robert L. 
Hedlund.   “Melanie's Law will save lives and it would not have been 
accomplished if not for the tireless efforts and advocacy of the families.”   

Representative Frank Hynes added, “I’d like to commend Ron, Tod, and Nancy 
for their tireless work in support of Melanie’s bill.  As a family, they were able to 
turn the horrific tragedy in their lives into a greater measure of safety for all 
families on Massachusetts roadways.”               
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### 
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The drunk driving panel data set 

n = 48 U.S. states, T = 7 years (1982,…,1988) (balanced) 

 

Variables 

• Traffic fatality rate (deaths per 10,000 residents) 

• Tax on a case of beer (Beertax) 

• Minimum legal drinking age 

• Minimum sentencing laws for first DWI violation: 

o Mandatory Jail  

o Manditory Community Service 

o otherwise, sentence will just be a monetary fine 

• Vehicle miles per driver (US DOT) 

• State economic data (real per capita income, etc.) 
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Why might panel data help? 

• Potential OV bias from variables that vary across states but 

are constant over time: 

o culture of drinking and driving 

o quality of roads 

o vintage of autos on the road 

⇒ use state fixed effects 

• Potential OV bias from variables that vary over time but are 

constant across states: 

o improvements in auto safety over time 

o changing national attitudes towards drunk driving 

⇒ use time fixed effects 
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Empirical Analysis:  Main Results 

 

• Sign of beer tax coefficient changes when fixed state effects 

are included 

• Fixed time effects are statistically significant but do not 

have big impact on the estimated coefficients 

• Estimated effect of beer tax drops when other laws are 

included as regressor 

• The only policy variable that seems to have an impact is the 

tax on beer – not minimum drinking age, not mandatory 

sentencing, etc. – however the beer tax is not significant 

even at the 10% level using clustered SEs. 

• The other economic variables have plausibly large 

coefficients:  more income, more driving, more deaths 
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Digression: extensions of the “n-1 binary regressor” idea 

 

The idea of using many binary indicators to eliminate omitted 

variable bias can be extended to non-panel data – the key is 

that the omitted variable is constant for a group of 

observations, so that in effect it means that each group has its 

own intercept. 

Example:  Class size problem. 

Suppose funding and curricular issues are determined at 

the county level, and each county has several districts.  

Resulting omitted variable bias could be addressed by 

including binary indicators, one for each county (omit one 

to avoid perfect multicollinearity). 



 10-73 

Summary:  Regression with Panel Data 

(SW Section 10.7) 

 

Advantages and limitations of fixed effects regression 

 

Advantages 

• You can control for unobserved variables that: 

o vary across states but not over time, and/or  

o vary over time but not across states 

• More observations give you more information 

• Estimation involves relatively straightforward extensions 

of multiple regression 
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• Fixed effects regression can be done three ways: 

1. “Changes” method when T = 2 

2. “n-1 binary regressors” method when n is small 

3. “Entity-demeaned” regression 

• Similar methods apply to regression with time fixed 

effects and to both time and state fixed effects 

• Statistical inference: like multiple regression. 

 

Limitations/challenges 

• Need variation in X over time within states 

• Time lag effects can be important 

• You should use heteroskedasticity- and autocorrelation-

consistent (clustered) standard errors if you think uit could 

be correlated over time  


